National Library of Energy BETA

Sample records for distributed wind policy

  1. Distributed Wind Policy Comparison Tool

    Energy.gov [DOE]

    DOE funded "Best Practices for Cost-Effective Distributed Wind" to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth).

  2. Distributed Wind Policy Comparison Tool

    SciTech Connect

    2011-12-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE’s '20% Wind Energy by 2030' report and helping to meet COE targets.

  3. Distributed Wind Policy Comparison Tool Guidebook

    SciTech Connect

    Not Available

    2011-11-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE's '20% Wind Energy by 2030' report and helping to meet COE targets.

  4. Distributed Wind Policy Comparison Tool Website | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    TOOL Name: Distributed Wind Policy Comparison Tool Website Focus Area: Renewable Energy Topics: Security & Reliability Website: www.eformativeoptions.comdwpolicytool...

  5. Distributed Wind Policy Comparison Tool | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentdistributed-wind-policy-comparison-to Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in...

  6. Final Technical Report Power through Policy: "Best Practices" for Cost-Effective Distributed Wind

    SciTech Connect

    Rhoads-Weaver, Heather; Gagne, Matthew; Sahl, Kurt; Orrell, Alice; Banks, Jennifer

    2012-02-28

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The project's final products include the Distributed Wind Policy Comparison Tool, found at www.windpolicytool.org, and its accompanying documentation: Distributed Wind Policy Comparison Tool Guidebook: User Instructions, Assumptions, and Case Studies. With only two initial user inputs required, the Policy Tool allows users to adjust and test a wide range of policy-related variables through a user-friendly dashboard interface with slider bars. The Policy Tool is populated with a variety of financial variables, including turbine costs, electricity rates, policies, and financial incentives; economic variables including discount and escalation rates; as well as technical variables that impact electricity production, such as turbine power curves and wind speed. The Policy Tool allows users to change many of the variables, including the policies, to gauge the expected impacts that various policy combinations could have on the cost of energy (COE), net present value (NPV), internal rate of return (IRR), and the simple payback of distributed wind projects ranging in size from 2.4 kilowatts (kW) to 100 kW. The project conducted case studies to demonstrate how the Policy Tool can provide insights into 'what if' scenarios and also allow the current status of incentives to be examined or defended when necessary. The ranking

  7. Distributed Wind Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  8. 2014 WIND POWER PROGRAM PEER REVIEW-DISTRIBUTED WIND

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Wind March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Distributed Wind Annual Market Report on Wind Technologies in Distributed Applications & Distributed Wind Policy Comparison Tool-Alice Orrell, Pacific Northwest National Laboratory Government, Industry, International Partnerships-Karin Sinclair, National Renewable Energy Laboratory Certifying Distributed Wind Turbines-Brent Summerville, Small Wind Certification Council Loads Analysis and Standards

  9. Distributed Wind Ordinances: Slides

    WindExchange

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  10. WINDExchange: Distributed Wind

    WindExchange

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  11. Distributed Wind 2015

    Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  12. Distributed Wind Energy Workshop

    Energy.gov [DOE]

    Join instructor Brent Summerville for a fun and interactive workshop at Appalachian State University's Small Wind Research and Demonstration Site. Learn about a variety of distributed wind energy...

  13. Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Wind Distributed Wind The Wind Program's activities in wind technologies in distributed applications-or distributed wind-address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing. What is Distributed Wind? Photo of a turbine behind a school. The Wind Program defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and

  14. Distributed Wind Market Applications

    SciTech Connect

    Forsyth, T.; Baring-Gould, I.

    2007-11-01

    Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, central station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.

  15. 2014 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Capacity Nearing 1 GW Distributed wind cumulative capacity has reached a total of 906 MW from nearly 74,000 wind turbines. In 2014, 23 states added 63.6 MW of new distributed ...

  16. Articles about Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Articles about Distributed Wind Articles about Distributed Wind Below are stories about distributed wind featured by the U.S. Department of Energy (DOE) Wind Program. October 1,...

  17. EERE Success Story-Helping Policymakers Evaluate Distributed Wind Options

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Helping Policymakers Evaluate Distributed Wind Options EERE Success Story-Helping Policymakers Evaluate Distributed Wind Options April 18, 2013 - 12:00am Addthis With EERE support, eFormative Options is helping policymakers, utilities, advocates, and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to generate their own clean electricity and cut

  18. NREL: Wind Research - Small and Distributed Wind Turbine Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Small and Distributed Wind Turbine Research A distributed wind farm in Wisconsin at ... Standards: The suite of tests conducted on small wind turbines includes acoustic noise ...

  19. Updated Web Tool Focuses on Bottom Line for Distributed Wind...

    Energy.gov [DOE] (indexed site)

    Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. Comparing the combined impact of current state and federal policies for distributed wind and exploring the best ways ...

  20. 2014 Distributed Wind Market Report

    SciTech Connect

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  1. 2013 Distributed Wind Market Report

    SciTech Connect

    Orrell, A. C.

    2014-08-15

    This report describes the status of the U.S. distributed wind industry in 2013; its trends, performance, market drivers and future outlook.

  2. Distributed Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    facility's anaerobic digesters. Photo from Kathryn Craddock, NREL 16710 Distributed wind energy systems provide clean, renewable power for on-site use and help relieve...

  3. Distributed Wind Energy in Idaho

    SciTech Connect

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. • Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. • Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. • Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind’s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level

  4. Assistance to States on Policies Related to Wind Energy Issues

    SciTech Connect

    Brown, Matthew, H; Decesaro, Jennifer; DOE Project Officer - Keith Bennett

    2005-07-15

    This final report summarizes work carried out under agreement with the US Department of Energy, related to wind energy policy issues. This project has involved a combination of outreach and publications on wind energy, with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of wind energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of meetings designed specifically for state legislators and legislative staff, responses to information requests on wind energy, and publications. The publications addressed: renewable energy portfolio standards, wind energy transmission, wind energy siting, case studies of wind energy policy, avian issues, economic development, and other related issues. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about wind information for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to wind energy in the states.

  5. 2013 Distributed Wind Market Report

    SciTech Connect

    Orrell, Alice C.; Rhoads-Weaver, H. E.; Flowers, Larry T.; Gagne, Matthew N.; Pro, Boyd H.; Foster, Nikolas AF

    2014-08-20

    The purpose of this report is to quantify and summarize the 2013 U.S. distributed wind market to help plan and guide future investments and decisions by industry stakeholders, utilities, state and federal agencies, and other interested parties.

  6. Fact Sheet: 2013 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet summarizes findings from the forthcoming 2013 Distributed Wind Market Report, offering a snapshot of the distributed wind market based on 2013 data.

  7. Helping Policymakers Evaluate Distributed Wind Options | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Helping Policymakers Evaluate Distributed Wind Options Helping Policymakers Evaluate Distributed Wind Options April 18, 2013 - 12:00am Addthis With EERE support, eFormative Options...

  8. Fact Sheet: 2012 Distributed Wind Market Report

    SciTech Connect

    Alice Orrell, Bret Barker

    2013-04-06

    This fact sheet summarizes findings from the forthcoming 2012 Distributed Wind Market Report, offering a snapshot of the distributed wind market based on 2012 data.

  9. Intertribal Council on Utility Policy--Wind Energy Planning and...

    Energy Saver

    Wind Planning and Policy Project (IWPP) Intertribal COUP 2004 DOE TEP Grant Intertribal COUP Council On Utility Policy All base maps courtesy of NREL The TREMENDOUS WIND ...

  10. Distributed Wind Competitiveness Improvement Project (Fact Sheet...

    Energy.gov [DOE] (indexed site)

    Distributed Wind Competitiveness Improvement Project The Competitiveness Improvement ... (NREL). Manufacturers of small and medium wind turbines are awarded cost-shared grants ...

  11. ASYMMETRIC SOLAR WIND ELECTRON DISTRIBUTIONS

    SciTech Connect

    Yoon, Peter H.; Kim, Sunjung; Lee, Junggi; Lee, Junhyun; Park, Jongsun; Park, Kyungsun; Seough, Jungjoon [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hong, Jinhy [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2012-08-20

    The present paper provides a possible explanation for the solar wind electron velocity distribution functions possessing asymmetric energetic tails. By numerically solving the electrostatic weak turbulence equations that involve nonlinear interactions among electrons, Langmuir waves, and ion-sound waves, it is shown that different ratios of ion-to-electron temperatures lead to the generation of varying degrees of asymmetric tails. The present finding may be applicable to observations in the solar wind near 1 AU and in other regions of the heliosphere and interplanetary space.

  12. How Distributed Wind Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    How Distributed Wind Works How Distributed Wind Works Your browser does not support iframes. Distributed wind energy systems are commonly installed on, but are not limited to, residential, agricultural, commercial, industrial, and community sites, and can range in size from a 5-kilowatt turbine at a home to a multi-megawatt (MW) turbine at a manufacturing facility. Distributed wind systems are connected on the customer side of the meter to meet the onsite load or directly to distribution or

  13. DWEA July Webinar: Financing Distributed Wind

    Energy.gov [DOE]

    Join the Distributed Wind Energy Association (DWEA) for a webinar on financing distributed wind. Presenters are Chris Diaz, Seminole Financial Services LLC, and Russell Tencer, founder and CEO of...

  14. Articles about Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Wind Articles about Distributed Wind Below are stories about distributed wind featured by the U.S. Department of Energy (DOE) Wind Program. August 17, 2016 Photo by Patsy McEnroe Photography. Energy Department Reports Show Strong Growth of U.S. Wind Power Continued low wind energy prices highlighted in annual state-of-the-industry market reports June 14, 2016 VIDEO: How to Build a Wind Turbine in less than 20 Minutes The U.S. Department of Energy's Office of Energy Efficiency and

  15. Solar wind thermal electron distributions

    SciTech Connect

    Phillips, J.L.; Gosling, J.T.

    1991-01-01

    Solar wind thermal electron distributions exhibit distinctive trends which suggest Coulomb collisions and geometric expansion in the interplanetary magnetic field play keys roles in electron transport. We introduce a simple numerical model incorporating these mechanisms, discuss the ramifications of model results, and assess the validity of the model in terms of ISEE-3 and Ulysses observations. Although the model duplicates the shape of the electron distributions, and explains certain other observational features, observed gradients in total electron temperature indicate the importance of additional heating mechanisms. 5 refs., 7 figs.

  16. Distributed Wind Policy Comparison Tool

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    North Carolina Solar Center. The authors would like to thank the many individuals and organizations that assisted us by providing data, thoughtful comments, and support. A...

  17. 2014 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 2014 Distributed Wind Market Report PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov Available to the public from the National Technical Information Service 5301 Shawnee

  18. 2015 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 2015 Distributed Wind Market Report PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the O ce of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 e-mail: reports@adonis.osti.gov Available to the public from the National Technical Information Service 5301 Shawnee

  19. Solar/Wind Access Policy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    SolarWind Access Policy < Solar Jump to: navigation, search Solar and wind access laws are designed to establish a right to install and operate a solar or wind energy system at a...

  20. 2013 Distributed Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Wind Market Report 2013 Distributed Wind Market Report This report describes the status of the U.S. distributed wind market in 2013; its trends, performance, market drivers and future outlook. 2013 Distributed Wind Market Report Cover Photo.JPG 2013 Distributed Wind Market Report.pdf (2.93 MB) More Documents & Publications 2014 Distributed Wind Market Report 2015 Distributed Wind Market Report 2014 Distributed Wind Market Report Fact Sheet

  1. Energy Department Announces Distributed Wind Competitiveness Improvement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project Awards | Department of Energy Distributed Wind Competitiveness Improvement Project Awards Energy Department Announces Distributed Wind Competitiveness Improvement Project Awards July 24, 2014 - 3:23pm Addthis The Energy Department and the Department's National Renewable Energy Laboratory today announced funding for projects led by Pika Energy, Northern Power Systems, Endurance Wind Power, and Urban Green Energy that will help drive down the cost of small and medium-sized wind energy

  2. 2015 Distributed Wind Market Report Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Capacity Continues to Grow Distributed wind cumulative capacity now totals 934 MW from over 75,000 turbines. In 2015, 28 states added 28 MW of new distributed wind capacity, representing just over 1,700 turbines and a $102 million investment. U.S. Small Wind Manufacturers Double Exports to 21.5 MW In 2015, U.S. manufacturers dominated domestic sales of small wind turbines (up through 100 kW) and doubled exports from 2014 to 2015. Between 2012 and 2015, U.S.-based small wind turbine

  3. 2014 Distributed Wind Market Report Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report Fact Sheet 2014 Distributed Wind Market Report Fact Sheet 2014-Distributed-Wind-Market-Report-Fact-Sheet_05122015_Page_1.jpg 2014 Distributed Wind Market Report Fact Sheet (12.98 MB) More Documents & Publications 2015 Distributed Wind Market Report Fact Sheet 2014 Distributed Wind Market Report 2015 Distributed Wind

  4. Request for Information for Distributed Wind Energy Systems ...

    Office of Environmental Management (EM)

    Information for Distributed Wind Energy Systems Request for Information for Distributed Wind Energy Systems August 14, 2014 - 9:07am Addthis The Energy Department's Wind Program is ...

  5. Distributed Wind Energy Association | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Association Jump to: navigation, search Name: Distributed Wind Energy Association Address: PO Box 1861 Place: Flagstaff, AZ Zip: 86002 Phone Number: 928-255-0214 Website:...

  6. Distributed Wind Diffusion Model Overview (Presentation)

    SciTech Connect

    Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

    2014-07-01

    Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

  7. Distributed Wind Competitiveness Improvement Project Fact Sheet

    Energy.gov [DOE]

    The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards.

  8. 2013 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Acknowledgments The authors wish to thank the following people for their help in producing this report: Patrick Gilman, Liz Hartman, Mark Higgins, and Michael Derby of the U.S. Department of Energy's Wind and Water Power Technologies Office (WWPTO) and Bret Barker (New West Technologies in support of WWPTO). Emily Williams and the American Wind Energy Association for the use of AWEA's database. Mike Parker, Jamie Gority, Christopher DeGraaf, Whitney Rau, and Grant Williams of Pacific Northwest

  9. 2013 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    vi Acknowledgments The authors wish to thank the following people for their help in producing this report: Patrick Gilman, Liz Hartman, Mark Higgins, and Michael Derby of the U.S. Department of Energy's Wind and Water Power Technologies Office (WWPTO) and Bret Barker (New West Technologies in support of WWPTO). Emily Williams and the American Wind Energy Association for the use of AWEA's database. Mike Parker, Jamie Gority, Christopher DeGraaf, Whitney Rau, and Grant Williams of Pacific

  10. Distributed connected wind farms (Smart Grid Project) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed connected wind farms (Smart Grid Project) Jump to: navigation, search Project Name Distributed connected wind farms Country Ireland Headquarters Location Kerry, Ireland...

  11. 2013 Distributed Wind Market Report Data | Department of Energy

    Energy.gov [DOE] (indexed site)

    File 2013 Distributed Wind Market Report Data Tables.xlsx More Documents & Publications Office of Legacy Management the First Decade 2003-2013 2013 Distributed Wind Market Report ...

  12. Distributed Wind Site Analysis Tool (DSAT) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentdistributed-wind-site-analysis-tool-d Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The...

  13. NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

  14. 2015 Distributed Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Distributed Wind Market Report 2015 Distributed Wind Market Report The cover for 2015 Distributed Wind Market Report. The U.S. Department of Energy's (DOE's) annual Distributed Wind Market Report provides stakeholders with statistics and analysis of the market along with insights into its trends and characteristics. By providing a comprehensive overview of the distributed wind market, this report can help plan and guide future investments and decisions by industry, utilities, federal and state

  15. New DOE Report Reveals Significant Growth in Distributed Wind...

    Office of Environmental Management (EM)

    According to the 2012 Market Report on Wind Technologies in Distributed Applications, 68% of the wind turbines installed in the United States over the past 10 years were ...

  16. Implementing Distribution Control with a Concentration of Wind...

    Energy.gov [DOE] (indexed site)

    53% Net Capacity Factors on Recent Wind Turbines, 8.2ms average wind speed; * Distribution System * 1.4M in distribution system upgrades; * 30MW Peak Distribution Load ...

  17. 2015 Distributed Wind Market Report Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report Fact Sheet 2015 Distributed Wind Market Report Fact Sheet 2015-Distributed-Wind-Market-Report-Fact-Sheet_Page_1.jpg Wind turbines in distributed applications are found in all 50 states, Puerto Rico, and the U.S. Virgin Islands to provide energy locally, either serving on-site electricity needs or a local grid. Distributed wind is defined by the wind project's location relative to end-use and powerdistribution infrastructure, rather than turbine or project size. Fact Sheet: 2015

  18. ARM - Data Sharing and Distribution Policy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DocumentationData Sharing and Distribution Policy Policies, Plans, Descriptions Data Documentation Home Data Sharing and Distribution Policy Data Management and Documentation Plan Data Product Registration and Submission Statement on Digital Data Management Guidelines for Integrating Data Products and Algorithms to ARM Data Libraries Reading netCDF and HDF Data Files Time in ARM netCDF Data Files Data Archive Documentation ARM Archive's Catalog of Data Streams (Updated monthly) Access to

  19. 2014 Distributed Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report 2014 Distributed Wind Market Report The cover of the 2014 Distributed Wind Market Report. According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment

  20. Updated Web Tool Focuses on Bottom Line for Distributed Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Updated Web Tool Focuses on Bottom Line for Distributed Wind Turbines Updated Web Tool Focuses on Bottom Line for Distributed Wind Turbines January 10, 2013 - 2:43pm Addthis This...

  1. PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Reports Distributed Wind Installations Down, Exports Up in 2013 PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 March 31, 2014 - 11:14am Addthis According to the second annual Market Report on Wind Technologies in Distributed Applications soon to be published by DOE's Pacific Northwest National Laboratory, U.S. wind turbines in distributed applications reached a cumulative installed capacity of 842 MW at the end of 2013, reflecting nearly 72,000

  2. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect

    Hodge, B. M.; Milligan, M.

    2011-07-01

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  3. New developments in the Danish Wind Energy Policy

    SciTech Connect

    Lemming, J.

    1996-12-31

    Wind energy resources in Denmark are among the best in Europe. In recent years there has been a rapid growth in number of wind turbines connected to the grid in Denmark. By the end of 1995 more than 3800 wind turbines were installed on-shore with a capacity of over 600 MW. The total production of electricity from these turbines in 1995 was more than 1200 GWh, corresponding to approximately 3.6 % of the Danish electricity consumption. For several years Denmark has pursued an energy policy with an increasing weight on environmental aspects and new and renewable energy sources like wind energy. Therefore wind energy already plays an important part as supplement to the traditional sources of fuel in the electricity production, and the share of wind energy and other renewables is expected to increase significantly in the years to come. 1 ref., 9 figs.

  4. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  5. ASYMMETRIC ELECTRON DISTRIBUTIONS IN THE SOLAR WIND

    SciTech Connect

    Rha, Kicheol; Ryu, Chang-Mo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)] [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)] [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2013-09-20

    A plausible mechanism responsible for producing asymmetric electron velocity distribution functions in the solar wind is investigated by means of one-dimensional electrostatic particle-in-cell (PIC) simulation. A recent paper suggests that the variation in the ion-to-electron temperature ratio influences the nonlinear wave-particle dynamics such that it results in the formation of asymmetric distributions. The present PIC code simulation largely confirms this finding, but quantitative differences between the weak turbulence formalism and the present PIC simulation are also found, suggesting the limitation of the analytical method. The inter-relationship between the asymmetric electron distribution and the ion-to-electron temperature ratio may be a new useful concept for the observation.

  6. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  7. Distributed Wind Case Study: Cross Island Farms, Wellesley Island...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York www.nrel.gov Baker and Belding installed a 10-kW Bergey Excel wind turbine in August 2011. Photo from ...

  8. Northwest Distributed/Community Wind Workgroup Meeting- Seattle

    Energy.gov [DOE]

    As part of the DOE's Northwest Wind Resource and Action Center, Northwest SEED will facilitate a workgroup meeting for stakeholders involved in the distributed and community wind sector in the...

  9. United States Wind Energy Growth and Policy Framework: Preprint

    SciTech Connect

    Calvert, S. D.; Hock, S. M.

    2001-07-01

    Wind is the fastest growing source for electricity in the United States. During 2001, U.S. wind power plant installations are expected to increase by 1,850 megawatts (MW), resulting in a total installed capacity of about 4,400 MW. The market expansion is supported by a variety of Federal and state incentives in the form of production tax credits, renewable energy production incentives, renewable energy portfolio standards, and others. New mechanisms include green power offerings, green tags, and government power purchases. Deregulation of the electric power industry is continuing. In some cases this is allowing higher electricity rates that may increase the rate of wind plant development. Power shortages, natural gas price increases, and enforcement of clean air laws are increasingly important wind market drivers in some regions. Continuing research and technology development has reduced wind energy costs dramatically to less than $0.04/kWh for large projects at sites with ave rage wind speeds higher than 7.0 m/s, making wind the least-cost option in some power markets. The recently published National Energy Policy contains recommendations to increase wind energy development and improve the power transmission system.

  10. Wind Power Forecasting Error Distributions over Multiple Timescales: Preprint

    SciTech Connect

    Hodge, B. M.; Milligan, M.

    2011-03-01

    In this paper, we examine the shape of the persistence model error distribution for ten different wind plants in the ERCOT system over multiple timescales. Comparisons are made between the experimental distribution shape and that of the normal distribution.

  11. Deployment Barriers to Distributed Wind Energy. Workshop Report

    SciTech Connect

    Ahlgrimm, Jim; Hartman, Liz; Barker, Bret; Fry, Chris; Meissner, John; Forsyth, Trudy; Baring-Gould, Ian; Newcomb, Charles

    2010-10-28

    This report presents key findings from the Department of Energy's Deployment Barriers to Distributed Wind Technology Workshop, held October 28, 2010 in Denver, Colorado.

  12. DOE Announces Webinars on the Distributed Wind Power Market,...

    Energy.gov [DOE] (indexed site)

    ... fuel in the United States. View the past webinar. Addthis Related Articles DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool

  13. DOE Announces Webinars on the Distributed Wind Power Market,...

    Energy.gov [DOE] (indexed site)

    ... 29 types of clean energy technologies. View the past webinar. Addthis Related Articles DOE Announces Webinars on the Distributed Wind Power Market, Utility Energy Service Contracts

  14. WINDExchange Webinar: Small and Distributed Wind Turbine Update

    Energy.gov [DOE]

    Save the date for this free webinar presenting an overview of recent news and updates pertaining to small and distributed wind turbines.

  15. Deployment Barriers to Distributed Wind Energy: Workshop Report...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This report presents key findings from the Department of Energy's Deployment Barriers to Distributed Wind Technology Workshop, held October 28, 2010 in Denver, Colorado. PDF icon ...

  16. Energy Department Announces Distributed Wind Competitiveness...

    Energy.gov [DOE] (indexed site)

    projects led by Pika Energy, Northern Power Systems, Endurance Wind Power, and Urban Green Energy that will help drive down the cost of small and medium-sized wind energy systems. ...

  17. Wind Power Forecasting Error Distributions: An International...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    be presented at The 11th Annual International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power ...

  18. 2015 Distributed Wind Market Report Fact Sheet

    Energy.gov [DOE] (indexed site)

    and doubled exports from 2014 to 2015. Between 2012 and 2015, U.S.-based small wind turbine manufacturers accounted for a combined 310 million in small wind turbine export sales. ...

  19. Distributed Wind Turbines | Department of Energy

    Energy.gov [DOE] (indexed site)

    11 Three 100 kilowatt (kW) wind turbines in Bisaccia, Italy. Last year, U.S. small wind turbines were exported to more than 50 countries, with top export markets identified as ...

  20. WINDExchange Webinar: Energy Department's Distributed Wind Industry...

    Energy.gov [DOE] (indexed site)

    00PM to 4:00PM EDT When people think of wind power, they usually picture large wind projects with long rows of turbines that send energy to distant end-users, but that image...

  1. U.S. Distributed Wind Sector Finds Support from NREL

    SciTech Connect

    Sinclair, Karin

    2015-02-02

    Small and mid-sized wind turbine manufacturers in the United States have led the international distributed wind market in installed capacity for decades. Continued reductions in the cost of distributed wind systems are essential to successfully compete with currently economical photovoltaic systems. Annual capacity additions in 2013 were particularly low. In an effort to reduce the levelized cost of energy (LCOE) of distributed wind systems manufactured in the United States, the U.S. Department of Energy (DOE) has provided funding through the National Renewable Energy Laboratory (NREL) to support several projects.

  2. How Do Distributed Wind Energy Systems Work? (Text Version) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Do Distributed Wind Energy Systems Work? (Text Version) How Do Distributed Wind Energy Systems Work? (Text Version) Below is the text version for the How Do Distributed Wind Energy Systems Work? animation. The animation shows a city powered by wind power. It includes a utility-scale wind farm, connected by transmission lines to a city with homes, farms, and a school. The animation explains how wind can be used at all of these interconnected locations. Distributed Wind Distributed wind

  3. NREL Distributes Wind Competitiveness Improvement Project Round Four

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Funding - News Releases | NREL NREL Distributes Wind Competitiveness Improvement Project Round Four Funding May 13, 2016 The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) is awarding four subcontracts under the fourth round of funding through DOE's Distributed Wind Competitiveness Improvement Project (CIP). The CIP aims to help manufacturers of small and mid-size wind turbines improve their turbine design and manufacturing processes while reducing costs and improving

  4. Voltage Impacts of Utility-Scale Distributed Wind

    SciTech Connect

    Allen, A.

    2014-09-01

    Although most utility-scale wind turbines in the United States are added at the transmission level in large wind power plants, distributed wind power offers an alternative that could increase the overall wind power penetration without the need for additional transmission. This report examines the distribution feeder-level voltage issues that can arise when adding utility-scale wind turbines to the distribution system. Four of the Pacific Northwest National Laboratory taxonomy feeders were examined in detail to study the voltage issues associated with adding wind turbines at different distances from the sub-station. General rules relating feeder resistance up to the point of turbine interconnection to the expected maximum voltage change levels were developed. Additional analysis examined line and transformer overvoltage conditions.

  5. Large Distributed Solar and Wind Grant Program

    Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) is offering grants for community-scale solar and wind projects located in Illinois.

  6. Distributed Wind Competitiveness Improvement Project Fact Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    its National Renewable Energy Laboratory (NREL). Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their ...

  7. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    SciTech Connect

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

    2013-08-06

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U

  8. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  9. Energy Department's Distributed Wind Industry Update: A WINDExchange...

    Energy Saver

    September 28, 2016 3:00PM to 4:00PM EDT Compared with traditional, centralized power plants, distributed wind energy installations supply power directly to homes, farms, schools, ...

  10. 2012 Market Report on Wind Technologies in Distributed Applications

    SciTech Connect

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  11. Northwest Distributed/Community Wind Workgroup Meeting- MT

    Energy.gov [DOE]

    The Northwest Wind Resource and Action Center, which is partially funded by the U.S. Department of Energy, will facilitate a workgroup meeting for stakeholders involved in the distributed and...

  12. Small Wind Guidebook/Web Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and policies that promote renewable energy and energy efficiency. Distributed Wind Energy Association DWEA provides info about distributed and community wind, including a...

  13. DOE-EPRI distributed wind Turbine Verification Program (TVP III)

    SciTech Connect

    McGowin, C.; DeMeo, E.; Calvert, S.

    1997-12-31

    In 1992, the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) initiated the Utility Wind Turbine Verification Program (TVP). The goal of the program is to evaluate prototype advanced wind turbines at several sites developed by U.S. electric utility companies. Two six MW wind projects have been installed under the TVP program by Central and South West Services in Fort Davis, Texas and Green Mountain Power Corporation in Searsburg, Vermont. In early 1997, DOE and EPRI selected five more utility projects to evaluate distributed wind generation using smaller {open_quotes}clusters{close_quotes} of wind turbines connected directly to the electricity distribution system. This paper presents an overview of the objectives, scope, and status of the EPRI-DOE TVP program and the existing and planned TVP projects.

  14. Renewable Energy: Distributed Generation Policies and Programs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Distributed Generation Policies and Programs Renewable Energy: Distributed Generation Policies and Programs Distributed generation is the term used when electricity is generated from sources, often renewable energy sources, near the point of use instead of centralized generation sources from power plants. State and local governments can implement policies and programs regarding distributed generation and its use to help overcome market and regulatory barriers to implementation.

  15. VAR Support from Distributed Wind Energy Resources: Preprint

    SciTech Connect

    Romanowitz, H.; Muljadi, E.; Butterfield, C. P.; Yinger, R.

    2004-07-01

    As the size and quantity of wind farms and other distributed generation facilities increase, especially in relation to local grids, the importance of a reactive power compensator or VAR support from these facilities becomes more significant. Poorly done, it can result in cycling or inadequate VAR support, and the local grid could experience excessive voltage regulation and, ultimately, instability. Improved wind turbine and distributed generation power control technologies are creating VAR support capabilities that can be used to enhance the voltage regulation and stability of local grids. Locating VAR support near the point of consumption, reducing step size, and making the control active all improve the performance of the grid. This paper presents and discusses alternatives for improving the integration of VAR support from distributed generation facilities such as wind farms. We also examine the relative effectiveness of distributed VAR support on the local grid and how it can b e integrated with the VAR support of the grid operator.

  16. Integrating wind turbines into the Orcas Island distribution system

    SciTech Connect

    Zaininger, H.W.

    1998-09-01

    This research effort consists of two years of wind data collection and analysis to investigate the possibility of strategically locating a megawatt (MW) scale wind farm near the end of an Orcas Power and light Company (OPALCO) 25-kilovolt (kV) distribution circuit to defer the need to upgrade the line to 69 kV. The results of this study support the results of previous work in which another year of wind data and collection was performed. Both this study and the previous study show that adding a MW-scale wind farm at the Mt. Constitution site is a feasible alternative to upgrading the OPALCO 25-kV distribution circuit to 69 kV.

  17. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 2012 Market Report on U.S. Wind Technologies in Distributed Applications 2012_distributed_wind_technologies_data.xls (129.5 KB) More Documents & Publications 2014 Distributed Wind Market Report 2013 Distributed Wind Market Report Data

  18. Policies to Support Wind Power Deployment: Key Considerations and Good Practices

    SciTech Connect

    Cox, Sadie; Tegen, Suzanne; Baring-Gould, Ian; Oteri, Frank A.; Esterly, Sean; Forsyth, Trudy; Baranowski, Ruth

    2015-05-19

    Policies have played an important role in scaling up wind deployment and increasing its economic viability while also supporting country-specific economic, social, and environmental development goals. Although wind power has become cost-competitive in several contexts, challenges to wind power deployment remain. Within the context of country-specific goals and challenges, policymakers are seeking

  19. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Office of Environmental Management (EM)

    in Distributed Applications Office spreadsheet icon 2012distributedwindtechnologiesdata.xls More Documents & Publications 2014 Distributed Wind Market Report 2013 ...

  20. Distributed Renewable Energy Finance and Policy Toolkit | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Renewable Energy Finance and Policy Toolkit AgencyCompany Organization: Clean Energy States Alliance...

  1. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  2. Technical Progress Report, Phase II Inventory of Wind Green Pricing report Fact Sheets Liability Insurance for Small Wind Energy Systems Zoning Issues for Small Wind Systems Small Wind System Slideshow Small Wind State by State Information Wind Power and Electric transmission Policy: Constructs, Constraints and Critical Path

    SciTech Connect

    Swisher, Randall Holt, Edward Wooley, David

    2002-05-08

    Status report on Green power Factsheets and product database. Small wind turbines as a distributed power

  3. Electron distributions and solar wind interaction with nonmagnetic planets

    SciTech Connect

    Lu Gan.

    1991-01-01

    A two-stream transport model for suprathermal electrons and a time-dependent energy equation for thermal electrons were used to find the electron distributions at the solar wind-planetary atmosphere boundary regions of comet Halley, Venus, and Titan. Results provided a clearer understanding of the electron distributions in these regions, and of the collisional processes that contribute to the energy dissipation and energy budget among atmospheric species. Application of the model equations to the inner coma of comet Halley has demonstrated the existence of a sharp transition boundary, called the thermal electron collisionopause. Application to Venus' dayside upper ionosphere and the mantle region has given suprathermal electron distributions as functions of altitude, solar zenith angle, and solar wind boundary conditions. Application to the interaction region between Saturn's magnetosphere and Titan's ionosphere leads to the conclusion that air-glow emission due to photoelectron impact is a much more important process than that produced by magnetospheric electron interactions.

  4. Top 10 Things You Didn't Know About Distributed Wind Power |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Top 10 Things You Didn't Know About Distributed Wind Power August 10, 2015 - 8:20am Addthis Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke ...

  5. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy An annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data, installation, capacity, and generation statistics, and more. 2012_distributed_wind_technologies_market_report.pdf (7.63 MB) More Documents & Publications 2012 Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed

  6. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications The 2012 Market Report on U.S. Wind Technologies in Distributed Applications is an annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data, installation, capacity, and generation statistics, and more. 2012 Market

  7. Distributed Wind Market Report: Small Turbines Lead to Big Growth in Exports

    Energy.gov [DOE]

    Read more about how wind technology was deployed in distributed applications throughout the United States and abroad.

  8. Distributed Wind Resource Assessment: State of the Industry

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Distributed Wind Resource Assessment: State of the Industry Jason Fields, Heidi Tinnesand, and Ian Baring-Gould National Renewable Energy Laboratory Technical Report NREL/TP-5000-66419 June 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  9. Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint

    SciTech Connect

    Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

    2007-06-01

    This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

  10. Policy Building Blocks: Helping Policymakers Determine Policy Staging for the Development of Distributed PV Markets: Preprint

    SciTech Connect

    Doris, E.

    2012-04-01

    There is a growing body of qualitative and a limited body of quantitative literature supporting the common assertion that policy drives development of clean energy resources. Recent work in this area indicates that the impact of policy depends on policy type, length of time in place, and economic and social contexts of implementation. This work aims to inform policymakers about the impact of different policy types and to assist in the staging of those policies to maximize individual policy effectiveness and development of the market. To do so, this paper provides a framework for policy development to support the market for distributed photovoltaic systems. Next steps include mathematical validation of the framework and development of specific policy pathways given state economic and resource contexts.

  11. Top 10 Things You Didn't Know About Distributed Wind Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Distributed Wind Power Top 10 Things You Didn't Know About Distributed Wind Power August 18, 2016 - 12:00pm Addthis Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Mid-Sized Distributed Wind: Two

  12. Policies and Market Factors Driving Wind Power Development in the United States

    SciTech Connect

    Bird, L.; Parsons, B.; Gagliano, T.; Brown, M.; Wiser, R.; Bolinger, M.

    2003-07-01

    In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24% annually during the past five years. With this growth, an increasing number of states are experiencing investment in wind energy. Wind installations currently exist in about half of all U.S. states. This paper explores the policies and market factors that have been driving utility-scale wind energy development in the United States, particularly in the states that have achieved a substantial amount of wind energy investment in recent years. Although there are federal policies and overarching market issues that are encouraging investment nationally, much of the recent activity has resulted from state-level policies or localized market drivers. In this paper, we identify the key policies, incentives, regulations, and markets affecting development, and draw lessons from the experience of leading states that may be transferable to other states or regions. We provide detailed discussions of the drivers for wind development in a dozen leading states-California, Colorado, Iowa, Kansas, Minnesota, New York, Oregon, Pennsylvania, Texas, Washington, West Virginia, and Wyoming.

  13. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    SciTech Connect

    Phadke, Amol; Bharvirkar, Ranjit; Khangura, Jagmeet

    2011-09-15

    We assess developable on-shore wind potential in India at three different hub-heights and under two sensitivity scenarios – one with no farmland included, the other with all farmland included. Under the “no farmland included” case, the total wind potential in India ranges from 748 GW at 80m hub-height to 976 GW at 120m hub-height. Under the “all farmland included” case, the potential with a minimum capacity factor of 20 percent ranges from 984 GW to 1,549 GW. High quality wind energy sites, at 80m hub-height with a minimum capacity factor of 25 percent, have a potential between 253 GW (no farmland included) and 306 GW (all farmland included). Our estimates are more than 15 times the current official estimate of wind energy potential in India (estimated at 50m hub height) and are about one tenth of the official estimate of the wind energy potential in the US.

  14. Solar wind driven dust acoustic instability with Lorentzian kappa distribution

    SciTech Connect

    Arshad, Kashif; Ehsan, Zahida; Khan, S. A.; Mahmood, S.

    2014-02-15

    In a three species electron-ion-dust plasma following a generalized non-Maxwellian distribution function (Lorentzian or kappa), it is shown that a kinetic instability of dust-acoustic mode exists. The instability threshold is affected when such (quasineutral) plasma permeates through another static plasma. Such case is of interest when the solar wind is streaming through the cometary plasma in the presence of interstellar dust. In the limits of phase velocity of the waves larger and smaller than the thermal velocity of dust particles, the dispersion properties and growth rate of dust-acoustic mode are investigated analytically with validation via numerical analysis.

  15. DOE 2012 Market Report on U.S. Wind Technologies for Distributed...

    Energy Saver

    Attributions used by the Wind Program to characterize distributed systems include: Proximity to End Use: Wind turbines installed at or near the point of end use for the purposes of ...

  16. Using Solar Business Models to Expand the Distributed Wind Market (Presentation)

    SciTech Connect

    Savage, S.

    2013-05-01

    This presentation to attendees at Wind Powering America's All-States Summit in Chicago describes business models that were responsible for rapid growth in the solar industry and that may be applicable to the distributed wind industry as well.

  17. Installer Issues: Integrating Distributed Wind into Local Communities (Presentation)

    SciTech Connect

    Green, J.

    2006-06-01

    A presentation for the WindPower 2006 Conference in Pittsburgh, PA, regarding the issues facing installer of small wind electric systems.

  18. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  19. Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of Policy Impacts and Interactions

    SciTech Connect

    Doris, E.; Krasko, V.A.

    2012-10-01

    State and local policymakers show increasing interest in spurring the development of customer-sited distributed generation (DG), in particular solar photovoltaic (PV) markets. Prompted by that interest, this analysis examines the use of state policy as a tool to support the development of a robust private investment market. This analysis builds on previous studies that focus on government subsidies to reduce installation costs of individual projects and provides an evaluation of the impacts of policies on stimulating private market development.

  20. EERE Success Story-Helping Policymakers Evaluate Distributed...

    Energy.gov [DOE] (indexed site)

    policymakers, utilities, advocates, and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. ...

  1. Deployment Barriers to Distributed Wind Energy: Workshop Report -- October 28, 2010

    SciTech Connect

    Not Available

    2011-07-01

    This report presents key findings from the Department of Energy's Deployment Barriers to Distributed Wind Technology Workshop, held October 28, 2010 in Denver, Colorado.

  2. Overcoming Technical and Market Barriers for Distributed Wind Applications: Reaching the Mainstream; Preprint

    SciTech Connect

    Rhoads-Weaver, H.; Forsyth, T.

    2006-07-01

    This paper describes how the distributed wind industry must overcome hurdles including system costs and interconnection and installation restrictions to reach its mainstream market potential.

  3. Deployment Barriers to Distributed Wind Energy: Workshop Report, October 28, 2010

    Energy.gov [DOE]

    This report presents key findings from the Department of Energy's Deployment Barriers to Distributed Wind Technology Workshop, held October 28, 2010 in Denver, Colorado.

  4. Top 10 Things You Didn't Know About Distributed Wind Power |...

    Energy Saver

    by households, schools, farms, industrial facilities and municipalities, distributed wind doesn't only refer to small-scale turbines; it includes any size turbine or array of...

  5. Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy, Fiscal Years 2006-2014

    SciTech Connect

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy from 2006 to 2014.

  6. Distributed Wind Market Report: Small Turbines Lead to Big Growth...

    Energy.gov [DOE] (indexed site)

    1 of 11 Three 100 kilowatt (kW) wind turbines in Bisaccia, Italy. Last year, U.S. small wind turbines were exported to more than 50 countries, with top export markets identified as ...

  7. WINDExchange Webinar: Energy Department's Distributed Wind Industry Update

    Energy.gov [DOE]

    When people think of wind power, they usually picture large wind projects with long rows of turbines that send energy to distant end-users, but that image doesn't convey the whole story....

  8. DOE 2012 Market Report on U.S. Wind Technologies for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Applications | Department of Energy 2012 Market Report on U.S. Wind Technologies for Distributed Applications DOE 2012 Market Report on U.S. Wind Technologies for Distributed Applications April 1, 2013 - 1:10pm Addthis This is an excerpt from the First Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) will soon release its annual 2012 Market Report on U.S. Wind Technologies in Distributed Applications. This report offers clear data-based market

  9. NREL: Distributed Grid Integration - Wind2Battery Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    system most economically for next-day forecasts Make wind energy consistent and available around the clock, while providing key grid ancillary services and being cost effective. ...

  10. 2014 Distributed Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers'...

  11. Evaluating state markets for residential wind systems: Results from an economic and policy analysis tool

    SciTech Connect

    Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

    2004-12-01

    The market for small wind systems in the United States, often defined as systems less than or equal to 100 kW that produce power on the customer side of the meter, is small but growing steadily. The installed capacity of domestic small wind systems in 2002 was reportedly 15-18 MW, though the market is estimated to be growing by as much as 40 percent annually (AWEA, 2002). This growth is driven in part by recent technology advancements and cost improvements and, perhaps more importantly, by favorable policy incentives targeted at small wind systems that are offered in several states. Currently, over half of all states have incentive policies for which residential small wind installations are eligible. These incentives range from low-interest loan programs and various forms of tax advantages to cash rebates that cover as much as 60 percent of the total system cost for turbines 10 kW or smaller installed in residential applications. Most of these incentives were developed to support a ran ge of emerging renewable technologies (most notably photovoltaic systems), and were therefore not specifically designed with small wind systems in mind. As such, the question remains as to which incentive types provide the greatest benefit to small wind systems, and how states might appropriately set the level and type of incentives in the future. Furthermore, given differences in incentive types and levels across states, as well as variations in retail electricity rates and other relevant factors, it is not immediately obvious which states offer the most promising markets for small wind turbine manufacturers and installers, as well as potential residential system owners. This paper presents results from a Berkeley Lab analysis of the impact of existing and proposed state and federal incentives on the economics of grid-connected, residential small wind systems. Berkeley Lab has designed the Small Wind Analysis Tool (SWAT) to compare system economics under current incentive structures

  12. Fault Detection and Load Distribution for the Wind Farm Challenge

    SciTech Connect

    Borchehrsen, Anders B.; Larsen, Jesper A.; Stoustrup, Jakob

    2014-08-24

    In this paper a fault detection system and a fault tolerant controller for a wind farm model. The wind farm model used is the one proposed as a public challenge. In the model three types of faults are introduced to a wind farm consisting of nine turbines. A fault detection system designed, by taking advantage of the fact that within a wind farm several wind turbines will be operating under all most identical conditions. The turbines are then grouped, and then turbines within each group are used to generate residuals for turbines in the group. The generated residuals are then evaluated using dynamical cumulative sum. The designed fault detection system is cable of detecting all three fault types occurring in the model. But there is room for improving the fault detection in some areas. To take advantage of the fault detection system a fault tolerant controller for the wind farm has been designed. The fault tolerant controller is a dispatch controller which is estimating the possible power at each individual turbine and then setting the reference accordingly. The fault tolerant controller has been compared to a reference controller. And the comparison shows that the fault tolerant controller performance better in all measures. The fault detection and a fault tolerant controller has been designed, and based on the simulated results the overall performance of the wind farm is improved on all measures. Thereby this is a step towards improving the overall performance of current and future wind farms.

  13. Zoning for Distributed Wind Power - Breaking Down Barriers: Preprint

    SciTech Connect

    Green, J.; Sagrillo, M.

    2005-08-01

    Zoning regulations for the use of small wind turbines vary from state to state and from one local jurisdiction to the next. This paper examines the zoning experiences of small wind turbine owners, options for local actions, and examples of state and federal limited preemption of local zoning authority as a means of promoting the implementation of new technologies.

  14. Lessons Learned from the U.S. Photovoltaic Industry and Implications for Development of Distributed Small Wind: Preprint

    SciTech Connect

    Forsyth, T.; Tombari, C.; Nelson, M.

    2006-06-01

    Report examining market development issues in the solar photovoltaic (PV) industry, including Federal policy infrastructure and incentives, state and local policy infrastructure, and business support,as they relate to the small wind industry.

  15. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    SciTech Connect

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  16. Deployment Barriers to Distributed Wind Energy: Workshop Report...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    waste 3 Acknowledgements: This report was prepared by the U.S. Department of Energy Wind and Water Power Program, and was led by Technology Acceptance Team Lead Jim Ahlgrimm ...

  17. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...

    Energy Saver

    The CIP aims to help U.S. manufacturers of small and mid-sized wind turbines with rotor swept areas up to 1,000 square meters improve their turbine designs and manufacturing ...

  18. Distributed Wind Resource Assessment Workshop | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Resource Assessment Workshop Jump to: navigation, search Contents 1 Introduction 1.1 Workshop Purpose 1.2 Workshop Goals 1.3 Workshop Objective 2 Panel Session 1:...

  19. The Impact of Distributed Wind on Bulk Power System Operations...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Generation (TWh) Imports Nuclear Coal Gas Oil Biomass Hydro Pumped H. Wind Solar ISO-NE Published Data Model Results 0 20 40 60 80 100 120 140 Demand (TWh) Load Exports Pumping ...

  20. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing

    Energy.gov [DOE]

    On December 29, the U.S. Department of Energy’s National Renewable Energy Laboratory released a third round of Requests for Proposals under DOE’s Distributed Wind Competitiveness Improvement Project.

  1. Counting Jobs and Economic Impacts from Distributed Wind in the United States (Poster)

    SciTech Connect

    Tegen, S.

    2014-05-01

    This conference poster describes the distributed wind Jobs and Economic Development Imapcts (JEDI) model. The goal of this work is to provide a model that estimates jobs and other economic effects associated with the domestic distributed wind industry. The distributed wind JEDI model is a free input-output model that estimates employment and other impacts resulting from an investment in distributed wind installations. Default inputs are from installers and industry experts and are based on existing projects. User input can be minimal (use defaults) or very detailed for more precise results. JEDI can help evaluate potential scenarios, current or future; inform stakeholders and decision-makers; assist businesses in evaluating economic development impacts and estimating jobs; assist government organizations with planning and evaluating and developing communities.

  2. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Energy.gov [DOE] (indexed site)

    An annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data, ...

  3. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Energy.gov [DOE] (indexed site)

    report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data, installation, ...

  4. WARP: A modular wind power system for distributed electric utility application

    SciTech Connect

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.P.

    1996-07-01

    Steady development of wind turbine technology, and the accumulation of wind farm operating experience, have resulted in the emergence of wind power as a potentially attractive source of electricity for utilities. Since wind turbines are inherently modular, with medium-sized units typically in the range of a few hundred kilowatts each, they lend themselves well to distributed generation service. A patented wind power technology, the Toroidal Accelerator Rotor Platform (TARP) Windframe, forms the basis for a proposed network-distributed, wind power plant combining electric generation and transmission. While heavily building on proven wind turbine technology, this system is projected to surpass traditional configuration windmills through a unique distribution/transmission combination, superior performance, user-friendly operation and maintenance, and high availability and reliability. Furthermore, its environmental benefits include little new land requirements, relatively attractive appearance, lower noise and EMI/TV interference, and reduced avian (bird) mortality potential. Its cost of energy is projected to be very competitive, in the range of from approximately 2{cents}/kWh to 5{cents}/kWh, depending on the wind resource.

  5. WARP{trademark}: A modular wind power system for distributed electric utility application

    SciTech Connect

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-12-31

    Steady development of wind turbine technology, and the accumulation of wind farm operating experience, have resulted in the emergence of wind power as a potentially attractive source of electricity for utilities. Since wind turbines are inherently modular, with medium-sized units typically in the range of a few hundred kW each, they lend themselves well to distributed generation service. A patented wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for a proposed network-distributed, wind power plant combining electric generation and transmission. While heavily building on proven wind turbine technology, this system is projected to surpass traditional configuration windmills through a unique distribution/transmission combination, superior performance, user friendly operation and maintenance, and high availability and reliability. Furthermore, its environmental benefits include little new land requirements, relatively attractive appearance, lower noise and EMI/TV interference, and reduced avian (bird) mortality potential. Its cost of energy is projected to be very competitive, in the range of from approximately 2{cents}/kWh to 5{cents}/ kWh, depending on the wind resource.

  6. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to lead to turbine certification through testing to industry-recognized wind turbine performance and safety standards.

  7. Impact of Distribution-Connected Large-Scale Wind Turbines on Transmission System Stability during Large Disturbances: Preprint

    SciTech Connect

    Zhang, Y.; Allen, A.; Hodge, B. M.

    2014-02-01

    This work examines the dynamic impacts of distributed utility-scale wind power during contingency events on both the distribution system and the transmission system. It is the first step toward investigating high penetrations of distribution-connected wind power's impact on both distribution and transmission stability.

  8. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-09-01

    The work presented in this paper aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This paper presents a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool. The results show that increasing the integration of distributed wind reduces total variable electricity generation costs, coal- and gas-fired electricity generation, electricity imports, and CO2 emissions, and increases wind curtailment. The variability and uncertainty of wind power also increases the start-up and shutdown costs and ramping of most conventional power plants.

  9. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE

    SciTech Connect

    Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias; Palchak, David; Miettinen, Jari

    2014-11-13

    The work presented in this paper aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This paper presents a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool. The results show that increasing the integration of distributed wind reduces total variable electricity generation costs, coal- and gas-fired electricity generation, electricity imports, and CO2 emissions, and increases wind curtailment. The variability and uncertainty of wind power also increases the start-up and shutdown costs and ramping of most conventional power plants.

  10. Analysis of the Technical and Economic Potential for Mid-Scale Distributed Wind: December 2007 - October 31, 2008

    SciTech Connect

    Kwartin, R.; Wolfrum, A.; Granfield, K.; Kagel, A.; Appleton, A.

    2008-12-01

    This report examines the status, restrainers, drivers, and estimated development potential of mid-scale (10 kW - 5000 kW) distributed wind energy projects.

  11. Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids

    SciTech Connect

    Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.; Kalsi, Karanjit; Mayhorn, Ebony T.; Diao, Ruisheng; Jin, Chunlian; Zhang, Yu

    2011-10-10

    The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conduct simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.

  12. Implementing Distribution Control with a Concentration of Wind and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Experienced Running Distributed Energy Resources Mark A. Harral, JD CEO Group NIRE Testing & Certification Center GNIRE exists to enable its partners to perform critical research and development for the commercialization renewable energy projects. The research projects include performing field test of prototypes of electric generation equipment and technologies that expand renewable energy across North America. GNIRE has expanded its focuses to testing of energy storage and cybersecurity for

  13. Policies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    are in .pdf format) After Hours Access Policy Booking and Login Policy Cleanroom Policy Equipment Use Policy Two-Person Rule Cleanroom Chemical List Experimental Hall Policy...

  14. Arkansas/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed Wind Energy Association Arkansas Wind Resources Arkansas Energy Office: Wind AWEA State Wind Energy Statistics: Arkansas Southeastern Wind Coalition...

  15. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect

    Not Available

    2014-11-01

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  16. Projected Impact of Federal Policies on U.S. Wind Market Potential...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    WinDS to calculate transmission distances, as well as the benefits of dispersed wind farms supplying power to a demand region. 1 Short, Walter; et al., May 2003, "Modeling the...

  17. Distributed Solar PV for Electricity System Resiliency: Policy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CONSIDERATIONS ABSTRACT Distributed solar photovoltaic (PV) systems have the ... DESIGNING PV SYSTEMS TO PROVIDE ENERGY RESILIENCY Deploying solar PV technology in ...

  18. U.S. Virgin Islands Wind Resources Update 2014 Roberts, J. O...

    Office of Scientific and Technical Information (OSTI)

    Virgin Islands Wind Resources Update 2014 Roberts, J. O.; Warren, A. 17 WIND ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY; 24 POWER TRANSMISSION AND DISTRIBUTION U.S. VIRGIN...

  19. Electromagnetic Simulation of the Near-Field Distribution around a Wind Farm

    DOE PAGES [OSTI]

    Yang, Shang-Te; Ling, Hao

    2013-01-01

    An efficienmore » t approach to compute the near-field distribution around and within a wind farm under plane wave excitation is proposed. To make the problem computationally tractable, several simplifying assumptions are made based on the geometry problem. By comparing the approximations against full-wave simulations at 500 MHz, it is shown that the assumptions do not introduce significant errors into the resulting near-field distribution. The near fields around a 3 × 3 wind farm are computed using the developed methodology at 150 MHz, 500 MHz, and 3 GHz. Both the multipath interference patterns and the forward shadows are predicted by the proposed method.« less

  20. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-11-01

    The work presented in the paper corresponding to this presentation aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This presentation is an overview of a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool

  1. Long-Term Probability Distribution of Wind Turbine Planetary Bearing Loads (Poster)

    SciTech Connect

    Jiang, Z.; Xing, Y.; Guo, Y.; Dong, W.; Moan, T.; Gao, Z.

    2013-04-01

    Among the various causes of bearing damage and failure, metal fatigue of the rolling contact surface is the dominant failure mechanism. The fatigue life is associated with the load conditions under which wind turbines operate in the field. Therefore, it is important to understand the long-term distribution of the bearing loads under various environmental conditions. The National Renewable Energy Laboratory's 750-kW Gearbox Reliability Collaborative wind turbine is studied in this work. A decoupled analysis using several computer codes is carried out. The global aero-elastic simulations are performed using HAWC2. The time series of the drivetrain loads and motions from the global dynamic analysis are fed to a drivetrain model in SIMPACK. The time-varying internal pressure distribution along the raceway is obtained analytically. A series of probability distribution functions are then used to fit the long-term statistical distribution at different locations along raceways. The long-term distribution of the bearing raceway loads are estimated under different environmental conditions. Finally, the bearing fatigue lives are calculated.

  2. WINDExchange: Selling Wind Power

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  3. Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of ...

  4. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)

    SciTech Connect

    Not Available

    2014-09-01

    Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

  5. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Energy.gov [DOE] (indexed site)

    from the advice and comments from a dozen individuals representing wind industry consulting firms, state agencies, wind turbine manufacturers, and other federal laboratories. ...

  6. Variability of Load and Net Load in Case of Large Scale Distributed Wind Power

    SciTech Connect

    Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y. H.; Milligan, M.

    2011-01-01

    Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net load variability. Wind power will also change the timing of daily ramps.

  7. ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE

    SciTech Connect

    Zaheer, S.; Yoon, P. H.

    2013-10-01

    A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the ? distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized ? distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvnic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index ?, where f{sub e} ? v {sup ?} is close to the average index observed during the quiet-time solar wind condition, i.e., ? ? O(6.5) whereas ?{sub average} ? 6.69, according to observation.

  8. POLICY

    Office of Environmental Management (EM)

    November 13, 2013 POLICY Successful execution of this research and development (R&D) ... Section 999 of the Energy Policy Act of 2005 has been a mechanism for providing long- term ...

  9. Optimal site selection and sizing of distributed utility-scale wind power plants

    SciTech Connect

    Milligan, M.R.; Artig, R.

    1998-04-01

    As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their advantage to be able to specify the quantity of electricity available and the time of availability. Since wind power plants are driven by the stochastic nature of the wind itself, this can present difficulties. To the extent that an accurate wind forecast is available, contract deviations, and therefore penalties, can be significantly reduced. Even though one might have the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility`s peak load than a single site. There are several wind plants in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming and Iowa. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant. In this paper, the authors use hourly wind-speed data from six geographically diverse sites to provide some insight into the potential benefits of disperse wind plant development. They provide hourly wind power from each of these sites to an electric reliability simulation model. This model uses generating plant characteristics of the generators within the state of Minnesota to calculate various reliability indices. Since they lack data on wholesale power transactions, they do not include them in the analysis, and they reduce the hourly load data accordingly. The authors present and compare results of their methods and suggest some areas of future research.

  10. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION...

    Office of Scientific and Technical Information (OSTI)

    corona and can be preserved as the solar wind escapes to space along open field lines. ... Country of Publication: United States Language: English Subject: 79 ASTROPHYSICS, ...

  11. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA

    SciTech Connect

    Che, H.; Goldstein, M. L.

    2014-11-10

    The formation of the observed core-halo feature in the solar wind electron velocity distribution function is a long-time puzzle. In this Letter, based on the current knowledge of nanoflares, we show that the nanoflare-accelerated electron beams are likely to trigger a strong electron two-stream instability that generates kinetic Alfvn wave and whistler wave turbulence, as we demonstrated in a previous paper. We further show that the core-halo feature produced during the origin of kinetic turbulence is likely to originate in the inner corona and can be preserved as the solar wind escapes to space along open field lines. We formulate a set of equations to describe the heating processes observed in the simulation and show that the core-halo temperature ratio of the solar wind is insensitive to the initial conditions in the corona and is related to the core-halo density ratio of the solar wind and to the quasi-saturation property of the two-stream instability at the time when the exponential decay ends. This relation can be extended to the more general core-halo-strahl feature in the solar wind. The temperature ratio between the core and hot components is nearly independent of the heliospheric distance to the Sun. We show that the core-halo relative drift previously reported is a relic of the fully saturated two-stream instability. Our theoretical results are consistent with the observations while new tests for this model are provided.

  12. Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Economic development & impacts Federal, state, & local policies Markets Wind Energy Technologies The U.S. Department of Energy defines the scale of wind turbine...

  13. policy

    National Nuclear Security Administration (NNSA)

    eld-field-page-name">

    Page Name:
    policysystem

    The NNSA's Policy...

  14. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  15. Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet)

    SciTech Connect

    Not Available

    2012-04-01

    Installing a small wind turbine can sometimes be difficult due to economics, zoning issues, public perception, and other barriers. Persistence and innovation, however, can result in a successful installation. Dani Baker and David Belding own Cross Island Farms, a 102-acre certified organic farm on Wellesley Island in northern New York. In 2009, they took their interest in renewable energy to the next level by researching the logistics of a small wind installation on their land to make their farm even more sustainable. Their renewable energy system consists of one 10-kilowatt Bergey Excel wind turbine, a solar array, and a propane-powered generator. This case study describes funding for the project and the installation process.

  16. Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York

    SciTech Connect

    2012-04-30

    Installing a small wind turbine can sometimes be challenging due to economics, zoning issues, public perception, and other barriers. Persistence and innovation, however, can result in a successful installation. Dani Baker and David Belding own Cross Island Farms, a 102-acre certified organic farm on Wellesley Island in northern New York. In 2009, they took their interest in renewable energy to the next level by researching the logistics of a small wind installation on their land to make their farm even more sustainable. Their renewable energy system consists of one 10-kilowatt Bergey Excel wind turbine, a solar array, and a propane-powered generator. This case study describes funding for the project and the installation process.

  17. Pressure distributions on an operating vertical-axis wind-turbine blade element

    SciTech Connect

    Akins, R.E.; Klimas, P.C.; Croll, R.H.

    1983-01-01

    Efforts to validate aerodynamic models of vertical-axis wind turbines have been limited by a lack of appropriate measurements as stall begins to occur along the blade. In order to measure the forces acting on a blade through stall and in post-stall, a blade has been instrumented using flush-mounted pressure transducers. Data have been obtained on an appropriate range of turbine operating conditions. These data indicate that at high incident wind speeds, dynamic stall occurs on the upwind portion of the rotation.

  18. POLICY

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 POLICY * Successful execution of this research and development (R&D) program will materially contribute to U.S. supply of oil and gas both today and beyond the 10 year R&D horizon. It is the consensus of this Committee that the resource potential impacted by this technology program is significant and of major importance to the Nation. There is a critical need for a sustainable and consistent approach to the technology challenges facing unconventional resource development. * The

  19. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  20. POLICY

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    November 13, 2013 POLICY  Successful execution of this research and development (R&D) program will materially contribute to U.S. supply of oil and gas both today and beyond the 10 year R&D horizon. It is the consensus of this Committee that the resource potential impacted by this technology program is significant and of major importance to the Nation. There is a critical need for a sustainable and consistent approach to the technology challenges facing unconventional resource

  1. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 3 -- October 2007

    SciTech Connect

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  2. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 4 -- May 2008

    SciTech Connect

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  3. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 1 -- January 2006

    SciTech Connect

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  4. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 2 -- December 2006

    SciTech Connect

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  5. 3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING

    SciTech Connect

    Patoul, Judith de; Foullon, Claire; Riley, Pete E-mail: c.foullon@exeter.ac.uk

    2015-11-20

    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996–1997 and 2008–2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models are more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar regions, and we find that the density in tomographic and thermodynamic solutions varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We deduce that tomography offers reliable density distributions in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how they are magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus.

  6. Wind Power Outlook 2004

    SciTech Connect

    anon.

    2004-01-01

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  7. Utah/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    info@distributedwind.org Distributed Wind Energy Association Utah Wind Resources Utah Office of Energy Development: Wind Energy Information AWEA State Wind Energy Statistics: Utah...

  8. Indiana/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed Wind Energy Association Indiana Wind Resources Indiana Office of Energy Development Purdue Extension: Wind Energy AWEA State Wind Energy Statistics:...

  9. Controlling Wind Turbines for Secondary Frequency Regulation: An Analysis of AGC Capabilities Under New Performance Based Compensation Policy

    SciTech Connect

    Aho, Jacob; Pao, Lucy Y.; Fleming, Paul; Ela, Erik

    2014-11-13

    As wind energy becomes a larger portion of the world's energy portfolio there has been an increased interest for wind turbines to control their active power output to provide ancillary services which support grid reliability. One of these ancillary services is the provision of frequency regulation, also referred to as secondary frequency control or automatic generation control (AGC), which is often procured through markets which recently adopted performance-based compensation. A wind turbine with a control system developed to provide active power ancillary services can be used to provide frequency regulation services. Simulations have been performed to determine the AGC tracking performance at various power schedule set-points, participation levels, and wind conditions. The performance metrics used in this study are based on those used by several system operators in the US. Another metric that is analyzed is the damage equivalent loads (DELs) on turbine structural components, though the impacts on the turbine electrical components are not considered. The results of these single-turbine simulations show that high performance scores can be achieved when there are insufficient wind resources available. The capability of a wind turbine to rapidly and accurately follow power commands allows for high performance even when tracking rapidly changing AGC signals. As the turbine de-rates to meet decreased power schedule set-points there is a reduction in the DELs, and the participation in frequency regulation has a negligible impact on these loads.

  10. Controlling Wind Turbines for Secondary Frequency Regulation: An Analysis of AGC Capabilities Under New Performance Based Compensation Policy: Preprint

    SciTech Connect

    Aho, J.; Pao, L. Y.; Fleming, P.; Ela, E.

    2015-02-01

    As wind energy becomes a larger portion of the world's energy portfolio there has been an increased interest for wind turbines to control their active power output to provide ancillary services which support grid reliability. One of these ancillary services is the provision of frequency regulation, also referred to as secondary frequency control or automatic generation control (AGC), which is often procured through markets which recently adopted performance-based compensation. A wind turbine with a control system developed to provide active power ancillary services can be used to provide frequency regulation services. Simulations have been performed to determine the AGC tracking performance at various power schedule set-points, participation levels, and wind conditions. The performance metrics used in this study are based on those used by several system operators in the US. Another metric that is analyzed is the damage equivalent loads (DELs) on turbine structural components, though the impacts on the turbine electrical components are not considered. The results of these single-turbine simulations show that high performance scores can be achieved when there is sufficient wind resource available. The capability of a wind turbine to rapidly and accurately follow power commands allows for high performance even when tracking rapidly changing AGC signals. As the turbine de-rates to meet decreased power schedule set-points there is a reduction in the DELs, and the participation in frequency regulation has a negligible impact on these loads.

  11. Atlantic Wind Solar Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Atlantic Wind & Solar Inc. Place: Coconut Groove, Florida Zip: 33133 Sector: Solar, Wind energy Product: Florida-based installer of distributed wind and solar systems...

  12. WINDExchange: Wind for Homeowners, Farmers, and Businesses

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind for Homeowners, Farmers, and Businesses A Small Wind Guidebook is available for homeowners, ranchers, and small businesses in each state to decide if wind energy will work for them and to help answer the following questions. Is wind energy practical for me? What size wind turbine do I need? What are the basic parts of a small wind

  13. 2013 Wind Technologies Market Report Presentation | Department...

    Energy.gov [DOE] (indexed site)

    & Publications 2012 Wind Technologies Market Report Presentation 2013 Wind Technologies Market Report Economic Environment 0 Anirban Basu, Chairman & CEO, Sage Policy Group, Inc....

  14. AWEA State Wind Energy Forum--Montana

    Energy.gov [DOE]

    The American Wind Energy Association will host this forum for a broad array of Montana wind stakeholders, including landowners, county officials, rural bankers, agricultural producers, policy...

  15. Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

    DOE PAGES [OSTI]

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    2016-01-01

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. We discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  16. Searchlight Wind Energy Project FEIS Appendix C

    Office of Environmental Management (EM)

    C Page | C 19B Appendix C: BLM Wind Energy Development Program Policies and BMPs A-1 ATTACHMENT A BLM WIND ENERGY DEVELOPMENT PROGRAM POLICIES AND BEST MANAGEMENT PRACTICES (BMPS) ...

  17. Standardized Software for Wind Load Forecast Error Analyses and Predictions Based on Wavelet-ARIMA Models - Applications at Multiple Geographically Distributed Wind Farms

    SciTech Connect

    Hou, Zhangshuan; Makarov, Yuri V.; Samaan, Nader A.; Etingov, Pavel V.

    2013-03-19

    Given the multi-scale variability and uncertainty of wind generation and forecast errors, it is a natural choice to use time-frequency representation (TFR) as a view of the corresponding time series represented over both time and frequency. Here we use wavelet transform (WT) to expand the signal in terms of wavelet functions which are localized in both time and frequency. Each WT component is more stationary and has consistent auto-correlation pattern. We combined wavelet analyses with time series forecast approaches such as ARIMA, and tested the approach at three different wind farms located far away from each other. The prediction capability is satisfactory -- the day-ahead prediction of errors match the original error values very well, including the patterns. The observations are well located within the predictive intervals. Integrating our wavelet-ARIMA (stochastic) model with the weather forecast model (deterministic) will improve our ability significantly to predict wind power generation and reduce predictive uncertainty.

  18. European Wind Atlas: Offshore | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-offshore,http:c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  19. European Wind Atlas: Onshore | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-onshore,http:cl Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  20. European Wind Atlas: France | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-france,http:cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  1. WINDExchange: Wind Energy Market Sectors

    WindExchange

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  2. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure)

    SciTech Connect

    Not Available

    2014-11-01

    This paper explains how advanced inverter functions (sometimes called 'smart inverters') contribute to the integration of high levels of solar PV generation onto the electrical grid and covers the contributions of advanced functions to maintaining grid stability. Policy and regulatory considerations associated with the deployment of advanced inverter functions are also introduced.

  3. Kansas Wind Energy Consortium

    SciTech Connect

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  4. Renaissance for wind power

    SciTech Connect

    Flavin, C.

    1981-10-01

    Wind research and development during the 1970s and recent studies showing wind to be a feasible source of both electrical and mechanical power are behind the rapid expansion of wind energy. Improved technology should make wind energy economical in most countries having sufficient wind and appropriate needs. A form of solar energy, winds form a large pattern of global air circulation because the earth's rotation causes differences in pressure and oceans cause differences in temperature. New development in the ancient art of windmill making date to the 1973 oil embargo, but wind availability must be determined at local sites to determine feasibility. Whether design features of the new technology and the concept of large wind farms will be incorporated in national energy policies will depend on changing attitudes, acceptance by utilities, and the speed with which new information is developed and disseminated. 44 references, 6 figures. (DCK)

  5. 2012 Wind Technologies Market Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 Wind Report 2012 Wind Report Watch as our clean energy experts answer your questions about the U.S. wind industry -- one of the largest and fastest growing wind markets in the world. Related Links Top 10 Things You Didn't Know About Distributed Wind Power Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Learn about key facts related to wind turbines used in distributed

  6. What is Distributed Wind?

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... UK, Germany, Greece, China, Japan, Korea, Mexico, and ... certification body; development of national and regional ... third-party verified power perfor- mance, acoustic ...

  7. Wind Resource Atlas of Oaxaca | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    characteristics and distribution of wind resources in Oaxaca, Mexico, at a wind power density of 50 meters above ground. The detailed wind resource maps contained in the atlas...

  8. Hawaii/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed Wind Energy Association Hawaii Wind Resources Hawaii State Energy Office AWEA State Wind Energy Statistics: Hawaii Islanded Grid Resource Center References ...

  9. Colorado/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed Wind Energy Association Colorado Wind Resources Colorado Energy Office AWEA State Wind Energy Statistics: Colorado Colorado Center for Renewable Energy...

  10. Nebraska/Wind Resources/Full Version | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed Wind Energy Association Nebraska Wind Resources Nebraska Energy Office AWEA State Wind Energy Statistics: Nebraska References "U.S. Census Bureau. 2010...

  11. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)

    SciTech Connect

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a

  12. Wind Energy 101.

    SciTech Connect

    Karlson, Benjamin; Orwig, Kirsten

    2010-12-01

    This presentation on wind energy discusses: (1) current industry status; (2) turbine technologies; (3) assessment and siting; and (4) grid integration. There are no fundamental technical barriers to the integration of 20% wind energy into the nation's electrical system, but there needs to be a continuing evolution of transmission planning and system operation policy and market development for this to be most economically achieved.

  13. Installing and Maintaining a Small Wind Electric System | Department...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Federal regulations (specifically, the Public Utility Regulatory Policies Act of 1978, or ... Federal tax credits for small solar and wind Wind resource maps Consumer guides for small ...

  14. Responses to Collegiate Wind Competition 2016 RFP Questions ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Competition challenges teams to design and construct a wind-driven power system, ... communications, policy, and the social sciences, for the purpose of engaging our ...

  15. West Winds Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  16. WINDExchange: What Is Wind Power?

    WindExchange

    What Is Wind Power? A three-bladed wind turbine with the internal components visible. Six turbines in a row are electrically connected to the power grid. Wind Power Animation This aerial view of a wind turbine plant shows how a group of wind turbines can make electricity for the utility grid. The electricity is sent through transmission and distribution lines to homes, businesses, schools, and so on. View the wind turbine animation to see how a wind turbine works or take a look inside. Wind

  17. Wind Energy for Native Americans

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Native Americans Wind Energy for Native Americans Larry Flowers Larry Flowers Golden, CO Golden, CO November 20, 2003 November 20, 2003 Native American Wind Native American Wind Development Development * NA wind resources * On-site loads vs. export * Investment vs. private developer royalties * Tribal utility business development policies * Transmission constraints vs. green tags opportunity * Tax advantages/limitations * (perceived) Private sector development risk * Federal load

  18. Wind Integration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  19. Modeling the National Potential for Offshore Wind: Preprint

    SciTech Connect

    Short, W.; Sullivan, P.

    2007-06-01

    The Wind Deployment System (WinDS) model was created to assess the potential penetration of offshore wind in the United States under different technology development, cost, and policy scenarios.

  20. Prairie Winds Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  1. Canadian Wind Energy Atlas Potential Website | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentcanadian-wind-energy-atlas-potential- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance...

  2. Solar and Wind Energy Resource Assessment Programme's Renewable...

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentsolar-and-wind-energy-resource-assess Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The...

  3. Final Report on the Nikolski Wind-Diesel Project Wind Installation

    Energy Saver

    ... Nikolski Wind-Diesel Project; Wind Turbine Installation, 10142010 Provided by the ... application through a hot water storage and distribution system at the adjacent school. ...

  4. Microfabrication Policies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Polcies Booking Login Policy Cleanroom Policy Equipment Use Policy 2 Person Rule Experimental Hall Policy After Hours Policy

  5. WINDExchange Wind Energy Benefits Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WINDExchange Wind Energy Benefits Fact Sheet WINDExchange Wind Energy Benefits Fact Sheet Learn more about wind energy! This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and pervasive deployment. WINDExchange Wind Energy Benefits Fact Sheet (284.98 KB) More Documents & Publications Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) 2015 Distributed Wind Market Report

  6. 2012 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Wind Technologies Market Report 2012 Wind Technologies Market Report The 2012 Wind Technologies Market Report is a comprehensive analyses of the U.S. distributed wind energy market ever published, this report provides a detailed overview of developments and trends in the U.S. wind power market, focusing on 2012. 2012 Wind Technologies Market Report (3.4 MB) More Documents & Publications 2012 Wind Technologies Market Report 2013 Wind Technologies Market Report 2014 Wind Technologies Market

  7. Offshore Wind Market and Economic Analysis Report 2013 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Offshore Wind Market and Economic Analysis Report 2013 Offshore Wind Market and Economic Analysis Report 2013 Offshore Wind Market and Economic Analysis Report 2013 Analysis of the U.S. wind market, including analysis of developments in wind technology, changes in policy, and effect on economic impact, regional development, and job creation. Published in October 2013. offshore_wind_market_and_economic_analysis_10_2013.pdf (2.46 MB) More Documents & Publications 2014 Offshore Wind

  8. 2012 Wind Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Wind Report 2012 Wind Report Watch as our clean energy experts answer your questions about the U.S. wind industry -- one of the largest and fastest growing wind markets in the world. Related Links Top 10 Things You Didn't Know About Distributed Wind Power Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Learn about key facts related to wind turbines used in distributed

  9. Dovetail Solar and Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind energy Product: Consulting; Engineeringarchitecturaldesign;Installation; Maintenance and repair; Retail product sales and distribution;Trainining and education Phone...

  10. Wind Turbine Testing | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Turbine Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A multimegawatt wind turbine blade extends outside of the structural testing facility at the NWTC. PIX #19010 Testing capabilities at the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind industry

  11. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Energy Saver

    Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of ...

  12. U.S. Department of Energy Wind and Water Power Program Funding...

    Energy Saver

    Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy Fiscal Years 2006 - 2014 WIND PROGRAM 1 The Wind Program's research and ...

  13. Wind energy: An engineering survey

    SciTech Connect

    Nahas, M.N.; Mohamad, A.S.; Akyurt, M.; El-Kalay, A.K.

    1987-01-01

    This paper presents an extensive survey of literature about wind energy and wind machines, their design and their applications. The paper intends to provide those who plan for energy policy with thorough information about this renewable type of energy and the available machines that convert wind energy into useful mechanical or electrical work. The machines which are available at present range from the simple Savonius rotor to the powerful multi-blade windmills. The advantages and shortcomings of all types are discussed here.

  14. Wind Simulation

    Energy Science and Technology Software Center

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  15. Wind Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during ...

  16. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  17. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  18. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Wind-turbine blade growth continues to have the largest impact on energy capture and ...

  19. Wind Resource Assessment | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and ...

  20. Offshore Wind Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A photo of several rows of wind turbines standing in the ocean with the sun overhead. Capabilities NREL's offshore wind turbine research capabilities focus on critical areas that ...

  1. Small Wind Guidebook/Case Studies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Case Studies The Small Wind Guidebook's collection of distributed wind turbine case studies is intended to reflect project-specific details for a variety of...

  2. Small Wind Guidebook/Podcasts | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind to the Home, Farm, or Business Forsyth, T., National Renewable Energy Laboratory Learning the Basics of Distributed Wind Forsyth, T., National Renewable Energy Laboratory Want...

  3. Small Wind Guidebook/Webinars | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    < Small Wind Guidebook Jump to: navigation, search Webinars 2015 Energy Department's Distributed Wind Industry Update: A WINDExchange Webinar 2014 National and International Small...

  4. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a

  5. Issue Brief: A Survey of State Policies to Support Utility-Scale and Distributed-Energy Storage (Brochure), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    t e c h n i c a l a s s i s ta n c e NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. t e c h n i c a l a s s i s ta n c e Issue Brief: A Survey of State Policies to Support Utility-Scale and Distributed-Energy

  6. Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Wind The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The U.S. wind energy industry continued its strong growth in 2015, adding new generating capacity faster than any other source of electricity generation. Get the latest update on the state of the industry in our 2015 Wind Market Reports. The United

  7. Wind energy and power system operations: a review of wind integration studies to date

    SciTech Connect

    Cesaro, Jennifer de; Porter, Kevin; Milligan, Michael

    2009-12-15

    Wind integration will not be accomplished successfully by doing ''more of the same.'' It will require significant changes in grid planning and operations, continued technical evolution in the design and operation of wind turbines, further adoption and implementation of wind forecasting in the control room, and incorporation of market and policy initiatives to encourage more flexible generation. (author)

  8. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 4 -- May 2008 (Newsletter)

    SciTech Connect

    Grace, R. C.; Gifford, J.

    2008-05-01

    The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 4 features an interview with Brian Fairbank, president and CEO of Jiminy Peak Mountain Resort.

  9. Cisco Wind Energy Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Sixth North American Offshore Wind Development and Finance Summit

    Energy.gov [DOE]

    Join leading offshore wind developers, Federal and State policy-makers, U.S. and European banks and investors and other key stakeholders at the 6th North American Offshore Wind Development &...

  11. Wind Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe ...

  12. Wind Farm

    Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  13. Wind Easements

    Energy.gov [DOE]

    The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property...

  14. Long-Term Wind Power Variability

    SciTech Connect

    Wan, Y. H.

    2012-01-01

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  15. Reduced vibration motor winding arrangement

    DOEpatents

    Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

    1997-11-11

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

  16. Reduced vibration motor winding arrangement

    DOEpatents

    Slavik, Charles J.; Rhudy, Ralph G.; Bushman, Ralph E.

    1997-01-01

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

  17. 2011_AWEA_Small_Wind_Turbine_Market_Report.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    11_AWEA_Small_Wind_Turbine_Market_Report.pdf 2011_AWEA_Small_Wind_Turbine_Market_Report.pdf 2011_AWEA_Small_Wind_Turbine_Market_Report.pdf 2011_AWEA_Small_Wind_Turbine_Market_Report.pdf (2.93 MB) More Documents & Publications 2012 Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications 2015 Distributed Wind

  18. Spain Installed Wind Capacity Website | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentspain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an...

  19. Spatial and Temporal Patterns of Global Onshore Wind Speed Distributio...

    Office of Scientific and Technical Information (OSTI)

    decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions ...

  20. Property Tax Exemption for Wind, Solar, and Geothermal Energy Producers

    Energy.gov [DOE]

    Under these policies, commercial wind, solar, and geothermal energy producers, excluding those regulated by the Idaho Public Utilities Commission, are exempt from paying taxes on real estate,...

  1. Senator Bingaman Tells Sandia Wind Turbine Blade Workshop That...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bingaman Tells Sandia Wind Turbine Blade Workshop That Renewable Energy Is Important to U.S. Policy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee ...

  2. 2011 Grants for Offshore Wind Power | Department of Energy

    Energy.gov [DOE] (indexed site)

    Web Policies Home Social Media Article Guidance History Offices 2011 Grants for Offshore Wind Power View All Maps Addthis Careers & Internships Contact Us link to facebook link to...

  3. New Report Evaluates Impacts of DOE's Wind Powering America Initiative...

    Energy.gov [DOE] (indexed site)

    Consultants found that although federal and state policies, such as the Production Tax Credit and renewable portfolio standards, had the greatest influence on increasing wind ...

  4. 2008 Wind Technologies Market Report

    SciTech Connect

    Wiser, R.; Bolinger, M.

    2009-07-01

    The U.S. wind industry experienced a banner year in 2008, once again surpassing even optimistic growth projections from years past. At the same time, the past year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with significant federal policy changes enacted to push the industry toward continued aggressive expansion. This report examines key trends.

  5. Wind Farm Recommendation Report

    SciTech Connect

    John Reisenauer

    2011-05-01

    On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), bats (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm Project and

  6. Wind Energy Ordinance Fact Sheet

    SciTech Connect

    F. Oteri

    2010-09-01

    Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, consumer protection, and building codes. Wind energy ordinances reflect local needs and wants regarding wind turbines within county or city lines and aid the development of safe facilities that will be embraced by the community. Since 2008 when the National Renewable Energy Laboratory released a report on existing wind energy ordinances, many more ordinances have been established throughout the United States, and this trend is likely to continue in the near future as the wind energy industry grows. This fact sheet provides an overview of elements found in typical wind energy ordinances to educate state and local government officials, as well as policy makers.

  7. Wind Energy Ordinances (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, consumer protection, and building codes. Wind energy ordinances reflect local needs and wants regarding wind turbines within county or city lines and aid the development of safe facilities that will be embraced by the community. Since 2008 when the National Renewable Energy Laboratory released a report on existing wind energy ordinances, many more ordinances have been established throughout the United States, and this trend is likely to continue in the near future as the wind energy industry grows. This fact sheet provides an overview of elements found in typical wind energy ordinances to educate state and local government officials, as well as policy makers.

  8. 2014 Wind Technologies Market Report

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Daghouth, Naim; Hoen, Ben; Mills, Andrew; Hamachi LaCommare, Kristina; Millstein, Dev; Hansen, Dana; Porter, Kevin; Widiss, Rebecca; Buckley, Michael; Oteri, Frank; Smith, Aaron; Tegen, Suzanne

    2015-08-06

    Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancements and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.

  9. Wind Energy Projects | Department of Energy

    Energy.gov [DOE] (indexed site)

    Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy ...

  10. Wind Power Forecasting Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  11. Deriving daylight frequency distribution curves from solar radiation data to be used to implement energy saving policies in Palermo, Italy

    SciTech Connect

    Fanchiotti, A.; Cristofalo, S. di

    1999-07-01

    The paper presents proposed guidelines for developing a simplified tool to be used for assessing the compliance of proposed projects with city regulations, with reference to the daylighting aspects. First, the algorithms proposed for calculating the internal illuminance in a point, based on the assumption of perfectly diffusing glazings, are discussed. The result is a light transmission factor, which is a function of the position of the point and of the geometrical and physical characteristics of the room. Then, the daylight input data to be used for such calculations are presented. In order to provide designers with easy to handle data, this information is presented as frequency curves, showing the illuminance cumulative frequency distribution for a year relative to eight fundamental vertical orientations. There are different curves depending on the building type. These curves are obtained by considering only the data relative to hours and days consistent with the profile of use typical of that type of building.

  12. NREL: Wind Research - Wind Career Map Shows Wind Industry Career...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Career Map Shows Wind Industry Career Opportunities, Paths A screenshot of the wind career map showing the various points on a chart that show different careers in the wind...

  13. Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  14. Offshore Wind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  15. wind turbines

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  16. Wind Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  17. Wind Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Workshop - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  18. IDGWP Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Iowa Distributed Wind Generation Project Energy Purchaser Cedar Falls Location Algona IA Coordinates 43.0699663, -94.233019 Show Map Loading map... "minzoom":false,"mapping...

  19. AWEA State Wind Energy Forum- Michigan

    Energy.gov [DOE]

    Michigan has 988 MW of installed wind capacity, representing close to $2B in investment; and officials are considering plans and a policy framework for additional capacity in the near future....

  20. Wind Power Partners '94 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  1. Wethersfield Wind Power Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  2. State Fair Wind Energy Education Center Wind Farm | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Fair Wind Energy Education Center Wind Farm Jump to: navigation, search Name State Fair Wind Energy Education Center Wind Farm Facility Wind Energy Education Center Sector Wind...

  3. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  4. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  5. Stetson Wind Expansion Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  6. State Policy Options for Renewable Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Policy Options for Renewable Energy State Policy Options for Renewable Energy Matthew H. Brown Energy Program Director National Conference of State Legislatures. September 2003 State Policy Options for Renewable Energy (1.52 MB) More Documents & Publications 2013 Wind Technologies Market Report 2014 Wind Technologies Market Report The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD

  7. NREL: Wind Research - Offshore Wind Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience ... Testing Applying 35 years of wind turbine testing expertise, NREL has developed ...

  8. NREL: Wind Research - Offshore Wind Turbine Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens ... NREL's offshore wind turbine research capabilities focus on critical areas that reflect ...

  9. NREL: Wind Research - Offshore Wind Resource Characterization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  10. NREL: Wind Research - Wind Resource Assessment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special ... to anticipate wind generation levels and adjust the ...

  11. Danielson Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  12. Kawailoa Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  13. Palouse Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  14. Harbor Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  15. Kahuku Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  16. Wiota Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC...

  17. Bravo Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  18. Auwahi Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  19. Traer Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC...

  20. Sheffield Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  1. Rollins Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  2. Wyoming Wind Power Project (generation/wind)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  3. Offshore Wind Power USA

    Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  4. Western Wind Strategy: Addressing Critical Issues for Wind Deployment

    SciTech Connect

    Douglas Larson; Thomas Carr

    2012-03-30

    The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informing state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.

  5. U.S. Department of Energy Wind and Water Power Program Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy 3. Wind Integration, Transmission, and Resource Assessment and Characterization ...

  6. Coastal Ohio Wind Project

    SciTech Connect

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and

  7. 2009 Wind Technologies Market Report

    SciTech Connect

    Wiser, R.; Bolinger, M.

    2010-08-01

    The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

  8. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Levitt, A.; Kempton, W.; Smith, A.; Musial, W.; Firestone, J. (2011). "Pricing Offshore Wind Power." Energy Policy, 39: pp 6408-6421. Mackay, R.M.; Probert, S.D. (1998). "Likely ...

  9. Mid-Atlantic Regional Wind Energy Institute

    SciTech Connect

    Courtney Lane

    2011-12-20

    As the Department of Energy stated in its 20% Wind Energy by 2030 report, there will need to be enhanced outreach efforts on a national, state, regional, and local level to communicate wind development opportunities, benefits and challenges to a diverse set of stakeholders. To help address this need, PennFuture was awarded funding to create the Mid-Atlantic Regional Wind Energy Institute to provide general education and outreach on wind energy development across Maryland, Virginia, Delaware, Pennsylvania and West Virginia. Over the course of the two-year grant period, PennFuture used its expertise on wind energy policy and development in Pennsylvania and expanded it to other states in the Mid-Atlantic region. PennFuture accomplished this through reaching out and establishing connections with policy makers, local environmental groups, health and economic development organizations, and educational institutions and wind energy developers throughout the Mid-Atlantic region. PennFuture conducted two regional wind educational forums that brought together wind industry representatives and public interest organizations from across the region to discuss and address wind development in the Mid-Atlantic region. PennFuture developed the agenda and speakers in collaboration with experts on the ground in each state to help determine the critical issue to wind energy in each location. The sessions focused on topics ranging from the basics of wind development; model ordinance and tax issues; anti-wind arguments and counter points; wildlife issues and coalition building. In addition to in-person events, PennFuture held three webinars on (1) Generating Jobs with Wind Energy; (2) Reviving American Manufacturing with Wind Power; and (3) Wind and Transmission. PennFuture also created a web page for the institute (http://www.midatlanticwind.org) that contains an online database of fact sheets, research reports, sample advocacy letters, top anti-wind claims and information on how to

  10. Potential market of wind farm in China

    SciTech Connect

    Pengfei Shi

    1996-12-31

    Wind energy resources are abundant in China, in southeast coast area along with the rapid economic growth, electricity demand has been sharply increased, due to complex terrain detailed assessments are in urgent need. Advanced methodology and computer model should be developed. In this paper the existing wind farms, installed capacity, manufacturers share and projects in the near future are presented. For further development of wind farm in large scale, different ways of local manufacturing wind turbine generators (WTG) are going on. Current policy and barriers are analyzed. 4 refs., 2 figs., 4 tabs.

  11. Grid Integration of Offshore Wind | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in

  12. Wind Measurement Buoy Advances Offshore Wind Energy | Department...

    Energy Saver

    Measurement Buoy Advances Offshore Wind Energy Wind Measurement Buoy Advances Offshore Wind Energy December 7, 2015 - 1:52pm Addthis Wind Measurement Buoy Advances Offshore Wind ...

  13. Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility...

  14. Final Solar and Wind H2 Report EPAct 812.doc

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies For Hydrogen Production Report to Congress December 2005 (ESECS EE-3060) Solar and Wind Technologies for Hydrogen Production: Report to Congress 12/5/2005 Page. 4 Solar and Wind Technologies for Hydrogen Production Report to Congress Preface This Department of Energy (DOE) report is in response to section 812(e) of the Energy Policy Act of 2005. It is a detailed summary of the technology roadmaps 1 for

  15. Main Coast Winds - Final Scientific Report

    SciTech Connect

    Jason Huckaby; Harley Lee

    2006-03-15

    The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

  16. Michigan Wind II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  17. Metro Wind LLC Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind LLC Wind Farm Jump to: navigation, search Name Metro Wind LLC Wind Farm Facility Metro Wind LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. JD Wind 6 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    JD Wind 6 Wind Farm Jump to: navigation, search Name JD Wind 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  19. JD Wind 7 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    JD Wind 7 Wind Farm Jump to: navigation, search Name JD Wind 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Garnet Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  1. Lime Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  2. Fairhaven Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy Palmer...

  3. Scituate Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy ...

  4. Pacific Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Pacific Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer...

  5. Galactic Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems...

  6. Rockland Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Rockland Wind Facility Rockland Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Ridgeline...

  7. Greenfield Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power...

  8. Willmar Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar...

  9. Wind Program News

    SciTech Connect

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  10. Energy 101: Wind Turbines

    ScienceCinema

    None

    2016-07-12

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  11. Energy 101: Wind Turbines

    SciTech Connect

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  12. EA-1903: Kansas State University Zond Wind Energy Project, Manhattan, Kansas

    Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to use Congressional Directed funds to develop the Great Plains Wind Energy Consortium aimed at increasing the penetration of wind energy via distributed wind power generation throughout the region.

  13. Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint

    SciTech Connect

    Hodge, B. M.; Shedd, S.; Florita, A.

    2012-08-01

    This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

  14. Wind turbine

    DOEpatents

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  15. Wind Energy Career Development Program

    SciTech Connect

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  16. Federal Wind Energy Assistance through NREL (Fact Sheet)

    SciTech Connect

    Not Available

    2009-09-01

    NREL assists with wind resource assessment and development activities initiated by federal agencies to facilitate distributed renewable energy projects at federal agency sites. This brief outlines the process for requesting NREL assistance with federal wind energy projects.

  17. Wind Turbine Control Systems | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL is researching new control methodologies for both land-based wind turbines and offshore wind turbines. A photo of a wind turbine against blue sky with white blades on their ...

  18. NREL: Wind Research - Site Wind Resource Characteristics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. ...

  19. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science & Innovation Energy Sources Renewable Energy Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay ...

  20. Offshore Wind Resource Characterization | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Resource Characterization NREL scientists and engineers are leading efforts in ... and development, and forecasting that are essential for the development of offshore wind. ...

  1. Wind Integration National Dataset (WIND) Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  2. NREL: Wind Research - Wind Energy Videos

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As ...

  3. NREL: Wind Research - Small Wind Turbine Development

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in ... Testing included power performance, safety and function, noise, and partial loads tests. ...

  4. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect

    Ibanez, E.; Heaney, M.

    2014-10-01

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  5. Current projects of the National Wind Coordinating Committee

    SciTech Connect

    Rhoads, H.

    1997-12-31

    This paper summarizes the activities of the National Wind Coordinating Committee (NWCC), a multi-stakeholder collaborative formed in 1994 to support the responsible use of wind power in the USA. The NWCC`s vision is a self-sustaining commercial market for wind power - environmentally, economically, and politically sustainable. Current NWCC activities include: outreach initiatives, disseminating information about wind energy to regulators and legislators through the Wind Energy Issue Paper Series, researching distributed wind energy models, producing a wind facility permitting handbook, improving avian research, addressing transmission and resource assessment issues, and exploring sustainable development and marketing approaches.

  6. Security Policy

    Energy.gov [DOE]

    The Office of Security Policy analyzes, develops and interprets safeguards and security policy governing national security functions and the protection of related critical assets entrusted to the...

  7. Policy Specialist

    Energy.gov [DOE]

    This position is located within Transmission Policy Development and Analysis (TSPP) organization of Transmission Policy and Strategy (TSP), Transmission Marketing and Sales (TS), Transmission...

  8. Web Policies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resources Web Policies Web Policies LANL places a high degree of emphasis on user experience and thus all webspaces are designed, developed, and tested thoroughly for usability ...

  9. Web Policies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Web Policies Web Policies Accessibility The National Energy Research Scientific Computing Center (NERSC) is part of the Lawrence Berkeley National Laboratory (Berkeley Lab), which ...

  10. EIS Distribution Process

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environmental Policy Act N E P A EIS and EA Distribution Second Edition October 2016 U.S. Department of Energy Office of the General Counsel Office of NEPA Policy and Compliance EIS and EA Distribution Second Edition October 2016 U.S. Department of Energy Office of the General Counsel Office of NEPA Policy and Compliance printed on recycled paper EIS and EA Distribution Contents 1. Introduction

  11. Northern Cheyenne Tribe - Wind Energy Development

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Renewable Energy Development on Tribal Lands Andrew Elkshoulder, Tribal Planner Dale Osborn, President Distributed Generation Systems, Inc. (Disgen) Contractor 10-18-05 Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Discussion Outline Project Overview Objectives Project Location Project Participants Status 10-18-05 Northern Cheyenne Tribe 30 MW Wind Energy Development Grant Project Objectives * Complete all the

  12. JD Wind 1 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name JD Wind 1 Wind Farm Facility JD Wind 1 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWSJohn...

  13. North Dakota Wind II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. Venture Wind II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Venture Wind II Wind Farm Facility Venture Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  15. MinWind I & II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    I & II Wind Farm Jump to: navigation, search Name MinWind I & II Wind Farm Facility MinWind I & II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  16. Cow Branch Wind Energy Center Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cow Branch Wind Energy Center Wind Farm Jump to: navigation, search Name Cow Branch Wind Energy Center Wind Farm Facility Cow Branch Wind Energy Center Sector Wind energy Facility...

  17. JD Wind 5 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    5 Wind Farm Jump to: navigation, search Name JD Wind 5 Wind Farm Facility JD Wind 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  18. JD Wind 4 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  19. Grid Integration of Wind Energy | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Integration of Wind Energy Researchers study grid integration of wind energy to better understand how variable generation resources such as wind energy impact the grid and how to increase the percentage of wind generation in the United States' energy portfolio. A photo of three wind turbines with transmission lines in the background. Capabilities NREL's grid integration analysts work with the U.S. Department of Energy, university researchers, independent system operators, and regional

  20. Wind Data and Tools | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Data and Tools Learn more about wind energy through these NREL data and tools. A photo of two men silhouetted against a computer-generated simulation with white and blue rows illustrating wind plant aerodynamics. NWTC Information Portal This open-source library houses NREL's wind and water power simulation and modeling software and data, including computer-aided engineering tools and integrated system design and analysis tools. All software is available for download. Wind-Wildlife Impacts

  1. GL Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GL Wind Jump to: navigation, search Name GL Wind Facility GL Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GL Wind Developer Juhl...

  2. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  3. Wind energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind energy (Redirected from Wind power) Jump to: navigation, search Wind energy is a form of solar energy.1 Wind energy (or wind power) describes the process by which wind is...

  4. WINDExchange: Potential Wind Capacity

    WindExchange

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. For more detailed information regarding the assumptions and calculations behind the wind potential capacity maps, see the Energy Department's Enabling Wind Power Nationwide report. Enlarge image This map shows the wind

  5. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  6. Brazos Wind Ranch Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind EnergyMitsui Developer Cielo Wind PowerOrion Energy Energy Purchaser Green...

  7. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind ...

  8. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  9. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Energy Saver

    2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its challenges, ...

  10. First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    First Wind (Formerly UPC Wind) Address: 1001 S.W. Fifth Avenue Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Sector: Wind energy Product: Wind power developer...

  11. Wind Power: How Much, How Soon, and At What Cost?

    SciTech Connect

    Wiser, Ryan H; Hand, Maureen

    2010-01-01

    The global wind power market has been growing at a phenomenal pace, driven by favorable policies towards renewable energy and the improving economics of wind projects. On a going forward basis, utility-scale wind power offers the potential for significant reductions in the carbon footprint of the electricity sector. Specifically, the global wind resource is vast and, though accessing this potential is not costless or lacking in barriers, wind power can be developed at scale in the near to medium term at what promises to be an acceptable cost.

  12. Offshore Wind Market and Economic Analysis

    SciTech Connect

    Hamilton, Bruce Duncan

    2014-08-27

    This report is the third annual assessment of the U.S. offshore wind market. It includes the following major sections: Section 1: key data on developments in the offshore wind technology sector and the global development of offshore wind projects, with a particular focus on progress in the United States; Section 2: analysis of policy developments at the federal and state levels that have been effective in advancing offshore wind deployment in the United States; Section 3: analysis of actual and projected economic impact, including regional development and job creation; Section 4: analysis of developments in relevant sectors of the economy with the potential to affect offshore wind deployment in the United States

  13. Advanced Inverter Functions to Support High Levels of Distributed...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ADVANCED INVERTER FUNCTIONS TO SUPPORT HIGH LEVELS OF DISTRIBUTED SOLAR POLICY AND ... deployment of distributed solar and the formulation of supporting regulation and policy. ...

  14. National Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name: National Wind Place: Minneapolis, Minnesota Zip: 55402 Sector: Wind energy Product: Wind project developer in the upper Midwest and Plains...

  15. Solar Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  16. Horn Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name: Horn Wind Place: Windthorst, Texas Zip: 76389 Sector: Wind energy Product: Texas-based company that develops community-based industrial wind...

  17. Royal Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Royal Wind Place: Denver, Colorado Sector: Wind energy Product: Vertical Wind Turbines Year Founded: 2008 Website: www.RoyalWindTurbines.com Coordinates: 39.7391536,...

  18. Coriolis Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Logo: Coriolis Wind Name: Coriolis Wind Place: Great Falls, Virginia Zip: 22066 Product: Mid-Scale Wind Turbine Year Founded: 2007 Website:...

  19. Jasper Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name: Jasper Wind Place: Athens, Greece Sector: Solar, Wind energy Product: Athens-based wind and solar project developer. Coordinates: 37.97615,...

  20. Mid-Atlantic Wind - Overcoming the Challenges

    SciTech Connect

    Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

    2012-05-31

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  1. Mid-Atlantic Wind - Overcoming the Challenges

    SciTech Connect

    Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

    2012-06-29

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  2. 2014 Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Wind Market Report 2014 Wind Market Report 1 of 8 2 of 8 3 of 8 4 of 8 5 of 8 6 of 8 7 of 8 8 of 8 Energy Department Reports Highlight Trends of Growing U.S. Wind Energy Industry In 2014, U.S. turbines in distributed applications reached a cumulative installed capacity of more than 906 megawatts, enough to power more than 168,000 average American homes. | Photo courtesy of Aegis Renewable Energy; Waitsfield, Vermont. Reports show wind energy industry continued impressive growth in 2014,

  3. Small Wind Guidebook/Publications | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Contents 1 Reports 2 Fact Sheets 3 Periodicals 4 Books Reports Distributed Wind Energy Association; National Association of Counties. County Strategies for...

  4. What Is a Small Community Wind Project? | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    energy costs. References "U.S. Department of Energy. 2012 Market Report on Wind Technologies in Distributed Applications" Retrieved from "http:en.openei.orgw...

  5. Community Wind Handbook/Understand Your Energy Use and Costs...

    OpenEI (Open Energy Information) [EERE & EIA]

    "U.S. Department of Energy. 2012 Market Report on Wind Technologies in Distributed Applications" "Energy Information Administration. How much electricity does an...

  6. Orange County- Small Wind Energy Systems

    Energy.gov [DOE]

    In December 2010, the County of Orange Board of Supervisors adopted small wind performance and development standards (Ord. No. 10-020) in order to promote distributed generation systems in non...

  7. 2014 Wind Market Report | Department of Energy

    Energy.gov [DOE] (indexed site)

    8 5 of 8 6 of 8 7 of 8 8 of 8 Energy Department Reports Highlight Trends of Growing U.S. Wind Energy Industry In 2014, U.S. turbines in distributed applications reached a...

  8. Is the Danish wind energy model replicable for other countries?

    SciTech Connect

    Sovacool, Benjamin K.; Lindboe, Hans H.; Odgaard, Ole

    2008-03-15

    Though aspects of the Danish wind energy model are unique, policymakers might do well to imitate such aspects as a strong political commitment, consistent policy mechanisms, and an incremental, ''hands-on'' approach to R and D. (author)

  9. Final Solar and Wind H2 Report EPAct 812.doc

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report to Congress (ESECS EE-3060) in response to section 812(e) of the Energy Policy Act of 2005 summarizing technology roadmaps for solar- and wind-based hydrogen production.

  10. WINDExchange: Siting Wind Turbines

    WindExchange

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Siting Wind Turbines This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists,

  11. Final Scientific Report - Wind Powering America State Outreach Project

    SciTech Connect

    Sinclair, Mark; Margolis, Anne

    2012-02-01

    The goal of the Wind Powering America State Outreach Project was to facilitate the adoption of effective state legislation, policy, finance programs, and siting best practices to accelerate public acceptance and development of wind energy. This was accomplished by Clean Energy States Alliance (CESA) through provision of informational tools including reports and webinars as well as the provision of technical assistance to state leaders on wind siting, policy, and finance best practices, identification of strategic federal-state partnership activities for both onshore and offshore wind, and participation in regional wind development collaboratives. The Final Scientific Report - Wind Powering America State Outreach Project provides a summary of the objectives, activities, and outcomes of this project as accomplished by CESA over the period 12/1/2009 - 11/30/2011.

  12. Wind Energy Resource Assessment of the Caribbean and Central America

    SciTech Connect

    DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

    1987-04-01

    A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered

  13. An Exploration of Wind Energy & Wind Turbines

    Education - Teach & Learn

    This unit, which includes both a pre and post test on wind power engages students by allowing them to explore connections between wind energy and other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade design are altered. Students are directed to work in teams to design, test and analyze components of a wind turbine such as blade length, blade shape, height of turbine, etc Student worksheets are included to facilitate the design and analysis process. Learning Goals: Below are the learning targets for the wind energy unit.

  14. Recovery Act Incentives for Wind Energy Equipment Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2009, the U.S. had 29,440 MW of installed wind power capacity. continued > Tax incentives The federal government uses several tax-based policy incentives to stimulate the deployment of wind power. The Department of the Treasury's Internal Revenue Service administers these incentives. The federal renewable energy Production Tax Credit (PTC), established by the Energy Policy Act of 1992, allows owners of qualified renewable energy facilities to receive tax credits for each kilowatt-hour (kWh)

  15. Crow Lake Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds...

  16. Wildcat Ridge Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  17. Radial Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  18. Energy Department Announces Partnership with DWEA to Support Wind for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Schools Program | Department of Energy Partnership with DWEA to Support Wind for Schools Program Energy Department Announces Partnership with DWEA to Support Wind for Schools Program May 23, 2016 - 4:58pm Addthis The Wind Program announced that the Distributed Wind Energy Association (DWEA) has been selected as a partner to support the long-term sustainability of the Wind for Schools program. The selection is part of a broader effort by the Department to support the growth of the Wind for

  19. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  20. EERE Success Story-Expanding Educational Opportunities for the Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Workforce | Department of Energy Expanding Educational Opportunities for the Wind Energy Workforce EERE Success Story-Expanding Educational Opportunities for the Wind Energy Workforce April 11, 2013 - 12:00am Addthis The University of Wisconsin-Madison (UW-Madison) is supporting wind energy workforce development and training for the civil design and construction sector. Funding from EERE has enabled curriculum development for the university's Energy and Policy Graduate Certificate and

  1. Solar and Wind Technologies for Hydrogen Production Report to Congress

    SciTech Connect

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  2. NREL: Wind Research - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Technology Center at NREL provides a number of wind news sources to help you stay up-to-date with its activities, research, and new developments. NREL Wind News See...

  3. Wind Power Today

    SciTech Connect

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  4. Wind Power Today

    SciTech Connect

    Not Available

    2007-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  5. Model Wind Ordinance

    Office of Energy Efficiency and Renewable Energy (EERE)

    In July, 2008 the North Carolina Wind Working Group, a coalition of state government, non-profit and wind industry organizations, published a model wind ordinance to provide guidance for...

  6. Solar and Wind Easements

    Energy.gov [DOE]

    In April 2011, the provisions related to wind easements were repealed by House Bill 295 (2011) and replaced with more extensive wind easements provisions.  This legislation defines wind energy ri...

  7. Wind Development on Tribal Lands

    SciTech Connect

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  8. Impacts | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Impacts Read about NREL's impacts on innovations in wind energy research. Photo of four men in hard hats standing on top of a large wind turbine overlooking several other wind turbines in the distance. Fact Sheets Wind Energy Benefits thumbnail Wind Energy Benefits Screenshot of the cover of the national wind technology brochure. 35 Years of Innovation: Leading the Way to a Clean Energy Future JEDI: Jobs and Economic Development Impact Model thumbnail JEDI: Jobs and Economic Development Impact

  9. Wind Energy Integration: Slides

    WindExchange

    information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  10. 2009 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 News Below are news stories related to Wind. RSS Learn about RSS. September 14, 2009 IEA Wind Energy 2008 Annual Report Now Available for Free Download The IEA Annual Report for 2008 provides the latest information on wind industries in 20 International Energy Agency (IEA) Wind member countries. August 26, 2009 NWTC Installs Multimegawatt Research Turbines NREL's National Wind Technology Center installed the first of two multimegawatt wind turbines last week to be used for research to advance

  11. Wind Power Reliability Research | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Power Reliability Research The U.S. wind power industry is well established, with nearly 75 gigawatts of installed capacity across the United States. Given this large base of ...

  12. Wind Energy Modeling and Simulation | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Modeling and Simulation Wind turbines are unique devices that are typically anchored to the ground but operate in the atmosphere, which subjects them to a variety of ...

  13. Wind Vision Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224, -92.888816 Show Map Loading map... "minzoom":false,"mappings...

  14. Innovative Study Helps Offshore Wind Developers Protect Wildlife |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Study Helps Offshore Wind Developers Protect Wildlife Innovative Study Helps Offshore Wind Developers Protect Wildlife October 27, 2015 - 9:33am Addthis Innovative Study Helps Offshore Wind Developers Protect Wildlife Jocelyn Brown-Saracino Jocelyn Brown-Saracino Environmental Research Manager, Wind and Water Power Technologies Office Thanks to a first-of-its-kind in-depth study of wildlife distribution and movements, the nation's Eastern Seaboard is better prepared than

  15. 2011 U.S. Small Wind Turbine Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. Small Wind Turbine Market Report Year Ending 2011 3 Photo courtesy of Gary Harcourt, Great Rock Windpower 6 Photo courtesy of Bergey Windpower Table of Contents Market Highlights 6 Federal & State Incentives 12 Distinguishing Product Features 20 2011 Developments & Drivers 21 Industry Perspectives 50 Endnotes & Acknowledgments 54 - Larry Flowers, Deputy Director, Distributed and Community Wind, American Wind Energy Association Photo courtesy of Xzeres Wind Corp. While the 2011

  16. Alaska Wind Update

    Energy Saver

    Alaska Wind Update BIA Providers Conference Dec. 2, 2015 Unalakleet wind farm Energy Efficiency First Make homes, workplaces and communities energy efficient thru ...

  17. @NWTC Newsletter | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    from the Energy Department's National Wind Technology Center (NWTC) at the National ... an essential partner for the technical development and deployment of wind and water power. ...

  18. Scaled Wind Farm Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scaled Wind Farm Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  19. vertical axis wind turbine

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    vertical axis wind turbine - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  20. Enabling Wind Power Nationwide

    Energy.gov [DOE] (indexed site)

    Enabling Wind Power Nationwide May 2015 This report is being disseminated by the U.S. ... ordering: ntis.govordering.htm Enabling Wind Power Nationwide Primary Authors Jose ...

  1. Articles about Wind Siting

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    energy.gov Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse http:energy.goveerewindarticlesmodel-examines-cumulative-impacts-wind-ener...

  2. Wind Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resources Publications Advanced Search Browse by Topic Mail Requests Help Energy Basics Wind Energy FAQs Small Wind Systems FAQs Multimedia Related Links Feature featured...

  3. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Wind EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative ...

  4. Market Acceleration | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL's team also offers energy and economic analysis, maps, forecasting, workforce development, and education. An aerial photo of three wind turbines at the National Wind ...

  5. Wind Turbine Tribology Seminar

    Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  6. NREL: Wind Research - Publications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Publications The NREL wind research program develops publications about its R&D projects, accomplishments, and goals in wind energy technologies. Here you will find links to some ...

  7. Sandia Energy Wind News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sandia Wake-Imaging System Successfully Deployed at Scaled Wind Farm Technology Facility http:energy.sandia.govsandia-wake-imaging-system-successfully-deployed-at-scaled-wind-fa...

  8. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  9. Small Wind Conference 2015

    Energy.gov [DOE]

    The Small Wind Conference brings together small wind installers, site assessors, manufacturers, dealers and distributors, supply chain stakeholders, educators, public benefits program managers, and...

  10. Wind for Schools (Poster)

    SciTech Connect

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  11. Wind energy bibliography

    SciTech Connect

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  12. Requirements for Wind Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2015 Oklahoma amended the Oklahoma Wind Energy Development Act. The amendments added new financial security requirements, setback requirements, and notification requirements for wind energy...

  13. Cherokee Wind

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cherokee Wind Presenter: Carol Wyatt Cherokee Nation Businesses, Inc. DOE Tribal Energy Program October 26, 2010 KA W PA W N EE TO NK AW A PO NC A OT OE -M IS S OU RI CH E RO KE E Acr es: 2,633 .348 CH E RO KE E Acr es: 1,641 .687 CHEROKEE NATION Kay County Chilocco Property DATA SOU RC ES: US Census Bureau (T iger Files ) D OQQ's , USGS D RG's, USGS Cherokee Nation Realty D epartment C herokee N ation GeoD ata C enter Date: 12/19/01 e:\project\land\c hilocc o N E W S Tribal Land Chilocco

  14. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  15. ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in...

    Office of Scientific and Technical Information (OSTI)

    915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Title: ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode 915-MHz Radar Wind ...

  16. Hull Wind II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Hull Wind II Wind Farm Facility Hull II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hull...

  17. Wind Vision: Continuing the Success of Wind Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Vision: Continuing the Success of Wind Energy Wind Vision: Continuing the Success of Wind Energy April 2, 2015 - 10:35am Addthis The Wind Vision Report describes potential ...

  18. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition

  19. Electric wind in a Differential Mobility Analyzer

    SciTech Connect

    Palo, Marus; Meelis Eller; Uin, Janek; Tamm, Eduard

    2015-10-25

    Electric wind -- the movement of gas, induced by ions moving in an electric field -- can be a distorting factor in size distribution measurements using Differential Mobility Analyzers (DMAs). The aim of this study was to determine the conditions under which electric wind occurs in the locally-built VLDMA (Very Long Differential Mobility Analyzer) and TSI Long-DMA (3081) and to describe the associated distortion of the measured spectra. Electric wind proved to be promoted by the increase of electric field strength, aerosol layer thickness, particle number concentration and particle size. The measured size spectra revealed three types of distortion: widening of the size distribution, shift of the mode of the distribution to smaller diameters and smoothing out the peaks of the multiply charged particles. Electric wind may therefore be a source of severe distortion of the spectrum when measuring large particles at high concentrations.

  20. Electric wind in a Differential Mobility Analyzer

    DOE PAGES [OSTI]

    Palo, Marus; Meelis Eller; Uin, Janek; Tamm, Eduard

    2015-10-25

    Electric wind -- the movement of gas, induced by ions moving in an electric field -- can be a distorting factor in size distribution measurements using Differential Mobility Analyzers (DMAs). The aim of this study was to determine the conditions under which electric wind occurs in the locally-built VLDMA (Very Long Differential Mobility Analyzer) and TSI Long-DMA (3081) and to describe the associated distortion of the measured spectra. Electric wind proved to be promoted by the increase of electric field strength, aerosol layer thickness, particle number concentration and particle size. The measured size spectra revealed three types of distortion: wideningmore » of the size distribution, shift of the mode of the distribution to smaller diameters and smoothing out the peaks of the multiply charged particles. Electric wind may therefore be a source of severe distortion of the spectrum when measuring large particles at high concentrations.« less

  1. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era ... Back to top Chapter 4: The Wind Vision Roadmap The Wind Vision includes a detailed roadmap ...

  2. 2012 wind technologies market report

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Weaver, Samantha; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Tegen, Suzanne

    2013-07-01

    Annual wind power capacity additions in the United States achieved record levels in 2012, motivated by the then-planned expiration of federal tax incentives at the end of 2012 and recent improvements in the cost and performance of wind power technology. At the same time, even with a short-term extension of federal tax incentives now in place, the U.S. wind power industry is facing uncertain times. It will take time to rebuild the project pipeline, ensuring a slow year for new capacity additions in 2013. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on industry growth expectations. In combination with global competition within the sector, these trends continue to impact the manufacturing supply chain. What these trends mean for the medium to longer term remains to be seen, dictated in part by future natural gas prices, fossil plant retirements, and policy decisions, although recent declines in the price of wind energy have boost ed the prospects for future growth

  3. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    History of Wind Energy History of Wind Energy

  4. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    History of Wind Energy History of Wind Energy

  5. Wind Vision: Updating the DOE 20% Wind Energy by 2030 Report (Poster)

    SciTech Connect

    Baring-Gould, E. I.

    2014-04-01

    The 20% Wind Energy by 2030 report was developed as part of the Advanced Energy Initiative. Published in 2008, the report was largely based on information collected and analyzed in 2006. Much has changed since then, including shifts in technology, markets, and policy. The industry needs a new, clear, vision for wind power that is shared among stakeholders from the U.S. government, industry, academia, and NGO communities. At WINDPOWER 2013, the U.S. Department of Energy, in partnership with the American Wind Energy Association and the Wind Energy Foundation, launched a project to update the 20% report with new objectives. This conference poster outlines the elements of the new Wind Vision.

  6. Wind power 85

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on wind turbines. Topics considered at the conference included resource assessment, wind tunnels, performance testing, aerodynamics, turbulence, fatigue, electric generators, wind loads, horizontal axis turbines, vertical axis turbines, Darrieus rotors, wind-powered pumps, economics, environmental impacts, national and international programs, field tests, flow models, feasibility studies, turbine blades, speed regulators, and airfoils.

  7. Wind power 85

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on wind turbines. Topics considered at the conference included resource assessment, wind tunnel testing, vertical axis turbines, wind turbine generators, aerodynamics, airfoils, wind loads, Darrieus rotors, economics, legislation, regulations, environmental impacts, national and international programs, fatigue testing, and horizontal axis turbines.

  8. NREL: Innovation Impact - Wind

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Wind turbines must withstand powerful aerodynamic forces unlike any other propeller-drive machines. Close NREL's work with industry has improved the efficiency and durability of turbine blades and gearboxes. Innovations include: Specialized airfoils Variable-speed turbines

  9. Energy from the wind

    SciTech Connect

    Not Available

    1987-07-01

    This document provides a brief description of the use of wind power. Windmills from the 18th century are described. Modern wind turbines and wind turbine arrays are discussed. Present and future applications of wind power in the US are explained. (JDH)

  10. Your wind driven generator

    SciTech Connect

    Wolff, B.

    1984-01-01

    Wind energy pioneer Benjamin Lee Wolff offers practical guidance on all aspects of setting up and operating a wind machine. Potential builders will learn how to: determine if wind energy is suitable for a specific application; choose an appropriate machine; assess the financial costs and benefits of wind energy; obtain necessary permits; sell power to local utilities; and interpret a generator's specifications. Coverage includes legislation, regulations, siting, and operation. While describing wind energy characteristics, Wolff explores the relationships among wind speed, rotor diameter, and electrical power capacity. He shows how the power of wind energy can be tapped at the lowest cost.

  11. Wind Energy Benefits: Slides

    WindExchange

    1. Wind energy is cost competitive. *Wiser, R.; Bolinger, M. (2015). 2014 Wind Technologies Market Report. U.S. Department of Energy. Wind Energy Benefits Photo from DOE Flickr. 465 020 003 In 2014, the average levelized price of signed wind power purchase agreements was about 2.35 cents per kilowatt-hour. This price is cost competitive with new gas-fired power plants and projects compare favorably through 2040.* 2. Wind energy creates jobs. American Wind Energy Association. (2015). U.S. Wind

  12. Policy Analyst

    Energy.gov [DOE]

    A successful candidate will serve as sole or senior representative and recognized authority regarding economic productivity, policy expertise, communicating EPSA/DOE positions to advance and...

  13. Energy Policy

    Energy.gov [DOE]

    The Energy Department is focusing on an all-of-the-above energy policy, investing in all sources of American energy.

  14. User Policy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DOE pricing policy will apply for experiments whose results are not intended for the open literature. In addition, experimenters will be required to open operating or equipment...

  15. ARM - Wind Chill Calculations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CalculatorsWind Chill Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human body owing to the combination of temperature and wind speed. From 1945 to 2001, Wind Chill was calculated by the Siple

  16. WINDExchange: Collegiate Wind Competition

    WindExchange

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate students from a variety of programs to offer a unique solution to a complex wind energy project. The Competition provides students

  17. WINDExchange: Wind Energy Ordinances

    WindExchange

    Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The nature of the project and its location will largely drive the levels of regulation required. Wind energy ordinances adopted by counties, towns, and other types of municipalities are one of the best ways for local governments to identify conditions and priorities for all types of wind development. These ordinances regulate aspects of wind projects such as their location, permitting

  18. 2006 News | Wind | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6 News Below are news stories related to Wind. RSS Learn about RSS. December 14, 2006 NREL and Xcel Energy Dedicate Wind-Powered Hydrogen Generator DOE's National Renewable Energy Laboratory (NREL) and Xcel Energy dedicated a new system to convert wind power into hydrogen on December 14th. The system, located at NREL's National Wind Technology Center, links two wind turbines to devices called electrolyzers, which pass the electricity through water to split the liquid into hydrogen and oxygen.

  19. PHOTOIONIZATION IN THE SOLAR WIND

    SciTech Connect

    Landi, E.; Lepri, S. T.

    2015-10-20

    In this work we investigate the effects of photoionization on the charge state composition of the solar wind. Using measured solar EUV and X-ray irradiance, the Michigan Ionization Code and a model for the fast and slow solar wind, we calculate the evolution of the charge state distribution of He, C, N, O, Ne, Mg, Si, S, and Fe with and without including photoionization for both types of wind. We find that the solar radiation has significant effects on the charge state distribution of C, N, and O, causing the ionization levels of these elements to be higher than without photoionization; differences are largest for oxygen. The ions commonly observed for elements heavier than O are much less affected, except in ICMEs where Fe ions more ionized than 16+ can also be affected by the solar radiation. We also show that the commonly used O{sup 7+}/O{sup 6+} density ratio is the most sensitive to photoionization; this sensitivity also causes the value of this ratio to depend on the phase of the solar cycle. We show that the O{sup 7+}/O{sup 6+} ratio needs to be used with caution for solar wind classification and coronal temperature estimates, and recommend the C{sup 6+}/C{sup 4+} ratio for these purposes.

  20. New England Wind Forum, Volume 1, Issue 1 -- January 2006

    SciTech Connect

    Not Available

    2006-01-01

    The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 1 features an interview with Brother Joseph of Portsmouth Abbey. A commercial-scale Vestas V47 wind turbine will soon be installed on the grounds of the Benedictine monastery and prep school in Rhode Island, with the assistance of a grant from the Rhode Island Renewable Energy Fund. This will be the first large-scale turbine located behind the customer meter in the region.

  1. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    SciTech Connect

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  2. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    WindExchange

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  3. Wind resource assessment: A three year experience

    SciTech Connect

    Al-Abbadi, N.M.; Alawaji, S.H.; Eugenio, N.N.

    1997-12-31

    This paper presents the results of data collected from three different sites located in the central, northern and eastern region of Saudi Arabia. Each site is geographically and climatologically different from the others. Statistical moments and frequency distributions were generated for the wind speed and direction parameters to analyse the wind energy characteristics and its availability. The results of these statistical operations present the wind power and energy density estimates of the three sites. The data analysis presented a prospect of wind energy conversion and utilization. The annual extractable energy density is 488, 890, 599 kWh/m{sup 2} for the central, northern and eastern sites respectively. Also, the paper demonstrates the lessons learned from operating wind assessment stations installed in remote areas having different environmental characteristics.

  4. Wind/solar resource in Texas

    SciTech Connect

    Nelson, V.; Starcher, K.; Gaines, H.

    1997-12-31

    Data are being collected at 17 sites to delineate a baseline for the wind and solar resource across Texas. Wind data are being collected at 10, 25, and 40 m (in some cases at 50 m) to determine wind shear and power at hub heights of large turbines. Many of the sites are located in areas of predicted terrain enhancement. The typical day in a month for power and wind turbine output was calculated for selected sites and combination of sites; distributed systems. Major result to date is that there is the possibility of load matching in South Texas during the summer months, even though the average values by month indicate a low wind potential.

  5. Siting guidelines for utility application of wind turbines. Final report

    SciTech Connect

    Pennell, W.T.

    1983-01-01

    Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

  6. National Wind Assessments formerly Romuld Wind Consulting | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Assessments formerly Romuld Wind Consulting Jump to: navigation, search Name: National Wind Assessments (formerly Romuld Wind Consulting) Place: Minneapolis, Minnesota Zip: 55416...

  7. Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (SWIFT) Facility Wind Turbine Controller Ground Testing - Sandia Energy Energy Search Icon ... Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground Testing Home...

  8. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  9. Assessment of Vessel Requirements for the U.S. Offshore Wind Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Vessel Requirements for the U.S. Offshore Wind Sector Assessment of Vessel Requirements for the U.S. Offshore Wind Sector Report that investigates the anticipated demand for various vessel types associated with offshore wind development in the United States through 2030 and assesses related market barriers and mitigating policy options. Assessment of Vessel Requirements for the U.S. Offshore Wind Sector (14.82 MB) Assessment of Vessel Requirements for the U.S. Offshore

  10. 2012-2014 Offshore Wind Market and Economic Analysis Reports | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy -2014 Offshore Wind Market and Economic Analysis Reports 2012-2014 Offshore Wind Market and Economic Analysis Reports These reports authored by the Navigant Consortium provide a comprehensive annual assessment of the U.S. offshore wind market from 2012 to 2014. The reports provides stakeholders with a reliable and consistent data source addressing entry barriers and U.S. competitiveness in the offshore wind market. The 2012 edition contains significant policy and economic analyses,

  11. Assessment of Vessel Requirements for the U.S. Offshore Wind Sector

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    © Douglas-Westwood Page 22 Overview of the Vessel-Related Aspects of the Offshore Wind Industry Part 1 Overview of the Vessel-Related Aspects of the Offshore Wind Industry © Douglas-Westwood Page 23 Introduction Only a handful of Western European countries (and to a lesser extent China) have so far developed significant amounts of offshore wind power generating capacities. Understanding the policy frameworks under which offshore wind has developed in these countries provides useful guidance

  12. List of Other Distributed Generation Technologies Incentives...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Thermal Process Heat Photovoltaics Wind Biomass Fuel Cells Ground Source Heat Pumps Hydrogen Biodiesel Fuel Cells using Renewable Fuels Other Distributed Generation...

  13. NREL: Electric Infrastructure Systems Research - Distributed...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    project, which uses electricity from wind turbines and solar panels to produce hydrogen. ... Electricity Integration Research Home Distributed Grid Integration Transmission Grid ...

  14. Chaninik Wind Group Wind Heat Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chaninik Wind Group Wind Heat Smart Grid Our Presentation * William Igkurak, President Chaninik Wind Group * the harness renewables to lower energy costs, * create economic opportunities * build human capacity * Dennis Meiners * Principal Intelligent Energy Systems, Anchorage Ak. * How it all works Program Highlights ²Award Tribal Energy funding 2009, Village Smart Grid ²Received funds November 2010 ²Project to be complete June 2011 ²Theme: "communities working together we can become

  15. DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential May 20, 2011 - 1:34pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. Image of the EERE National Offshore Wind Strategy report cover featuring a photo of a receding line of offshore wind turbines in the ocean. The winds of change are blowing for renewable energy policy, and some of

  16. Star Point Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Point Wind Farm Jump to: navigation, search Name Star Point Wind Farm Facility Star Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Gulf Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Jump to: navigation, search Name Gulf Wind Farm Facility Gulf Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy...

  18. Stetson Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Farm Jump to: navigation, search Name Stetson Wind Farm Facility Stetson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  19. Zirbel Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Zirbel Wind Farm Facility Zirbel Wind Farm (Glenmore Wind Energy Facility) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  20. Beebe Community Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name Beebe Community Wind Facility Beebe Community Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind...

  1. Woodstock Municipal Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Woodstock Municipal Wind Facility Woodstock Municipal Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  2. Winona County Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Winona County Wind Facility Winona County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind...

  3. Story City Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Story City Wind Facility Story City Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Hamilton Wind Energy...

  4. Palmetto Wind Research Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind...

  5. Tillamook Offshore Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  6. Deepwater Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...

  7. Galveston Offshore Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  8. Montfort Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montfort Wind Farm Jump to: navigation, search Name Montfort Wind Farm Facility Montfort Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  9. Wildcat 1 Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wildcat 1 Wind Project Jump to: navigation, search Name Wildcat 1 Wind Project Facility Wildcat 1 Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Springview II Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springview II Wind Project Jump to: navigation, search Name Springview II Wind Project Facility Springview II Wind Project Sector Wind energy Facility Type Commercial Scale Wind...

  11. Shiloh Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. Fenton Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Madison Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Somerset Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Desert Wind Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Jump to: navigation, search Name Desert Wind Power Facility Desert Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer...

  16. Moraine Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Project Jump to: navigation, search Name Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Adams Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Project Jump to: navigation, search Name Adams Wind Project Facility Adams Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  18. Blue Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Tuana Springs Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  20. Thousand Springs Wind Park | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springs Wind Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility...