National Library of Energy BETA

Sample records for distributed generation llc

  1. Advanced Distributed Generation LLC ADG | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Distributed Generation LLC ADG Jump to: navigation, search Name: Advanced Distributed Generation LLC (ADG) Place: Toledo, Ohio Zip: OH 43607 Product: ADG is a general contracting...

  2. Advanced Distributed Generation LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ohio Zip: 43607 Sector: Solar Product: Agriculture; Consulting; Installation; Maintenance and repair; Retail product sales and distribution Phone Number: 419-725-3401...

  3. National Grid Generation, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Grid Generation, LLC Jump to: navigation, search Name: National Grid Generation, LLC Place: New York Service Territory: Massachusetts, New Hampshire, New York, Rhode Island Phone...

  4. Solar Generations LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Generations LLC Jump to: navigation, search Name: Solar Generations LLC Address: 965 W. Main Street Place: Branford, Massachusetts Zip: 06405 Region: Greater Boston Area Sector:...

  5. EA-249 Exelon Generation Company LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Exelon Generation Company LLC EA-249 Exelon Generation Company LLC Order authorizing Exelon Generation Company LLC to export electric energy to Canada. EA-249 Exelon Generation ...

  6. EA-249-A Exelon Generation Company LLC | Department of Energy

    Energy Saver

    A Exelon Generation Company LLC EA-249-A Exelon Generation Company LLC Order authorizing Exelon Generation Company LLC to export electric energy to Canada. EA-249-A Exelon ...

  7. EA-249-B Exelon Generation Company LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    B Exelon Generation Company LLC EA-249-B Exelon Generation Company LLC Order authorizing Exelon Generation Company LLC to export electric energy to Canada. EA-249-B Exelon ...

  8. Exelon Generation Company, LLC Order No. EA-249 I. BACKGROUND

    Office of Environmental Management (EM)

    Exelon Generation Company, LLC Order No. EA-249 I. BACKGROUND Exports of electricity from ... On August 20, 2001, Exelon Generation Company, LLC (Exelon) applied to the Office of ...

  9. Distributed Generation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    have come a long way in addressing interconnection standards for distributed generation, ... Department of Energy November 2006. 8. Overview of Distributed Generation Interconnection ...

  10. EA-406 Sempra Generation, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Sempra Generation, LLC EA-406 Sempra Generation, LLC Order authoriizing Sempra Generation, LLC to export electric energy to Mexico. EA-406 Sempra Generation (MX).pdf (985.85 KB) More Documents & Publications Application to Export Electric Energy OE Docket No. EA-406 Sempra Generation, LLC Application to Export Electric Energy OE Docket No. EA-406 Sempra Generation, LLC: Federal Register Notice, Volume 80, No. 42 - March 4, 2015 Record of Categorical Exclusiom (CX) Determination, Office of

  11. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Fuel Cycle Comparison of Distributed Power Generation Technologies Energy Systems ... or UChicago Argonne, LLC. ANLESD08-4 Fuel Cycle Comparison of Distributed Power ...

  12. Distributed Generation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized

  13. EcoPower Generation LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: ecoPower Generation LLC Place: Lexington, Kentucky Zip: 40504 Sector: Bioenergy Product: Kentucky-based wood-powered bioenergy plant developer that has proposed a...

  14. EA-249-C Exelon Generation Company, LLC | Department of Energy

    Energy.gov [DOE] (indexed site)

    EA-249-C Exelon.pdf (1.05 MB) More Documents & Publications Application to Export Electric Energy OE Docket No. EA-249-C Exelon Generation Company, LLC Application to Export ...

  15. Distributed generation systems model

    SciTech Connect

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  16. Distributed generation hits market

    SciTech Connect

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  17. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy 6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawai'i May 13, 2010 Kahuku Wind Power Biological Opinion Kahuku Wind Power, LLC, Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawaii May 27, 2010

  18. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  19. Distributed generation implementation guidelines

    SciTech Connect

    Guzy, L.; O`Sullivan, J.B.; Jacobs, K.; Major, W.

    1999-11-01

    The overall economics of a distributed generation project is based on cost elements which include: Equipment and financing, fuel, displaced electricity cost, operation and maintenance. Of critical importance is how the facility is managed, including adequate provision for a comprehensive operator training program. Proper equipment maintenance and fuel procurement policy will also lead to greater system availability and optimal system economics. Various utility tariffs are available which may be economically attractive, with an added benefit to the utility of providing a peak shaving resource during peak periods. Changing modes of operation of the distributed generation system may affect staff readiness, require retraining and could affect maintenance costs. The degree of control and oversight that is provided during a project`s implementation and construction phases will impact subsequent maintenance and operating costs. The long term effect of siting impacts, such as building facades that restrict turbine inlet airflow will affect subsequent operations and require supplemental maintenance action. It is possible to site a variety of distributed generation technologies in settings which vary from urban to remote unattended locations with successful results from both an economic and operational perspective.

  20. Didion Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Didion Ethanol LLC Jump to: navigation, search Name: Didion Ethanol LLC Place: Cambria, Wisconsin Zip: 53923 Product: Also Didion Milling LLC, Grand River Distribution LLC....

  1. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Energy.gov [DOE] (indexed site)

    May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawai'i May 13, ...

  2. Solar Panels Plus LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Panels Plus LLC Jump to: navigation, search Name: Solar Panels Plus LLC Place: Chesapeake, Virginia Zip: 23320 Sector: Solar Product: Solar Panels Plus LLC distributes solar energy...

  3. Feasibility Study of Sustainable Distributed Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Sustainable Distributed Generation Technologies for the Duck Valley Reservation Feasibility Study of Sustainable Distributed Generation Technologies for the Duck Valley ...

  4. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, ...

  5. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Document covers the Regulatory ...

  6. Other Distributed Generation Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Other Distributed Generation Technologies Jump to: navigation, search TODO: Add description List of Other Distributed Generation Technologies Incentives Retrieved from "http:...

  7. Distributed Generation Operational Reliability, Executive Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generation Reliability and Availability Database," sponsored by Oak Ridge National ... Distributed Generation Operational Reliability and Availability Database, Final Report, ...

  8. Fuel cells in distributed generation

    SciTech Connect

    O'Sullivan, J.B.

    1999-07-01

    In the past the vertically integrated electric utility industry has not utilized Distributed Generation (DG) because it was viewed as competition to central station power production. Gas utilities have been heavily and aggressively involved in the promotion of gas fired DG because for them it is additional load that may also balance the winter load. With deregulation and restructuring of the electricity industry DG is now viewed in a different light. For those utilities that have sold their generation assets DG can be a new retail service to provide to their customers. For those who are still vertically integrated, DG can be an asset management tool at the distribution level. DG can be utilized to defer capital investments involving line and substation upgrades. Coupled to this new interest in DG technologies and their performance characteristics are the associated interests in implementation issues. These range from the codes and standards requirements and hardware for interfacing to the grid as well as C{sup 3}-I (command, control, communication--intelligence) issues. The latter involves dispatching on-grid or customer sited resources, monitoring their performance and tracking the economic transactions. Another important aspect is the impact of DG resources (size, number and location) on service area dynamic behavior (power quality, reliability, stability, etc.). EPRI has ongoing programs addressing all these aspects of DG and the distribution grid. Since fuel cells can be viewed as electrochemical engines, and as with thermomechanical engines, there doesn't have to be a best fuel cell. Each engine can serve many markets and some will be better suited than others in a specific market segment (e.g. spark ignition in cars and turbines in planes). This paper will address the status of developing fuel cell technologies and their application to various market areas within the context of Distributed Generation.

  9. Wader LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wader LLC Jump to: navigation, search Name: Wader LLC Place: Laguna Hills, California Zip: 92653 Sector: Hydro Product: Developer of energy generation equipment based on salt...

  10. Fortistar LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Place: New York, New York Zip: 10650 Product: Fortistar is a privately owned US power generation company largely based on landfill gas. References: Fortistar LLC1 This...

  11. Distributed Generation Operational Reliability, Executive Summary Report,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    January 2004 | Department of Energy Reliability, Executive Summary Report, January 2004 Distributed Generation Operational Reliability, Executive Summary Report, January 2004 This report summarizes the results of the project, "Distributed Generation Market Transformation Tools: Distributed Generation Reliability and Availability Database," sponsored by Oak Ridge National Laboratory (ORNL), Energy Solutions Center (ESC), New York State Energy Research and Development Authority

  12. NREL: Technology Deployment - Distributed Generation Interconnection

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Collaborative Distributed Generation Interconnection Collaborative Become a Member DGIC members are included in quarterly informational meetings and discussions related to distributed PV interconnection practices, research, and innovation. For more information, contact Kristen Ardani. Subscribe to DGIC Updates Learn about upcoming webinars and other DGIC announcements. NREL facilitates the Distributed Generation Interconnection Collaborative (DGIC) with support from the Smart Electric Power

  13. 1,"PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2366.6

    Energy Information Administration (EIA) (indexed site)

    Jersey" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2366.6 2,"PSEG Linden Generating Station","Natural gas","PSEG Fossil LLC",1639.2 3,"Bergen Generating Station","Natural gas","PSEG Fossil LLC",1219 4,"PSEG Hope Creek Generating

  14. Distributed Generation Operational Reliability and Availability Database,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Final Report, January 2004 | Department of Energy Reliability and Availability Database, Final Report, January 2004 Distributed Generation Operational Reliability and Availability Database, Final Report, January 2004 This final report documents the results of an 18-month project entitled, "Distributed Generation Market Transformation Tools: Distributed Generation Reliability and Availability Database," sponsored by Oak Ridge National Laboratory (ORNL), Energy Solutions Center

  15. Integration of Demand Side Management, Distributed Generation...

    OpenEI (Open Energy Information) [EERE & EIA]

    various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those...

  16. List of Other Distributed Generation Technologies Incentives...

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Thermal Process Heat Photovoltaics Wind Biomass Fuel Cells Ground Source Heat Pumps Hydrogen Biodiesel Fuel Cells using Renewable Fuels Other Distributed Generation...

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  18. Western Ethanol Company LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol Company LLC Jump to: navigation, search Name: Western Ethanol Company LLC Place: Placentia, California Zip: 92871 Product: California-based fuel ethanol distribution and...

  19. American Renewables LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewables LLC Jump to: navigation, search Name: American Renewables LLC Place: Boston, Massachusetts Sector: Biomass Product: US developer of biomass-fueled power generating...

  20. Distributed generation - the fuel processing example

    SciTech Connect

    Victor, R.A.; Farris, P.J.; Maston, V.

    1996-12-31

    The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

  1. Distributed generation: Early markets for emerging technologies

    SciTech Connect

    Lenssen, N.; Cler, G.

    1999-11-01

    How will developers of emerging distributed generation technologies successfully commercialize their products. This paper presents one approach for these developers, borrowing from the experience of other developers of innovative technologies and services. E Source`s analysis suggests, however, that there is already more of a market for distributed generation than is generally recognized. US and Canadian firms already buy about 3,400 megawatts of small generators each year, mostly for backup power but some as the primary power source for selected loads and facilities. This demand is expected to double in 10 years. The global market for small generators is already more than 10 times this size, at some 40,000 megawatts per year, and it is expected to continue growing rapidly, especially in developing nations. Just how the emerging distributed generation technologies, such as microturbines, fuel cells, and Stirling engines compete-or surpass-the conventional technologies will have a huge impact on their eventual commercial success.

  2. TurboGenerator Power Systems{trademark} for distributed generation

    SciTech Connect

    Weinstein, C.H.

    1998-12-31

    The AlliedSignal TurboGenerator is a cost effective, environmentally benign, low cost, highly reliable and simple to maintain generation source. Market Surveys indicate that the significant worldwide market exists, for example, the United States Electric Power Research Institute (EPRI) which is the uniform research facility for domestic electric utilities, predicts that up to 40% of all new generation could be distributed generation by the year 2006. In many parts of the world, the lack of electric infrastructure (transmission and distribution lines) will greatly expedite the commercialization of distributed generation technologies since central plants not only cost more per kW, but also must have expensive infrastructure installed to deliver the product to the consumer. Small, multi-fuel, modular distributed generation units, such as the TurboGenerator, can help alleviate current afternoon brownouts and blackouts prevalent in many parts of the world. Its simple, one moving part concept allows for low technical skill maintenance and its low overall cost allows for wide spread purchase in those parts of the world where capital is sparse. In addition, given the United States emphasis on electric deregulation and the world trend in this direction, consumers of electricity will now have not only the right to choose the correct method of electric service but also a new cost effective choice from which to choose.

  3. Property:Distributed Generation System Power Application | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    + Based Load + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Based Load + Distributed Generation StudySUNY Buffalo + Based Load + Distributed...

  4. Electrical power systems for distributed generation

    SciTech Connect

    Robertson, T.A.; Huval, S.J.

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  5. Capturing the benefits of distributed generation

    SciTech Connect

    Coles, L.R.

    1999-11-01

    Existing and future distributed generation (DG) can provide significant benefits to customers, utilities and other service providers. For the customer, these benefits could include improved reliability, better power quality and lower costs. For the utility distribution company, these benefits could include deferral of costly distribution upgrades and local voltage support. For the region`s generation and transmission suppliers, DG can provide dependable capacity supply, relief from transmission constraints, and ancillary transmission services such as reactive supply and supplemental reserves. The promise of DG technologies is strong. The technical hurdles to capturing these benefits are being met with improved generators and with enhanced command, control, and communications technologies. However, institutional and regulatory hurdles to capturing these distributed generation benefits appear to be significant. Restructuring for retail access and the delamination of utilities into wires companies and generation companies may make it difficult to capture many of the multiple benefits of DG. Policy-makers should be aware of these factors and strive to craft policies and rules that give DG a fair change to deliver these strong benefits.

  6. The Value of Distributed Generation and CHP Resources in Wholesale...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, ...

  7. Property:Distributed Generation System Enclosure | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    + Outdoor + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Dedicated Shelter + Distributed Generation StudySUNY Buffalo + Outdoor +...

  8. Property:Distributed Generation Prime Mover | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    G3508 + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Caterpillar G379 + Distributed Generation StudySUNY Buffalo + Capstone C60 +...

  9. Stationary/Distributed Generation Projects | Department of Energy

    Office of Environmental Management (EM)

    StationaryDistributed Generation Projects Stationary power is the most mature application for fuel ... co-generation (in which excess thermal energy from electricity generation ...

  10. SeQuential Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: SeQuential Biofuels LLC Place: Portland, Oregon Zip: 97231 Sector: Biofuels Product: A biofuels marketing and distribution company...

  11. CleanDistributedGeneration.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CleanDistributedGeneration.pdf CleanDistributedGeneration.pdf CleanDistributedGeneration.pdf CleanDistributedGeneration.pdf (381 KB) More Documents & Publications Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 Catalog of CHP Technologies CHP Assessment, California Energy Commission, October 200

  12. EA-213 Coral Power, LLC | Department of Energy

    Energy.gov [DOE] (indexed site)

    Coral Power, LLC (25.39 KB) More Documents & Publications EA-232 OGE Energy Resources Inc EA-249 Exelon Generation Company LLC EA-122-A Dynegy Power Marketing,

  13. PowerSHIFT Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: PowerSHIFT Biofuels LLC Place: Wyoming Product: Focused on biodiesel plants and power generation facilities in the US. References:...

  14. EA-418 Termoelectrica U.S., LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8 Termoelectrica U.S., LLC EA-418 Termoelectrica U.S., LLC Order authorizing Termoelectrica to export electric energy to Mexico. EA-418 Termoelectrica US (MX).pdf (552.92 KB) More Documents & Publications EA-387 Energia Renovable S.C., LLC EA-406 Sempra Generation, LLC EA-357-A Hunt Electric Power Marketing, L.L.C

  15. Renewable Energy: Distributed Generation Policies and Programs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Distributed Generation Policies and Programs Renewable Energy: Distributed Generation Policies and Programs Distributed generation is the term used when electricity is generated from sources, often renewable energy sources, near the point of use instead of centralized generation sources from power plants. State and local governments can implement policies and programs regarding distributed generation and its use to help overcome market and regulatory barriers to implementation.

  16. Distributed Generation: Challenges and Opportunities, 7. edition

    SciTech Connect

    2007-10-15

    The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling Engines, Fuel Cells, Photovoltaics, Concentrating Solar, Wind, and Microgrids. Topics covered include: the key technologies being used or planned for DG; the uses of DG from utility, energy service provider, and customer viewpoints; the economics of DG; the benefits of DG from multiple perspectives; the barriers that exist to implementing DG; the government programs supporting the DG industry; and, an analysis of DG interconnection and net metering rules.

  17. Distributed Generation with Heat Recovery and Storage

    SciTech Connect

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  18. 1,"Mystic Generating Station","Natural gas","Constellation Mystic Power LLC",1997.2

    Energy Information Administration (EIA) (indexed site)

    Massachusetts" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Mystic Generating Station","Natural gas","Constellation Mystic Power LLC",1997.2 2,"Brayton Point","Coal","Brayton Point Energy LLC",1505 3,"Northfield Mountain","Pumped storage","FirstLight Power Resources, Inc. - MA",1146

  19. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect

    Jensen, Kevin

    2014-09-30

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources

  20. Property:Distributed Generation Function | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Function Jump to: navigation, search Property Name Distributed Generation Function Property Type Page Description A description of the function(s) for which the Distributed...

  1. Property:Distributed Generation System Heating-Cooling Application...

    OpenEI (Open Energy Information) [EERE & EIA]

    This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed...

  2. Connecting to the Grid: A Guide to Distributed Generation Interconnect...

    Energy.gov [DOE] (indexed site)

    The sixth edition of this guide addresses new and lingering issues relevant to all distributed generation technologies, including net excess generation, third-party ownership, ...

  3. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    generator? Who owns the generator? Who operates the generator? Who has a right to dispatchcontrol the generator? Who owns the kWh? To whom are the kWh sold? ...

  4. Distributed Generation with Heat Recovery and Storage

    SciTech Connect

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2006-06-16

    Electricity produced by distributed energy resources (DER)located close to end-use loads has the potential to meet consumerrequirements more efficiently than the existing centralized grid.Installation of DER allows consumers to circumvent the costs associatedwith transmission congestion and other non-energy costs of electricitydelivery and potentially to take advantage of market opportunities topurchase energy when attractive. On-site, single-cycle thermal powergeneration is typically less efficient than central station generation,but by avoiding non-fuel costs of grid power and by utilizing combinedheat and power (CHP) applications, i.e., recovering heat from small-scaleon-site thermal generation to displace fuel purchases, DER can becomeattractive to a strictly cost-minimizing consumer. In previous efforts,the decisions facing typical commercial consumers have been addressedusing a mixed-integer linear program, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, andinformation (both technical and financial) on candidate DER technologies,DER-CAM minimizes the overall energy cost for a test year by selectingthe units to install and determining their hourly operating schedules. Inthis paper, the capabilities of DER-CAM are enhanced by the inclusion ofthe option to store recovered low-grade heat. By being able to keep aninventory of heat for use in subsequent periods, sites are able to lowercosts even further by reducing lucrative peak-shaving generation whilerelying on storage to meet heat loads. This and other effects of storageare demonstrated by analysis of five typical commercial buildings in SanFrancisco, California, USA, and an estimate of the cost per unit capacityof heat storage is calculated.

  5. Stationary/Distributed Generation Projects - Non-DOE Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Technology Validation » Stationary/Distributed Generation Projects » Stationary/Distributed Generation Projects - Non-DOE Projects Stationary/Distributed Generation Projects - Non-DOE Projects In addition to the stationary/distributed generation technology validation projects sponsored by DOE, universities, along with state and local government entities across the U.S., are partnering with industry to demonstrate stationary fuel cells in real-world applications. South Windsor

  6. Overview of the Distributed Generation Interconnection Collaborative

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    effort focused on distributed PV interconnection: - Data and informational gapsneeds ... anticipated rise in distributed PV interconnection Based on stakeholder input and ...

  7. NREL: Energy Analysis - Distributed Generation Energy Technology...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed ...

  8. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    SciTech Connect

    Ali, Sy; Moritz, Bob

    2001-09-01

    in grid support. The machine is consistent with 21st century power generation objectives. It will be more efficient than a microturbine and also more cost effective because it does not require an expensive recuperator. It will produce ultra-low emissions because it has a low combustor delivery temperature. It will also avoid producing hazardous waste because it requires no lube system. These qualities are obtained by combining, and in some instances extending, the best of available technologies rather than breaking wholly new ground. Limited ''barrier technology'' rig tests of bearing systems and alternator configuration are proposed to support the extension of technology. Low combustion temperature also has merit in handling alternative fuels with minimum emissions and minimum materials degradation. Program continuation is proposed that will simultaneously provide technology support to a SECA fuel cell hybrid system and a distributed generation turbogenerator. This technology program will be led by a Rolls-Royce team based in Indianapolis with access to extensive small turbogenerator experience gathered in DOE (and other) programs by Allison Mobile Power Systems. It is intended that subsequent production will be in the U.S., but the products may have substantial export potential.

  9. Distributed Generation Systems Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Colorado Zip: 80228 Region: Rockies Area Sector: Wind energy Product: Developer of electricity generation wind power facilities Website: www.disgenonline.com Coordinates:...

  10. Distributed Generation Operational Reliability and Availability...

    Energy.gov [DOE] (indexed site)

    generation (DG)combined heat and power (CHP) project operators, owners, and developers, ... Specifically, the project team analyzed event histories for 121 DGCHP units over a ...

  11. Materials Innovation for Next Generation Transmission and Distribution Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Components Workshop | Department of Energy Materials Innovation for Next Generation Transmission and Distribution Grid Components Workshop Materials Innovation for Next Generation Transmission and Distribution Grid Components Workshop Applied R&D in advanced materials has the potential to improve the fundamental properties and capabilities of hardware for grid applications. The Materials Innovation for Next-Generation Transmission and Distribution Grid Components Workshop, held August

  12. Fuel Cycle Comparison of Distributed Power Generation Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Cycle Comparison of Distributed Power Generation Technologies Fuel Cycle Comparison of Distributed Power Generation Technologies This 2008 report by Argonne National Laboratory examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines. Fuel Cycle Comparison of Distributed Power Generation Technologies

  13. The Value of Distributed Generation (DG) under Different Tariff...

    OpenEI (Open Energy Information) [EERE & EIA]

    URI: cleanenergysolutions.orgcontentvalue-distributed-generation-dg-under Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible...

  14. Poland - Economic and Financial Benefits of Distributed Generation...

    OpenEI (Open Energy Information) [EERE & EIA]

    Name Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP AgencyCompany Organization Argonne National Laboratory Sector Energy...

  15. High Penetration Solar Distributed Generation Study on Oahu ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    requirement, the island of Oahu constructed, calibrated, and validated a high penetration renewable generator distribution feeder circuit on its electricity grid to understand the ...

  16. Materials Innovation for Next Generation Transmission and Distribution...

    Energy.gov [DOE] (indexed site)

    The Materials Innovation for Next-Generation Transmission and Distribution Grid Components ... for downloading. 01 - OE ORNL Materials Innovation Workshop - Cheung - small.pdf (1.21 MB) ...

  17. April 2013 Most Viewed Documents for Power Generation And Distribution...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    April 2013 Most Viewed Documents for Power Generation And Distribution Electric power ... (1998) 64 Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar ...

  18. March 2014 Most Viewed Documents for Power Generation And Distribution...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    March 2014 Most Viewed Documents for Power Generation And Distribution ASPEN Plus Simulation ... (1982) 18 Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar ...

  19. Distributed Generation Systems Inc DISGEN | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems Inc DISGEN Jump to: navigation, search Name: Distributed Generation Systems Inc (DISGEN) Place: Lakewood, Colorado Zip: 80228 Sector: Wind energy Product: Developer of...

  20. The Potential Benefits of Distributed Generation and the Rate...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits ...

  1. Operation of Distributed Generation Under Stochastic Prices

    SciTech Connect

    Siddiqui, Afzal S.; Marnay, Chris

    2005-11-30

    We model the operating decisions of a commercial enterprisethatneeds to satisfy its periodic electricity demand with either on-sitedistributed generation (DG) or purchases from the wholesale market. Whilethe former option involves electricity generation at relatively high andpossibly stochastic costs from a set of capacity-constrained DGtechnologies, the latter implies unlimited open-market transactions atstochastic prices. A stochastic dynamic programme (SDP) is used to solvethe resulting optimisation problem. By solving the SDP with and withoutthe availability of DG units, the implied option values of the DG unitsare obtained.

  2. Distributed Generation in Buildings (released in AEO2005)

    Reports and Publications

    2008-01-01

    Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The Annual Energy Outlook 2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

  3. EA-163-A Duke Energy Trading and Marketing, L.L.C | Department...

    Energy.gov [DOE] (indexed site)

    and Marketing, L.L.C (32.49 KB) More Documents & Publications EA-163 Duke Energy Trading and Marketing, L.L.C EA-232 OGE Energy Resources Inc EA-249 Exelon Generation Company LLC

  4. Mainstream Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Focused on manufacture, sales and installation of solar equipment and services via distribution subsidaries. References: Mainstream Energy LLC1 This article is a stub. You can...

  5. Great Lakes Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Great Lakes Biofuels LLC Place: Madison, Wisconsin Zip: 53704 Sector: Services Product: Biodiesel research, consulting, management distribution and services company. Coordinates:...

  6. Ocean Motion International LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Place: Saulsbury, Tennessee Zip: 38067 Sector: Ocean Product: Marine energy technology firm developing ocean wave powered generators. Coordinates: 35.052242,...

  7. Bethel Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy LLC Place: Cardiff, California Zip: 92007 Sector: Solar Product: Solar thermal electricity generation (STEG) project developer, to use parabolic trough design with...

  8. Arcadia Windpower Holdings LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    New York Zip: 10018 Sector: Wind energy Product: Develops and finances utility-scale wind electricity generation projects. References: Arcadia Windpower Holdings LLC1 This...

  9. Mountain Island Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mountain Island Energy, LLC Place: Soda Springs, Idaho Zip: 83276 Product: Energy and mining development company focused on next generation "clean technology". References:...

  10. Distributed generation technology in a newly competitive electric power industry

    SciTech Connect

    Pfeifenberger, J.P.; Ammann, P.R.; Taylor, G.A.

    1996-10-01

    The electric utility industry is in the midst of enormous changes in market structure. While the generation sector faces increasing competition, the utilities` transmission and distribution function is undergoing a transition to more unbundled services and prices. This article discusses the extent to which these changes will affect the relative advantage of distributed generation technology. Although the ultimate market potential for distributed generation may be significant, the authors find that the market will be very heterogeneous with many small and only a few medium-sized market segments narrowly defined by operating requirements. The largest market segment is likely to develop for distributed generation technology with operational and economical characteristics suitable for peak-shaving. Unbundling of utility costs and prices will make base- and intermediate-load equipment, such as fuel cells, significantly less attractive in main market segments unless capital costs fall significantly below $1,000/kW.

  11. Notice of Study Availability - Potential Benefits of Distributed Generation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 | Department of Energy Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Notice of Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 -

  12. Distributed Generation System Characteristics and Costs in the Buildings Sector

    Gasoline and Diesel Fuel Update

    Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and

  13. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  14. Elimination of direct current distribution systems from new generating stations

    SciTech Connect

    Jancauskas, J.R.

    1996-12-31

    This paper advances the concept that it may be both possible and advantageous to eliminate the traditional direct current distribution system from a new generating station. The latest developments in uninterruptible power supply (UPS) technology are what have made this option technically feasible. A traditional dc distribution system will be compared to an ac distribution system supplied by a UPS to investigate the merits of the proposed approach.

  15. Gateway Ethanol LLC formerly Wildcat Bio Energy LLC | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC formerly Wildcat Bio Energy LLC Jump to: navigation, search Name: Gateway Ethanol LLC (formerly Wildcat Bio-Energy LLC) Place: Pratt, Kansas Zip: 67124 Product:...

  16. Innovative Systems Engineering Solar LLC ISE Solar LLC | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems Engineering Solar LLC ISE Solar LLC Jump to: navigation, search Name: Innovative Systems Engineering Solar LLC (ISE Solar LLC) Place: Warminster, Pennsylvania Zip:...

  17. DayStar Solar LLC formerly International Energy Trading LLC ...

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC formerly International Energy Trading LLC Jump to: navigation, search Name: DayStar Solar LLC (formerly International Energy Trading LLC) Place: Grass Valley, California Zip:...

  18. SunE WG45 Woodland LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: SunE WG45 Woodland LLC -- Walgreens Woodland Distribution Ctr Place: California Phone Number: 866-786-3347 Website: www.sunedison.com...

  19. Proposed methodologies for evaluating grid benefits of distributed generation

    SciTech Connect

    Skowronski, M.J.

    1999-11-01

    As new Distributed Generation technologies are brought to the market, new hurdles to successful commercialization of these promising forms of on-site generation are becoming apparent. The impetus to commercialize these technologies has, up to now, been the value and benefits that the end user derives from the installation of Distributed Generation. These benefits are primarily economic as Distributed Generation is normally installed to reduce the customer utility bill. There are, however, other benefits of Distributed Generation other than the reduction in the cost of electric service, and these benefits normally accrue to the system or system operator. The purpose of this paper is to evaluate and suggest methodologies to quantify these ancillary benefits that the grid and/or connecting utility derive from customer on-site generation. Specifically, the following are discussed: reliability in service; transmission loss reduction; spinning and non-spinning reserve margin; peak shaving and interruptible loads; transmission and distribution deferral; VAR support/power quality; cogeneration capability; improvement in utility load factor fuel diversity; emission reductions; and qualitative factors -- reduced energy congestion, less societal disruption, faster response time, black start capability, system operation benefits.

  20. Distributed electrical generation technologies and methods for their economic assessment

    SciTech Connect

    Kreider, J.F.; Curtiss, P.S.

    2000-07-01

    A confluence of events in the electrical generation and transmission industry has produced a new paradigm for distributed electrical generation and distribution in the US Electrical deregulation, reluctance of traditional utilities to commit capital to large central plants and transmission lines, and a suite of new, efficient generation hardware have all combined to bring this about. Persistent environmental concerns have further stimulated several new approaches. In this paper the authors describe the near term distributed generation technologies and their differentiating characteristics along with their readiness for the US market. In order to decide which approaches are well suited to a specific project, an assessment methodology is needed. A technically sound approach is therefore described and example results are given.

  1. EA-220 NRG Power Marketing LLC | Department of Energy

    Energy.gov [DOE] (indexed site)

    EA-220-NRG Power Marketing LLC (34.4 KB) More Documents & Publications EA-220-A NRG Power Marketing, Inc EA-232 OGE Energy Resources Inc EA-249 Exelon Generation Company LLC

  2. Technology for distributed generation in a global marketplace

    SciTech Connect

    Leeper, J.D.; Barich, J.T.

    1998-12-31

    During the last 20 years, great strides have been made in the development and demonstration of distributed generation technologies. Wind, phosphoric acid fuel cells, and photovoltaic systems are now competitive in selected niche markets. Other technologies such as MTG, higher temperature fuel cells, and fuel cell hybrids are expected to become competitive in selected applications in the next few years. As the electric utility industry moves toward restructuring and increasing demand in emerging countries, one can expect even greater demand for environmentally friendly distributed generation technologies.

  3. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  4. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  5. Distributed Generation Investment by a Microgrid under Uncertainty

    SciTech Connect

    Marnay, Chris; Siddiqui, Afzal; Marnay, Chris

    2008-08-11

    This paper examines a California-based microgrid?s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist.

  6. Distributed Generation Investment by a Microgrid UnderUncertainty

    SciTech Connect

    Siddiqui, Afzal; Marnay, Chris

    2006-06-16

    This paper examines a California-based microgrid s decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generating cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generating cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit.

  7. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect

    Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

    2009-09-01

    The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

  8. ANALYSIS OF DISTRIBUTION FEEDER LOSSES DUE TO ADDITION OF DISTRIBUTED PHOTOVOLTAIC GENERATORS

    SciTech Connect

    Tuffner, Francis K.; Singh, Ruchi

    2011-08-09

    Distributed generators (DG) are small scale power supplying sources owned by customers or utilities and scattered throughout the power system distribution network. Distributed generation can be both renewable and non-renewable. Addition of distributed generation is primarily to increase feeder capacity and to provide peak load reduction. However, this addition comes with several impacts on the distribution feeder. Several studies have shown that addition of DG leads to reduction of feeder loss. However, most of these studies have considered lumped load and distributed load models to analyze the effects on system losses, where the dynamic variation of load due to seasonal changes is ignored. It is very important for utilities to minimize the losses under all scenarios to decrease revenue losses, promote efficient asset utilization, and therefore, increase feeder capacity. This paper will investigate an IEEE 13-node feeder populated with photovoltaic generators on detailed residential houses with water heater, Heating Ventilation and Air conditioning (HVAC) units, lights, and other plug and convenience loads. An analysis of losses for different power system components, such as transformers, underground and overhead lines, and triplex lines, will be performed. The analysis will utilize different seasons and different solar penetration levels (15%, 30%).

  9. NREL: dGen: Distributed Generation Market Demand Model - Documentation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Documentation The Distributed Generation Market Demand (dGen) model documentation summarizes the default data inputs and assumptions for the model. Input data for the model are regularly updated and include recent EIA Annual Energy Outlook projections, state-level net metering and incentive policies, and utility-level retail electricity rates. Note that the dGen model builds on, extends, and provides significant advances over NREL's deprecated SolarDS model. Documentation Outline Introduction

  10. NREL: dGen: Distributed Generation Market Demand Model - Publications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Publications The following are publications-including technical reports, journal articles, conference papers, and posters-focusing on the Distributed Generation Market Demand Model (dGen) and its predecessor, the Solar Deployment System (SolarDS) model. Barbose, Galen, John Miller, Ben Sigrin, Emerson Reiter, Karlynn Cory, Joyce McLaren, Joachim Seel, Andrew Mills, Naïm Darghouth, and Andrew Satchwell. 2016. On the Path to SunShot: Utility Regulatory and Business Model Reforms for Addressing

  11. January 2013 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information January 2013 Most Viewed Documents for Power Generation And Distribution Lessons from Large-Scale Renewable Energy Integration Studies: Preprint Bird, L.; Milligan, M. Small punch creep test: A promising methodology for high temperature plant components life evaluation Tettamanti, S. [CISE SpA, Milan (Italy)]; Crudeli, R. [ENEL SpA, Milan (Italy)] Failure analyses and weld repair of boiler feed water pumps Vulpen, R. van

  12. Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept

    Office of Scientific and Technical Information (OSTI)

    of Energy Office of Scientific and Technical Information - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993

  13. A Bio-Based Fuel Cell for Distributed Energy Generation

    SciTech Connect

    Anthony Terrinoni; Sean Gifford

    2008-06-30

    The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

  14. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  15. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  16. Microsoft Word - 122006 - Mirant Potomac River LLC - Monthly Model Evaluation Study Nov 2006 - 10350-003-106.doc

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Prepared for: Mirant Potomac River, LLC Potomac Generating Station Alexandria, VA Mirant Potomac River, LLC Monthly Model Evaluation Study Report November 2006 ENSR Corporation December 2006 Document No.: 10350-003-106-6 Prepared for: Mirant Potomac River, LLC Potomac Generating Station Alexandria, VA Mirant Potomac River, LLC Monthly Model Evaluation Study Report November 2006 _________________________________ Prepared By: Frank R. Tringale _________________________________ Reviewed By: David

  17. Assessment of Distributed Generation Potential in JapaneseBuildings

    SciTech Connect

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

    2005-05-25

    To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment. It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.

  18. EaglePicher Horizon Batteries LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Place: Dearborn, Michigan Zip: MI 48126 Product: Joint Venture developing, manufacturing and distributing a breakthrough, high performance sealed lead-acid battery....

  19. Caterpillar`s advanced reciprocating engine for distributed generation markets

    SciTech Connect

    Gerber, G.; Brandes, D.; Reinhart, M.; Nagel, G.; Wong, E.

    1999-11-01

    Competition in energy markets and federal and state policy advocating clean, advanced technologies as means to achieve environmental and global climate change goals are clear drivers to original equipment manufacturers of prime movers. Underpinning competition are the principle of consumer choice to facilitate retail competition, and the desire to improve system and grid reliability. Caterpillar`s Gas Engine Division is responding to the market`s demand for a more efficient, lower lifecycle cost engine with reduced emissions. Cat`s first generation TARGET engine will be positioned to effectively serve distributed generation and combined heat and power (CHP) applications. TARGET (The Advanced Reciprocating Gas Engine Technology) will embody Cat`s product attributes: durability, reliability, and competitively priced life cycle cost products. Further, Caterpillar`s nationwide, fully established dealer sales and service ensure continued product support subsequent to the sale and installation of the product.

  20. June 2016 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 727 Electric power substation capital costs Dagle, J.E.; Brown, D.R. (1997) 236 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 216

  1. September 2016 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy Office of Scientific and Technical Information Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 462 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 212 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003)

  2. April 2013 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and

  3. December 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information December 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 740 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 224 Wet cooling towers: rule-of-thumb

  4. July 2013 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information July 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 535 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 165 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 154 Load flow

  5. June 2014 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information June 2014 Most Viewed Documents for Power Generation And Distribution Seventh Edition Fuel Cell Handbook NETL (2004) 118 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 89 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 85 Wet cooling towers: rule-of-thumb design and

  6. June 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information June 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 504 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 240 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 160 Load flow

  7. March 2014 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information March 2014 Most Viewed Documents for Power Generation And Distribution ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 112 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 83 Seventh Edition Fuel Cell Handbook NETL (2004) 68 Load flow analysis: Base cases, data, diagrams,

  8. March 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information 5 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 317 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 254 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 234 Load flow analysis: Base

  9. Most Viewed Documents for Power Generation and Distribution: December 2014

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Power Generation and Distribution: December 2014 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 133 Seventh Edition Fuel Cell Handbook NETL (2004) 96 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 84 Load flow analysis: Base cases, data,

  10. Most Viewed Documents for Power Generation and Distribution: September 2014

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy Office of Scientific and Technical Information for Power Generation and Distribution: September 2014 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 96 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 73 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 70 Seventh Edition Fuel Cell Handbook

  11. September 2013 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy Office of Scientific and Technical Information September 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 76 Feed-pump

  12. September 2015 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy Office of Scientific and Technical Information September 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 700 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 190 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky,

  13. Emissions Benefits of Distributed Generation in the Texas Market

    SciTech Connect

    Hadley, SW

    2005-06-16

    One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

  14. Epuron LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Epuron LLC Jump to: navigation, search Name: Epuron LLC Place: Philadelphia, Pennsylvania Zip: 19103 Sector: Solar Product: Epuron LLC is the US subsidiary of Germany solar...

  15. Agenera, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Agenera, LLC Jump to: navigation, search Logo: Agenera, LLC Name: Agenera, LLC Address: P.O. Box 15544 Place: Phoenix, Arizona Zip: 85060 Sector: Solar Product: Solar energy...

  16. Response from PJM Interconnection LLC and Pepco to Department...

    Energy Saver

    Interconnection LLC and Pepco to Department of Energy Request for Information Concerning the Potential Need for Potomac River Station Generation Response from PJM Interconnection ...

  17. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  18. Experimental comparison of PV-smoothing controllers using distributed generators

    SciTech Connect

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  19. The Effect of Distributed Energy Resource Competition with Central Generation

    SciTech Connect

    Hadley, SW

    2003-12-10

    Distributed Energy Resource (DER) has been touted as a clean and efficient way to generate electricity at end-use sites, potentially allowing the exhaust heat to be put to good use as well. However, despite its environmental acceptability compared to many other types of generation, it has faced some disapproval because it may displace other, cleaner generation technologies. The end result could be more pollution than if the DER were not deployed. On the other hand, the DER may be competing against older power plants. If the DER is built then these other plants may be retired sooner, reducing their emissions. Or it may be that DER does not directly compete against either new or old plant capacity at the decision-maker level, and increased DER simply reduces the amount of time various plants operate. The key factor is what gets displaced if DER is added. For every kWh made by DER a kWh (or more with losses) of other production is not made. If enough DER is created, some power plants will get retired or not get built so not only their production but their capacity is displaced. Various characteristics of the power system in a region will influence how DER impacts the operation of the grid. The growth in demand in the region may influence whether new plants are postponed or old plants retired. The generation mix, including the fuel types, efficiencies, and emission characteristics of the plants in the region will factor into the overall competition. And public policies such as ease of new construction, emissions regulations, and fuel availability will also come into consideration.

  20. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  1. Distributed generation capabilities of the national energy modeling system

    SciTech Connect

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the

  2. Investment and Upgrade in Distributed Generation under Uncertainty

    SciTech Connect

    Siddiqui, Afzal; Maribu, Karl

    2008-08-18

    The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplatingthe installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find that the microgrid prefers a direct investment strategy for low levels of volatility and a sequential one for higher levels of volatility.

  3. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  4. The Potential Benefits of Distributed Generation and the Rate-Related

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Issues That May Impede Its Expansion | Department of Energy The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion. Report Pursuant to Section 1817 of the Energy Policy Act of 2005. The Potential Benefits of Distributed Generation

  5. Fuel cell power plants in a distributed generator application

    SciTech Connect

    Smith, M.J.

    1996-12-31

    ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

  6. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and

  7. ARPA-E Announces $30 Million for Distributed Generation Technologies

    Energy.gov [DOE]

    REBELS Program Aims to Develop Innovative Intermediate-Temperature Fuel Cells for Low-Cost Stationary Power Generation

  8. Method and apparatus for anti-islanding protection of distributed generations

    DOEpatents

    Ye, Zhihong; John, Vinod; Wang, Changyong; Garces, Luis Jose; Zhou, Rui; Li, Lei; Walling, Reigh Allen; Premerlani, William James; Sanza, Peter Claudius; Liu, Yan; Dame, Mark Edward

    2006-03-21

    An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.

  9. High Penetration Solar Distributed Generation Study on Oahu

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solution To start the effort, the team developed a low-voltage electricity distribution circuit model incorporating high penetration levels (more than 15% of the annual peak load) ...

  10. Future of Distributed Generation and IEEE 1547 (Presentation)

    SciTech Connect

    Preus, R.

    2014-06-01

    This presentation discusses the background on IEEE 1547, including its purpose, changes, new boundary issues and requirements, islanding issues, and how it impacts distributed wind.

  11. June 2014 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    And Distribution Seventh Edition Fuel Cell Handbook NETL (2004) 118 Electric power ... Thermal Energy Storage for Concentrating Solar Power Systems Final Report Michael ...

  12. June 2015 Most Viewed Documents for Power Generation And Distribution...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electric power high-voltage transmission lines: Design options, cost, and electric and ... B.J. (2003) 77 Load Modeling and State Estimation Methods for Power Distribution Systems: ...

  13. Most Viewed Documents for Power Generation and Distribution:...

    Office of Scientific and Technical Information (OSTI)

    Electric power high-voltage transmission lines: Design options, cost, and electric and ... S.A. (1981) 60 Load Modeling and State Estimation Methods for Power Distribution Systems: ...

  14. March 2015 Most Viewed Documents for Power Generation And Distribution...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electric power high-voltage transmission lines: Design options, cost, and electric and ... D.R. (1997) 67 Load Modeling and State Estimation Methods for Power Distribution Systems: ...

  15. Distributed Generation Market Demand Model (dGen): Documentation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... at www.nrel.govpublications. List of Acronyms and Abbreviations CBECS Commercial Building Energy Consumption Survey CSP concentrating solar power DER distributed energy ...

  16. 1,"PPL Susquehanna","Nuclear","PPL Susquehanna LLC",2520 2,"FirstEnergy Bruce Mansfield","Coal","FirstEnergy Generation Corp",2510

    Energy Information Administration (EIA) (indexed site)

    Pennsylvania" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"PPL Susquehanna","Nuclear","PPL Susquehanna LLC",2520 2,"FirstEnergy Bruce Mansfield","Coal","FirstEnergy Generation Corp",2510 3,"Peach Bottom","Nuclear","Exelon Nuclear",2242.4 4,"Limerick","Nuclear","Exelon Nuclear",2241.8

  17. Exelôn. Generation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Exeln. Generation 4300 Winfield Road Warrenville, Illinois 60555 Writer's Direct Dial: ... On March 14, 2011, representatives of Exelon Generation Company, LLC and Exelon Nuclear ...

  18. Solarbuzz LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Place: San Francisco, California Zip: 94103 Product: Consultancy and research provider to PV industry References: Solarbuzz LLC1 This article is a stub. You can help...

  19. TIAX LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Logo: TIAX LLC Name: TIAX LLC Address: 15 Acorn Park Place: Cambridge, Massachusetts Zip: 02140-2390 Region: Greater Boston Area Sector: Efficiency Year...

  20. USGlobal LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USGlobal LLC Jump to: navigation, search Name: USGlobal LLC Address: 1451 W. Cypress Creek Road, Suite 307 Place: Fort Lauderdale, Florida Zip: 33309 Product: Investment and...

  1. City of San Marcos- Distributed Generation Rebate Program

    Energy.gov [DOE]

    Qualifying Solar PV systems are eligible for a $2.50 per Watt (W) rebate up to $5,000. Qualifying Wind Generation systems are eligible for a $1.00 per W rebate up to $5,000. Neither rebate amount...

  2. Distributed Generation Dispatch Optimization under VariousElectricity Tariffs

    SciTech Connect

    Firestone, Ryan; Marnay, Chris

    2007-05-01

    The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

  3. Advancements in Distributed Generation Issues: Interconnection, Modeling, and Tariffs

    SciTech Connect

    Thomas, H.; Kroposki, B.; Basso, T.; Treanton, B. G.

    2007-01-01

    The California Energy Commission is cost-sharing research with the Department of Energy through the National Renewable Energy Laboratory to address distributed energy resources (DER) topics. These efforts include developing interconnection and power management technologies, modeling the impacts of interconnecting DER with an area electric power system, and evaluating possible modifications to rate policies and tariffs. As a result, a DER interconnection device has been developed and tested. A workshop reviewed the status and issues of advanced power electronic devices. Software simulations used validated models of distribution circuits that incorporated DER, and tests and measurements of actual circuits with and without DER systems are being conducted to validate these models. Current policies affecting DER were reviewed and rate making policies to support deployment of DER through public utility rates and policies were identified. These advancements are expected to support the continued and expanded use of DER systems.

  4. The Value of Distributed Solar Electric Generation to San Antonio

    SciTech Connect

    Jones, Nic; Norris, Ben; Meyer, Lisa

    2013-02-14

    This report presents an analysis of value provided by grid-connected, distributed PV in San Antonio from a utility perspective. The study quantified six value components, summarized in Table ES- 1. These components represent the benefits that accrue to the utility, CPS Energy, in accepting solar onto the grid. This analysis does not treat the compensation of value, policy objectives, or cost-effectiveness from the retail consumer perspective.

  5. Biofuel Industries Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Group LLC Jump to: navigation, search Name: Biofuel Industries Group LLC Place: Adrian, Michigan Zip: 49221 Product: Biofuel Industries Group, LLC owns and operates the...

  6. Homeland Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Homeland Renewable Energy LLC Jump to: navigation, search Name: Homeland Renewable Energy LLC Place: Langhorne, Pennsylvania Zip: 19047 Product: Holding company for Fibrowatt LLC...

  7. Atlanta Chemical Engineering LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Atlanta Chemical Engineering LLC Jump to: navigation, search Logo: Atlanta Chemical Engineering LLC Name: Atlanta Chemical Engineering LLC Place: Marietta, Georgia Country: United...

  8. Turnbull Hydro LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Turnbull Hydro LLC Jump to: navigation, search Name: Turnbull Hydro LLC Place: Montana Sector: Hydro Product: Montana-based small hydro developer. References: Turnbull Hydro LLC1...

  9. Nedak Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nedak Ethanol LLC Jump to: navigation, search Name: Nedak Ethanol LLC Place: Atkinson, Nebraska Zip: 68713 Product: NEDAK Ethanol, LLC is a Nebraska limited liability company,...

  10. Ecowatt Design LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ecowatt Design LLC Jump to: navigation, search Logo: Ecowatt Design LLC Name: Ecowatt Design LLC Address: 10900 Northwest Fwy Place: Houston, Texas Zip: 77092 Region: Texas Area...

  11. New Hope Partners LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Partners LLC Jump to: navigation, search Name: New Hope Partners, LLC Place: Newtown, Pennsylvania Sector: Renewable Energy Product: New Hope Partners LLC, is a business...

  12. Go Sustainable Energy, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sustainable Energy, LLC Jump to: navigation, search Logo: Go Sustainable Energy, LLC Name: Go Sustainable Energy, LLC Address: 3857 N. High Street, Suite 208 Place: Columbus, Ohio...

  13. PENSION ACTUARIAL APPLICATION, Bechtel Jacobs Company, LLC |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PENSION ACTUARIAL APPLICATION, Bechtel Jacobs Company, LLC PENSION ACTUARIAL APPLICATION, Bechtel Jacobs Company, LLC PENSION ACTUARIAL APPLICATION, Bechtel Jacobs Company, LLC PDF ...

  14. Blue Hill Partners LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Partners LLC Jump to: navigation, search Logo: Blue Hill Partners LLC Name: Blue Hill Partners LLC Address: 40 W. Evergreen Ave. Place: Philadelphia, Pennsylvania Zip: 19118...

  15. Zilkha Biomass Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zilkha Biomass Energy LLC Jump to: navigation, search Logo: Zilkha Biomass Energy LLC Name: Zilkha Biomass Energy LLC Address: 1001 McKinney Place: Houston, Texas Zip: 77002...

  16. Inovateus Solar LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar LLC Jump to: navigation, search Logo: Inovateus Solar LLC Name: Inovateus Solar LLC Address: 19890 State Line Rd. Place: South Bend, Indiana Zip: 46637 Sector: Solar Number...

  17. Capitol Solar Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Capitol Solar Energy LLC Jump to: navigation, search Logo: Capitol Solar Energy LLC Name: Capitol Solar Energy LLC Address: 8243 N. Pinewood Drive Place: Castle Rock, Colorado Zip:...

  18. Solar Energy Squared, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Squared, LLC Jump to: navigation, search Logo: Solar Energy Squared, LLC Name: Solar Energy Squared, LLC Address: 116 Ottenheimer Plaza, President Clinton Avenue Place: Little...

  19. Townsend Ventures LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Townsend Ventures LLC Product: A Maryland, USA based branch of Townsend Capital LLC formed as a vehicle for that company's...

  20. Mid America Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Mid-America Biofuels LLC Place: Jefferson City, Missouri Zip: 65102 Sector: Biofuels Product: Joint Venture of Biofuels LLC,...

  1. Empire Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Empire Biofuels LLC Place: New York, New York Zip: 13148 Sector: Biofuels Product: Empire Biofuels LLC (Empire) was founded in April...

  2. Energy Capital LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Energy Capital LLC Place: Ketchum, Idaho Zip: ID 83340 Sector: Renewable Energy Product: Energy Capital LLc is a financial catalyst focusing...

  3. Booner Capital LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Booner Capital LLC Jump to: navigation, search Name: Booner Capital LLC Place: Florida Sector: Wind energy Product: Booner Capital LLC is PE investor in wind power companies....

  4. Pinpoint Power DR LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Pinpoint Power DR LLC Place: Massachusetts Product: Demand response provider. References: Pinpoint Power DR LLC1 This article is a stub. You...

  5. Incognito Green Building, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Incognito Green Building, LLC Jump to: navigation, search Logo: Incognito Green Building, LLC Name: Incognito Green Building, LLC Address: 230 Dove Court Place: Santa Paula,...

  6. Carbon Micro Battery LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Micro Battery LLC Jump to: navigation, search Name: Carbon Micro Battery, LLC Place: California Sector: Carbon Product: Carbon Micro Battery, LLC, technology developer of micro and...

  7. Edgewood Carbon Holdings LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Edgewood Carbon Holdings LLC Jump to: navigation, search Name: Edgewood Carbon Holdings LLC Place: Cornwall, Vermont Zip: 57530 Sector: Carbon Product: Edgewood Carbon Holdings LLC...

  8. Electrical power systems (Guatemala). Electric power generation and distribution equipment, March 1991. Export trade information

    SciTech Connect

    Not Available

    1991-03-01

    The article analyzes the electrical power generation and distribution equipment market in Guatemala and contains the following subtopics: market assessment, competitive situation, market access, trade promotion opportunities, best sales prospects, and statistical data. The total market demand of electrical power generation and distribution equipment and materials in Guatemala increased from US $19.0 million in 1987 to $24.8 million in 1988 (30.5 percent).

  9. Improving the Operating Efficiency of Microturbine-Based Distributed Generation at an Affordable Price

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Operating Efficiency of Microturbine-Based Distributed Generation at an Affordable Price This project developed a clean, cost-effective 370 kilowatt (kW) microturbine with 42% net electrical effciency and 85% total combined heat and power (CHP) effciency. Introduction The U.S. economic market potential for distributed generation is signifcant. This market, however, remains mostly untapped in the commercial and small industrial buildings that are well suited for microturbines. Gas turbines

  10. The role of distributed generation (DG) in a restructured utility environment

    SciTech Connect

    Feibus, H.

    1999-07-01

    A major consequence of the restructuring of the electric utility industry is disintegration, by which the traditional integrated utility is spinning off its generation business and becoming a power distribution company, or distco. This company will be the remaining entity of the traditional electric utility that continues to be regulated. The world in which the distco functions is becoming a very different place. The distco will be called upon to deliver not only power, but a range of ancillary services, defined by the Federal Energy Regulatory Commission, including spinning reserves, voltage regulation, reactive power, energy imbalance and network stability, some of which may be obtained from the independent system operator, and some of which may be provided by the distco. In this environment the distco must maintain system reliability and provide service to the customer at the least cost. Meanwhile, restructuring is spawning a new generation of unregulated energy service companies that threaten to win the most attractive customers from the distco. Fortunately there is a new emerging generation of technologies, distributed resources, that provide options to the distco to help retain prime customers, by improving reliability and lowering costs. Specifically, distributed generation and storage systems if dispersed into the distribution system can provide these benefits, if generators with the right characteristics are selected, and the integration into the distribution system is done skillfully. The Electric Power Research Institute has estimated that new distributed generation may account for 30% of new generation. This presentation will include the characteristics of several distributed resources and identify potential benefits that can be obtained through the proper integration of distributed generation and storage systems.

  11. Table 2. Ten largest plants by generation capacity, 2014

    Energy Information Administration (EIA) (indexed site)

    Sandy","Coal","Kentucky Power Co",1060 9,"Riverside Generating LLC","Natural gas","Riverside Generating Co LLC",825 10,"J K Smith","Natural gas","East Kentucky Power Coop, Inc",784

  12. VICA Technologies LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies LLC Jump to: navigation, search Name: VICA Technologies LLC Place: Philadelphia, Pennsylvania Zip: 19104 Sector: Biomass, Renewable Energy Product:...

  13. Study and Development of Anti-Islanding Control for Synchronous Machine-Based Distributed Generators: November 2001--March 2004

    SciTech Connect

    Ye, Z.

    2006-03-01

    This report summarizes the study and development of new active anti-islanding control schemes for synchronous machine-based distributed generators, including engine generators and gas turbines.

  14. Historical and Current U.S. Strategies for Boosting Distributed Generation

    SciTech Connect

    Lowder, Travis; Schwabe, Paul; Zhou, Ella; Arent, Douglas J.

    2015-10-29

    This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  15. NREL: Energy Analysis - dGen: Distributed Generation Market Demand Model

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Distributed Generation Market Demand (dGen) model is a geospatially rich, bottom-up, market-penetration model that simulates the potential adoption of distributed energy resources (DERs) for residential, commercial, and industrial entities in the continental United States through 2050. The dGen model builds on and provides significant advances over NREL's deprecated Solar Deployment System (SolarDS) model. The dGen model can help develop deployment forecasts for distributed resources,

  16. Medgate, PIA, Bechtel Jacobs Company, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Medgate, PIA, Bechtel Jacobs Company, LLC Medgate, PIA, Bechtel Jacobs Company, LLC Medgate, PIA, Bechtel Jacobs Company, LLC PDF icon Medgate, PIA, Bechtel Jacobs Company, LLC ...

  17. RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental...

    Office of Environmental Management (EM)

    RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) A fact sheet detailling a proposal of ...

  18. Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name: Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place:...

  19. Ohio's 9th congressional district: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Generation LLC Advanced Distributed Generation LLC ADG Benjamin Company Bio-Gas Technologies, LLC Bottomline Energy Solutions LLC Buckeye Silicon Buckeye Silicon BeSi Edison...

  20. Alamos National Security, LLC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Security, LLC during a recognition event beginning at 9:30 a.m. Thursday, June 28, at Fuller Lodge in downtown Los Alamos. LANS contributions are determined by the number of...

  1. Alamos National Security, LLC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Security, LLC during a recognition event beginning at 9 a.m. Wednesday at Fuller Lodge in downtown Los Alamos. The monetary donations are being made to the nonprofits...

  2. Alamos National Security, LLC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Security (LANS), LLC during a recognition event beginning at 9:30 a.m. June 12, at Fuller Lodge in downtown Los Alamos. LANS contributions are determined by the number of...

  3. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of ...

  4. Brookhaven Science Associates, LLC

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3, 2015 Dr. Doon L. Gibbs Laboratory Director Brookhaven Science Associates, LLC Brookhaven National Laboratory 40 Brookhaven Avenue Upton, New York 11973-5000 WCO-2015-02 Dear Dr. Gibbs: The Office of Enterprise Assessments' Office of Enforcement completed its investigation into the facts and circumstances associated with the meteorological tower electrical shock event that occurred at the Brookhaven National Laboratory on November 12, 2014. Brookhaven Science Associates, LLC (BSA) documented

  5. Ex Parte Communications with Caterpillar Global Mining LLC | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy with Caterpillar Global Mining LLC Ex Parte Communications with Caterpillar Global Mining LLC Mr. Medenwaldt inquired, by emails on August 7 and 8, 2012, whether the proposed energy conservation standards rulemaking would affect above ground mobile mining equipment that would have distribution transformers onboard. Ex Parte Communications with Mark Medenwaldt.pdf (10.32 KB) More Documents & Publications Efficiency Improvement Pathway

  6. Terrabon LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Product: Texas-based Terrabon LLC was founded in 1995 in an effort to commercialize biofuel technology originally developed at Texas A&M University. References: Terrabon LLC1...

  7. IBIS LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    IBIS LLC Jump to: navigation, search Name: IBIS LLC Region: United States Sector: Marine and Hydrokinetic Website: www.ibisltd.com This company is listed in the Marine and...

  8. Laying the Groundwork: Lessons Learned from the Telecommunications Industry for Distributed Generation; Preprint

    SciTech Connect

    Wise, A. L.

    2008-05-01

    The telecommunications industry went through growing pains in the past that hold some interesting lessons for the growing distributed generation (DG) industry. The technology shifts and stakeholders involved with the historic market transformation of the telecommunications sector mirror similar factors involved in distributed generation today. An examination of these factors may inform best practices when approaching the conduits necessary to accelerate the shifting of our nation's energy system to cleaner forms of generation and use. From a technical perspective, the telecom industry in the 1990s saw a shift from highly centralized systems that had no capacity for adaptation to highly adaptive, distributed network systems. From a management perspective, the industry shifted from small, private-company structures to big, capital-intensive corporations. This presentation will explore potential correlation and outline the lessons that we can take away from this comparison.

  9. Industrial Use of Distributed Generation in Real-Time Energy and Ancillary Service Markets

    SciTech Connect

    Hudson, C.R.

    2001-10-24

    Industrial consumers of energy now have the opportunity to participate directly in electricity generation. This report seeks to give the reader (1) insights into the various types of generation services that distributed generation (DG) units could provide, (2) a mechanism to evaluate the economics of using DG, (3) an overview of the status of DG deployment in selected states, and (4) a summary of the communication technologies involved with DG and what testing activities are needed to encourage industrial application of DG. Section 1 provides details on electricity markets and the types of services that can be offered. Subsequent sections in the report address the technical requirements for participating in such markets, the economic decision process that an industrial energy user should go through in evaluating distributed generation, the status of current deployment efforts, and the requirements for test-bed or field demonstration projects.

  10. Historical and Current U.S. Strategies for Boosting Distributed Generation (Chinese Translation)

    SciTech Connect

    Lowder, Travis; Schwabe, Paul; Zhou, Ella; Arent, Douglas J.

    2015-08-01

    This is the Chinese translation of NREL/TP-6A20-64843. This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  11. The distribution of industrial waste generation and energy use characteristics in available Federal and State databases

    SciTech Connect

    Thomas, T.M.; Jendrucko, R.J.; Peretz, J.H.

    1995-06-01

    Over the last several years, data have been collected by the U.S. Environmental Protection Agency, the Department of Energy, and various state government agencies on manufacturing waste generation and energy consumption. To date, however, little analysis of these data have been performed on the characteristics and distributions of waste types generated and energy forms consumed. Yet, these databases provide a wealth of information that can be used to draw useful conclusions on manufacturing efficiency. Although the data collected have weaknesses, the Toxics Release Inventory (TRI) and Consumption of Energy Report can be used to investigate possible relationships between industrial waste generation and energy consumption.

  12. Alamos National Security, LLC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    More than 240 nonprofit organizations to receive monetary donations from Los Alamos National Security, LLC June 10, 2013 Employees and retirees perform 270,000 volunteer hours LOS ALAMOS, N.M., June 10, 2013-Nonprofit organizations will receive more than $180,000 from Los Alamos National Security (LANS), LLC during a recognition event beginning at 9:30 a.m. June 12, at Fuller Lodge in downtown Los Alamos. LANS contributions are determined by the number of volunteer hours logged by Los Alamos

  13. Modeling the Impacts of Solar Distributed Generation on U.S. Water Resources

    SciTech Connect

    Amanda, Smith; Omitaomu, Olufemi A; Jaron, Peck

    2015-01-01

    Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one of the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development

  14. A formalism to generate probability distributions for performance-assessment modeling

    SciTech Connect

    Kaplan, P.G.

    1990-12-31

    A formalism is presented for generating probability distributions of parameters used in performance-assessment modeling. The formalism is used when data are either sparse or nonexistent. The appropriate distribution is a function of the known or estimated constraints and is chosen to maximize a quantity known as Shannon`s informational entropy. The formalism is applied to a parameter used in performance-assessment modeling. The functional form of the model that defines the parameter, data from the actual field site, and natural analog data are analyzed to estimate the constraints. A beta probability distribution of the example parameter is generated after finding four constraints. As an example of how the formalism is applied to the site characterization studies of Yucca Mountain, the distribution is generated for an input parameter in a performance-assessment model currently used to estimate compliance with disposal of high-level radioactive waste in geologic repositories, 10 CFR 60.113(a)(2), commonly known as the ground water travel time criterion. 8 refs., 2 figs.

  15. Prairie Creek Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Prairie Creek Ethanol LLC Place: Goldfield, Iowa Zip: 50542 Product: Prairie Creek Ethanol, LLC had planned to build a 55m gallon...

  16. First United Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: First United Ethanol LLC Place: Camilla, Georgia Zip: 31730 Product: First United Ethanol LLC (FUEL) was formed to construct a 100 MGY...

  17. Emc3 LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Emc3 LLC Jump to: navigation, search Logo: Emc3 LLC Name: Emc3 LLC Address: 5 Blue Anchor Street Place: Marlton, New Jersey Zip: 08053 Region: Northeast - NY NJ CT PA Area Sector:...

  18. EMC3, llc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EMC3, llc Jump to: navigation, search Logo: EMC3, llc Name: EMC3, llc Address: 5 Blue Anchor Street Place: Marlton, New Jersey Zip: 08053 Region: Northeast - NY NJ CT PA Area Phone...

  19. AEP Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    AEP Wind Energy LLC Jump to: navigation, search Name: AEP Wind Energy LLC Place: Dallas, Texas Zip: 75266 1064 Sector: Wind energy Product: AEP Wind Energy LLC is a project...

  20. M Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power LLC Jump to: navigation, search Name: M-Power LLC Place: Finley, North Dakota Sector: Wind energy Product: M-Power, LLC, headquartered in Finley, North Dakota, was formed...

  1. WilderShares LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    WilderShares LLC Jump to: navigation, search Name: WilderShares LLC Place: Encinitas, California Zip: 92024 Product: WilderShares LLC, is a provider of indexes for the clean...

  2. Everton Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy LLC Place: Kansas Product: Everton Energy, LLC develops and acquires ethanol plants References: Everton Energy LLC1 This article is a stub. You can help OpenEI by...

  3. Trinity CO2 LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CO2 LLC Jump to: navigation, search Name: Trinity CO2 LLC Place: Texas Product: String representation "Trinity CO2 LLC ... smission lines." is too long. References: Trinity CO2...

  4. Asia West LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    West LLC Jump to: navigation, search Logo: Asia West LLC Name: Asia West LLC Address: One East Weaver Street Place: Greenwich, Connecticut Zip: 06831 Region: Northeast - NY NJ CT...

  5. Vision FL LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    FL LLC Jump to: navigation, search Name: VisionFL, LLC Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: VisionFL, LLC1 This article...

  6. A methodology for technical and financial assessment of distributed generation in the US

    SciTech Connect

    Curtiss, P.; Kreider, J.; Cohen, D.

    1999-07-01

    Traditionally, distributed power generation technologies have been considered to help reduce or eliminate the need for grid-connected electricity. It has been difficult, however, to assess the economic benefits of such technologies due to a lack of computer tools and data related to operating characteristics. This paper discusses a method for performing such as assessment based on electrical and thermal building loads, existing utility rate structures, standard economic parameters, tangible benefits from distributed resource and T and D benefits, and different control techniques. The paper concludes with an example showing the dependency of the internal rate of return on some of the input parameters.

  7. Concentrating Technologies LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Place: Owens Crossroads, Alabama Zip: 35763 Product: Developer of concentrating photovoltaic technology (CPV). References: Concentrating Technologies LLC1 This article is a...

  8. Lectrique Solaire LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Lectrique Solaire LLC Sector: Solar Product: Designs and manufactures solar photovoltaic and thermal products. References: Lectrique Solaire LLC1 This article is a stub....

  9. Lone Star Transmission LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Transmission LLC Jump to: navigation, search Name: Lone Star Transmission LLC Place: Juno Beach, Florida Zip: 33408 Product: Wholly owned subsidiary of FPL Energy, developing...

  10. Green Star Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Green Star Energy LLC Place: Houston, Texas Zip: 77002 Product: Houston-based producer of sugar cane processed ethanol, with additional...

  11. Northern Growers LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Farmer cooperative that provides corn to Northern Lights Ethanol LLC (a 77% owned joint venture with Broin Companies). References: Northern Growers LLC1 This article is a...

  12. Orion Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Orion Energy LLC Place: Oakland, California Zip: 94612 Sector: Wind energy Product: Wind farm developer active in North America. Coordinates:...

  13. Crown Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy LLC Jump to: navigation, search Name: Crown Renewable Energy LLC Place: Union City, California Zip: 94587 Product: Buys monosilicon PV cells from JingAo....

  14. Iowa Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Iowa Renewable Energy LLC Place: Washington, Iowa Product: Set up to develop a 114m-litre biodiesel facility near Washington, Iowa....

  15. Cleantech Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group LLC Jump to: navigation, search Name: Cleantech Group LLC Place: Brighton, Michigan Zip: 48114 Sector: Services Product: Michigan-based cleantech consultant and parent of the...

  16. Altira Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group LLC Jump to: navigation, search Name: Altira Group LLC Address: 1675 Broadway, Suite 2400 Place: Denver, Colorado Zip: 80202 Region: Rockies Area Product: Venture capital for...

  17. Current Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group LLC Jump to: navigation, search Name: Current Group, LLC Place: Germantown, Maryland Zip: 20874 Sector: Services Product: Current provides electric utilities with smart grid...

  18. Avalon Solar LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Avalon Solar LLC Jump to: navigation, search Name: Avalon Solar LLC Place: Albuquerque, New Mexico Zip: 87123 Sector: Solar Product: Albuquerque-based solar project developer....

  19. 808 Investments LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    8 Investments LLC Jump to: navigation, search Name: 808 Investments LLC Place: Huntington Beach, California Zip: 92649 Sector: Solar Product: California-based boutique investment...

  20. Merrill Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Merrill Group LLC Jump to: navigation, search Name: Merrill Group LLC Address: PO Box 202943 Place: Denver Co Country: United States Zip: 80220 Region: Rockies Area Sector:...

  1. Planetary Fuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fuels LLC Jump to: navigation, search Name: Planetary Fuels, LLC Place: Seattle, Washington Product: Seattle-based start-up dedicated to the production of biodiesel. Coordinates:...

  2. Strategic Energy LLC (California) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Strategic Energy LLC Place: California Phone Number: (760) 929-4735 Facebook: https:www.facebook.compagesStrategic-Energy-LLC138633162851531 Outage Hotline:...

  3. NRG Power Marketing LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Marketing LLC Jump to: navigation, search Name: NRG Power Marketing LLC Address: 211 Carnegie Center Place: Princeton, New Jersey Country: United States Phone Number: 609-524-4500...

  4. Nautica Windpower LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nautica Windpower LLC Jump to: navigation, search Name: Nautica Windpower LLC Address: 9670 Maurer Dr Place: Olmsted Falls, Ohio Zip: 44138 Sector: Wind energy Phone Number:...

  5. Four Seasons Windpower, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Seasons Windpower, LLC Jump to: navigation, search Name: Four Seasons Windpower, LLC Address: 1697 Wilbur Road Place: Medina, Ohio Zip: 44256 Sector: Solar, Wind energy Product:...

  6. Third Planet Windpower LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Third Planet Windpower LLC Jump to: navigation, search Name: Third Planet Windpower LLC Place: San Ramon, California Zip: 94583 Sector: Wind energy Product: Third Planet Windpower,...

  7. Virgin Bioverda LLC VBV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Virgin Bioverda LLC VBV Jump to: navigation, search Name: Virgin Bioverda LLC (VBV) Place: Chicago, Illinois Product: Chicago-based JV established between Virgin & NTR to back US...

  8. Vortex Hydro Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy LLC Jump to: navigation, search Name: Vortex Hydro Energy LLC Address: 4870 West Clark Rd Suite 108 Place: Ypsilanti Zip: 48197 Region: United States Sector: Marine and...

  9. Adkins Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Adkins Energy LLC Place: Illinois Product: Cooperative producing bioethanol in Illinois References: Adkins Energy LLC1 This article is a stub. You can help...

  10. Northern Excellence Seed LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Seed LLC Jump to: navigation, search Name: Northern Excellence Seed LLC Place: Williams, Minnesota Sector: Biomass Product: Producer-owned cooperative focused on...

  11. Chevron Technology Ventures LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Chevron Technology Ventures LLC Address: 3901 Briarpark Drive Place: Houston Zip: 77042 Region: United States Sector: Marine and Hydrokinetic...

  12. Millennium Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Millennium Ethanol, LLC Place: Marion, South Dakota Zip: 57043 Product: Millennium Ethanol is a group of more than 900 South Dakotan...

  13. Center Ethanol Company LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Center Ethanol Company LLC Place: Illinois Product: Illinois based company building a 54m gallon ethanol plant in Sauget, IL. References:...

  14. Sioux River Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    River Ethanol LLC Jump to: navigation, search Name: Sioux River Ethanol LLC Place: Hudson, South Dakota Zip: 57034 Product: Farmer owned ethanol producer, Sioux River Ethanol is...

  15. Prairie Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Prairie Ethanol LLC Place: Loomis, South Dakota Product: Farmer owned bioethanol project development and managment team. Coordinates:...

  16. Marysville Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Marysville Ethanol LLC Jump to: navigation, search Name: Marysville Ethanol LLC Place: Marysville, Michigan Zip: 48040 Product: Developing a 50m gallon ethanol plant in Marysville,...

  17. Badger State Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    State Ethanol LLC Jump to: navigation, search Name: Badger State Ethanol LLC Place: Monroe, Wisconsin Zip: 53566 Product: Dry-mill bioethanol producer References: Badger State...

  18. Great Valley Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Ethanol LLC Jump to: navigation, search Name: Great Valley Ethanol LLC Place: Bakersfield, California Product: Developing a 63m gallon ethanol plant in Hanford, CA...

  19. Central Indiana Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Indiana Ethanol LLC Jump to: navigation, search Name: Central Indiana Ethanol LLC Place: Marion, Indiana Zip: 46952 Product: Ethanol producer developina a 151 mlpa plant in Marion,...

  20. Iowa Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Iowa Ethanol LLC Place: Hanlontown, Iowa Zip: 50451 Product: Corn-base bioethanol producer in Iowa Coordinates: 43.28456,...

  1. Kansas Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Kansas Ethanol LLC Place: Lyons, Kansas Zip: 67554 Product: Constructing a 55m gallon ethanol plant in Rice County, Kansas...

  2. Tall Corn Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tall Corn Ethanol LLC Jump to: navigation, search Name: Tall Corn Ethanol LLC Place: Coon Rapids, Iowa Zip: 50058 Product: Farmer owned bioethanol production company which owns a...

  3. Heartland Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Heartland Ethanol LLC Place: Knoxville, Tennessee Zip: 37929 Product: Knoxville, TN based ethanol developer. Coordinates: 35.960495,...

  4. Standard Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Standard Ethanol LLC Place: Nebraska Product: Nebraska based ethanol producer that operates two plants References: Standard Ethanol LLC1 This article is a stub. You can help...

  5. Frontier Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Frontier Ethanol LLC Place: Gowrie, Iowa Product: Owner and operator of a bioethanol plant near Gowrie, Iowa. Coordinates: 42.28227,...

  6. Ethanol Grain Processors LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Processors LLC Jump to: navigation, search Name: Ethanol Grain Processors, LLC Place: Obion, Tennessee Zip: TN 38240 Product: Tennessee-based ethanol producer. Coordinates:...

  7. Kaapa Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kaapa Ethanol LLC Jump to: navigation, search Name: Kaapa Ethanol LLC Place: Minden, Nebraska Zip: 68959 Product: Bioethanol producer using corn as feedstock Coordinates:...

  8. Michigan Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Michigan Ethanol LLC Place: Caro, Michigan Zip: 48723-8804 Product: Ethanol productor in Caro, Michigan. Coordinates: 43.488705,...

  9. Siouxland Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Siouxland Ethanol LLC Place: Jackson, Nebraska Zip: 68743 Product: Startup hoping to build a USD 80m ethanol manufacturing plant near...

  10. Cardinal Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Cardinal Ethanol LLC Place: Winchester, Indiana Zip: 47394 Product: Cardinal Ethanol is in the process of building an ethanol plant in...

  11. Platinum Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Platinum Ethanol LLC Jump to: navigation, search Name: Platinum Ethanol LLC Place: Arthut, Iowa Product: Developed a 110m gallon (416m litre) ethanol plant in Arthur, IA....

  12. North Country Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Ethanol LLC Jump to: navigation, search Name: North Country Ethanol LLC Place: Rosholt, South Dakota Zip: 57260 Product: 20mmgy (75.7m litresy) ethanol producer....

  13. South Louisiana Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    South Louisiana Ethanol LLC Place: Louisiana Product: Ethanol production equipment provider. References: South Louisiana Ethanol LLC1 This article is a stub. You can help OpenEI...

  14. Show Me Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Show Me Ethanol LLC Jump to: navigation, search Name: Show Me Ethanol, LLC Place: Carrollton, Missouri Zip: 64633 Product: Developing an ethanol project in Carrollton, Missouri....

  15. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS ...

  16. New York Biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: New York Biodiesel LLC Place: Hamilton, Madison County, New York Product: Biodiesel producer using soybean oil as its feedstock References:...

  17. Freedom Fuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Freedom Fuels LLC Place: Hampton, Iowa Product: Biodiesel producer based in Hampton, Iowa. Coordinates: 37.027795, -76.345119 Show Map...

  18. Big Biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biodiesel LLC Jump to: navigation, search Name: Big Biodiesel LLC Place: Pulaski, Tennessee Zip: 38478 Product: Biodiesel plant developer in Pulaski, Tennessee. References: Big...

  19. Brownfield Biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Brownfield Biodiesel LLC Jump to: navigation, search Name: Brownfield Biodiesel LLC Place: Ralls, Texas Zip: 79357 Product: Biodiesel producer in Ralls, Texas. Coordinates:...

  20. Northeast Biodiesel Company LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Company LLC Jump to: navigation, search Name: Northeast Biodiesel Company, LLC Place: Massachusetts Zip: 1301 Product: Massachusetts-based biodiesel producer and project developer....

  1. Heartland biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    biodiesel LLC Jump to: navigation, search Name: Heartland biodiesel LLC Place: Rock Port, Missouri Product: Biodiesel producer which is currently developing a 113m liter plant in...

  2. Midwest Biodiesel Producers LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biodiesel Producers LLC Jump to: navigation, search Name: Midwest Biodiesel Producers LLC Place: Alexandria, South Dakota Zip: 57311 Product: South Dakota-based biodiesel producer....

  3. Springboard Biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springboard Biodiesel LLC Jump to: navigation, search Name: Springboard Biodiesel LLC Place: Chico, California Zip: 95928 Product: Provider of products and technologies for the...

  4. Biodiesel Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems LLC Jump to: navigation, search Name: Biodiesel Systems, LLC Place: Madison, Wisconsin Zip: WI 53704 Product: The core business of Biodiesel Systems is plan, design,...

  5. East Fork Biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fork Biodiesel LLC Jump to: navigation, search Name: East Fork Biodiesel, LLC Place: Algona, Iowa Sector: Renewable Energy Product: Biodiesel producer and co-developer, with...

  6. Bay Biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biodiesel LLC Jump to: navigation, search Name: Bay Biodiesel LLC Place: Martinez, California Zip: 94553 Product: Biodiesel producers in Martinez, California. References: Bay...

  7. Big River Resources LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resources LLC Jump to: navigation, search Name: Big River Resources LLC Place: West Burlington, Iowa Zip: 52655 Product: Dry-mill bioethanol producer with a cooperative structure....

  8. Cinergy Ventures II LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cinergy Ventures II LLC Jump to: navigation, search Name: Cinergy Ventures II, LLC Place: Cincinnati, Ohio Zip: OH 45202 Product: The venture capital arm of Cinergy Corp....

  9. Crownbutte Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Crownbutte Wind Power LLC Jump to: navigation, search Name: Crownbutte Wind Power LLC Place: Mandan, North Dakota Zip: 58554 Sector: Wind energy Product: North Dakota wind power...

  10. Padoma Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Padoma Wind Power LLC Jump to: navigation, search Name: Padoma Wind Power LLC Place: La Jolla, California Zip: 92037 Sector: Wind energy Product: A wind energy consulting and...

  11. Evergreen Wind Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power LLC Jump to: navigation, search Name: Evergreen Wind Power LLC Place: Bangor, Maine Zip: 4401 Sector: Wind energy Product: Formed to develop wind projects in Maine....

  12. Wind Power Associates LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Associates LLC Jump to: navigation, search Name: Wind Power Associates LLC Place: Goldendale, Washington State Sector: Wind energy Product: Wind farm developer and operater....

  13. Malczewski Product Design LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Malczewski Product Design LLC Jump to: navigation, search Name: Malczewski Product Design LLC Place: Neenah, Wisconsin Zip: 54956 Sector: Wind energy Product: Product development...

  14. Pennamaquan Tidal Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Pennamaquan Tidal Power LLC Address: 45 Memorial Circle PO Box 1058 Place: Augusta Zip: 4332 Region: United States Sector: Marine and...

  15. Solar America LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Solar America LLC Place: Marmora, New Jersey Zip: 8223 Sector: Solar Product: New Jersey-based company that designs and installs Solar...

  16. RES North America LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RES North America LLC Jump to: navigation, search Name: RES North America LLC Place: Portland, Oregon Zip: 97258 Sector: Wind energy Product: US development arm of RES Ltd....

  17. Wind Management LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Management LLC Jump to: navigation, search Name: Wind Management LLC Place: South Yarmouth, Massachusetts Zip: 2664 Sector: Wind energy Product: Massachussets wind project...

  18. Winslow Management Company LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Management Company LLC Jump to: navigation, search Name: Winslow Management Company LLC Place: Boston, Massachusetts Zip: 2110 Product: Boston-based, environmentally focused...

  19. Freedom Energy Solutions LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Solutions LLC Jump to: navigation, search Name: Freedom Energy Solutions LLC Place: Westminster, Maryland Zip: 21157 Sector: Geothermal energy, Solar Product: Retailer and...

  20. NRG Thermal LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: NRG Thermal LLC Place: Minneapolis, Minnesota Zip: 55402-2200 Product: A subsidiary of NRG Energy that specialises in district energy systems...

  1. Sustainable Energy Advantage LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Sustainable Energy Advantage, LLC Place: Massachusetts Zip: 1701 Sector: Renewable Energy Product: String representation "Massachusetts-b ......

  2. Heritage Sustainable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sustainable Energy LLC Jump to: navigation, search Name: Heritage Sustainable Energy LLC Place: Traverse City, Michigan Sector: Wind energy Product: Start up wind developer in...

  3. EDGE Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EDGE Energy LLC Jump to: navigation, search Name: EDGE Energy LLC Place: Phoenix, Arizona Zip: 85018 Sector: Solar Product: Arizona-based solar developer focused on building...

  4. Innovation Forward, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Innovation Forward, LLC Address: 1000 Creekside Plaza Third Floor Place: Gahanna, Ohio Zip: 43230 Sector: Services Phone Number: (614)...

  5. Ultimate Best Buy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ultimate Best Buy LLC Jump to: navigation, search Name: Ultimate Best Buy LLC Place: Lebanon, Ohio Country: United States Zip: 45036 Sector: Efficiency, Renewable Energy, Services,...

  6. Blue Source LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Source LLC Jump to: navigation, search Name: Blue Source LLC Place: Salt Lake City, Utah Zip: 84121 Product: Salt Lake City-based emission offset aggregation company. References:...

  7. Impact Technologies LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies LLC Jump to: navigation, search Name: Impact Technologies LLC Place: Tulsa, OK Zip: 74153 Sector: Geothermal energy Product: drilling technology Phone Number:...

  8. Fagen Engineering LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fagen Engineering LLC Jump to: navigation, search Name: Fagen Engineering LLC Place: Granite Falls, Minnesota Zip: 56241 Product: Designs and builds ethanol production plants and...

  9. Florida Biomass Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Florida Biomass Energy, LLC Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: Florida Biomass...

  10. Multitrade Biomass Holdings LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Holdings LLC Jump to: navigation, search Name: Multitrade Biomass Holdings LLC Place: Ridgeway, Virginia Zip: 24148-0000 Sector: Renewable Energy Product: Virginia-based developer...

  11. Wireless Environment LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wireless Environment LLC Jump to: navigation, search Name: Wireless Environment LLC Place: Elyria, Ohio Product: Wireless Environment designs light-emitting diode lighting products...

  12. Fuel Cells America LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Fuel Cells America LLC Place: Mount Horeb, Wisconsin Zip: 53572 Product: Consulting service and commissioned fuel cell sales division....

  13. Sunton United Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    United Energy LLC Jump to: navigation, search Name: Sunton United Energy LLC Place: Salt Lake City, Utah Sector: Renewable Energy Product: Utah-based investment company seeking...

  14. Solar Millennium LLC USA | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC USA Jump to: navigation, search Name: Solar Millennium LLC (USA) Place: Berkeley, California Sector: Solar Product: California-based STEG power plant developer, parabolic...

  15. AREA USA LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    AREA USA LLC Jump to: navigation, search Name: AREA USA LLC Place: Washington, DC Zip: 20004 Sector: Services Product: Washington, D.C.-based division of Fabiani & Company...

  16. Norvento USA LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA LLC Jump to: navigation, search Name: Norvento USA LLC Place: Boston, Massachusetts Product: Boston-based engineering consultancy and division of Norvento SA. Coordinates:...

  17. LappinTech LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    "LappinTech LLC" Retrieved from "http:en.openei.orgwindex.php?titleLappinTechLLC&oldid813159" Categories: Organizations Companies Stubs Articles with outstanding TODO tasks...

  18. Foresight Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Foresight Wind Energy LLC Jump to: navigation, search Name: Foresight Wind Energy LLC Place: San Francisco, California Zip: 94105 Sector: Wind energy Product: San Francisco-based...

  19. Midwest Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy LLC Jump to: navigation, search Name: Midwest Wind Energy LLC Place: Chicago, Illinois Zip: 60611 Sector: Wind energy Product: Wind farm developer, owner and operator....

  20. Prairie Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy LLC Jump to: navigation, search Name: Prairie Wind Energy LLC Place: Lamar, Colorado Zip: 81052 Sector: Wind energy Product: Developer and owner of Prairie wind farm....

  1. Havoco Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Havoco Wind Energy LLC Jump to: navigation, search Name: Havoco Wind Energy LLC Place: Dallas, Texas Zip: 75206 Sector: Wind energy Product: Wind developer of Altamont Pass wind...

  2. Freedom Wind Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Energy LLC Jump to: navigation, search Name: Freedom Wind Energy LLC Place: Tampa, Florida Zip: 33623 Sector: Wind energy Product: Develops and manages wind farms in north...

  3. MGI Electronics LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MGI Electronics LLC Jump to: navigation, search Name: MGI Electronics LLC Place: Temple, Arizona Zip: 85282 Product: US-based manufacturer of wafer transfer and PV cell handling...

  4. Cp Holdings Llc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cp Holdings Llc Jump to: navigation, search Name: Cp Holdings Llc Place: Stillwater, Minnesota Zip: 55082 Sector: Carbon Product: An external carbon advisor. Coordinates:...

  5. Renewable Energy Engineering LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Renewable Energy Engineering, LLC Place: Newberg, Oregon Zip: 22700 Sector: Renewable Energy Product: Oregon-based renewable energy...

  6. Encore Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Encore Renewable Energy LLC Jump to: navigation, search Name: Encore Renewable Energy, LLC Place: Santa Barbara, California Zip: 93111 Sector: Renewable Energy Product: National...

  7. Eolian Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Eolian Renewable Energy LLC Jump to: navigation, search Name: Eolian Renewable Energy LLC Place: Portsmouth, New Hampshire Zip: 3801 Sector: Solar, Wind energy Product: New...

  8. Lincoln Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy LLC Jump to: navigation, search Name: Lincoln Renewable Energy LLC Place: Chicago, Illinois Zip: 60606 Sector: Solar, Wind energy Product: Chicago-based company...

  9. Renewable Energy Solutions, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solutions, LLC Jump to: navigation, search Name: Renewable Energy Solutions, LLC Place: Fairfield, California Zip: 94534 Region: Bay Area Sector: Services Year Founded: 2008...

  10. Superior Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy LLC Jump to: navigation, search Name: Superior Renewable Energy LLC Place: Houston, Texas Zip: 77002 Sector: Renewable Energy, Wind energy Product: An independent...

  11. Outland Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Outland Renewable Energy LLC Jump to: navigation, search Name: Outland Renewable Energy, LLC Place: Chaska, Minnesota Zip: 55318 Sector: Renewable Energy Product: Outland Renewable...

  12. Grasslands Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Grasslands Renewable Energy LLC Jump to: navigation, search Name: Grasslands Renewable Energy LLC Place: Bozeman, Montana Zip: 59715 Sector: Wind energy Product: Montana-based...

  13. Prometheus Energy Services LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Services LLC Jump to: navigation, search Name: Prometheus Energy Services LLC Place: California Sector: Wind energy Product: Wind project developer, working on the Pine Tree...

  14. Access Solar Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Energy LLC Jump to: navigation, search Name: Access Solar Energy LLC Place: Park CIty, Utah Zip: 84060 Sector: Renewable Energy, Solar Product: Utah-based developers of...

  15. Global Power Solutions LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Global Power Solutions LLC Jump to: navigation, search Name: Global Power Solutions LLC Place: Colorado Zip: CO 80401 Sector: Geothermal energy Product: String representation...

  16. Solar Electric Solutions LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric Solutions LLC Jump to: navigation, search Name: Solar Electric Solutions, LLC Place: Woodland Hills, California Zip: 91364 Sector: Solar Product: California-based...

  17. Marathon Capital LLC (California) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Marathon Capital LLC (California) Name: Marathon Capital LLC (California) Address: 42 Miller Avenue Place: Mill Valley, California Zip: 94941 Region: Bay Area Product: Investment...

  18. Simple Energies LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Simple Energies LLC Place: California Sector: Renewable Energy Product: California-based hybrid renewable energy project developer for...

  19. Diamond Wire Technology LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wire Technology LLC Jump to: navigation, search Name: Diamond Wire Technology LLC Place: Colorado Springs, Colorado Zip: 80916 Sector: Solar Product: US-based manufacturer of...

  20. ECO Solutions LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ECO Solutions LLC Jump to: navigation, search Name: ECO Solutions, LLC Place: Chatsworth, Georgia Zip: 30705 Product: ECO Solutions operates a biodiesel plant in Georgia with a...

  1. Varon Lighting Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Varon Lighting Group LLC Jump to: navigation, search Name: Varon Lighting Group LLC Place: Chicago, Illinois Zip: 60126 Product: Chicago-based manufacturer of energy-efficient...

  2. Port Asset Acquisition LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Acquisition LLC Jump to: navigation, search Name: Port Asset Acquisition LLC Place: Louisiana Product: PAA was formed to acquire a fuel terminal, tanks and land in Alexandria,...

  3. Central Texas Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Texas Biofuels LLC Jump to: navigation, search Name: Central Texas Biofuels LLC Place: Giddings, Texas Zip: 78942 Product: Biodiesel producer in Giddings, Texas. References:...

  4. Ultimate Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Ultimate Biofuels LLC Place: Ann Arbor, Michigan Zip: 48108 Product: Plans to develop sweet sorghum based ethanol plants. References:...

  5. Blackhawk Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Blackhawk Biofuels LLC Jump to: navigation, search Name: Blackhawk Biofuels, LLC Place: Freeport, Illinois Zip: 61032 Sector: Biofuels Product: Blackhawk Biofuels was founded by a...

  6. Blue Ridge Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Blue Ridge Biofuels LLC Place: Asheville, North Carolina Zip: 28801 Sector: Biofuels Product: Blue Ridge Biofuels is a worker...

  7. Best Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Best Biofuels LLC Place: Austin, Texas Zip: 78746 Sector: Biofuels Product: Best Biofuels is developing and commercialising vegetable...

  8. Carolina Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Carolina Biofuels LLC Place: North Carolina Zip: 29687 Product: Biodiesel producer based in South Carolina. References: Carolina Biofuels LLC1 This article is a stub. You can...

  9. Biofuels of Colorado LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    of Colorado LLC Jump to: navigation, search Name: Biofuels of Colorado LLC Place: Denver, Colorado Zip: 80216 Product: Biodiesel producer in Denver, Colorado. References: Biofuels...

  10. Greenleaf Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Greenleaf Biofuels LLC Jump to: navigation, search Name: Greenleaf Biofuels LLC Place: Guilford, Connecticut Zip: 6437 Product: Connecticut-based biodiesel start-up planning to...

  11. Northwest Missouri Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Missouri Biofuels LLC Jump to: navigation, search Name: Northwest Missouri Biofuels, LLC Place: St Joseph, Missouri Sector: Biofuels Product: Northwest Missouri Biofuels operates a...

  12. Endicott Biofuels II LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Endicott Biofuels II LLC Jump to: navigation, search Name: Endicott Biofuels II, LLC Place: Houston, Texas Zip: 77060-3235 Sector: Biofuels Product: Houston-based biofuels producer...

  13. Midwestern Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Midwestern Biofuels LLC Jump to: navigation, search Name: Midwestern Biofuels LLC Place: South Shore, Kentucky Zip: 41175 Sector: Biomass Product: Kentucky-based biomass energy...

  14. Memphis Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Memphis Biofuels LLC Place: Memphis, Tennessee Product: Biodiesel start-up planning to construct a 36-million-gallon-per-year...

  15. Mercurius Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mercurius Biofuels LLC Jump to: navigation, search Name: Mercurius Biofuels LLC Address: 3190 Bay Road Place: Ferndale, Washington Zip: 98248 Region: Pacific Northwest Area Sector:...

  16. Butamax Advanced Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Butamax Advanced Biofuels LLC Jump to: navigation, search Name: Butamax Advanced Biofuels LLC Place: Wilmington, Delaware Zip: 19880-0268 Sector: Biofuels Product: Delaware-based...

  17. Advanced Bioenergy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bioenergy LLC Jump to: navigation, search Name: Advanced Bioenergy LLC Place: Minneapolis, Minnesota Zip: 55305 Product: Developer of the 378.5m litre pa bioethanol plant in...

  18. Alterra Bioenergy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bioenergy LLC Jump to: navigation, search Name: Alterra Bioenergy LLC Place: Macon, Georgia Sector: Biofuels Product: Manufacturer and distributor of biofuels. References: Alterra...

  19. Northeast Kansas Bioenergy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kansas Bioenergy LLC Jump to: navigation, search Name: Northeast Kansas Bioenergy LLC Place: Hiawatha, Kansas Zip: 66434 Product: Developing and integrated Bioethanol Biodiesel...

  20. Tremont Electric, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Electric, LLC Address: 2379 Professor Ave Place: Cleveland, Ohio Zip: 44113 Sector: Bioenergy Website: www.npowerpeg.com References: Tremont Electric, LLC1 This article is a...

  1. Terranova Bioenergy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Terranova Bioenergy LLC Jump to: navigation, search Name: Terranova Bioenergy LLC Place: Larkspur, California Zip: 94939 Sector: Biofuels Product: California-based project...

  2. Environmental Capital Partners LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Partners LLC Jump to: navigation, search Name: Environmental Capital Partners LLC Place: New York, New York Zip: 10017 Sector: Services Product: Private equity firm funded with USD...

  3. Environmental Capital Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group LLC Jump to: navigation, search Name: Environmental Capital Group LLC Place: Grass Valley, California Zip: 95945 Product: String representation "Environmental C ... tartup...

  4. Digital Power Capital LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Capital LLC Jump to: navigation, search Name: Digital Power Capital LLC Place: Greenwich, Connecticut Zip: 6830 Product: A private equity firm focused on new technologies that...

  5. Conservation Capital LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Conservation Capital LLC Jump to: navigation, search Name: Conservation Capital LLC Place: Houston, Texas Zip: 77018 Product: Houston-based land investment and consulting company...

  6. Nimes Capital LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nimes Capital LLC Jump to: navigation, search Name: Nimes Capital LLC Place: Los Angeles, California Zip: 90067 Product: Los Angeles-based private equity firm that provides growth...

  7. Strategic Capital Investments LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Capital Investments LLC Jump to: navigation, search Name: Strategic Capital Investments LLC Place: Short Hills, New Jersey Zip: 7078 Product: New Jersey-based, project development...

  8. Chestnut Capital LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Capital LLC Jump to: navigation, search Name: Chestnut Capital LLC Place: West Newton, Massachusetts Zip: 2465 Sector: Wind energy Product: Chestnut Capital is a wind energy...

  9. Marathon Capital LLC (Illinois) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Logo: Marathon Capital LLC (Illinois) Name: Marathon Capital LLC (Illinois) Address: 2801 Lakeside Drive, Suite 210 Place: Bannockburn, Illinois Zip: 60015 Product: Investment...

  10. New Cycle Capital LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cycle Capital LLC Jump to: navigation, search Name: New Cycle Capital, LLC. Place: San Francisco, California Zip: 94103 Product: San Francisco-based venture capitalist firm...

  11. Brayton Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Brayton Energy LLC Jump to: navigation, search Name: Brayton Energy LLC Place: Hampton, New Hampshire Zip: 3842 Sector: Renewable Energy Product: Brayton Energy was established in...

  12. FY 2008 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2008 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2008 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  13. FY 2010 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2010 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2010 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  14. FY 2009 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2009 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2009 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  15. FY 2006 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2006 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2006 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  16. FY 2007 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2007 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2007 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  17. FY 2011 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    FY 2011 Honeywell Federal Manufacturing & Technologies, LLC, PER Summary SUMMARY OF FY 2011 HONEYWELL FEDERAL MANUFACTURING & TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total ...

  18. Zero Emissions Leasing LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zero Emissions Leasing LLC Jump to: navigation, search Name: Zero Emissions Leasing LLC Place: Honolulu, Hawaii Zip: 96822 Sector: Solar Product: Honolulu-based developer of solar...

  19. CPV Wind Ventures LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ventures LLC Jump to: navigation, search Name: CPV Wind Ventures LLC Place: Silver Spring, Maryland Zip: 20910 Sector: Wind energy Product: Wind power project developer....

  20. Green Isle Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Isle Energy LLC Jump to: navigation, search Name: Green Isle Energy, LLC Place: Hawaii Zip: 96744 Sector: Renewable Energy Product: Hawaiian company that monitor the performance of...

  1. Green Energy Technologies LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies LLC Jump to: navigation, search Name: Green Energy Technologies LLC Place: Akron, Ohio Zip: 44333 Sector: Wind energy Product: Ohio-based micro-scale wind power...

  2. Green Light Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Green Light Energy LLC Place: Reading, Pennsylvania Product: Reading-based energy management consultants. Coordinates: 43.45529,...

  3. Lousiana Green Fuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lousiana Green Fuels LLC Jump to: navigation, search Name: Lousiana Green Fuels LLC Place: Louisiana Sector: Biomass Product: Developing a cellulosic biomass-to-ethanol plant in...

  4. Liberty Green Renewables LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Green Renewables LLC Jump to: navigation, search Name: Liberty Green Renewables, LLC Place: Georgetown, Indiana Zip: 47122 Sector: Biomass Product: Biomass power plant developer...

  5. Green Spark Ventures LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Spark Ventures LLC Jump to: navigation, search Name: Green Spark Ventures, LLC Place: Denver, Colorado Zip: 80203 Sector: Efficiency, Renewable Energy Product: Denver-based venture...

  6. Gerlach Green Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Green Energy LLC Jump to: navigation, search Name: Gerlach Green Energy LLC Place: Gerlach, Nevada Sector: Geothermal energy Product: Gerlach has formed an exploration joint...

  7. Green Partners LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Partners LLC Jump to: navigation, search Name: Green Partners LLC Place: New York Zip: NY 10022 Sector: Efficiency, Renewable Energy Product: US-based investment firm focused on...

  8. Aeronautica Windpower LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Aeronautica Windpower LLC Jump to: navigation, search Name: Aeronautica Windpower LLC Place: Plymouth, Massachusetts Zip: 23600 Sector: Services, Wind energy Product: String...

  9. Front Range Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Logo: Front Range Energy LLC Name: Front Range Energy LLC Address: 31375 Great Western Dr Place: Windsor, Colorado Zip: 80550 Region: Rockies Area Sector: Biofuels...

  10. Mohave Sun Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sun Power LLC Jump to: navigation, search Name: Mohave Sun Power LLC Place: Cambridge, Massachusetts Zip: 2139 Sector: Solar Product: Project developer with solar interests in US...

  11. C Change Investments LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Investments LLC Jump to: navigation, search Name: C Change Investments, LLC Place: Cambridge, Massachusetts Zip: 2142 Product: Massachusetts-based investment company with a...

  12. Bison Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Renewable Energy LLC Place: Minneapolis, Minnesota Zip: 55401 Product: Developing biogas production facilities. References: Bison Renewable Energy LLC1 This article is a...

  13. MARMC Enterprises LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MARMC Enterprises LLC Jump to: navigation, search Name: MARMC Enterprises LLC Address: 722 Oak Lane Place: Thibodaux Zip: 70301 Region: United States Sector: Marine and...

  14. Exelon Enterprises Company LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Exelon Enterprises Company LLC Jump to: navigation, search Name: Exelon Enterprises Company, LLC Place: Chicago, Illinois Zip: Illinois 60680-5398 Sector: Services Product:...

  15. Universal Entech LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Entech LLC Jump to: navigation, search Name: Universal Entech, LLC Place: Phoenix, Arizona Zip: 85041 Product: Project developer focused on waste-to-energy References: Universal...

  16. Renewable NRG LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Renewable NRG LLC Place: Woodstock, New York Zip: 12498 Product: Small manufacturing company located in New York. References: Renewable NRG LLC1 This article is a...

  17. Equinox Carbon Equities LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Equinox Carbon Equities LLC Jump to: navigation, search Name: Equinox Carbon Equities, LLC Place: Newport Beach, California Zip: 92660 Sector: Carbon Product: Investment firm...

  18. Wind Smart LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Smart LLC Jump to: navigation, search Name: Wind-Smart LLC Place: Greene, Rhode Island Zip: 2827 Sector: Wind energy Product: Rhode Island consulting company dedicated to the...

  19. Sky Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power LLC Jump to: navigation, search Name: Sky Power LLC Place: Portland, Oregon Zip: 97204 Sector: Wind energy Product: Developer of a high-altitude wind turbine technology....

  20. American Agri diesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    American Agri diesel LLC Jump to: navigation, search Name: American Agri-diesel LLC Place: Colorado Springs, Colorado Product: Biodiesel producer in Colorado. References: American...

  1. American Ag Fuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    American Ag Fuels LLC Jump to: navigation, search Name: American Ag Fuels LLC Place: Defiance, Ohio Zip: 43512 Product: Biodiesel producer in Defiance, Ohio. References: American...

  2. Silicon Border Development LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Silicon Border Development LLC Jump to: navigation, search Name: Silicon Border Development LLC Place: Poway, California Zip: 92064 Sector: Solar Product: US-based developer of...

  3. Community Renewable Solutions LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Community Renewable Solutions LLC Place: Santa Barbara, California Phone Number: 805 284 9028 Website: www.communityrenewables.biz...

  4. NGEN Partners LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    NGEN Partners LLC Jump to: navigation, search Name: NGEN Partners LLC Place: Santa Barbara, California Zip: 93101 Product: NGEN provides second stage venture capital funding to...

  5. Applied Ventures LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Applied Ventures LLC Name: Applied Ventures LLC Address: 3050 Bowers Avenue Place: Santa Clara, California Zip: 95054 Region: Southern CA Area Product: Venture capital. Number...

  6. Bio Pure Maryland LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bio Pure Maryland LLC Jump to: navigation, search Name: Bio-Pure Maryland LLC Place: Potomac, Maryland Product: Biodiesel plant developer in Maryland. References: Bio-Pure Maryland...

  7. Point Bio Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Point Bio Energy LLC Jump to: navigation, search Name: Point Bio Energy LLC Place: La Pointe, Wisconsin Product: Wisconsin-based wood fuel pellet producer. References: Point Bio...

  8. Phoenix Bio Industries LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bio Industries LLC Jump to: navigation, search Name: Phoenix Bio-Industries LLC Place: Goshen, California Zip: 93227 Product: Ethanol producer. Coordinates: 37.988525,...

  9. Higher Power Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Higher Power Energy LLC Jump to: navigation, search Name: Higher Power Energy, LLC Place: Flower Mound, Texas Zip: 78028 Sector: Renewable Energy, Wind energy Product: Higher Power...

  10. Reunion Power LLC Vermont | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Reunion Power LLC Vermont Jump to: navigation, search Name: Reunion Power LLC (Vermont) Place: Vermont Sector: Biomass Product: Reunion Power holds a portfolio of biomass projects...

  11. Free Green Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Free Green Energy LLC Place: Houston, Texas Zip: 77060 Sector: Geothermal energy Product: Houston-based company formed to develop geothermal...

  12. Wave Wind LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wave Wind LLC Jump to: navigation, search Name: Wave Wind LLC Place: Sun Prairie, Wisconsin Zip: 53590 Sector: Services, Wind energy Product: Wisconsin-based wind developer and...

  13. Smiling Earth Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Earth Energy LLC Place: Bakersfield, California Zip: 93314 Product: California based biodiesel producer and project developer. References: Smiling Earth Energy LLC1 This...

  14. Renewable Energy Products LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Products, LLC Place: Santa Fe Springs, California Zip: 90670 Product: Own and operate a biodiesel production facility in California. References: Renewable Energy Products, LLC1...

  15. Bio Energy Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Bio-Energy Systems LLC Place: san Anselmo, California Zip: 94960 Product: Biodiesel producer in Vallejo, California. References: Bio-Energy Systems LLC1 This...

  16. Cornerstone Holdings LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Holdings LLC Jump to: navigation, search Name: Cornerstone Holdings LLC Address: 11001 W. 120th Ave, Suite 330 Place: Broomfield, Colorado Zip: 80021 Region: Rockies Area...

  17. Safe Hydrogen LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen LLC Jump to: navigation, search Name: Safe Hydrogen LLC Place: Lexington, Massachusetts Sector: Hydro, Hydrogen Product: Focused on hydrogen storage, through a 'slurry' of...

  18. H2 Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: H2 Energy LLC Place: Hawaii Sector: Hydro, Hydrogen Product: Partnership between HiBEAM, an organisation of venture capitalists, and Sennet...

  19. Hydrogen Innovations LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Innovations LLC Jump to: navigation, search Name: Hydrogen Innovations LLC Place: Blackfoot, Idaho Zip: 83221 Product: Manufacturer of alternative fuel delivery system that cleans...

  20. Chevron Hydrogen Company LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen Company LLC Jump to: navigation, search Name: Chevron Hydrogen Company LLC Place: California Sector: Hydro, Hydrogen Product: California-based, subsidairy of Chevron...

  1. Climate Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Energy LLC Jump to: navigation, search Name: Climate Energy LLC Place: Medfield, Massachusetts Zip: 2052 Product: Develops and markets micro-combined heat power systems for...

  2. Energetech America LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    America LLC Place: Deep River, Connecticut Product: US subsidiary of Energetech Australia. References: Energetech America LLC1 This article is a stub. You can help OpenEI...

  3. Digilog Global Environmental LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Digilog Global Environmental LLC Jump to: navigation, search Name: Digilog Global Environmental LLC Place: Chicago, Illinois Zip: 60606 Product: TradeLink is registered as a...

  4. White Mountain Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group LLC Jump to: navigation, search Name: White Mountain Group, LLC Place: Delaware Product: The company has entered an agreement with Australian Biodiesel Group for a share...

  5. Renewable Spirits LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Spirits LLC Jump to: navigation, search Name: Renewable Spirits LLC Place: Delray Beach, Florida Zip: 33446 Product: Focused on developing citrus waste into ethanol. References:...

  6. Renewable Power Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Systems LLC Jump to: navigation, search Name: Renewable Power Systems, LLC Place: Averill Park, New York Zip: 12018 Sector: Solar Product: Albany, New York-based solar...

  7. Golden Turbines LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Golden Turbines LLC Address: 280 Meadow Ash Dr Lewis Center Zip: 43035 Region: United States Sector: Marine and Hydrokinetic Year Founded:...

  8. Southwest Wind Consulting LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Consulting LLC Jump to: navigation, search Name: Southwest Wind Consulting, LLC Place: Tyler, Minnesota Zip: MN 56178 Sector: Wind energy Product: Minnesota based wind project...

  9. Sanderson Engine Development LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Sanderson Engine Development LLC Address: 16 Tyler Road Place: Upton, Massachusetts Zip: 01568 Region: Greater Boston Area Sector:...

  10. Ecomerit Technologies LLC see Dehlsen Associates LLC | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Region: United States Sector: Marine and Hydrokinetic Phone Number: 805.684.2495 X 450 Website: http: This company is listed in the Marine and Hydrokinetic Technology...

  11. Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint

    SciTech Connect

    Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

    2007-06-01

    This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

  12. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  13. EA-212-D Coral Power, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -D Coral Power, LLC EA-212-D Coral Power, LLC Order rescinding the authorization of Coral Power, LLC to export electric energy to Mexico. EA-212-D Coral Power, LLC (493.02 KB) More Documents & Publications EA-212-C Coral Power, LLC Application to export electric energy OE Docket No. EA-212-C Coral Power, LLC EA-213-A Coral Power, LLC

  14. Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC Insurance Eligibility, PIA, Bechtel Jacobs Company, LLC (207.07 KB) More Documents & Publications Medgate, PIA, Bechtel Jacobs Company, LLC Electronic Document Management System PIA, BechtelJacobs Company, LLC Oracle Financials PIA, Bechtel Jacobs Company, LLC

  15. Response from PJM Interconnection LLC and Pepco to Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Request for Information Concerning the Potential Need for Potomac River Station Generation | Department of Energy PJM Interconnection LLC and Pepco to Department of Energy Request for Information Concerning the Potential Need for Potomac River Station Generation Response from PJM Interconnection LLC and Pepco to Department of Energy Request for Information Concerning the Potential Need for Potomac River Station Generation Docket No. EO-05-01: This letter will respond to your request for

  16. QER- Comment of Bridger LLC

    Energy.gov [DOE]

    Attn: Quadrennial Energy Review Task Force Task Force: Please find attached written comments by Bridger LLC for the Quadrennial Energy Review Report.

  17. Tao LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: Tao LLC Place: Nashville, California Zip: 37216 Product: Start-up venture capital investment partnership with a strong interest in the cleantech...

  18. GELcore LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: GELcore LLC Place: Valley View, Ohio Zip: 44125-4635 Product: Manufacturer of LED lighting for signage and architecture, transportation and display lighting. GELcore was...

  19. Celgard LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Celgard LLC Place: Charlotte, North Carolina Zip: 28273 Product: Celgard battery separators are polypropylene andor polyethylene electrolytic membranes used in high...

  20. Geoplasma LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Place: Atlanta, Georgia Zip: 30363 Product: Geoplasma is developing plasma gasification technology. Coordinates: 33.748315, -84.391109 Show Map Loading map......

  1. HCE LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: HCE LLC Place: Oakton, Virginia Zip: 22124-1530 Sector: Hydro, Hydrogen Product: Has developed a new device and method for hydrogen storage. Coordinates:...

  2. Genesys LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Genesys LLC Place: Palo Alto, California Zip: 94306 Sector: Hydro, Hydrogen Product: Focused on RET (Radiant Energy Transfer) technology for the production of...

  3. Voltaix LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    silicon, germanium and boron, and its customers are primarily manufacturers of solar cells and semiconductors. References: Voltaix, LLC1 This article is a stub. You...

  4. Toledo, Ohio: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Registered Energy Companies in Toledo, Ohio Advanced Distributed Generation LLC Advanced Distributed Generation LLC ADG Bottomline Energy Solutions LLC Buckeye Silicon Buckeye...

  5. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  6. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J.; Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S.

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ≈50 fs, 800 nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (≈90%) of small nanoparticles, and a residual part (≈10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  7. Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint

    SciTech Connect

    Urquhart, B.; Sengupta, M.; Keller, J.

    2012-09-01

    A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

  8. Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

    SciTech Connect

    Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

    1997-03-01

    Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

  9. Oracle Financials PIA, Bechtel Jacobs Company, LLC | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Oracle Financials PIA, Bechtel Jacobs Company, LLC Oracle Financials PIA, Bechtel Jacobs Company, LLC Oracle Financials PIA, Bechtel Jacobs Company, LLC PDF icon Oracle Financials ...

  10. Windy City Renewable Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Windy City Renewable Energy LLC Jump to: navigation, search Logo: Windy City Renewable Energy LLC Name: Windy City Renewable Energy LLC Place: Chicago, Illinois Zip: 60606 Sector:...

  11. EA-341 Photovoltaic Technologies, LLC | Department of Energy

    Office of Environmental Management (EM)

    1 Photovoltaic Technologies, LLC EA-341 Photovoltaic Technologies, LLC Order authorizing Photovoltaic Technologies, LLC to export electric energy to Mexico EA- 341 Photovoltaic ...

  12. PIA - Access Security Plan, Bechtel Jacobs Company LLC | Department...

    Energy Saver

    Access Security Plan, Bechtel Jacobs Company LLC PIA - Access Security Plan, Bechtel Jacobs Company LLC PIA - Access Security Plan, Bechtel Jacobs Company LLC PIA - Access Security ...

  13. Adrian Energy Associates LLC Biomass Facility | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Adrian Energy Associates LLC Biomass Facility Jump to: navigation, search Name Adrian Energy Associates LLC Biomass Facility Facility Adrian Energy Associates LLC Sector Biomass...

  14. Lyonsdale Biomass LLC Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York...

  15. Avon Energy Partners LLC Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Avon Energy Partners LLC Biomass Facility Jump to: navigation, search Name Avon Energy Partners LLC Biomass Facility Facility Avon Energy Partners LLC Sector Biomass Facility Type...

  16. Brickyard Energy Partners LLC Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Brickyard Energy Partners LLC Biomass Facility Jump to: navigation, search Name Brickyard Energy Partners LLC Biomass Facility Facility Brickyard Energy Partners LLC Sector Biomass...

  17. Wind Energy Systems Technology LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology LLC Jump to: navigation, search Logo: Wind Energy Systems Technology LLC Name: Wind Energy Systems Technology LLC Address: 17350 State Highway 249 Place: Houston, Texas...

  18. Midwest Renewable Energy Projects LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Projects LLC Jump to: navigation, search Name: Midwest Renewable Energy Projects LLC Place: Florida Zip: FL 33408 Sector: Renewable Energy, Wind energy Product: MRE Projects LLC is...

  19. Legacy Claims, PIA, Bechtel Jacobs Company, LLC | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Legacy Claims, PIA, Bechtel Jacobs Company, LLC Legacy Claims, PIA, Bechtel Jacobs Company, LLC Legacy Claims, PIA, Bechtel Jacobs Company, LLC PDF icon Legacy Claims, PIA, Bechtel ...

  20. EA-193 Energy Atlantic, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EA-193 Energy Atlantic, LLC Order authorizing Energy Atlantic, LLC to export electric energy to Canada. EA-193 Energy Atlantic, LLC (22.85 KB) More Documents & Publications ...

  1. Annual Benefits Statement, PIA, Bechtel Jacobs Company, LLC ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Annual Benefits Statement, PIA, Bechtel Jacobs Company, LLC Annual Benefits Statement, PIA, Bechtel Jacobs Company, LLC Annual Benefits Statement, PIA, Bechtel Jacobs Company, LLC ...

  2. Internal stress distribution for generating closure domains in laser-irradiated Fe3%Si(110) steels

    SciTech Connect

    Iwata, Keiji; Imafuku, Muneyuki; Orihara, Hideto; Sakai, Yusuke; Ohya, Shin-Ichi; Suzuki, Tamaki; Shobu, Takahisa; Akita, Koichi; Ishiyama, Kazushi

    2015-05-07

    Internal stress distribution for generating closure domains occurring in laser-irradiated Fe3%Si(110) steels was investigated using high-energy X-ray analysis and domain theory based on the variational principle. The measured triaxial stresses inside the specimen were compressive and the stress in the rolling direction became more dominant than stresses in the other directions. The calculations based on the variational principle of magnetic energy for closure domains showed that the measured triaxial stresses made the closure domains more stable than the basic domain without closure domains. The experimental and calculation results reveal that the laser-introduced internal stresses result in the occurrence of the closure domains.

  3. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report

    SciTech Connect

    Greenberg, S.; Cooley, C.

    2005-01-01

    This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

  4. Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off

  5. Operated by Los Alamos National Security, LLC for the U.S. Department...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Lunar Prospector of the global elemental distribution (Lawrence et al., 1998) Water Thorium Ranger 4 Operated by Los Alamos National Security, LLC for the U.S. Department of ...

  6. ZTEK`s ultra-high efficiency fuel cell/gas turbine system for distributed generation

    SciTech Connect

    Hsu, M.; Nathanson, D.; Bradshaw, D.T.

    1996-12-31

    Ztek`s Planar Solid Oxide Fuel Cell (SOFC) system has exceptional potential for utility electric power generation because of: simplicity of components construction, capability for low cost manufacturing, efficient recovery of very high quality by-product heat (up to 1000{degrees}C), and system integration simplicity. Utility applications of the Solid Oxide Fuel Cell are varied and include distributed generation units (sub-MW to 30MW capacity), repowering existing power plants (i.e. 30MW to 100MW), and multi-megawatt central power plants. A TVA/EPRI collaboration program involved functional testing of the advanced solid oxide fuel cell stacks and design scale-up for distributed power generation applications. The emphasis is on the engineering design of the utility modules which will be the building blocks for up to megawatt scale power plants. The program has two distinctive subprograms: Verification test on a 1 kW stack and 25kW module for utility demonstration. A 1 kW Planar SOFC stack was successfully operated for 15,000 hours as of December, 1995. Ztek began work on a 25kW SOFC Power System for TVA, which plans to install the 25kW SOFC at a host site for demonstration in 1997. The 25kW module is Ztek`s intended building block for the commercial use of the Planar SOFC. Systems of up to megawatt capacity can be obtained by packaging the modules in 2-dimensional or 3-dimensional arrays.

  7. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  8. EA-377 DC Energy Texas LLC | Department of Energy

    Energy Saver

    7 DC Energy Texas LLC EA-377 DC Energy Texas LLC Order authorizing DC Energy Texas LLC to export electric energy to Mexico. PDF icon EA-377 DC Energy Texas LLC More Documents & ...

  9. EA-225 Split Rock Energy LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Split Rock Energy LLC EA-225 Split Rock Energy LLC Order authorizing Split Rock Energy LLC to export electric energy to Canada. EA-225 Split Rock Energy LLC (34.81

  10. EA-212-C Coral Power, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    12-C Coral Power, LLC EA-212-C Coral Power, LLC Order authorizing Coral Power, LLC to export electric energy to Mexico. EA-212-C Coral Power, LLC (2.19 MB) More Documents & ...

  11. P Stub Online, Bechtel Jacobs Company, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    P Stub Online, Bechtel Jacobs Company, LLC P Stub Online, Bechtel Jacobs Company, LLC P Stub Online, Bechtel Jacobs Company, LLC P Stub Online, Bechtel Jacobs Company, LLC (210.66 ...

  12. Venture Global Calcasieu Pass, LLC - (Formerly Venture Global...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Venture Global Calcasieu Pass, LLC - (Formerly Venture Global LNG, LLC) - 14-88-LNG Venture Global Calcasieu Pass, LLC - (Formerly Venture Global LNG, LLC) - 14-88-LNG The Office ...

  13. EA-346 Credit Suisse Energy LLC - Mexico | Department of Energy

    Energy Saver

    EA-346 Credit Suisse Energy LLC (2.17 MB) More Documents & Publications EA-346 Credit Suisse Energy LLC - Canada EA-212-C Coral Power, LLC EA-341 Photovoltaic Technologies, LLC

  14. 1,"Chalk Point LLC","Petroleum","NRG Chalk Point LLC",2248 2,"Calvert Cliffs Nuclear Power Plant","Nuclear","Calvert Cliffs Nuclear PP LLC",1707.8

    Energy Information Administration (EIA) (indexed site)

    Maryland" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Chalk Point LLC","Petroleum","NRG Chalk Point LLC",2248 2,"Calvert Cliffs Nuclear Power Plant","Nuclear","Calvert Cliffs Nuclear PP LLC",1707.8 3,"Morgantown Generating Plant","Coal","GenOn Mid-Atlantic LLC",1423 4,"Brandon Shores","Coal","Raven

  15. Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004

    SciTech Connect

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

    2006-03-01

    This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

  16. Mission Support Alliance, LLC

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    December 3, 2015 Mr. William Johnson President Mission Support Alliance, LLC 2490 Garlick Boulevard P.O. Box 650 Richland, Washington 99352 WEL-2015-07 Dear Mr. Johnson: The Office of Enterprise Assessments' Office of Enforcement has completed an evaluation of an incident involving a rigger injured during a crane re-spooling operation, as reported into the Department of Energy's (DOE) Occurrence Reporting and Processing System under EM-RL--MSC-FSS-2015-0002 on May 11, 2015. On May 1, 2015, a

  17. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    SciTech Connect

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S.; Bolte, N.; Marsili, P.; Roche, T.; Wessel, F.

    2010-10-15

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  18. Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation

    SciTech Connect

    Torrey, David A.

    2006-05-26

    Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

  19. EA-209-A Cargill-Alliant, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Cargill-Alliant, LLC EA-209-A Cargill-Alliant, LLC Order authorizing A Cargill-Alliant, LLC to export electric energy to Canada. EA-209-A Cargill-Alliant, LLC (578.7 KB) More Documents & Publications EA-209 Cargill-Alliant, LLC EA-209-C Cargill Power Markets LLC EA-209-B

  20. EA-212-A Coral Power, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -A Coral Power, LLC EA-212-A Coral Power, LLC Order authorizing Coral Power, LLC to export electric energy to Mexico. EA-212-A Coral Power, LLC (18.43 KB) More Documents & Publications EA-212 Coral Power, LLC EA-167 PG&E Energy Trading-Power, L.P EA-166 Duke Energy Trading and Marketing, L.L.C

  1. EA-213-A Coral Power, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    -A Coral Power, LLC EA-213-A Coral Power, LLC Order authorizing Coral Power, LLC to export electric energy to Canada. EA-213-A Coral Power, LLC (1.48 MB) More Documents & Publications EA-212-C Coral Power, LLC EA-212-D Coral Power, LLC EA-253-A Coral Canada US

  2. EA-293-A Coral Energy Management, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3-A Coral Energy Management, LLC EA-293-A Coral Energy Management, LLC Order authorizing Coral Energy Management, LLC to export electric energy to Canada EA-293-A Coral Energy Management, LLC (465.78 KB) More Documents & Publications EA-213-A Coral Power, LLC EA-212-C Coral Power, LLC EA-253-A Coral Canada US Inc

  3. EA-346 Credit Suisse Energy LLC - Canada | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Canada EA-346 Credit Suisse Energy LLC - Canada Order authorizing Credit Suisse Energy LLC to export electric energy to Canada EA-346 Credit Suisse Energy LLC (2.93 MB) More Documents & Publications EA-346 Credit Suisse Energy LLC - Mexico EA-344 Twin Cities Power-Canada, LLC EA-354 Endure Energy, L.L.C.

  4. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect

    Sengupta, M.; Keller, J.

    2012-06-01

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  5. Generation and distribution of PAHs in the process of medical waste incineration

    SciTech Connect

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-15

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between

  6. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    SciTech Connect

    Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based

  7. Sunrgi LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    A Los-Angeles based CPV company that claims to intensify sunlight at extremely high concentration, using passive cooling. References: Sunrgi LLC1 This article is a stub. You can...

  8. Spinworks LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Product: Spinworks is the exclusive producer of radiant tube inserts made of Silicon- Graphite. References: Spinworks LLC1 This article is a stub. You can help OpenEI by...

  9. Alte LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Vehicles Product: Michigan-based manufacturer of powertrains for plug-in hybrid electric vehicles. References: Alte LLC1 This article is a stub. You can help OpenEI by...

  10. Sopogy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    STEG projects and equipment and maker of solar thermal process heat and solar air-conditioning systems. References: Sopogy LLC1 This article is a stub. You can help OpenEI by...

  11. Hythane LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Hythane LLC Place: Denver, Colorado Sector: Hydro, Hydrogen Product: Produces a fuel system which runs on 'Hythane' - a 50:50 blend of natural...

  12. Cyclocean LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Cyclocean LLC Address: 3000 Par Drive Region: United States Sector: Marine and Hydrokinetic Phone Number: 561-317-1446 Website: www.cyclocean.com This company is...

  13. Jobs and Economic Development from New Transmission and Generation...

    WindExchange

    Alliance for Sustainable Energy, LLC. Infrastructure Type Units Installed Total Installed Cost Wyoming Share Annual Operating Expenditures Wyoming Share Wind Generation 9,000 MW...

  14. Los Alamos National Security, LLC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Security, LLC helps fund Domenici Scholarship August 14, 2008 Donates $500,000 to support area students LOS ALAMOS, New Mexico, August 14, 2008- Los Alamos National Security, LLC (LANS) is donating $500,000 to the Senator Pete Domenici Endowed Scholarship Fund, which has been established in honor of New Mexico's senior senator. The scholarship, to be managed by the Los Alamos National Laboratory Foundation, recognizes Domenici's more than three decades of support for Northern New Mexico, the

  15. Distributed Generation Potential of the U.S. CommercialSector

    SciTech Connect

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

    2005-06-01

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

  16. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect

    Chen, Li-Jin

    2014-03-31

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the

  17. Solar Star NAFB LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    NAFB LLC Jump to: navigation, search Name: Solar Star NAFB LLC Place: Nevada Phone Number: (702) 643-8097 Outage Hotline: (702) 643-8097 References: EIA Form EIA-861 Final Data...

  18. Alliance Star Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Star Energy LLC Jump to: navigation, search Name: Alliance Star Energy LLC Place: California Phone Number: (619) 574-0527 Outage Hotline: (619) 574-0527 References: EIA Form...

  19. Clean Burn Fuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Burn Fuels LLC Jump to: navigation, search Name: Clean Burn Fuels LLC Place: Raleigh, North Carolina Zip: 27603 Sector: Biofuels Product: Biofuels developer planning to build a 60m...

  20. AER NY Kinetics LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    AER NY Kinetics LLC Jump to: navigation, search Name: AER NY Kinetics LLC Address: PO Box 585 21 Entrance Avenue Place: Ogdensburg Zip: 13669 Region: United States Sector: Marine...