National Library of Energy BETA

Sample records for discrete space-time symmetries

  1. Is space-time symmetry a suitable generalization of parity-time symmetry?

    SciTech Connect

    Amore, Paolo; Fernández, Francisco M.; Garcia, Javier

    2014-11-15

    We discuss space-time symmetric Hamiltonian operators of the form H=H{sub 0}+igH{sup ′}, where H{sub 0} is Hermitian and g real. H{sub 0} is invariant under the unitary operations of a point group G while H{sup ′} is invariant under transformation by elements of a subgroup G{sup ′} of G. If G exhibits irreducible representations of dimension greater than unity, then it is possible that H has complex eigenvalues for sufficiently small nonzero values of g. In the particular case that H is parity-time symmetric then it appears to exhibit real eigenvalues for all 0symmetry and perturbation theory enable one to predict whether H may exhibit real or complex eigenvalues for g>0. We illustrate the main theoretical results and conclusions of this paper by means of two- and three-dimensional Hamiltonians exhibiting a variety of different point-group symmetries. - Highlights: • Space-time symmetry is a generalization of PT symmetry. • The eigenvalues of a space-time Hamiltonian are either real or appear as pairs of complex conjugate numbers. • In some cases all the eigenvalues are real for some values of a potential-strength parameter g. • At some value of g space-time symmetry is broken and complex eigenvalues appear. • Some multidimensional oscillators exhibit broken space-time symmetry for all values of g.

  2. Discrete symmetries and de Sitter spacetime

    SciTech Connect

    Cotăescu, Ion I. Pascu, Gabriel

    2014-11-24

    Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.

  3. Breaking discrete symmetries in the effective field theory of inflation

    SciTech Connect

    Cannone, Dario; Gong, Jinn-Ouk; Tasinato, Gianmassimo

    2015-08-03

    We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.

  4. (Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry

    Office of Scientific and Technical Information (OSTI)

    in the Effective Field Theory of Inflation (Journal Article) | SciTech Connect (Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation Citation Details In-Document Search Title: (Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation We apply the Effective Field Theory of Inflation to study the case where the continuous shift symmetry of the Goldstone boson {pi} is

  5. Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories

    SciTech Connect

    Carbone, Lisa; Murray, Scott H.; Sati, Hisham

    2015-10-15

    For G = G(ℝ), a split, simply connected, semisimple Lie group of rank n and K the maximal compact subgroup of G, we give a method for computing Iwasawa coordinates of K∖G using the Chevalley generators and the Steinberg presentation. When K∖G is a scalar coset for a supergravity theory in dimensions ≥3, we determine the action of the integral form G(ℤ) on K∖G. We give explicit results for the action of the discrete U-duality groups SL{sub 2}(ℤ) and E{sub 7}(ℤ) on the scalar cosets SO(2)∖SL{sub 2}(ℝ) and [SU(8)/( ± Id)]∖E{sub 7(+7)}(ℝ) for type IIB supergravity in ten dimensions and 11-dimensional supergravity reduced to D = 4 dimensions, respectively. For the former, we use this to determine the discrete U-duality transformations on the scalar sector in the Borel gauge and we describe the discrete symmetries of the dyonic charge lattice. We determine the spectrum-generating symmetry group for fundamental BPS solitons of type IIB supergravity in D = 10 dimensions at the classical level and we propose an analog of this symmetry at the quantum level. We indicate how our methods can be used to study the orbits of discrete U-duality groups in general.

  6. Discrete accidental symmetry for a particle in a constant magnetic field on a torus

    SciTech Connect

    Al-Hashimi, M.H. Wiese, U.-J.

    2009-02-15

    A classical particle in a constant magnetic field undergoes cyclotron motion on a circular orbit. At the quantum level, the fact that all classical orbits are closed gives rise to degeneracies in the spectrum. It is well-known that the spectrum of a charged particle in a constant magnetic field consists of infinitely degenerate Landau levels. Just as for the 1/r and r{sup 2} potentials, one thus expects some hidden accidental symmetry, in this case with infinite-dimensional representations. Indeed, the position of the center of the cyclotron circle plays the role of a Runge-Lenz vector. After identifying the corresponding accidental symmetry algebra, we re-analyze the system in a finite periodic volume. Interestingly, similar to the quantum mechanical breaking of CP invariance due to the {theta}-vacuum angle in non-Abelian gauge theories, quantum effects due to two self-adjoint extension parameters {theta}{sub x} and {theta}{sub y} explicitly break the continuous translation invariance of the classical theory. This reduces the symmetry to a discrete magnetic translation group and leads to finite degeneracy. Similar to a particle moving on a cone, a particle in a constant magnetic field shows a very peculiar realization of accidental symmetry in quantum mechanics.

  7. Space-Time Insight | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Space-Time Insight Jump to: navigation, search Name: Space-Time Insight Address: 45680 Northport Loop East Place: Fremont, California Zip: 94538 Region: Bay Area Sector: Efficiency...

  8. Chiral symmetry restoration at large chemical potential in strongly...

    Office of Scientific and Technical Information (OSTI)

    SYMMETRY; CHIRALITY; CLUSTER EXPANSION; CORRELATIONS; GAUGE INVARIANCE; POTENTIALS; QUANTUM FIELD THEORY; QUARKS; SPACE-TIME; STRONG-COUPLING MODEL; SU GROUPS Word Cloud More...

  9. Electrodynamics on {kappa}-Minkowski space-time

    SciTech Connect

    Harikumar, E.; Juric, T.; Meljanac, S.

    2011-10-15

    In this paper, we derive Lorentz force and Maxwell's equations on kappa-Minkowski space-time up to the first order in the deformation parameter. This is done by elevating the principle of minimal coupling to noncommutative space-time. We also show the equivalence of minimal coupling prescription and Feynman's approach. It is shown that the motion in kappa space-time can be interpreted as motion in a background gravitational field, which is induced by this noncommutativity. In the static limit, the effect of kappa deformation is to scale the electric charge. We also show that the laws of electrodynamics depend on the mass of the charged particle, in kappa space-time.

  10. Ripples in space-time discussed in public lecture

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ripples in space-time discussed in public lecture Ripples in space-time discussed in public lecture Gabriela Gonzalez will discuss the observation of gravitational waves at 7:30 p.m. Sept. 19 in Santa Fe. September 15, 2016 A simulation of two merging black holes, creating gravitational waves. Photo courtesy of LIGO. A simulation of two merging black holes, creating gravitational waves. Photo courtesy of LIGO. Contact Nick Njegomir Communications Office (505) 665-9394 Email "This is a very

  11. Parabosonic string and space-time non-commutativity

    SciTech Connect

    Seridi, M. A.; Belaloui, N.

    2012-06-27

    We investigate the para-quantum extension of the bosonic strings in a non-commutative space-time. We calculate the trilinear relations between the mass-center variables and the modes and we derive the Virasoro algebra where a new anomaly term due to the non-commutativity is obtained.

  12. Formation of naked singularities in five-dimensional space-time

    SciTech Connect

    Yamada, Yuta; Shinkai, Hisa-aki

    2011-03-15

    We numerically investigate the gravitational collapse of collisionless particles in spheroidal configurations both in four- and five-dimensional (5D) space-time. We repeat the simulation performed by Shapiro and Teukolsky (1991) that announced an appearance of a naked singularity, and also find similar results in the 5D version. That is, in a collapse of a highly prolate spindle, the Kretschmann invariant blows up outside the matter and no apparent horizon forms. We also find that the collapses in 5D proceed more rapidly than in 4D, and the critical prolateness for the appearance of an apparent horizon in 5D is loosened, compared to 4D cases. We also show how collapses differ with spatial symmetries comparing 5D evolutions in single-axisymmetry, SO(3), and those in double-axisymmetry, U(1)xU(1).

  13. Discrete dark matter

    SciTech Connect

    Hirsch, M.; Morisi, S.; Peinado, E.; Valle, J. W. F. [AHEP Group, Institut de Fisica Corpuscular--C.S.I.C./Universitat de Valencia, Edificio Institutos de Paterna, Apartado 22085, E-46071 Valencia (Spain)

    2010-12-01

    We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-Abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z{sub 2} subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while {theta}{sub 13}=0 gives no CP violation in neutrino oscillations.

  14. Magnetic Correlations: A (Momentum) Space-Time Odyssey | Stanford

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Synchrotron Radiation Lightsource Magnetic Correlations: A (Momentum) Space-Time Odyssey Wednesday, July 6, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Yue Cao, Brookhaven National Laboratory Program Description Magnetic correlations are the fundamental building blocks of magnetism, and are suspected by many to be the driving force behind such exotic phenomenon as high Tc superconductivity. The marriage between the Free Electron Laser (FEL) and inelastic X-ray spectroscopy

  15. Navigating Space-Time with Ultrafast Exciton Photolithography or

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scintillating Near-fields to Follow Dynamic Processes in Molecular Materials | MIT-Harvard Center for Excitonics Navigating Space-Time with Ultrafast Exciton Photolithography or Scintillating Near-fields to Follow Dynamic Processes in Molecular Materials May 5, 2015 at 4:30pm/ rm: 4-370 Naomi Ginsberg University of California/Department of Chemistry and Physics nsginsberg abstract: A cross-cutting theme in my research group is to examine dynamic processes in spatially-heterogeneous condensed

  16. Symmetries of Einstein's field equations with a perfect fluid source as examples of Lie--Baecklund symmetries

    SciTech Connect

    Stephani, H.

    1988-07-01

    The framework of Lie--Baecklund (or generalized) symmetries is used to give a unifying view of some of the known symmetries of Einstein's field equations for the vacuum or perfect fluid case (with a ..mu.. = p or a ..mu..+3p = 0 equation of state). These symmetries occur if space-time admits one or two Killing vectors (orthogonal or parallel, respectively, to the four-velocity in the perfect fluid case).

  17. Experimental Constraints of the Exotic Shearing of Space-Time

    SciTech Connect

    Richardson, Jonathan William

    2016-01-01

    The Holometer program is a search for rst experimental evidence that space-time has quantum structure. The detector consists of a pair of co-located 40-m power-recycled interferometers whose outputs are read out synchronously at 50 MHz, achieving sensitivity to spatiallycorrelated uctuations in dierential position on time scales shorter than the light-crossing time of the instruments. Unlike gravitational wave interferometers, which time-resolve transient geometrical disturbances in the spatial background, the Holometer is searching for a universal, stationary quantization noise of the background itself. This dissertation presents the nal results of the Holometer Phase I search, an experiment congured for sensitivity to exotic coherent shearing uctuations of space-time. Measurements of high-frequency cross-spectra of the interferometer signals obtain sensitivity to spatially-correlated eects far exceeding any previous measurement, in a broad frequency band extending to 7.6 MHz, twice the inverse light-crossing time of the apparatus. This measurement is the statistical aggregation of 2.1 petabytes of 2-byte dierential position measurements obtained over a month-long exposure time. At 3 signicance, it places an upper limit on the coherence scale of spatial shear two orders of magnitude below the Planck length. The result demonstrates the viability of this novel spatially-correlated interferometric detection technique to reach unprecedented sensitivity to coherent deviations of space-time from classicality, opening the door for direct experimental tests of theories of relational quantum gravity.

  18. Naked singularities in higher dimensional Vaidya space-times

    SciTech Connect

    Ghosh, S. G.; Dadhich, Naresh

    2001-08-15

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension.

  19. Broken Symmetry

    ScienceCinema

    None

    2016-07-12

    - Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not “renormalizable”. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged “vector” particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of

  20. Space-time complexity in solid state models

    SciTech Connect

    Bishop, A.R.

    1985-01-01

    In this Workshop on symmetry-breaking it is appropriate to include the evolving fields of nonlinear-nonequilibrium systems in which transitions to and between various degrees of ''complexity'' (including ''chaos'') occur in time or space or both. These notions naturally bring together phenomena of pattern formation and chaos and therefore have ramifications for a huge array of natural sciences - astrophysics, plasmas and lasers, hydrodynamics, field theory, materials and solid state theory, optics and electronics, biology, pattern recognition and evolution, etc. Our particular concerns here are with examples from solid state and condensed matter.

  1. Horizons versus singularities in spherically symmetric space-times

    SciTech Connect

    Bronnikov, K. A.; Elizalde, E.; Odintsov, S. D.; Zaslavskii, O. B.

    2008-09-15

    We discuss different kinds of Killing horizons possible in static, spherically symmetric configurations and recently classified as 'usual', 'naked', and 'truly naked' ones depending on the near-horizon behavior of transverse tidal forces acting on an extended body. We obtain the necessary conditions for the metric to be extensible beyond a horizon in terms of an arbitrary radial coordinate and show that all truly naked horizons, as well as many of those previously characterized as naked and even usual ones, do not admit an extension and therefore must be considered as singularities. Some examples are given, showing which kinds of matter are able to create specific space-times with different kinds of horizons, including truly naked ones. Among them are fluids with negative pressure and scalar fields with a particular behavior of the potential. We also discuss horizons and singularities in Kantowski-Sachs spherically symmetric cosmologies and present horizon regularity conditions in terms of an arbitrary time coordinate and proper (synchronous) time. It turns out that horizons of orders 2 and higher occur in infinite proper times in the past or future, but one-way communication with regions beyond such horizons is still possible.

  2. Topological horseshoes in travelling waves of discretized nonlinear wave equations

    SciTech Connect

    Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming

    2014-04-15

    Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.

  3. Chiral symmetry and chiral-symmetry breaking

    SciTech Connect

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  4. An Approach to Integrate a Space-Time GIS Data Model with High Performance Computers

    SciTech Connect

    Wang, Dali; Zhao, Ziliang; Shaw, Shih-Lung

    2011-01-01

    In this paper, we describe an approach to integrate a Space-Time GIS data model on a high performance computing platform. The Space-Time GIS data model has been developed on a desktop computing environment. We use the Space-Time GIS data model to generate GIS module, which organizes a series of remote sensing data. We are in the process of porting the GIS module into an HPC environment, in which the GIS modules handle large dataset directly via parallel file system. Although it is an ongoing project, authors hope this effort can inspire further discussions on the integration of GIS on high performance computing platforms.

  5. Axi-dilaton gravity in D{>=}4 dimensional space-times with torsion

    SciTech Connect

    Cebeci, H.; Dereli, T.

    2005-01-15

    We study models of axi-dilaton gravity in space-time geometries with torsion. We discuss conformal rescaling rules in both Riemannian and non-Riemannian formulations. We give static, spherically symmetric solutions and examine their singularity behavior.

  6. Stationary axisymmetric four dimensional space-time endowed with Einstein metric

    SciTech Connect

    Hasanuddin; Azwar, A.; Gunara, B. E.

    2015-04-16

    In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time.

  7. Mathematical Formalism for an Experimental Test of Space-Time Anisotropy

    SciTech Connect

    Voicu-Brinzei, Nicoleta; Siparov, Sergey

    2010-01-01

    Some specific astrophysical data collected during the last decade suggest the need of a modification of the expression for the Einstein-Hilbert action, and several attempts are known in this respect. The modification suggested in this paper stems from a possible anisotropy of space-time--which leads to a dependence on directional variables of the simplest scalar in the least action principle. In order to provide a testable support to this idea, the optic-metrical parametric resonance is regarded - an experiment on a galactic scale, based on the interaction between the electromagnetic radiation of cosmic masers and periodical gravitational waves emitted by close double systems or pulsars. Since the effect depends on the space-time metric, a possible anisotropy could be revealed through observations. We prove that if space-time is anisotropic, then the orientation of the astrophysical systems suitable for observations would show it.

  8. Even perturbations of the self-similar Vaidya space-time

    SciTech Connect

    Nolan, Brien C.; Waters, Thomas J.

    2005-05-15

    We study even parity metric and matter perturbations of all angular modes in self-similar Vaidya space-time. We focus on the case where the background contains a naked singularity. Initial conditions are imposed, describing a finite perturbation emerging from the portion of flat space-time preceding the matter-filled region of space-time. The most general perturbation satisfying the initial conditions is allowed to impinge upon the Cauchy horizon (CH), where the perturbation remains finite: There is no 'blue-sheet' instability. However, when the perturbation evolves through the CH and onto the second future similarity horizon of the naked singularity, divergence necessarily occurs: This surface is found to be unstable. The analysis is based on the study of individual modes following a Mellin transform of the perturbation. We present an argument that the full perturbation remains finite after resummation of the (possibly infinite number of) modes.

  9. Relativistic spectrum of hydrogen atom in the space-time non-commutativity

    SciTech Connect

    Moumni, Mustafa; BenSlama, Achour; Zaim, Slimane

    2012-06-27

    We study space-time non-commutativity applied to the hydrogen atom and its phenomenological effects. We find that it modifies the Coulomb potential in the Hamiltonian and add an r{sup -3} part. By calculating the energies from Dirac equation using perturbation theory, we study the modifications to the hydrogen spectrum. We find that it removes the degeneracy with respect to the total angular momentum quantum number and acts like a Lamb shift. Comparing the results with experimental values from spectroscopy, we get a new bound for the space-time non-commutative parameter.

  10. Constraint analysis for variational discrete systems

    SciTech Connect

    Dittrich, Bianca; Hhn, Philipp A.; Institute for Theoretical Physics, Universiteit Utrecht, Leuvenlaan 4, NL-3584 CE Utrecht

    2013-09-15

    A canonical formalism and constraint analysis for discrete systems subject to a variational action principle are devised. The formalism is equivalent to the covariant formulation, encompasses global and local discrete time evolution moves and naturally incorporates both constant and evolving phase spaces, the latter of which is necessary for a time varying discretization. The different roles of constraints in the discrete and the conditions under which they are first or second class and/or symmetry generators are clarified. The (non-) preservation of constraints and the symplectic structure is discussed; on evolving phase spaces the number of constraints at a fixed time step depends on the initial and final time step of evolution. Moreover, the definition of observables and a reduced phase space is provided; again, on evolving phase spaces the notion of an observable as a propagating degree of freedom requires specification of an initial and final step and crucially depends on this choice, in contrast to the continuum. However, upon restriction to translation invariant systems, one regains the usual time step independence of canonical concepts. This analysis applies, e.g., to discrete mechanics, lattice field theory, quantum gravity models, and numerical analysis.

  11. The Symmetries of QCD

    ScienceCinema

    Sekhar Chivukula

    2016-07-12

    The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was present at the classical level.  Quantum Chromodynamics (QCD), the modern theory of the strong interactions, exemplify each of these possibilities. The interplay of these effects determine the spectrum of particles that we observe and, ultimately, account for 99% of the mass of ordinary matter. 

  12. Discrete Element Modeling

    SciTech Connect

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  13. Equations Governing Space-Time Variability of Liquid Water Path in Stratus Clouds

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Equations Governing Space-Time Variability of Liquid Water Path in Stratus Clouds K. Ivanova Pennsylvania State University University Park, Pennsylvania T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington M. Ausloos University of Liège B-4000 Liège, Belgium Abstract We present a method on how to derive an underlying mathematical (statistical or model free) equation for a liquid water path (LWP) signal directly from empirical data. The evolution of the probability density

  14. Weakly broken galileon symmetry

    SciTech Connect

    Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo

    2015-09-01

    Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.

  15. Exploring Metric Symmetry

    SciTech Connect

    Zwart, P.H.; Grosse-Kunstleve, R.W.; Adams, P.D.

    2006-07-31

    Relatively minor perturbations to a crystal structure can in some cases result in apparently large changes in symmetry. Changes in space group or even lattice can be induced by heavy metal or halide soaking (Dauter et al, 2001), flash freezing (Skrzypczak-Jankun et al, 1996), and Se-Met substitution (Poulsen et al, 2001). Relations between various space groups and lattices can provide insight in the underlying structural causes for the symmetry or lattice transformations. Furthermore, these relations can be useful in understanding twinning and how to efficiently solve two different but related crystal structures. Although (pseudo) symmetric properties of a certain combination of unit cell parameters and a space group are immediately obvious (such as a pseudo four-fold axis if a is approximately equal to b in an orthorhombic space group), other relations (e.g. Lehtio, et al, 2005) that are less obvious might be crucial to the understanding and detection of certain idiosyncrasies of experimental data. We have developed a set of tools that allows straightforward exploration of possible metric symmetry relations given unit cell parameters and a space group. The new iotbx.explore{_}metric{_}symmetry command produces an overview of the various relations between several possible point groups for a given lattice. Methods for finding relations between a pair of unit cells are also available. The tools described in this newsletter are part of the CCTBX libraries, which are included in the latest (versions July 2006 and up) PHENIX and CCI Apps distributions.

  16. Discrete spectral incoherent solitons in nonlinear media with noninstantaneous response

    SciTech Connect

    Michel, Claire; Kibler, Bertrand; Picozzi, Antonio

    2011-02-15

    We show theoretically that nonlinear optical media characterized by a finite response time may support the existence of discrete spectral incoherent solitons. The structure of the soliton consists of three incoherent spectral bands that propagate in frequency space toward the low-frequency components in a discrete fashion and with a constant velocity. Discrete spectral incoherent solitons do not exhibit a confinement in the space-time domain, but exclusively in the frequency domain. The kinetic theory describes in detail all the essential properties of discrete spectral incoherent solitons: A quantitative agreement has been obtained between simulations of the kinetic equation and the nonlinear Schroedinger equation. Discrete spectral incoherent solitons may be supported in both the normal dispersion regime or the anomalous dispersion regime. These incoherent structures find their origin in the causality condition inherent to the nonlinear response function of the material. Considering the concrete example of the Raman effect, we show that discrete incoherent solitons may be spontaneously generated through the process of supercontinuum generation in photonic crystal fibers.

  17. Exact solutions of (n+1)-dimensional Yang-Mills equations in curved space-time

    SciTech Connect

    Sanchez-Monroy, J.A.; Quimbay, C.J.

    2012-09-15

    In the context of a semiclassical approach where vectorial gauge fields can be considered as classical fields, we obtain exact static solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time, for the cases n=1,2,3. As an application of the results obtained for the case n=3, we consider the solutions for the anti-de Sitter and Schwarzschild metrics. We show that these solutions have a confining behavior and can be considered as a first step in the study of the corrections of the spectra of quarkonia in a curved background. Since the solutions that we find in this work are valid also for the group U(1), the case n=2 is a description of the (2+1) electrodynamics in the presence of a point charge. For this case, the solution has a confining behavior and can be considered as an application of the planar electrodynamics in a curved space-time. Finally we find that the solution for the case n=1 is invariant under a parity transformation and has the form of a linear confining solution. - Highlights: Black-Right-Pointing-Pointer We study exact static confining solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time. Black-Right-Pointing-Pointer The solutions found are a first step in the study of the corrections on the spectra of quarkonia in a curved background. Black-Right-Pointing-Pointer A expression for the confinement potential in low dimensionality is found.

  18. Singlet particles as cold dark matter in a noncommutative space-time

    SciTech Connect

    Ettefaghi, M. M.

    2009-03-15

    We extend the noncommutative (NC) standard model to incorporate singlet particles as cold dark matter. In the NC space-time, the singlet particles can be coupled to the U(1) gauge field in the adjoint representation. We study the relic density of the singlet particles due to the NC induced interaction. Demanding either the singlet fermion or the singlet scalar to serve as cold dark matter and the NC induced interactions to be relevant to the dark matter production, we obtain the corresponding relations between the NC scale and the dark matter masses, which are consistent with some existing bounds.

  19. Information content of nonautonomous free fields in curved space-time

    SciTech Connect

    Parreira, J. E.; Nemes, M. C.; Fonseca-Romero, K. M.

    2011-03-15

    We show that it is possible to quantify the information content of a nonautonomous free field state in curved space-time. A covariance matrix is defined and it is shown that, for symmetric Gaussian field states, the matrix is connected to the entropy of the state. This connection is maintained throughout a quadratic nonautonomous (including possible phase transitions) evolution. Although particle-antiparticle correlations are dynamically generated, the evolution is isoentropic. If the current standard cosmological model for the inflationary period is correct, in absence of decoherence such correlations will be preserved, and could potentially lead to observable effects, allowing for a test of the model.

  20. Self-similar space-time evolution of an initial density discontinuity

    SciTech Connect

    Rekaa, V. L.; Pcseli, H. L.; Trulsen, J. K.

    2013-07-15

    The space-time evolution of an initial step-like plasma density variation is studied. We give particular attention to formulate the problem in a way that opens for the possibility of realizing the conditions experimentally. After a short transient time interval of the order of the electron plasma period, the solution is self-similar as illustrated by a video where the space-time evolution is reduced to be a function of the ratio x/t. Solutions of this form are usually found for problems without characteristic length and time scales, in our case the quasi-neutral limit. By introducing ion collisions with neutrals into the numerical analysis, we introduce a length scale, the collisional mean free path. We study the breakdown of the self-similarity of the solution as the mean free path is made shorter than the system length. Analytical results are presented for charge exchange collisions, demonstrating a short time collisionless evolution with an ensuing long time diffusive relaxation of the initial perturbation. For large times, we find a diffusion equation as the limiting analytical form for a charge-exchange collisional plasma, with a diffusion coefficient defined as the square of the ion sound speed divided by the (constant) ion collision frequency. The ion-neutral collision frequency acts as a parameter that allows a collisionless result to be obtained in one limit, while the solution of a diffusion equation is recovered in the opposite limit of large collision frequencies.

  1. A broken symmetry ontology: Quantum mechanics as a broken symmetry

    SciTech Connect

    Buschmann, J.E.

    1988-01-01

    The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance.

  2. Origin of matter and space-time in the big bang

    SciTech Connect

    Mathews, G. J.; Yamazaki, D.; Kusakabe, M.; Cheoun, M.-K.

    2014-05-02

    We review the case for and against a bulk cosmic motion resulting from the quantum entanglement of our universe with the multiverse beyond our horizon. Within the current theory for the selection of the initial state of the universe from the landscape multiverse there is a generic prediction that pre-inflation quantum entanglement with other universes should give rise to a cosmic bulk flow with a correlation length of order horizon size and a velocity field relative to the expansion frame of the universe. Indeed, the parameters of this motion are are tightly constrained. A robust prediction can be deduced indicating that there should be an overall motion of of about 800 km/s relative to the background space time as defined by the cosmic microwave background (CMB). This talk will summarize the underlying theoretical motivation for this hypothesis. Of course our motion relative to the background space time (CMB dipole) has been known for decades and is generally attributed to the gravitational pull of the local super cluster. However, this cosmic peculiar velocity field has been recently deduced out to very large distances well beyond that of the local super cluster by using X-ray galaxy clusters as tracers of matter motion. This is achieved via the kinematic component of the Sunyaev-Zeldovich (KSZ) effect produced by Compton scattering of cosmic microwave background photons from the local hot intracluster gas. As such, this method measures peculiar velocity directly in the frame of the cluster. Similar attempts by our group and others have attempted to independently assess this bulk flow via Type la supernova redshifts. In this talk we will review the observation case for and against the existence of this bulk flow based upon the observations and predictions of the theory. If this interpretation is correct it has profound implications in that we may be observing for the first time both the physics that occurred before the big bang and the existence of the multiverse

  3. Observable T{sub 7} Lepton Flavor Symmetry at the Large Hadron Collider

    SciTech Connect

    Cao Qinghong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-04-01

    More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T{sub 7} and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

  4. Power and Performance Trade-offs for Space Time Adaptive Processing

    SciTech Connect

    Gawande, Nitin A.; Manzano Franco, Joseph B.; Tumeo, Antonino; Tallent, Nathan R.; Kerbyson, Darren J.; Hoisie, Adolfy

    2015-07-27

    Computational efficiency – performance relative to power or energy – is one of the most important concerns when designing RADAR processing systems. This paper analyzes power and performance trade-offs for a typical Space Time Adaptive Processing (STAP) application. We study STAP implementations for CUDA and OpenMP on two computationally efficient architectures, Intel Haswell Core I7-4770TE and NVIDIA Kayla with a GK208 GPU. We analyze the power and performance of STAP’s computationally intensive kernels across the two hardware testbeds. We also show the impact and trade-offs of GPU optimization techniques. We show that data parallelism can be exploited for efficient implementation on the Haswell CPU architecture. The GPU architecture is able to process large size data sets without increase in power requirement. The use of shared memory has a significant impact on the power requirement for the GPU. A balance between the use of shared memory and main memory access leads to an improved performance in a typical STAP application.

  5. Symmetry Breaking of H2 Dissociation by a Single Photon

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    breaking the molecular symmetry. A Molecular Paradox Symmetries in nature, such as the human body's bilateral symmetry and the snowflake's six-fold rotational symmetry, abound but...

  6. Dynamical symmetries in nuclear structure

    SciTech Connect

    Casten, R.F.

    1986-01-01

    In recent years the concept of dynamical symmetries in nuclei has witnessed a renaissance of interest and activity. Much of this work has been developed in the context of the Interacting Boson Approximation (or IBA) model. The appearance and properties of dynamical symmetries in nuclei will be reviewed, with emphasis on their characteristic signatures and on the role of the proton-neutron interaction in their formation, systematics and evolution. 36 refs., 20 figs.

  7. Parity-time symmetry broken by point-group symmetry

    SciTech Connect

    Fernndez, Francisco M. Garcia, Javier

    2014-04-15

    We discuss a parity-time (PT) symmetric Hamiltonian with complex eigenvalues. It is based on the dimensionless Schrdinger equation for a particle in a square box with the PT-symmetric potential V(x, y) = iaxy. Perturbation theory clearly shows that some of the eigenvalues are complex for sufficiently small values of |a|. Point-group symmetry proves useful to guess if some of the eigenvalues may already be complex for all values of the coupling constant. We confirm those conclusions by means of an accurate numerical calculation based on the diagonalization method. On the other hand, the Schrdinger equation with the potential V(x, y) = iaxy{sup 2} exhibits real eigenvalues for sufficiently small values of |a|. Point group symmetry suggests that PT-symmetry may be broken in the former case and unbroken in the latter one.

  8. Infinitesimal Legendre symmetry in the Geometrothermodynamics programme

    SciTech Connect

    García-Peláez, D.; López-Monsalvo, C. S.

    2014-08-15

    The work within the Geometrothermodynamics programme rests upon the metric structure for the thermodynamic phase-space. Such structure exhibits discrete Legendre symmetry. In this work, we study the class of metrics which are invariant along the infinitesimal generators of Legendre transformations. We solve the Legendre-Killing equation for a K-contact general metric. We consider the case with two thermodynamic degrees of freedom, i.e., when the dimension of the thermodynamic phase-space is five. For the generic form of contact metrics, the solution of the Legendre-Killing system is unique, with the sole restriction that the only independent metric function – Ω – should be dragged along the orbits of the Legendre generator. We revisit the ideal gas in the light of this class of metrics. Imposing the vanishing of the scalar curvature for this system results in a further differential equation for the metric function Ω which is not compatible with the Legendre invariance constraint. This result does not allow us to use Quevedo's interpretation of the curvature scalar as a measure of thermodynamic interaction for this particular class.

  9. Charge symmetry at the partonic level

    SciTech Connect

    Londergan, J. T.; Peng, J. C.; Thomas, A. W.

    2010-07-01

    This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.

  10. Fermion dynamical symmetry and identical bands

    SciTech Connect

    Guidry, M. |

    1994-10-01

    Recent general attention has been directed to the phenomenon of identical bands in both normally deformed and superdeformed nuclei. This paper discusses the possibility that such behavior results from a dynamical symmetry of the nuclear many-body system. Phenomenology and the basic principles of Lie algebras are used to place conditions on the acceptable properties of a candidate symmetry. We find that quite general arguments require that such a symmetry have a minimum of 21 generators with a microscopic fermion interpretation.

  11. Scars of symmetries in quantum chaos

    SciTech Connect

    Delande, D.; Gay, J.C.

    1987-10-19

    The hydrogen atom in a magnetic field is a classically chaotic Hamiltonian system. The energy-level fluctuations have been shown recently to obey a random-matrix model. Here we go beyond the statistical analysis by studying the destruction of the low-field dynamical symmetries. We especially establish the existence of scars of symmetries in the chaotic regime. The symmetry properties are no longer associated with one given level, but fractalized onto clusters of levels, generating a long-range order.

  12. Molecular Manipulations of Symmetry | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Molecular Manipulations of Symmetry Researchers have studied the effect of concentration on the activity and selectivity in a zirconium-catalyzed hydroamination reaction. In this...

  13. Hidden Rotational Symmetries in Magnetic Domain Patterns

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and magnetization history. Left: A typical speckle pattern from the CoPd multilayer. Color bar at bottom indicates relative intensity. The rotational symmetry of a scattering...

  14. Eugene Wigner and Fundamental Symmetry Principles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Eugene Wigner and Fundamental Symmetry Principles Patents * Resources with Additional ... Absorption of Thermal Neutrons in Uranium, DOE Technical Report, September 26, 1941 ...

  15. Hidden Rotational Symmetries in Magnetic Domain Patterns

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    One of the most powerful tools in the mathematics of science, from the physics of elementary particles to macroscopic matter, is symmetry, no doubt reflecting the...

  16. Black holes in a box: Toward the numerical evolution of black holes in AdS space-times

    SciTech Connect

    Witek, Helvi; Nerozzi, Andrea; Cardoso, Vitor; Herdeiro, Carlos; Sperhake, Ulrich; Zilhao, Miguel

    2010-11-15

    The evolution of black holes in ''confining boxes'' is interesting for a number of reasons, particularly because it mimics the global structure of anti-de Sitter geometries. These are nonglobally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data are supplemented by boundary conditions at the timelike conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirrorlike boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is observed only in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing boundary conditions, both of the Newman-Penrose scalars {Psi}{sub 4} and {Psi}{sub 0} are nontrivial in our setup, and we show that the numerical data verifies the expected relations between them.

  17. Teaching symmetry in the introductory physics curriculum

    SciTech Connect

    Hill, C. T.; Lederman, L. M.

    2000-01-01

    Modern physics is largely defined by fundamental symmetry principles and Noether's Theorem. Yet these are not taught, or rarely mentioned, to beginning students, thus missing an opportunity to reveal that the subject of physics is as lively and contemporary as molecular biology, and as beautiful as the arts. We prescribe a symmetry module to insert into the curriculum, of a week's length.

  18. Conformal symmetries of adiabatic modes in cosmology

    SciTech Connect

    Hinterbichler, Kurt; Khoury, Justin; Hui, Lam E-mail: lhui@astro.columbia.edu

    2012-08-01

    We remark on the existence of non-linearly realized conformal symmetries for scalar adiabatic perturbations in cosmology. These conformal symmetries are present for any cosmological background, beyond any slow-roll or quasi-de Sitter approximation. The dilatation transformation shifts the curvature perturbation by a constant, and corresponds to the well-known symmetry under spatial rescaling. We argue that the scalar sector is also invariant under special conformal transformations, which shift the curvature perturbation by a term linear in the spatial coordinates. We discuss whether these conformal symmetries can be extended to include tensor perturbations. Tensor modes introduce their own set of non-linearly realized symmetries. We identify an infinite set of large gauge transformations which maintain the transverse, traceless gauge condition, while shifting the tensor mode non-trivially.

  19. Dragging two-dimensional discrete solitons by moving linear defects

    SciTech Connect

    Brazhnyi, Valeriy A.; Malomed, Boris A.

    2011-07-15

    We study the mobility of small-amplitude solitons attached to moving defects which drag the solitons across a two-dimensional (2D) discrete nonlinear Schroedinger lattice. Findings are compared to the situation when a free small-amplitude 2D discrete soliton is kicked in a uniform lattice. In agreement with previously known results, after a period of transient motion the free soliton transforms into a localized mode pinned by the Peierls-Nabarro potential, irrespective of the initial velocity. However, the soliton attached to the moving defect can be dragged over an indefinitely long distance (including routes with abrupt turns and circular trajectories) virtually without losses, provided that the dragging velocity is smaller than a certain critical value. Collisions between solitons dragged by two defects in opposite directions are studied too. If the velocity is small enough, the collision leads to a spontaneous symmetry breaking, featuring fusion of two solitons into a single one, which remains attached to either of the two defects.

  20. SNAP:SN (Discrete Ordinates) Application Proxy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Application Proxy SNAP serves as a proxy application to model the performance of a modern discrete ordinates neutral particle transport application. June 29, 2013 software SNAP...

  1. Hybrid Discrete - Continuum Algorithms for Stochastic Reaction...

    Office of Scientific and Technical Information (OSTI)

    for Stochastic Reaction Networks. Citation Details In-Document Search Title: Hybrid Discrete - Continuum Algorithms for Stochastic Reaction Networks. Abstract not provided. ...

  2. Bending-induced Symmetry Breaking of Lithiation in Germanium...

    Office of Scientific and Technical Information (OSTI)

    Bending-induced Symmetry Breaking of Lithiation in Germanium Nanowires Citation Details In-Document Search Title: Bending-induced Symmetry Breaking of Lithiation in Germanium ...

  3. Flavor symmetry breaking and vacuum alignment on orbifolds (Journal...

    Office of Scientific and Technical Information (OSTI)

    widely studied for figuring out the masses and mixing angles of standard model fermions. ... MIXING; POTENTIALS; SCALAR FIELDS; STANDARD MODEL; SYMMETRY; SYMMETRY BREAKING; ...

  4. Fractional Topological Phases and Broken Time-Reversal Symmetry...

    Office of Scientific and Technical Information (OSTI)

    Fractional Topological Phases and Broken Time-Reversal Symmetry in Strained Graphene Title: Fractional Topological Phases and Broken Time-Reversal Symmetry in Strained Graphene ...

  5. Pair breaking versus symmetry breaking: Origin of the Raman modes...

    Office of Scientific and Technical Information (OSTI)

    Pair breaking versus symmetry breaking: Origin of the Raman modes in superconducting cuprates Citation Details In-Document Search Title: Pair breaking versus symmetry breaking:...

  6. Time-reversal symmetry breaking and the field theory of quantum chaos

    SciTech Connect

    Simons, B.D. [Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE (United Kingdom)] [Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE (United Kingdom); Agam, O. [NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540 (United States)] [NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540 (United States); Andreev, A.V. [Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States)] [Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States)

    1997-04-01

    Recent studies have shown that the quantum statistical properties of systems which are chaotic in their classical limit can be expressed in terms of an effective field theory. Within this description, spectral properties are determined by low energy relaxation modes of the classical evolution operator. It is in the interaction of these modes that quantum interference effects are encoded. In this paper we review this general approach and discuss how the theory is modified to account for time-reversal symmetry breaking. To keep our discussion general, we will also briefly describe how the theory is modified by the presence of an additional discrete symmetry such as inversion. Throughout, parallels are drawn between quantum chaotic systems and the properties of weakly disordered conductors. {copyright} {ital 1997 American Institute of Physics.}

  7. Runge-Lenz vector, accidental SU(2) symmetry, and unusual multiplets for motion on a cone

    SciTech Connect

    Al-Hashimi, M.H. Wiese, U.-J.

    2008-01-15

    We consider a particle moving on a cone and bound to its tip by 1/r or harmonic oscillator potentials. When the deficit angle of the cone divided by 2{pi} is a rational number, all bound classical orbits are closed. Correspondingly, the quantum system has accidental degeneracies in the discrete energy spectrum. An accidental SU(2) symmetry is generated by the rotations around the tip of the cone as well as by a Runge-Lenz vector. Remarkably, some of the corresponding multiplets have fractional 'spin' and unusual degeneracies.

  8. Unification of gauge, family, and flavor symmetries illustrated in gauged SU(12) models

    DOE PAGES [OSTI]

    Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.

    2016-04-25

    In this study, to explain quark and lepton masses and mixing angles, one has to extend the standard model, and the usual practice is to put the quarks and leptons into irreducible representations of discrete groups. We argue that discrete flavor symmetries (and their concomitant problems) can be avoided if we extend the gauge group. In the framework of SU(12) we give explicit examples of models having varying degrees of predictability obtained by scanning over groups and representations and identifying cases with operators contributing to mass and mixing matrices that need little fine- tuning of prefactors. Fitting with quark andmore » lepton masses run to the GUT scale and known mixing angles allows us to make predictions for the neutrino masses and hierarchy, the octant of the atmospheric mixing angle, leptonic CP violation, Majorana phases, and the effective mass observed in neutrinoless double beta decay.« less

  9. Workshop on electroweak symmetry breaking: proceedings

    SciTech Connect

    Hinchliffe, I.

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.

  10. Running Parallel Discrete Event Simulators on Sierra

    SciTech Connect

    Barnes, P. D.; Jefferson, D. R.

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  11. Equilibria with incompressible flows from symmetry analysis

    SciTech Connect

    Kuiroukidis, Ap E-mail: gthroum@cc.uoi.gr; Throumoulopoulos, G. N. E-mail: gthroum@cc.uoi.gr

    2015-08-15

    We identify and study new nonlinear axisymmetric equilibria with incompressible flow of arbitrary direction satisfying a generalized Grad Shafranov equation by extending the symmetry analysis presented by Cicogna and Pegoraro [Phys. Plasmas 22, 022520 (2015)]. In particular, we construct a typical tokamak D-shaped equilibrium with peaked toroidal current density, monotonically varying safety factor, and sheared electric field.

  12. Relativistic pseudospin symmetry and shell model Hamiltonians that conserve pseudospin symmetry

    SciTech Connect

    Ginocchio, Joseph N

    2010-09-21

    Professor Akito Arima and his colleagues discovered 'pseudospin' doublets forty-one years ago in spherical nuclei. These doublets were subsequently discovered in deformed nuclei. We show that pseudospin symmetry is an SU(2) symmetry of the Dirac Hamiltonian which occurs when the scalar and vector potentials are opposite in sign but equal in magnitude. This symmetry occurs independent of the shape of the nucleus: spherical, axial deformed, triaxial, and gamma unstable. We survey some of the evidence that pseudospin symmetry is approximately conserved for a Dirac Hamiltonian with realistic scalar and vector potentials by examining the energy spectra, the lower components of the Dirac eigenfunctions, the magnetic dipole and Gamow-Teller transitions in nuclei, the upper components of the Dirac eigenfunctions, and nucleon-nucleus scattering. We shall also suggest that pseudospin symmetry may have a fundamental origin in chiral symmetry breaking by examining QCD sum rules. Finally we derive the shell model Hamiltonians which conserve pseudospin and show that they involve tensor interactions.

  13. Cauchy-perturbative matching reexamined: Tests in spherical symmetry

    SciTech Connect

    Zink, Burkhard; Pazos, Enrique; Diener, Peter; Tiglio, Manuel

    2006-04-15

    During the last few years progress has been made on several fronts making it possible to revisit Cauchy-perturbative matching (CPM) in numerical relativity in a more robust and accurate way. This paper is the first in a series where we plan to analyze CPM in the light of these new results. One of the new developments is an understanding of how to impose constraint-preserving boundary conditions (CPBC); though most of the related research has been driven by outer boundaries, one can use them for matching interface boundaries as well. Another front is related to numerically stable evolutions using multiple patches, which in the context of CPM allows the matching to be performed on a spherical surface, thus avoiding interpolations between Cartesian and spherical grids. One way of achieving stability for such schemes of arbitrary high order is through the use of penalty techniques and discrete derivatives satisfying summation by parts (SBP). Recently, new, very efficient and high-order accurate derivatives satisfying SBP and associated dissipation operators have been constructed. Here we start by testing all these techniques applied to CPM in a setting that is simple enough to study all the ingredients in great detail: Einstein's equations in spherical symmetry, describing a black hole coupled to a massless scalar field. We show that with the techniques described above, the errors introduced by Cauchy-perturbative matching are very small, and that very long-term and accurate CPM evolutions can be achieved. Our tests include the accretion and ring-down phase of a Schwarzschild black hole with CPM, where we find that the discrete evolution introduces, with a low spatial resolution of {delta}r=M/10, an error of 0.3% after an evolution time of 1,000,000M. For a black hole of solar mass, this corresponds to approximately 5s, and is therefore at the lower end of timescales discussed e.g. in the collapsar model of gamma-ray burst engines.

  14. State of Modeling Symmetry in Hohlraums

    SciTech Connect

    Jones, O. S.

    2015-07-22

    Modeling radiation drive asymmetry is challenging problem whose agreement with data depends on the hohlraum gas fill density. Modeling to date uses the HYDRA code with crossbeam energy transfer (CBET) calculated separately, and backscattered light removed from the input laser. For high fill hohlraums (~>1 mg/cc), matching symmetry requires ad hoc adjustments to CBET during picket and peak of drive. For near-vacuum hohlraums, there is little CBET or backscatter, and drive is more waist-high than predicted. For intermediate fill densities (~0.6 mg/cc) there appears to be a region of small CBET and backscatter where symmetry is reasonably well modeled. A new technique where backscatter and CBET are done “inline” appears it could bring high fill simulations closer to data.

  15. Electroweak Symmetry Breaking in Historical Perspective

    DOE PAGES [OSTI]

    Quigg, Chris

    2015-10-01

    The discovery of the Higgs boson is a major milestone in our progress toward understanding the natural world. A particular aim of my review is to show how diverse ideas came together in the conception of electroweak symmetry breaking that led up to the discovery. Furthermore, I survey what we know now that we did not know before, what properties of the Higgs boson remain to be established, and what new questions we may now hope to address.

  16. Nonzero {theta}{sub 13} for neutrino mixing in a supersymmetric B-L gauge model with T{sub 7} lepton flavor symmetry

    SciTech Connect

    Cao Qinghong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-10-01

    We discuss how {theta}{sub 13}{ne}0 is accommodated in a recently proposed renormalizable model of neutrino mixing using the non-Abelian discrete symmetry T{sub 7} in the context of a supersymmetric extension of the standard model with gauged U(1){sub B-L}. We predict a correlation between {theta}{sub 13} and {theta}{sub 23}, as well as the effective neutrino mass m{sub ee} in neutrinoless double beta decay.

  17. Quark matter symmetry energy and quark stars

    SciTech Connect

    Chu, Peng-Cheng; Chen, Lie-Wen

    2014-01-10

    We extend the confined-density-dependent-mass (CDDM) model to include isospin dependence of the equivalent quark mass. Within the confined-isospin-density-dependent-mass (CIDDM) model, we study the quark matter symmetry energy, the stability of strange quark matter, and the properties of quark stars. We find that including isospin dependence of the equivalent quark mass can significantly influence the quark matter symmetry energy as well as the properties of strange quark matter and quark stars. While the recently discovered large mass pulsars PSR J1614–2230 and PSR J0348+0432 with masses around 2 M {sub ☉} cannot be quark stars within the CDDM model, they can be well described by quark stars in the CIDDM model. In particular, our results indicate that the two-flavor u-d quark matter symmetry energy should be at least about twice that of a free quark gas or normal quark matter within the conventional Nambu-Jona-Lasinio model in order to describe PSR J1614–2230 and PSR J0348+0432 as quark stars.

  18. Implications of current constraints on parton charge symmetry

    SciTech Connect

    J. T. Londergan; A. W. Thomas

    2005-11-01

    For the first time, charge symmetry breaking terms in parton distribution functions have been included in a global fit to high energy data. We review the results obtained for both valence and sea quark charge symmetry violation and compare these results with the most stringent experimental upper limits on charge symmetry violation for parton distribution functions, as well as with theoretical estimates of charge symmetry violation. The limits allowed in the global fit would tolerate a rather large violation of charge symmetry. We discuss the implications of this for various observables, including extraction of the Weinberg angle in neutrino DIS and the Gottfried and Adler sum rules.

  19. Electroless plating apparatus for discrete microsized particles

    DOEpatents

    Mayer, Anton

    1978-01-01

    Method and apparatus are disclosed for producing very uniform coatings of a desired material on discrete microsized particles by electroless techniques. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with each other for a time sufficient for such to occur.

  20. Electrolytic plating apparatus for discrete microsized particles

    DOEpatents

    Mayer, Anton

    1976-11-30

    Method and apparatus are disclosed for electrolytically producing very uniform coatings of a desired material on discrete microsized particles. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with a powered cathode for a time sufficient for such to occur.

  1. Probing symmetry and symmetry breaking in resonant soft-x-ray fluorescence spectra of molecules

    SciTech Connect

    Glans, P.; Gunnelin, K.; Guo, J.

    1997-04-01

    Conventional non-resonant soft X-ray emission brings about information about electronic structure through its symmetry and polarization selectivity, the character of which is governed by simple dipole rules. For centro-symmetric molecules with the emitting atom at the inversion center these rules lead to selective emission through the required parity change. For the more common classes of molecules which have lower symmetry or for systems with degenerate core orbitals (delocalized over identical sites), it is merely the local symmetry selectivity that provides a probe of the local atomic orbital contribution to the molecular orbital. For instance, in X-ray spectra of first row species the intensities essentially map the p-density at each particular atomic site, and, in a molecular orbital picture, the contribution of the local p-type atomic orbitals in the LCAO description of the molecular orbitals. The situation is different for resonant X-ray fluorescence spectra. Here strict parity and symmetry selectivity gives rise to a strong frequency dependence for all molecules with an element of symmetry. In addition to symmetry selectivity the strong frequency dependence of resonant X-ray emission is caused by the interplay between the shape of a narrow X-ray excitation energy function and the lifetime and vibrational broadenings of the resonantly excited core states. This interplay leads to various observable effects, such as linear dispersion, resonance narrowing and emission line (Stokes) doubling. Also from the point of view of polarization selectivity, the resonantly excited X-ray spectra are much more informative than the corresponding non-resonant spectra. Examples are presented for nitrogen, oxygen, and carbon dioxide molecules.

  2. Integrability of the symmetry reduced bosonic dynamics and soliton generating transformations in the low energy heterotic string effective theory

    SciTech Connect

    Alekseev, G. A.

    2009-08-15

    Integrable structure of the symmetry reduced dynamics of massless bosonic sector of the heterotic string effective action is presented. For string background equations that govern in the space-time of D dimensions (D{>=}4), the dynamics of interacting gravitational, dilaton, antisymmetric tensor and any number n{>=}0 of Abelian vector gauge fields, all depending only on two coordinates, we construct an equivalent (2d+n)x(2d+n)-matrix spectral problem (d=D-2). This spectral problem provides the base for the development of various solution constructing procedures (dressing transformations, integral equation methods). For the case of the absence of Abelian gauge fields, we present the soliton generating transformations of any background with interacting gravitational, dilaton, and the second rank antisymmetric tensor fields.

  3. Dirac or inverse seesaw neutrino masses with B L gauge symmetry and S? flavor symmetry

    DOE PAGES [OSTI]

    Ma, Ernest; Srivastava, Rahul

    2015-02-01

    Many studies have been made on extensions of the standard model with B L gauge symmetry. The addition of three singlet (right-handed) neutrinos renders it anomaly-free. It has always been assumed that the spontaneous breaking of B L is accomplished by a singlet scalar field carrying two units of B L charge. This results in a very natural implementation of the Majorana seesaw mechanism for neutrinos. However, there exists in fact another simple anomaly-free solution which allows Dirac or inverse seesaw neutrino masses. We show for the first time these new possibilities and discuss an application tomoreneutrino mixing with S? flavor symmetry.less

  4. Quantum cosmology based on discrete Feynman paths

    SciTech Connect

    Chew, Geoffrey F.

    2002-10-10

    Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''.

  5. Symmetry Energy as a Function of Density and Mass

    SciTech Connect

    Danielewicz, Pawel; Lee, Jenny

    2007-10-26

    Energy in nuclear matter is, in practice, completely characterized at different densities and asymmetries, when the density dependencies of symmetry energy and of energy of symmetric matter are specified. The density dependence of the symmetry energy at subnormal densities produces mass dependence of nuclear symmetry coefficient and, thus, can be constrained by that latter dependence. We deduce values of the mass dependent symmetry coefficients, by using excitation energies to isobaric analog states. The coefficient systematic, for intermediate and high masses, is well described in terms of the symmetry coefficient values of a{sub a}{sup V} = (31.5-33.5) MeV for the volume coefficient and a{sub a}{sup S} = (9-12) MeV for the surface coefficient. These two further correspond to the parameter values describing density dependence of symmetry energy, of L{approx}95 MeV and K{sub sym}{approx}25 MeV.

  6. Impact of the nuclear symmetry energy on the pygmy dipole resonance

    SciTech Connect

    Daoutidis, I.; Goriely, S.

    2011-08-15

    The correlation between the pygmy dipole strength and the symmetry energy of nuclear matter is reanalyzed. While previous calculations [A. Klimkiewicz et al., Phys. Rev. C 76, 051603(R) (2007); A. Carbone, G. Colo, A. Bracco, L.-G. Cao, P. F. Bortignon, F. Camera, and O. Wieland, Phys. Rev. C 81, 041301 (2010).] have clearly shown a direct correlation between both quantities, it remains unclear to what extent experimental as well as theoretical uncertainties can allow for an accurate determination of the symmetry energy. For this reason, we have recalculated the low-lying strength distributions of the giant dipole resonances for {sup 130}Sn and {sup 132}Sn that have been recently measured, taking into account the above uncertainties. The calculations are performed within two microscopic models, namely, the discrete quasiparticle random phase approximation (DRPA) and the quasiparticle continuum RPA, which is an extension of the DRPA that takes the coupling to the single-particle continuum into account in an exact way.

  7. Growth Mode and Substrate Symmetry Dependent Strain in Epitaxial...

    Office of Scientific and Technical Information (OSTI)

    Dependent Strain in Epitaxial Graphene. Citation Details In-Document Search Title: Growth Mode and Substrate Symmetry Dependent Strain in Epitaxial Graphene. Abstract not provided. ...

  8. Unified description of superconducting pairing symmetry in electron...

    Office of Scientific and Technical Information (OSTI)

    Title: Unified description of superconducting pairing symmetry in electron-doped Fe-based-... Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal ...

  9. SYMMETRY OF THE IBEX RIBBON OF ENHANCED ENERGETIC NEUTRAL ATOM...

    Office of Scientific and Technical Information (OSTI)

    HELIOSPHERE; INTERSTELLAR SPACE; KEV RANGE; MAGNETIC FIELDS; PLASMA; REFLECTION; SUN; SYMMETRY The circular ribbon of enhanced energetic neutral atom (ENA) emission...

  10. Symmetry Breaking of H2 Dissociation by a Single Photon

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    six-fold rotational symmetry, abound but are only approximately true because the objects of our macroscopic world are highly complex. Once we reduce their size and...

  11. The symmetry groups of bifurcations of integrable Hamiltonian systems

    SciTech Connect

    Orlova, E I

    2014-11-30

    Two-dimensional atoms are investigated; these are used to code bifurcations of the Liouville foliations of nondegenerate integrable Hamiltonian systems. To be precise, the symmetry groups of atoms with complexity at most 3 are under study. Atoms with symmetry group Z{sub p}?Z{sub q} are considered. It is proved that Z{sub p}?Z{sub q} is the symmetry group of atoric atom. The symmetry groups of all nonorientable atoms with complexity at most 3 are calculated. The concept of ageodesic atom is introduced. Bibliography: 9 titles.

  12. Travel Funding for Quantum Theory and Symmetries 6

    SciTech Connect

    Das, Sumit R.; Shapere, Alfred D.

    2009-07-01

    This is the proceedings volume of the 6th International Symposium on Quantum Theory and Symmetries (QTS6), held in Lexington KY, 20-25 July 2009.

  13. Breaking of Symmetry in Graphene Growth on Metal Substrates ...

    Office of Scientific and Technical Information (OSTI)

    Breaking of Symmetry in Graphene Growth on Metal Substrates Not Available Temp HTML Storage 2: Artyukhov, Vasilii I.; Hao, Yufeng; Ruoff, Rodney S.; Yakobson, Boris I. Temp Plain ...

  14. Instabilities of an anisotropically expanding non-Abelian plasma: 1D+3V discretized hard-loop simulations

    SciTech Connect

    Rebhan, Anton; Attems, Maximilian; Strickland, Michael

    2008-08-15

    Non-Abelian plasma instabilities play a crucial role in the nonequilibrium dynamics of a weakly coupled quark-gluon plasma, and they importantly modify the standard perturbative bottom-up thermalization scenario in heavy-ion collisions. Using the auxiliary-field formulation of the hard-loop effective theory, we study numerically the real-time evolution of instabilities in an anisotropic collisionless Yang-Mills plasma undergoing longitudinal free-streaming expansion. In this first real-time lattice simulation we consider the most unstable modes, long-wavelength coherent color fields that are constant in transverse directions and which therefore are effectively 1+1 dimensional in space-time, except for the auxiliary fields which also depend on discretized momentum rapidity and transverse velocity components. We reproduce the semianalytical results obtained previously for the Abelian regime, and we determine the nonlinear effects which occur when the instabilities have grown such that non-Abelian interactions become important.

  15. Modeling quasi-lattice with octagonal symmetry

    SciTech Connect

    Girzhon, V. V.; Smolyakov, O. V.; Zakharenko, M. I.

    2014-11-15

    We prove the possibility to use the method of modeling of a quasi-lattice with octagonal symmetry similar to that proposed earlier for the decagonal quasicrystal. The method is based on the multiplication of the groups of basis sites according to specified rules. This model is shown to be equivalent to the method of the periodic lattice projection, but is simpler because it considers merely two-dimensional site groups. The application of the proposed modeling procedure to the reciprocal lattice of octagonal quasicrystals shows a fairly good matching with the electron diffraction pattern. Similarly to the decagonal quasicrystals, the possibility of three-index labeling of the diffraction reflections is exhibited in this case. Moreover, the ascertained ratio of indices provides information on the intensity of diffraction reflections.

  16. Symmetry tests in photo-pion production

    SciTech Connect

    Bernstein, A. M.

    2013-11-07

    Small angle electron scattering with intense electron beams opens up the possibility of performing almost real photon induced reactions with thin, polarized hydrogen and few body targets, allowing for the detection of low energy charged particles. This promises to be much more effective than conventional photon tagging techniques. For photo-pion reactions some fundamental new possibilities include: tests of charge symmetry in the N-N system by measurement of the neutron-neutron scattering length a{sub nn} in the and ggrD ? ?{sup +}nn reaction; tests of isospin breaking due to the mass difference of the up and down quarks; measurements with polarized targets are sensitive to ?N phase shifts and will test the validity of the Fermi-Watson (final state interaction) theorem. All of these experiments will test the accuracy and energy region of validity of chiral effective theories.

  17. Dark matter and gauged flavor symmetries

    SciTech Connect

    Bishara, Fady; Greljo, Admir; Kamenik, Jernej F.; Stamou, Emmanuel; Zupan, Jure

    2015-12-21

    We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental Z3 symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly 0.5 TeV and 5 TeV if the DM multiplet mass is split only radiatively. In general, however, no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.

  18. Dark matter and gauged flavor symmetries

    DOE PAGES [OSTI]

    Bishara, Fady; Greljo, Admir; Kamenik, Jernej F.; Stamou, Emmanuel; Zupan, Jure

    2015-12-21

    We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental Z3 symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly 0.5 TeV and 5 TeV if the DM multiplet mass is split only radiatively. In general, however,more » no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.« less

  19. Construction of Discrete Time Shadow Price

    SciTech Connect

    Rogala, Tomasz Stettner, Lukasz

    2015-12-15

    In the paper expected utility from consumption over finite time horizon for discrete time markets with bid and ask prices and strictly concave utility function is considered. The notion of weak shadow price, i.e. an illiquid price, depending on the portfolio, under which the model without bid and ask price is equivalent to the model with bid and ask price is introduced. Existence and the form of weak shadow price is shown. Using weak shadow price usual (called in the paper strong) shadow price is then constructed.

  20. Compartmentalization analysis using discrete fracture network models

    SciTech Connect

    La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  1. Pseudo-Symmetry and Majorana Operators in pf-Shell

    SciTech Connect

    Valencia, J. P.; Wu, H. C.

    2007-10-26

    The Majorana operator of the pseudo ds-shell preserves the SU-tilde(4) symmetry, and in a unified manner it reproduces reasonably well the ground state energies of the nine nuclei in this shell. The study of {beta} decay in the same shell provides further support for the SU-tilde(4) symmetry.

  2. Self-consistent Models of Strong Interaction with Chiral Symmetry

    DOE R&D Accomplishments

    Nambu, Y.; Pascual, P.

    1963-04-01

    Some simple models of (renormalizable) meson-nucleon interaction are examined in which the nucleon mass is entirely due to interaction and the chiral ( gamma {sub 5}) symmetry is "broken'' to become a hidden symmetry. It is found that such a scheme is possible provided that a vector meson is introduced as an elementary field. (auth)

  3. Symmetry remnants in the face of competing interactions in nuclei

    SciTech Connect

    Leviatan, A.; Macek, M.

    2015-10-15

    Detailed description of nuclei necessitates model Hamiltonians which break most dynamical symmetries. Nevertheless, generalized notions of partial and quasi dynamical symmetries may still be applicable to selected subsets of states, amidst a complicated environment of other states. We examine such scenarios in the context of nuclear shape-phase transitions.

  4. The role of gauge symmetry in spintronics

    SciTech Connect

    Sobreiro, R.F.

    2011-12-15

    In this work we employ a field theoretical approach to explain the nature of the non-conserved spin current in spintronics. In particular, we consider the usual U(1) gauge theory for the electromagnetism at classical level in order to obtain the broken continuity equation involving the spin current and spin-transfer torque. Inspired by the recent work of A. Vernes, B. L. Gyorffy and P. Weinberger where they obtain such an equation in terms of relativistic quantum mechanics, we formalize their result in terms of the well known currents of field theory such as the Bargmann-Wigner current and the chiral current. Thus, an interpretation of spintronics is provided in terms of Noether currents (conserved or not) and symmetries of the electromagnetism. In fact, the main result of the present work is that the non-conservation of the spin current is associated with the gauge invariance of physical observables where the breaking term is proportional to the chiral current. Moreover, we generalize their result by including the electromagnetic field as a dynamical field instead of an external one.

  5. Leptonic mixing, family symmetries, and neutrino phenomenology

    SciTech Connect

    Medeiros Varzielas, I. de [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Fakultaet fuer Physik, Technische Universitaet Dortmund D-44221 Dortmund (Germany); Gonzalez Felipe, R. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro, 1959-007 Lisboa (Portugal); Serodio, H. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-02-01

    Tribimaximal leptonic mixing is a mass-independent mixing scheme consistent with the present solar and atmospheric neutrino data. By conveniently decomposing the effective neutrino mass matrix associated to it, we derive generic predictions in terms of the parameters governing the neutrino masses. We extend this phenomenological analysis to other mass-independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis. The type of seesaw mechanism responsible for neutrino masses plays a role here, as it restricts the choices of family representations and affects the viability of leptogenesis. We also present a recipe to generalize a given tribimaximal model to an associated model with a different mass-independent mixing scheme, which preserves the connection between the group structure and phenomenology as in the original model. This procedure is explicitly illustrated by constructing toy models with the transpose tribimaximal, bimaximal, golden ratio, and hexagonal leptonic mixing patterns.

  6. Dynamical Symmetries Reflected in Realistic Interactions

    SciTech Connect

    Sviratcheva, K.D.; Draayer, J.P.; /Louisiana State U.; Vary, J.P.; /Iowa State U. /LLNL, Livermore /SLAC

    2007-04-06

    Realistic nucleon-nucleon (NN) interactions, derived within the framework of meson theory or more recently in terms of chiral effective field theory, yield new possibilities for achieving a unified microscopic description of atomic nuclei. Based on spectral distribution methods, a comparison of these interactions to a most general Sp(4) dynamically symmetric interaction, which previously we found to reproduce well that part of the interaction that is responsible for shaping pairing-governed isobaric analog 0{sup +} states, can determine the extent to which this significantly simpler model Hamiltonian can be used to obtain an approximate, yet very good description of low-lying nuclear structure. And furthermore, one can apply this model in situations that would otherwise be prohibitive because of the size of the model space. In addition, we introduce a Sp(4) symmetry breaking term by including the quadrupole-quadrupole interaction in the analysis and examining the capacity of this extended model interaction to imitate realistic interactions. This provides a further step towards gaining a better understanding of the underlying foundation of realistic interactions and their ability to reproduce striking features of nuclei such as strong pairing correlations or collective rotational motion.

  7. Energy-pointwise discrete ordinates transport methods

    SciTech Connect

    Williams, M.L.; Asgari, M.; Tashakorri, R.

    1997-06-01

    A very brief description is given of a one-dimensional code, CENTRM, which computes a detailed, space-dependent flux spectrum in a pointwise-energy representation within the resolved resonance range. The code will become a component in the SCALE system to improve computation of self-shielded cross sections, thereby enhancing the accuracy of codes such as KENO. CENTRM uses discrete-ordinates transport theory with an arbitrary angular quadrature order and a Legendre expansion of scattering anisotropy for moderator materials and heavy nuclides. The CENTRM program provides capability to deterministically compute full energy range, space-dependent angular flux spectra, rigorously accounting for resonance fine-structure and scattering anisotropy effects.

  8. Discrete phase space based on finite fields (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Discrete phase space based on finite fields Citation Details In-Document ... OSTI Identifier: 20649890 Resource Type: Journal Article Resource Relation: Journal Name: ...

  9. ISO(4,1) symmetry in the EFT of inflation

    SciTech Connect

    Creminelli, Paolo; Emami, Razieh; Simonović, Marko; Trevisan, Gabriele E-mail: emami@mail.ipm.ir E-mail: gtrevi@sissa.it

    2013-07-01

    In DBI inflation the cubic action is a particular linear combination of the two, otherwise independent, cubic operators π-dot {sup 3} and π-dot (∂{sub i}π){sup 2}. We show that in the Effective Field Theory (EFT) of inflation this is a consequence of an approximate 5D Poincar and apos;e symmetry, ISO(4,1), non-linearly realized by the Goldstone π. This symmetry uniquely fixes, at lowest order in derivatives, all correlation functions in terms of the speed of sound c{sub s}. In the limit c{sub s} → 1, the ISO(4,1) symmetry reduces to the Galilean symmetry acting on π. On the other hand, we point out that the non-linear realization of SO(4,2), the isometry group of 5D AdS space, does not fix the cubic action in terms of c{sub s}.

  10. Symmetry-Breaking Orbital Anisotropy Observed for Detwinned Ba...

    Office of Scientific and Technical Information (OSTI)

    Symmetry-Breaking Orbital Anisotropy Observed for Detwinned Ba(Fe (1-X) Co (X) ) (2) As (2) Above the Spin Density Wave Transition Citation Details In-Document Search Title: ...

  11. Erratum: "Impact of symmetry on the ferroelectric properties...

    Office of Scientific and Technical Information (OSTI)

    Impact of symmetry on the ferroelectric properties of CaTiO3 thin films" Appl. Phys. Lett. 106, 162904 (2015) Citation Details In-Document Search Title: Erratum: "Impact of ...

  12. Symmetry Methods for a Geophysical Mass Flow Model

    SciTech Connect

    Torrisi, Mariano; Tracina, Rita

    2011-09-14

    In the framework of symmetry analysis, the class of 2 x 2 PDE systems to whom belong the Savage and Hutter model and the Iverson model is considered. New classes of exact solutions are found.

  13. Approach to Developing Predictive Capability for Hohlraum Drive and Symmetry

    SciTech Connect

    Jones, O. S.

    2015-07-22

    Currently, we do not have the ability to predict the hohlraum drive and symmetry without requiring ad hoc adjustments to physics models. This document describes a plan for code improvements and focused physics validation experiments.

  14. Strongly broken Peccei-Quinn symmetry in the early Universe

    SciTech Connect

    Takahashi, Fuminobu; Yamada, Masaki

    2015-10-06

    We consider QCD axion models where the Peccei-Quinn symmetry is badly broken by a larger amount in the past than in the present, in order to avoid the axion isocurvature problem. Specifically we study supersymmetric axion models where the Peccei-Quinn symmetry is dynamically broken by either hidden gauge interactions or the SU(3){sub c} strong interactions whose dynamical scales are temporarily enhanced by the dynamics of flat directions. The former scenario predicts a large amount of self-interacting dark radiation as the hidden gauge symmetry is weakly coupled in the present Universe. We also show that the observed amount of baryon asymmetry can be generated by the QCD axion dynamics via spontaneous baryogenesis. We briefly comment on the case in which the PQ symmetry is broken by a non-minimal coupling to gravity.

  15. Yoichiro Nambu and the Mechanism of Spontaneous Broken Symmetries in

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Subatomic Physics Yoichiro Nambu and the Mechanism of Spontaneous Broken Symmetries in Subatomic Physics Resources with Additional Information * Awards Yoichiro Nambu Credit: University of Chicago Yoichiro Nambu was awarded the 2008 Nobel Prize in Physics "for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics". Nambu 'has revolutionized modern scientific ideas about the nature of the most fundamental particles and the space through which they move.

  16. Numerical preservation of symmetry properties of continuum problems

    SciTech Connect

    Caramana, E.J.; Whalen, P.

    1997-12-31

    The authors investigate the problem of perfectly preserving a symmetry associated naturally with one coordinate system when calculated in a different coordinate system. This allows a much wider range of problems that may be viewed as perturbations of the given symmetry to be investigated. They study the problem of preserving cylindrical symmetry in two-dimensional cartesian geometry and spherical symmetry in two-dimensional cylindrical geometry. They show that this can be achieved by a simple modification of the gradient operator used to compute the force in a staggered grid Lagrangian hydrodynamics algorithm. In the absence of the supposed symmetry they show that the new operator produces almost no change in the results because it is always close to the original gradient operator. Their technique this results in a subtle manipulation of the spatial truncation error in favor of the assumed symmetry but only to the extent that it is naturally present in the physical situation. This not only extends the range of previous algorithms and the use of new ones for these studies, but for spherical or cylindrical calculations reduces the sensitivity of the results to grid setup with equal angular zoning that has heretofore been necessary with these problems. Although this work is in two-dimensions, it does point the way to solving this problem in three-dimensions. This is particularly important for the ASCI initiative. The manner in which these results can be extended to three-dimensions will be discussed.

  17. Self-interacting scalar dark matter with local Z{sub 3} symmetry

    SciTech Connect

    Ko, P.; Tang, Yong E-mail: ytang@kias.re.kr

    2014-05-01

    We construct a self-interacting scalar dark matter (DM) model with local discrete Z{sub 3} symmetry that stabilizes a weak scale scalar dark matter X. The model assumes a hidden sector with a local U(1){sub X} dark gauge symmetry, which is broken spontaneously into Z{sub 3} subgroup by nonzero VEV of dark Higgs field ?{sub X} ((?{sub X})?0). Compared with global Z{sub 3} DM models, the local Z{sub 3} model has two new extra fields: a dark gauge field Z{sup '} and a dark Higgs field ? (a remnant of the U(1){sub X} breaking). After imposing various constraints including the upper bounds on the spin-independent direct detection cross section and thermal relic density, we find that the scalar DM with mass less than 125 GeV is allowed in the local Z{sub 3} model, in contrary to the global Z{sub 3} model. This is due to new channels in the DM pair annihilations open into Z{sup '} and ? in the local Z{sub 3} model. Most parts of the newly open DM mass region can be probed by XENON1T and other similar future experiments. Also if ? is light enough (a few MeV ?

  18. Nucleon-Nucleon Scattering Parameters in the Limit of SU(3) Flavor Symmetry

    SciTech Connect

    Beane, Silas; Chang, Emanuel; Savage, Martin; Lin, Huey-Wen; Orginos, Konstantinos; Cohen, Saul; Detmold, William; Luu, Tom; Parreno, Assumpta; Junnarkar, Parikshit; Walker-Loud, Andre Paul

    2013-08-01

    The scattering lengths and effective ranges that describe low-energy nucleon-nucleon scattering are calculated in the limit of SU(3)-flavor symmetry at the physical strange-quark mass with Lattice Quantum Chromodynamics. The calculations are performed with an isotropic clover discretization of the quark action in three volumes with spatial extents of L ~ 3.4 fm, 4.5 fm and 6.7 fm, and with a lattice spacing of b ~ 0.145 fm. With determinations of the energies of the two-nucleon systems ?both of which contain bound states at these light-quark masses? at rest and moving in the lattice volume, Luscher?s method is used to determine the low-energy phase shift in each channel, from which the scattering length and effective range are obtained. The scattering parameters in the {sup 1}S{sub 0} channel are found to be m{sub ?}a{sup ({sup 1}S{sub 0})} = 9.51+/-0.74+/-1.00 and m{sub ?}r{sup ({sup 1}S{sub 0})} = 4.76+/-0.37+/-0.40, and in the {sup 3}S{sub 1} channel are m{sub ?}a{sup ({sup 3}S{sub 1})} = 7.45+/-0.57+/-0.71 and m{sub ?}r{sup ({sup 3}S{sub 1})} = 3.71+/-0.28+/-0.28. These values are consistent with the two-nucleon system exhibiting Wigner?s supermultiplet symmetry, which becomes exact in the limit of large-N{sub c}.

  19. HODIF:High-Order Discretizations, Interpolations and

    Energy Science and Technology Software Center

    2006-06-20

    This software, a library, contains FORTRAN77 subroutines to calculate first and second derivatives up to 8th order, interpolations (1D and 2D) up to 10th order and filters up to 14th order. Only even orders are addressed and finite-difference stencils are implemented on a vertex-centered mesh. The primary aim of this library is to be used in block-structured adaptive mesh simulations where high order is desired. The interpolants in this library are essentially designed to domore » prolongations and restrictions between levels of rfinement - however, they assume that the refinement ratio is 2. The filters are provided to remove high wavenumber content from solutions in case Runge phenomenon occurs - a common occurrence in case of marginal resolution of the solution. Details of the derivation and use are to be found in "Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations and filters", by J. Ray, C.A. Kennedy, S. Lefantzi and H.N. Najm, Sandia Technical Report, SAND2005-7981. The software comes with a User's Guide and examples how to use it.« less

  20. Gedanken Worlds without Higgs: QCD-Induced Electroweak Symmetry Breaking

    SciTech Connect

    Quigg, Chris; Shrock, Robert; /YITP, Stony Brook

    2009-01-01

    To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symmetry breaking. Two models incorporate the standard SU(3){sub c} {circle_times} SU(2){sub L} {circle_times} U(1){sub Y} gauge symmetry and fermion content similar to that of the standard model. The first class--like the standard electroweak theory--contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of electroweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left-right-symmetric SU(3){sub c} {circle_times} SU(2){sub L} {circle_times} SU(2){sub R} {circle_times} U(1)B?L gauge group. In a fourth class of models, built on SU(4){sub PS} {circle_times} SU(2){sub L} {circle_times} SU(2){sub R} gauge symmetry, lepton number is treated as a fourth color. Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world. The Higgs-free models not only provide informative contrasts to the real world, but also lead us to consider intriguing issues in the application of field theory to the real world.

  1. Light Nuclei and HyperNuclei from Quantum Chromodynamics in the Limit of SU(3) Flavor Symmetry

    SciTech Connect

    Beane, S R; Cohen, S D; Detmold, W; Lin, H W; Luu, T C; Orginos, K; Parreno, A; Savage, M J

    2013-02-01

    The binding energies of a range of nuclei and hypernuclei with atomic number A <= 4 and strangeness |s| <= 2, including the deuteron, di-neutron, H-dibaryon, {sup 3}He, {sub {Lambda}}{sup 3}He, {sub {Lambda}}{sup 4}He, and {sub {Lambda}{Lambda}}{sup 4}He, are calculated in the limit of flavor-SU(3) symmetry at the physical strange quark mass with quantum chromodynamics (without electromagnetic interactions). The nuclear states are extracted from Lattice QCD calculations performed with n{sub f}=3 dynamical light quarks using an isotropic clover discretization of the quark-action in three lattice volumes of spatial extent L ~ 3.4 fm, 4.5 fm and 6.7 fm, and with a single lattice spacing b ~ 0.145 fm.

  2. Multidimensional electron-photon transport with standard discrete ordinates codes

    SciTech Connect

    Drumm, C.R.

    1995-12-31

    A method is described for generating electron cross sections that are compatible with standard discrete ordinates codes without modification. There are many advantages of using an established discrete ordinates solver, e.g. immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and man-made radiation environments. The cross sections have been successfully used in the DORT, TWODANT and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electronphoton transport problems.

  3. A vault ribonucleoprotein particle exhibiting 39-fold dihedral symmetry

    SciTech Connect

    Kato, Koji; Tanaka, Hideaki; Sumizawa, Tomoyuki; Yoshimura, Masato; Yamashita, Eiki; Iwasaki, Kenji; Tsukihara, Tomitake

    2008-05-01

    A vault from rat liver was crystallized in space group C2. Rotational symmetry searches indicated that the particle has 39-fold dihedral symmetry. Vault is a 12.9 MDa ribonucleoprotein particle with a barrel-like shape, two protruding caps and an invaginated waist structure that is highly conserved in a wide variety of eukaryotes. Multimerization of the major vault protein (MVP) is sufficient to assemble the entire exterior shell of the barrel-shaped vault particle. Multiple copies of two additional proteins, vault poly(ADP-ribose) polymerase (VPARP) and telomerase-associated protein 1 (TEP1), as well as a small vault RNA (vRNA), are also associated with vault. Here, the crystallization of vault particles is reported. The crystals belong to space group C2, with unit-cell parameters a = 708.0, b = 385.0, c = 602.9 Å, β = 124.8°. Rotational symmetry searches based on the R factor and correlation coefficient from noncrystallographic symmetry (NCS) averaging indicated that the particle has 39-fold dihedral symmetry.

  4. Symmetries for Galileons and DBI scalars on curved space

    SciTech Connect

    Goon, Garrett; Hinterbichler, Kurt; Trodden, Mark E-mail: kurthi@physics.upenn.edu

    2011-07-01

    We introduce a general class of four-dimensional effective field theories which include curved space Galileons and DBI theories possessing nonlinear shift-like symmetries. These effective theories arise from purely gravitational actions for 3-branes probing higher dimensional spaces. In the simplest case of a Minkowski brane embedded in a higher dimensional Minkowski background, the resulting four-dimensional effective field theory is the Galileon one, with its associated Galilean symmetry and second order equations. However, much more general structures are possible. We construct the general theory and explicitly derive the examples obtained from embedding maximally symmetric branes in maximally symmetric ambient spaces. Among these are Galileons and DBI theories with second order equations that live on de Sitter or anti-de Sitter space, and yet retain the same number of symmetries as their flat space counterparts, symmetries which are highly non-trivial from the 4d point of view. These theories have a rich structure, containing potentials for the scalar fields, with masses protected by the symmetries. These models may prove relevant to the cosmology of both the early and late universe.

  5. New ways to leptogenesis with gauged B-L symmetry

    DOE PAGES [OSTI]

    Babu, K.S.; Meng, Yanzhi; Tavartkiladze, Zurab

    2009-10-01

    We show that in supersymmetric models with gauged B-L symmetry, there is a new source for cosmological lepton asymmetry. The Higgs bosons responsible for B-L gauge symmetry breaking decay dominantly into right-handed sneutrinos N~ and N~* producing an asymmetry in N~ over N~*. This can be fully converted into ordinary lepton asymmetry in the decays of N~. In simple models with gauged B-L symmetry we show that resonant/soft leptogenesis is naturally realized. Supersymmetry guarantees quasi-degenerate scalar states, while soft breaking of SUSY provides the needed CP violation. Acceptable values of baryon asymmetry are obtained without causing serious problems with gravitinomore » abundance.« less

  6. Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement

    SciTech Connect

    Dershowitz, William S.; Curran, Brendan; Einstein, Herbert; LaPointe, Paul; Shuttle, Dawn; Klise, Kate

    2002-07-26

    The report presents summaries of technology development for discrete feature modeling in support of the improved oil recovery (IOR) for heterogeneous reservoirs. In addition, the report describes the demonstration of these technologies at project study sites.

  7. Hybrid discrete/continuum algorithms for stochastic reaction networks

    SciTech Connect

    Safta, Cosmin Sargsyan, Khachik Debusschere, Bert Najm, Habib N.

    2015-01-15

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker–Planck equation. The Fokker–Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components. The numerical construction at the interface between the discrete and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. The performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.

  8. Hybrid discrete/continuum algorithms for stochastic reaction networks

    SciTech Connect

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; Najm, Habib N.

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discrete and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.

  9. Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement

    SciTech Connect

    Dershowitz, William S.; Cladouhos, Trenton

    2001-09-06

    This progress report describes activities during the period January 1, 1999 to June 30, 1999. Work was carried out on 21 tasks. The major activity during the reporting period was the development and preliminary application of discrete fracture network (DFN) models for Stoney Point, South Oregon Basin, and North Oregon Basins project study sites. In addition, research was carried out on analysis algorithms for discrete future orientation.

  10. Isolation of Discrete Nanoparticle-DNA Conjugates for Plasmonic Applications

    SciTech Connect

    Alivisatos, Paul; Claridge, Shelley A.; Liang, Huiyang W.; Basu, Sourav Roger; Frechet, Jean M.J.; Alivisatos, A. Paul

    2008-04-11

    Discrete DNA-gold nanoparticle conjugates with DNA lengths as short as 15 bases for both 5 nm and 20 nm gold particles have been purified by anion-exchange HPLC. Conjugates comprising short DNA (<40 bases) and large gold particles (>_ 20 nm) are difficult to purify by other means, and are potential substrates for plasmon coupling experiments. Conjugate purity is demonstrated by hybridizing complementary conjugates to form discrete structures, which are visualized by TEM.

  11. Discrete Choice Analysis: Hydrogen FCV Demand Potential | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Discrete Choice Analysis: Hydrogen FCV Demand Potential Discrete Choice Analysis: Hydrogen FCV Demand Potential Presentation by Cory Welch at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. scenario_analysis_welch1_07.pdf (2.37 MB) More Documents & Publications HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model Analysis Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential

  12. DNA Origami Directed Self-Assembly of Discrete Silver Nanoparticle

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Architectures DNA Origami Directed Self-Assembly of Discrete Silver Nanoparticle Architectures Authors: Pal, S., Deng, Z., Ding, B., Yan, H., and Liu, Y. Title: DNA Origami Directed Self-Assembly of Discrete Silver Nanoparticle Architectures Source: Angewandte Chemie International Edition Year: 2010 Volume: 49 Pages: 2700-2704 ABSTRACT: DNA origami nanostructures were utilized as spatially addressable templates to organize noble-metal nanoparticles of silver and gold into well-defined

  13. Symmetry and conservation laws in semiclassical wave packet dynamics

    SciTech Connect

    Ohsawa, Tomoki

    2015-03-15

    We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum as well as naturally corresponds to the quantum picture.

  14. Symmetries for Galileons and DBI scalars on curved space

    DOE PAGES [OSTI]

    Goon, Garrett; Hinterbichler, Kurt; Trodden, Mark

    2011-07-08

    We introduced a general class of four-dimensional effective field theories which include curved space Galileons and DBI theories possessing nonlinear shift-like symmetries. These effective theories arise from purely gravitational actions and may prove relevant to the cosmology of both the early and late universe.

  15. The Eightfold Way: A Theory of Strong Interaction Symmetry

    DOE R&D Accomplishments

    Gell-Mann, M.

    1961-03-15

    A new model of the higher symmetry of elementary particles is introduced ln which the eight known baryons are treated as a supermultiplet, degenerate in the limit of unitary symmetry but split into isotopic spin multiplets by a symmetry-breaking term. The symmetry violation is ascribed phenomenologically to the mass differences. The baryons correspond to an eight-dimensional irreducible representation of the unitary group. The pion and K meson fit into a similar set of eight particles along with a predicted pseudoscalar meson X {sup o} having I = 0. A ninth vector meson coupled to the baryon current can be accommodated naturally in the scheme. It is predicted that the eight baryons should all have the same spin and parity and that pseudoscalar and vector mesons should form octets with possible additional singlets. The mathematics of the unitary group is described by considering three fictitious leptons, nu , e {sup -}, and mu {sup -}, which may throw light on the structure of weak interactions. (D. L.C.)

  16. Entanglement entropy in quantum spin chains with broken reflection symmetry

    SciTech Connect

    Kadar, Zoltan; Zimboras, Zoltan

    2010-09-15

    We investigate the entanglement entropy of a block of L sites in quasifree translation-invariant spin chains concentrating on the effect of reflection-symmetry breaking. The Majorana two-point functions corresponding to the Jordan-Wigner transformed fermionic modes are determined in the most general case; from these, it follows that reflection symmetry in the ground state can only be broken if the model is quantum critical. The large L asymptotics of the entropy are calculated analytically for general gauge-invariant models, which have, until now, been done only for the reflection-symmetric sector. Analytical results are also derived for certain nongauge-invariant models (e.g., for the Ising model with Dzyaloshinskii-Moriya interaction). We also study numerically finite chains of length N with a nonreflection-symmetric Hamiltonian and report that the reflection symmetry of the entropy of the first L spins is violated but the reflection-symmetric Calabrese-Cardy formula is recovered asymptotically. Furthermore, for noncritical reflection-symmetry-breaking Hamiltonians, we find an anomaly in the behavior of the saturation entropy as we approach the critical line. The paper also provides a concise but extensive review of the block-entropy asymptotics in translation-invariant quasifree spin chains with an analysis of the nearest-neighbor case and the enumeration of the yet unsolved parts of the quasifree landscape.

  17. Aligned vertical fractures, HTI reservoir symmetry, and Thomsenseismic anisotropy parameters

    SciTech Connect

    Berryman, James G.

    2007-06-27

    The Sayers and Kachanov (1991) crack-influence parametersare shown to be directly related to Thomsen (1986) weak-anisotropyseismic parameters for fractured reservoirs when the crack density issmall enough. These results are then applied to seismic wave propagationin reservoirs having HTI symmetry due to aligned vertical fractures. Theapproach suggests a method of inverting for fracture density from wavespeed data.

  18. Analytic derivation of an approximate SU(3) symmetry inside the symmetry triangle of the interacting boson approximation model

    SciTech Connect

    Bonatsos, Dennis; Karampagia, S.; Casten, R. F.

    2011-05-15

    Using a contraction of the SU(3) algebra to the algebra of the rigid rotator in the large-boson-number limit of the interacting boson approximation (IBA) model, a line is found inside the symmetry triangle of the IBA, along which the SU(3) symmetry is preserved. The line extends from the SU(3) vertex to near the critical line of the first-order shape/phase transition separating the spherical and prolate deformed phases, and it lies within the Alhassid-Whelan arc of regularity, the unique valley of regularity connecting the SU(3) and U(5) vertices in the midst of chaotic regions. In addition to providing an explanation for the existence of the arc of regularity, the present line represents an example of an analytically determined approximate symmetry in the interior of the symmetry triangle of the IBA. The method is applicable to algebraic models possessing subalgebras amenable to contraction. This condition is equivalent to algebras in which the equilibrium ground state and its rotational band become energetically isolated from intrinsic excitations, as typified by deformed solutions to the IBA for large numbers of valence nucleons.

  19. Modelling and real-time simulation of continuous-discrete systems in mechatronics

    SciTech Connect

    Lindow, H.

    1996-12-31

    This work presents a methodology for simulation and modelling of systems with continuous - discrete dynamics. It derives hybrid discrete event models from Lagrange`s equations of motion. This method combines continuous mechanical, electrical and thermodynamical submodels on one hand with discrete event models an the other hand into a hybrid discrete event model. This straight forward software development avoids numeric overhead.

  20. Implications of SU(2)_L x U(1) Symmetry for SIM(2) Invariant...

    Office of Scientific and Technical Information (OSTI)

    Implications of SU(2)L x U(1) Symmetry for SIM(2) Invariant Neutrino Masses Citation Details In-Document Search Title: Implications of SU(2)L x U(1) Symmetry for SIM(2) Invariant ...

  1. Broken Symmetry in the Pseudogap State of YBa2Cu3O6+x (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Broken Symmetry in the Pseudogap State of YBa2Cu3O6+x Citation Details In-Document Search Title: Broken Symmetry in the Pseudogap State of YBa2Cu3O6+x You are ...

  2. Implications of SU(2)_L x U(1) Symmetry for SIM(2) Invariant...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Implications of SU(2)L x U(1) Symmetry for SIM(2) Invariant Neutrino Masses Citation Details In-Document Search Title: Implications of SU(2)L x U(1) Symmetry for ...

  3. Multi-Higgs doublet models with local U(1){sub H} gauge symmetry...

    Office of Scientific and Technical Information (OSTI)

    with local U(1)sub H gauge symmetry and neutrino physics therein Citation Details In-Document Search Title: Multi-Higgs doublet models with local U(1)sub H gauge symmetry and ...

  4. Hybrid discrete/continuum algorithms for stochastic reaction networks

    DOE PAGES [OSTI]

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; Najm, Habib N.

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discretemore » and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.« less

  5. Characterizing multiple solutions to the time-energy canonical commutation relation via internal symmetries

    SciTech Connect

    Caballar, Roland Cristopher F.; Ocampo, Leonard R.; Galapon, Eric A.

    2010-06-15

    Internal symmetries can be used to classify multiple solutions to the time-energy canonical commutation relation (TE-CCR). The dynamical behavior of solutions to the TE-CCR possessing particular internal symmetries involving time reversal differ significantly from solutions to the TE-CCR without those particular symmetries, implying a connection between the internal symmetries of a quantum system, its internal unitary dynamics, and the TE-CCR.

  6. Methodology for characterizing modeling and discretization uncertainties in computational simulation

    SciTech Connect

    ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

    2000-03-01

    This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

  7. Test of fundamental symmetries via the Primakoff effect

    SciTech Connect

    Gan, Liping

    2014-06-01

    The three neutral pseudoscalar mesons, pi^0, eta and eta', represent one of the most interesting systems in strong interaction physics. A study of the electromagnetic properties of these mesons provides a sensitive probe of the symmetry structure of QCD at low energy. A comprehensive experimental program at Jefferson Laboratory (Jlab) is aimed at gathering high precision measurements on the two-photon decay widths and transition form factors at low Q^2 of pi^0, eta and eta' via the Primakoff effect. The completed experiments on the pi^0 radiative decay width at Jlab 6 GeV, and other planned measurements at Jlab 12 GeV will provide a rich laboratory to test the chiral anomaly and to study the origin and dynamics of chiral symmetry breaking at the confinement scale of QCD.

  8. Strong Electroweak Symmetry Breaking and Spin-0 Resonances

    SciTech Connect

    Evans, Jared; Luty, Markus A.

    2009-09-04

    We argue that theories of the strong electroweak symmetry breaking sector necessarily contain new spin 0 states at the TeV scale in the tt and tb/bt channels, even if the third generation quarks are not composite at the TeV scale. These states couple sufficiently strongly to third generation quarks to have significant production at LHC via gg->phi{sup 0} or gb->tphi{sup -}. The existence of narrow resonances in QCD suggests that the strong electroweak breaking sector contains narrow resonances that decay to tt or tb/bt, with potentially significant branching fractions to 3 or more longitudinal W and Z bosons. These may give new 'smoking gun' signals of strong electroweak symmetry breaking.

  9. Lectures on Chiral Symmetries and Soft Pion Processes

    DOE R&D Accomplishments

    Nambu, Y.

    1966-08-01

    At the Istanbul Summer School in 1962 I gave lectures on "Chiral Symmetries in Weak and Strong Interactions." It is only recently, however, that the basic ideas that were started several years ago have begun to bear fruit. We will cover in the present lectures more or less the same general field, but certainly there will be a lot more results to be discussed now than four years ago.

  10. Particle-hole symmetry broken pseudogap in high temperature superconductors

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Particle-hole symmetry broken pseudogap in high temperature superconductors High-temperature (Tc) superconductivity is one of the most important topics in condensed matter physics. Despite extensive studies over more than two decades, the microscopic mechanism of high temperature superconductivity still remains elusive due to many unconventional properties that are not well understood. Among them, the most mysterious behavior of high-Tc superconductor is the nature of so called

  11. Crossing contours in the interacting boson approximation (IBA) symmetry triangle

    SciTech Connect

    McCutchan, E. A.; Casten, R. F.

    2006-11-15

    Constant contours of basic observables are discussed in the context of the interacting boson approximation (IBA) symmetry triangle. Contours that exhibit orthogonal crossing within the triangle are presented as a method for determining a set of parameter values for a particular nucleus and trajectories for isotopic chains. A set of contours that highlights a class of nuclei that are outside the two-parameter IBA-1 Hamitonian space is also presented.

  12. Symmetry-breaking instability of quadratic soliton bound states

    SciTech Connect

    Delque, Michaeel; Fanjoux, Gil; Maillotte, Herve; Kockaert, Pascal; Sylvestre, Thibaut; Haelterman, Marc

    2011-01-15

    We study both numerically and experimentally two-dimensional soliton bound states in quadratic media and demonstrate their symmetry-breaking instability. The experiment is performed in a potassium titanyl phosphate crystal in a type-II configuration. The bound state is generated by the copropagation of the antisymmetric fundamental beam locked in phase with the symmetrical second harmonic one. Experimental results are in good agreement with numerical simulations of the nonlinear wave equations.

  13. Nuclear Structure for Tests of Fundamental Symmetries and Astroparticle

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Physics | Argonne Leadership Computing Facility Nuclear Structure for Tests of Fundamental Symmetries and Astroparticle Physics PI Name: Calvin Johnson PI Email: cjohnson@mail.sdsu.edu Institution: San Diego State University Allocation Program: ALCC Allocation Hours at ALCF: 6 Million Year: 2016 Research Domain: Physics What is the universe made of, and how did it get that way? Why is the universe made of matter and not anti--matter? What is the nature of the non--baryonic dark matter that

  14. Discrete solitons and vortices in anisotropic hexagonal and honeycomb lattices

    DOE PAGES [OSTI]

    Hoq, Q. E.; Kevrekidis, P. G.; Bishop, A. R.

    2016-01-14

    We consider the self-focusing discrete nonlinear Schrödinger equation on hexagonal and honeycomb lattice geometries. Our emphasis is on the study of the effects of anisotropy, motivated by the tunability afforded in recent optical and atomic physics experiments. We find that multi-soliton and discrete vortex states undergo destabilizing bifurcations as the relevant anisotropy control parameter is varied. Furthermore, we quantify these bifurcations by means of explicit analytical calculations of the solutions, as well as of their spectral linearization eigenvalues. Finally, we corroborate the relevant stability picture through direct numerical computations. In the latter, we observe the prototypical manifestation of these instabilitiesmore » to be the spontaneous rearrangement of the solution, for larger values of the coupling, into localized waveforms typically centered over fewer sites than the original unstable structure. In weak coupling, the instability appears to result in a robust breathing of the relevant waveforms.« less

  15. Streaked x-ray spectrometer having a discrete selection of Bragg...

    Office of Scientific and Technical Information (OSTI)

    Streaked x-ray spectrometer having a discrete selection of Bragg geometries for Omega Citation Details In-Document Search Title: Streaked x-ray spectrometer having a discrete selection ...

  16. Three-dimensional discrete ordinates reactor assembly calculations on GPUs

    SciTech Connect

    Evans, Thomas M; Joubert, Wayne; Hamilton, Steven P; Johnson, Seth R; Turner, John A; Davidson, Gregory G; Pandya, Tara M

    2015-01-01

    In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.

  17. Redox Active Colloids as Discrete Energy Storage Carriers - Joint Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for Energy Storage Research September 15, 2016, Research Highlights Redox Active Colloids as Discrete Energy Storage Carriers Scientific Achievement Redox active colloids (RACs) were introduced as a promising class of energy storage materials. These were synthesized and electrochemically studied for their charge transfer properties as well as charge storage capabilities. Significance and Impact A modular synthetic approach can now be used to synthesize "zero-crossover" materials

  18. Multifractal analysis of time series generated by discrete Ito equations

    SciTech Connect

    Telesca, Luciano; Czechowski, Zbigniew; Lovallo, Michele

    2015-06-15

    In this study, we show that discrete Ito equations with short-tail Gaussian marginal distribution function generate multifractal time series. The multifractality is due to the nonlinear correlations, which are hidden in Markov processes and are generated by the interrelation between the drift and the multiplicative stochastic forces in the Ito equation. A link between the range of the generalized Hurst exponents and the mean of the squares of all averaged net forces is suggested.

  19. Discrete quadratic solitons with competing second-harmonic components

    SciTech Connect

    Setzpfandt, Frank; Pertsch, Thomas; Sukhorukov, Andrey A.

    2011-11-15

    We describe families of discrete solitons in quadratic waveguide arrays supported by competing cascaded nonlinear interactions between one fundamental and two second-harmonic modes. We characterize the existence, stability, and excitation dynamics of these solitons and show that their features may resemble those of solitons in saturable media. Our results also demonstrate that a power threshold may appear for soliton formation, leading to a suppression of beam self-focusing which explains recent experimental observations.

  20. Flavour symmetry breaking in the kaon parton distribution amplitude

    DOE PAGES [OSTI]

    none,

    2014-11-01

    We compute the kaon's valence-quark (twist-two parton) distribution amplitude (PDA) by projecting its Poincar-covariant BetheSalpeter wave-function onto the light-front. At a scale ? = 2 GeV, the PDA is a broad, concave and asymmetric function, whose peak is shifted 1216% away from its position in QCD's conformal limit. These features are a clear expression of SU(3)-flavour-symmetry breaking. They show that the heavier quark in the kaon carries more of the bound-state's momentum than the lighter quark and also that emergent phenomena in QCD modulate the magnitude of flavour-symmetry breaking: it is markedly smaller than one might expect based on themoredifference between light-quark current masses. Our results add to a body of evidence which indicates that at any energy scale accessible with existing or foreseeable facilities, a reliable guide to the interpretation of experiment requires the use of such nonperturbatively broadened PDAs in leading-order, leading-twist formulae for hard exclusive processes instead of the asymptotic PDA associated with QCD's conformal limit. We illustrate this via the ratio of kaon and pion electromagnetic form factors: using our nonperturbative PDAs in the appropriate formulae, FK/F?=1.23 at spacelike-Q2=17 GeV2, which compares satisfactorily with the value of 0.92(5) inferred in e+e- annihilation at s=17 GeV2.less

  1. Finite field-dependent symmetries in perturbative quantum gravity

    SciTech Connect

    Upadhyay, Sudhaker

    2014-01-15

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear CurciFerrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using BatalinVilkovisky (BV) formulation. -- Highlights: The perturbative quantum gravity is treated as gauge theory. BRST and anti-BRST transformations are developed in linear and non-linear gauges. BRST transformation is generalized by making it finite and field dependent. Connection between linear and non-linear gauges is established. Using BV formulation the results are established at quantum level also.

  2. Intrinsic transverse momentum and dynamical chiral symmetry breaking

    SciTech Connect

    Christian Weiss, Peter Schweitzer, Mark Strikman

    2013-01-01

    We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.

  3. Effective interactions and long distance symmetries in the Nucleon-Nucleon system

    SciTech Connect

    Ruiz Arriola, E.; Calle Cordon, A.

    2010-12-28

    Effective interactions, when defined in a coarse grained sense, such as V{sub lowk} at the scale {Lambda} = 450 MeV, display a remarkable symmetry pattern. Serber symmetry works with high accuracy for spin triplet states. Wigner SU(4) spin-isospin symmetry with nucleons in the fundamental representation works only for even partial waves exactly as predicted by large N{sub c} limit of QCD with accuracy O(1/N{sub c}{sup 2}). This suggests tailoring the very definition of effective interactions to provide a best possible fulfillment of long distance symmetries. With the V{sub lowk} definition Wigner symmetry requires that chiral potentials have low cut-offs {Lambda}{sub {chi}{approx}4}50 MeV. Perturbative saturation of exchanged heavy mesonic resonances does not faithfully display the Serber symmetry pattern.

  4. A way forward in the study of the symmetry energy: experiment, theory, and observation

    SciTech Connect

    Horowitz, Charles; Brown, E F.; Kim, Y; Lynch, W G.; Michaels, Robert; Ono, A; Piekarewicz, Jorge; Tsang, M B.; Wolter, H H.

    2014-07-01

    The symmetry energy describes how the energy of nuclear matter rises as one goes away from equal numbers of neutrons and protons. This is very important to describe neutron rich matter in astrophysics. This article reviews our knowledge of the symmetry energy from theoretical calculations, nuclear structure measurements, heavy ion collisions, and astronomical observations. We then present a roadmap to make progress in areas of relevance to the symmetry energy that promotes collaboration between astrophysics and the nuclear physics communities.

  5. Long distance symmetries for nuclear forces and the similarity renormalization group

    SciTech Connect

    Szpigel, S.; Timoteo, V. S.; Arriola, E. R.

    2013-03-25

    In this work we study the emergence of long distance symmetries for nuclear forces within the framework of the similarity renormalization group approach.

  6. Electron-phonon coupling in a system with broken symmetry: Surface...

    Office of Scientific and Technical Information (OSTI)

    Electron-phonon coupling in a system with broken symmetry: Surface of Be ( 0001 ) Citation ... Country of Publication: United States Language: English Word Cloud More Like This Free ...

  7. Performance improvements of symmetry-breaking reflector structures in nonimaging devices

    DOEpatents

    Winston, Roland

    2004-01-13

    A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.

  8. UNIVERSALITY OF PHASE TRANSITION DYNAMICS: TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING

    SciTech Connect

    Zurek, Wojciech H.; Del Campo, Adolfo

    2014-02-13

    In the course of a non-equilibrium continuous phase transition, the dynamics ceases to be adiabatic in the vicinity of the critical point as a result of the critical slowing down (the divergence of the relaxation time in the neighborhood of the critical point). This enforces a local choice of the broken symmetry and can lead to the formation of topological defects. The Kibble-Zurek mechanism (KZM) was developed to describe the associated nonequilibrium dynamics and to estimate the density of defects as a function of the quench rate through the transition. During recent years, several new experiments investigating formation of defects in phase transitions induced by a quench both in classical and quantum mechanical systems were carried out. At the same time, some established results were called into question. We review and analyze the Kibble-Zurek mechanism focusing in particular on this surge of activity, and suggest possible directions for further progress.

  9. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

    SciTech Connect

    Lin, Zeren; Liu, Zhirong

    2015-12-07

    We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.

  10. Chiral symmetry and the nucleon-nucleon interaction

    DOE PAGES [OSTI]

    Machleidt, Ruprecht

    2016-04-20

    We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD) via chiral effective field theory (EFT). During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (NN) interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the NN potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. Lastly, the final result allows for a full assessment of the validity of themore » chiral EFT approach to the NN interaction.« less

  11. Regularities and symmetries of subsets of collective 0{sup +} states

    SciTech Connect

    Bonatsos, Dennis; McCutchan, E. A.; Casten, R. F.; Casperson, R. J.; Werner, V.; Williams, E.

    2009-09-15

    The energies of subsets of excited 0{sup +} states in geometric collective models are investigated and found to exhibit intriguing regularities. In models with an infinite square well potential, it is found that a single formula, dependent on only the number of dimensions, describes a subset of 0{sup +} states. The same behavior of a subset of 0{sup +} states is seen in the large boson number limit of the interacting boson approximation (IBA) model near the critical point of a first-order phase transition, in contrast to the fact that these 0{sup +} state energies exhibit a harmonic behavior in all three limiting symmetries of the IBA. Finally, the observed regularities in 0{sup +} energies are analyzed in terms of the underlying group theoretical framework of the different models.

  12. Regularities and symmetries of subsets of collective 0{sup+} states.

    SciTech Connect

    Bonatsos, D.; McCutchan, E. A.; Casten, R. F.; Casperson, R. J.; Werner, V.; Williams, E.; Physics; N.C.S.R.; Yale Univ.

    2009-09-01

    The energies of subsets of excited 0{sup +} states in geometric collective models are investigated and found to exhibit intriguing regularities. In models with an infinite square well potential, it is found that a single formula, dependent on only the number of dimensions, describes a subset of 0{sup +} states. The same behavior of a subset of 0{sup +} states is seen in the large boson number limit of the interacting boson approximation (IBA) model near the critical point of a first-order phase transition, in contrast to the fact that these 0{sup +} state energies exhibit a harmonic behavior in all three limiting symmetries of the IBA. Finally, the observed regularities in 0{sup +} energies are analyzed in terms of the underlying group theoretical framework of the different models.

  13. Regularities and symmetries of collective 0{sup+} states.

    SciTech Connect

    Bonatsos, D.; McCutchan, E. A.; Casten, R. F.; Casperson, R. J.; Werner, V.; Williams, E.; Physics; N.C.S.R.

    2009-01-01

    The energies of subsets of excited 0{sup +} states in geometric collective models are investigated and found to exhibit intriguing regularities. In models with an infinite square well potential, it is found that a single formula, dependent on only the number of dimensions, describes a subset of 0{sup +} states. The same behavior of a subset of 0{sup +} states is seen in the large boson number limit of the interacting boson approximation (IBA) model near the critical point of a first-order phase transition, in contrast to the fact that these 0{sup +} state energies exhibit a harmonic behavior in all three limiting symmetries of the IBA. Finally, the observed regularities in 0{sup +} energies are analyzed in terms of the underlying group theoretical framework of the different models.

  14. Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter

    DOE PAGES [OSTI]

    Bishara, Fady; Zupan, Jure

    2015-01-19

    Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormore » breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.« less

  15. Three-Triplet Model with Double SU(3) Symmetry

    DOE R&D Accomplishments

    Han, M. Y.; Nambu, Y.

    1965-01-01

    With a view to avoiding some of the kinematical and dynamical difficulties involved in the single triplet quark model, a model for the low lying baryons and mesons based on three triplets with integral charges is proposed, somewhat similar to the two-triplet model introduced earlier by one of us (Y. N.). It is shown that in a U(3) scheme of triplets with integral charges, one is naturally led to three triplets located symmetrically about the origin of I{sub 3} - Y diagram under the constraint that Nishijima-Gell-Mann relation remains intact. A double SU(3) symmetry scheme is proposed in which the large mass splittings between different representations are ascribed to one of the SU(3), while the other SU(3) is the usual one for the mass splittings within a representation of the first SU(3).

  16. Continuous flavor symmetries and the stability of asymmetric dark matter

    DOE PAGES [OSTI]

    Bishara, Fady; Zupan, Jure

    2015-01-19

    Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, the continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. The mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormorebreaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.less

  17. Galactic center γ-ray excess in hidden sector DM models with dark gauge symmetries: local Z{sub 3} symmetry as an example

    SciTech Connect

    Ko, P.; Tang, Yong

    2015-01-16

    We show that hidden sector dark matter (DM) models with local dark gauge symmetries make a natural playground for the possible γ-ray excess from the galactic center (GC). We first discuss in detail the GC γ-ray excess in a scalar dark matter (DM) model with local Z{sub 3} symmetry which was recently proposed by the present authors. Within this model, scalar DM with mass 30–70 GeV is allowed due to the newly-opened (semi-)annihilation channels of a DM pair into dark Higgs ϕ and/or dark photon Z′ pair, and the γ-ray spectrum from the GC can be fit within this model. Then we argue that the GC gamma ray excess can be easily accommodated within hidden sector dark matter models where DM is stabilized by local gauge symmetries, due to the presence of dark Higgs (and also dark photon for Abelian dark gauge symmetry)

  18. Galactic center γ-ray excess in hidden sector DM models with dark gauge symmetries: local Z{sub 3} symmetry as an example

    SciTech Connect

    Ko, P.; Tang, Yong E-mail: ytang@kias.re.kr

    2015-01-01

    We show that hidden sector dark matter (DM) models with local dark gauge symmetries make a natural playground for the possible γ-ray excess from the galactic center (GC). We first discuss in detail the GC γ-ray excess in a scalar dark matter (DM) model with local Z{sub 3} symmetry which was recently proposed by the present authors. Within this model, scalar DM with mass 30–70 GeV is allowed due to the newly-opened (semi-)annihilation channels of a DM pair into dark Higgs φ and/or dark photon Z' pair, and the γ-ray spectrum from the GC can be fit within this model. Then we argue that the GC gamma ray excess can be easily accommodated within hidden sector dark matter models where DM is stabilized by local gauge symmetries, due to the presence of dark Higgs (and also dark photon for Abelian dark gauge symmetry)

  19. Incomplete block SSOR preconditionings for high order discretizations

    SciTech Connect

    Kolotilina, L.

    1994-12-31

    This paper considers the solution of linear algebraic systems Ax = b resulting from the p-version of the Finite Element Method (FEM) using PCG iterations. Contrary to the h-version, the p-version ensures the desired accuracy of a discretization not by refining an original finite element mesh but by introducing higher degree polynomials as additional basis functions which permits to reduce the size of the resulting linear system as compared with the h-version. The suggested preconditionings are the so-called Incomplete Block SSOR (IBSSOR) preconditionings.

  20. Symmetry-Driven Atomic Rearrangement at a Brownmillerite-Perovskite Interface

    DOE PAGES [OSTI]

    Meyer, Tricia L.; Jeen, Hyoungjeen; Gao, Xiang; Petrie, Jonathan R.; Chisholm, Matthew F.; Lee, Ho Nyung

    2015-12-15

    To those investigating new interfacial phenomena, symmetry mismatch is of immense interest. The interfacial and bulk microstructure of the brownmillerite–perovskite interface is probed using detailed transmission electron microscopy. Unique asymmetric displacements of the tetrahedra at the interface are observed, signifying a compensation mechanism for lattice and symmetry mismatch at the interface.

  1. Coherent States and Spontaneous Symmetry Breaking in Light Front Scalar Field Theory

    SciTech Connect

    Vary, J.P.; Chakrabarti, D.; Harindranath, A.; Lloyd, R.; Martinovic, L.; Spence, J.R.; /Iowa State U.

    2005-12-14

    Recently developed nuclear many-body techniques provide novel results when applied to constituent quark models and to light-front scalar field theory. We show how spontaneous symmetry breaking arises and is consistent with a coherent state ansatz in a variational treatment. The kink and the kink-antikink topological features are identified and the onset of symmetry restoration is demonstrated.

  2. Symmetry breaking indication for supergravity inflation in light of the Planck 2015

    SciTech Connect

    Li, Tianjun; Li, Zhijin; Nanopoulos, Dimitri V.

    2015-09-01

    Supergravity (SUGRA) theories with exact global U(1) symmetry or shift symmetry in Kähler potential provide natural frameworks for inflation. However, quadratic inflation is disfavoured by the new results on primordial tensor fluctuations from the Planck Collaboration. To be consistent with the new Planck data, we point out that the explicit symmetry breaking is needed, and study these two SUGRA inflation in detail. For SUGRA inflation with global U(1) symmetry, the symmetry breaking term leads to a trigonometric modulation on inflaton potential. Coefficient of the U(1) symmetry breaking term is of order 10{sup −2}, which is sufficient large to improve the inflationary predictions while its higher order corrections are negligible. Such models predict sizeable tensor fluctuations and highly agree with the Planck results. In particular, the model with a linear U(1) symmetry breaking term predicts the tensor-to-scalar ratio around r∼0.01 and running spectral index α{sub s}∼−0.004, which comfortably fit with the Planck observations. For SUGRA inflation with breaking shift symmetry, the inflaton potential is modulated by an exponential factor. The modulated linear and quadratic models are consistent with the Planck observations. In both types of models the tensor-to-scalar ratio can be of order 10{sup −2}, which will be tested by the near future observations.

  3. Integrable and superintegrable Hamiltonian systems with four dimensional real Lie algebras as symmetry of the systems

    SciTech Connect

    Abedi-Fardad, J.; Rezaei-Aghdam, A.; Haghighatdoost, Gh.

    2014-05-15

    We construct integrable and superintegrable Hamiltonian systems using the realizations of four dimensional real Lie algebras as a symmetry of the system with the phase space R{sup 4} and R{sup 6}. Furthermore, we construct some integrable and superintegrable Hamiltonian systems for which the symmetry Lie group is also the phase space of the system.

  4. Theory of discrete dynamo activity in laboratory plasmas: RFP sawteeth

    SciTech Connect

    Hegna, C.C.; Prager, S.C.; Gimblett, C.G.

    1996-12-31

    Reversed field pinch experiments (RFP) exhibit relaxation phenomena which sustain the magnetic configuration longer than electrical resistivity should allow. This effect is due to the NMD dynamo. An interesting feature of the dynamo is that the relaxations often occur in a discrete and nearly periodic sawtoothing fashion. Unlike the tokamak sawtooth where a single Fourier harmonic is believed to play a central role in the sawtooth dynamics, RFP sawteeth are characterized by a set of tearing instabilities which play the essential role in the MHD dynamo. A theoretical explanation of the discrete dynamo is presented which is based upon a description of the RFP dynamics as a low order dynamical system. The calculation accounts for the evolution of the equilibrium that is affected by applied electrical fields, diffusion processes and the MHD dynamo, as well as a dynamical description of the MHD dynamo which is determined from the behavior of the tearing instabilities and the properties of the equilibrium. The system can be reduced to two ordinary differential equations for the averaged current gradient, which measures the degree of plasma relaxation, and the dynamo amplitude. The dynamical system exhibit a predator-prey type periodic limit cycle, which is characterized by a slow current peaking phase followed by a rapid crash. The sawtooth amplitude and period are predicted to increase with Lundquist number and plasma current, features which are in qualitative agreement with experimental observations.

  5. Electric Dipole Moments in Radioactive Nuclei, Tests of Time Reversal Symmetry

    SciTech Connect

    Auerbach, N.

    2010-11-24

    The research of radioactive nuclei opens new possibilities to study fundamental symmetries, such as time reversal and reflection symmetry. Such nuclei often provide conditions to check in an optimal way certain symmetries and the violation of such symmetries. We will discuss the possibility of obtaining improved limits on violation of time reversal symmetry using pear shaped radioactive nuclei. An effective method to test time reversal invariance in the non-strange sector is to measure parity and time reversal violating (T-P-odd) electromagnetic moments, (such as the static electric dipole moment). Parity and time reversal violating components in the nuclear force may produce P-T-odd moments in nuclei which in turn induce such moments in atoms. We will discuss the possibility that in some reflection asymmetric, heavy nuclei (which are radioactive) these moments are enhanced by several orders of magnitude. Present and future experiments, which will test this idea, will be mentioned.

  6. Invariance, groups, and non-uniqueness: The discrete case

    SciTech Connect

    Vasco, D.W.

    2005-03-24

    Lie group methods provide a valuable tool for examininginvariance and non-uniqueness associated with geophysical inverseproblems. The techniques are particularly well suited for the study ofnon-linear inverse problems. Using the infinitesimal generators of thegroup it is possible to move within the null space in an iterativefashion. The key computational step in determining the symmetry groupsassociated with an inverse problem is the singular value decomposition(SVD) of a sparse matrix. I apply the methodology to the eikonal equationand examine the possible solutions associated with a crosswelltomographic experiment. Results from a synthetic test indicate that it ispossible to vary the velocity model significantly and still fit thereference arrival times. the approach is also applied to data fromcorosswell surveys conducted before and after a CO2 injection at the LostHills field in California. The results highlight the fact that a faultcross-cutting the region between the wells may act as a conduit for theflow of water and CO2.

  7. An Asymptotic Study of Discretized Transport Equations in the Fokker-Planck Limit

    SciTech Connect

    Pautz, Shawn D.; Adams, Marvin L.

    2002-01-15

    Recent analyses have shown that the Fokker-Planck equation is an asymptotic limit of the transport equation given a forward-peaked scattering kernel satisfying certain constraints. Discretized transport equations in the same limit are studied, both by asymptotic analysis and by numerical testing. It is shown that spatially discretized discrete ordinates transport solutions can be accurate in this limit if and only if the scattering operator is handled in a certain nonstandard way.

  8. Fractured reservoir discrete feature network technologies. Final report, March 7, 1996 to September 30, 1998

    SciTech Connect

    Dershowitz, William S.; Einstein, Herbert H.; LaPoint, Paul R.; Eiben, Thorsten; Wadleigh, Eugene; Ivanova, Violeta

    1998-12-01

    This report summarizes research conducted for the Fractured Reservoir Discrete Feature Network Technologies Project. The five areas studied are development of hierarchical fracture models; fractured reservoir compartmentalization, block size, and tributary volume analysis; development and demonstration of fractured reservoir discrete feature data analysis tools; development of tools for data integration and reservoir simulation through application of discrete feature network technologies for tertiary oil production; quantitative evaluation of the economic value of this analysis approach.

  9. Discrete physics: Practice, representation and rules of correspondence

    SciTech Connect

    Noyes, H.P.

    1988-07-01

    We make a brief historical review of some aspects of modern physics which we find most significant in our own endeavor. We discuss the ''Yukawa Vertices'' of elementary particle theory as used in laboratory practice, second quantized field theory, analytic S-Matrix theory and in our own approach. We review the conserved quantum numbers in the Standard Model of quarks and leptons. This concludes our presentation of the ''E-frame.'' We try to develop a self-consistent representation of our theory. We have already claimed that this approach provides a discrete reconciliation between the formal (representational) aspects of quantum mechanics and relativity. Also discussed are rules of correspondence connecting the formalism to the practice of physics by using the counter paradigm and event-based coordinates to construct relativistic quantum mechanics in a new way. 31 refs., 12 figs., 1 tab.

  10. Thermal depinning of fluxons in discrete Josephson rings

    SciTech Connect

    Mazo, J. J.; Naranjo, F.; Segall, K.

    2008-11-01

    We study the thermal depinning of single fluxons in rings made of Josephson junctions. Due to thermal fluctuations a fluxon can be excited from its energy minima and move through the array, causing a voltage across each junction. We find that for the initial depinning, the fluxon behaves as a single particle and follows a Kramers-type escape law. However, under some conditions this single-particle description breaks down. At low values of the discreteness parameter and low values of the damping, the depinning rate is larger than what the single-particle result would suggest. In addition, for some values of the parameters the fluxon can undergo low-voltage diffusion before switching to the high-voltage whirling mode. This type of diffusion is similar to phase diffusion in a single junction but occurs without frequency-dependent damping. We study the switching to the whirling state as well.

  11. Bright discrete solitons in spatially modulated DNLS systems

    SciTech Connect

    Kevrekidis, P. G.; Horne, R. L.; Whitaker, N.; Hoq, Q. E.; Kip, D.

    2015-08-04

    In the present work, we revisit the highly active research area of inhomogeneously nonlinear defocusing media and consider the existence, spectral stability and nonlinear dynamics of bright solitary waves in them. We use the anti-continuum limit of vanishing coupling as the starting point of our analysis, enabling in this way a systematic characterization of the branches of solutions. Our stability findings and bifurcation characteristics reveal the enhanced robustness and wider existence intervals of solutions with a broader support, culminating in the 'extended' solution in which all sites are excited. Our eigenvalue predictions are corroborated by numerical linear stability analysis. In conclusion, the dynamics also reveal a tendency of the solution profiles to broaden, in line with the above findings. These results pave the way for further explorations of such states in discrete systems, including in higher dimensional settings.

  12. 3D imaging of semiconductor components by discrete laminography

    SciTech Connect

    Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.

    2014-06-19

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.

  13. Origin of coherent structures in a discrete chaotic medium

    SciTech Connect

    Rabinovich, M.I.; Torres, J.J.; Varona, P.; Huerta, R.; Varona, P.; Huerta, R.; Weidman, P.

    1999-08-01

    Using as an example a large lattice of locally interacting Hindmarsh-Rose chaotic neurons, we disclose the origin of ordered structures in a discrete nonequilibrium medium with fast and slow chaotic oscillations. The origin of the ordering mechanism is related to the appearance of a periodic average dynamics in the group of chaotic neurons whose individual slow activity is significantly synchronized by the group mean field. Introducing the concept of a {open_quotes}coarse grain{close_quotes} as a cluster of neuron elements with periodic averaged behavior allows consideration of the dynamics of a medium composed of these clusters. A study of this medium reveals spatially ordered patterns in the periodic and slow dynamics of the coarse grains that are controlled by the average intensity of the fast chaotic pulsation. {copyright} {ital 1999} {ital The American Physical Society}

  14. Bright discrete solitons in spatially modulated DNLS systems

    DOE PAGES [OSTI]

    Kevrekidis, P. G.; Horne, R. L.; Whitaker, N.; Hoq, Q. E.; Kip, D.

    2015-08-04

    In the present work, we revisit the highly active research area of inhomogeneously nonlinear defocusing media and consider the existence, spectral stability and nonlinear dynamics of bright solitary waves in them. We use the anti-continuum limit of vanishing coupling as the starting point of our analysis, enabling in this way a systematic characterization of the branches of solutions. Our stability findings and bifurcation characteristics reveal the enhanced robustness and wider existence intervals of solutions with a broader support, culminating in the 'extended' solution in which all sites are excited. Our eigenvalue predictions are corroborated by numerical linear stability analysis. Inmore » conclusion, the dynamics also reveal a tendency of the solution profiles to broaden, in line with the above findings. These results pave the way for further explorations of such states in discrete systems, including in higher dimensional settings.« less

  15. Sea quark transverse momentum distributions and dynamical chiral symmetry breaking

    SciTech Connect

    Schweitzer, Peter; Strikman, Mark; Weiss, Christian

    2014-01-01

    Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.

  16. Quark and lepton mixing as manifestations of violated mirror symmetry

    SciTech Connect

    Dyatlov, I. T.

    2015-06-15

    The existence of heavy mirror analogs of ordinary fermions would provide deeper insight into the gedanken paradox appearing in the Standard Model upon direct parity violation and consisting in a physical distinguishability of left- and right-hand coordinate frames. Arguments are presented in support of the statement that such mirror states may also be involved in the formation of observed properties of the system of Standard Model quarks and leptons—that is, their mass spectra and their weak-mixing matrices: (i) In the case of the involvement of mirror generations, the quark mixing matrix assumes the experimentally observed form. It is determined by the constraints imposed by weak SU(2) symmetry and by the quark-mass hierarchy. (ii) Under the same conditions and upon the involvement of mirror particles, the lepton mixing matrix (neutrino mixing) may become drastically different from its quark analog—the Cabibbo-Kobayashi-Maskawa matrix; that is, it may acquire properties suggested by experimental data. This character of mixing is also indicative of an inverse mass spectrum of Standard Model neutrinos and their Dirac (not Majorana) nature.

  17. Development and Application of Compatible Discretizations of Maxwell's Equations

    SciTech Connect

    White, D; Koning, J; Rieben, R

    2005-05-27

    We present the development and application of compatible finite element discretizations of electromagnetics problems derived from the time dependent, full wave Maxwell equations. We review the H(curl)-conforming finite element method, using the concepts and notations of differential forms as a theoretical framework. We chose this approach because it can handle complex geometries, it is free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it correctly models the discontinuity of fields across material boundaries, and it can be very high order. Higher-order H(curl) and H(div) conforming basis functions are not unique and we have designed an extensible C++ framework that supports a variety of specific instantiations of these such as standard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any electromagnetics problem that can be cast in the language of differential forms can be solved using our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin method reduces the PDE to a semi-discrete system of ODE's, which are then integrated in time using finite difference methods. For time integration of wave equations we employ the unconditionally stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We conclude with computational examples from resonant cavity problems, time-dependent wave propagation problems, and transient eddy current problems, all obtained using the authors massively parallel computational electromagnetics code EMSolve.

  18. Particle-Hole Symmetry Breaking in the Pseudogap State of Bi2201

    SciTech Connect

    Hashimoto, M.; He, R.-H.; Tanaka, K.; Testaud, J.P.; Meevasana1, W.; Moore, R.G.; Lu, D.H.; Yao, H.; Yoshida, Y.; Eisaki, H.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.; /SIMES, Stanford /Stanford U., Geballe Lab.

    2011-08-19

    In conventional superconductors, a gap exists in the energy absorption spectrum only below the transition temperature (T{sub c}), corresponding to the energy price to pay for breaking a Cooper pair of electrons. In high-T{sub c} cuprate superconductors above T{sub c}, an energy gap called the pseudogap exists, and is controversially attributed either to pre-formed superconducting pairs, which would exhibit particle-hole symmetry, or to competing phases which would typically break it. Scanning tunnelling microscopy (STM) studies suggest that the pseudogap stems from lattice translational symmetry breaking and is associated with a different characteristic spectrum for adding or removing electrons (particle-hole asymmetry). However, no signature of either spatial or energy symmetry breaking of the pseudogap has previously been observed by angle-resolved photoemission spectroscopy (ARPES). Here we report ARPES data from Bi2201 which reveals both particle-hole symmetry breaking and dramatic spectral broadening indicative of spatial symmetry breaking without long range order, upon crossing through T* into the pseudogap state. This symmetry breaking is found in the dominant region of the momentum space for the pseudogap, around the so-called anti-node near the Brillouin zone boundary. Our finding supports the STM conclusion that the pseudogap state is a broken-symmetry state that is distinct from homogeneous superconductivity.

  19. Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  20. Broken SU(3) x SU(3) x SU(3) x SU(3) Symmetry

    DOE R&D Accomplishments

    Freund, P. G. O.; Nambu, Y.

    1964-10-01

    We argue that the "Eight-fold Way" version of the SU(3) symmetry should be extended to a product of up to four separate and badly broken SU(3) groups, including the gamma{sub 5} type SU(3) symmetry. A hierarchy of subgroups (or subalgebras) are considered within this framework, and two candidates are found to be interesting in view of experimental evidence. Main features of the theory are: 1) the baryons belong to a nonet; 2) there is an octet of axial vector gauge mesons in addition to one or two octets of vector mesons; 3) pseudoscalar and scalar mesons exist as "incomplete" multiplets arising from spontaneous breakdown of symmetry.

  1. Symmetry analysis of many-body wave functions, with applications to the nuclear shell model

    SciTech Connect

    Novoselsky, A. ); Katriel, J. )

    1995-01-01

    The weights of the different permutational symmetry components of a nonsymmetry-adapted many-particle wave function are evaluated in terms of the expectation values of the symmetric-group class sums. This facilitates the evaluation of the weights without the construction of a complete set of symmetry adapted functions. Subspace projection operators are introduced, to be used when prior knowledge about the symmetry-species composition of a wave function is available. The permutational weight analysis of a recursively angular-momentum coupled (shell model) wave function is presented as an illustration.

  2. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    DOE PAGES [OSTI]

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentummore » calculations with 1 Fe per unit cell.« less

  3. Wigner symmetry, large N{sub c}, and renormalized one-boson exchange potentials

    SciTech Connect

    Calle Cordon, A.; Ruiz Arriola, E.

    2008-11-15

    Wigner symmetry in nuclear physics provides a unique example of a nonperturbative medium and long distance symmetry, a symmetry strongly broken at short distances. We analyze the consequences of such a concept within the framework of one-boson exchange potentials in NN scattering and keeping the leading N{sub c} contributions. Phenomenologically successful relations between singlet {sup 1}S{sub 0} and triplet {sup 3}S{sub 1} scattering phase shifts are provided in the entire elastic region. We establish symmetry breaking relations among noncentral phase shifts which are successfully fulfilled by even-L partial waves and strongly violated by odd-L partial waves, in full agreement with large N{sub c} requirements.

  4. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    SciTech Connect

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called ?-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, ? pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentum calculations with 1 Fe per unit cell.

  5. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    SciTech Connect

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentum calculations with 1 Fe per unit cell.

  6. Symmetry-Guided Synthesis of Highly Porous Metal-Organic Frameworks...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Symmetry-Guided Synthesis of Highly Porous Metal-Organic Frameworks with Fluorite Topology Previous Next List Muwei Zhang, Ying-Pin Chen, Mathieu Bosch, Thomas Gentle III, Kecheng...

  7. Broken Symmetry in the Pseudogap State of YBa2Cu3O6+x (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Broken Symmetry in the Pseudogap State of YBa2Cu3O6+x Authors: Ramshaw, Brad 1 + Show Author Affiliations Los Alamos National Laboratory Los Alamos National Laboratory ...

  8. Twisted conformal symmetry in noncommutative two-dimensional quantum field theory

    SciTech Connect

    Lizzi, Fedele; Vitale, Patrizia; Vaidya, Sachindeo

    2006-06-15

    By twisting the commutation relations between creation and annihilation operators, we show that quantum conformal invariance can be implemented in the 2-d Moyal plane. This is an explicit realization of an infinite dimensional symmetry as a quantum algebra.

  9. Structure symmetry determination and magnetic evolution in Sr2Ir1...

    Office of Scientific and Technical Information (OSTI)

    evolution in Sr2Ir1-xRhxO4 This content will become publicly available on November 23, 2016 Prev Next Title: Structure symmetry determination and magnetic evolution in ...

  10. Crystal surface symmetry from zone-axis patterns in reflection high-energy-electron diffraction

    SciTech Connect

    Shannon, M.D.; Eades, J.A.; Meichle, M.E.; Turner, P.S.; Buxton, B.F.

    1984-11-26

    New experimental techniques, sensitive to crystal surface symmetry, for reflection high-energy-electron diffraction have been developed and applied to the (001) surface of MgO. The techniques map the variation of the intensity of one or more diffracted beams as a function of the incident-beam orientation. The symmetry of these surface zone-axis patterns has been studied theoretically and confirmed experimentally. The techniques are expected to provide a sensitive means of surface characterization.

  11. Double Soft Theorems and Shift Symmetry in Nonlinear Sigma Models | Argonne

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Laboratory Double Soft Theorems and Shift Symmetry in Nonlinear Sigma Models Authors Low, Ian Division HEP Publication Year 2016 Publication Type Article DOI 10.1103/PhysRevD.93.045032 Supporting Data Citation Low, Ian. "Double Soft Theorems and Shift Symmetry in Nonlinear Sigma Models." Physical Review D: Particles, Fields, Gravitation, and Cosmology 93, no. 4 February 25, 2016 doi: 10.1103/PhysRevD.93.045032

  12. A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation

    SciTech Connect

    Bailey, T S; Chang, J H; Warsa, J S; Adams, M L

    2010-12-22

    We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.

  13. Discrete Mathematical Approaches to Graph-Based Traffic Analysis

    SciTech Connect

    Joslyn, Cliff A.; Cowley, Wendy E.; Hogan, Emilie A.; Olsen, Bryan K.

    2014-04-01

    Modern cyber defense and anlaytics requires general, formal models of cyber systems. Multi-scale network models are prime candidates for such formalisms, using discrete mathematical methods based in hierarchically-structured directed multigraphs which also include rich sets of labels. An exemplar of an application of such an approach is traffic analysis, that is, observing and analyzing connections between clients, servers, hosts, and actors within IP networks, over time, to identify characteristic or suspicious patterns. Towards that end, NetFlow (or more generically, IPFLOW) data are available from routers and servers which summarize coherent groups of IP packets flowing through the network. In this paper, we consider traffic analysis of Netflow using both basic graph statistics and two new mathematical measures involving labeled degree distributions and time interval overlap measures. We do all of this over the VAST test data set of 96M synthetic Netflow graph edges, against which we can identify characteristic patterns of simulated ground-truth network attacks.

  14. Thermal Neutron Detectors with Discrete Anode Pad Readout

    SciTech Connect

    Yu,B.; Schaknowski, N.A., Smith, G.C., DeGeronimo, G., Vernon, E.O.

    2008-10-19

    A new two-dimensional thermal neutron detector concept that is capable of very high rates is being developed. It is based on neutron conversion in {sup 3}He in an ionization chamber (unity gas gain) that uses only a cathode and anode plane; there is no additional electrode such as a Frisch grid. The cathode is simply the entrance window, and the anode plane is composed of discrete pads, each with their own readout electronics implemented via application specific integrated circuits. The aim is to provide a new generation of detectors with key characteristics that are superior to existing techniques, such as higher count rate capability, better stability, lower sensitivity to background radiation, and more flexible geometries. Such capabilities will improve the performance of neutron scattering instruments at major neutron user facilities. In this paper, we report on progress with the development of a prototype device that has 48 x 48 anode pads and a sensitive area of 24cm x 24cm.

  15. Enhancing Complex System Performance Using Discrete-Event Simulation

    SciTech Connect

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E

    2010-01-01

    In this paper, we utilize discrete-event simulation (DES) merged with human factors analysis to provide the venue within which the separation and deconfliction of the system/human operating principles can occur. A concrete example is presented to illustrate the performance enhancement gains for an aviation cargo flow and security inspection system achieved through the development and use of a process DES. The overall performance of the system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, and total number of pallets waiting for inspection in the queue. These metrics are performance indicators of the system's ability to service current needs and respond to additional requests. We studied and analyzed different scenarios by changing various model parameters such as the number of pieces per pallet ratio, number of inspectors and cargo handling personnel, number of forklifts, number and types of detection systems, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures identified effective ways to meet inspection requirements while maintaining or reducing overall operational cost and eliminating any shipping delays associated with any proposed changes in inspection requirements. With this understanding effective operational strategies can be developed to optimally use personnel while still maintaining plant efficiency, reducing process interruptions, and holding or reducing costs.

  16. Entrainment of coarse grains using a discrete particle model

    SciTech Connect

    Valyrakis, Manousos; Arnold, Roger B. Jr.

    2014-10-06

    Conventional bedload transport models and incipient motion theories relying on a time-averaged boundary shear stress are incapable of accounting for the effects of fluctuating near-bed velocity in turbulent flow and are therefore prone to significant errors. Impulse, the product of an instantaneous force magnitude and its duration, has been recently proposed as an appropriate criterion for quantifying the effects of flow turbulence in removing coarse grains from the bed surface. Here, a discrete particle model (DPM) is used to examine the effects of impulse, representing a single idealized turbulent event, on particle entrainment. The results are classified according to the degree of grain movement into the following categories: motion prior to entrainment, initial dislodgement, and energetic displacement. The results indicate that in all three cases the degree of particle motion depends on both the force magnitude and the duration of its application and suggest that the effects of turbulence must be adequately accounted for in order to develop a more accurate method of determining incipient motion. DPM is capable of simulating the dynamics of grain entrainment and is an appropriate tool for further study of the fundamental mechanisms of sediment transport.

  17. First collision source method for coupling Monte Carlo and discrete ordinates for localized source problems

    SciTech Connect

    Alcouffe, R.E.

    1985-01-01

    A difficult class of problems for the discrete-ordinates neutral particle transport method is to accurately compute the flux due to a spatially localized source. Because the transport equation is solved for discrete directions, the so-called ray effect causes the flux at space points far from the source to be inaccurate. Thus, in general, discrete ordinates would not be the method of choice to solve such problems. It is better suited for calculating problems with significant scattering. The Monte Carlo method is suited to localized source problems, particularly if the amount of collisional interactions in minimal. However, if there are many scattering collisions and the flux at all space points is desired, then the Monte Carlo method becomes expensive. To take advantage of the attributes of both approaches, we have devised a first collision source method to combine the Monte Carlo and discrete-ordinates solutions. That is, particles are tracked from the source to their first scattering collision and tallied to produce a source for the discrete-ordinates calculation. A scattered flux is then computed by discrete ordinates, and the total flux is the sum of the Monte Carlo and discrete ordinates calculated fluxes. In this paper, we present calculational results using the MCNP and TWODANT codes for selected two-dimensional problems that show the effectiveness of this method.

  18. Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

    SciTech Connect

    Lacey, Ph.D, P.E., Ronald E.

    2012-07-16

    Discrete Event Modeling of Algae Cultivation and Harvesting at Commercial Scale: Capital Costs, Operating Costs, and System Bottlenecks

  19. Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry

    DOE PAGES [OSTI]

    Feng, Yanqing; Zhou, Wei; Wang, Yaojia; Zhou, Jian; Liu, Erfu; Fu, Yajun; Ni, Zhenhua; Wu, Xinglong; Yuan, Hongtao; Miao, Feng; et al

    2015-08-26

    Lattice structure and symmetry of two-dimensional (2D) layered materials are of key importance to their fundamental mechanical, thermal, electronic and optical properties. Raman spectroscopy, as a convenient and nondestructive tool, however has its limitations on identifying all symmetry allowing Raman modes and determining the corresponding crystal structure of 2D layered materials with high symmetry like graphene and MoS2. Due to lower structural symmetry and extraordinary weak interlayer coupling of ReS2, we successfully identified all 18 first-order Raman active modes for bulk and monolayer ReS2. Without van der Waals (vdW) correction, our local density approximation (LDA) calculations successfully reproduce all themore » Raman modes. Our calculations also suggest no surface reconstruction effect and the absence of low frequency rigid-layer Raman modes below 100 cm-1. As a result, combining with Raman and LDA thus provides a general approach for studying the vibrational and structural properties of 2D layered materials with lower symmetry.« less

  20. A reciprocal space approach for locating symmetry elements in Patterson superposition maps

    SciTech Connect

    Hendrixson, T.

    1990-09-21

    A method for determining the location and possible existence of symmetry elements in Patterson superposition maps has been developed. A comparison of the original superposition map and a superposition map operated on by the symmetry element gives possible translations to the location of the symmetry element. A reciprocal space approach using structure factor-like quantities obtained from the Fourier transform of the superposition function is then used to determine the best'' location of the symmetry element. Constraints based upon the space group requirements are also used as a check on the locations. The locations of the symmetry elements are used to modify the Fourier transform coefficients of the superposition function to give an approximation of the structure factors, which are then refined using the EG relation. The analysis of several compounds using this method is presented. Reciprocal space techniques for locating multiple images in the superposition function are also presented, along with methods to remove the effect of multiple images in the Fourier transform coefficients of the superposition map. In addition, crystallographic studies of the extended chain structure of (NHC{sub 5}H{sub 5})SbI{sub 4} and of the twinning method of the orthorhombic form of the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} are presented. 54 refs.

  1. Stability of skyrmion lattices and symmetries of quasi-two-dimensional chiral magnets

    DOE PAGES [OSTI]

    Gungordu, Utkan; Nepal, Rabindra; Tretiakov, Oleg A.; Belashchenko, Kirill; Kovalev, Alexey A.

    2016-02-24

    Recently there has been substantial interest in realizations of skyrmions, in particular in quasi-two-dimensional (2D) systems due to increased stability resulting from reduced dimensionality. A stable skyrmion, representing the smallest realizable magnetic texture, could be an ideal element for ultradense magnetic memories. Here we use the most general form of the quasi-2D free energy with Dzyaloshinskii-Moriya interactions constructed from general symmetry considerations reflecting the underlying system. We predict that the skyrmion phase is robust and it is present even when the system lacks the in-plane rotational symmetry. In fact, the lowered symmetry leads to increased stability of vortex-antivortex lattices withmore » fourfold symmetry and in-plane spirals, in some instances even in the absence of an external magnetic field. Our results relate different hexagonal and square cell phases to the symmetries of materials used for realizations of skyrmions. This will give clear directions for experimental realizations of hexagonal and square cell phases, and will allow engineering of skyrmions with unusual properties. We also predict striking differences in gyrodynamics induced by spin currents for isolated skyrmions and for crystals where spin currents can be induced by charge carriers or by thermal magnons. As a result, we find that under certain conditions, isolated skyrmions can move along the current without a side motion which can have implications for realizations of magnetic memories.« less

  2. Quantization of systems with temporally varying discretization. II. Local evolution moves

    SciTech Connect

    Hhn, Philipp A.

    2014-10-15

    Several quantum gravity approaches and field theory on an evolving lattice involve a discretization changing dynamics generated by evolution moves. Local evolution moves in variational discrete systems (1) are a generalization of the Pachner evolution moves of simplicial gravity models, (2) update only a small subset of the dynamical data, (3) change the number of kinematical and physical degrees of freedom, and (4) generate a dynamical (or canonical) coarse graining or refining of the underlying discretization. To systematically explore such local moves and their implications in the quantum theory, this article suitably expands the quantum formalism for global evolution moves, constructed in Paper I [P. A. Hhn, Quantization of systems with temporally varying discretization. I. Evolving Hilbert spaces, J. Math. Phys. 55, 083508 (2014); e-print http://arxiv.org/abs/arXiv:1401.6062 [gr-qc

  3. Discrete Packet Analysis for Improved Atmospheric Rejection on Modulated Laser Signals

    SciTech Connect

    O'Neill, M., McKenna, I., DiBenedetto, J., Capelle, G., Trainham, R.

    2012-07-19

    This slide-show discusses how the method of discrete packet analysis improves atmospheric compensation for quasi-CW fluorescence detection methods. This is key to improving remote sensing capabilities.

  4. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    DOE PAGES [OSTI]

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.; Schlesinger, K. J.; Hlevyack, J.; Eskildsen, M. R.; Vorontsov, A. B.; Gavilano, J.; Gasser, U.; Nagy, G.

    2015-02-01

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less

  5. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    SciTech Connect

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.; Schlesinger, K. J.; Hlevyack, J.; Eskildsen, M. R.; Vorontsov, A. B.; Gavilano, J.; Gasser, U.; Nagy, G.

    2015-02-01

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure of the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.

  6. Restoration of UA(1) symmetry and meson spectrum in hot or dense matter

    SciTech Connect

    Costa, P.; Ruivo, M.C.; Sousa, C.A. de; Kalinovsky, Yu.L.

    2005-06-14

    We explore the effects of breaking and restoration of chiral and axial symmetries using an extended three-flavor Nambu-Jona-Lasinio model that incorporates explicitly the axial anomaly through the 't Hooft interaction. We implement a temperature (density) dependence of the anomaly coefficient motivated by lattice results for the topological susceptibility. The spectrum of scalar and pseudoscalar mesons is analyzed bearing in mind the identification of chiral partners and the study of its convergence. We also concentrate on the behavior of the mixing angles that give us relevant information on the issue under discussion. The results suggest that the axial part of the symmetry is restored before the possible restoration of the full U(3)xU(3) chiral symmetry might occur.

  7. Generalized conditional symmetries and related solutions of the Grad-Shafranov equation

    SciTech Connect

    Cimpoiasu, Rodica

    2014-04-15

    The generalized conditional symmetry (GCS) method is applied to a specific case of the Grad–Shafranov (GS) equation, in cylindrical geometry assuming the existence of an axial symmetry. We investigate the conditions that yield the GS equation admitting a special class of second-order GCSs. The determining system for the unknown arbitrary functions is solved in several special cases and new exact solutions, including solitary waves, different in form and structure from the ones obtained using other nonclassical symmetry methods, are pointed out. Several plots of the level sets or flux surfaces of the new solutions as well as surfaces with vanishing flow are displayed. The obtained solutions can be useful for studying plasma equilibrium, transport phenomena, and magnetohydrodynamic stability.

  8. Direct observation and imaging of a spin-wave soliton with p-like symmetry

    SciTech Connect

    Bonetti, S.; Kukreja, R.; Chen, Z.; Macià, F.; Hernàndez, J. M.; Eklund, A.; Backes, D.; Frisch, J.; Katine, J.; Malm, G.; Urazhdin, S.; Kent, A. D.; Stöhr, J.; Ohldag, H.; Dürr, H. A.

    2015-11-16

    Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Moreover, micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.

  9. Creating Interoperable Meshing and Discretization Software: The Terascale Simulation Tools and Technology Center

    SciTech Connect

    Brown, D.; Freitag, L.; Glimm, J.

    2002-03-28

    We present an overview of the technical objectives of the Terascale Simulation Tools and Technologies center. The primary goal of this multi-institution collaboration is to develop technologies that enable application scientists to easily use multiple mesh and discretization strategies within a single simulation on terascale computers. The discussion focuses on our efforts to create interoperable mesh generation tools, high-order discretization techniques, and adaptive meshing strategies.

  10. CREATING INTEROPERABLE MESHING AND DISCRETIZATION SOFTWARE: THE TERASCALE SIMULATION TOOLS AND TECHNOLOGY CENTER.

    SciTech Connect

    BROWN,D.; FREITAG,L.; GLIMM,J.

    2002-06-02

    We present an overview of the technical objectives of the Terascale Simulation Tools and Technologies center. The primary goal of this multi-institution collaboration is to develop technologies that enable application scientists to easily use multiple mesh and discretization strategies within a single simulation on terascale computers. The discussion focuses on our efforts to create interoperable mesh generation tools, high-order discretization techniques, and adaptive meshing strategies.

  11. Quantization of systems with temporally varying discretization. I. Evolving Hilbert spaces

    SciTech Connect

    Hhn, Philipp A.

    2014-08-15

    A temporally varying discretization often features in discrete gravitational systems and appears in lattice field theory models subject to a coarse graining or refining dynamics. To better understand such discretization changing dynamics in the quantum theory, an according formalism for constrained variational discrete systems is constructed. While this paper focuses on global evolution moves and, for simplicity, restricts to flat configuration spaces R{sup N}, a Paper II [P. A. Hhn, Quantization of systems with temporally varying discretization. II. Local evolution moves, J. Math. Phys., e-print http://arxiv.org/abs/arXiv:1401.7731 [gr-qc].] discusses local evolution moves. In order to link the covariant and canonical picture, the dynamics of the quantum states is generated by propagators which satisfy the canonical constraints and are constructed using the action and group averaging projectors. This projector formalism offers a systematic method for tracing and regularizing divergences in the resulting state sums. Non-trivial coarse graining evolution moves lead to non-unitary, and thus irreversible, projections of physical Hilbert spaces and Dirac observables such that these concepts become evolution move dependent on temporally varying discretizations. The formalism is illustrated in a toy model mimicking a creation from nothing. Subtleties arising when applying such a formalism to quantum gravity models are discussed.

  12. Higgs bosons, electroweak symmetry breaking, and the physics of the Large Hadron Collider

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2007-02-01

    The Large Hadron Collider, a 7 {circle_plus} 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electroweak symmetry? Why do particle physicists anticipate a great harvest of discoveries within reach of the LHC?

  13. New Mass Model FRDM 2012 and Symmetry Energy (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: New Mass Model FRDM 2012 and Symmetry Energy Citation Details In-Document Search Title: New Mass Model FRDM 2012 and Symmetry Energy Authors: Sagawa, Hiroyuki [1] ; Moller, Peter [2] + Show Author Affiliations RIKEN Nishina Center, Wako 351-0198, Saitama, Japan andCenter for Mathematics and Physic, University of Aizu, Aizu-Wakamatsu, Fukushima, 965-8580, Japan Los Alamos National Laboratory Publication Date: 2016-08-22 OSTI Identifier: 1304790 Report Number(s): LA-UR-16-26401 DOE

  14. The influence of pairing correlations on the isospin symmetry breaking corrections of superallowed Fermi beta decays

    SciTech Connect

    Cal Latin-Small-Letter-Dotless-I k, A. E.; Gerceklioglu, M.; Selam, C.

    2013-05-15

    Within the framework of quasi-particle random phase approximation, the isospin breaking correction of superallowed 0{sup +} {yields} 0{sup +} beta decay and unitarity of Cabibbo-Kobayashi-Maskawa mixing matrix have been investigated. The broken isotopic symmetry of nuclear part of Hamiltonian has been restored by Pyatov's method. The isospin symmetry breaking correction with pairing correlations has been compared with the previous results without pairing. The effect of pairing interactions has been examined for nine superallowed Fermi beta decays; their parent nuclei are {sup 26}Al, {sup 34}Cl, {sup 38}K, {sup 42}Sc, {sup 46}V, {sup 50}Mn, {sup 54}Co, {sup 62}Ga, {sup 74}Rb.

  15. On-chip generation of Einstein-Podolsky-Rosen states with arbitrary symmetry

    SciTech Connect

    Gräfe, Markus; Heilmann, René; Nolte, Stefan; Szameit, Alexander

    2015-05-04

    We experimentally demonstrate a method for integrated-optical generation of two-photon Einstein-Podolsky-Rosen states featuring arbitrary symmetries. In our setting, we employ detuned directional couplers to impose a freely tailorable phase between the two modes of the state. Our results allow to mimic the quantum random walk statistics of bosons, fermions, and anyons, particles with fractional exchange statistics.

  16. Symmetry operators for Dirac's equation on two-dimensional spin manifolds

    SciTech Connect

    Fatibene, Lorenzo; McLenaghan, Raymond G.; Smith, Shane N.; Rastelli, Giovanni

    2009-05-15

    It is shown that the second order symmetry operators for the Dirac equation on a general two-dimensional spin manifold may be expressed in terms of Killing vectors and valence 2 Killing tensors. The role of these operators in the theory of separation of variables for the Dirac equation is studied.

  17. Density dependence of the symmetry energy from neutron skin thickness in finite nuclei

    SciTech Connect

    Vinas, X.; Centelles, M.; Roca-Maza, X.; Warda, M.

    2012-10-20

    The density dependence of the symmetry energy, characterized by the parameter L, is studied using information provided by the neutron skin thickness in finite nuclei. An estimate of L is obtained from experimental data of antiprotonic atoms. We also discuss the ability of parity violating electron scatering to obtain information about the neutron skin thickness in {sup 208}Pb.

  18. Microscopic calculations of nuclear and neutron matter, symmetry energy and neutron stars

    DOE PAGES [OSTI]

    Gandolfi, S.

    2015-02-01

    We present Quantum Monte Carlo calculations of the equation of state of neutron matter. The equation of state is directly related to the symmetry energy and determines the mass and radius of neutron stars, providing then a connection between terrestrial experiments and astronomical observations. As a result, we also show preliminary results of the equation of state of nuclear matter.

  19. Sphericity and symmetry breaking in the formation of Frank–Kasper phases from one component materials

    SciTech Connect

    Lee, Sangwoo; Leighton, Chris; Bates, Frank S.

    2014-11-05

    Frank–Kasper phases are tetrahedrally packed structures occurring in numerous materials, from elements to intermetallics to self-assembled soft materials. They exhibit complex manifolds of Wigner–Seitz cells with many-faceted polyhedra, forming an important bridge between the simple close-packed periodic and quasiperiodic crystals. The recent discovery of the Frank–Kasper σ-phase in diblock and tetrablock polymers stimulated the experiments reported here on a poly(isoprene-b-lactide) diblock copolymer melt. Thus, analysis of small-angle X-ray scattering and mechanical spectroscopy exposes an undiscovered competition between the tendency to form self-assembled particles with spherical symmetry, and the necessity to fill space at uniform density within the framework imposed by the lattice. We thus deduce surprising analogies between the symmetry breaking at the body-centered cubic phase to σ-phase transition in diblock copolymers, mediated by exchange of mass, and the symmetry breaking in certain metals and alloys (such as the elements Mn and U), mediated by exchange of charge. Similar connections are made between the role of sphericity in real space for polymer systems, and the role of sphericity in reciprocal space for metallic systems such as intermetallic compounds and alloys. These findings establish new links between disparate materials classes, provide opportunities to improve the understanding of complex crystallization by building on synergies between hard and soft matter, and, perhaps most significantly, challenge the view that the symmetry breaking required to form reduced symmetry structures (possibly even quasiperiodic crystals) requires particles with multiple predetermined shapes and/or sizes.

  20. Sphericity and symmetry breaking in the formation of Frank–Kasper phases from one component materials

    DOE PAGES [OSTI]

    Lee, Sangwoo; Leighton, Chris; Bates, Frank S.

    2014-11-05

    Frank–Kasper phases are tetrahedrally packed structures occurring in numerous materials, from elements to intermetallics to self-assembled soft materials. They exhibit complex manifolds of Wigner–Seitz cells with many-faceted polyhedra, forming an important bridge between the simple close-packed periodic and quasiperiodic crystals. The recent discovery of the Frank–Kasper σ-phase in diblock and tetrablock polymers stimulated the experiments reported here on a poly(isoprene-b-lactide) diblock copolymer melt. Thus, analysis of small-angle X-ray scattering and mechanical spectroscopy exposes an undiscovered competition between the tendency to form self-assembled particles with spherical symmetry, and the necessity to fill space at uniform density within the framework imposed bymore » the lattice. We thus deduce surprising analogies between the symmetry breaking at the body-centered cubic phase to σ-phase transition in diblock copolymers, mediated by exchange of mass, and the symmetry breaking in certain metals and alloys (such as the elements Mn and U), mediated by exchange of charge. Similar connections are made between the role of sphericity in real space for polymer systems, and the role of sphericity in reciprocal space for metallic systems such as intermetallic compounds and alloys. These findings establish new links between disparate materials classes, provide opportunities to improve the understanding of complex crystallization by building on synergies between hard and soft matter, and, perhaps most significantly, challenge the view that the symmetry breaking required to form reduced symmetry structures (possibly even quasiperiodic crystals) requires particles with multiple predetermined shapes and/or sizes.« less

  1. Aligned vertical fractures, HTI reservoir symmetry, and Thomsenseismic anisotropy parameters for polar media

    SciTech Connect

    Berryman, James G.

    2007-12-12

    Sayers and Kachanov (1991) defined crack-influence parameters that are shown to be directly related to Thomsen (1986) weak-anisotropy seismic parameters for fractured reservoirs when the crack/fracture density is small enough. These results are then applied to the problem of seismic wave propagation in polar (i.e., non-isotropic) reservoirs having HTI seismic wave symmetry due to the presence of aligned vertical fractures and resulting in azimuthal seismic wave symmetry at the earth's surface. The approach presented suggests one method of inverting for fracture density from wave-speed data. It is also observed that the angular location {theta}{sub ex} of the extreme value (peak or trough) of the quasi-SV-wave speed for VTI occurs at an angle determined approximately by the formula tan{sup 2} {theta}{sub ex} {approx_equal} tan {theta}{sub m} = [(c{sub 33} - c{sub 44})/(c{sub 11}-c{sub 44})]{sup 1/2}, where {theta}{sub m} is an angle determined directly (as shown) from the c{sub ij} elastic stiffnesses, whenever these are known from either quasi-static or seismic wave measurements. Alternatively, {theta}{sub ex} is given in terms of the Thomsen seismic anisotropy parameters by tan {theta}{sub ex} {approx_equal} ([v{sub p}{sup 2}(0)-v{sub s}{sup 2}(0)]/[(1 + 2{epsilon})v{sub p}{sup 2}(0)-v{sub s}{sup 2}(0)]){sup 1/4}, where {epsilon} = (c{sub 11}-c{sub 33})/2c{sub 33}, v{sub p}{sup 2}(0) = c{sub 33}/{rho}, and v{sub s}{sup 2}(0) = c{sub 44}/{rho}, with {rho} being the background inertial mass density. The axis of symmetry is always treated here as the x{sub 3}-axis for either VTI symmetry (due, for example, to horizontal cracks), or HTI symmetry (due to aligned vertical cracks). Then the meaning of the stiffnesses is derived from the fracture analysis in the same way for VTI and HTI media, but for HTI the wave speeds relative to the earth's surface are shifted by 90{sup o} in the plane perpendicular to the aligned vertical fractures. Skempton's (1954) coefficient is

  2. On constructing optimistic simulation algorithms for the discrete event system specification

    SciTech Connect

    Nutaro, James J

    2008-01-01

    This article describes a Time Warp simulation algorithm for discrete event models that are described in terms of the Discrete Event System Specification (DEVS). The article shows how the total state transition and total output function of a DEVS atomic model can be transformed into an event processing procedure for a logical process. A specific Time Warp algorithm is constructed around this logical process, and it is shown that the algorithm correctly simulates a DEVS coupled model that consists entirely of interacting atomic models. The simulation algorithm is presented abstractly; it is intended to provide a basis for implementing efficient and scalable parallel algorithms that correctly simulate DEVS models.

  3. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport

    SciTech Connect

    Wang, Chi-Jen

    2013-01-01

    In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.

  4. Unified theory of exactly and quasiexactly solvable ''discrete'' quantum mechanics. I. Formalism

    SciTech Connect

    Odake, Satoru [Department of Physics, Shinshu University, Matsumoto 390-8621 (Japan); Sasaki, Ryu [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2010-08-15

    We present a simple recipe to construct exactly and quasiexactly solvable Hamiltonians in one-dimensional ''discrete'' quantum mechanics, in which the Schroedinger equation is a difference equation. It reproduces all the known ones whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. The recipe also predicts several new ones. An essential role is played by the sinusoidal coordinate, which generates the closure relation and the Askey-Wilson algebra together with the Hamiltonian. The relationship between the closure relation and the Askey-Wilson algebra is clarified.

  5. DOGS: a collection of graphics for support of discrete ordinates codes

    SciTech Connect

    Ingersoll, D.T.; Slater, C.O.

    1980-03-01

    A collection of computer codes called DOGS (Discrete Ordinates Graphics Support) has been developed to assist in the display and presentation of data generated by commonly used discrete ordinates transport codes. The DOGS codes include: EGAD for plotting two-dimensional geometries, ISOPLOT4 for plotting 2-D fluxes in a contour line fashion, FORM for plotting 2-D fluxes in a 3-D surface fashion, ACTUAL for calculating 2-D activities, TOOTH for calculating and plotting space-energy contributon fluxes, and ASPECT for plotting energy spectra. All of the codes use FIDO input formats and DISSPLA graphics software including the DISSPOP post processors.

  6. Enzymatic Ligation Creates Discrete Multi-Nanoparticle Building Blocks for Self-Assembly

    SciTech Connect

    Claridge, Shelley A.; Mastroianni, Alexander J.; Au, Yeung B.; Liang, Huiyang W.; Micheel, Christine M.; Frechet, Jean M.J.; Alivisatos, A. Paul

    2008-05-27

    Enzymatic ligation of discrete nanoparticle?DNA conjugates creates nanoparticle dimer and trimer structures in which the nanoparticles are linked by single-stranded DNA, rather than double-stranded DNA as in previous experiments. Ligation is verified by agarose gel and small-angle X-ray scattering. This capability is utilized in two ways: first to create a new class of multiparticle building blocks for nanoscale self-assembly; second to develop a system which can amplify a population of discrete nanoparticle assemblies.

  7. INteroperable Tools for Rapid dEveloPment of compatible Discretizations

    Energy Science and Technology Software Center

    2015-12-02

    Intrepid is a library of interoperable tools for compatible discretizations of Partial Differential Equations (PDEs).Current version is intended primarily for application developers who want to reuse large parts of their existing code frameworks such as I/O, data structures, assembly routines, etc. while gaining access to advanced discretization capabilities provided by Intrepid. Intrepid2 is a performance portable version of Intrepid, that requires all input data types be Kokkos (performance-portability library from Trillions) multidimentional arrays. this restrictionmore » is needed for providing performance portability in Intrepid2 and break backward-compatibility of Intrepid.« less

  8. INteroperable Tools for Rapid dEveloPment of compatible Discretizations

    SciTech Connect

    2015-12-02

    Intrepid is a library of interoperable tools for compatible discretizations of Partial Differential Equations (PDEs).Current version is intended primarily for application developers who want to reuse large parts of their existing code frameworks such as I/O, data structures, assembly routines, etc. while gaining access to advanced discretization capabilities provided by Intrepid. Intrepid2 is a performance portable version of Intrepid, that requires all input data types be Kokkos (performance-portability library from Trillions) multidimentional arrays. this restriction is needed for providing performance portability in Intrepid2 and break backward-compatibility of Intrepid.

  9. Soliton stability and collapse in the discrete nonpolynomial Schroedinger equation with dipole-dipole interactions

    SciTech Connect

    Gligoric, Goran; Hadzievski, Ljupco; Maluckov, Aleksandra; Malomed, Boris A.

    2009-05-15

    The stability and collapse of fundamental unstaggered bright solitons in the discrete Schroedinger equation with the nonpolynomial on-site nonlinearity, which models a nearly one-dimensional Bose-Einstein condensate trapped in a deep optical lattice, are studied in the presence of the long-range dipole-dipole (DD) interactions. The cases of both attractive and repulsive contact and DD interaction are considered. The results are summarized in the form of stability-collapse diagrams in the parametric space of the model, which demonstrate that the attractive DD interactions stabilize the solitons and help to prevent the collapse. Mobility of the discrete solitons is briefly considered too.

  10. A Spatial Discretization Scheme for Solving the Transport Equation on Unstructured Grids of Polyhedra

    SciTech Connect

    Thompson, K.G.

    2000-11-01

    In this work, we develop a new spatial discretization scheme that may be used to numerically solve the neutron transport equation. This new discretization extends the family of corner balance spatial discretizations to include spatial grids of arbitrary polyhedra. This scheme enforces balance on subcell volumes called corners. It produces a lower triangular matrix for sweeping, is algebraically linear, is non-negative in a source-free absorber, and produces a robust and accurate solution in thick diffusive regions. Using an asymptotic analysis, we design the scheme so that in thick diffusive regions it will attain the same solution as an accurate polyhedral diffusion discretization. We then refine the approximations in the scheme to reduce numerical diffusion in vacuums, and we attempt to capture a second order truncation error. After we develop this Upstream Corner Balance Linear (UCBL) discretization we analyze its characteristics in several limits. We complete a full diffusion limit analysis showing that we capture the desired diffusion discretization in optically thick and highly scattering media. We review the upstream and linear properties of our discretization and then demonstrate that our scheme captures strictly non-negative solutions in source-free purely absorbing media. We then demonstrate the minimization of numerical diffusion of a beam and then demonstrate that the scheme is, in general, first order accurate. We also note that for slab-like problems our method actually behaves like a second-order method over a range of cell thicknesses that are of practical interest. We also discuss why our scheme is first order accurate for truly 3D problems and suggest changes in the algorithm that should make it a second-order accurate scheme. Finally, we demonstrate 3D UCBL's performance on several very different test problems. We show good performance in diffusive and streaming problems. We analyze truncation error in a 3D problem and demonstrate robustness in a

  11. A molecular symmetry analysis of the electronic states and transition dipole moments for molecules with two torsional degrees of freedom

    SciTech Connect

    Obaid, R.; Leibscher, M.

    2015-02-14

    We present a molecular symmetry analysis of electronic states and transition dipole moments for molecules which undergo large amplitude intramolecular torsions. The method is based on the correlation between the point group of the molecule at highly symmetric configurations and the molecular symmetry group. As an example, we determine the global irreducible representations of the electronic states and transition dipole moments for the quinodimethane derivative 2-[4-(cyclopenta-2,4-dien-1-ylidene)cyclohexa-2,5-dien-1-ylidene]-2H-1, 3-dioxole for which two torsional degrees of freedom can be activated upon photo-excitation and construct the resulting symmetry adapted transition dipole functions.

  12. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    SciTech Connect

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strong as those obtained by nanodiffraction methods.

  13. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    DOE PAGES [OSTI]

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less

  14. Interplay between parity-time symmetry, supersymmetry, and nonlinearity: An analytically tractable case example

    SciTech Connect

    Kevrekidis, Panayotis G.; Cuevas–Maraver, Jesús; Saxena, Avadh; Cooper, Fred; Khare, Avinash

    2015-10-01

    In the present work, we combine the notion of parity-time (PT) symmetry with that of supersymmetry (SUSY) for a prototypical case example with a complex potential that is related by SUSY to the so-called Pöschl-Teller potential which is real. Not only are we able to identify and numerically confirm the eigenvalues of the relevant problem, but we also show that the corresponding nonlinear problem, in the presence of an arbitrary power-law nonlinearity, has an exact bright soliton solution that can be analytically identified and has intriguing stability properties, such as an oscillatory instability, which is absent for the corresponding solution of the regular nonlinear Schrödinger equation with arbitrary power-law nonlinearity. The spectral properties and dynamical implications of this instability are examined. Furthermore, we believe that these findings may pave the way toward initiating a fruitful interplay between the notions of PT symmetry, supersymmetric partner potentials, and nonlinear interactions.

  15. Generalised BRST symmetry and gaugeon formalism for perturbative quantum gravity: Novel observation

    SciTech Connect

    Upadhyay, Sudhaker

    2014-05-15

    In this paper the novel features of Yokoyama gaugeon formalism are stressed out for the theory of perturbative quantum gravity in the Einstein curved spacetime. The quantum gauge transformations for the theory of perturbative gravity are demonstrated in the framework of gaugeon formalism. These quantum gauge transformations lead to renormalised gauge parameter. Further, we analyse the BRST symmetric gaugeon formalism which embeds more acceptable KugoOjima subsidiary condition. Further, the BRST symmetry is made finite and field-dependent. Remarkably, the Jacobian of path integral under finite and field-dependent BRST symmetry amounts to the exact gaugeon action in the effective theory of perturbative quantum gravity. -- Highlights: We analyse the perturbative gravity in gaugeon formalism. The generalisation of BRST transformation is also studied in this context. Within the generalised BRST framework we found the exact gaugeon modes in the theory.

  16. Spontaneous symmetry breaking in cosmos: the hybrid symmetron as a dark energy switching device

    SciTech Connect

    Bamba, K.; Nojiri, S.; Gannouji, R.; Kamijo, M.; Sami, M. E-mail: gannouji@rs.kagu.tus.ac.jp E-mail: nojiri@phys.nagoya-u.ac.jp

    2013-07-01

    We consider symmetron model in a generalized background with a hope to make it compatible with dark energy. We observe a ''no go'' theorem at least in case of a conformal coupling. Being convinced of symmetron incapability to be dark energy, we try to retain its role for spontaneous symmetry breaking and assign the role of dark energy either to standard quintessence or F(R) theory which are switched on by symmetron field in the symmetry broken phase. The scenario reduces to standard Einstein gravity in the high density region. After the phase transition generated by symmetron field, either the F(R) gravity or the standard quintessence are induced in the low density region. we demonstrate that local gravity constraints and other requirements are satisfied although the model could generate the late-time acceleration of Universe.

  17. Empirical signatures of quantum phase transitions and universal properties of critical point descriptions and dynamical symmetries

    SciTech Connect

    Casten, R. F.; Bonatsos, Dennis; McCutchan, E. A.

    2009-01-28

    Recently, a new signature for quantum phase transitional regions has been discussed. This signature, based on degeneracies of yrast and intrinsic excitations, can distinguish first and second order phase transitions, and is valid not only at or near the analytic critical points described by X(5) and E(5), but along the phase transitional line connecting them as well. In addition, a study of a number of recent analytic solutions to the Bohr Hamiltonian and of the dynamical symmetries of the IBA Hamiltonian has revealed a set of extremely simple and general analytic formulas that describe the energies of 0{sup +} states. For the case of flat-bottomed geometrical potentials, the formula depends solely on the number of relevant dimensions. For the IBA (large boson number limit) a single formula describes all three dynamical symmetries.

  18. Can symmetry transitions of complex fields enable 3-d control of fluid vorticity?

    SciTech Connect

    Martin, James E.; Solis, Kyle Jameson

    2015-08-01

    Methods of inducing vigorous noncontact fluid flow are important to technologies involving heat and mass transfer and fluid mixing, since they eliminate the need for moving parts, pipes and seals, all of which compromise system reliability. Unfortunately, traditional noncontact flow methods are few, and have limitations of their own. We have discovered two classes of fields that can induce fluid vorticity without requiring either gravity or a thermal gradient. The first class we call Symmetry-Breaking Rational Fields. These are triaxial fields comprised of three orthogonal components, two ac and one dc. The second class is Rational Triad Fields, which differ in that all three components are alternating. In this report we quantify the induced vorticity for a wide variety of fields and consider symmetry transitions between these field types. These transitions give rise to orbiting vorticity vectors, a technology for non-contact, non-stationary fluid mixing.

  19. Hidden symmetries, null geodesics, and photon capture in the Sen black hole

    SciTech Connect

    Hioki, Kenta; Miyamoto, Umpei

    2008-08-15

    Important classes of null geodesics and hidden symmetries in the Sen black hole are investigated. First, we obtain the principal null geodesics and circular photon orbits. Then, an irreducible rank-two Killing tensor and a conformal Killing tensor are derived, which represent the hidden symmetries. Analyzing the properties of Killing tensors, we clarify why the Hamilton-Jacobi and wave equations are separable in this spacetime. We also investigate the gravitational capture of photons by the Sen black hole and compare the result with those by the various charged/rotating black holes and naked singularities in the Kerr-Newman family. For these black holes and naked singularities, we show the capture regions in a two dimensional impact parameter space (or equivalently the 'shadows' observed at infinity) to form a variety of shapes such as the disk, circle, dot, arc, and their combinations.

  20. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    SciTech Connect

    Petrovici, A.; Andrei, O.

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  1. Direct observation and imaging of a spin-wave soliton with p-like symmetry

    DOE PAGES [OSTI]

    Bonetti, S.; Kukreja, R.; Chen, Z.; Macià, F.; Hernàndez, J. M.; Eklund, A.; Backes, D.; Frisch, J.; Katine, J.; Malm, G.; et al

    2015-11-16

    Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Moreover, micromagnetic simulations explain the measurements and reveal that the symmetrymore » of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.« less

  2. Single field inflation in supergravity with a U(1) gauge symmetry

    SciTech Connect

    Heurtier, L.; Khalil, S.; Moursy, A.

    2015-10-19

    A single field inflation based on a supergravity model with a shift symmetry and U(1) extension of the MSSM is analyzed. We show that one of the real components of the two U(1) charged scalar fields plays the role of inflaton with an effective scalar potential similar to the “new chaotic inflation” scenario. Both non-anomalous and anomalous (with Fayet-Iliopoulos term) U(1) are studied. We show that the non-anomalous U(1) scenario is consistent with data of the cosmic microwave background and recent astrophysical measurements. A possible kinetic mixing between U(1) and U(1){sub B−L} is considered in order to allow for natural decay channels of the inflaton, leading to a reheating epoch. Upper limits on the reheating temperature thus turn out to favour an intermediate (∼O(10{sup 13}) GeV) scale B−L symmetry breaking.

  3. Semiclassical matrix model for quantum chaotic transport with time-reversal symmetry

    SciTech Connect

    Novaes, Marcel

    2015-10-15

    We show that the semiclassical approach to chaotic quantum transport in the presence of time-reversal symmetry can be described by a matrix model. In other words, we construct a matrix integral whose perturbative expansion satisfies the semiclassical diagrammatic rules for the calculation of transport statistics. One of the virtues of this approach is that it leads very naturally to the semiclassical derivation of universal predictions from random matrix theory.

  4. Relativistic Hartree-Fock-Bogoliubov Theory With Density Dependent Meson Couplings in Axial Symmetry

    SciTech Connect

    Ebran, J.-P.; Khan, E.; Arteaga, D. Pena; Grasso, M.; Vretenar, D.

    2009-08-26

    Most nuclei on the nuclear chart are deformed, and the development of new RIB facilities allows the study of exotic nuclei near the drip lines where a successful theoretical description requires both realistic pairing and deformation approaches. Relativistic Hartree-Fock-Bogoliubov model taking into account axial deformation and pairing correlations is introduced. Preliminary illustrative results with density dependent meson-nucleon couplings in axial symmetry will be discussed.

  5. Triplets, Static SU(6), and Spontaneously Broken Chiral SU(3) Symmetry

    DOE R&D Accomplishments

    Nambu, Y.

    1966-01-01

    I would like to present here my view of the current problems of elementary particle theory. It is largely inspired by the recent successes of SU(3) and SU(6) symmetries, and more or less summarizes what I have been pursuing lately. For the details of individual problems I must refer to the original papers. However, what is emphasized here is not the details, but a coherent overall picture plus some speculations which cannot yet be formulated precisely.

  6. Left-Right Symmetry: From the LHC to Neutrinoless Double Beta Decay

    SciTech Connect

    Tello, Vladimir [SISSA, Trieste (Italy); Nemevsek, Miha [ICTP, Trieste (Italy); Jozef Stefan Institute, Ljubljana (Slovenia); Nesti, Fabrizio [Universita di Ferrara, Ferrara (Italy); Senjanovic, Goran [ICTP, Trieste (Italy); Vissani, Francesco [LNGS, INFN, Assergi (Italy)

    2011-04-15

    The Large Hadron Collider has the potential to probe the scale of left-right symmetry restoration and the associated lepton number violation. Moreover, it offers the hope of measuring the right-handed leptonic mixing matrix. We show how this, together with constraints from lepton flavor violating processes, can be used to make predictions for neutrinoless double beta decay. We illustrate this connection in the case of the type-II seesaw.

  7. Dynamical instability induced by the zero mode under symmetry breaking external perturbation

    SciTech Connect

    Takahashi, J. Nakamura, Y. Yamanaka, Y.

    2014-08-15

    A complex eigenvalue in the Bogoliubov–de Gennes equations for a stationary Bose-Einstein condensate in the ultracold atomic system indicates the dynamical instability of the system. We also have the modes with zero eigenvalues for the condensate, called the zero modes, which originate from the spontaneous breakdown of symmetries. Although the zero modes are suppressed in many theoretical analyses, we take account of them in this paper and argue that a zero mode can change into one with a pure imaginary eigenvalue by applying a symmetry breaking external perturbation potential. This emergence of a pure imaginary mode adds a new type of scenario of dynamical instability to that characterized by the complex eigenvalue of the usual excitation modes. For illustration, we deal with two one-dimensional homogeneous Bose–Einstein condensate systems with a single dark soliton under a respective perturbation potential, breaking the invariance under translation, to derive pure imaginary modes. - Highlights: • Zero modes are important but ignored in many theories for the cold atomic system. • We discuss the zero mode under symmetry breaking potential in this system. • We consider the zero mode of translational invariance for a single dark soliton. • We show that it turns into an anomalous or pure imaginary mode.

  8. Serber symmetry, large N{sub c}, and Yukawa-like one-boson exchange potentials

    SciTech Connect

    Calle Cordon, A.; Arriola, E. Ruiz

    2009-07-15

    The Serber force has relative orbital parity symmetry and requires vanishing NN interactions in partial waves with odd angular momentum. We illustrate how this property is well fulfilled for spin triplet states with odd angular momentum and violated for odd singlet states for realistic potentials but fails for chiral potentials. The analysis is carried out in terms of partial wave sum rules for NN phase shifts, r-space potentials at long distances, and V{sub lowk} potentials. We analyze how Serber symmetry can be accommodated within a large-N{sub c} perspective when interpreted as a long-distance symmetry. A prerequisite for this is the numerical similarity of the scalar and vector meson resonance masses. The conditions under which the resonance exchange potential can be approximated by a Yukawa form are also discussed. Although these masses arise as poles on the second Riemann in {pi}{pi} scattering, we find that within the large-N{sub c} expansion the corresponding Yukawa masses correspond instead to a well-defined large-N{sub c} approximation to the pole that cannot be distinguished from their location as Breit-Wigner resonances.

  9. Proposal for determining the energy content of gravitational waves by using approximate symmetries of differential equations

    SciTech Connect

    Hussain, Ibrar; Qadir, Asghar; Mahomed, F. M.

    2009-06-15

    Since gravitational wave spacetimes are time-varying vacuum solutions of Einstein's field equations, there is no unambiguous means to define their energy content. However, Weber and Wheeler had demonstrated that they do impart energy to test particles. There have been various proposals to define the energy content, but they have not met with great success. Here we propose a definition using 'slightly broken' Noether symmetries. We check whether this definition is physically acceptable. The procedure adopted is to appeal to 'approximate symmetries' as defined in Lie analysis and use them in the limit of the exact symmetry holding. A problem is noted with the use of the proposal for plane-fronted gravitational waves. To attain a better understanding of the implications of this proposal we also use an artificially constructed time-varying nonvacuum metric and evaluate its Weyl and stress-energy tensors so as to obtain the gravitational and matter components separately and compare them with the energy content obtained by our proposal. The procedure is also used for cylindrical gravitational wave solutions. The usefulness of the definition is demonstrated by the fact that it leads to a result on whether gravitational waves suffer self-damping.

  10. Minimally allowed neutrinoless double beta decay rates from approximate flavor symmetries

    SciTech Connect

    Jenkins, James [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) and Northwestern University, Department of Physics and Astronomy, Evanston, Illinois 60208 (United States)

    2009-06-01

    Neutrinoless double beta decay ({beta}{beta}0{nu}) is among the only realistic probes of Majorana neutrinos. In the standard scenario, dominated by light neutrino exchange, the process amplitude is proportional to m{sub ee}, the e-e element of the Majorana mass matrix. Naively, current data allow for vanishing m{sub ee}, but this should be protected by an appropriate flavor symmetry. All such symmetries lead to mass matrices inconsistent with oscillation phenomenology. I perform a spurion analysis to break all possible Abelian symmetries that guarantee vanishing {beta}{beta}0{nu} rates and search for minimally allowed values. I survey 230 broken structures to yield m{sub ee} values and current phenomenological constraints under a variety of scenarios. This analysis also extracts predictions for both neutrino oscillation parameters and kinematic quantities. Assuming reasonable tuning levels, I find that m{sub ee}>4x10{sup -6} eV at 99% confidence. Bounds below this value might indicate the Dirac neutrino nature or the existence of new light (eV-MeV scale) degrees of freedom that can potentially be probed elsewhere.

  11. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    SciTech Connect

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  12. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor

    SciTech Connect

    Sobolevsky, Alexander I.; Rosconi, Michael P.; Gouaux, Eric

    2010-02-02

    Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system and function by opening a transmembrane ion channel upon binding of glutamate. Despite their crucial role in neurobiology, the architecture and atomic structure of an intact ionotropic glutamate receptor are unknown. Here we report the crystal structure of the {alpha}-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive, homotetrameric, rat GluA2 receptor at 3.6 {angstrom} resolution in complex with a competitive antagonist. The receptor harbours an overall axis of two-fold symmetry with the extracellular domains organized as pairs of local dimers and with the ion channel domain exhibiting four-fold symmetry. A symmetry mismatch between the extracellular and ion channel domains is mediated by two pairs of conformationally distinct subunits, A/C and B/D. Therefore, the stereochemical manner in which the A/C subunits are coupled to the ion channel gate is different from the B/D subunits. Guided by the GluA2 structure and site-directed cysteine mutagenesis, we suggest that GluN1 and GluN2A NMDA (N-methyl-D-aspartate) receptors have a similar architecture, with subunits arranged in a 1-2-1-2 pattern. We exploit the GluA2 structure to develop mechanisms of ion channel activation, desensitization and inhibition by non-competitive antagonists and pore blockers.

  13. A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

    SciTech Connect

    Ito, Kazumasa; Yongkoo, Seol

    2003-04-09

    Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.

  14. On the full exploitation of symmetry in periodic (as well as molecular) self-consistent-field ab initio calculations

    SciTech Connect

    Orlando, Roberto Erba, Alessandro; Dovesi, Roberto; De La Pierre, Marco; Zicovich-Wilson, Claudio M.

    2014-09-14

    Use of symmetry can dramatically reduce the computational cost (running time and memory allocation) of self-consistent-field ab initio calculations for molecular and crystalline systems. Crucial for running time is symmetry exploitation in the evaluation of one- and two-electron integrals, diagonalization of the Fock matrix at selected points in reciprocal space, reconstruction of the density matrix. As regards memory allocation, full square matrices (overlap, Fock, and density) in the Atomic Orbital (AO) basis are avoided and a direct transformation from the packed AO to the symmetry adapted crystalline orbital basis is performed, so that the largest matrix to be handled has the size of the largest sub-block in the latter basis. Quantitative examples, referring to the implementation in the CRYSTAL code, are given for high symmetry families of compounds such as carbon fullerenes and nanotubes.

  15. THE JET/COUNTERJET INFRARED SYMMETRY OF HH 34 AND THE SIZE OF THE JET FORMATION REGION

    SciTech Connect

    Raga, A. C.; Noriega-Crespo, A.; Carey, S. J.; Lora, V.; Stapelfeldt, K. R.

    2011-04-01

    We present new Spitzer IRAC images of the HH 34 outflow. These are the first images that detect both the knots along the southern jet and the northern counterjet (the counterjet knots were only detected previously in a long-slit spectrum). This result removes the problem of the apparent coexistence of a large-scale symmetry (at distances of up to {approx}1 pc) and a complete lack of symmetry close to the source (at distances of {approx}10{sup 17} cm) for this outflow. We present a quantitative evaluation of the newly found symmetry between the HH 34 jet and counterjet, and show that the observed degree of symmetry implies that the jet production region has a characteristic size <2.8 AU. This is the strongest constraint yet derived for the size of the region in which HH jets are produced.

  16. Eigenfunction Expansion of the Space-Time Dependent Neutron Survival...

    Office of Scientific and Technical Information (OSTI)

    2013 ANS Winter Meeting held November 9-13, 2013 in Washington DC, DC.; Related Information: Proposed for presentation at the 2013 ANS Winter Meeting held November 9-13, 2013 ...

  17. Ripples in space-time discussed in public lecture

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    will discuss the observation of gravitational waves at 7:30 p.m. Sept. 19 in Santa Fe. September 15, 2016 A simulation of two merging black holes, creating gravitational waves. ...

  18. Feynman and the visualization of space-time processes

    SciTech Connect

    Schweber, S.S.

    1986-04-01

    The Shelter Island conference in 1947 was the stimulus for many of the important advances in quantum field theory following World War II. Schwinger, Feynman, Tomonaga, and Dyson were the principal contributors during the initial phase of these developments. This article attempts to reconstruct the genesis of Feynman's formulation of quantum electrodynamics, focusing principally on the period from 1947 to 1950.

  19. Eigenfunction Expansion of the Space-Time Dependent Neutron Survival...

    Office of Scientific and Technical Information (OSTI)

    Language: English Word Cloud More Like This Full Text Journal Articles Find in Google Scholar Find in Google Scholar Search WorldCat Search WorldCat to find libraries that may hold ...

  20. Navigating Space-Time with Ultrafast Exciton Photolithography...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Awards include UC Berkeley Department of Chemistry Teaching Award (2013), DARPA Young Faculty Awardee (2012), Packard Fellow for Science and Engineering (2011), and Cupola Era ...

  1. A symmetry reduction scheme of the Dirac algebra without dimensional defects

    SciTech Connect

    Dahm, R.

    2010-02-15

    In relating the Dirac algebra to homogeneous coordinates of a projective geometry, we present a simple geometric scheme which allows to identify various Lie algebras and Lie groups well-known from classical physics as well as from quantum field theory. We introduce a 1 -point-compactification and quaternionic Moebius transformations, and we use SU* (4) and a symmetry reduction scheme without dimensional defects to identify transformations and particle representations thoroughly. As such, two subsequent nonlinear {sigma} models SU*(4)/U Sp(4) and U Sp(4)/SU(2) x U(1) emerge as well as a possible double coset decomposition of SU*(4) with respect to SU(2) x U(1). Whereas the first model leads to equivalence classes of hyperbolic manifolds and naturally introduces coordinates and velocities, the second coset model leads to a Hermitian symmetric (vector) space (Kaehlerian space) of real dimension 6, i.e., to a 3-dimensional complex space with a global symplectic and a local SU(2) x U(1) symmetry which allows to identify the (local) gauge group of electroweak interactions as well as under certain assumptions it admits compact SU(3) transformations as automorphisms of this 3-dimensional (hyper)complex vector space. In the limit of low energies, this geometric SU*(4) scheme naturally yields the (compact) group SU(4) to describe 'chiral symmetry' and conserved isospin of hadrons as well as the low-dimensional hadron representations. Last not least, with respect to some of the SU*(4) generators we find a multiplication table which (up to signs) is identical with the octonions represented in the Fano plane.

  2. Minimally allowed beta beata 0_nu rates from approximate flavor symmetries

    SciTech Connect

    Jenkins, James [Los Alamos National Laboratory

    2008-01-01

    Neutrinoless double beta decay ({beta}{beta}0{nu}) is the only realistic probe of Majorana neutrinos. In the standard scenario, dominated by light neutrino exchange, the process amplitude is proportional to m{sub ee} , the e - e element of the Majorana mass matrix. This is expected to hold true for small {beta}{beta}{nu} rates ({Gamma}{sub {beta}{beta}0{nu}}), even in the presence of new physics. Naively, current data allows for vanishing m{sub ee} , but this should be protected by an appropriate flavor symmetry. All such symmetries lead to mass matrices inconsistent with oscillation phenomenology. Hence, Majorana neutrinos imply nonzero {Gamma}{sub {beta}{beta}0{nu}}. I perform a spurion analysis to break all possible abelian symmetries that guarantee {Gamma}{sub {beta}{beta}0{nu}} = 0 and search for minimally allowed m{sub ee} values. Specifically, I survey 259 broken structures to yield m{sub ee} values and current phenomenological constraints under a variety of scenarios. This analysis also extracts predictions for both neutrino oscillation parameters and kinematic quantities. Assuming reasonable tuning levels, I find that m{sub ee} > 4 x 10{sup -6} eV at 99% confidence. Bounds below this value would indicate the Dirac neutrino nature or the existence of new light (eV-MeV scale) degrees of freedom that can potentially be probed elsewhere. This limit can be raised by improvements in neutrino parameter measurements, particularly of the reactor mixing angle, depending on the best fit parameter values. Such improvements will also significantly constrain the available model space and aid in future constructions.

  3. Video compression of coronary angiograms based on discrete wavelet transform with block classification

    SciTech Connect

    Ho, B.K.T.; Tsai, M.J.; Wei, J.; Ma, M.; Saipetch, P.

    1996-12-01

    A new method of video compression for angiographic images has been developed to achieve high compression ratio ({approximately}20:1) while eliminating block artifacts which leads to loss of diagnostic accuracy. This method adopts motion picture experts group`s (MPEG`s) motion compensated prediction to take advantage of frame to frame correlation. However, in contrast to MPEG, the error images arising from mismatches in the motion estimation are encoded by discrete wavelet transform (DWT) rather than block discrete cosine transform (DCT). Furthermore, the authors developed a classification scheme which label each block in an image as intra, error, or background type and encode it accordingly. This hybrid coding can significantly improve the compression efficiency in certain cases. This method can be generalized for any dynamic image sequences applications sensitive to block artifacts.

  4. Unitary irreducible representations of SL(2,C) in discrete and continuous SU(1,1) bases

    SciTech Connect

    Conrady, Florian; Hnybida, Jeff

    2011-01-15

    We derive the matrix elements of generators of unitary irreducible representations of SL(2,C) with respect to basis states arising from a decomposition into irreducible representations of SU(1,1). This is done with regard to a discrete basis diagonalized by J{sup 3} and a continuous basis diagonalized by K{sup 1}, and for both the discrete and continuous series of SU(1,1). For completeness, we also treat the more conventional SU(2) decomposition as a fifth case. The derivation proceeds in a functional/differential framework and exploits the fact that state functions and differential operators have a similar structure in all five cases. The states are defined explicitly and related to SU(1,1) and SU(2) matrix elements.

  5. DISCRETE EVENT SIMULATION OF OPTICAL SWITCH MATRIX PERFORMANCE IN COMPUTER NETWORKS

    SciTech Connect

    Imam, Neena; Poole, Stephen W

    2013-01-01

    In this paper, we present application of a Discrete Event Simulator (DES) for performance modeling of optical switching devices in computer networks. Network simulators are valuable tools in situations where one cannot investigate the system directly. This situation may arise if the system under study does not exist yet or the cost of studying the system directly is prohibitive. Most available network simulators are based on the paradigm of discrete-event-based simulation. As computer networks become increasingly larger and more complex, sophisticated DES tool chains have become available for both commercial and academic research. Some well-known simulators are NS2, NS3, OPNET, and OMNEST. For this research, we have applied OMNEST for the purpose of simulating multi-wavelength performance of optical switch matrices in computer interconnection networks. Our results suggest that the application of DES to computer interconnection networks provides valuable insight in device performance and aids in topology and system optimization.

  6. Discrete Calderon's projections on parallelepipeds and their application to computing exterior magnetic fields for FRC plasmas

    SciTech Connect

    Kansa, E.; Shumlak, U.; Tsynkov, S.

    2013-02-01

    Confining dense plasma in a field reversed configuration (FRC) is considered a promising approach to fusion. Numerical simulation of this process requires setting artificial boundary conditions (ABCs) for the magnetic field because whereas the plasma itself occupies a bounded region (within the FRC coils), the field extends from this region all the way to infinity. If the plasma is modeled using single fluid magnetohydrodynamics (MHD), then the exterior magnetic field can be considered quasi-static. This field has a scalar potential governed by the Laplace equation. The quasi-static ABC for the magnetic field is obtained using the method of difference potentials, in the form of a discrete Calderon boundary equation with projection on the artificial boundary shaped as a parallelepiped. The Calderon projection itself is computed by convolution with the discrete fundamental solution on the three-dimensional Cartesian grid.

  7. Second-order discretization in space and time for radiation hydrodynamics

    SciTech Connect

    Edwards, J. D.; Morel, J. E.; Lowrie, R. B.

    2013-07-01

    We present a method for solving the equations of radiation hydrodynamics that is second-order accurate in space and time. This method combines the MUSCL-Hancock method for solving the Euler equations with the TR/BDF2 scheme in time for solving the equations of radiative transfer. We use an LDFEM to discretize the radiative transfer equations in space, which, though uncommon for radiation diffusion calculations, is a standard for radiation transport applications. We address the challenges inherent to using different spatial discretizations for the hydrodynamics and radiation and demonstrate how these may be overcome. We define our method for a 1-D model of compressible fluid dynamics coupled with grey radiation diffusion. Using the method of manufactured solutions, we show that the method is second-order accurate in space and time for both the equilibrium diffusion and streaming limit. (authors)

  8. Hidden conformal symmetry of rotating black holes in minimal five-dimensional gauged supergravity

    SciTech Connect

    Setare, M. R.; Kamali, V.

    2010-10-15

    In the present paper we show that for a low frequency limit the wave equation of a massless scalar field in the background of nonextremal charged rotating black holes in five-dimensional minimal gauged and ungauged supergravity can be written as the Casimir of an SL(2,R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. Also the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional conformal field theory.

  9. Electric dipole response of {sup 208}Pb and constraints on the symmetry energy

    SciTech Connect

    Tamii, A.

    2014-05-02

    The electric dipole (E1) response of {sup 208}Pb has been precisely determined by measuring polarized proton inelastic scattering at very forward angles including zero degrees. The electric dipole polarizability, that is defined as the inverse energy-weighted sum rule of the E1 reduced transition strength, has been extracted as ?{sub D} = 20.1 0.6 fm{sup 3}. A constraint band has been extracted in the plane of the symmetry energy (J) and its slope parameter (L) at the saturation density.

  10. Soft A4→Z3 symmetry breaking and cobimaximal neutrino mixing

    DOE PAGES [OSTI]

    Ma, Ernest

    2016-03-28

    In this study, I propose a model of radiative charged-lepton and neutrino masses with A4 symmetry. The soft breaking of A4 to Z3 lepton triality is accomplished by dimension-three terms. The breaking of Z3 by dimension-two terms allows cobimaximal neutrino mixing (θ13 ≠ 0, θ23 = π/4, δcp=π/2) to be realized with only very small finite calculable deviations from the residual Z3 lepton triality. This construction solves a long-standing technical problem inherent in renormalizable A4 models since their inception.

  11. PQ-symmetry for a small Dirac neutrino mass, dark radiation and cosmic neutrinos

    SciTech Connect

    Park, Wan-Il

    2014-06-01

    We propose a supersymmetric scenario in which the small Yukawa couplings for the Dirac neutrino mass term are generated by the spontaneous-breaking of Pecci-Quinn symmetry. In this scenario, a right amount of dark matter relic density can be obtained by either right-handed sneutrino or axino LSP, and a sizable amount of axion dark radiation can be obtained. Interestingly, the decay of right-handed sneutrino NLSP to axino LSP is delayed to around the present epoch, and can leave an observable cosmological background of neutrinos at the energy scale of O(10−100) GeV.

  12. Two loop neutrino model and dark matter particles with global B?L symmetry

    SciTech Connect

    Baek, Seungwon; Okada, Hiroshi; Toma, Takashi E-mail: hokada@kias.re.kr

    2014-06-01

    We study a two loop induced seesaw model with global U(1){sub B?L} symmetry, in which we consider two component dark matter particles. The dark matter properties are investigated together with some phenomenological constraints such as electroweak precision test, neutrino masses and mixing and lepton flavor violation. In particular, the mixing angle between the Standard Model like Higgs and an extra Higgs is extremely restricted by the direct detection experiment of dark matter. We also discuss the contribution of Goldstone boson to the effective number of neutrino species ?N{sub eff} ? 0.39 which has been reported by several experiments.

  13. Charge independence, charge symmetry breaking in the S-wave nucleon-nucleon interaction, and renormalization

    SciTech Connect

    Alvaro Calle Cordon,Manuel Pavon Valderrama,Enrique Ruiz Arriola

    2012-02-01

    We study the interplay between charge symmetry breaking and renormalization in the NN system for S-waves. We find a set of universality relations which disentangle explicitly the known long distance dynamics from low energy parameters and extend them to the Coulomb case. We analyze within such an approach the One-Boson-Exchange potential and the theoretical conditions which allow to relate the proton-neutron, proton-proton and neutron-neutron scattering observables without the introduction of extra new parameters and providing good phenomenological success.

  14. Symmetry of microwave devices with gyrotropic media-complete solution and applications

    SciTech Connect

    Dmitriyev, V.A.

    1997-03-01

    In this paper, a general procedure for constructing all the possible solutions for symmetrical devices and components with gyrotropic medias is suggested. Using the theory of symmetry and crystallographic principles, all the color groups and corresponding matrices [S], [Z], and [Y] of the devices can be obtained. With this approach, it is possible to select those symmetrical structures and magnetic fields, which can be considered as candidates in the process of synthesis of microwave devices and components. In order to illustrate the procedure, some examples are given.

  15. Supersymmetric analysis of the Dirac-Weyl operator within PT symmetry

    SciTech Connect

    Ye?ilta?, zlem

    2014-08-15

    Two-dimensional effective Hamiltonian for a massless Dirac electron interacting with a hyperbolic magnetic field is discussed within PT symmetry. Factorization method and polynomial procedures are used to solve Dirac equation for the constant Fermi velocity and the effective potential which is complex Scarf II potential. The more general effective Scarf II potential models are also obtained within pseudo-supersymmetry. Finally, an extension of Panella and Roy's work [Phys. Lett. A 376, 25802583 (2012)] to the both PT symmetric and real Scarf II partner potentials is given using the position dependent Fermi velocity.

  16. Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems Alexandra Hakala (National Energy Technology Laboratory) Track 1 Project Officer: Lauren Boyd Total Project Funding: $995,718 April 25, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research * Fractures - primary pathway for geothermal heat

  17. Discretization error estimation and exact solution generation using the method of nearby problems.

    SciTech Connect

    Sinclair, Andrew J.; Raju, Anil; Kurzen, Matthew J.; Roy, Christopher John; Phillips, Tyrone S.

    2011-10-01

    The Method of Nearby Problems (MNP), a form of defect correction, is examined as a method for generating exact solutions to partial differential equations and as a discretization error estimator. For generating exact solutions, four-dimensional spline fitting procedures were developed and implemented into a MATLAB code for generating spline fits on structured domains with arbitrary levels of continuity between spline zones. For discretization error estimation, MNP/defect correction only requires a single additional numerical solution on the same grid (as compared to Richardson extrapolation which requires additional numerical solutions on systematically-refined grids). When used for error estimation, it was found that continuity between spline zones was not required. A number of cases were examined including 1D and 2D Burgers equation, the 2D compressible Euler equations, and the 2D incompressible Navier-Stokes equations. The discretization error estimation results compared favorably to Richardson extrapolation and had the advantage of only requiring a single grid to be generated.

  18. An efficient permeability scaling-up technique applied to the discretized flow equations

    SciTech Connect

    Urgelli, D.; Ding, Yu

    1997-08-01

    Grid-block permeability scaling-up for numerical reservoir simulations has been discussed for a long time in the literature. It is now recognized that a full permeability tensor is needed to get an accurate reservoir description at large scale. However, two major difficulties are encountered: (1) grid-block permeability cannot be properly defined because it depends on boundary conditions; (2) discretization of flow equations with a full permeability tensor is not straightforward and little work has been done on this subject. In this paper, we propose a new method, which allows us to get around both difficulties. As the two major problems are closely related, a global approach will preserve the accuracy. So, in the proposed method, the permeability up-scaling technique is integrated in the discretized numerical scheme for flow simulation. The permeability is scaled-up via the transmissibility term, in accordance with the fluid flow calculation in the numerical scheme. A finite-volume scheme is particularly studied, and the transmissibility scaling-up technique for this scheme is presented. Some numerical examples are tested for flow simulation. This new method is compared with some published numerical schemes for full permeability tensor discretization where the full permeability tensor is scaled-up through various techniques. Comparing the results with fine grid simulations shows that the new method is more accurate and more efficient.

  19. Discrete Electronic Bands in Semiconductors and Insulators: Potential High-Light-Yield Scintillators

    SciTech Connect

    Shi, Hongliang; Du, Mao-Hua

    2015-05-12

    Bulk semiconductors and insulators typically have continuous valence and conduction bands. In this paper, we show that valence and conduction bands of a multinary semiconductor or insulator can be split to narrow discrete bands separated by large energy gaps. This unique electronic structure is demonstrated by first-principles calculations in several quaternary elpasolite compounds, i.e., Cs2NaInBr6, Cs2NaBiCl6, and Tl2NaBiCl6. The narrow discrete band structure in these quaternary elpasolites is due to the large electronegativity difference among cations and the large nearest-neighbor distances in cation sublattices. We further use Cs2NaInBr6 as an example to show that the narrow bands can stabilize self-trapped and dopant-bound excitons (in which both the electron and the hole are strongly localized in static positions on adjacent sites) and promote strong exciton emission at room temperature. The discrete band structure should further suppress thermalization of hot carriers and may lead to enhanced impact ionization, which is usually considered inefficient in bulk semiconductors and insulators. Finally, these characteristics can enable efficient room-temperature light emission in low-gap scintillators and may overcome the light-yield bottleneck in current scintillator research.

  20. An extension of the OpenModelica compiler for using Modelica models in a discrete event simulation

    SciTech Connect

    Nutaro, James

    2014-11-03

    In this article, a new back-end and run-time system is described for the OpenModelica compiler. This new back-end transforms a Modelica model into a module for the adevs discrete event simulation package, thereby extending adevs to encompass complex, hybrid dynamical systems. The new run-time system that has been built within the adevs simulation package supports models with state-events and time-events and that comprise differential-algebraic systems with high index. Finally, although the procedure for effecting this transformation is based on adevs and the Discrete Event System Specification, it can be adapted to any discrete event simulation package.

  1. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    SciTech Connect

    Norris, Edward T.; Liu, Xin; Hsieh, Jiang

    2015-07-15

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. The CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer

  2. Interplay between parity-time symmetry, supersymmetry, and nonlinearity: An analytically tractable case example

    DOE PAGES [OSTI]

    Kevrekidis, Panayotis G.; Cuevas–Maraver, Jesús; Saxena, Avadh; Cooper, Fred; Khare, Avinash

    2015-10-01

    In the present work, we combine the notion of parity-time (PT) symmetry with that of supersymmetry (SUSY) for a prototypical case example with a complex potential that is related by SUSY to the so-called Pöschl-Teller potential which is real. Not only are we able to identify and numerically confirm the eigenvalues of the relevant problem, but we also show that the corresponding nonlinear problem, in the presence of an arbitrary power-law nonlinearity, has an exact bright soliton solution that can be analytically identified and has intriguing stability properties, such as an oscillatory instability, which is absent for the corresponding solutionmore » of the regular nonlinear Schrödinger equation with arbitrary power-law nonlinearity. The spectral properties and dynamical implications of this instability are examined. Furthermore, we believe that these findings may pave the way toward initiating a fruitful interplay between the notions of PT symmetry, supersymmetric partner potentials, and nonlinear interactions.« less

  3. General N=2 supersymmetric quantum mechanical model: Supervariable approach to its off-shell nilpotent symmetries

    SciTech Connect

    Krishna, S.; Shukla, A.; Malik, R.P.

    2014-12-15

    Using the supersymmetric (SUSY) invariant restrictions on the (anti-)chiral supervariables, we derive the off-shell nilpotent symmetries of the general one (0+1)-dimensional N=2 SUSY quantum mechanical (QM) model which is considered on a (1, 2)-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables θ and θ-bar with θ{sup 2}=(θ-bar){sup 2}=0,θ(θ-bar)+(θ-bar)θ=0). We provide the geometrical meanings to the two SUSY transformations of our present theory which are valid for any arbitrary type of superpotential. We express the conserved charges and Lagrangian of the theory in terms of the supervariables (that are obtained after the application of SUSY invariant restrictions) and provide the geometrical interpretation for the nilpotency property and SUSY invariance of the Lagrangian for the general N=2 SUSY quantum theory. We also comment on the mathematical interpretation of the above symmetry transformations. - Highlights: • A novel method has been proposed for the derivation of N=2 SUSY transformations. • General N=2 SUSY quantum mechanical (QM) model with a general superpotential, is considered. • The above SUSY QM model is generalized onto a (1, 2)-dimensional supermanifold. • SUSY invariant restrictions are imposed on the (anti-)chiral supervariables. • Geometrical meaning of the nilpotency property is provided.

  4. Domain- and symmetry-transition origins of reduced nanosecond piezoelectricity in ferroelectric/dielectric superlattices

    SciTech Connect

    Chen, Pice; Jo, Ji Young; Lee, Ho Nyung; Dufresne, Eric M.; Nakhmanson, Serge; Evans, Paul G.

    2012-01-01

    Complex-oxide superlattices (SLs) with atomic-scale periodicity have dynamical properties that are distinct from thin films of uniform composition. The origins of these properties are closely related to the dynamics of polarization domains and to field-driven changes in the symmetries resulting from interfacial coupling between different components. These dynamics are apparent at timescales from a few nanoseconds to several milliseconds in experiments probing the piezoelectricity of a ferroelectric/dielectric BaTiO{sub 3}(BTO)/CaTiO{sub 3} (CTO) SL using time-resolved x-ray microdiffraction. At the 100 ns timescale, the piezoelectric distortion is approximately ten times smaller than in the millisecond regime. This reduced piezoelectricity at short timescales is not observed in previously studied PbTiO{sub 3}/SrTiO{sub 3} SLs or compositionally uniform ferroelectrics such as tetragonal compositions of Pb(Zr,Ti)O{sub 3}. The unusual behavior of the BTO/CTO SL can be linked to the switching of a nanodomain state into a uniform polarization state or to a field-induced crystallographic symmetry transition. A comparison of the results with the characteristic timescales of these two dynamical phenomena in other complex oxides with different compositions suggests that the phase transition is a more likely possibility.

  5. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

    DOE PAGES [OSTI]

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; Lian, Biao; Muhlbauer, Mathias; Brune, Christoph; Cui, Yong -Tao; Lai, Keji; Kundhikanjana, Worasom; Yang, Yongliang; et al

    2015-05-26

    The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy,more » and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. Finally, this indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.« less

  6. Inducing chaos by breaking axial symmetry in a black hole magnetosphere

    SciTech Connect

    Kopáček, O.; Karas, V.

    2014-06-01

    While the motion of particles near a rotating, electrically neutral (Kerr), and charged (Kerr-Newman) black hole is always strictly regular, a perturbation in the gravitational or the electromagnetic field generally leads to chaos. The transition from regular to chaotic dynamics is relatively gradual if the system preserves axial symmetry, whereas non-axisymmetry induces chaos more efficiently. Here we study the development of chaos in an oblique (electro-vacuum) magnetosphere of a magnetized black hole. Besides the strong gravity of the massive source represented by the Kerr metric, we consider the presence of a weak, ordered, large-scale magnetic field. An axially symmetric model consisting of a rotating black hole embedded in an aligned magnetic field is generalized by allowing an oblique direction of the field having a general inclination with respect to the rotation axis of the system. The inclination of the field acts as an additional perturbation to the motion of charged particles as it breaks the axial symmetry of the system and cancels the related integral of motion. The axial component of angular momentum is no longer conserved and the resulting system thus has three degrees of freedom. Our primary concern within this contribution is to find out how sensitive the system of bound particles is to the inclination of the field. We employ the method of the maximal Lyapunov exponent to distinguish between regular and chaotic orbits and to quantify their chaoticity. We find that even a small misalignment induces chaotic motion.

  7. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

    SciTech Connect

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; Lian, Biao; Muhlbauer, Mathias; Brune, Christoph; Cui, Yong -Tao; Lai, Keji; Kundhikanjana, Worasom; Yang, Yongliang; Baenninger, Matthias; Konig, Markus; Ames, Christopher; Buhmann, Hartmut; Leubner, Philipp; Molenkamp, Laurens W.; Zhang, Shou -Cheng; Goldhaber-Gordon, David; Kelly, Michael A.; Shen, Zhi -Xun

    2015-05-26

    The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. Finally, this indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.

  8. Symmetry breaking of solitons in two-component Gross-Pitaevskii equations

    SciTech Connect

    Sakaguchi, Hidetsugu; Malomed, Boris A.

    2011-03-15

    We revisit the problem of the spontaneous symmetry breaking (SSB) of solitons in two-component linearly coupled nonlinear systems, adding the nonlinear interaction between the components. With this feature, the system may be realized in new physical settings, in terms of optics and the Bose-Einstein condensate (BEC). SSB bifurcation points are found analytically, for both symmetric and antisymmetric solitons (the symmetry between the two components is meant here). Asymmetric solitons, generated by the bifurcations, are described by means of the variational approximation (VA) and numerical methods, demonstrating good accuracy of the variational results. In the space of the self-phase-modulation (SPM) parameter and soliton's norm, a border separating stable symmetric and asymmetric solitons is identified. The nonlinear coupling may change the character of the SSB bifurcation, from subcritical to supercritical. Collisions between moving asymmetric and symmetric solitons are investigated too. Antisymmetric solitons are destabilized by a supercritical bifurcation, which gives rise to self-confined modes featuring Josephson oscillations, instead of stationary states with broken antisymmetry. An additional instability against delocalized perturbations is also found for the antisymmetric solitons.

  9. {mu}-{tau} symmetry, sterile right-handed neutrinos, and leptogenesis

    SciTech Connect

    Riazuddin [National Centre for Physics, Quaid-i-Azam University, Islamabad (Pakistan)

    2008-01-01

    Leptogenesis is studied in a seesaw model with {mu}-{tau} symmetry for SU{sub L}(2)-singlet right-handed neutrinos. It is shown that lepton asymmetry is not zero and is given by the square of the solar neutrino mass difference and can be of the right order of magnitude. Further it involves the same Majorana phase which appears in the neutrinoless double {beta}-decay. In this framework one of the right-handed seesaw partners of light neutrinos can be made massless. This can be identified with a sterile neutrino, once it acquires a tiny mass ({approx_equal}1 eV) when {mu}-{tau} symmetry is broken in the right-handed neutrino sector. The above mentioned sterile neutrino together with another one can be identified to explain the MiniBooNE and LSND results. The light 5x5 neutrino mass matrix is completely fixed if CP is conserved and so is the effective mass for neutrinoless double {beta}-decay.

  10. Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets

    DOE PAGES [OSTI]

    Pullen, M. G.; Wolter, B.; Le, A. -T.; Baudisch, M.; Sclafani, M.; Pires, H.; Schroter, C. D.; Ullrich, J.; Moshammer, R.; Pfeifer, T.; et al

    2016-06-22

    The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as pg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval ofmore » the structure of randomly oriented O2 and C2H2 molecules, with πg and πu symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. As a result, while this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms.« less

  11. Nuclear binding energy and symmetry energy of nuclear matter with modern nucleon-nucleon potentials

    SciTech Connect

    Hassaneen, Kh.S.A.; Abo-Elsebaa, H.M.; Sultan, E.A.; Mansour, H.M.M.

    2011-03-15

    Research Highlights: > The nuclear matter is studied within the Brueckner-Hartree-Fock (BHF) approach employing the most recent accurate nucleon-nucleon potentials. > The results come out by approximating the single particle self-consistent potential with a parabolic form. > We discuss the current status of the Coester line, i.e., density and energy of the various saturation points being strongly linearly correlated. > The nuclear symmetry energy is calculated as the difference between the binding energy of pure neutron matter and that of symmetric nuclear matter. - Abstract: The binding energy of nuclear matter at zero temperature in the Brueckner-Hartree-Fock approximation with modern nucleon-nucleon potentials is studied. Both the standard and continuous choices of single particle energies are used. These modern nucleon-nucleon potentials fit the deuteron properties and are phase shifts equivalent. Comparison with other calculations is made. In addition we present results for the symmetry energy obtained with different potentials, which is of great importance in astrophysical calculation.

  12. On the superconducting symmetry of Fe-based systems — Impurity effect studies and neutron scattering measurements-

    DOE PAGES [OSTI]

    Sato, Masatoshi; Kobayashi, Yoshiaki; Kawamata, Takayuki; Yasui, Yukio; Suzuki, Kazunori; Itoh, M.; Kajimoto, Ryoichi; Ikeuchi, Kazuhiko; Arai, M.; Bourges, Phillipe

    2013-07-09

    To identify the superconducting symmetry of Fe-based superconductors, we studied effects of nonmagnetic-impurities on Tc, magnetic excitation spectra x" and NMR 1/T1 - T curve, which are sensitive to the relative signs between the order parameters on the disconnected Fermi surfaces in reciprocal space, because the symmetry is closely connected with the pairing mechanism: If the signs are opposite (symmetry S±), the mechanism is considered to be a magnetic one, but when the signs are the same (symmetry S++), a novel mechanism is plausible because the ordinary phonon mechanism cannot realize the Tc value as high as ~55 K foundmore » in Ln1111 (Ln=lanthanide). Results are as follows: (a) The very small rates of Tc-suppression by impurity atoms M of LnFe1-yMyAs0.89-xF0.11+x (M=Ni, Co, Ru) can be explained only by S++. (b) The x"-data for Ba(Fe, Co)2As2 (Tc ~ 23 K) and Ca-Fe-Pt-As crystals seem to be well explained by S++ rather than by S±. (c) The nuclear magnetic resonance data can be consistently understood by S++, too. These results suggest the S++ symmetry and a novel pairing mechanism, which can be considered to be related to the elastic softening of C66 induced by the orbital fluctuation of the system.« less

  13. Symmetry-dependent electron-electron interaction in coherent tunnel junctions resolved by measurements of zero-bias anomaly

    DOE PAGES [OSTI]

    Liu, Liang; Niu, Jiasen; Xiang, Li; Wei, Jian; Li, D. -L.; Feng, J. -F.; Han, X. -F.; Zhang, X. -G.; Coey, J. M. D.

    2014-11-18

    We provide experimental evidence that zero bias anomaly in the differential resistance of magnetic tunnel junctions (MTJs) is due to electron-electron interaction (EEI). Magnon effect is excluded by measuring at low temperatures down to 0.2 K and with reduced AC measurement voltages down to 0.06 mV. The normalized change of conductance is proportional to ln (eV /kB T ), consistent with the Altshuler-Aronov theory of tunneling with EEI but inconsistent with magnetic impurity scattering. The slope of the ln (eV /kBT ) dependence is symmetry dependent, i.e., MTJs with symmetry filtering show di erent slopes for P and AP states,more » while those without symmetry filtering (amorphous barriers) have nearly the same slopes for P and AP.« less

  14. Symmetry-dependent electron-electron interaction in coherent tunnel junctions resolved by measurements of zero-bias anomaly

    SciTech Connect

    Liu, Liang; Niu, Jiasen; Xiang, Li; Wei, Jian; Li, D. -L.; Feng, J. -F.; Han, X. -F.; Zhang, X. -G.; Coey, J. M. D.

    2014-11-18

    We provide experimental evidence that zero bias anomaly in the differential resistance of magnetic tunnel junctions (MTJs) is due to electron-electron interaction (EEI). Magnon effect is excluded by measuring at low temperatures down to 0.2 K and with reduced AC measurement voltages down to 0.06 mV. The normalized change of conductance is proportional to ln (eV /kB T ), consistent with the Altshuler-Aronov theory of tunneling with EEI but inconsistent with magnetic impurity scattering. The slope of the ln (eV /kBT ) dependence is symmetry dependent, i.e., MTJs with symmetry filtering show di erent slopes for P and AP states, while those without symmetry filtering (amorphous barriers) have nearly the same slopes for P and AP.

  15. Global SO(3) x SO(3) x U(1) symmetry of the Hubbard model on bipartite lattices

    SciTech Connect

    Carmelo, J.M.P.; Ostlund, Stellan; Sampaio, M.J.

    2010-08-15

    In this paper the global symmetry of the Hubbard model on a bipartite lattice is found to be larger than SO(4). The model is one of the most studied many-particle quantum problems, yet except in one dimension it has no exact solution, so that there remain many open questions about its properties. Symmetry plays an important role in physics and often can be used to extract useful information on unsolved non-perturbative quantum problems. Specifically, here it is found that for on-site interaction U {ne} 0 the local SU(2) x SU(2) x U(1) gauge symmetry of the Hubbard model on a bipartite lattice with N{sub a}{sup D} sites and vanishing transfer integral t = 0 can be lifted to a global [SU(2) x SU(2) x U(1)]/Z{sub 2}{sup 2} = SO(3) x SO(3) x U(1) symmetry in the presence of the kinetic-energy hopping term of the Hamiltonian with t > 0. (Examples of a bipartite lattice are the D-dimensional cubic lattices of lattice constant a and edge length L = N{sub a}a for which D = 1, 2, 3,... in the number N{sub a}{sup D} of sites.) The generator of the new found hidden independent charge global U(1) symmetry, which is not related to the ordinary U(1) gauge subgroup of electromagnetism, is one half the rotated-electron number of singly occupied sites operator. Although addition of chemical-potential and magnetic-field operator terms to the model Hamiltonian lowers its symmetry, such terms commute with it. Therefore, its 4{sup N}{sub a}{sup D} energy eigenstates refer to representations of the new found global [SU(2) x SU(2) x U(1)]/Z{sub 2}{sup 2} = SO(3) x SO(3) x U(1) symmetry. Consistently, we find that for the Hubbard model on a bipartite lattice the number of independent representations of the group SO(3) x SO(3) x U(1) equals the Hilbert-space dimension 4{sup N}{sub a}{sup D}. It is confirmed elsewhere that the new found symmetry has important physical consequences.

  16. Generalized perturbation theory using two-dimensional, discrete ordinates transport theory

    SciTech Connect

    Childs, R.L.

    1980-06-01

    Perturbation theory for changes in linear and bilinear functionals of the forward and adjoint fluxes in a critical reactor has been implemented using two-dimensional discrete ordinates transport theory. The computer program DOT IV was modified to calculate the generalized functions GAMMA and GAMMA*. Demonstration calculations were performed for changes in a reaction-rate ratio and a reactivity worth caused by system perturbations. The perturbation theory predictions agreed with direct calculations to within about 2%. A method has been developed for calculating higher lambda eigenvalues and eigenfunctions using techniques similar to those developed for generalized functions. Demonstration calculations have been performed to obtain these eigenfunctions.

  17. Sequential Window Diagnoser for Discrete-Event Systems Under Unreliable Observations

    SciTech Connect

    Wen-Chiao Lin; Humberto E. Garcia; David Thorsley; Tae-Sic Yoo

    2009-09-01

    This paper addresses the issue of counting the occurrence of special events in the framework of partiallyobserved discrete-event dynamical systems (DEDS). Developed diagnosers referred to as sequential window diagnosers (SWDs) utilize the stochastic diagnoser probability transition matrices developed in [9] along with a resetting mechanism that allows on-line monitoring of special event occurrences. To illustrate their performance, the SWDs are applied to detect and count the occurrence of special events in a particular DEDS. Results show that SWDs are able to accurately track the number of times special events occur.

  18. Global confinement and discrete dynamo activity in the MST reversed-field pinch

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    confinement and discrete dynamo activity in the MST reversed-field pinch* S. Hokin,+ A. Almagri, S. Assadi, J. Beckstead, G. Chartas, N. Cracker, M. Cudzinovic, D. Den Hat-tog, FL Dexter, D. Holly, S. Prager, T. Rempel, J. Sarff, E. Scime, W. Shen, C. Spragins, C. Sprott, G. Starr, M. Stoneking, and C. Watts University of Wisconsin, Madison, Wisconsin 53 706 R. Nebel Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (Received 10 December 1990; accepted 1 April 199 1) Results obtained

  19. Stabilization of the stochastically forced equilibria for nonlinear discrete-time systems with incomplete information

    SciTech Connect

    Ryashko, Lev

    2015-11-30

    A stabilization problem of the equilibrium of stochastically forced nonlinear discrete-time system with incomplete information is considered. Our approach uses a regulator which synthesizes the required stochastic sensitivity of the equilibrium. Mathematically, this problem is reduced to the solution of some quadratic matrix equations. A description of attainability sets and algorithms for regulators design is given. The general results are applied to the suppression of unwanted large-amplitude oscillations around the equilibria of the stochastically forced Verhulst model with noisy observations.

  20. Determining the significance of associations between two series of discrete events : bootstrap methods /

    SciTech Connect

    Niehof, Jonathan T.; Morley, Steven K.

    2012-01-01

    We review and develop techniques to determine associations between series of discrete events. The bootstrap, a nonparametric statistical method, allows the determination of the significance of associations with minimal assumptions about the underlying processes. We find the key requirement for this method: one of the series must be widely spaced in time to guarantee the theoretical applicability of the bootstrap. If this condition is met, the calculated significance passes a reasonableness test. We conclude with some potential future extensions and caveats on the applicability of these methods. The techniques presented have been implemented in a Python-based software toolkit.

  1. Lower and upper estimates on the excitation threshold for breathers in discrete nonlinear Schroedinger lattices

    SciTech Connect

    Cuevas, J.; Palmero, F.

    2009-11-15

    We propose analytical lower and upper estimates on the excitation threshold for breathers (in the form of spatially localized and time periodic solutions) in discrete nonlinear Schroedinger (DNLS) lattices with power nonlinearity. The estimation, depending explicitly on the lattice parameters, is derived by a combination of a comparison argument on appropriate lower bounds depending on the frequency of each solution with a simple and justified heuristic argument. The numerical studies verify that the analytical estimates can be of particular usefulness, as a simple analytical detection of the activation energy for breathers in DNLS lattices.

  2. Dissipative soliton dynamics in a discrete magnetic nano-dot chain

    SciTech Connect

    Lee, Kyeong-Dong; You, Chun-Yeol; Song, Hyon-Seok; Shin, Sung-Chul; Park, Byong-Guk

    2014-02-03

    Soliton dynamics is studied in a discrete magnetic nano-dot chain by means of micromagnetic simulations together with an analytic model equation. A soliton under a dissipative system is driven by an applied field. The field-driven dissipative soliton enhances its mobility nonlinearly, as the characteristic frequency and the intrinsic Gilbert damping decrease. During the propagation, the soliton emits spin waves which act as an extrinsic damping channel. The characteristic frequency, the maximum velocity, and the localization length of the soliton are found to be proportional to the threshold field, the threshold velocity, and the initial mobility, respectively.

  3. Noether’s second theorem and Ward identities for gauge symmetries

    DOE PAGES [OSTI]

    Avery, Steven G.; Schwab, Burkhard U. W.

    2016-02-04

    Recently, a number of new Ward identities for large gauge transformations and large diffeomorphisms have been discovered. Some of the identities are reinterpretations of previously known statements, while some appear to be genuinely new. We present and use Noether’s second theorem with the path integral as a powerful way of generating these kinds of Ward identities. We reintroduce Noether’s second theorem and discuss how to work with the physical remnant of gauge symmetry in gauge fixed systems. We illustrate our mechanism in Maxwell theory, Yang-Mills theory, p-form field theory, and Einstein-Hilbert gravity. We comment on multiple connections between Noether’s secondmore » theorem and known results in the recent literature. Finally, our approach suggests a novel point of view with important physical consequences.« less

  4. Dirac gauginos, R symmetry and the 125 GeV Higgs

    SciTech Connect

    Bertuzzo, Enrico; Frugiuele, Claudia; Gregoire, Thomas; Ponton, Eduardo

    2015-04-20

    We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We then analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. Furthermore, we estimate the fine-tuning of the model finding regions of the parameter space still unexplored by the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.

  5. Intramolecular symmetry-adapted perturbation theory with a single-determinant wavefunction

    SciTech Connect

    Pastorczak, Ewa; Prlj, Antonio; Corminboeuf, Clémence; Gonthier, Jérôme F.

    2015-12-14

    We introduce an intramolecular energy decomposition scheme for analyzing non-covalent interactions within molecules in the spirit of symmetry-adapted perturbation theory (SAPT). The proposed intra-SAPT approach is based upon the Chemical Hamiltonian of Mayer [Int. J. Quantum Chem. 23(2), 341–363 (1983)] and the recently introduced zeroth-order wavefunction [J. F. Gonthier and C. Corminboeuf, J. Chem. Phys. 140(15), 154107 (2014)]. The scheme decomposes the interaction energy between weakly bound fragments located within the same molecule into physically meaningful components, i.e., electrostatic-exchange, induction, and dispersion. Here, we discuss the key steps of the approach and demonstrate that a single-determinant wavefunction can already deliver a detailed and insightful description of a wide range of intramolecular non-covalent phenomena such as hydrogen bonds, dihydrogen contacts, and π − π stacking interactions. Intra-SAPT is also used to shed the light on competing intra- and intermolecular interactions.

  6. Symmetries of the triple degenerate DNLS equations for weakly nonlinear dispersive MHD waves

    SciTech Connect

    Webb, G. M.; Brio, M.; Zank, G. P.

    1996-07-20

    A formulation of Hamiltonian and Lagrangian variational principles, Lie point symmetries and conservation laws for the triple degenerate DNLS equations describing the propagation of weakly nonlinear dispersive MHD waves along the ambient magnetic field, in {beta}{approx}1 plasmas is given. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic point, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a{sub g}{sup 2}=V{sub A}{sup 2} where a{sub g} is the gas sound speed and V{sub A} is the Alfven speed. A discussion is given of the travelling wave similarity solutions of the equations, which include solitary wave and periodic traveling waves. Strongly compressible solutions indicate the necessity for the insertion of shocks in the flow, whereas weakly compressible, near Alfvenic solutions resemble similar, shock free travelling wave solutions of the DNLS equation.

  7. Asynchronous symmetry-based sequences for homonuclear dipolar recoupling in solid-state nuclear magnetic resonance

    SciTech Connect

    Tan, Kong Ooi; Ernst, Matthias E-mail: maer@ethz.ch; Rajeswari, M.; Madhu, P. K. E-mail: maer@ethz.ch

    2015-02-14

    We show a theoretical framework, based on triple-mode Floquet theory, to analyze recoupling sequences derived from symmetry-based pulse sequences, which have a non-vanishing effective field and are not rotor synchronized. We analyze the properties of one such sequence, a homonuclear double-quantum recoupling sequence derived from the C7{sub 2}{sup 1} sequence. The new asynchronous sequence outperforms the rotor-synchronized version for spin pairs with small dipolar couplings in the presence of large chemical-shift anisotropy. The resonance condition of the new sequence is analyzed using triple-mode Floquet theory. Analytical calculations of second-order effective Hamiltonian are performed to compare the efficiency in suppressing second-order cross terms. Experiments and numerical simulations are shown to corroborate the results of the theoretical analysis.

  8. Mixed symmetry states and {beta} decays of odd-A Xe to I isotopes

    SciTech Connect

    Al-Khudair, Falih H.

    2009-07-15

    The energy spectra of the parent and daughter nuclei in the {beta} decays ({sup 121-127}Xe,{beta}{sup +121-127}I) are considered in the interacting boson fermion model (IBFM-2) with the g{sub 7/2},d{sub 5/2},d{sub 3/2},s{sub 1/2}, and h{sub 11/2} single-particle orbitals. Electromagnetic transition probabilities and branching ratios in odd {sup 121-127}I isotopes are investigated. Special attention is given to the occurrence of mixed symmetry states, and the F-spin structures of the wave functions are analyzed. The log{sub 10}ft values of the allowed {beta} decay transitions are calculated. It is found that the IBFM-2 results agree with the experimental data quite well.

  9. Probing the pairing symmetry of the iron pnictides with electronic Raman scattering

    SciTech Connect

    Boyd, G.R.

    2010-04-29

    An important issue in the study of the iron-arsenic based superconductors is the symmetry of the superconducting gap, a problem complicated by multiple gaps on different Fermi surface sheets. Electronic Raman scattering is a flexible bulk probe which allows one in principle to determine gap magnitudes and test for gap nodes in different regions of the Brillouin zone by employing different photon polarization states. Here we calculate the clean Raman intensity for A{sub 1g}, B{sub 1g} and B{sub 2g} polarizations, and discuss the peak structures and low-energy power laws which might be expected for several popular models of the superconducting gap in these systems.

  10. Dirac gauginos, R symmetry and the 125 GeV Higgs

    DOE PAGES [OSTI]

    Bertuzzo, Enrico; Frugiuele, Claudia; Grgoire, Thomas; Pontn, Eduardo

    2015-04-01

    We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. We estimate the fine-tuning of the model finding regions of the parameter space still unexploredmoreby the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.less

  11. Polar Kerr Effect as Probe for Time-Reversal Symmetry Breaking in Unconventional Superconductors

    SciTech Connect

    Kapitulnik, A.

    2010-05-26

    The search for broken time reversal symmetry (TRSB) in unconventional superconductors intensified in the past year as more systems have been predicted to possess such a state. Following our pioneering study of TRSB states in Sr{sub 2}RuO{sub 4} using magneto-optic probes, we embarked on a systematic study of several other of these candidate systems. The primary instrument for our studies is the Sagnac magneto-optic interferometer, which we recently developed. This instrument can measure magneto-optic Faraday or Kerr effects with an unprecedented sensitivity of 10 nanoradians at temperatures as low as 100 mK. In this paper we review our recent studies of TRSB in several systems, emphasizing the study of the pseudogap state of high temperature superconductors and the inverse proximity effect in superconductor/ferromagnet proximity structures.

  12. Dirac gauginos, R symmetry and the 125 GeV Higgs

    SciTech Connect

    Bertuzzo, Enrico; Frugiuele, Claudia; Grgoire, Thomas; Pontn, Eduardo

    2015-04-01

    We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. We estimate the fine-tuning of the model finding regions of the parameter space still unexplored by the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.

  13. Chiral symmetry and π-π scattering in the Covariant Spectator Theory

    DOE PAGES [OSTI]

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz

    2014-11-14

    The π-π scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similarly to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward Takahashi identity to the CST π-π scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. Thus, the Adlermore » self-consistency zero for π-π scattering in the chiral limit emerges as the result for this sum.« less

  14. Symmetries and quantum chaos: Time-reversal invariance in the nucleon-nucleon interaction

    SciTech Connect

    French, J.B.; Kota, V.K.B.; Pandey, A.; Tomsovic, S.

    1987-06-08

    Let ..cap alpha.. be the relative norm of a symmetry-breaking term in the Hamiltonian of a many-particle system, and ..lambda.. the energy-dependent transition parameter which charcterizes the quantum chaos via spectral and strength fluctuations. Combining a compact theory for ..lambda../..cap alpha../sup 2/ with fluctuation theories by which ..lambda.. can be deduced from (neutron-resonance) data gives, for the time-reversal-noninvariant nucleon-nucleon interaction, ..cap alpha..less than or equal to(1--2) x 10/sup -3/, which would improve with better small-strength data in nuclei with dense spectra. Diffusion equations involving ..lambda.. as the ''time'' variable are also discussed.

  15. New information on the occurrence of the O(6) symmetry in nuclei

    DOE PAGES [OSTI]

    Pietralla, N.; Möller, T.; Lister, C. J.; McCutchan, E. A.; Rainovski, G.; Bauer, C.; Carpenter, M. P.; Janssens, R. V.F.; Seweryniak, D.; Zhu, S.

    2015-05-28

    New γγ-coincidence relations and E2 decay transition rates in the isotopes 194,196Pt have been deduced from γ-ray spectroscopy experiments using the Gammasphere spectrometer in projectile-Coulomb excitation reactions of beams of 194,196Pt ions provided by the ATLAS accelerator facility. The results give access to observables that are crucial for a classification of excited quadrupole-collective states in terms of quantum numbers associated with the analytically solvable O(6) dynamical symmetry of the interacting boson model. The data on 196Pt corroborate the qualitative pattern of excitation energies and E2 transition rates expected from the O(6) solution but the excitation energies significantly deviate from itmore » on a quantitative level.« less

  16. Dirac gauginos, R symmetry and the 125 GeV Higgs

    DOE PAGES [OSTI]

    Bertuzzo, Enrico; Frugiuele, Claudia; Gregoire, Thomas; Ponton, Eduardo

    2015-04-20

    We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We then analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. Furthermore, we estimate the fine-tuning of the model finding regions of the parameter spacemore » still unexplored by the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.« less

  17. Origin of the Diverse Behavior of Oxygen Vacancies in ABO3 Perovskites: A Symmetry Based Analysis

    SciTech Connect

    Yin, W. J.; Wei, S. H.; Al-Jassim, M. M.; Yan, Y. F.

    2012-05-15

    Using band symmetry analysis and density functional theory calculations, we reveal the origin of why oxygen vacancy (V{sub O}) energy levels are shallow in some ABO{sub 3} perovskites, such as SrTiO{sub 3}, but are deep in some others, such as LaAlO{sub 3}. We show that this diverse behavior can be explained by the symmetry of the perovskite structure and the location (A or B site) of the metal atoms with low d orbital energies, such as Ti and La atoms. When the conduction band minimum (CBM) is an antibonding {Gamma}12 state, which is usually associated with the metal atom with low d orbital energies at the A site (e.g., LaAlO{sub 3}), then the V{sub O} energy levels are deep inside the gap. Otherwise, if the CBM is the nonbonding {Gamma}25{prime} state, which is usually associated with metal atoms with low d orbital energies at the B site (e.g., SrTiO{sub 3}), then the V{sub O} energy levels are shallow and often above the CBM. The V{sub O} energy level is also deep for some uncommon ABO{sub 3} perovskite materials that possess a low s orbital, or large-size cations, and an antibonding {Gamma}{sub 1} state CBM, such as ZnTiO{sub 3}. Our results, therefore, provide guidelines for designing ABO{sub 3} perovskite materials with desired functional behaviors.

  18. Multidimensional discrete compactons in nonlinear Schrödinger lattices with strong nonlinearity management

    SciTech Connect

    D'Ambroise, J.; Salerno, M.; Kevrekidis, P. G.; Abdullaev, F. Kh.

    2015-11-19

    The existence of multidimensional lattice compactons in the discrete nonlinear Schrödinger equation in the presence of fast periodic time modulations of the nonlinearity is demonstrated. By averaging over the period of the fast modulations, an effective averaged dynamical equation arises with coupling constants involving Bessel functions of the first and zeroth kinds. We show that these terms allow one to solve, at this averaged level, for exact discrete compacton solution configurations in the corresponding stationary equation. We focus on seven types of compacton solutions. Single-site and vortex solutions are found to be always stable in the parametric regimes we examined. We also found that other solutions such as double-site in- and out-of-phase, four-site symmetric and antisymmetric, and a five-site compacton solution are found to have regions of stability and instability in two-dimensional parametric planes, involving variations of the strength of the coupling and of the nonlinearity. We also explore the time evolution of the solutions and compare the dynamics according to the averaged equations with those of the original dynamical system. Finally, the possible observation of compactons in Bose-Einstein condensates loaded in a deep two-dimensional optical lattice with interactions modulated periodically in time is also discussed.

  19. Multidimensional discrete compactons in nonlinear Schrödinger lattices with strong nonlinearity management

    DOE PAGES [OSTI]

    D'Ambroise, J.; Salerno, M.; Kevrekidis, P. G.; Abdullaev, F. Kh.

    2015-11-19

    The existence of multidimensional lattice compactons in the discrete nonlinear Schrödinger equation in the presence of fast periodic time modulations of the nonlinearity is demonstrated. By averaging over the period of the fast modulations, an effective averaged dynamical equation arises with coupling constants involving Bessel functions of the first and zeroth kinds. We show that these terms allow one to solve, at this averaged level, for exact discrete compacton solution configurations in the corresponding stationary equation. We focus on seven types of compacton solutions. Single-site and vortex solutions are found to be always stable in the parametric regimes we examined.more » We also found that other solutions such as double-site in- and out-of-phase, four-site symmetric and antisymmetric, and a five-site compacton solution are found to have regions of stability and instability in two-dimensional parametric planes, involving variations of the strength of the coupling and of the nonlinearity. We also explore the time evolution of the solutions and compare the dynamics according to the averaged equations with those of the original dynamical system. Finally, the possible observation of compactons in Bose-Einstein condensates loaded in a deep two-dimensional optical lattice with interactions modulated periodically in time is also discussed.« less

  20. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGES [OSTI]

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy alsomore » eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  1. IDENTIFYING FRACTURE ORIGIN IN CERAMICS BY COMBINATION OF NONDESTRUCTIVE TESTING AND DISCRETE ELEMENT ANALYSIS

    SciTech Connect

    Senapati, Rajeev; Zhang Jianmei

    2010-02-22

    Advanced ceramic materials have been extensively applied in aerospace, automobile and other industries. However, the reliability of the advanced ceramics is a major concern because of the brittle nature of the materials. In this paper, combination of nondestructive testing and numerical modeling Discrete Element Method is proposed to identify the fracture origin in ceramics. The nondestructive testing--laser scattering technology is first performed on the ceramic components to reveal the machining-induced damage such as cracks and the material-inherent flaws such as voids, then followed by the four point bending test. Discrete Element software package PFC{sup 2D} is used to simulate the four point bending test and try to identify where the fractures start. The numerical representation of the ceramic materials is done by generating a densely packed particle system using the specimen genesis procedure and then applying the suitable microparameters to the particle system. Simulation of four point bending test is performed on materials having no defects, materials having manufacturing-induced defects like cracks, and materials having material-inherent flaws like voids. The initiation and propagation of defects is modeled and the mean contact force on the loading ball is also plotted. The simulation prediction results are well in accordance with the nondestructive testing results.

  2. Coupled discrete element and finite volume solution of two classical soil mechanics problems

    SciTech Connect

    Chen, Feng; Drumm, Eric; Guiochon, Georges A

    2011-01-01

    One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAM for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.

  3. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGES [OSTI]

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy alsomore » eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  4. Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family

    SciTech Connect

    Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.

    2015-02-27

    The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.

  5. Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family

    DOE PAGES [OSTI]

    Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.

    2015-02-27

    The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel,more » which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.« less

  6. Discrete Element Modeling Results of Proppant Rearrangement in the Cooke Conductivity Cell

    SciTech Connect

    Earl Mattson; Hai Huang; Michael Conway; Lisa O'Connell

    2014-02-01

    The study of propped fracture conductivity began in earnest with the development of the Cooke cell which later became part of the initial API standard. Subsequent developments included a patented multicell design to conduct 4 tests in a press at the same time. Other modifications have been used by various investigators. Recent studies by the Stim-Lab proppant consortium have indicated that the flow field across a Cooke proppant conductivity testing cell may not be uniform as initially believed which resulted is significantly different conductivity results. Post test analysis of low temperature metal alloy injections at the termination of proppant testing prior to the release of the applied stress suggest that higher flow is to be expected along the sides and top of the proppant pack than compared to the middle of the pack. To evaluate these experimental findings, a physics-based two-dimensional (2-D) discrete element model (DEM) was developed and applied to simulate proppant rearrangement during stress loading in the Cooke conductivity cell and the resulting porosity field. Analysis of these simulations are critical to understanding the impact of modification to the testing cell as well as understanding key proppant conductivity issues such as how these effects are manifested in proppant concentration testing results. The 2-D DEM model was constructed to represent a realistic cross section of the Cooke cell with a distribution of four material properties, three that represented the Cooke cell (steel, sandstone,square rings), and one representing the proppant. In principle, Cooke cell materials can be approximated as assemblies of independent discrete elements (particles) of various sizes and material properties that interact via cohesive interactions, repulsive forces, and frictional forces. The macroscopic behavior can then be modeled as the collective behavior of many interacting discrete elements. This DEM model is particularly suitable for modeling proppant

  7. On the superconducting symmetry of Fe-based systems — Impurity effect studies and neutron scattering measurements-

    SciTech Connect

    Sato, Masatoshi; Kobayashi, Yoshiaki; Kawamata, Takayuki; Yasui, Yukio; Suzuki, Kazunori; Itoh, M.; Kajimoto, Ryoichi; Ikeuchi, Kazuhiko; Arai, M.; Bourges, Phillipe

    2013-07-09

    To identify the superconducting symmetry of Fe-based superconductors, we studied effects of nonmagnetic-impurities on Tc, magnetic excitation spectra x" and NMR 1/T1 - T curve, which are sensitive to the relative signs between the order parameters on the disconnected Fermi surfaces in reciprocal space, because the symmetry is closely connected with the pairing mechanism: If the signs are opposite (symmetry S±), the mechanism is considered to be a magnetic one, but when the signs are the same (symmetry S++), a novel mechanism is plausible because the ordinary phonon mechanism cannot realize the Tc value as high as ~55 K found in Ln1111 (Ln=lanthanide). Results are as follows: (a) The very small rates of Tc-suppression by impurity atoms M of LnFe1-yMyAs0.89-xF0.11+x (M=Ni, Co, Ru) can be explained only by S++. (b) The x"-data for Ba(Fe, Co)2As2 (Tc ~ 23 K) and Ca-Fe-Pt-As crystals seem to be well explained by S++ rather than by S±. (c) The nuclear magnetic resonance data can be consistently understood by S++, too. These results suggest the S++ symmetry and a novel pairing mechanism, which can be considered to be related to the elastic softening of C66 induced by the orbital fluctuation of the system.

  8. VNI version 4.1. Simulation of high-energy particle collisions in QCD: Space-time evolution of e{sup +}e{sup {minus}}...A + B collisions with parton-cascades, cluster-hadronization, final-state hadron cascades

    SciTech Connect

    Geiger, K.; Longacre, R.; Srivastava, D.K.

    1999-02-01

    VNI is a general-purpose Monte-Carlo event-generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme, as well as the development of hadron cascades after hadronization. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time-development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position-space, momentum-space and color-space. The parton-evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi)hard interactions in QCD, involving 2 {r_arrow} 2 parton collisions, 2 {r_arrow} 1 parton fusion processes, and 1 {r_arrow} 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. Finally, the cascading of produced prehadronic clusters and of hadrons includes a multitude of 2 {r_arrow} n processes, and is modeled in parallel to the parton cascade description. This paper gives a brief review of the physics underlying VNI, as well as a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including simple examples), annotates input and control parameters, and discusses output data provided by it.

  9. Enumerating a Diverse Set of Building Designs Using Discrete Optimization: Preprint

    SciTech Connect

    Hale, E.; Long, N.

    2010-08-01

    Numerical optimization is a powerful method for identifying energy-efficient building designs. Automating the search process facilitates the evaluation of many more options than is possible with one-off parametric simulation runs. However, input data uncertainties and qualitative aspects of building design work against standard optimization formulations that return a single, so-called optimal design. This paper presents a method for harnessing a discrete optimization algorithm to obtain significantly different, economically viable building designs that satisfy an energy efficiency goal. The method is demonstrated using NREL's first-generation building analysis platform, Opt- E-Plus, and two example problems. We discuss the information content of the results, and the computational effort required by the algorithm.

  10. Discrete family of dissipative soliton pairs in mode-locked fiber lasers

    SciTech Connect

    Zavyalov, Aleksandr; Iliew, Rumen; Egorov, Oleg; Lederer, Falk

    2009-05-15

    We numerically investigate the formation of soliton pairs (bound states) in mode-locked fiber ring lasers. In the distributed model (complex cubic-quintic Ginzburg-Landau equation) we observe a discrete family of soliton pairs with equidistantly increasing peak separation. This family was identified by two alternative numerical schemes and the bound state instability was disclosed by a linear stability analysis. Moreover, similar families of unstable bound state solutions have been found in a more realistic lumped laser model with an idealized saturable absorber (instantaneous response). We show that a stabilization of these bound states can be achieved when the finite relaxation time of the saturable absorber is taken into account. The domain of stability can be controlled by varying this relaxation time.

  11. LAGRANGE SOLUTIONS TO THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    SciTech Connect

    Minesaki, Yukitaka

    2013-03-15

    There is no known integrator that yields exact orbits for the general three-body problem (G3BP). It is difficult to verify whether a numerical procedure yields the correct solutions to the G3BP because doing so requires knowledge of all 11 conserved quantities, whereas only six are known. Without tracking all of the conserved quantities, it is possible to show that the discrete general three-body problem (d-G3BP) yields the correct orbits corresponding to Lagrange solutions of the G3BP. We show that the d-G3BP yields the correct solutions to the G3BP for two special cases: the equilateral triangle and collinear configurations. For the triangular solution, we use the fact that the solution to the three-body case is a superposition of the solutions to the three two-body cases, and we show that the three bodies maintain the same relative distances at all times. To obtain the collinear solution, we assume a specific permutation of the three bodies arranged along a straight rotating line, and we show that the d-G3BP maintains the same distance ratio between two bodies as in the G3BP. Proving that the d-G3BP solutions for these cases are equivalent to those of the G3BP makes it likely that the d-G3BP and G3BP solutions are equivalent in other cases. To our knowledge, this is the first work that proves the equivalence of the discrete solutions and the Lagrange orbits.

  12. APEX - a Petri net process modeling tool built on a discrete-event simulation system

    SciTech Connect

    Gish, J.W.

    1996-12-31

    APEX, the Animated Process Experimentation tool, provides a capability for defining, simulating and animating process models. Primarily constructed for the modeling and analysis of software process models, we have found that APEX is much more broadly applicable and is suitable for process modeling tasks outside the domain of software processes. APEX has been constructed as a library of simulation blocks that implement timed hierarchical colored Petri Nets. These Petri Net blocks operate in conjunction with EXTEND, a general purpose continuous and discrete-event simulation tool. EXTEND provides a flexible, powerful and extensible environment with features particularly suitable for the modeling of complex processes. APEX`s Petri Net block additions to EXTEND provide an inexpensive capability with well-defined and easily understood semantics that is a powerful, easy to use, flexible means to engage in process modeling and evaluation. The vast majority of software process research has focused on the enactment of software processes. Little has been said about the actual creation and evaluation of software process models necessary to support enactment. APEX has been built by the Software Engineering Process Technology Project at GTE Laboratories which has been focusing on this neglected area of process model definition and analysis. We have constructed high-level software lifecycle models, a set of models that demonstrate differences between four levels of the SEI Capability Maturity Model (CMM), customer care process models, as well as models involving more traditional synchronization and coordination problems such as producer-consumer and 2-phase commit. APEX offers a unique blend of technology from two different disciplines: discrete-event simulation and Petri Net modeling. Petri Nets provide a well-defined and rich semantics in a simple, easy to understand notation. The simulation framework allows for execution, animation, and measurement of the resultant models.

  13. Streaked x-ray spectrometer having a discrete selection of Bragg geometries for Omega

    SciTech Connect

    Millecchia, M.; Regan, S. P.; Bahr, R. E.; Romanofsky, M.; Sorce, C.

    2012-10-15

    The streaked x-ray spectrometer (SXS) is used with streak cameras [D. H. Kalantar, P. M. Bell, R. L. Costa, B. A. Hammel, O. L. Landen, T. J. Orzechowski, J. D. Hares, and A. K. L. Dymoke-Bradshaw, in 22nd International Congress on High-Speed Photography and Photonics, edited by D. L. Paisley and A. M. Frank (SPIE, Bellingham, WA, 1997), Vol. 2869, p. 680] positioned with a ten-inch manipulator on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] and OMEGA EP [L. J. Waxer et al., Presented at CLEO/QELS 2008, San Jose, CA, 4-9 May 2008 (Paper JThB1)] for time-resolved, x-ray spectroscopy of laser-produced plasmas in the 1.4- to 20-keV photon-energy range. These experiments require measuring a portion of this photon-energy range to monitor a particular emission or absorption feature of interest. The SXS relies on a pinned mechanical reference system to create a discrete set of Bragg reflection geometries for a variety of crystals. A wide selection of spectral windows is achieved accurately and efficiently using this technique. It replaces the previous spectrometer designs that had a continuous Bragg angle adjustment and required a tedious alignment calibration procedure. The number of spectral windows needed for the SXS was determined by studying the spectral ranges selected by OMEGA users over the last decade. These selections are easily configured in the SXS using one of the 25 discrete Bragg reflection geometries and one of the six types of Bragg crystals, including two curved crystals.

  14. HYDRODYNAMICS OF CORE-COLLAPSE SUPERNOVAE AT THE TRANSITION TO EXPLOSION. I. SPHERICAL SYMMETRY

    SciTech Connect

    Fernandez, Rodrigo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2012-04-20

    We study the transition to runaway expansion of an initially stalled core-collapse supernova shock. The neutrino luminosity, mass accretion rate, and neutrinospheric radius are all treated as free parameters. In spherical symmetry, this transition is mediated by a global non-adiabatic instability that develops on the advection time and reaches nonlinear amplitude. Here, we perform high-resolution, time-dependent hydrodynamic simulations of stalled supernova shocks with realistic microphysics to analyze this transition. We find that radial instability is a sufficient condition for runaway expansion if the neutrinospheric parameters do not vary with time and if heating by the accretion luminosity is neglected. For a given unstable mode, transition to runaway occurs when fluid in the gain region reaches positive specific energy. We find approximate instability criteria that accurately describe the behavior of the system over a wide region of parameter space. The threshold neutrino luminosities are in general different than the limiting value for a steady-state solution. We hypothesize that multidimensional explosions arise from the excitation of unstable large-scale modes of the turbulent background flow, at threshold luminosities that are lower than in the laminar case.

  15. Theoretical studies of high-order harmonic generation: Effects of symmetry, degeneracy, and orientation

    SciTech Connect

    Madsen, C. B.; Madsen, L. B.

    2007-10-15

    Using a quantum-mechanical three-step model, we present numerical calculations of the high-order harmonic generation from four polyatomic molecules. Ethylene (C{sub 2}H{sub 4}) serves as an example where orbital symmetry directly affects the harmonic yield. We treat the case of methane (CH{sub 4}) to address the high-order harmonic generation resulting from a molecule with degenerate orbitals. To this end we illustrate how the single-orbital contributions show up in the total high-order harmonic signal. This example illustrates the importance of adding coherently the amplitude contributions from the individual degenerate orbitals. Finally, we study the high-order harmonic generation from propane (C{sub 3}H{sub 8}) and butane (C{sub 4}H{sub 10}). These two molecules, being extended and far from spherical in structure, produce harmonics with nontrivial orientational dependencies. In particular, propane can be oriented so that very high-frequency harmonics are favored, and thus the molecule contains prospects for the generation of uv attosecond pulses.

  16. Residual Symmetries Applied to Neutrino Oscillations at NO ν A and T2K

    DOE PAGES [OSTI]

    Hanlon, Andrew D.; Repko, Wayne W.; Dicus, Duane A.

    2014-01-01

    Tmore » he results previously obtained from the model-independent application of a generalized hidden horizontal Z 2 symmetry to the neutrino mass matrix are updated using the latest global fits for the neutrino oscillation parameters.he resulting prediction for the Dirac CP phase δ D is in agreement with recent results from2K.he distribution for the Jarlskog invariant J ν has become sharper and appears to be approaching a particular region.he approximate effects of matter on long-baseline neutrino experiments are explored, and it is shown how the weak interactions between the neutrinos and the particles that make up the Earth can help to determine the mass hierarchy. A similar strategy is employed to show how NO ν A and2K could determine the octant of θ a ( ≡ θ 23 ) . Finally, the exact effects of matter are obtained numerically in order to make comparisons with the form of the approximate solutions. From this analysis there emerge some interesting features of the effective mass eigenvalues.« less

  17. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    DOE PAGES [OSTI]

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0°more » to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less

  18. Measurements of Direct CP Violation, CPT Symmetry, and Other Parameters in the Neutral Kaon System

    SciTech Connect

    Worcester, Elizabeth Turner; /Chicago U.

    2007-12-01

    The authors present precision measurements of the direct CP violation parameter, Re({epsilon}{prime}/{epsilon}), the kaon parameters, {Delta}m and {tau}{sub S}, and the CPT tests, {phi}{sub {+-}} and {Delta}{phi}, in neutral kaon decays. These results are based on the full dataset collected by the KTeV experiment at Fermi National Accelerator Laboratory during 1996, 1997, and 1999. This dataset contains {approx} 15 million K {yields} {pi}{sup 0}{pi}{sup 0} decays and {approx} 69 million K {yields} {pi}{sup +}{pi}{sup -} decays. They describe significant improvements to the precision of these measurements relative to previous KTeV analyses. They find Re({epsilon}{prime}/{epsilon}) = [19.2 {+-} 1.1(stat) {+-} 1.8(syst)] x 10{sup -4}, {Delta}m = (5265 {+-} 10) x 10{sup 6} hs{sup -1}, and {tau}{sub S} = (89.62 {+-} 0.05) x 10{sup -12} s. They measure {phi}{sub {+-}} = (44.09 {+-} 1.00){sup o} and {Delta}{phi} = (0.29 {+-} 0.31){sup o}; these results are consistent with CPT symmetry.

  19. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.

  20. Symmetry and lattice mismatch induced strain accommodation near and away from correlated perovskite interfaces

    SciTech Connect

    Vailionis, A.; Boschker, H.; Liao, Z.; Smit, J. R. A.; Rijnders, G.; Huijben, M.; Koster, G.

    2014-09-29

    Distinct MnO{sub 6} octahedral distortions near and away from the La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3}(001) (LSMO/STO) interface are quantified using synchrotron x-ray diffraction and dynamical x-ray diffraction simulations. Three structural regions of stress accommodation throughout the film thickness were resolved: near the LSMO/STO interface, intermediate region farther from the interface, and the main layer away from the interface. The results show that within the first two unit cells stress is accommodated by the suppression of octahedral rotations in the film, leading to the expansion of the c-axis lattice parameter. Farther from the interface film structure acquires octahedral tilts similar to thicker perovskite films under tensile stress, leading to a reduced c-axis parameter. We demonstrate that these regions are related to two different strain coupling mechanisms: symmetry mismatch at the interface and lattice mismatch in the rest of the film. The findings suggest new routes for strain engineering in correlated perovskite heterostructures.

  1. Region with trapped surfaces in spherical symmetry, its core, and their boundaries

    SciTech Connect

    Bengtsson, Ingemar; Senovilla, Jose M. M.

    2011-02-15

    We consider the region T in spacetime containing future-trapped closed surfaces and its boundary B, and derive some of their general properties. We then concentrate on the case of spherical symmetry, but the methods we use are general and applicable to other situations. We argue that closed trapped surfaces have a nonlocal property, ''clairvoyance'', which is inherited by B. We prove that B is not a marginally trapped tube in general, and that it can have portions in regions whose whole past is flat. For asymptotically flat black holes, we identify a general past barrier, well inside the event horizon, to the location of B under physically reasonable conditions. We also define the core Z of the trapped region as that part of T which is indispensable to sustain closed trapped surfaces. We prove that the unique spherically symmetric dynamical horizon is the boundary of such a core, and we argue that this may serve to single it out. To illustrate the results, some explicit examples are discussed, namely, Robertson-Walker geometries and the imploding Vaidya spacetime.

  2. Temperature dependence of the Tafel slope and electrochemical barrier symmetry factor,. beta. , in electrode kinetics

    SciTech Connect

    Conway, B.E. ); Tessier, D.F. ); Wilkinson, D.P. )

    1989-09-01

    The significance of the new-established situation that the Tafel slopes, b, ( = d{eta}/d In i) for simple charge-transfer processes at electrodes are usually not represented with respect to variation with temperature, T, by the conventional relation b = RT/{beta} cpF, where {beta} is a constant-valued electrochemical charge-transfer barrier-symmetry coefficient, is examined in the light of recent comments on the problem. Clear evidence is given that b has the form b = RT({beta}sub H + T{beta}{sub s})F for proton transfer at Hg in water and various other solvents, where {beta}{sub H} and T{beta}{sub s} are enthalpic components of the overall {beta}, corresponding to experimentally observable potential-dependence of both the enthalpy and the entropy of activation, respectively. The frequent deviation from conventional behavior thus arises because the entropy of activation, as well as the energy of activation, can be potential-dependent, a situation that, until recently, has been neglected in inter-pretations of electrode-kinetic experiments. The origin of the conventional effect of potential on electrode reaction rates, through the change of electrode work function,{Phi}, with overpotential or electrode potential, V, ({Phi}{sub v} = {Phi}{sub v = O}{plus minus} eV), is examined critically in relation to the potential-dependent surface-potential component, {chi}{sub d}, in {Phi}, which can also be T-dependent.

  3. Spin-symmetry conversion in methyl rotors induced by tunnel resonance at low temperature

    SciTech Connect

    Zhang, B.; Sun, C.; Horsewill, A. J.; Alsanoosi, A. M.; Aibout, A.

    2014-02-28

    Field-cycling NMR in the solid state at low temperature (4.2 K) has been employed to measure the tunneling spectra of methyl (CH{sub 3}) rotors in phenylacetone and toluene. The phenomenon of tunnel resonance reveals anomalies in {sup 1}H magnetization from which the following tunnel frequencies have been determined: phenylacetone, ν{sub t} = 6.58 ± 0.08 MHz; toluene, ν{sub t(1)} = 6.45 ± 0.06 GHz and ν{sub t(2)} = 7.07 ± 0.06 GHz. The tunnel frequencies in the two samples differ by three orders of magnitude, meaning different experimental approaches are required. In phenylacetone the magnetization anomalies are observed when the tunnel frequency matches one or two times the {sup 1}H Larmor frequency. In toluene, doping with free radicals enables magnetization anomalies to be observed when the tunnel frequency is equal to the electron spin Larmor frequency. Cross-polarization processes between the tunneling and Zeeman systems are proposed and form the basis of a thermodynamic model to simulate the tunnel resonance spectra. These invoke space-spin interactions to drive the changes in nuclear spin-symmetry. The tunnel resonance lineshapes are explained, showing good quantitative agreement between experiment and simulations.

  4. Carbon nanorings with inserted acenes: Breaking symmetry in excited state dynamics

    DOE PAGES [OSTI]

    Franklin-Mergarejo, R.; Alvarez, D. Ondarse; Tretiak, S.; Fernandez-Alberti, S.

    2016-08-10

    Conjugated cycloparaphenylene rings have unique electronic properties being the smallest segments of carbon nanotubes. Their conjugated backbones support delocalized electronic excitations, which dynamics is strongly influenced by cyclic geometry. Here we present a comparative theoretical study of the electronic and vibrational energy relaxation and redistribution in photoexcited cycloparaphenylene carbon nanorings with inserted naphthalene, anthracene, and tetracene units using non-adiabatic excited-state molecular dynamics simulations. Calculated excited state structures reflect modifications of optical selection rules and appearance of low-energy electronic states localized on the acenes due to gradual departure from a perfect circular symmetry. After photoexcitation, an ultrafast electronic energy relaxation tomore » the lowest excited state is observed on the time scale of hundreds of femtoseconds in all molecules studied. Concomitantly, the efficiency of the exciton trapping in the acene raises when moving from naphthalene to anthracene and to tetracene, being negligible in naphthalene, and ~60% and 70% in anthracene and tetracene within the first 500 fs after photoexcitation. Observed photoinduced dynamics is further analyzed in details using induced molecular distortions, delocatization properties of participating electronic states and non-adiabatic coupling strengths. Lastly, our results provide a number of insights into design of cyclic molecular systems for electronic and light-harvesting applications.« less

  5. Symmetry breaking in (gravitating) scalar field models describing interacting boson stars and Q-balls

    SciTech Connect

    Brihaye, Yves; Caebergs, Thierry; Hartmann, Betti; Minkov, Momchil

    2009-09-15

    We investigate the properties of interacting Q-balls and boson stars that sit on top of each other in great detail. The model that describes these solutions is essentially a (gravitating) two-scalar field model where both scalar fields are complex. We construct interacting Q-balls or boson stars with arbitrarily small charges but finite mass. We observe that in the interacting case--where the interaction can be either due to the potential or due to gravity--two types of solutions exist for equal frequencies: one for which the two-scalar fields are equal, but also one for which the two-scalar fields differ. This constitutes a symmetry breaking in the model. While for Q-balls asymmetric solutions have always corresponding symmetric solutions and are thus likely unstable to decay to symmetric solutions with lower energy, there exists a parameter regime for interacting boson stars, where only asymmetric solutions exist. We present the domain of existence for two interacting nonrotating solutions as well as for solutions describing the interaction between rotating and nonrotating Q-balls and boson stars, respectively.

  6. Residual Symmetries Applied to Neutrino Oscillations at NO?A and T2K

    DOE PAGES [OSTI]

    Hanlon, Andrew D.; Repko, Wayne W.; Dicus, Duane A.

    2014-01-01

    The results previously obtained from the model-independent application of a generalized hidden horizontalZ2symmetry to the neutrino mass matrix are updated using the latest global fits for the neutrino oscillation parameters. The resulting prediction for the DiracCPphase?Dis in agreement with recent results from T2K. The distribution for the Jarlskog invariantJ?has become sharper and appears to be approaching a particular region. The approximate effects of matter on long-baseline neutrino experiments are explored, and it is shown how the weak interactions between the neutrinos and the particles that make up the Earth can help to determine the massmorehierarchy. A similar strategy is employed to show how NO?A and T2K could determine the octant of?a(??23). Finally, the exact effects of matter are obtained numerically in order to make comparisons with the form of the approximate solutions. From this analysis there emerge some interesting features of the effective mass eigenvalues.less

  7. PT-symmetric sinusoidal optical lattices at the symmetry-breaking threshold

    SciTech Connect

    Graefe, Eva-Maria [Mathematics Department, Imperial College, London SW7 2BZ (United Kingdom); Jones, H. F. [Physics Department, Imperial College, London SW7 2BZ (United Kingdom)

    2011-07-15

    The PT-symmetric potential V{sub 0}[cos(2{pi}x/a)+i{lambda}sin(2{pi}x/a)] has a completely real spectrum for {lambda}{<=}1 and begins to develop complex eigenvalues for {lambda}>1. At the symmetry-breaking threshold {lambda}=1 some of the eigenvectors become degenerate, giving rise to a Jordan-block structure for each degenerate eigenvector. In general this is expected to result in a secular growth in the amplitude of the wave. However, it has been shown in a recent paper by Longhi, by numerical simulation and by the use of perturbation theory, that for a broad initial wave packet this growth is suppressed, and instead a saturation leading to a constant maximum amplitude is observed. We revisit this problem by explicitly constructing the Bloch wave functions and the associated Jordan functions and using the method of stationary states to find the dependence on the longitudinal distance z for a variety of different initial wave packets. This allows us to show in detail how the saturation of the linear growth arises from the close connection between the contributions of the Jordan functions and those of the neighboring Bloch waves.

  8. Structure symmetry determination and magnetic evolution in Sr2Ir1–xRhxO4

    DOE PAGES [OSTI]

    Ye, Feng; Wang, Xiaoping; Hoffmann, Christina; Wang, Jinchen; Chi, Songxue; Matsuda, Masaaki; Chakoumakos, Bryan C.; Fernandez-Baca, Jaime A.; Cao, Gang

    2015-11-23

    We use single-crystal neutron diffraction to determine the crystal structure symmetry and to study the magnetic evolution in the rhodium doped iridates Sr2Ir1–xRhxO4 (0 ≤ x ≤ 0.16). Throughout this doping range, the crystal structure retains a tetragonal symmetry (space group I41/a) with two distinct magnetic Ir sites in the unit cell forming staggered IrO6 rotation. Upon Rh doping, the magnetic order is suppressed and the magnetic moment of Ir4+ is reduced from 0.21 μB/Ir for x = 0 to 0.18 μB/Ir for x = 0.12. As a result, the magnetic structure at x = 0.12 is different from thatmore » of the parent compound while the moments remain in the basal plane.« less

  9. Hohlraum Energetics and Implosion Symmetry with Elliptical Phase Plates Using a Multi-Cone Beam Geometry on OMEGA

    SciTech Connect

    Regan, S.P.; Sangster, T.C.; Meyerhofer, D.D.; Seka, W.; Epstein, R.; Loucks, S.J.; McCrory, R.L.; Stoeckl, C.; Glebov, V.Yu.; Jones, O.S.; Callahan, D.A.; Amendt, P.A.; Meezan, N.B.; Suter, L.J.; Rosen, M.D.; Landen, O.L.; DeWald, E.L.; Glenzer, S.H.; Sorce, C.; Dixit, S.; Turner, R.E.; MacGowan, B.J.

    2008-07-21

    Hohlraum energetics and implosion-symmetry experiments were conducted on the OMEGA Laser System using laser beams arranged in three cones and smoothed with elliptical phase plates. The peak radiation temperature (Tr) increased by 17 eV, with phase plates for gas-filled halfraums irradiated with 20 beams using a ~7-kJ shaped laser pulse (PS26), corresponding to a 44% increase in the peak x-ray flux. The improved coupling correlates with reduced, cone-dependent losses from stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS). Phase plates reduce SRS and SBS by controlling the on-target laser-intensity envelope and the speckle modal power spectrum. An implosion symmetry scan was performed by varying the length and beam pointing of vacuum and gas-filled, thin-walled (3 um) Au hohlraums irradiated with 40 beams using a ~14-kJ PS26. Gated-x-ray (hv > 3 keV) images taken along radial and axial views of the self-emission from Ar-doped, D2-filled, plastic-shell implosions quantified the indirect-drive-implosion symmetry. A shift in symmetry was observed between vacuum and gas-filled hohlraums having identical beam pointing. The ratio of x-ray drive at the poles of the capsule relative to the waist increased for the gas-filled hohlraum. Levels of hard-x-ray production (hv > 20 keV) and SRS were reduced with trace amounts of high-Z dopants (i.e., Ne, Kr) in the hohlraum plasma, while the peak Tr increased ~5 eV.

  10. Creating orbiting vorticity vectors in magnetic particle suspensions through field symmetry transitions–a route to multi-axis mixing

    DOE PAGES [OSTI]

    Martin, James E.; Solis, Kyle Jameson

    2015-11-09

    It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude ofmore » the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.« less

  11. Creating orbiting vorticity vectors in magnetic particle suspensions through field symmetry transitions–a route to multi-axis mixing

    SciTech Connect

    Martin, James E.; Solis, Kyle Jameson

    2015-11-09

    It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude of the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.

  12. The impact of laser plasma interactions on three-dimensional drive symmetry in inertial confinement fusion implosions

    SciTech Connect

    Peterson, J. L. Michel, P.; Thomas, C. A.; Town, R. P. J.

    2014-07-15

    Achieving symmetric hohlraum radiation drive is an important aspect of indirectly driven inertial confinement fusion experiments. However, when experimentally delivered laser powers deviate from ideal conditions, the resultant radiation field can become asymmetric. Two situations in which this may arise are random uncorrelated fluctuations, in as-delivered laser power and laser beams that do not participate in the implosion (either intentionally or unintentionally). Furthermore, laser plasma interactions in the hohlraum obfuscate the connection between laser powers and radiation drive. To study the effect of these situations on drive symmetry, we develop a simplified model for crossed-beam energy transfer, laser backscatter, and plasma absorption that can be used in conjunction with view factor calculations to expediently translate laser powers into three-dimensional capsule flux symmetries. We find that crossed-beam energy transfer can alter both the statistical properties of uncorrelated laser fluctuations and the impact of missing laser beams on radiation symmetry. A method is proposed to mitigate the effects of missing laser beams.

  13. Symmetry tuning of a near one-dimensional 2-shock platform for code validation at the National Ignition Facility

    DOE PAGES [OSTI]

    Khan, S. F.; MacLaren, S. A.; Salmonson, J. D.; Ma, T.; Kyrala, G. A.; Pino, J. E.; Rygg, J. R.; Field, J. E.; Tommasini, R.; Ralph, J. E.; et al

    2016-04-27

    Here, we introduce a new quasi 1-D implosion experimental platform at the National Ignition Facility designed to validate physics models as well as to study various Inertial Confinement Fusion aspects such as implosion symmetry, convergence, hydrodynamic instabilities, and shock timing. The platform has been developed to maintain shell sphericity throughout the compression phase and produce a round hot core at stagnation. This platform utilizes a 2-shock 1 MJ pulse with 340 TW peak power in a near-vacuum AuHohlraum and a CH ablator capsule uniformly doped with 1% Si. We also performed several inflight radiography, symmetry capsule, and shock timing experimentsmore » in order to tune the symmetry of the capsule to near round throughout several epochs of the implosion. Finally, adjusting the relative powers of the inner and outer cones of beams has allowed us to control the drive at the poles and equator of the capsule, thus providing the mechanism to achieve a spherical capsule convergence. Details and results of the tuning experiments are described.« less

  14. Rotovibrational collision-induced absorption by nonpolar gases and mixtures (H/sub 2/-He pairs): Symmetry of line profiles

    SciTech Connect

    Moraldi, M.; Borysow, A.; Frommhold, L.

    1988-08-15

    Intermolecular-interaction potentials depend on the vibrational coordinates of the molecules involved. We study the effect of this v dependence (as we will call it for brevity) on the symmetry of line shapes of rotovibrational collision-induced-absorption (RVCIA) spectra of collisional complexes such as H/sub 2/-He or H/sub 2/-H/sub 2/. If the v dependence is ignored, individual line shapes GAMMA(..omega..) of CIA spectra satisfy the widely used ''detailed balance'' relationship GAMMA(-..omega..) = e/sup -//sup (h/2..pi..)//sup ..omega..//sup ///sup k//sup T/GAMMA(..omega..), where ..omega.. designates the frequency shift relative to the molecular transition frequency, and T the temperature. However, if one accounts for the v dependence, the symmetry of a computed profile is modified significantly, the more so the higher the temperature and the higher the vibrational overtones one considers. These differing symmetries are described in quantitative terms that are of interest in modeling or analyzing RVCIA spectra. This paper may be considered the second, concluding part of our theoretical study of the influence of the v dependence on RVCIA spectra; the previous part (Phys. Rev. A 36, 4700 (1987)) deals with the influence of the v dependence on the integrated intensities (spectral moments) of RVCIA spectra.

  15. Experimental demonstration of early time, hohlraum radiation symmetry tuning for indirect drive ignition experiments

    SciTech Connect

    Dewald, E. L.; Milovich, J.; Thomas, C.; Sorce, C.; Glenn, S.; Landen, O. L.; Kline, J.

    2011-09-15

    Early time radiation symmetry at the capsule for indirect drive ignition on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] will be inferred from the instantaneous soft x-ray re-emission pattern of a high-Z sphere replacing the ignition capsule. This technique was tested on the OMEGA laser facility [J. M. Soures, R. L. McCrory, T. Boehly et al., Laser Part. Beams 11, 317 (1991)] in near full ignition scale vacuum hohlraums using an equivalent experimental setup to the one planned for NIF. Two laser cones entering each laser entrance hole heat the hohlraums to radiation temperatures of 100 eV, mimicking the NIF ignition pulse foot drive. The experiments have demonstrated accuracies of {+-}1.5% ({+-}2%) in inferred P{sub 2}/P{sub 0} (P{sub 4}/P{sub 0}) Legendre mode incident flux asymmetry and consistency between 900 eV and 1200 eV re-emission patterns. We have also demonstrated the expected tuning capability of P{sub 2}/P{sub 0}, from positive (pole hot) to negative (waist hot), decreasing linearly with the inner/outer beams power fraction. P{sub 4}/P{sub 0} on the other hand shows very little variation with power fraction. We developed a simple analytical viewfactor model that is in good agreement with both measured P{sub 2}/P{sub 0} and P{sub 4}/P{sub 0} and their dependence on inner beam power fraction.

  16. Origin of Abelian gauge symmetries in heterotic/F-theory duality

    DOE PAGES [OSTI]

    Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; Poretschkin, Maximilian; Song, Peng

    2016-04-07

    Here, we study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, and also derive both the Calabi-Yau geometry and the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in theirmore » low energy effective theories: split spectral covers describing bundles with S(U(m) x U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) x Z_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. And while the number of geometrically massless U(1)'s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)'s is found by taking into account a Stuckelberg mechanism in the lower-dimensional effective theory. Finally, in geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.« less

  17. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition

    SciTech Connect

    Parrish, Robert M.; Sherrill, C. David

    2014-07-28

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in

  18. Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state

    DOE PAGES [OSTI]

    M. H. Hamidian; Kim, Chung Koo; Edkins, S. D.; Davis, J. C.; Mackenzie, A. P.; Eisaki, H.; Uchida, S.; Lawler, M. J.; Kim, E. -A.; Sachdev, S.; et al

    2015-10-26

    Research on high-temperature superconducting cuprates is at present focused on identifying the relationship between the classic ‘pseudogap’ phenomenon1, 2 and the more recently investigated density wave state3–13. This state is generally characterized by a wavevector Q parallel to the planar Cu–O–Cu bonds 4–13 along with a predominantly d-symmetry form factor 14–17 (dFF-DW). To identify the microscopic mechanism giving rise to this state 18–30, one must identify the momentum-space states contributing to the dFF-DW spectral weight, determine their particle–hole phase relationship about the Fermi energy, establish whether they exhibit a characteristic energy gap, and understand the evolution of all these phenomenamore » throughout the phase diagram. Here we use energy-resolved sublattice visualization14 of electronic structure and reveal that the characteristic energy of the dFF-DW modulations is actually the ‘pseudogap’ energy Δ1. Moreover, we demonstrate that the dFF-DW modulations at E = –Δ1 (filled states) occur with relative phase π compared to those at E = Δ1 (empty states). Lastly, we show that the conventionally defined dFF-DW Q corresponds to scattering between the ‘hot frontier’ regions of momentum-space beyond which Bogoliubov quasiparticles cease to exist30–32. These data indicate that the cuprate dFF-DW state involves particle–hole interactions focused at the pseudogap energy scale and between the four pairs of ‘hot frontier’ regions in momentum space where the pseudogap opens.« less

  19. A 750 GeV messenger of dark conformal symmetry breaking

    DOE PAGES [OSTI]

    Davoudiasl, Hooman; Zhang, Cen

    2016-03-03

    The tentative hints for a diphoton resonance at a mass of ~750 GeV from the ATLAS and CMS experiments at the LHC may be interpreted as first contact with a “dark” sector with a spontaneously broken conformal symmetry. The implied TeV scale of the dark sector may be motivated by the interaction strength required to accommodate a viable thermal relic dark matter (DM) candidate. We model the conformal dynamics using a Randall-Sundrum-type five-dimensional geometry whose IR boundary is identified with the dynamics of the composite dark sector, while the Standard Model (SM) matter content resides on the UV boundary, correspondingmore » to “elementary” fields. We allow the gauge fields to reside in the five-dimensional bulk, which can be minimally chosen to be SU(3)c×U(1)Y. The “dark” radion is identified as the putative 750 GeV resonance. Heavy vectorlike fermions, often invoked to explain the diphoton excess, are not explicitly present in our model and are not predicted to appear in the spectrum of TeV scale states. Our minimal setup favors scalar DM of O(TeV) mass. A generic expectation in this scenario, suggested by DM considerations, is the appearance of vector bosons at ~ few TeV, corresponding to the gluon and hypercharge Kaluza-Klein (KK) modes that couple to UV boundary states with strengths that are suppressed uniformly compared to their SM values. Furthermore, our analysis suggests that these KK modes could be within the reach of the LHC in the coming years.« less

  20. Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state

    SciTech Connect

    M. H. Hamidian; Kim, Chung Koo; Edkins, S. D.; Davis, J. C.; Mackenzie, A. P.; Eisaki, H.; Uchida, S.; Lawler, M. J.; Kim, E. -A.; Sachdev, S.; Fujita, K.

    2015-10-26

    Research on high-temperature superconducting cuprates is at present focused on identifying the relationship between the classic ‘pseudogap’ phenomenon1, 2 and the more recently investigated density wave state3–13. This state is generally characterized by a wavevector Q parallel to the planar Cu–O–Cu bonds 4–13 along with a predominantly d-symmetry form factor 14–17 (dFF-DW). To identify the microscopic mechanism giving rise to this state 18–30, one must identify the momentum-space states contributing to the dFF-DW spectral weight, determine their particle–hole phase relationship about the Fermi energy, establish whether they exhibit a characteristic energy gap, and understand the evolution of all these phenomena throughout the phase diagram. Here we use energy-resolved sublattice visualization14 of electronic structure and reveal that the characteristic energy of the dFF-DW modulations is actually the ‘pseudogap’ energy Δ1. Moreover, we demonstrate that the dFF-DW modulations at E = –Δ1 (filled states) occur with relative phase π compared to those at E = Δ1 (empty states). Lastly, we show that the conventionally defined dFF-DW Q corresponds to scattering between the ‘hot frontier’ regions of momentum-space beyond which Bogoliubov quasiparticles cease to exist30–32. These data indicate that the cuprate dFF-DW state involves particle–hole interactions focused at the pseudogap energy scale and between the four pairs of ‘hot frontier’ regions in momentum space where the pseudogap opens.

  1. Discrete Modeling of Early-Life Thermal Fracture in Ceramic Nuclear Fuel

    SciTech Connect

    Spencer, Benjamin W.; Huang, Hai; Dolbow, John E.; Hales, Jason D.

    2015-03-01

    Fracturing of ceramic fuel pellets heavily influences performance of light water reactor (LWR) fuel. Early in the life of fuel, starting with the initial power ramp, large thermal gradients cause high tensile hoop and axial stresses in the outer region of the fuel pellets, resulting in the formation of radial and axial cracks. Circumferential cracks form due to thermal gradients that occur when the power is ramped down. These thermal cracks cause the fuel to expand radially, closing the pellet/cladding gap and enhancing the thermal conductance across that gap, while decreasing the effective conductivity of the fuel in directions normal to the cracking. At lower length scales, formation of microcracks is an important contributor to the decrease in bulk thermal conductivity that occurs over the life of the fuel as the burnup increases. Because of the important effects that fracture has on fuel performance, a realistic, physically based fracture modeling capability is essential to predict fuel behavior in a wide variety of normal and abnormal conditions. Modeling fracture within the context of the finite element method, which is based on continuous interpolations of solution variables, has always been challenging because fracture is an inherently discontinuous phenomenon. Work is underway at Idaho National Laboratory to apply two modeling techniques model fracture as a discrete displacement discontinuity to nuclear fuel: The extended finite element method (XFEM), and discrete element method (DEM). XFEM is based on the standard finite element method, but with enhancements to represent discontinuous behavior. DEM represents a solid as a network of particles connected by bonds, which can arbitrarily fail if a fracture criterion is reached. This paper presents initial results applying the aforementioned techniques to model fuel fracturing. This work has initially focused on early life behavior of ceramic LWR fuel. A coupled thermal-mechanical XFEM method that includes

  2. Final Report for DOE grant DE-FG02-07ER64432 "New Grid and Discretization Technologies for Ocean and Ice Simulations"

    SciTech Connect

    Gunzburger, Max

    2013-03-12

    The work reported is in pursuit of these goals: high-quality unstructured, non-uniform Voronoi and Delaunay grids; improved finite element and finite volume discretization schemes; and improved finite element and finite volume discretization schemes. These are sought for application to spherical and three-dimensional applications suitable for ocean, atmosphere, ice-sheet, and other climate modeling applications.

  3. En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions

    SciTech Connect

    Becker, D. Reuter, M.

    2014-11-15

    The most momentous requirement a quantum theory of gravity must satisfy is Background Independence, necessitating in particular an ab initio derivation of the arena all non-gravitational physics takes place in, namely spacetime. Using the background field technique, this requirement translates into the condition of an unbroken split-symmetry connecting the (quantized) metric fluctuations to the (classical) background metric. If the regularization scheme used violates split-symmetry during the quantization process it is mandatory to restore it in the end at the level of observable physics. In this paper we present a detailed investigation of split-symmetry breaking and restoration within the Effective Average Action (EAA) approach to Quantum Einstein Gravity (QEG) with a special emphasis on the Asymptotic Safety conjecture. In particular we demonstrate for the first time in a non-trivial setting that the two key requirements of Background Independence and Asymptotic Safety can be satisfied simultaneously. Carefully disentangling fluctuation and background fields, we employ a ‘bi-metric’ ansatz for the EAA and project the flow generated by its functional renormalization group equation on a truncated theory space spanned by two separate Einstein–Hilbert actions for the dynamical and the background metric, respectively. A new powerful method is used to derive the corresponding renormalization group (RG) equations for the Newton- and cosmological constant, both in the dynamical and the background sector. We classify and analyze their solutions in detail, determine their fixed point structure, and identify an attractor mechanism which turns out instrumental in the split-symmetry restoration. We show that there exists a subset of RG trajectories which are both asymptotically safe and split-symmetry restoring: In the ultraviolet they emanate from a non-Gaussian fixed point, and in the infrared they loose all symmetry violating contributions inflicted on them by the

  4. Sensor Configuration Selection for Discrete-Event Systems under Unreliable Observations

    SciTech Connect

    Wen-Chiao Lin; Tae-Sic Yoo; Humberto E. Garcia

    2010-08-01

    Algorithms for counting the occurrences of special events in the framework of partially-observed discrete event dynamical systems (DEDS) were developed in previous work. Their performances typically become better as the sensors providing the observations become more costly or increase in number. This paper addresses the problem of finding a sensor configuration that achieves an optimal balance between cost and the performance of the special event counting algorithm, while satisfying given observability requirements and constraints. Since this problem is generally computational hard in the framework considered, a sensor optimization algorithm is developed using two greedy heuristics, one myopic and the other based on projected performances of candidate sensors. The two heuristics are sequentially executed in order to find best sensor configurations. The developed algorithm is then applied to a sensor optimization problem for a multiunit- operation system. Results show that improved sensor configurations can be found that may significantly reduce the sensor configuration cost but still yield acceptable performance for counting the occurrences of special events.

  5. Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method

    SciTech Connect

    Yu Yanxin; Cheng Yipik; Xu Xiaomin; Soga, Kenichi

    2013-06-18

    Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.

  6. Towards High Performance Discrete-Event Simulations of Smart Electric Grids

    SciTech Connect

    Perumalla, Kalyan S; Nutaro, James J; Yoginath, Srikanth B

    2011-01-01

    Future electric grid technology is envisioned on the notion of a smart grid in which responsive end-user devices play an integral part of the transmission and distribution control systems. Detailed simulation is often the primary choice in analyzing small network designs, and the only choice in analyzing large-scale electric network designs. Here, we identify and articulate the high-performance computing needs underlying high-resolution discrete event simulation of smart electric grid operation large network scenarios such as the entire Eastern Interconnect. We focus on the simulator's most computationally intensive operation, namely, the dynamic numerical solution for the electric grid state, for both time-integration as well as event-detection. We explore solution approaches using general-purpose dense and sparse solvers, and propose a scalable solver specialized for the sparse structures of actual electric networks. Based on experiments with an implementation in the THYME simulator, we identify performance issues and possible solution approaches for smart grid experimentation in the large.

  7. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    DOEpatents

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Wind, Robert A.

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  8. Solitons and vortices in two-dimensional discrete nonlinear Schrdinger systems with spatially modulated nonlinearity

    SciTech Connect

    Kevrekidis, P. G.; Malomed, Boris A.; Saxena, Avadh; Bishop, A. R.; Frantzeskakis, D. J.

    2015-04-07

    We consider a two-dimensional (2D) generalization of a recently proposed model [Phys. Rev. E 88, 032905 (2013)], which gives rise to bright discrete solitons supported by the defocusing nonlinearity whose local strength grows from the center to the periphery. We explore the 2D model starting from the anticontinuum (AC) limit of vanishing coupling. In this limit, we can construct a wide variety of solutions including not only single-site excitations, but also dipole and quadrupole ones. Additionally, two separate families of solutions are explored: the usual extended unstaggered bright solitons, in which all sites are excited in the AC limit, with the same sign across the lattice (they represent the most robust states supported by the lattice, their 1D counterparts being those considered as 1D bright solitons in the above-mentioned work), and the vortex cross, which is specific to the 2D setting. For all the existing states, we explore their stability (also analytically, when possible). As a result, typical scenarios of instability development are exhibited through direct simulations.

  9. Modeling the Interaction Between Hydraulic and Natural Fractures Using Dual-Lattice Discrete Element Method

    SciTech Connect

    Zhou, Jing; Huang, Hai; Deo, Milind

    2015-10-01

    The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing, arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.

  10. DFNWorks. A discrete fracture network framework for modeling subsurface flow and transport

    SciTech Connect

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; Gable, Carl W.; Painter, Scott L.; Viswanathan, Hari S.

    2015-08-10

    DFNWorks is a parallalized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using dfnGen, which combines fram (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs on the basis of site specific data with the LaGriT meshing toolbox to create a high-quality computational mesh representation, specifically a conforming Delaunay triangulation suitable for high performance computing finite volume solvers, of the DFN in an intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code pflotran. A Lagrangian approach to simulating transport through the DFN is adopted within dfnTrans, which is an extension of the walkabout particle tracking method to determine pathlines through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.

  11. A discrete element based simulation framework to investigate particulate spray deposition processes

    SciTech Connect

    Mukherjee, Debanjan Zohdi, Tarek I.

    2015-06-01

    This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface. The individual particulate dynamics under the combined action of particle collisions, fluid–particle interactions, particle–surface contact and adhesive interactions is simulated, and aggregated to obtain global system behavior. A model for deposition which incorporates the effect of surface energy, impact velocity and particle size, is developed. The fluid–particle interaction is modeled using appropriate spray nozzle gas velocity distributions and a one-way coupling between the phases. It is found that the particle response times and the release velocity distribution of particles have a combined effect on inter-particle collisions during the flow along the spray. It is also found that resolution of the particulate collisions close to the target surface plays an important role in characterizing the trends in the deposit pattern. Analysis of the deposit pattern using metrics defined from the particle distribution on the target surface is provided to characterize the deposition efficiency, deposit size, and scatter due to collisions.

  12. Discrete Dipole Approximation for Low-Energy Photoelectron Emission from NaCl Nanoparticles

    SciTech Connect

    Berg, Matthew J.; Wilson, Kevin R.; Sorensen, Chris; Chakrabarti, Amit; Ahmed, Musahid

    2011-09-22

    This work presents a model for the photoemission of electrons from sodium chloride nanoparticles 50-500 nm in size, illuminated by vacuum ultraviolet light with energy ranging from 9.4-10.9 eV. The discrete dipole approximation is used to calculate the electromagnetic field inside the particles, from which the two-dimensional angular distribution of emitted electrons is simulated. The emission is found to favor the particle?s geometrically illuminated side, and this asymmetry is compared to previous measurements performed at the Lawrence Berkeley National Laboratory. By modeling the nanoparticles as spheres, the Berkeley group is able to semi-quantitatively account for the observed asymmetry. Here however, the particles are modeled as cubes, which is closer to their actual shape, and the interaction of an emitted electron with the particle surface is also considered. The end result shows that the emission asymmetry for these low-energy electrons is more sensitive to the particle-surface interaction than to the specific particle shape, i.e., a sphere or cube.

  13. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    SciTech Connect

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; Gable, Carl W.; Painter, Scott L.; Viswanathan, Hari S.

    2015-11-01

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in an intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport#12; finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.

  14. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    DOE PAGES [OSTI]

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; Gable, Carl W.; Painter, Scott L.; Viswanathan, Hari S.

    2015-11-01

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.« less

  15. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport

    SciTech Connect

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; Gable, Carl W.; Painter, Scott L.; Viswanathan, Hari S.

    2015-11-01

    DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in an intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.

  16. DFNWorks. A discrete fracture network framework for modeling subsurface flow and transport

    DOE PAGES [OSTI]

    Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; Gable, Carl W.; Painter, Scott L.; Viswanathan, Hari S.

    2015-08-10

    DFNWorks is a parallalized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using dfnGen, which combines fram (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs on the basis of site specific data with the LaGriT meshing toolbox to create a high-quality computational mesh representation, specifically a conforming Delaunay triangulation suitable for high performance computingmore » finite volume solvers, of the DFN in an intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code pflotran. A Lagrangian approach to simulating transport through the DFN is adopted within dfnTrans, which is an extension of the walkabout particle tracking method to determine pathlines through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.« less

  17. Discrete and continuous variables for measurement-device-independent quantum cryptography

    SciTech Connect

    Xu, Feihu; Curty, Marcos; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2015-11-16

    In a recent Article in Nature Photonics, Pirandola et al.1 claim that the achievable secret key rates of discrete-variable (DV) measurementdevice- independent (MDI) quantum key distribution (QKD) (refs 2,3) are “typically very low, unsuitable for the demands of a metropolitan network” and introduce a continuous-variable (CV) MDI QKD protocol capable of providing key rates which, they claim, are “three orders of magnitude higher” than those of DV MDI QKD. We believe, however, that the claims regarding low key rates of DV MDI QKD made by Pirandola et al.1 are too pessimistic. Here in this paper, we show that the secret key rate of DV MDI QKD with commercially available high-efficiency single-photon detectors (SPDs) (for example, see http://www.photonspot.com/detectors and http://www.singlequantum.com) and good system alignment is typically rather high and thus highly suitable for not only long-distance communication but also metropolitan networks.

  18. Discrete and continuous variables for measurement-device-independent quantum cryptography

    DOE PAGES [OSTI]

    Xu, Feihu; Curty, Marcos; Qi, Bing; Qian, Li; Lo, Hoi-Kwong

    2015-11-16

    In a recent Article in Nature Photonics, Pirandola et al.1 claim that the achievable secret key rates of discrete-variable (DV) measurementdevice- independent (MDI) quantum key distribution (QKD) (refs 2,3) are “typically very low, unsuitable for the demands of a metropolitan network” and introduce a continuous-variable (CV) MDI QKD protocol capable of providing key rates which, they claim, are “three orders of magnitude higher” than those of DV MDI QKD. We believe, however, that the claims regarding low key rates of DV MDI QKD made by Pirandola et al.1 are too pessimistic. Here in this paper, we show that the secretmore » key rate of DV MDI QKD with commercially available high-efficiency single-photon detectors (SPDs) (for example, see http://www.photonspot.com/detectors and http://www.singlequantum.com) and good system alignment is typically rather high and thus highly suitable for not only long-distance communication but also metropolitan networks.« less

  19. Characterization of high order spatial discretizations and lumping techniques for discontinuous finite element SN transport

    SciTech Connect

    Maginot, P. G.; Ragusa, J. C.; Morel, J. E.

    2013-07-01

    We examine several possible methods of mass matrix lumping for discontinuous finite element discrete ordinates transport using a Lagrange interpolatory polynomial trial space. Though positive outflow angular flux is guaranteed with traditional mass matrix lumping in a purely absorbing 1-D slab cell for the linear discontinuous approximation, we show that when used with higher degree interpolatory polynomial trial spaces, traditional lumping does yield strictly positive outflows and does not increase in accuracy with an increase in trial space polynomial degree. As an alternative, we examine methods which are 'self-lumping'. Self-lumping methods yield diagonal mass matrices by using numerical quadrature restricted to the Lagrange interpolatory points. Using equally-spaced interpolatory points, self-lumping is achieved through the use of closed Newton-Cotes formulas, resulting in strictly positive outflows in pure absorbers for odd power polynomials in 1-D slab geometry. By changing interpolatory points from the traditional equally-spaced points to the quadrature points of the Gauss-Legendre or Lobatto-Gauss-Legendre quadratures, it is possible to generate solution representations with a diagonal mass matrix and a strictly positive outflow for any degree polynomial solution representation in a pure absorber medium in 1-D slab geometry. Further, there is no inherent limit to local truncation error order of accuracy when using interpolatory points that correspond to the quadrature points of high order accuracy numerical quadrature schemes. (authors)

  20. Simulation of Powder Layer Deposition in Additive Manufacturing Processes Using the Discrete Element Method

    SciTech Connect

    Herbold, E. B.; Walton, O.; Homel, M. A.

    2015-10-26

    This document serves as a final report to a small effort where several improvements were added to a LLNL code GEODYN-­L to develop Discrete Element Method (DEM) algorithms coupled to Lagrangian Finite Element (FE) solvers to investigate powder-­bed formation problems for additive manufacturing. The results from these simulations will be assessed for inclusion as the initial conditions for Direct Metal Laser Sintering (DMLS) simulations performed with ALE3D. The algorithms were written and performed on parallel computing platforms at LLNL. The total funding level was 3-­4 weeks of an FTE split amongst two staff scientists and one post-­doc. The DEM simulations emulated, as much as was feasible, the physical process of depositing a new layer of powder over a bed of existing powder. The DEM simulations utilized truncated size distributions spanning realistic size ranges with a size distribution profile consistent with realistic sample set. A minimum simulation sample size on the order of 40-­particles square by 10-­particles deep was utilized in these scoping studies in order to evaluate the potential effects of size segregation variation with distance displaced in front of a screed blade. A reasonable method for evaluating the problem was developed and validated. Several simulations were performed to show the viability of the approach. Future investigations will focus on running various simulations investigating powder particle sizing and screen geometries.

  1. Sub-discretized surface model with application to contact mechanics in multi-body simulation

    SciTech Connect

    Johnson, S; Williams, J

    2008-02-28

    The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidates assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.

  2. Noise analysis of genome-scale protein synthesis using a discrete computational model of translation

    SciTech Connect

    Racle, Julien; Hatzimanikatis, Vassily; Stefaniuk, Adam Jan

    2015-07-28

    Noise in genetic networks has been the subject of extensive experimental and computational studies. However, very few of these studies have considered noise properties using mechanistic models that account for the discrete movement of ribosomes and RNA polymerases along their corresponding templates (messenger RNA (mRNA) and DNA). The large size of these systems, which scales with the number of genes, mRNA copies, codons per mRNA, and ribosomes, is responsible for some of the challenges. Additionally, one should be able to describe the dynamics of ribosome exchange between the free ribosome pool and those bound to mRNAs, as well as how mRNA species compete for ribosomes. We developed an efficient algorithm for stochastic simulations that addresses these issues and used it to study the contribution and trade-offs of noise to translation properties (rates, time delays, and rate-limiting steps). The algorithm scales linearly with the number of mRNA copies, which allowed us to study the importance of genome-scale competition between mRNAs for the same ribosomes. We determined that noise is minimized under conditions maximizing the specific synthesis rate. Moreover, sensitivity analysis of the stochastic system revealed the importance of the elongation rate in the resultant noise, whereas the translation initiation rate constant was more closely related to the average protein synthesis rate. We observed significant differences between our results and the noise properties of the most commonly used translation models. Overall, our studies demonstrate that the use of full mechanistic models is essential for the study of noise in translation and transcription.

  3. Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method

    SciTech Connect

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-12-08

    mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environment by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions—representing fish collisions with turbine blades—are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is more

  4. Explicit spatial scattering for load balancing in conservatively synchronized parallel discrete-event simulations

    SciTech Connect

    Thulasidasan, Sunil; Kasiviswanathan, Shiva; Eidenbenz, Stephan; Romero, Philip

    2010-01-01

    We re-examine the problem of load balancing in conservatively synchronized parallel, discrete-event simulations executed on high-performance computing clusters, focusing on simulations where computational and messaging load tend to be spatially clustered. Such domains are frequently characterized by the presence of geographic 'hot-spots' - regions that generate significantly more simulation events than others. Examples of such domains include simulation of urban regions, transportation networks and networks where interaction between entities is often constrained by physical proximity. Noting that in conservatively synchronized parallel simulations, the speed of execution of the simulation is determined by the slowest (i.e most heavily loaded) simulation process, we study different partitioning strategies in achieving equitable processor-load distribution in domains with spatially clustered load. In particular, we study the effectiveness of partitioning via spatial scattering to achieve optimal load balance. In this partitioning technique, nearby entities are explicitly assigned to different processors, thereby scattering the load across the cluster. This is motivated by two observations, namely, (i) since load is spatially clustered, spatial scattering should, intuitively, spread the load across the compute cluster, and (ii) in parallel simulations, equitable distribution of CPU load is a greater determinant of execution speed than message passing overhead. Through large-scale simulation experiments - both of abstracted and real simulation models - we observe that scatter partitioning, even with its greatly increased messaging overhead, significantly outperforms more conventional spatial partitioning techniques that seek to reduce messaging overhead. Further, even if hot-spots change over the course of the simulation, if the underlying feature of spatial clustering is retained, load continues to be balanced with spatial scattering leading us to the observation that

  5. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks

    DOE PAGES [OSTI]

    Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; Painter, Scott L.; Gable, Carl W.; Viswanathan, Hari S.

    2016-06-17

    The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer18 scale field–scale fracture networks has been under a matter of debate for a long time because the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling withinmore » large-scale fracture networks. We address this question by incorporating internal heterogeneity of individual fractures into 23 flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. A recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time and cumulative retention, are calculated along particles streamlines. It is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture variability than the tails of travel time distributions, where no significant effect of the in-fracture transmissivity variations and spatial correlation length is observed.« less

  6. Some notes on the application of discrete wavelet transform in image processing

    SciTech Connect

    Caria, Egydio C. S.; Costa A, Trajano A. de; Rebello, Joao Marcos A.

    2011-06-23

    Mathematical transforms are used in signal processing in order to extract what is known as 'hidden' information. One of these mathematical tools is the Discrete Wavelet Transform (DWT), which has been increasingly employed in non-destructive testing and, more specifically, in image processing. The main concern in the present work is to employ DWT to suppress noise without losing relevant image features. However, some aspects must be taken into consideration when applying DWT in image processing, mainly in the case of weld radiographs, in order to achieve consistent results. Three topics were selected as representative of these difficulties, as follows: 1) How can image matrix be filled to fit the 2{sup n} lines and 2{sup n} rows requirement? 2) How can the most suitable decomposition level of the DWT function and the correct choice of their coefficient suppression be selected? 3) Is there any influence of the scanning direction and the weld radiograph image, e.g., longitudinal or transversal, on the final processing image? It is known that some artifacts may be present in weld radiograph images. Indeed, the weld surface is frequently rough and rippled, what can be seen as gray level variation on the radiograph, being sometimes mistaken as defective areas. Depending on the position of these artifacts, longitudinal or transversal to the weld bead, they may have different influences on the image processing procedure. This influence is clearly seen in the distribution of the DWT Function coefficients. In the present work, examples of two weld radiographs of quite different image quality were given in order to exemplify it.

  7. The impact of crystal symmetry on the electronic structure and functional properties of complex lanthanum chromium oxides

    SciTech Connect

    Qiao, Liang; Xiao, Haiyan Y.; Heald, Steve M.; Bowden, Mark E.; Varga, Tamas; Exarhos, Gregory J.; Biegalski, Michael D.; Ivanov, Ilia N.; Weber, William J.; Droubay, Timothy C.; Chambers, Scott A.

    2013-08-14

    Complex oxides exhibit a wide range of crystal structures, chemical compositions and physical properties. The underlying drivers determining the complicated structure-composition-property phase diagrams are the relative positions and orbital overlaps between the metal cations and the oxygen anions. Here we report a combined experimental and theoretical investigation of the structure and bonding in a series of lanthanum chromium oxides prepared by reactive molecular beam epitaxy. Of particular interest is the charge state and local coordination of the Cr. We have stabilized LaCrO3, LaCrO4 and La2CrO6 films by controlling the three elemental fluxes during deposition, and have carried out x-ray diffraction, x-ray photoemission, and x-ray absorption spectroscopy, as well as first-principles calculations, to determine structure, charge state, chemical bonding, and electronic structure. Significant changes in bonding character and orbital interaction are revealed with decreasing ligand symmetry from octahedral to tetrahedral Cr coordination. Both LaCrO4 and LaCrO6 with tetrahedrally coordinated Cr show strong pre-edge features in the Cr K-edge near-edge structure whereas LaCrO3 with octahedrally coordinated Cr exhibits very weak pre-edge features. The origin of these pre-edge features is discussed based on various selection rules and ligand symmetry. We also demonstrate an increase in cation-anion orbital hybridization and a decrease in long-range ligand coupling induced by this symmetry reduction. These in turn result in dramatic modifications of the macroscopic optical and magnetic properties.

  8. The impact of crystal symmetry on the electronic structure and functional properties of complex lanthanum chromium oxides

    SciTech Connect

    Qiao, Liang; Xiao, Haiyan; Heald, Steve M.; Bowden, Mark E; Varga, Tamas; Exarhos, Gregory J.; Biegalski, Michael D; Ivanov, Ilia N; Weber, W J; Droubay, Timothy; Chambers, S. A.

    2013-01-01

    Complex oxides exhibit a wide range of crystal structures, chemical compositions and physical properties. The underlying drivers determining the complicated structure composition property phase diagrams are the relative positions and orbital overlaps between the metal cations and the oxygen anions. Here we report a combined experimental and theoretical investigation of the structure and bonding in a series of lanthanum chromium oxides prepared by molecular beam epitaxy. Of particular interest is the charge state and local coordination of the Cr. We have stabilized LaCrO3, LaCrO4 and La2CrO6 films by controlling the three elemental fluxes during deposition, and have carried out X-ray diffraction, X-ray photoemission, and X-ray absorption spectroscopy, as well as first-principles calculations, to determine structure, charge state, chemical bonding, and electronic structure. Significant changes in bonding character and orbital interaction are revealed with decreasing ligand symmetry from octahedral to tetrahedral Cr coordination. Both LaCrO4 and La2CrO6 with tetrahedrally coordinated Cr show strong pre-edge features in the Cr K-edge near-edge structure whereas LaCrO3 with octahedrally coordinated Cr exhibits very weak pre-edge features. The origin of these pre-edge features is discussed based on various selection rules and ligand symmetry. We also demonstrate an increase in cation anion orbital hybridization and a decrease in long-range ligand coupling induced by this symmetry reduction. These in turn result in dramatic modifications of the macroscopic optical and magnetic properties.

  9. Some global problems in gauge theories (Variations on a theme of Aharonov and Bohm)

    SciTech Connect

    Wilczek, F.

    1989-12-01

    Several situations are discussed, in which the sort of global considerations made famous by Aharonov and Bohm in their discussion of the interaction of charged particles with magnetic flux tubes have important physical implications. It is argued that discrete gauge symmetries in the continuum make sense, and manifest themselves most clearly in Aharonov-Bohm type scattering of charged particles off string singularities. The existence of such discrete symmetries has important implications for the quantum mechanics of topologically non-trivial space-times in general and black holes in particular. It is argued that in the non-abelian case essentially new features arise, most notably that the symmetry group of the homogeneous ground state generally ceases to be globally defined in the presence of a string. When continuous rather than discrete symmetries are involved, a variety of fascinating and as yet poorly understood dynamical effects occur. Perhaps the most striking is a new form of string superconductivity, that exists for purely topological reasons, and is not well modeled by regarding the string as a superconducting wire. 8 refs., 2 figs.

  10. Effects of fuel-capsule shimming and drive asymmetry on inertial-confinement-fusion symmetry and yield

    DOE PAGES [OSTI]

    Seguin, F. H.; Li, C. K.; DeCiantis, J. L.; Frenje, J. A.; Rygg, J. R.; Petrasso, R. D.; Marshall, F. J.; Smalyuk, V.; Glebov, V. Yu.; Knauer, J. P.; et al

    2016-03-22

    Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Here, measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).

  11. Growth window and effect of substrate symmetry in hybrid molecular beam epitaxy of a Mott insulating rare earth titanate

    SciTech Connect

    Moetakef, Pouya; Zhang, Jack Y.; Raghavan, Santosh; Kajdos, Adam P.; Stemmer, Susanne

    2013-07-15

    The conditions for the growth of stoichiometric GdTiO{sub 3} thin films by molecular beam epitaxy (MBE) are investigated. It is shown that relatively high growth temperatures (>750 Degree-Sign C) are required to obtain an MBE growth window in which only the stoichiometric film grows for a range of cation flux ratios. This growth window narrows with increasing film thickness. It is also shown that single-domain films are obtained by the growth on a symmetry-matched substrate. The influence of lattice mismatch strain on the electrical and magnetic characteristics of the GdTiO{sub 3} thin film is investigated.

  12. Temperature and field dependence of the flux-line-lattice symmetry in V{sub 3}Si

    SciTech Connect

    Yethiraj, M.; Christen, D.K.; Gapud, A.A.; Paul, D. McK.; Crowe, S.J.; Dewhurst, C.D.; Cubitt, R.; Porcar, L.; Gurevich, A.

    2005-08-01

    In V{sub 3}Si, a first-order structural phase transition from hexagonal to square flux-line lattice occurs at approximately 1 T with H parallel to the a axis. In this paper, we demonstrate the reentrant structural transition in the flux-line lattice, which reverts to hexagonal symmetry as the magnetic field approached H{sub c2}(T). This behavior is described very well by a nonlocal London theory with thermal fluctuations. The phase diagram of the flux lattice topology is mapped out for this geometry.

  13. Nonlinear delayed symmetry breaking in a solid excited by hard x-ray free electron laser pulses

    SciTech Connect

    Ferrer, A.; Johnson, J. A. Mariager, S. O.; Grbel, S.; Staub, U.; Huber, T.; Trant, M.; Johnson, S. L.; Zhu, D.; Chollet, M.; Robinson, J.; Lemke, H. T.; Ingold, G.; Beaud, P.; Milne, C.

    2015-04-13

    We have studied the ultrafast changes of electronic states in bulk ZnO upon intense hard x-ray excitation from a free electron laser. By monitoring the transient anisotropy induced in an optical probe beam, we observe a delayed breaking of the initial c-plane symmetry of the crystal that lasts for several picoseconds. Interaction with the intense x-ray pulses modifies the electronic state filling in a manner inconsistent with a simple increase in electronic temperature. These results may indicate a way to use intense ultrashort x-ray pulses to investigate high-energy carrier dynamics and to control certain properties of solid-state materials.

  14. Automated quadrilateral surface discretization method and apparatus usable to generate mesh in a finite element analysis system

    DOEpatents

    Blacker, Teddy D.

    1994-01-01

    An automatic quadrilateral surface discretization method and apparatus is provided for automatically discretizing a geometric region without decomposing the region. The automated quadrilateral surface discretization method and apparatus automatically generates a mesh of all quadrilateral elements which is particularly useful in finite element analysis. The generated mesh of all quadrilateral elements is boundary sensitive, orientation insensitive and has few irregular nodes on the boundary. A permanent boundary of the geometric region is input and rows are iteratively layered toward the interior of the geometric region. Also, an exterior permanent boundary and an interior permanent boundary for a geometric region may be input and the rows are iteratively layered inward from the exterior boundary in a first counter clockwise direction while the rows are iteratively layered from the interior permanent boundary toward the exterior of the region in a second clockwise direction. As a result, a high quality mesh for an arbitrary geometry may be generated with a technique that is robust and fast for complex geometric regions and extreme mesh gradations.

  15. Discrete-Time Pricing and Optimal Exercise of American Perpetual Warrants in the Geometric Random Walk Model

    SciTech Connect

    Vanderbei, Robert J.; P Latin-Small-Letter-Dotless-I nar, Mustafa C.; Bozkaya, Efe B.

    2013-02-15

    An American option (or, warrant) is the right, but not the obligation, to purchase or sell an underlying equity at any time up to a predetermined expiration date for a predetermined amount. A perpetual American option differs from a plain American option in that it does not expire. In this study, we solve the optimal stopping problem of a perpetual American option (both call and put) in discrete time using linear programming duality. Under the assumption that the underlying stock price follows a discrete time and discrete state Markov process, namely a geometric random walk, we formulate the pricing problem as an infinite dimensional linear programming (LP) problem using the excessive-majorant property of the value function. This formulation allows us to solve complementary slackness conditions in closed-form, revealing an optimal stopping strategy which highlights the set of stock-prices where the option should be exercised. The analysis for the call option reveals that such a critical value exists only in some cases, depending on a combination of state-transition probabilities and the economic discount factor (i.e., the prevailing interest rate) whereas it ceases to be an issue for the put.

  16. Closeout Report - Search for Time Reversal Symmetry Violation with TREK at J-PARC

    SciTech Connect

    Kohl, Michael

    2015-04-15

    positions. Two former graduate students of the group have graduated and received their PhD degrees in nuclear physics (Dr. Anusha Liyanage and Dr. Ozgur Ates). In particular, this award has enabled Dr. Kohl to pursue the TREK project (Time Reversal Experiment with Kaons) at J-PARC, which he has been leading and advancing as International Spokesperson. Originally proposed as a search for time reversal symmetry violation [6], the project has evolved into a precision test of lepton flavor universality in the Standard Model along with sensitive searches for physics beyond the Standard Model through a possible discovery of new particles such as a sterile neutrino or a neutral gauge boson from the hidden sector in the mass region up to 300 MeV/c2 [7]. Experiment TREK/E36, first proposed in 2010, has been mounted between November 2014 and April 2015, and commissioning with beam has been started in April 2015, with production running anticipated in early summer and late fall 2015. It uses the apparatus from the previous KEK/E-246 experiment with partial upgrades to measure the ratio of decay widths of leptonic two-body decays of the charged kaon to µν and eν, respectively, which is highly sensitive to the ratio of electromagnetic charged lepton couplings and possible new physics processes that could differentiate between μ and e, hence breaking lepton flavor universality of the Standard Model. Through the searches for neutral massive particles, TREK/E36 can severely constrain any new physics scenarios designed to explain the proton radius puzzle [12, 13].

  17. Effects of symmetry and spin configuration on spin-dependent transport properties of iron-phthalocyanine-based devices

    SciTech Connect

    Cui, Li-Ling; Yang, Bing-Chu Li, Xin-Mei; Cao, Can; Long, Meng-Qiu

    2014-07-21

    Spin-dependent transport properties of nanodevices constructed by iron-phthalocyanine (FePc) molecule sandwiched between two zigzag graphene nanoribbon electrodes are studied using first-principles quantum transport calculations. The effects of the symmetry and spin configuration of electrodes have been taken into account. It is found that large magnetoresistance, large spin polarization, dual spin-filtering, and negative differential resistance (NDR) can coexist in these devices. Our results show that 5Z-FePc system presents well conductive ability in both parallel (P) and anti-parallel (AP) configurations. For 6Z-FePc-P system, spin filtering effect and large spin polarization can be found. A dual spin filtering and NDR can also be shown in 6Z-FePc-AP. Our studies indicate that the dual spin filtering effect depends on the orbitals symmetry of the energy bands and spin mismatching of the electrodes. And all the effects would open up possibilities for their applications in spin-valve, spin-filter as well as effective spin diode devices.

  18. Key role of lattice symmetry in the metal-insulator transition of NdNiO3 films

    DOE PAGES [OSTI]

    Zhang, Jack Y.; Kim, Honggyu; Mikheev, Evgeny; Hauser, Adam J.; Stemmer, Susanne

    2016-04-01

    Here, bulk NdNiO3 exhibits a metal-to-insulator transition (MIT) as the temperature is lowered that is also seen in tensile strained films. In contrast, films that are under a large compressive strain typically remain metallic at all temperatures. To clarify the microscopic origins of this behavior, we use position averaged convergent beam electron diffraction in scanning transmission electron microscopy to characterize strained NdNiO3 films both above and below the MIT temperature. We show that a symmetry lowering structural change takes place in case of the tensile strained film, which undergoes an MIT, but is absent in the compressively strained film. Usingmore » space group symmetry arguments, we show that these results support the bond length disproportionation model of the MIT in the rare-earth nickelates. Furthermore, the results provide insights into the non-Fermi liquid phase that is observed in films for which the MIT is absent.« less

  19. Numerical simulations of oscillating soliton stars: Excited states in spherical symmetry and ground state evolutions in 3D

    SciTech Connect

    Balakrishna, Jayashree; Bondarescu, Ruxandra; Daues, Gregory; Bondarescu, Mihai

    2008-01-15

    Excited state soliton stars are studied numerically for the first time. The stability of spherically symmetric S-branch excited state oscillatons under radial perturbations is investigated using a 1D code. We find that these stars are inherently unstable either migrating to the ground state or collapsing to black holes. Higher excited state configurations are observed to cascade through intermediate excited states during their migration to the ground state. This is similar to excited state boson stars [J. Balakrishna, E. Seidel, and W.-M. Suen, Phys. Rev. D 58, 104004 (1998).]. Ground state oscillatons are then studied in full 3D numerical relativity. Finding the appropriate gauge condition for the dynamic oscillatons is much more challenging than in the case of boson stars. Different slicing conditions are explored, and a customized gauge condition that approximates polar slicing in spherical symmetry is implemented. Comparisons with 1D results and convergence tests are performed. The behavior of these stars under small axisymmetric perturbations is studied and gravitational waveforms are extracted. We find that the gravitational waves damp out on a short time scale, enabling us to obtain the complete waveform. This work is a starting point for the evolution of real scalar field systems with arbitrary symmetries.

  20. Direct link between neutrinoless double beta decay and leptogenesis in a seesaw model with S{sub 4} symmetry

    SciTech Connect

    Ahn, Y. H. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Kang, Sin Kyu [School of Liberal Arts, Seoul National Univ. of Technology, Seoul 139-743 (Korea, Republic of); Kim, C. S. [Department of Physics and IPAP, Yonsei University, Seoul 120-749 (Korea, Republic of); Nguyen, T. Phong [Department of Physics and IPAP, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Physics, Cantho University, Cantho (Viet Nam)

    2010-11-01

    We study how leptogenesis can be implemented in a seesaw model with S{sub 4} flavor symmetry, which leads to the neutrino tribimaximal mixing matrix and degenerate right-handed (RH) neutrino spectrum. Introducing a tiny soft S{sub 4} symmetry breaking term in the RH neutrino mass matrix, we show that the flavored resonant leptogenesis can be successfully realized, which can lower the seesaw scale much so, as to make it possible to probe in colliders. Even though such a tiny soft breaking term is essential for leptogenesis, it does not significantly affect the low-energy observables. We also investigate how the effective light neutrino mass || associated with neutrinoless double beta decay can be predicted along with the neutrino mass hierarchies by imposing experimental data of low-energy observables. We find a direct link between leptogenesis and neutrinoless double beta decay characterized by || through a high energy CP phase {phi}, which is correlated with low-energy Majorana CP phases. It is shown that our predictions of || for some fixed parameters of high energy physics can be constrained by the current observation of baryon asymmetry.

  1. DISCRETE ELEMENT MODELING OF BLADE–STRIKE FREQUENCY AND SURVIVAL OF FISH PASSING THROUGH HYDROKINETIC TURBINES

    SciTech Connect

    Romero Gomez, Pedro DJ; Richmond, Marshall C.

    2014-04-17

    Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energy device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric

  2. High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14

    SciTech Connect

    Lan, Ke; Liu, Jie; He, Xian-Tu; Center for Applied Physics and Technology, Peking University, Beijing, 100871 ; Lai, Dongxian; Zheng, Wudi

    2014-01-15

    We propose a spherical hohlraum with octahedral six laser entrance holes at a specific hohlraum-to-capsule radius ratio of 5.14 for inertial fusion study, which has robust high symmetry during the capsule implosion and low backscatter without supplementary technology. To produce an ignition radiation pulse of 300 eV, it needs 1.5 MJ absorbed laser energy in such a golden octahedral hohlraum, about 30% more than a traditional cylinder. Nevertheless, it is worth for a high symmetry and low backscatter. The proposed octahedral hohlraum is also flexible and can be applicable to diverse inertial fusion drive approaches.

  3. Symmetries of migration related segments of all [001] coincidence site lattice tilt boundaries in (001) projections for all holohedral cubic materials

    SciTech Connect

    Moeck, Peter; York, Bryant W.; Browning, Nigel D.

    2014-09-11

    Utilizing bicrystallography in two dimensions (2D), the symmetries of migration related segments of Coincidence Site Lattice (CSL) boundaries are derived for projections along their [001] tilt axis in grain boundaries of crystalline materials that possess the holohedral point symmetry of the cubic system (i.e. m3m). These kinds of “edge-on” projections are typical for atomic resolution imaging of such tilt boundaries with Transmission Electron Microscopes (TEM). This fact facilitates the visual confirmation of our predictions by recently published Zcontrast scanning TEM investigations [H. Yang et al., Phil. Mag. 93 (2013) 1219] and many other TEM studies.

  4. Graph-theoretic analysis of discrete-phase-space states for condition change detection and quantification of information

    DOEpatents

    Hively, Lee M.

    2014-09-16

    Data collected from devices and human condition may be used to forewarn of critical events such as machine/structural failure or events from brain/heart wave data stroke. By monitoring the data, and determining what values are indicative of a failure forewarning, one can provide adequate notice of the impending failure in order to take preventive measures. This disclosure teaches a computer-based method to convert dynamical numeric data representing physical objects (unstructured data) into discrete-phase-space states, and hence into a graph (structured data) for extraction of condition change.

  5. Response-surface models for deterministic effects of localized irradiation of the skin by discrete {beta}/{gamma} -emitting sources

    SciTech Connect

    Scott, B.R.

    1995-12-01

    Individuals who work at nuclear reactor facilities can be at risk for deterministic effects in the skin from exposure to discrete {Beta}- and {gamma}-emitting ({Beta}{gamma}E) sources (e.g., {Beta}{gamma}E hot particles) on the skin or clothing. Deterministic effects are non-cancer effects that have a threshold and increase in severity as dose increases (e.g., ulcer in skin). Hot {Beta}{gamma}E particles are {sup 60}Co- or nuclear fuel-derived particles with diameters > 10 {mu}m and < 3 mm and contain at least 3.7 kBq (0.1 {mu}Ci) of radioactivity. For such {Beta}{gamma}E sources on the skin, it is the beta component of the dose that is most important. To develop exposure limitation systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for evaluating the risk of deterministic effects of localized {Beta} irradiation of the skin. The purpose of this study was to develop dose-rate and irradiated-area dependent, response-surface models for evaluating risks of significant deterministic effects of localized irradiation of the skin by discrete {Beta}{gamma}E sources and to use modeling results to recommend approaches to limiting occupational exposure to such sources. The significance of the research results as follows: (1) response-surface models are now available for evaluating the risk of specific deterministic effects of localized irradiation of the skin; (2) modeling results have been used to recommend approaches to limiting occupational exposure of workers to {Beta} radiation from {Beta}{gamma}E sources on the skin or on clothing; and (3) the generic irradiated-volume, weighting-factor approach to limiting exposure can be applied to other organs including the eye, the ear, and organs of the respiratory or gastrointestinal tract and can be used for both deterministic and stochastic effects.

  6. MSM Self-Energies at Finite Temperature in the Presence of Weak Magnetic Fields: Towards a Full Symmetry Restoration Study

    SciTech Connect

    Tejeda-Yeomans, Maria Elena; Navarro, Jorge; Sanchez, Angel; Piccinelli, Gabriella

    2008-07-02

    The study of the universe's primordial plasma at high temperature plays an important role when tackling different questions in cosmology, such as the origin of the matter-antimatter asymmetry. In the Minimal Standard Model (MSM) neither the amount of CP violation nor the strength of the phase transition are enough to produce and preserve baryon number during the Electroweak Phase Transition (EWPT), which are two of the three ingredients needed to develop baryon asymmetry. In this talk we present the first part of the analysis done within a scenario where it is viable to have improvements to the aforementioned situation: we work with the degrees of freedom in the broken symmetry phase of the MSM and analyze the development of the EWPT in the presence of a weak magnetic field. More specifically, we calculate the particle self-energies that include the effects of the weak magnetic field, needed for the MSM effective potential up to ring diagrams.

  7. Translational-symmetry alternating phase shifting mask grating mark used in a linear measurement model of lithographic projection lens aberrations

    SciTech Connect

    Qiu Zicheng; Wang Xiangzhao; Bi Qunyu; Yuan Qiongyan; Peng Bo; Duan Lifeng

    2009-07-01

    A linear measurement model of lithographic projection lens aberrations is studied numerically based on the Hopkins theory of partially-coherent imaging and positive resist optical lithography (PROLITH) simulation. In this linearity model, the correlation between the mark's structure and its sensitivities to aberrations is analyzed. A method to design a mark with high sensitivity is proved and declared. By use of this method, a translational-symmetry alternating phase shifting mask (Alt-PSM) grating mark is redesigned with all of the even orders, {+-}3rd and {+-}5th order diffraction light missing. In the evaluation simulation, the measurement accuracies of aberrations prove to be enhanced apparently by use of the redesigned mark instead of the old ones.

  8. Three-dimensional symmetry analysis of a direct-drive irradiation scheme for the laser megajoule facility

    SciTech Connect

    Ramis, R., E-mail: rafael.ramis@upm.es [E.T.S.I. Aeronuticos, Universidad Politcnica de Madrid, P. Cardenal Cisneros 3, E-28040 Madrid (Spain); Temporal, M. [Centre de Mathmatiques et de Leurs Applications, ENS Cachan and CNRS, 61 Av. du President Wilson, F-94235 Cachan Cedex (France); Canaud, B.; Brandon, V. [CEA, DIF, F-91297 Arpajon (France)

    2014-08-15

    The symmetry of a Direct-Drive (DD) irradiation scheme has been analyzed by means of three-dimensional (3D) simulations carried out by the code MULTI (R. Ramis et al., Comput. Phys. Commun. 49, 475 (1988)) that includes hydrodynamics, heat transport, and 3D laser ray-tracing. The implosion phase of a target irradiated by the Laser Megajoule (LMJ) facility in the context of the Shock Ignition scheme has been considered. The LMJ facility has been designed for Indirect-Drive, and by this reason that the irradiation scheme must be modified when used for DD. Thus, to improve the implosion uniformity to acceptable levels, the beam centerlines should be realigned and the beam power balance should be adjusted. Several alternatives with different levels of complexity are presented and discussed.

  9. Nonlinear diffusion acceleration for the multigroup transport equation discretized with S{sub N} and continuous FEM with rattlesnake

    SciTech Connect

    Wang, Y.

    2013-07-01

    Nonlinear diffusion acceleration (NDA) can improve the performance of a neutron transport solver significantly especially for the multigroup eigenvalue problems. The high-order transport equation and the transport-corrected low-order diffusion equation form a nonlinear system in NDA, which can be solved via a Picard iteration. The consistency of the correction of the low-order equation is important to ensure the stabilization and effectiveness of the iteration. It also makes the low-order equation preserve the scalar flux of the high-order equation. In this paper, the consistent correction for a particular discretization scheme, self-adjoint angular flux (SAAF) formulation with discrete ordinates method (S{sub N}) and continuous finite element method (CFEM) is proposed for the multigroup neutron transport equation. Equations with the anisotropic scatterings and a void treatment are included. The Picard iteration with this scheme has been implemented and tested with RattleS{sub N}ake, a MOOSE-based application at INL. Convergence results are presented. (authors)

  10. A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters

    SciTech Connect

    Breier, J. A.; Rauch, C. G.; McCartney, K.; Toner, B. M.; Fakra, S. C.; White, S. N.; German, C. R.

    2010-06-22

    To enable detailed investigations of early stage hydrothermal plume formation and abiotic and biotic plume processes we developed a new oceanographic tool. The Suspended Particulate Rosette sampling system has been designed to collect geochemical and microbial samples from the rising portion of deep-sea hydrothermal plumes. It can be deployed on a remotely operated vehicle for sampling rising plumes, on a wire-deployed water rosette for spatially discrete sampling of non-buoyant hydrothermal plumes, or on a fixed mooring in a hydrothermal vent field for time series sampling. It has performed successfully during both its first mooring deployment at the East Pacific Rise and its first remotely-operated vehicle deployments along the Mid-Atlantic Ridge. It is currently capable of rapidly filtering 24 discrete large-water-volume samples (30-100 L per sample) for suspended particles during a single deployment (e.g. >90 L per sample at 4-7 L per minute through 1 {mu}m pore diameter polycarbonate filters). The Suspended Particulate Rosette sampler has been designed with a long-term goal of seafloor observatory deployments, where it can be used to collect samples in response to tectonic or other events. It is compatible with in situ optical sensors, such as laser Raman or visible reflectance spectroscopy systems, enabling in situ particle analysis immediately after sample collection and before the particles alter or degrade.

  11. THREE DISCRETE GROUPS WITH HOMOGENEOUS CHEMISTRY ALONG THE RED GIANT BRANCH IN THE GLOBULAR CLUSTER NGC2808

    SciTech Connect

    Carretta, E.

    2014-11-10

    We present the homogeneous reanalysis of Mg and Al abundances from high resolution UVES/FLAMES spectra for 31 red giants in the globular cluster NGC2808. We found a well defined Mg-Al anticorrelation reaching a regime of subsolar Mg abundance ratios, with a spread of about 1.4dex in [Al/Fe]. The main result from the improved statistics of our sample is that the distribution of stars is not continuous along the anticorrelation because they are neatly clustered into three distinct clumps, each with different chemical compositions. One group (P) shows a primordial composition of field stars of similar metallicity, and the other two (I and E) have increasing abundances of Al and decreasing abundances of Mg. The fraction of stars we found in the three components (P: 68%, I: 19%, E: 13%) is in excellent agreement with the ratios computed for the three distinct main sequences in NGC2808: for the first time there is a clear correspondence between discrete photometric sequences of dwarfs and distinct groups of giants with homogeneous chemistry. The composition of the I group cannot be reproduced by mixing of matter with extreme processing in hot H-burning and gas with pristine, unprocessed composition, as also found in the recent analysis of three discrete groups in NGC6752. This finding suggests that different classes of polluters were probably at work in NGC2808 as well.

  12. Using Discrete Event Simulation for Programming Model Exploration at Extreme-Scale: Macroscale Components for the Structural Simulation Toolkit (SST).

    SciTech Connect

    Wilke, Jeremiah J; Kenny, Joseph P.

    2015-02-01

    Discrete event simulation provides a powerful mechanism for designing and testing new extreme- scale programming models for high-performance computing. Rather than debug, run, and wait for results on an actual system, design can first iterate through a simulator. This is particularly useful when test beds cannot be used, i.e. to explore hardware or scales that do not yet exist or are inaccessible. Here we detail the macroscale components of the structural simulation toolkit (SST). Instead of depending on trace replay or state machines, the simulator is architected to execute real code on real software stacks. Our particular user-space threading framework allows massive scales to be simulated even on small clusters. The link between the discrete event core and the threading framework allows interesting performance metrics like call graphs to be collected from a simulated run. Performance analysis via simulation can thus become an important phase in extreme-scale programming model and runtime system design via the SST macroscale components.

  13. The Discrete Equation Method (DEM) for Fully Compressible, Two-Phase Flows in Ducts of Spatially Varying Cross-Section

    SciTech Connect

    R. A. Berry; R. Saurel; O. LeMetayer

    2010-11-01

    For the simulation of light water nuclear reactor coolant flows, general two-phase models (valid for all volume fractions) have been generally used which, while allowing for velocity disequilibrium, normally force pressure equilibrium between the phases (see, for example, the numerous models of this type described in H. Stdtke, Gasdynamic Aspects of Two-Phase Flow, Wiley-VCH, 2006). These equations are not hyperbolic, their physical wave dynamics are incorrect, and their solution algorithms rely on dubious truncation error induced artificial viscosity to render them numerically well posed over a portion of the computational spectrum. The inherent problems of the traditional approach to multiphase modeling, which begins with an averaged system of (ill-posed) partial differential equations (PDEs) which are then discretized to form a numerical scheme, are avoided by employing a new homogenization method known as the Discrete Equation Method (DEM) (R. Abgrall and R. Saurel, Discrete Equations for Physical and Numerical Compressible Multiphase Mixtures, J. Comp. Phys. 186, 361-396, 2003). This method results in well-posed hyperbolic systems, this property being important for transient flows. This also allows a clear treatment of non-conservative terms (terms involving interfacial variables and volume fraction gradients) permitting the solution of interface problems without conservation errors, this feature being important for the direct numerical simulation of two-phase flows. Unlike conventional methods, the averaged system of PDEs for the mixture are not used, and the DEM method directly obtains a well-posed discrete equation system from the single-phase conservation laws, producing a numerical scheme which accurately computes fluxes for arbitrary number of phases and solves non-conservative products. The method effectively uses a sequence of single phase Riemann problem solutions. Phase interactions are accounted for by Riemann solvers at each interface. Non

  14. A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law

    SciTech Connect

    Guo, Z.; Lin, P.; Lowengrub, J.S.

    2014-11-01

    In this paper, we investigate numerically a diffuse interface model for the Navier–Stokes equation with fluid–fluid interface when the fluids have different densities [48]. Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preserving method will perform better for multiphase problems. Thus for the reformulated system, we design a C{sup 0} finite element method and a special temporal scheme where the energy law is preserved at the discrete level. Such a discrete energy law (almost the same as the continuous energy law) for this variable density two-phase flow model has never been established before with C{sup 0} finite element. A Newton method is introduced to linearise the highly non-linear system of our discretization scheme. Some numerical experiments are carried out using the adaptive mesh to investigate the scenario of coalescing and rising drops with differing density ratio. The snapshots for the evolution of the interface together with the adaptive mesh at different times are presented to show that the evolution, including the break-up/pinch-off of the drop, can be handled smoothly by our numerical scheme. The discrete energy functional for the system is examined to show that the energy law at the discrete level is preserved by our scheme.

  15. Discrete beta dose kernel matrices for nuclides applied in targeted radionuclide therapy (TRT) calculated with MCNP5

    SciTech Connect

    Reiner, Dora; Blaickner, Matthias; Rattay, Frank

    2009-11-15

    Purpose: Radiopharmaceuticals administered in targeted radionuclide therapy (TRT) rely to a great extent not only on beta-emitting nuclides but also on emitters of monoenergetic electrons. Recent advances like combined PET/CT devices, the consequential coregistration of both data, the concept of using beta couples for diagnosis and therapy, respectively, as well as the development of voxel models offer a great potential for developing TRT dose calculation systems similar to those available for external beam treatment planning. The deterministic algorithms in question for this task are based on the convolution of three-dimensional matrices, one representing the activity distribution and the other the dose point kernel. This study aims to report on three-dimensional kernel matrices for various nuclides used in TRT. Methods: The Monte Carlo code MCNP5 was used to calculate discrete dose kernels of beta particles including the contributions from their respective secondary radiation in soft tissue for the following nuclides: {sup 32}P, {sup 33}P, {sup 67}Cu, {sup 89}Sr, {sup 90}Y, {sup 103}Rh{sup m}, {sup 131}I, {sup 177}Lu, {sup 186}Re, and {sup 188}Re. For each nuclide a kernel cube of 10x10x10 mm{sup 3} was calculated, the dimensions of a voxel being 1 mm{sup 3}. Additional kernels with voxel sizes of 3x3x3 mm{sup 3} were simulated. Results: Comparison with the S-value data regarding {sup 32}P, {sup 89}Sr, {sup 90}Y, and {sup 131}I of the MIRD committee which were calculated with the EGS4 code showed a very good agreement, the secondary particle transport of {sup 90}Y being the only exception. Documented analytical kernels on the other side show deviations very close and very far to the source. Conclusions: The good accordance with the only discrete dose kernels published up to date justifies the method chosen. Together with the additional six nuclides, this report provides a considerable database for three-dimensional kernel matrices with regard to beta

  16. Quasi-discrete particle motion in an externally imposed, ordered structure in a dusty plasma at high magnetic field

    SciTech Connect

    Thomas, Edward Konopka, Uwe; Lynch, Brian; Adams, Stephen; LeBlanc, Spencer; Merlino, Robert L.; Rosenberg, Marlene

    2015-11-15

    Dusty plasmas have been studied in argon, radio frequency (rf) glow discharge plasmas at magnetic fields up to 2.5 T where the electrons and ions are strongly magnetized. Plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper electrode supports a dual mesh consisting of #24 brass and #30 aluminum wire cloth. In this experiment, we study the formation of imposed ordered structures and particle dynamics as a function of magnetic field. Through observations of trapped particles and the quasi-discrete (i.e., “hopping”) motion of particles between the trapping locations, it is possible to make a preliminary estimate of the potential structure that confines the particles to a grid structure in the plasma. This information is used to gain insight into the formation of the imposed grid pattern of the dust particles in the plasma.

  17. Multifractal analysis and modeling of one- and two-dimensional data with discrete wavelet transforms, isotropic or not

    SciTech Connect

    Davis, A.B.

    1998-12-01

    The authors compare several ways of uncovering multifractal properties of data in 1D and 2D using wavelet transforms. The WTMM or (Continuous) Wavelet Transform Maximum Modulus method has been extensively documented and widely applied by Dr. Alain Arneodo`s (Bordeaux) group, to the point where their successes have overshadowed simpler techniques that use the Discrete WT. What the latter lack in robustness is gained in efficiency, thus enabling virtually real-time multifractal analysis of data as it is collected. Another advantage of DWT-based approaches is that tensor products of dyadic and triadic branching schemes enable a straightforward attack on strong anisotropy in natural and artificial 2D random fields.

  18. Grid-based methods for diatomic quantum scattering problems: a finite-element, discrete variable representation in prolate spheroidal coordinates

    SciTech Connect

    Tao, Liang; McCurdy, C.W.; Rescigno, T.N.

    2008-11-25

    We show how to combine finite elements and the discrete variable representation in prolate spheroidal coordinates to develop a grid-based approach for quantum mechanical studies involving diatomic molecular targets. Prolate spheroidal coordinates are a natural choice for diatomic systems and have been used previously in a variety of bound-state applications. The use of exterior complex scaling in the present implementation allows for a transparently simple way of enforcing Coulomb boundary conditions and therefore straightforward application to electronic continuum problems. Illustrative examples involving the bound and continuum states of H2+, as well as the calculation of photoionization cross sections, show that the speed and accuracy of the present approach offer distinct advantages over methods based on single-center expansions.

  19. Discrete Element Model for Simulations of Early-Life Thermal Fracturing Behaviors in Ceramic Nuclear Fuel Pellets

    SciTech Connect

    Hai Huang; Ben Spencer; Jason Hales

    2014-10-01

    A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to the formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.

  20. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE PAGES [OSTI]

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    2016-04-08

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  1. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE PAGES [OSTI]

    Huang, Lei; Zuo, Chao; Idir, Mourad; Qu, Weijuan; Asundi, Anand

    2015-04-21

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  2. Exponential characteristic spatial quadrature for discrete ordinates neutral particle transport in two-dimensional cartesian coordinates. Doctoral thesis

    SciTech Connect

    Minor, B.M.

    1993-09-01

    The exponential characteristic spatial quadrature for discrete ordinates neutral particle transport with rectangular cells is developed. Numerical problems arising in the derivation required the development of exponential moment functions. These functions are used to remove indeterminant forms which can cause catastrophic cancellations. The EC method is positive and nonlinear. It conserves particles and satisfies first moment balance. Comparisons of the EC method's performance to other methods in optically thin and thick spatial cells were performed. For optically thin cells, the EC method was shown to converge to the correct answer, with third order truncation error in the thin cell limit. In deep penetration problems, the EC method attained its highest computational efficiencies compared to the other methods. For all the deep penetration problems examined, the number of spatial cells required by the EC method to attain a desired accuracy was less than the other methods.... Mathematics functions, Nuclear radiation, Nuclear engineering, Radiation attenuation, Radiation shielding, Transport theory, Radiation transport.

  3. Discrete monotron oscillator having one-half wavelength coaxial resonator with one-quarter wavelength gap spacing

    DOEpatents

    Carlsten, B.E.; Haynes, W.B.

    1998-02-03

    A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used. 8 figs.

  4. Discrete monotron oscillator having one-half wavelength coaxial resonator with one-quarter wavelength gap spacing

    DOEpatents

    Carlsten, Bruce E.; Haynes, William B.

    1998-01-01

    A discrete monotron oscillator for use in a high power microwave device is formed with a microwave oscillator having a half-wavelength resonant coaxial microwave cavity operating in fundamental TEM mode for microwave oscillation with an inner conductor defining a drift tube for propagating an electron beam and an outer conductor coaxial with the inner conductor. The inner conductor defines a modulating gap and an extraction gap downstream of the modulating gap. The modulating gap and the extraction gap connect the coaxial microwave cavity with the drift tube so that energy for the microwave oscillation is extracted from the electron beam at the extraction gap and modulates the electron beam at the modulating gap. For high power operation, an annular electron beam is used.

  5. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE PAGES [OSTI]

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  6. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    SciTech Connect

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

  7. CEPXS/ONELD Version 2. 0: A discrete ordinates code package for general one-dimensional coupled electron-photon transport

    SciTech Connect

    Lorence, L.J. Jr.

    1991-01-01

    CEPXS/ONELD is the only discrete ordinates code capable of modelling the fully-coupled electron-photon cascade at high energies. Quantities that are related to the particle flux such as dose and charge deposition can readily be obtained. This deterministic code is much faster than comparable Monte Carlo codes. The unique adjoint transport capability of CEPXS/ONELD also enables response functions to be readily calculated. Version 2.0 of the CEPXS/ONELD code package has been designed to allow users who are not expert in discrete ordinates methods to fully exploit the code's capabilities. 14 refs., 15 figs.

  8. P1-Substituted Symmetry-Based Human Immunodeficiency Virus Protease Inhibitors with Potent Antiviral Activity against Drug-Resistant Viruses

    SciTech Connect

    DeGoey, David A.; Grampovnik, David J.; Chen, Hui-Ju; Flosi, William J.; Klein, Larry L.; Dekhtyar, Tatyana; Stoll, Vincent; Mamo, Mulugeta; Molla, Akhteruzzaman; Kempf, Dale J.

    2013-03-07

    Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistant mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.

  9. Ligand-field symmetry effects in Fe(II) polypyridyl compounds probed by transient X-ray absorption spectroscopy

    SciTech Connect

    Cho, Hana; Strader, Matthew L.; Hong, Kiryong; Jamula, Lindsey; Kim, Tae Kyu; Groot, Frank M. F. de; McCusker, James K.; Schoenlein, Robert W.; Huse, Nils

    2012-02-28

    Ultrafast excited-state evolution in polypyridyl FeII complexes are of fundamental interest for understanding the origins of the sub-ps spin-state changes that occur upon photoexcitation of this class of compounds as well as for the potential impact such ultrafast dynamics have on incorporation of these compounds in solar energy conversion schemes or switchable optical storage technologies. We have demonstrated that ground-state and, more importantly, ultrafast time-resolved x-ray absorption methods can offer unique insights into the interplay between electronic and geometric structure that underpin the photo-induced dynamics of this class of compounds. The present contribution examines in greater detail how the symmetry of the ligand field surrounding the metal ion can be probed using these x-ray techniques. In particular, we show that steady-state K-edge spectroscopy of the nearest-neighbour nitrogen atoms reveals the characteristic chemical environment of the respective ligands and suggests an interesting target for future charge-transfer femtosecond and attosecond spectroscopy in the x-ray water window.

  10. Dynamical instability of white dwarfs and breaking of spherical symmetry under the presence of extreme magnetic fields

    SciTech Connect

    Coelho, J. G.; Cceres, D. L.; Rueda, J. A.; Ruffini, R. [Dipartimento di Fisica and ICRA, Sapienza Universit di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); Marinho, R. M.; Malheiro, M. [Departamento de Fsica, Instituto Tecnolgico de Aeronutica, ITA, So Jos dos Campos, 12228-900 SP (Brazil); Negreiros, R., E-mail: jaziel.coelho@icranet.org, E-mail: jorge.rueda@icra.it, E-mail: m.malheiro@ita.br [Instituto de Fsica, Universidade Federal Fluminense, UFF, Niteri, 24210-346 RJ (Brazil)

    2014-10-10

    Massive, highly magnetized white dwarfs with fields up to 10{sup 9} G have been observed and theoretically used for the description of a variety of astrophysical phenomena. Ultramagnetized white dwarfs with uniform interior fields up to 10{sup 18} G have been recently purported to obey a new maximum mass limit, M {sub max} ? 2.58 M {sub ?}, which largely overcomes the traditional Chandrasekhar value, M {sub Ch} ? 1.44 M {sub ?}. Such a larger limit would make these astrophysical objects viable candidates for the explanation of the superluminous population of Type Ia supernovae. We show that several macro and micro physical aspects such as gravitational, dynamical stability, breaking of spherical symmetry, general relativity, inverse ? decay, and pycnonuclear fusion reactions are of most relevance for the self-consistent description of the structure and assessment of stability of these objects. It is shown in this work that the first family of magnetized white dwarfs indeed satisfy all the criteria of stability, while the ultramagnetized white dwarfs are very unlikely to exist in nature since they violate minimal requests of stability. Therefore, the canonical Chandrasekhar mass limit of white dwarfs still has to be applied.

  11. Symmetry of piezoelectric (1–x)Pb(Mg1/3Nb2/3)O₃-xPbTiO₃ (x=0.31) single crystal at different length scales in the morphotropic phase boundary region

    DOE PAGES [OSTI]

    Kim, Kyou-Hyun; Payne, David A.; Zuo, Jian-Min

    2012-11-29

    We use probes of three different length scales to examine symmetry of (1–x)Pb(Mg1/3Nb2/3)O₃-xPbTiO₃ (PMN-xPT) single crystals in the morphotropic phase boundary (MPB) region at composition x = 0.31 (PMN-31% PT). On the macroscopic scale, x-ray diffraction (XRD) shows a mixture of strong and weak diffraction peaks of different widths. The closest match to XRD peak data is made with monoclinic Pm (MC) symmetry. On the local scale of a few nanometers, convergent beam electron diffraction (CBED) studies, with a 1.6-nm electron probe, reveal no obvious symmetry. These CBED experimental patterns can be approximately matched with simulations based on monoclinic symmetry,more » which suggests locally distorted monoclinic structure. A monoclinic Cm (MA or MB)-like symmetry could also be obtained from certain regions of the crystal by using a larger electron probe size of several tens of nanometers in diameter. Thus the monoclinic symmetry of single crystal PMN-31%PT is developed only in parts of the crystal by averaging over locally distorted structure on the scale of few tens of nanometers. The macroscopic symmetry observed by XRD is a result of averaging from the local structure in PMN-31%PT single crystal. The lack of local symmetry at a few nanometers scale suggests that the polarization switching results from a change in local displacements, which are not restricted to specific symmetry planes or directions.« less

  12. Observation of b2 symmetry vibrational levels of the SO2C 1B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants

    DOE PAGES [OSTI]

    Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; Field, Robert W.

    2016-04-14

    Here, the C 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X~ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C state below 1600 cm–1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, itmore » allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry, and to determine accurately the vibrational dependence of the rotational constants in the distorted C electronic state.« less

  13. Structure symmetry determination and magnetic evolution in Sr2Ir1–xRhxO4

    SciTech Connect

    Ye, Feng; Wang, Xiaoping; Hoffmann, Christina; Wang, Jinchen; Chi, Songxue; Matsuda, Masaaki; Chakoumakos, Bryan C.; Fernandez-Baca, Jaime A.; Cao, Gang

    2015-11-23

    We use single-crystal neutron diffraction to determine the crystal structure symmetry and to study the magnetic evolution in the rhodium doped iridates Sr2Ir1–xRhxO4 (0 ≤ x ≤ 0.16). Throughout this doping range, the crystal structure retains a tetragonal symmetry (space group I41/a) with two distinct magnetic Ir sites in the unit cell forming staggered IrO6 rotation. Upon Rh doping, the magnetic order is suppressed and the magnetic moment of Ir4+ is reduced from 0.21 μB/Ir for x = 0 to 0.18 μB/Ir for x = 0.12. As a result, the magnetic structure at x = 0.12 is different from that of the parent compound while the moments remain in the basal plane.

  14. IBA for novice experimentalists. I. Introduction to IBA: mostly symmetries. II. Tests in even-even nuclei: mostly transitional systems. III. Supersymmetries: theory and experiment

    SciTech Connect

    Cizewski, J.A.

    1982-08-01

    The report contains the notes from a series of lectures on the Interacting Boson Approximation (IBA) model. The lectures were presented at Lawrence Livermore National Laboratory on July 28, 30 and August 1, 1982 by Jolie A. Cizewski from Yale University. The IBA was developed by F. Iachello and A. Arima starting about seven years ago to understand collective quadrupole excitations in medium and heavy mass nuclei away from closed shells. Since then the formalism has been extended to odd-mass nuclei and considerable work has gone into understanding the microscopic construction of the bosons in this model. The IBA has been applied to nuclei as light as Zn and Ge and as heavy as U and Pu; to nuclei near closed shells, such as Mo and Hg; to stable nuclei and nuclei far from stability. The present lectures were designed to give the experimentalist an introduction to the IBA and to give specific examples of how it could be applied to understand the structure of heavy even and odd mass nuclei. Much of the emphasis was on the symmetries (and supersymmetries) of the model and how the use of symmetries enabled the relatively straightforward understanding of empirical systems as deviations from these symmetries. The richness of possible applications of the IBA to understanding collective phenomena in nuclei was not fully explored, but rather a few illustrative examples were selected and described in detail. The references, accumulated at the end of this report, provide a more comprehensive, although not complete, list of tests of the IBA in even mass nuclei and the new symmetries in odd mass nuclei. The references also list the main theoretical papers which provide the details of the IBA formalism.

  15. Influence of symmetry-conserving higher order interactions in the interacting boson model on the first. beta. and. gamma. band in rotational nuclei

    SciTech Connect

    Vanthournout, J. )

    1990-05-01

    Symmetry-conserving higher order interactions in the SU(3) limit of the interacting boson model remove the degeneracy in the first {beta} and {gamma} band predicted by the original interacting boson model. It is possible, also for the fourth order interactions, to predict this removal using quantities describing odd-even staggering effects. Numerical tests confirm the influence of these interactions on the first bands of SU(3) nuclei.

  16. Spontaneous soliton symmetry breaking in two-dimensional coupled Bose-Einstein condensates supported by optical lattices

    SciTech Connect

    Gubeskys, Arthur; Malomed, Boris A.

    2007-10-15

    Models of two-dimensional (2D) traps, with double-well structure in the third direction, for Bose-Einstein condensates are introduced with attractive or repulsive interactions between atoms. The models are based on systems of linearly coupled 2D Gross-Pitaevskii equations, where the coupling accounts for tunneling between the wells. Each well carries an optical lattice (OL) (stable 2D solitons cannot exist without OLs). The linear coupling splits each finite band gap in the spectrum of the single-component model into two subgaps. The main subject of the work is spontaneous symmetry breaking (SSB) in two-component 2D solitons and localized vortices (SSB was not considered before in 2D settings). Using variational approximation (VA) and numerical methods, we demonstrate that, in a system with attraction or repulsion, SSB occurs in families of symmetric or antisymmetric solitons (or vortices), respectively. The corresponding bifurcation destabilizes the original solution branch and gives rise to a stable branch of asymmetric solitons or vortices. The VA provides for an accurate description of the emerging branch of asymmetric solitons. In the model with attraction, all stable branches eventually terminate due to the onset of collapse. Stable asymmetric solitons in higher finite band gaps and vortices with a multiple topological charge are found too. The models also give rise to first examples of embedded solitons and embedded vortices (the states located inside Bloch bands) in two dimensions. In the linearly coupled system with opposite signs of the nonlinearity in the two cores, two distinct types of stable solitons and vortices are found, dominated by either the self-attractive component or the self-repulsive one. In the system with a mismatch between the two OLs, a pseudobifurcation is found: when the mismatch attains its largest value ({pi}), the bifurcation does not happen, as branches of different solutions asymptotically approach each other, but fail to merge.

  17. Electrons and Mirror Symmetry

    ScienceCinema

    Kumar, Krishna

    2016-07-12

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  18. Electrons and Mirror Symmetry

    SciTech Connect

    Kumar, Krishna

    2007-04-04

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  19. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  20. The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations

    DOE PAGES [OSTI]

    Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; El-Awady, Jaafar A.

    2015-04-13

    The mechanical response of micro-twinned polycrystalline magnesium was studied through three-dimensional discrete dislocation dynamics (DDD). A systematic interaction model between dislocations and (1012) tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model agreeing with experimental results was also introduced to mimic the GB’s barrier effect. The current simulation results show that TBs act as a strong obstacle to gliding dislocations, which contributes significantly to the hardening behavior of magnesium. On the other hand, the deformation accommodated by twinning plays a softening role. Therefore, the concave shape of the Mgmore » stress-strain curve results from the competition between dislocation-TB induced hardening and twinning deformation induced softening. At low strain levels, twinning deformation induced softening dominates and a decreasing hardening rate is observed in Stage-I. In Stage-II, both the hardening and softening effects decline, but twinning deformation induced softening declines faster, which leads to an increasing hardening rate.« less

  1. A compact, discrete CsI(Tl) scintillator/Si photodiode gamma camera for breast cancer imaging

    SciTech Connect

    Gruber, Gregory J.

    2000-12-01

    Recent clinical evaluations of scintimammography (radionuclide breast imaging) are promising and suggest that this modality may prove a valuable complement to X-ray mammography and traditional breast cancer detection and diagnosis techniques. Scintimammography, however, typically has difficulty revealing tumors that are less than 1 cm in diameter, are located in the medial part of the breast, or are located in the axillary nodes. These shortcomings may in part be due to the use of large, conventional Anger cameras not optimized for breast imaging. In this thesis I present compact single photon camera technology designed specifically for scintimammography which strives to alleviate some of these limitations by allowing better and closer access to sites of possible breast tumors. Specific applications are outlined. The design is modular, thus a camera of the desired size and geometry can be constructed from an array (or arrays) of individual modules and a parallel hole lead collimator for directional information. Each module consists of: (1) an array of 64 discrete, optically-isolated CsI(Tl) scintillator crystals 3 x 3 x 5 mm{sup 3} in size, (2) an array of 64 low-noise Si PIN photodiodes matched 1-to-1 to the scintillator crystals, (3) an application-specific integrated circuit (ASIC) that amplifies the 64 photodiode signals and selects the signal with the largest amplitude, and (4) connectors and hardware for interfacing the module with a motherboard, thereby allowing straightforward computer control of all individual modules within a camera.

  2. Solitons and vortices in two-dimensional discrete nonlinear Schrödinger systems with spatially modulated nonlinearity

    DOE PAGES [OSTI]

    Kevrekidis, P. G.; Malomed, Boris A.; Saxena, Avadh; Bishop, A. R.; Frantzeskakis, D. J.

    2015-04-07

    We consider a two-dimensional (2D) generalization of a recently proposed model [Phys. Rev. E 88, 032905 (2013)], which gives rise to bright discrete solitons supported by the defocusing nonlinearity whose local strength grows from the center to the periphery. We explore the 2D model starting from the anticontinuum (AC) limit of vanishing coupling. In this limit, we can construct a wide variety of solutions including not only single-site excitations, but also dipole and quadrupole ones. Additionally, two separate families of solutions are explored: the usual “extended” unstaggered bright solitons, in which all sites are excited in the AC limit, withmore » the same sign across the lattice (they represent the most robust states supported by the lattice, their 1D counterparts being those considered as 1D bright solitons in the above-mentioned work), and the vortex cross, which is specific to the 2D setting. For all the existing states, we explore their stability (also analytically, when possible). As a result, typical scenarios of instability development are exhibited through direct simulations.« less

  3. Free energy of RNA-counterion interactions in a tight-binding model computed by a discrete space mapping

    SciTech Connect

    Henke, Paul S.; Mak, Chi H.

    2014-08-14

    The thermodynamic stability of a folded RNA is intricately tied to the counterions and the free energy of this interaction must be accounted for in any realistic RNA simulations. Extending a tight-binding model published previously, in this paper we investigate the fundamental structure of charges arising from the interaction between small functional RNA molecules and divalent ions such as Mg{sup 2+} that are especially conducive to stabilizing folded conformations. The characteristic nature of these charges is utilized to construct a discretely connected energy landscape that is then traversed via a novel application of a deterministic graph search technique. This search method can be incorporated into larger simulations of small RNA molecules and provides a fast and accurate way to calculate the free energy arising from the interactions between an RNA and divalent counterions. The utility of this algorithm is demonstrated within a fully atomistic Monte Carlo simulation of the P4-P6 domain of the Tetrahymena group I intron, in which it is shown that the counterion-mediated free energy conclusively directs folding into a compact structure.

  4. Solitons and vortices in two-dimensional discrete nonlinear Schrödinger systems with spatially modulated nonlinearity

    SciTech Connect

    Kevrekidis, P. G.; Malomed, Boris A.; Saxena, Avadh; Bishop, A. R.; Frantzeskakis, D. J.

    2015-04-07

    We consider a two-dimensional (2D) generalization of a recently proposed model [Phys. Rev. E 88, 032905 (2013)], which gives rise to bright discrete solitons supported by the defocusing nonlinearity whose local strength grows from the center to the periphery. We explore the 2D model starting from the anticontinuum (AC) limit of vanishing coupling. In this limit, we can construct a wide variety of solutions including not only single-site excitations, but also dipole and quadrupole ones. Additionally, two separate families of solutions are explored: the usual “extended” unstaggered bright solitons, in which all sites are excited in the AC limit, with the same sign across the lattice (they represent the most robust states supported by the lattice, their 1D counterparts being those considered as 1D bright solitons in the above-mentioned work), and the vortex cross, which is specific to the 2D setting. For all the existing states, we explore their stability (also analytically, when possible). As a result, typical scenarios of instability development are exhibited through direct simulations.

  5. Coexistence of unlimited bipartite and genuine multipartite entanglement: Promiscuous quantum correlations arising from discrete to continuous-variable systems

    SciTech Connect

    Adesso, Gerardo; Ericsson, Marie; Illuminati, Fabrizio

    2007-08-15

    Quantum mechanics imposes 'monogamy' constraints on the sharing of entanglement. We show that, despite these limitations, entanglement can be fully 'promiscuous', i.e., simultaneously present in unlimited two-body and many-body forms in states living in an infinite-dimensional Hilbert space. Monogamy just bounds the divergence rate of the various entanglement contributions. This is demonstrated in simple families of N-mode (N{>=}4) Gaussian states of light fields or atomic ensembles, which therefore enable infinitely more freedom in the distribution of information, as opposed to systems of individual qubits. Such a finding is of importance for the quantification, understanding, and potential exploitation of shared quantum correlations in continuous variable systems. We discuss how promiscuity gradually arises when considering simple families of discrete variable states, with increasing Hilbert space dimension towards the continuous variable limit. Such models are somehow analogous to Gaussian states with asymptotically diverging, but finite, squeezing. In this respect, we find that non-Gaussian states (which in general are more entangled than Gaussian states) exhibit also the interesting feature that their entanglement is more shareable: in the non-Gaussian multipartite arena, unlimited promiscuity can be already achieved among three entangled parties, while this is impossible for Gaussian, even infinitely squeezed states.

  6. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks

    DOE PAGES [OSTI]

    Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.; Makedonska, N.; Karra, S.

    2015-09-12

    We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less

  7. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks

    SciTech Connect

    Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.; Makedonska, N.; Karra, S.

    2015-09-12

    We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approach to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.

  8. Reduced computational cost, totally symmetric angular quadrature sets for discrete ordinates radiation transport. Master`s thesis

    SciTech Connect

    Oder, J.M.

    1997-12-01

    Several new quadrature sets for use in the discrete ordinates method of solving the Boltzmann neutral particle transport equation are derived. These symmetric quadratures extend the traditional symmetric quadratures by allowing ordinates perpendicular to one or two of the coordinate axes. Comparable accuracy with fewer required ordinates is obtained. Quadratures up to seventh order are presented. The validity and efficiency of the quadratures is then tested and compared with the Sn level symmetric quadratures relative to a Monte Carlo benchmark solution. The criteria for comparison include current through the surface, scalar flux at the surface, volume average scalar flux, and time required for convergence. Appreciable computational cost was saved when used in an unstructured tetrahedral cell code using highly accurate characteristic methods. However, no appreciable savings in computation time was found using the new quadratures compared with traditional Sn methods on a regular Cartesian mesh using the standard diamond difference method. These quadratures are recommended for use in three-dimensional calculations on an unstructured mesh.

  9. Exponential-characteristic spatial quadrature for discrete-ordinates neutral-particle transport in slab geometry. Master's thesis

    SciTech Connect

    Sjoden, G.E.

    1992-03-01

    A new discrete ordinates spatial quadrature scheme is presented for solving neutral particle transport problems. This new scheme, called the exponential characteristic method, is developed here in slab geometry with isotropic scattering. This method uses a characteristic integration of the Boltzmann transport equation with an exponential function as the assumed from of the source distribution, continuous across each spatial cell. The exponential source function is constructed to globally conserve zeroth and first spatial source moments and is non-negative. Characteristic integration ensures non-negative fluxes and flux moments. Numerical testing indicates that convergence of the exponential characteristic scheme is fourth order in the limit of vanishingly thin cells. Highly accurate solutions to optically thick problems can result using this scheme with very coarse meshes. Comparing accuracy and computational cost with existing spatial quadrature schemes (diamond difference, linear discontinuous, linear characteristic, linear adaptive, etc.), the exponential characteristic scheme typically performed best. This scheme is expected to be expandable to two dimensions in a straight forward manner. Due to the high accuracies achievable using coarse meshes, this scheme may allow researchers to obtain solutions to transport problems once thought too large or too difficult to be adequately solved conventional computer systems.

  10. Some results of a nodal method for nonlinear space-time reactor dynamics

    SciTech Connect

    Le, T.T. ); Grossman, L.M. . Dept. of Nuclear Engineering)

    1991-01-01

    There are many reports about nodal methods for static and dynamic problems, but not many for the nonlinear feedback cases. In this paper, a class of nodal methods called mathematical nodal method'' (MNM) is studied with the temperature feedback problems. The spatially complex domain of the problem is represented as a collection of geometrically simple subdomains of the size of fuel assemblies called nodes. Over each node, the time dependent coefficients of the neutron flux, precursor concentrations, fuel and coolant temperatures are the surface and volume weighted average (moment) values of the unknown solutions; the space dependent basis functions are a combination of Legendre polynomials. If the material parameters are a linear function of fuel and coolant temperatures, the coupled equations can be put in a dimensionless form and a system of time dependent ordinary differential equations containing nonlinear feedback terms is obtained. These nonlinear feedback terms are updated at each time step during the time iteration process. Results of some benchmark problems are included in this report.

  11. Some results of a nodal method for nonlinear space-time reactor dynamics

    SciTech Connect

    Le, T.T.; Grossman, L.M.

    1991-12-31

    There are many reports about nodal methods for static and dynamic problems, but not many for the nonlinear feedback cases. In this paper, a class of nodal methods called ``mathematical nodal method`` (MNM) is studied with the temperature feedback problems. The spatially complex domain of the problem is represented as a collection of geometrically simple subdomains of the size of fuel assemblies called nodes. Over each node, the time dependent coefficients of the neutron flux, precursor concentrations, fuel and coolant temperatures are the surface and volume weighted average (moment) values of the unknown solutions; the space dependent basis functions are a combination of Legendre polynomials. If the material parameters are a linear function of fuel and coolant temperatures, the coupled equations can be put in a dimensionless form and a system of time dependent ordinary differential equations containing nonlinear feedback terms is obtained. These nonlinear feedback terms are updated at each time step during the time iteration process. Results of some benchmark problems are included in this report.

  12. The geometric β-function in curved space-time under operator regularization

    SciTech Connect

    Agarwala, Susama

    2015-06-15

    In this paper, I compare the generators of the renormalization group flow, or the geometric β-functions, for dimensional regularization and operator regularization. I then extend the analysis to show that the geometric β-function for a scalar field theory on a closed compact Riemannian manifold is defined on the entire manifold. I then extend the analysis to find the generator of the renormalization group flow to conformally coupled scalar-field theories on the same manifolds. The geometric β-function in this case is not defined.

  13. Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)

    SciTech Connect

    Lee, S. J.; George, R.; Bush, B.

    2009-04-29

    This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.

  14. Space Time Reversal Experiment by Use of Pulsed Neutron Ramsey Resonance

    SciTech Connect

    Masuda, Y.; Jeong, S. C.; Watanabe, Y. [Institute of Particle and Nuclear Studies, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Skoy, V. [Joint Institute for Nuclear Research, 14980 Dubna Moscow Region (Russian Federation); Ino, T. [Institute of Material Structure Science, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2007-06-13

    We have developed a pulsed neutron Ramsey resonance for a T-violation experiment on polarized neutron transmission through a polarized nuclear target. Two separated oscillatory fields were placed in a pulsed neutron beam line, which were synchronized with a neutron pulse for precision neutron spin manipulation. We observed neutron Larmor precession between the two oscillatory fields as a function of a neutron time of flight (TOF). We modulated the phase of the second oscillatory field with respect to the first oscillatory field. The effect of the phase modulation was found in a neutron intensity modulation as a function of the TOF. From the neutron intensity modulation, the neutron spin direction as well as the neutron velocity between the two oscillatory fields was precisely obtained.

  15. Free-Space Time-Domain Method for Measuring Thin Film Dielectric Properties

    DOEpatents

    Li, Ming; Zhang, Xi-Cheng; Cho, Gyu Cheon

    2000-05-02

    A non-contact method for determining the index of refraction or dielectric constant of a thin film on a substrate at a desired frequency in the GHz to THz range having a corresponding wavelength larger than the thickness of the thin film (which may be only a few microns). The method comprises impinging the desired-frequency beam in free space upon the thin film on the substrate and measuring the measured phase change and the measured field reflectance from the reflected beam for a plurality of incident angles over a range of angles that includes the Brewster's angle for the thin film. The index of refraction for the thin film is determined by applying Fresnel equations to iteratively calculate a calculated phase change and a calculated field reflectance at each of the plurality of incident angles, and selecting the index of refraction that provides the best mathematical curve fit with both the dataset of measured phase changes and the dataset of measured field reflectances for each incident angle. The dielectric constant for the thin film can be calculated as the index of refraction squared.

  16. High-Fidelity Space-Time Adaptive Multiphysics Simulations in Nuclear Engineering

    SciTech Connect

    Solin, Pavel; Ragusa, Jean

    2014-03-09

    We delivered a series of fundamentally new computational technologies that have the potential to significantly advance the state-of-the-art of computer simulations of transient multiphysics nuclear reactor processes. These methods were implemented in the form of a C++ library, and applied to a number of multiphysics coupled problems relevant to nuclear reactor simulations.

  17. Space-time development of electromagnetic and hadronic showers and perspectives for novel calorimetric techniques

    DOE PAGES [OSTI]

    Benaglia, Andrea; Auffray, Etiennette; Lecoq, Paul; Wenzel, Hans; Para, Adam

    2016-04-20

    The performance of hadronic calorimeters will be a key parameter at the next generation of High Energy Physics accelerators. A detector combining fine granularity with excellent timing information would prove beneficial for the reconstruction of both jets and electromagnetic particles with high energy resolution. In this work, the space and time structure of high energy showers is studied by means of a Geant4-based simulation toolkit. In particular, the relevant time scales of the different physics phenomena contributing to the energy loss are investigated. A correlation between the fluctuations of the energy deposition of high energy hadrons and the time developmentmore » of the showers is observed, which allows for an event-by-event correction to be computed to improve the energy resolution of the calorimeter. Lastly, these studies are intended to set the basic requirements for the development of a new-concept, total absorption time-imaging calorimeter, which seems now within reach thanks to major technological advancements in the production of fast scintillating materials and compact photodetectors.« less

  18. Space-time contours to treat intense field-dressed molecular states

    SciTech Connect

    Paul, Amit K.; Adhikari, Satrajit; Baer, Michael

    2010-01-21

    In this article we consider a molecular system exposed to an intense short-pulsed external field. It is a continuation of a previous publication [A. K. Paul, S. Adhikari, D. Mukhopadhyay et al., J. Phys. Chem. A 113, 7331 (2009)] in which a theory is presented that treats quantum effects due to nonclassical photon states (known also as Fock states). Since these states became recently a subject of intense experimental efforts we thought that they can be treated properly within the existing quantum formulation of dynamical processes. This was achieved by incorporating them in the Born-Oppenheimer (BO) treatment with time-dependent coefficients. The extension of the BO treatment to include the Fock states results in a formidable enhancement in numerical efforts expressed, in particular, in a significant increase in CPU time. In the present article we discuss an approach that yields an efficient and reliable approximation with only negligible losses in accuracy. The approximation is tested in detail for the dissociation process of H{sub 2}{sup +} as caused by a laser field.

  19. Higher-Order, Space-Time Adaptive Finite Volume Methods: Algorithms, Analysis and Applications

    SciTech Connect

    Minion, Michael

    2014-04-29

    The four main goals outlined in the proposal for this project were: 1. Investigate the use of higher-order (in space and time) finite-volume methods for fluid flow problems. 2. Explore the embedding of iterative temporal methods within traditional block-structured AMR algorithms. 3. Develop parallel in time methods for ODEs and PDEs. 4. Work collaboratively with the Center for Computational Sciences and Engineering (CCSE) at Lawrence Berkeley National Lab towards incorporating new algorithms within existing DOE application codes.

  20. Space-Time Development of Electromagnetic and Hadronic Showers and Perspectives for Novel Calorimetric Techniques

    SciTech Connect

    Benaglia, Andrea; Auffray, Etiennette; Lecoq, Paul; Wenzel, Hans; Para, Adam

    2016-01-01

    The performance of hadronic calorimeters will be a key parameter at the next generation of High Energy Physics accelerators. A detector combining fine granularity with excellent timing information would prove beneficial for the reconstruction of both jets and electromagnetic particles with high energy resolution. In this work, the space and time structure of high energy showers is studied by means of a Geant4-based simulation toolkit. In particular, the relevant time scales of the different physics phenomena contributing to the energy loss are investigated. A correlation between the fluctuations of the energy deposition of high energy hadrons and the time development of the showers is observed, which allows for an event-by-event correction to be computed to improve the energy resolution of the calorimeter. These studies are intended to set the basic requirements for the development of a new-concept, total absorption time-imaging calorimeter, which seems now within reach thanks to major technological advancements in the production of fast scintillating materials and compact photodetectors.

  1. Discrete Fracture Reservoir Simulation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to FRACGENNFFLOW Releases with the subject "Add to Release Distribution List". The animation on this page displays sample output values for pressure from 22 time steps. A series...

  2. Optimization of the Direct Discrete Method Using the Solution of the Adjoint Equation and its Application in the Multi-Group Neutron Diffusion Equation

    SciTech Connect

    Ayyoubzadeh, Seyed Mohsen; Vosoughi, Naser

    2011-09-14

    Obtaining the set of algebraic equations that directly correspond to a physical phenomenon has been viable in the recent direct discrete method (DDM). Although this method may find its roots in physical and geometrical considerations, there are still some degrees of freedom that one may suspect optimize-able. Here we have used the information embedded in the corresponding adjoint equation to form a local functional, which in turn by its minimization, yield suitable dual mesh positioning.

  3. Effects of symmetry on circular and linear magnetic dichroism in angle-resolved photoemission spectra of Gd/Y (0001) and Fe-Ni//Cu (001)

    SciTech Connect

    Goodman, K.W.; Tobin, J.G.; Schumann, F.O.; Willis, R.F.; Gammon, J.W.; Pappas, D.P.; Kortright, J.B.; Denlinger, J.D.; Rotenberg, E.; Warwick, A.; Smith, N.V.

    1997-03-26

    We have observed circular and linear magnetic dichroism in angle- resolved photoemission spectra of 50-monolayer Gd film grown on Y(0001) and 6-monolayer Fe-Ni alloy films grown on Cu(001). The 4f level of Gd and the Fe 3p level of the Fe-Ni alloy were measured. A different geometry was used for the magnetic circular dichroism than was used to measure the magnetic linear dichroism. The geometries were chosen so that the shape of the magnetic circular dichroism is predicted to be equal to the shape of the magnetic linear dichroism for four-fold symmetric Fe-Ni/Cu(001) but not for three-fold symmetric Gd/Y(0001). Experimental results are presented. In this paper we examine the effect of symmetry (experimental geometry and sample geometry) on magnetic linear and circular dichroism in angle- resolved photoemission. In particular we chose separate geometries for measuring magnetic circular and magnetic linear dichroism. The geometries were chosen such that samples with four-fold symmetry about the sample normal may have magnetic circular and magnetic linear dichroism of the same shape. But samples with three-fold symmetry should not exhibit circular and magnetic linear dichroism of the same shape. The samples studied are three-fold symmetric Gd films grown on Y(0001) and four-fold symmetric Fe-Ni alloy grown on Cu(001). After presenting the methods of the experiment, we briefly review parts of a model of magnetic dichroism developed by Venus and coworkers and our specialization and extension of it, particularly for FeNi/Cu(001). We then show the results of our measurements.

  4. Pseudo-merohedral Twinning and Noncrystallographic Symmetry in Orthorhombic Crystals of SIVmac239 Nef Core Domain Bound to Different-length TCR Fragments

    SciTech Connect

    Kim, W.; Sigalov, A; Stern, L

    2010-01-01

    HIV/SIV Nef mediates many cellular processes through interactions with various cytoplasmic and membrane-associated host proteins, including the signalling subunit of the T-cell receptor (TCR{zeta}). Here, the crystallization strategy, methods and refinement procedures used to solve the structures of the core domain of the SIVmac239 isolate of Nef (Nef{sub core}) in complex with two different TCR{zeta} fragments are described. The structure of SIVmac239 Nef{sub core} bound to the longer TCR{zeta} polypeptide (Leu51-Asp93) was determined to 3.7 {angstrom} resolution (R{sub work} = 28.7%) in the tetragonal space group P4{sub 3}2{sub 1}2. The structure of SIVmac239 Nef{sub core} in complex with the shorter TCR{zeta} polypeptide (Ala63-Arg80) was determined to 2.05 {angstrom} resolution (R{sub work} = 17.0%), but only after the detection of nearly perfect pseudo-merohedral crystal twinning and proper assignment of the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. The reduction in crystal space-group symmetry induced by the truncated TCR{zeta} polypeptide appears to be caused by the rearrangement of crystal-contact hydrogen-bonding networks and the substitution of crystallographic symmetry operations by similar noncrystallographic symmetry (NCS) operations. The combination of NCS rotations that were nearly parallel to the twin operation (k, h, -l) and a and b unit-cell parameters that were nearly identical predisposed the P2{sub 1}2{sub 1}2{sub 1} crystal form to pseudo-merohedral twinning.

  5. Applications of high-resolution spatial discretization scheme and Jacobian-free NewtonKrylov method in two-phase flow problems

    SciTech Connect

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2015-09-01

    The majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many nuclear thermalhydraulics applications, it is desirable to use higher-order numerical schemes to reduce numerical errors. High-resolution spatial discretization schemes provide high order spatial accuracy in smooth regions and capture sharp spatial discontinuity without nonphysical spatial oscillations. In this work, we adapted an existing high-resolution spatial discretization scheme on staggered grids in two-phase flow applications. Fully implicit time integration schemes were also implemented to reduce numerical errors from operator-splitting types of time integration schemes. The resulting nonlinear system has been successfully solved using the Jacobian-free NewtonKrylov (JFNK) method. The high-resolution spatial discretization and high-order fully implicit time integration numerical schemes were tested and numerically verified for several two-phase test problems, including a two-phase advection problem, a two-phase advection with phase appearance/disappearance problem, and the water faucet problem. Numerical results clearly demonstrated the advantages of using such high-resolution spatial and high-order temporal numerical schemes to significantly reduce numerical diffusion and therefore improve accuracy. Our study also demonstrated that the JFNK method is stable and robust in solving two-phase flow problems, even when phase appearance/disappearance exists.

  6. High Resolution Polar Kerr Effect Measurements of Sr2RuO4: Evidence for Broken Time Reversal Symmetry in the Superconducting State

    SciTech Connect

    Xia, Jing

    2010-04-05

    Polar Kerr effect in the spin-triplet superconductor Sr{sub 2}RuO{sub 4} was measured with high precision using a Sagnac interferometer with a zero-area Sagnac loop. We observed non-zero Kerr rotations as big as 65 nanorad appearing below T{sub c} in large domains. Our results imply a broken time reversal symmetry state in the superconducting state of Sr{sub 2}RuO{sub 4}, similar to {sup 3}He-A.

  7. Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy

    SciTech Connect

    Mary?ski, A.; S?k, G.; Musia?, A.; Andrzejewski, J.; Misiewicz, J.; Gilfert, C.; Reithmaier, J. P.; Capua, A.; Karni, O.; Gready, D.; Eisenstein, G.; Atiya, G.; Kaplan, W. D.; Klling, S.

    2013-09-07

    The optical and structural properties of a new kind of InAs/InGaAlAs/InP quantum dot (QD)-like objects grown by molecular beam epitaxy have been investigated. These nanostructures were found to have significantly more symmetrical shapes compared to the commonly obtained dash-like geometries typical of this material system. The enhanced symmetry has been achieved due to the use of an As{sub 2} source and the consequent shorter migration length of the indium atoms. Structural studies based on a combination of scanning transmission electron microscopy (STEM) and atom probe tomography (APT) provided detailed information on both the structure and composition distribution within an individual nanostructure. However, it was not possible to determine the lateral aspect ratio from STEM or APT. To verify the in-plane geometry, electronic structure calculations, including the energy levels and transition oscillator strength for the QDs have been performed using an eight-band kp model and realistic system parameters. The results of calculations were compared to measured polarization-resolved photoluminescence data. On the basis of measured degree of linear polarization of the surface emission, the in-plane shape of the QDs has been assessed proving a substantial increase in lateral symmetry. This results in quantum-dot rather than quantum-dash like properties, consistent with expectations based on the growth conditions and the structural data.

  8. Light hadron spectra in the constituent quark model with the Kobayashi-Kondo-Maskawa-'t Hooft effective U {sub A} (1) symmetry breaking interaction

    SciTech Connect

    Dmitrasinovic, V. . E-mail: dmitrasin@yahoo.com; Toki, H.

    2006-02-15

    We make a critical comparison of several versions of instanton-induced interactions present in the literature, all based on ITEP group's extension to three colours and flavours of 't Hooft's effective lagrangian, with the predictions of the phenomenological Kobayashi-Kondo-Maskawa (KKM) chiral quark lagrangian. We analyze the effects of all versions of the effective U {sub A} (1) symmetry breaking interactions on light hadron spectra in the non-relativistic constituent quark model. We show that the KKMT force, when used as a residual hyperfine interaction reproduces the correct ordering of pseudoscalar and vector mesons even without explicitly taking chiral symmetry into account. Moreover, the nucleon spectra are also correctly reproduced, only the Roper resonance remains too high, albeit lower than usual, at 1660 MeV. The latter's lower than expected mass is not due to a small excitation energy, as in the Glozman-Riska (GR) model, but to a combination of colour, flavour, and spatial wave function properties that enhance the relevant matrix elements. The KKMT interaction explicitly depends on flavour and spin of the quarks, but unlike the GR flavour-spin one it has a firm footing in QCD. In the process we provide several technical advances, in particular we show the first explicit derivation of the three-body Fierz transformation and apply it to the KKM interaction. We also discuss the ambiguities associated with the colour degree of freedom.

  9. Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry

    SciTech Connect

    Feng, Yanqing; Zhou, Wei; Wang, Yaojia; Zhou, Jian; Liu, Erfu; Fu, Yajun; Ni, Zhenhua; Wu, Xinglong; Yuan, Hongtao; Miao, Feng; Wang, Baigeng; Wan, Xiangang; Xing, Dingyu

    2015-08-26

    Lattice structure and symmetry of two-dimensional (2D) layered materials are of key importance to their fundamental mechanical, thermal, electronic and optical properties. Raman spectroscopy, as a convenient and nondestructive tool, however has its limitations on identifying all symmetry allowing Raman modes and determining the corresponding crystal structure of 2D layered materials with high symmetry like graphene and MoS2. Due to lower structural symmetry and extraordinary weak interlayer coupling of ReS2, we successfully identified all 18 first-order Raman active modes for bulk and monolayer ReS2. Without van der Waals (vdW) correction, our local density approximation (LDA) calculations successfully reproduce all the Raman modes. Our calculations also suggest no surface reconstruction effect and the absence of low frequency rigid-layer Raman modes below 100 cm-1. As a result, combining with Raman and LDA thus provides a general approach for studying the vibrational and structural properties of 2D layered materials with lower symmetry.

  10. Symmetry breaking and electrical frustration during tip-induced polarization switching in the non-polar cut of lithium niobate single crystals

    SciTech Connect

    Ievlev, Anton; Alikin, Denis O.; Morozovska, A. N.; Varenyk, O. V.; Eliseev, E. A.; Kholkin, Andrei; Shur, Vladimir Ya.; Kalinin, Sergei V.

    2014-12-15

    Polarization switching in ferroelectric materials is governed by a delicate interplay between bulk polarization dynamics and screening processes at surfaces and domain walls. Here we explore the mechanism of tip-induced polarization switching in the non-polar cuts of uniaxial ferroelectrics. In this case, in-plane component of polarization vector switches, allowing for detailed observations of resultant domain morphologies. We observe surprising variability of resultant domain morphologies stemming from fundamental instability of formed charged domain wall and associated electric frustration. In particular, we demonstrate that controlling vertical tip position allows the polarity of the switching to be controlled. This represents very unusual form of symmetry breaking where mechanical motion in vertical direction controls the lateral domain growth. The implication of these studies for ferroelectric devices and domain wall electronics are discussed.

  11. Symmetry breaking and electrical frustration during tip-induced polarization switching in the non-polar cut of lithium niobate single crystals

    DOE PAGES [OSTI]

    Ievlev, Anton; Alikin, Denis O.; Morozovska, A. N.; Varenyk, O. V.; Eliseev, E. A.; Kholkin, Andrei; Shur, Vladimir Ya.; Kalinin, Sergei V.

    2014-12-15

    Polarization switching in ferroelectric materials is governed by a delicate interplay between bulk polarization dynamics and screening processes at surfaces and domain walls. Here we explore the mechanism of tip-induced polarization switching in the non-polar cuts of uniaxial ferroelectrics. In this case, in-plane component of polarization vector switches, allowing for detailed observations of resultant domain morphologies. We observe surprising variability of resultant domain morphologies stemming from fundamental instability of formed charged domain wall and associated electric frustration. In particular, we demonstrate that controlling vertical tip position allows the polarity of the switching to be controlled. This represents very unusual formmore » of symmetry breaking where mechanical motion in vertical direction controls the lateral domain growth. The implication of these studies for ferroelectric devices and domain wall electronics are discussed.« less

  12. Chiral symmetry and π-π scattering in the Covariant Spectator Theory

    SciTech Connect

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz

    2014-11-14

    The π-π scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similarly to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward Takahashi identity to the CST π-π scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. Thus, the Adler self-consistency zero for π-π scattering in the chiral limit emerges as the result for this sum.

  13. Symmetry breaking and electrical frustration during tip-induced polarization switching in the non-polar cut of lithium niobate single crystals

    SciTech Connect

    Ievlev, Anton; Alikin, Denis O; Morozovska, A. N.; Varenyk, O. V.; Eliseev, E. A.; Kholkin, Andrei; Shur, Vladimir Ya.; Kalinin, Sergei V

    2015-01-01

    Polarization switching in ferroelectric materials is governed by a delicate interplay between bulk polarization dynamics and screening processes at surfaces and domain walls. Here we explore the mechanism of tip-induced polarization switching in the non-polar cuts of uniaxial ferroelectrics. In this case, in-plane component of polarization vector switches, allowing for detailed observations of resultant domain morphologies. We observe surprising variability of resultant domain morphologies stemming from fundamental instability of formed charged domain wall and associated electric frustration. In particular, we demonstrate that controlling vertical tip position allows the polarity of the switching to be controlled. This represents very unusual form of symmetry breaking where mechanical motion in vertical direction controls the lateral domain growth. The implication of these studies for ferroelectric devices and domain wall electronics are discussed.

  14. Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe₂(MoO₄)₃

    SciTech Connect

    Yue, Ji-Li; Zhou, Yong-Ning; Shi, Si-Qi; Shadike, Zulipiya; Huang, Xuan-Qi; Luo, Jun; Yang, Zhen-Zhong; Li, Hong; Gu, Lin; Yang, Xiao-Qing; Fu, Zheng-Wen

    2015-03-06

    The key factors governing the single-phase or multi-phase structural change behaviors during the intercalation/deintercalation of guest ions have not been well studied and understood yet. Through systematic studies of orthorhombic Fe₂(MoO₄)₃ electrode, two distinct guest ion occupation paths, namely discrete one for Li and pseudo-continuous one for Na, as well as their relationship with single-phase and two-phase modes for Na⁺ and Li⁺, respectively during the intercalation/deintercalation process have been demonstrated. For the first time, the direct atomic-scale observation of biphasic domains (discrete occupation) in partially lithiated Fe₂(MoO₄)₃ and the one by one Na occupation (pseudo-continuous occupation) at 8d sites in partially sodiated Fe₂(MoO₄)₃ are obtained during the discharge processes of Li/Fe₂(MoO₄)₃ and Na/Fe₂(MoO₄)₃ cells respectively. Our combined experimental and theoretical studies bring the new insights for the research and development of intercalation compounds as electrode materials for secondary batteries.

  15. Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe?(MoO?)?

    DOE PAGES [OSTI]

    Yue, Ji -Li; Zhou, Yong -Ning; Shi, Si -Qi; Shadike, Zulipiya; Huang, Xuan -Qi; Luo, Jun; Yang, Zhen -Zhong; Li, Hong; Gu, Lin; Yang, Xiao -Qing; et al

    2015-03-06

    The key factors governing the single-phase or multi-phase structural change behaviors during the intercalation/deintercalation of guest ions have not been well studied and understood yet. Through systematic studies of orthorhombic Fe?(MoO?)? electrode, two distinct guest ion occupation paths, namely discrete one for Li and pseudo-continuous one for Na, as well as their relationship with single-phase and two-phase modes for Na? and Li?, respectively during the intercalation/deintercalation process have been demonstrated. For the first time, the direct atomic-scale observation of biphasic domains (discrete occupation) in partially lithiated Fe?(MoO?)? and the one by one Na occupation (pseudo-continuous occupation) at 8d sites inmorepartially sodiated Fe?(MoO?)? are obtained during the discharge processes of Li/Fe?(MoO?)? and Na/Fe?(MoO?)? cells respectively. Our combined experimental and theoretical studies bring the new insights for the research and development of intercalation compounds as electrode materials for secondary batteries.less

  16. Discrete Li-occupation versus pseudo-continuous Na-occupation and their relationship with structural change behaviors in Fe₂(MoO₄)₃

    DOE PAGES [OSTI]

    Yue, Ji-Li; Zhou, Yong-Ning; Shi, Si-Qi; Shadike, Zulipiya; Huang, Xuan-Qi; Luo, Jun; Yang, Zhen-Zhong; Li, Hong; Gu, Lin; Yang, Xiao-Qing; et al

    2015-03-06

    The key factors governing the single-phase or multi-phase structural change behaviors during the intercalation/deintercalation of guest ions have not been well studied and understood yet. Through systematic studies of orthorhombic Fe₂(MoO₄)₃ electrode, two distinct guest ion occupation paths, namely discrete one for Li and pseudo-continuous one for Na, as well as their relationship with single-phase and two-phase modes for Na⁺ and Li⁺, respectively during the intercalation/deintercalation process have been demonstrated. For the first time, the direct atomic-scale observation of biphasic domains (discrete occupation) in partially lithiated Fe₂(MoO₄)₃ and the one by one Na occupation (pseudo-continuous occupation) at 8d sites inmore » partially sodiated Fe₂(MoO₄)₃ are obtained during the discharge processes of Li/Fe₂(MoO₄)₃ and Na/Fe₂(MoO₄)₃ cells respectively. Our combined experimental and theoretical studies bring the new insights for the research and development of intercalation compounds as electrode materials for secondary batteries.« less

  17. Reactivity Effects of Streaming Between Discrete Boron Carbide Particles in Neutron Absorber Panels for Storage or Transport of Spent Nuclear Fuel

    SciTech Connect

    Turner, Stanley E

    2005-11-15

    In recent years, neutron attenuation measurements have demonstrated that neutron absorber panels with discrete boron carbide particles are less effective in neutron absorption than equivalent homogenous absorber panels. The penalty observed in these attenuation measurements with thermal neutrons has been assumed to apply to the criticality analysis of fuel storage cells, without regard to the very significant difference in the neutron spectrum involved. Furthermore, the attenuation measurements are made with a collimated beam of thermalized neutrons impinging perpendicularly on the absorber panel, whereas in fuel storage cells, the neutrons are nearly isotropic and impinge on the panel at all angles. In an effort to understand the phenomena involved and to more accurately determine the effect on criticality safety analyses, calculations were made with the MCNP code, which is capable of explicitly describing discrete B{sub 4}C particles of various mean size. Results of these calculations, described herein, show that neutron attenuation measurements are only weakly related to criticality analysis and that the penalty seen in attenuation measurements does not apply and should not be directly applied in criticality analyses.

  18. Exploration of multi-fold symmetry element-loaded superconducting radio frequency structure for reliable acceleration of low- & medium-beta ion species

    SciTech Connect

    Huang, Shichun; Geng, Rongli

    2015-09-01

    Reliable acceleration of low- to medium-beta proton or heavy ion species is needed for future high-current superconducting radio frequency (SRF) accelerators. Due to the high-Q nature of an SRF resonator, it is sensitive to many factors such as electron loading (from either the accelerated beam or from parasitic field emitted electrons), mechanical vibration, and liquid helium bath pressure fluctuation etc. To increase the stability against those factors, a mechanically strong and stable RF structure is desirable. Guided by this consideration, multi-fold symmetry element-loaded SRF structures (MFSEL), cylindrical tanks with multiple (n>=3) rod-shaped radial elements, are being explored. The top goal of its optimization is to improve mechanical stability. A natural consequence of this structure is a lowered ratio of the peak surface electromagnetic field to the acceleration gradient as compared to the traditional spoke cavity. A disadvantage of this new structure is an increased size for a fixed resonant frequency and optimal beta. This paper describes the optimization of the electro-magnetic (EM) design and preliminary mechanical analysis for such structures.

  19. Symmetry-adapted perturbation theory with Kohn-Sham orbitals using non-empirically tuned, long-range-corrected density functionals

    SciTech Connect

    Lao, Ka Un; Herbert, John M.

    2014-01-28

    The performance of second-order symmetry-adapted perturbation theory (SAPT) calculations using Kohn-Sham (KS) orbitals is evaluated against benchmark results for intermolecular interactions. Unlike previous studies of this SAPT(KS) methodology, the present study uses non-empirically tuned long-range corrected (LRC) functionals for the monomers. The proper v{sub xc} (r)?0 asymptotic limit is achieved by tuning the range separation parameter in order to satisfy the condition that the highest occupied KS energy level equals minus the molecule's ionization energy, for each monomer unit. Tests for He{sub 2}, Ne{sub 2}, and the S22 and S66 data sets reveal that this condition is important for accurate prediction of the non-dispersion components of the energy, although errors in SAPT(KS) dispersion energies remain unacceptably large. In conjunction with an empirical dispersion potential, however, the SAPT(KS) method affords good results for S22 and S66, and also accurately predicts the whole potential energy curve for the sandwich isomer of the benzene dimer. Tuned LRC functionals represent an attractive alternative to other asymptotic corrections that have been employed in density-functional-based SAPT calculations, and we recommend the use of tuned LRC functionals in both coupled-perturbed SAPT(DFT) calculations and dispersion-corrected SAPT(KS) calculations.

  20. First results from 2+1-Flavor Domain Wall QCD: Mass Spectrum, Topology Change and Chiral Symmetry with $L_s=8$

    SciTech Connect

    D. J. Antonio; T. Blum; K. C. Bowler; P. A. Boyle; N. H. Christ; S. D. Cohen; M. A. Clark; C. Dawson; A. Hart; K. Hashimoto; T. Izubuchi; B. Joó; C. Jung; A. D. Kennedy; R. D. Kenway; S. Li; H. W. Lin; M.F. Lin; R. D. Mawhinney; C.M. Maynard; J. Noaki; S. Ohta; S. Sasaki; A. Soni; R. J. Tweedie; A. Yamaguchi

    2007-06-01

    We present results for the static interquark potential, light meson and baryon masses, and light pseudoscalar meson decay constants obtained from simulations of domain wall QCD with one dynamical flavour approximating the $s$ quark, and two degenerate dynamical flavours with input bare masses ranging from $m_s$ to $m_s/4$ approximating the $u$ and $d$ quarks. We compare these quantities obtained using the Iwasaki and DBW2 improved gauge actions, and actions with larger rectangle coefficients, on $16^3\\times32$ lattices. We seek parameter values at which both the chiral symmetry breaking residual mass due to the finite lattice extent in the fifth dimension and the Monte Carlo time history for topological charge are acceptable for this set of quark masses at lattice spacings above 0.1 fm. We find that the Iwasaki gauge action is best, demonstrating the feasibility of using QCDOC to generate ensembles which are good representations of the QCD path integral on lattices of up to 3 fm in spatial extent with lattice spacings in the range 0.09-0.13 fm. Despite large residual masses and a limited number of sea quark mass values with which to perform chiral extrapolations, our results for light hadronic physics scale and agree with experimental measurements within our statistical uncertainties.