National Library of Energy BETA

Sample records for determination recovery act-fault

  1. CX-003029: Categorical Exclusion Determination

    Energy.gov [DOE]

    Recovery Act - Fault Current Limiting Superconducting TransformerCX(s) Applied: A11, B3.6Date: 07/13/2010Location(s): Houston, TexasOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  2. CX-003061: Categorical Exclusion Determination

    Energy.gov [DOE]

    Recovery Act-Fault Current Limiting (FCL) Superconducting TransformerCX(s) Applied: A9, B3.6, B4.11Date: 07/16/2010Location(s): Irvine, CaliforniaOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  3. Determinants of sustainability in solid waste management - The Gianyar Waste Recovery Project in Indonesia

    SciTech Connect

    Zurbruegg, Christian; Gfrerer, Margareth; Ashadi, Henki; Brenner, Werner; Kueper, David

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.

  4. Experimental determination of the residual stresses in a Kraft recovery boiler tube

    SciTech Connect

    Wang, Xun-Li; Payzant, E.A.; Taljat, B.

    1997-07-01

    Neutron diffraction was used to determine the residual stresses in a spiral weld overlay tube used in Kraft recovery boilers by the pulp and paper industry. The specimen was a 2.5 inches OD carbon steel tube covered with a layer of Inconel 625 weld overlay. Residual strains in the carbon steel and weld overlay layers were determined using the ferritic (211) and austenitic (311) reflections, respectively. Residual stresses in each material were derived from the measured strains using Hooke`s law and appropriate elastic constants. Tensile stress regions were found not only in the weld metal but also in the heat affected zone in the carbon steel. The maximum tensile stress was located in the weld overlay layer and was found to be 360 MPa, or about 75% of the yield strength of the weld metal. The experimental data were compared with a finite element analysis based on an uncoupled thermal-mechanical formulation. Overall, the modeling results were in satisfactory agreement with the experimental data, although the hoop strain (stress) appears to have been overestimated by the finite element model. Additional neutron diffraction measurements on an annealed tube confirmed that these welding residual stresses were eliminated after annealing at 900{degrees}C for 20 minutes. 18 refs., 7 figs.

  5. Determination of technology transfer requirements for enhanced oil recovery. Final report

    SciTech Connect

    Wilson, T.D.; Scott, J.P.

    1980-09-01

    A detailed field study was conducted to determine the technical information needs of current and potential users of enhanced oil recovery data. Under the direction of the Bartlesville Energy Technology Center (BETC), the study (1) identifies groups which have a need for EOR-related information, (2) delineate the specific information needs of each user-group, and (3) outlines methods for improved transfer of appropriate information to the end users. This study also assesses attitudes toward the EOR-related efforts of the US Department of Energy (DOE) and the BETC, and the role each should play in facilitating the commercialization of EOR processes. More than 300 users and potential users of EOR information were surveyed. Included in the survey sample were representatives of major oil companies, independent oil companies, engineering consulting firms, university and private research organizations, financial institutions and federal, state, and local policy-making bodies. In-depth questionnaires were specifically designed for each group. This study analyzes each group's position pertaining to (1) current level of EOR activity or interest, (2) current and projected EOR information needs, (3) assessments of the BETC's current information services and suggestions for improvement, (4) delineation of technical and economic constraints to increased EOR activity, and (5) steps the DOE might take to enhance the attractiveness of commercial EOR operations.

  6. RECOVERY OF A TRITIATED LANA SAMPLE FOR DOSE CONVERSION FACTOR DETERMINATION

    SciTech Connect

    Staack, G.

    2010-11-12

    The purpose of this work is to develop a technical basis for both estimating the dose of a worker exposed to respirable tritiated LaNi{sub 4.25}Al{sub 0.75} (LANA) and implementing hazard appropriate controls. Savannah River National Laboratory (SRNL) has agreed to provide Lovelace Respiratory Research Institute (LRRI) with a tritiated LANA sample. LRRI will determine the particle size distribution (PSD) as well as perform dissolution rate studies on the sample in serum ultrafiltrate (SUF), a simulated lung fluid. The rate of tritium release from the sample will be measured over a three month period. Tritium release rate information will be used to calculate a DCF for respirable tritiated LANA.

  7. Recovery Act Recipient Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment ...

  8. emergency recovery

    National Nuclear Security Administration (NNSA)

    basis.

    Recovery includes the evaluation of the incident to identify lessons learned and development of initiatives to mitigate the effects of future...

  9. Caustic Recovery Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Caustic Recovery Technology Caustic Recovery Technology Full Document and Summary Versions are available for download Caustic Recovery Technology (416.33 KB) Summary - Caustic Recovery Technology (53.85 KB) More Documents & Publications System Planning for Low-Activity Waste at Hanford CX-003496: Categorical Exclusion Determination 2013 Peer Review Presentations-Heat-Power and Biodeisel

  10. Recovery Act

    Energy.gov [DOE]

    Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  11. Sorption testing and generalized composite surface complexation models for determining uranium sorption parameters at a proposed in-situ recovery site

    DOE PAGES [OSTI]

    Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.; Stone, James J.

    2016-02-03

    Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other

  12. ARM - Recovery Act Instruments

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ActRecovery Act Instruments Recovery Act Logo Subscribe FAQs Recovery Act Instruments Recovery Act Fact Sheet March 2010 Poster (PDF, 10MB) External Resources Recovery Act - Federal Recovery Act - DOE Recovery Act - ANL Recovery Act - BNL Recovery Act - LANL Recovery Act - PNNL Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Recovery Act Instruments These pages provide a breakdown of the new instruments planned for installation among the

  13. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Recovery Act More Documents & Publications Overview of Recovery Act FAR Clauses Map Data: Recovery Act Funding DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage

  14. Waste Heat Recovery

    Office of Environmental Management (EM)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  15. CX-005728: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    28: Categorical Exclusion Determination CX-005728: Categorical Exclusion Determination Recovery Act: Rural Electric Cooperative Geothermal Development Electric and Agriculture ...

  16. Recovery Act Milestones

    ScienceCinema

    Rogers, Matt

    2016-07-12

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  17. WIPP Recovery Information

    Energy.gov [DOE]

    At the March 26, 2014 Board meeting J. R. Stroble CBFO, Provided Information on Locations to Access WIPP Recovery Information.

  18. Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3. Public

  19. Battleground Energy Recovery Project

    SciTech Connect

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  20. Enhanced oil recovery

    SciTech Connect

    Fisher, W.G.

    1982-01-01

    The principal enhanced recovery technique is waterflooding, because water generally is inexpensive to obtain and inject into the reservoir and it works. With the shortage of conventional oil in Canada there is greater emphasis being placed on other recovery schemes in addition to or in place of waterflooding. Tertiary recovery is applicable to many of the existing projects and engineers must recognize those fields that are candidates for tertiary recovery applications. The application of tertiary recovery techniques to a specific reservoir requires consideration of all methods developed to select the one most suitable. A thorough understanding of waterflooding and the factors that affect recovery is necessary before a tertiary process is considered. Factors that affect oil recovery under waterflooding are areal and vertical sweep efficiency, contact factor and displacement efficiency.

  1. Anelastic Strain Recovery Analysis Code

    Energy Science and Technology Software Center

    1995-04-05

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  2. WIPP Recovery Progress

    Energy.gov [DOE]

    At the March 25, 2015 Board meeting J. R. Stroble CBFO, Provided Information on the Status of the Recovery Effort at the WIPP Site.

  3. EM Recovery Act Performance

    Energy.gov [DOE]

    The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40...

  4. Recovery Act Open House

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    light snacks for those attending. DOE ID Manager Rick Provencher discusses the non-cleanup work that was accomplished with Recovery Act funding. Editorial Date November 15, 2010...

  5. Recovery Act funding accelerates cleanup of Idaho Site, Creates jobs in

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. recoveryactfunding.xls (947 KB) More Documents & Publications Recovery Act Awardees June 25, 2010 Reovery Act Awardees July 22, 2011 Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment Grant Program (EISA 1306)

  6. Oil recovery by nitrogen flooding. Final report

    SciTech Connect

    Ronde, H.; Hagoort, J.

    1992-03-01

    The general objective of the project is the Establishment of technical and economic design criteria and evaluation tools for oil and condensate recovery by Nitrogen Injection. The main objective has been divided into the following specific objectives: Determination of the effect of oil composition on the oil recovery; Investigation of the pros and cons of slim-tube experiments as a tool for the design and evaluation of nitrogen flooding; Measurement and calculation of the minimum miscibility pressures (MMP) for nitrogen flooding.

  7. Resource Recovery Opportunities at America's Water Resource Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities | Department of Energy Resource Recovery Opportunities at America's Water Resource Recovery Facilities Resource Recovery Opportunities at America's Water Resource Recovery Facilities Breakout Session 3A-Conversion Technologies III: Energy from Our Waste (Will we Be Rich in Fuel or Knee Deep in Trash by 2025?) Resource Recovery Opportunities at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL

  8. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  9. American Recovery and Reinvestment Act

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a 212 million award from the American...

  10. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    With the passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), the Department of Energy (Department) will have new responsibilities and receive ...

  11. Exhaust Energy Recovery

    Energy.gov [DOE]

    Exhaust energy recovery proposed to achieve 10% fuel efficiency improvement and reduce or eliminate the need for increased heat rejectioncapacity for future heavy duty engines in Class 8 Tractors

  12. Recovery Act Milestones

    Energy.gov [DOE]

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to...

  13. Enhanced Oil Recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, ...

  14. Award Fee Determination Summary

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 CH2M Hill Plateau Remediation Company Contract Number: DE-AC06-08RL14788 Final Fee Determination for Base funded and American Recovery and Reinvestment Act (Recovery) funded Performance Measures Basis of Evaluation: Completion of Performance Measures contained in Section J, AttachmentJ.4, Performance Evaluation and Measurement Plan, according to the identified completion criteria. Evaluation Results: Fiscal Year 2011 (Oct 1, 2010 - Sept 30, 2011) Base Funded Fee Recovery Funded Fee Available

  15. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Recovery Act Center Map PERFORMANCE The Department estimates the $6 billion Recovery Act investment will allow us to complete work now that would cost approximately $13 billion in future years, saving $7 billion. As Recovery Act work is completed through the cleanup of contaminated sites, facilities, and material disposition, these areas will becoming available for potential reuse by other entities. Recovery Act funding is helping the Department reach our cleanup goals faster.

  16. Solvent recovery targeting

    SciTech Connect

    Ahmad, B.S.; Barton, P.I.

    1999-02-01

    One of the environmental challenges faced by the pharmaceutical and specialty chemical industries is the widespread use of organic solvents. With a solvent-based chemistry, the solvent necessarily has to be separated from the product. Chemical species in waste-solvent streams typically form multicomponent azeotropic mixtures, and this often complicates separation and, hence, recovery of solvents. A design approach is presented whereby process modifications proposed by the engineer to reduce the formation of waste-solvent streams can be evaluated systematically. This approach, called solvent recovery targeting, exploits a recently developed algorithm for elucidating the separation alternatives achievable when applying batch distillation to homogeneous multicomponent mixtures. The approach places the composition of the waste-solvent mixture correctly in the relevant residue curve map and computes the maximum amount of pure material that can be recovered via batch distillation. Solvent recovery targeting is applied to two case studies derived from real industrial processes.

  17. Recovery Act State Summaries | Department of Energy

    Energy.gov [DOE] (indexed site)

    Montana Recovery Act State Memo Nebraska Recovery Act State Memo Nevada Recovery Act State Memo New Hampshire Recovery Act State Memo New Jersey Recovery Act State Memo New Mexico ...

  18. Metallic Recovery and Ferrous Melting Processes

    SciTech Connect

    Luis Trueba

    2004-05-30

    The effects of melting atmosphere and charge material type on the metallic and alloy recovery of ferrous charge materials were investigated in two sets of experiments (Tasks 1 and 2). In addition, thermodynamic studies were performed (Task 3) to determine the suitability of ladle treatment for the production of ductile iron using scrap charge materials high in manganese and sulfur. Task 1--In the first set of experiments, the charge materials investigated were thin steel scrap, thick steel scrap, cast iron scrap, and pig iron in the rusty and clean states. Melting atmospheres in this set of experiments were varied by melting with and without a furnace cover. In this study, it was found that neither covered melting nor melting clean (non-rusty) ferrous charge materials improved the metallic recovery over the recovery experienced with uncovered melting or rusty charge materials. However, the silicon and manganese recoveries were greater with covered melting and clean materials. Silicon and manganese in the molten iron react with oxygen dissolved in the iron from uncovered melting and oxidized iron (surface rust). Silica and manganese silicates are formed which float to the slag decreasing recoveries of silicon and manganese. Cast iron and pig iron had higher metallic recoveries than steel scrap. Carbon recovery was affected by the carbon content of the charge materials, and not by the melting conditions. Irons with higher silicon contents had higher silicon recovery than irons with lower silicon contents. Task 2--In the second set of experiments, briquetted turnings and borings were used to evaluate the effects of briquette cleanliness, carbon additions, and melting atmosphere on metallic and alloy recovery. The melting atmosphere in this set of experiments was varied by melting in air and with an argon atmosphere using the SPAL process. In this set of experiments, carbon additions to the briquettes were found to have the greatest effect on metallic and alloy

  19. CX-001198: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    98: Categorical Exclusion Determination CX-001198: Categorical Exclusion Determination Recovery Act: 1010 Avenue of the Arts - New School and Performing Arts Theater CX(s) Applied: ...

  20. Recovery of EUVL substrates

    SciTech Connect

    Vernon, S.P.; Baker, S.L.

    1995-01-19

    Mo/Si multilayers, were removed from superpolished zerodur and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  1. Recovery Act: State Assistance for Recovery Act Related Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Policies | Department of Energy State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity Policies $44 Million for State Public Utility Commissions State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to ensure they have the capacity to quickly and

  2. New York Recovery Act Snapshot

    Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a...

  3. American Recovery and Reinvestment Act

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act LANL was able to accelerate demolition and cleanup thanks to a $212 million award from the American Recovery and Reinvestment Act. August 1, 2013 Excavation trench and enclosure at TA-21. To protect air quality, MDA B is excavated under a dome. By September 2011, all projects were complete. In 2010 and 2011, LANL received $212 million in funding from the American Recovery and Reinvestment Act to complete three

  4. Recovery Act State Memos Alabama

    Energy.gov [DOE] (indexed site)

    Updated July 2010 | Department of Energy A chart indicating the name of awardee,Recovery Act funding awarded, total project value including: cost share, headquarters location for lead applicant,brief project description,map of coverage area for those involved in the Recovery Act selections for Smart Grid Investment grant awards. There is a November 2011 Update to the "Recovery Act Selections for Smart Grid Investment Grant Awards - By Category" file. Recovery Act Selections for

  5. [Waste water heat recovery system

    SciTech Connect

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  6. Recovery Act State Memos Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act State Memos Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. URANIUM RECOVERY PROCESS

    DOEpatents

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  8. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  9. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  10. Process for LPG recovery

    SciTech Connect

    Khan, Sh. A.; Haliburton, J.

    1985-03-26

    An improved process is described for the separation and recovery of substantially all the propane and heavier hydrocarbon components in a hydrocarbon gaseous feedstream. In this process, the vapor stream from a deethanizer is cooled to liquefaction and contacted with a vapor phase from the hydrocarbon gaseous feedstream. The contact takes place within a direct heat exchanger, and the resulting vapor fraction, which is essentially ethane and methane, is the gaseous product of the process.

  11. The American Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    American Recovery and Reinvestment Act Smart Grid Highlights Jumpstarting a Modern Grid October 2014 2 The Office of Electricity Delivery and Energy Reliability (OE) provides national leadership to ensure that the nation's energy delivery system is secure, resilient, and reliable. OE works to develop new technologies to improve the infrastructure that brings electricity into our homes, offices, and factories in partnership with industry, other federal agencies, and state and local governments.

  12. DOE Recovery Act Field Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Field Projects DOE Recovery Act Field Projects DOE Recovery Act Field Projects

  13. Huntington Resource Recovery Facility Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  14. LANL exceeds Early Recovery Act recycling goals

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have...

  15. Metal recovery from porous materials (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Metal recovery from porous materials Title: Metal recovery from porous materials The present invention relates to recovery of metals. More specifically, the present invention ...

  16. Recovery of organic acids

    DOEpatents

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  17. Pyrolysis with staged recovery

    DOEpatents

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.

    1979-03-20

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.

  18. URANIUM RECOVERY PROCESS

    DOEpatents

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  19. Heat recovery casebook

    SciTech Connect

    Lawn, J.

    1980-10-01

    Plants and factories could apply a great variety of sources and uses for valuable waste heat. Applications may be evaluated on the basis of real use for a specific waste heat, high-enough temperature and quality of work, and feasibility of mechanical heat transfer method. Classification may be by temperature, application, heat-transfer equipment, etc. Many buildings and industrial processes lend themselves well to heat-recovery strategies. Five case histories describe successful systems used by the Continental Corporation Data Center; Nabisco, Inc.; Kasper Foundry Company; Seven Up Bottling Company of Indiana; and Lehr Precision Tool company. (DCK)

  20. Recovery of organic acids

    DOEpatents

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  1. Funding Opportunity Announcement: Recovery Act ? Energy Efficiency...

    Office of Environmental Management (EM)

    Funding Opportunity Announcement: Recovery Act Energy Efficiency and Conversation Block Grants Formula Grants Funding Opportunity Announcement: Recovery Act Energy...

  2. Incorporating Energy Efficiency into Disaster Recovery Efforts...

    Energy Saver

    Disaster Recovery Efforts Incorporating Energy Efficiency into Disaster Recovery Efforts Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: ...

  3. Sulfur recovery process

    SciTech Connect

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  4. Record of Categorical Exclusion (CS) Determination, Office of Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment Grant Program (EISA 1306) | Department of Energy CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment Grant Program (EISA 1306) Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and

  5. Resource Recovery Opportunities at America's Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL williamsbiomass2014.pdf (1.26 MB) More ...

  6. Recovery Act State Memos Alaska

    Energy.gov [DOE] (indexed site)

    Alaska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Arizona

    Energy.gov [DOE] (indexed site)

    Arizona For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos Arkansas

    Energy.gov [DOE] (indexed site)

    Arkansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos California

    Energy.gov [DOE] (indexed site)

    California For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Connecticut

    Energy.gov [DOE] (indexed site)

    Connecticut For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos Georgia

    Energy.gov [DOE] (indexed site)

    Georgia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Guam

    Energy.gov [DOE] (indexed site)

    Guam For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Hawaii

    Energy.gov [DOE] (indexed site)

    Hawaii For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Idaho

    Energy.gov [DOE] (indexed site)

    Idaho For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Illinois

    Energy.gov [DOE] (indexed site)

    Illinois For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos Indiana

    Energy.gov [DOE] (indexed site)

    Indiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Iowa

    Energy.gov [DOE] (indexed site)

    Iowa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Kansas

    Energy.gov [DOE] (indexed site)

    Kansas For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos Kentucky

    Energy.gov [DOE] (indexed site)

    Kentucky For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos Maryland

    Energy.gov [DOE] (indexed site)

    Maryland For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos Massachusetts

    Energy.gov [DOE] (indexed site)

    Massachusetts For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos Michigan

    Energy.gov [DOE] (indexed site)

    Michigan For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos Minnesota

    Energy.gov [DOE] (indexed site)

    Minnesota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Recovery Act State Memos Mississippi

    Energy.gov [DOE] (indexed site)

    Mississippi For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  5. Recovery Act State Memos Missouri

    Energy.gov [DOE] (indexed site)

    Missouri For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. Recovery Act State Memos Montana

    Energy.gov [DOE] (indexed site)

    Montana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  7. Recovery Act State Memos Nebraska

    Energy.gov [DOE] (indexed site)

    Nebraska For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  8. Recovery Act State Memos Oklahoma

    Energy.gov [DOE] (indexed site)

    Oklahoma For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Recovery Act State Memos Pennsylvania

    Energy.gov [DOE] (indexed site)

    Pennsylvania For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Texas

    Energy.gov [DOE] (indexed site)

    Tennessee For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos Utah

    Energy.gov [DOE] (indexed site)

    Utah For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos Vermont

    Energy.gov [DOE] (indexed site)

    Vermont For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos Virginia

    Energy.gov [DOE] (indexed site)

    Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos Washington

    Energy.gov [DOE] (indexed site)

    Washington For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos Wyoming

    Energy.gov [DOE] (indexed site)

    Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EV Everywhere: Electric Vehicle Benefits Recovery Act Plug-in electric vehicles (also known as electric cars or EVs) are connected, fun, and practical. They can reduce emissions, ...

  17. Recovery Act State Memos Delaware

    Energy.gov [DOE] (indexed site)

    develop ultra-thin protective film for photovoltaic panels ...... 7 For total Recovery Act ... ultra-moisture-barrier film to enable new thin-film flexible photovoltaic products. ...

  18. Register file soft error recovery

    SciTech Connect

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  19. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    RECIPIENTS Smart Grid Investment Grant 3,482,831,000 99 ... Transmission Planning 80,000,000 6 State Assistance for Recovery Act Related Electricity Policies ...

  20. Recovery Act | Department of Energy

    Energy.gov [DOE] (indexed site)

    to increase our supply of clean, renewable energy. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department...

  1. Recovery Newsletters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Newsletters Recovery Newsletters RSS October 1, 2011 2011 ARRA Newsletters December 1, 2010 2010 ARRA Newsletters November 1, 2009 2009 ARRA Newsletters

  2. Enhanced oil recovery system

    DOEpatents

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  3. Speech recovery device

    DOEpatents

    Frankle, Christen M.

    2004-04-20

    There is provided an apparatus and method for assisting speech recovery in people with inability to speak due to aphasia, apraxia or another condition with similar effect. A hollow, rigid, thin-walled tube with semi-circular or semi-elliptical cut out shapes at each open end is positioned such that one end mates with the throat/voice box area of the neck of the assistor and the other end mates with the throat/voice box area of the assisted. The speaking person (assistor) makes sounds that produce standing wave vibrations at the same frequency in the vocal cords of the assisted person. Driving the assisted person's vocal cords with the assisted person being able to hear the correct tone enables the assisted person to speak by simply amplifying the vibration of membranes in their throat.

  4. Energy recovery system

    DOEpatents

    Moore, Albert S.; Verhoff, Francis H.

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  5. Biomass Program Recovery Act Factsheet

    SciTech Connect

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  6. Unconventional gas recovery symposium. Proceedings

    SciTech Connect

    Not Available

    1982-01-01

    This conference contains 51 papers and 4 abstracts of papers presented at the symposium on unconventional gas recovery. Some of the topics covered are: coalbed methane; methane recovery; gas hydrates; hydraulic fracturing treatments; geopressured systems; foam fracturing; evaluation of Devonian shales; tight gas sands; propping agents; and economics of natural gas production. All papers have been abstracted and indexed for the Energy Data Base.

  7. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  8. CX-006216: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CX-006216: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large System Request R ...

  9. Californium Recovery from Palladium Wire

    SciTech Connect

    Burns, Jon D.

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratorys Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  10. Refrigerant recovery system

    SciTech Connect

    Abraham, A.W.

    1991-08-20

    This patent describes improvement in a refrigerant recovery apparatus of the type having inlet means for connecting to a refrigerant air system to withdraw refrigerant from the system, expansion means for converting refrigerant received from the system in liquid phase to a gaseous refrigerant, a compressor having a suction chamber with a suction inlet for receiving and pressurizing the gaseous refrigerant, the compressor having a housing containing oil for lubricating the compressor, a condenser for receiving the pressurized gaseous refrigerant and condensing it to liquid refrigerant, and a storage chamber for storing the liquid refrigerant. The improvement comprises in combination: oil separator means mounted exterior of the housing to one end of an inlet line, which has another end connected to the suction inlet of the compressor for receiving the flow of refrigerant from the refrigerated air system for separating out oil mixed with the refrigerant being received from the refrigerated air system prior to the refrigerant entering the suction inlet of the compressor; and the oil separator means being mounted at a lower elevation than the suction inlet of the compressor, the inlet line being unrestricted for allowing refrigerant flow to the compressor and oil from the compressor for draining oil in the housing of the compressor above the suction inlet back through the inlet line into the oil separator means when the compressor is not operating.

  11. Energy recovery ventilator

    SciTech Connect

    Benoit, Jeffrey T.; Dobbs, Gregory M.; Lemcoff, Norberto O.

    2015-06-23

    An energy recovery heat exchanger (100) includes a housing (102). The housing has a first flowpath (144) from a first inlet (104) to a first outlet (106). The housing has a second flowpath (146) from a second inlet (108) to a second outlet (110). Either of two cores may be in an operative position in the housing. Each core has a number of first passageways having open first and second ends and closed first and second sides. Each core has a number of second such passageways interspersed with the first passageways. The ends of the second passageways are aligned with the sides of the first passageways and vice versa. A number of heat transfer member sections separate adjacent ones of the first and second passageways. An actuator is coupled to the carrier to shift the cores between first and second conditions. In the first condition, the first core (20) is in the operative position and the second core (220) is not. In the second condition, the second core is in the operative position and the first core is not. When a core is in the operative position, its first passageways are along the first flowpath and the second passageways are along the second flowpath.

  12. URANIUM RECOVERY PROCESS

    DOEpatents

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  13. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  14. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  15. Termination and Recovery

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-08-21

    This volume defines event Termination and determination of when it is appropriate to cease emergency response activities and of associated notifications. Canceled by DOE G 151.1-4.

  16. Resource Recovery OpportunitiesatAmericas Water Resource Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    recovery at WRRF's in the next decade Biogas with Addition of Fats, Oil & Grease (FOG) 50 dry tonsday solids > 600,000 ft 3 day of biogas 4,800day energy value 55,000 ...

  17. Recovery Act: State Assistance for Recovery Act Related Electricity Policies

    Energy.gov [DOE]

    State public utility commissions (PUCs), which regulate and oversee electricity projects in their states, will be receiving more than $44.2 million in Recovery Act funding to hire new staff and retrain existing employees to ensure they have the capacity to quickly and effectively review proposed electricity projects. The funds will help the individual state PUCs accelerate reviews of the large number of electric utility requests that are expected under the Recovery Act.

  18. Hanford Information Related to the American Recovery and Reinvestment...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Font Size Recovery.gov Banner Recovery Work Updates Recovery Act Jobs Recovery.gov Prime Contractor plus Subcontractor Jobs 1 Lives Touched2 DOE Richland Operations Office...

  19. Recovery Act Funding Opportunities Introduction | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Funding Opportunities Introduction Recovery Act Funding Opportunities Introduction On this page you can view a video presentation by Ed Wall, Program Manager for the ...

  20. Gas Recovery Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems Jump to: navigation, search Name: Gas Recovery Systems Place: California Zip: 94550 Product: Turnkey landfill gas (LFG) energy extraction systems. References: Gas Recovery...

  1. COLORADO RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Colorado are ...

  2. DELAWARE RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Delaware are ...

  3. IOWA RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Iowa are ...

  4. ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are ...

  5. GUAM RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Guam are ...

  6. CONNECTICUT RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Connecticut are ...

  7. Optimize carbon dioxide sequestration, enhance oil recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate ...

  8. Energy Recovery Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    global developer and manufacturer of energy recovery devices utilized in the water desalination industry. References: Energy Recovery Inc1 This article is a stub. You can help...

  9. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Environmental Management (EM)

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water...

  10. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Positive Water Resource Recovery Workshop Presentations Energy Positive Water Resource Recovery Workshop Presentations Presentations: Keynote 1: Energy-Positive Water ...

  11. Optimize carbon dioxide sequestration, enhance oil recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  12. Disaster Resiliency and Recovery: Capabilities (Fact Sheet),...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and communities during the planning, recovery, and rebuilding stages after disaster strikes. NREL's energy disaster recovery program offers a broad range of services ...

  13. Energy Recovery Linacs for Commercial Radioisotope Production...

    Office of Scientific and Technical Information (OSTI)

    Energy Recovery Linacs for Commercial Radioisotope Production Citation Details In-Document Search Title: Energy Recovery Linacs for Commercial Radioisotope Production Photonuclear ...

  14. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  15. Bonneville Power Administration Program Specific Recovery Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bonneville Power Administration Program Specific Recovery Plan Bonneville Power Administration Program Specific Recovery Plan PDF icon Microsoft Word - PSRP May 15 2009 BPA ...

  16. Western Area Power Administration Borrowing Authority, Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Western Area Power Administration Borrowing Authority, Recovery Act Western Area Power Administration Borrowing Authority, Recovery Act PDF icon Microsoft Word - PSRP May 15 2009 ...

  17. Olefin recovery via chemical absorption

    SciTech Connect

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  18. Monitoring EERE's Recovery Act Portfolio

    SciTech Connect

    2011-01-01

    Performance monitoring of Recovery Act projects within EERE has been an ongoing effort. Project recipients have been reporting technical and financial progress to project officers on a quarterly basis.

  19. Recovery Act Funding Opportunities Webcast

    Energy.gov [DOE]

    As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

  20. Recovery and purification of ethylene

    SciTech Connect

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung; Eng, Wayne W. Y.; Sinclair, Iain; Lodgson, Jeffery S.

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  1. One Woman's Road to Recovery

    Energy.gov [DOE]

    Rebecca Bivens applied at Argonne and was hired in April 2009, four months after she lost her second job. She now works in safety and procurement. Her job is funded by the American Recovery and Reinvestment Act.

  2. Chemically enhanced in situ recovery

    SciTech Connect

    Sale, T.; Pitts, M.; Wyatt, K.

    1996-08-01

    Chemically enhanced recovery is a promising alternative to current technologies for management of subsurface releases of organic liquids. Through the inclusion of surfactants, solvents, polymers, and/or alkaline agents to a waterflood, the transport of targeted organic compounds can be increased and rates of recovery enhanced. By far, the vast majority of work done in the field of chemically enhanced recovery has been at a laboratory scale. The following text focuses on chemically enhanced recovery from a field application perspective with emphasis given to chlorinated solvents in a low permeability setting. While chlorinated solvents are emphasized, issues discussed are also relevant to organic liquids less dense than water such as petroleum products. Topics reviewed include: (1) Description of technology; (2) General technology considerations; (3) Low permeability media considerations; (4) Cost and reliability considerations; (5) Commercial availability; and (6) Case histories. Through this paper an appreciation is developed of both the potential and limitations of chemically enhanced recovery. Excluded from the scope of this paper is the in situ destruction of organic compounds through processes such as chemical or biological oxidation, chemically enhanced recovery of inorganic compounds, and ex situ soil treatment processes. 11 refs., 2 figs., 1 tab.

  3. Developing a Regional Recovery Framework

    SciTech Connect

    Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.; Clark, Rebecca; Kelly, Heather; Sheline, Jim; Tietje, Grant; Williamson, Mark; Woodcock, Jody

    2011-09-01

    Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other critical infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.

  4. Record of Categorical Exclusion (CS) Determination, Office of Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Program Direction | Department of Energy Program Direction Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Program Direction Based on OE's review of the information concerning the proposal action, the NEPA compliance Officer has determined that the proposed action fits

  5. Record of Categorical Exclusion (CS) Determination, Office of Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Workforce Development | Department of Energy Workforce Development Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Workforce Development Based on OE's review of the information concerning the proposal action, the NEPA compliance Officer has determined that the proposed

  6. Waste Heat Recovery Opportunities for Thermoelectric Generators

    Office of Energy Efficiency and Renewable Energy (EERE)

    Thermoelectrics have unique advantages for integration into selected waste heat recovery applications.

  7. NREL: Technology Deployment - Disaster Recovery and Rebuilding

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recovery and Rebuilding NREL provides expertise, tools, and innovative solutions to private industry; federal, state, and local governments; nonprofit organizations; and communities during the planning, recovery, and rebuilding stages after disaster strikes. NREL identifies disaster recovery and rebuilding opportunities to: Incorporate energy efficiency, water and fuel conservation, sustainability, and renewable energy measures into disaster recovery efforts Deploy on-site technology

  8. CX-001187: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    87: Categorical Exclusion Determination CX-001187: Categorical Exclusion Determination Recovery Act: Blaine School District Geothermal Project CX(s) Applied: A9, A11, B3.1 Date: ...

  9. Secondary recovery development in Ecuador

    SciTech Connect

    Arteaga, L.; Endara, J.; Alduja, F.

    1981-03-01

    The oil activity in Ecuador goes back to 1920 when the oil-bearing structures were discovered in the Peninsula of Santa Elena in the Ecuatorian coast. Since that time 2,700 oil wells have been drilled; at the present time, only 650 wells are still producing. Oil production has been decreasing in spite of artificial producing systems (sucker rod pumping, and gas lift). During the period of 1966 to 1969 a total of 8 pilot projects was performed to evaluate the possibility of using secondary recovery methods (waterflooding) in 3 different oil-bearing formations from 5 areas, and utilizing different injection patterns. The results from numerical simulation and pilot projects showed the convenience and easibility of the implmentation of secondary recovery systems (waterflooding) in the Shushufindi-Aguarico field. A detailed description is presented of the development of the secondary recovery methods in Ecuador - antecedents, pilot projects, results, etc.

  10. Road to Recovery: Bringing Recovery to Small Town America

    ScienceCinema

    Nettamo, Paivi

    2012-06-14

    The Recovery Act hits the road to reach out to surrounding towns of the Savannah River Site that are struggling with soaring unemployment rates. This project helps recruit thousands of people to new jobs in environmental cleanup at the Savannah River Site.

  11. Promising Technology: Energy Recovery Ventilation

    Energy.gov [DOE]

    Energy recovery ventilation (ERV) systems exchange heat between outgoing exhaust air and the incoming outdoor air. Using exhaust air to pre-condition supply air can reduce the capacity of the heating and cooling system and save heating and cooling energy consumption.

  12. Biosurfactant and enhanced oil recovery

    DOEpatents

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  13. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage U.S. Department of Energy ("DOE") policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage (51.58 KB) More Documents & Publications Better Buildings Neighborhood Program Grant Recipient Management Handbook EV

  14. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Murphy, M.B.

    1999-02-01

    Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

  15. ARM - ARM Recovery Act Project FAQs

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    plan, contact Jimmy Voyles, ARM's Recovery Act Project Manager, at jimmy-dot-voyles-at-pnl-dot-gov. Public Q&A If you have a question about our Recovery Act efforts, send it to...

  16. Z-Bed Recovery Water Disposal

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Tritium Programs Engineering Louis Boone Josh Segura ... detailed explanation of the plan to capture and dispose of Z-Bed Recovery (ZR) water. ...

  17. Exhaust Energy Recovery | Department of Energy

    Energy.gov [DOE] (indexed site)

    18-22, 2009 -- Washington D.C. ace41nelson.pdf (2.11 MB) More Documents & Publications Exhaust Energy Recovery Exhaust Energy Recovery SuperTruck Program: Engine Project Review

  18. Disaster recovery plan for HANDI 2000 business management system

    SciTech Connect

    Adams, D.E.

    1998-09-29

    The BMS production implementation will be complete by October 1, 1998 and the server environment will be comprised of two types of platforms. The PassPort Supply and the PeopleSoft Financials will reside on LNIX servers and the PeopleSoft Human Resources and Payroll will reside on Microsoft NT servers. Because of the wide scope and the requirements of the COTS products to run in various environments backup and recovery responsibilities are divided between two groups in Technical Operations. The Central Computer Systems Management group provides support for the LTNIX/NT Backup Data Center, and the Network Infrastructure Systems group provides support for the NT Application Server Backup outside the Data Center. The disaster recovery process is dependent on a good backup and recovery process. Information and integrated system data for determining the disaster recovery process is identified from the Fluor Daniel Hanford (FDH) Risk Assessment Plan, Contingency Plan, and Backup and Recovery Plan, and Backup Form for HANDI 2000 BMS.

  19. Chemically assisted in situ recovery of oil shale

    SciTech Connect

    Ramierz, W.F.

    1993-12-31

    The purpose of the research project was to investigate the feasibility of the chemically assisted in situ retort method for recovering shale oil from Colorado oil shale. The chemically assisted in situ procedure uses hydrogen chloride (HCl), steam (H{sub 2}O), and carbon dioxide (CO{sub 2}) at moderate pressure to recovery shale oil from Colorado oil shale at temperatures substantially lower than those required for the thermal decomposition of kerogen. The process had been previously examined under static, reaction-equilibrium conditions, and had been shown to achieve significant shale oil recoveries from powdered oil shale. The purpose of this research project was to determine if these results were applicable to a dynamic experiment, and achieve penetration into and recovery of shale oil from solid oil shale. Much was learned about how to perform these experiments. Corrosion, chemical stability, and temperature stability problems were discovered and overcome. Engineering and design problems were discovered and overcome. High recovery (90% of estimated Fischer Assay) was observed in one experiment. Significant recovery (30% of estimated Fischer Assay) was also observed in another experiment. Minor amounts of freed organics were observed in two more experiments. Penetration and breakthrough of solid cores was observed in six experiments.

  20. Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  1. Optimize carbon dioxide sequestration, enhance oil recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  2. Optimize carbon dioxide sequestration, enhance oil recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  3. Record of Categorical Exclusion (CS) Determination, Office of Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Interoperability Standards and Framework (EISA 1305) | Department of Energy Interoperability Standards and Framework (EISA 1305) Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Interoperability Standards and Framework (EISA 1305) Based on OE's review of the information

  4. Record of Categorical Exclusion (CS) Determination, Office of Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment Grant Program (EISA 1306) | Department of Energy Smart Grid Investment Grant Program (EISA 1306) Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment Grant Program (EISA 1306) Based on OE's review of the information concerning the

  5. Record of Categorical Exclusion (CS) Determination, Office of Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment Grant Program (EISA 1306) | Department of Energy Smart Grid Investment Grant Program (EISA 1306) Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) Smart Grid Investment Grant Program (EISA 1306) Based on OE's review of the information concerning the

  6. Record of Categorical Exclusion (CS) Determination, Office of Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) State/Regional/Local Assistance for Interconnection Transmission Planning and Ana | Department of Energy State/Regional/Local Assistance for Interconnection Transmission Planning and Ana Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) State/Regional/Local Assistance for

  7. Biomass Production and Nitrogen Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project Peer Review WBS 4.2.2.10: Biomass Production and Nitrogen Recovery Date: March 23, 2015 Technology Area Review: Sustainability Principal Investigator: M. Cristina Negri Organization: Argonne National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement In the context of developing tools for landscape design approach to satisfy different societal goals (energy security, environmental protection, low-cost

  8. Recovery Act | Department of Energy

    Energy Saver

    Department of Energy Funds at Work: Smart Grid Investment Grant Profiles Recovery Act Funds at Work: Smart Grid Investment Grant Profiles DOE is partnering with regional and local utilities and co-ops across the Nation to improve the reliability of the grid and helping communities recover faster when disruptions occur. Case studies profiling some of the SGIG and SGDP grant recipients and the impact of the funding are available below for downloading. For more information about how funds from

  9. Overpulse railgun energy recovery circuit

    DOEpatents

    Honig, Emanuel M.

    1989-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  10. Counterpulse railgun energy recovery circuit

    DOEpatents

    Honig, Emanuel M.

    1986-01-01

    In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  11. WIPP Update and Status of Recovery | Department of Energy

    Energy.gov [DOE] (indexed site)

    WIPP Update and Status of Recovery More Documents & Publications WIPP Recovery Information Waste Isolation Pilot Plant Update and Status of Recovery Waste Isolation Pilot Plant...

  12. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  13. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  14. DFW Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  15. Lake Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  16. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  17. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  18. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  19. CID Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  20. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  1. Florida Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Florida Recovery Act State Memo Florida Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and ...

  2. Delaware Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Delaware Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery ...

  3. Recovery Act Investment Moves EM Past Milestone of 100 Project...

    Office of Environmental Management (EM)

    in place quickly to accomplish the Recovery Act Program goals." Recovery Act Investment Moves EM Past Milestone of 100 Project Completions Below: Recovery Act workers...

  4. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  5. Puente Hills Energy Recovery Biomass Facility | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass...

  6. Recovery Act Investment Moves EM Past Milestone of 100 Project...

    Office of Environmental Management (EM)

    Workers Complete Y-12's Largest Recovery Act Project Ahead of Schedule Recovery Act Changes Hanford Skyline with Explosive Demolitions Recovery Act Funds are Helping Oak Ridge's ...

  7. Microsoft Word - Attachment 3 Recovery Act notification | Department...

    Energy Saver

    Microsoft Word - Attachment 3 Recovery Act notification Microsoft Word - Attachment 3 Recovery Act notification More Documents & Publications Microsoft Word - Attachment 3 Recovery...

  8. Recovery Act: Smart Grid Investment Grants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Center Recovery Act Recovery Act: Smart Grid Investment Grants Recovery Act: Smart Grid Investment Grants Smart Grid Investment Grant Awards Recipients by State ...

  9. CSL Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  10. BJ Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  11. Southeast Resource Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  12. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    SciTech Connect

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  13. Thermal expansion recovery microscopy: Practical design considerations

    SciTech Connect

    Mingolo, N. Martnez, O. E.

    2014-01-15

    A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

  14. Final report for the Iowa Livestock Industry Waste Characterization and Methane Recovery Information Dissemination Project

    SciTech Connect

    Garrison, M.V.; Richard, Thomas L

    2001-11-13

    This report summarizes analytical methods, characterizes Iowa livestock wastes, determines fossil fuel displacement by methane use, assesses the market potential, and offers recommendations for the implementation of methane recovery technologies.

  15. Drain-Water Heat Recovery | Department of Energy

    Energy Saver

    Heat & Cool Water Heating Drain-Water Heat Recovery Drain-Water Heat Recovery Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. ...

  16. The Hanford Story: Recovery Act

    Energy.gov [DOE]

    This is the third chapter of The Hanford Story. This chapter is a tribute to the thousands of workers and representatives of regulatory agencies, neighboring states, Tribes, stakeholders, and surrounding communities who came together to put stimulus funding to work at Hanford. The video describes how the Department of Energy and its contractors turned a nearly $2 billion investment of American Recovery and Reinvestment Act funding in 2009 into nearly $4 billion worth of environmental cleanup work over the past two years. At the same time, Hanford workers have reduced the cleanup footprint of the Hanford Site by more than half (586 square miles to 241 sq. mi. through August -- 59 percent).

  17. Counterpulse railgun energy recovery circuit

    DOEpatents

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, a counterpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  18. Overpulse railgun energy recovery circuit

    DOEpatents

    Honig, E.M.

    1984-09-28

    The invention presented relates to a high-power pulsing circuit and more particularly to a repetitive pulse inductive energy storage and transfer circuit for an electromagnetic launcher. In an electromagnetic launcher such as a railgun for propelling a projectile at high velocity, an overpulse energy recovery circuit is employed to transfer stored inductive energy from a source inductor to the railgun inductance to propel the projectile down the railgun. Switching circuitry and an energy transfer capacitor are used to switch the energy back to the source inductor in readiness for a repetitive projectile propelling cycle.

  19. Toward Local Failure Local Recovery (LFLR) Resilience Model Using...

    Office of Scientific and Technical Information (OSTI)

    Motivation for Local Failure-Local Recovery (LFLR) Architecture for LFLR Application Recovery Results Discussion Conclusions Sandia Motivation for ...

  20. Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery ...

  1. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  2. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...

  3. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  4. CX-008246: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CX-008246: Categorical Exclusion Determination Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program CX(s) Applied: A9, B2.1, B5.19 Date: 05...

  5. CX-008246: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Determination Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program CX(s) Applied: A9, B2.1, B5.19 Date: 05152012 Location(s): Tennessee...

  6. Brushing up on oil recovery

    SciTech Connect

    Mackey, J.

    1995-12-01

    To be prepared for a range of oil spills, emergency response organizations must have an arsenal of powerful and adaptable equipment. Around the coastal United States, a network of oil spill cooperatives and emergency response organizations stand ready with the technology and the know-how to respond to the first sign of an oil spill. When the telephone rings, they may be required to mop up 200 gallons of oil that leaked off the deck of a ship or to contain and skim 2,000 gallons of oil from a broken hose at a loading terminal. In a few cases each year, they may find themselves responding to a major pollution incident, one that involves hundreds of people and tons of equipment. To clean an oil spill at a New Jersey marine terminal, the local cooperative used the Lundin Oil Recovery Inc. (LORI) skimming system to separate the oil and water and the lift the oil out of the river. The LORI skimming technology is based on sound principles of fluid management - using the natural movement of water instead of trying to fight against it. A natural feeding mechanism delivers oily water through the separation process, and a simple mechanical separation and recovery device - a brush conveyor - removes the pollutants from the water.

  7. Fire flood recovery process effects upon heavy oil properties

    SciTech Connect

    Reichert, C.; Fuhr, B.; Sawatzky, H.; Lefleur, R.; Verkoczy, B.; Soveran, D.; Jha, K.

    1988-06-01

    The steady decline in proven conventional oil deposits world wide has increased the emphasis on the use of heavy oil and bitumen. Most of the heavy oil and oil sand deposits share the common problem of providing very little or no primary production. They require a reduction in viscosity of the oil to make it flow. The oil in place and the reservoir characteristics are generally studied carefully to determine the design of the recovery process most applicable to the deposit and to evaluate its potential. Many of these same characteristics are also used to evaluate the oil with respect to upgrading, refining and final usage in the form of products. A variety of processes have been developed most of which utilize heat either in the form of steam or combustion to mobolize the oil in the reservoir. These processes vary considerably from rather mild conditions for steam stimulation to quite severe for combustion recovery. Figure 1 shows a typical schematic of an insitu combustion process. Many variations of forward combustion are used in the field to produce oil. Depending upon the severity of the recovery process in the recovered oil may be similar to the oil in the deposit or may be highly modified (oxidized, polymerized or upgraded). A memorandum of Understanding was signed by the Governments of the United States of America, Canada and the Provinces of Saskatchewan and Alberta to study different aspects of the problems related to the recovery of oil from heavy oil and sand deposits. One phase of the study is to determine the effects of different methods of in-situ recovery on the composition of recovered bitumen and heavy oils. This paper describes the findings from a study of fireflood process in a heavy oil deposit located in the Cummings formation of the Eyehill Field in Saskatchewan, Canada.

  8. Recovery from chemical, biological, and radiological incidents :

    SciTech Connect

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  9. Recovery Act State Memos American Samoa

    Energy.gov [DOE] (indexed site)

    American Samoa For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Recovery Act State Memos Mariana Islands

    Energy.gov [DOE] (indexed site)

    Mariana Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  11. Recovery Act State Memos New Hampshire

    Energy.gov [DOE] (indexed site)

    Hampshire For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  12. Recovery Act State Memos New Jersey

    Energy.gov [DOE] (indexed site)

    Jersey For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Recovery Act State Memos New Mexico

    Energy.gov [DOE] (indexed site)

    Mexico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Recovery Act State Memos New York

    Energy.gov [DOE] (indexed site)

    York For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. Recovery Act State Memos North Carolina

    Energy.gov [DOE] (indexed site)

    Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  16. Recovery Act State Memos North Dakota

    Energy.gov [DOE] (indexed site)

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Recovery Act State Memos Puerto Rico

    Energy.gov [DOE] (indexed site)

    Puerto Rico For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Recovery Act State Memos Rhode Island

    Energy.gov [DOE] (indexed site)

    Rhode Island For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  19. Recovery Act State Memos South Carolina

    Energy.gov [DOE] (indexed site)

    Carolina For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  20. Recovery Act State Memos South Dakota

    Energy.gov [DOE] (indexed site)

    Dakota For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. Recovery Act State Memos Virgin Islands

    Energy.gov [DOE] (indexed site)

    Virgin Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  2. Recovery Act State Memos Washington, DC

    Energy.gov [DOE] (indexed site)

    Washington, DC For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  3. Recovery Act State Memos West Virginia

    Energy.gov [DOE] (indexed site)

    West Virginia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  4. Los Alamos plants willows for flood recovery

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    plants willows Los Alamos plants willows for flood recovery The Laboratory's Corrective Actions Program (CAP) planted nearly 10,000 willows to help preserve the Pueblo Canyon wetland after damage from September 2013 floods. June 18, 2014 In a flood recovery effort designed to stop further erosion in Pueblo Canyon, in April, Los Alamos planted nearly 10,000 willows along the stream banks surrounding the wetland. In a flood recovery effort designed to stop further erosion in Pueblo Canyon, Los

  5. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years, the United States is a world leader in the number of EOR projects and volume of oil production from this method. Fossil Energy Research Benefits - Enhanced Oil Recovery (708.07 KB) More Documents & Publications Oil Study Guide - High School Fossil Energy Today - Fourth Quarter, 2011 Fossil Energy Today - First

  6. Enhanced Oil Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary

  7. Waste Isolation Pilot Plant Recovery Plan

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste Isolation Pilot Plant Recovery Plan Revision 0 September 30, 2014 [This page left blank.] EXECUTIVE SUMMARY Overview This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to

  8. CBFO selects Senior WIPP Recovery Manager

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4, 2014 CBFO selects Senior WIPP Recovery Manager Sean Dunagan, Research and Development Manager with Sandia National Laboratories, has been appointed as the Carlsbad Field Office (CBFO) Senior WIPP Recovery Manager, effective Dec. 8, 2014. He replaces Tom Teynor, who returned to Hanford to be the Federal Project Manager of the Plutonium Finishing Plant project. Directly leading and representing the Waste Isolation Pilot Plant (WIPP) Recovery Project, Mr. Dunagan will report to CBFO Manager Joe

  9. Supercritical Recovery Systems LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Recovery Systems LLC Place: Clayton, Missouri Zip: 63105 Product: Holder of various biofuel processing technologies. Deeveloping an ethanol plant in Lacassine, Louisiana....

  10. Carbon sequestration with enhanced gas recovery: Identifying...

    Office of Scientific and Technical Information (OSTI)

    studies, we propose a field test of the Carbon Sequestration with Enhanced Gas Recovery (CSEGR) process. The objective of the field test is to evaluate the feasibility of ...

  11. Recovery Act Workforce Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Act Workforce Development Recovery Act Workforce Development Map of Smart Grid Workforce Development Map of Smart Grid Workforce Development 19 Awards Read more Map of Workforce ...

  12. Energy Recovery Associates | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    - NY NJ CT PA Area Sector: Biofuels Product: Landfill Gas, Digester Gas, mixed methane and Greenhouse gases recovery and utilization equipment and projects. Number of...

  13. Hillsborough County Resource Recovery Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  14. Modified Accelerated Cost-Recovery System (MACRS)

    Energy.gov [DOE]

    Under the federal Modified Accelerated Cost-Recovery System (MACRS), businesses may recover investments in certain property through depreciation deductions. The MACRS establishes a set of class...

  15. IDAHO RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on ...

  16. ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment ...

  17. GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy

    Energy.gov [DOE] (indexed site)

    Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the ...

  18. Recovery Act Progress Update: Reactor Closure Feature

    ScienceCinema

    Cody, Tom

    2012-06-14

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  19. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Energy.gov [DOE] (indexed site)

    Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis technology ... Bio-Electrochemical Integration of Waste Heat Recovery, Waste-To-Energy Conversion, ...

  20. Faces of the Recovery Act: 1366 Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production.

  1. Recovery Act SGDP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    January 25, 2013: Assistant Secretary Patricia Hoffman to Deliver Keynote Address at IEEE PES Conference on Innovative Smart Grid Technologies Blogs October 5, 2015: Recovery ...

  2. Feed Resource Recovery | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Feed Resource Recovery Place: Wellesley, Massachusetts Product: Start-up planning to convert waste to fertilizer and biomethane gas. Coordinates: 42.29776,...

  3. Cost Recovery | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Cost Recovery Home Kyoung's picture Submitted by Kyoung(150) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations...

  4. Development of Marine Thermoelectric Heat Recovery Systems |...

    Energy.gov [DOE] (indexed site)

    Thermoelectric generator prototypes are evaluated in a dedicated hybrid vessel test ... More Documents & Publications Development of Marine Thermoelectric Heat Recovery Systems ...

  5. Engine Waste Heat Recovery Concept Demonstration | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in a Small Engine Test Cell for Enhanced Kinetic Engine Modeling Accuracy A Thermoelectric Generator with an Intermediate Heat Exchanger for Automotive Waste Heat Recovery ...

  6. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Energy.gov [DOE] (indexed site)

    Thermoelectrics have unique advantages for integration into selected waste heat recovery applications. fleurial.pdf (2.3 MB) More Documents & Publications High Reliability, High ...

  7. Faces of the Recovery Act: Sun Catalytix

    Energy.gov [DOE]

    At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act.

  8. Lab completes first Recovery Act cleanup project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    waste landfill. "The Recovery Act has been a huge boost to our overall cleanup efforts," said Michael Graham, LANL's associate director of environmental programs. "Completing...

  9. Incorporating Energy Efficiency into Disaster Recovery Efforts

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Incorporating Energy Efficiency into Disaster Recovery Efforts, Call Slides and Discussion Summary, October 9, 2014.

  10. Recovery Act Progress Update: Reactor Closure Feature

    SciTech Connect

    Cody, Tom

    2010-01-01

    A Recovery Act Progress Update. Decommissioning of two nuclear reactor sites at the Department of Energy's facilities has been approved and is underway.

  11. Energy Positive Water Resource Recovery Workshop Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentations Energy Positive Water Resource Recovery Workshop Presentations ...ositiveWorkshopReuse.pdf (2.28 MB) NearyWaterResourceWorkshoppresentaion2015.pdf ...

  12. Performance Engineering Research Center and RECOVERY. Performance...

    Office of Scientific and Technical Information (OSTI)

    Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement Citation Details In-Document ...

  13. Weatherization Formula Grants - American Recovery and Reinvestment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Microsoft Word - nDE-FOA-0000051.rtf Weatherization Formula Grants - American Recovery and Reinvestment Act (ARRA) WPN 10-9: Amendment to ...

  14. Method for enhanced oil recovery

    DOEpatents

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  15. Recovery of uranium from seawater

    SciTech Connect

    Sugasaka, K.; Katoh, S.; Takai, N.; Takahashi, H.; Umezawa, Y.

    1981-01-01

    Seawater contains various elements in solution. Deuterium, lithium, and uranium are the important ingredients for energy application at present and in the future. This paper deals with the recovery of uranium from seawater, with emphasis on the development of an adsorbent with high selectivity and rate of adsorption for uranium. Polyacrylamidoxime chelating resins were synthesized from various co-polymers of acrylonitrile and cross-linking agents. The resulting resins with the chelating amidoxime group showed selective adsorption for uranium in seawater. The amount of uranium adsorbed from seawater at room temperature reached 3.2 mg/g resin after 180 days. Polyacrylamidoxime fiber, which was prepared from polyacrylonitrile fiber and hydroxylamine, showed a high rate of adsorption for uranium. The polyacrylamidoxime fiber conditioned with 1 M HC1 and 1 M NaOH adsorbed 4 mg U/g fiber from seawater in ten days. 9 figures, 6 tables.

  16. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  17. Resource recovery from coal residues

    SciTech Connect

    Jones, G. Jr.; Canon, R.M.

    1980-01-01

    Several processes are being developed to recover metals from coal combustion and conversion residues. Methods to obtain substantial amounts of aluminum, iron, and titanium from these wastes are presented. The primary purpose of our investigation is to find a process that is economically sound or one that at least will partially defray the costs of waste processing. A cursory look at the content of fly ash enables one to see the merits of recovery of these huge quantities of valuable resources. The major constituents of fly ash of most interest are aluminum (14.8%), iron (7.5%), and titanium (1.0%). If these major elements could be recovered from the fly ash produced in the United States (60 million tons/year), bauxite would not have to be imported, iron ore production could be increased, and titanium production could be doubled.

  18. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  19. Shell boosts recovery at Kernridge

    SciTech Connect

    Moore, S.

    1984-01-01

    Since acquiring the Kernridge property in December 1979, Shell Oil Co. has drilled more than 1,800 wells and steadily increased production from 42,000 to 89,000 b/d of oil. Currently, the Kernridge Production Division of Shell California Production Inc. (SCPI), a newly formed subsidiary of Shell Oil Co., is operator for the property. The property covers approximately 35,000 mostly contiguous net acres, with production concentrated mainly on about 5,500 net acres. SCPI's four major fields in the area are the North and South Belridge, Lost Hills, and Antelope Hills. Most of the production comes from the North and South Belridge fields, which were previously held by the Belridge Oil Co. Productive horizons in the fields are the Tulare, Diatomite, Brown Shale, Antelope Shale, 64 Zone, and Agua sand. The Tulare and Diatomite are the two major reservoirs SCPI is developing. The Tulare, encountered between 400 and 1,300 ft, is made up of fine- to coarse-grained, unconsolidated sands with interbedded shales and silt stones and contains 13 /sup 0/ API oil. Using steam drive as the main recovery method, SCPI estimates an ultimate recovery from the Tulare formation of about 60% of the original 1 billion barrels in place. The Diatomite horizon, found between 800 and 3,500 ft and containing light, 28 /sup 0/ API oil, has high porosity (more than 60%), low permeability (less than 1 md), and natural fractures. Because of the Diatomite's low permeability, fracture stimulation is being used to increase well productivity. SCPI anticipates that approximately 5% of the almost 2 billion barrels of oil originally in place will be recovered by primary production.

  20. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOEpatents

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  1. Microbial enhanced oil recovery and wettability research program

    SciTech Connect

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

  2. Faces of the Recovery Act: Sun Catalytix

    ScienceCinema

    Nocera, Dave

    2013-05-29

    BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

  3. FE Implementation of the Recovery Act | Department of Energy

    Energy Saver

    FE Implementation of the Recovery Act The American Recovery and Reinvestment Act of 2009 (Recovery Act) was signed into law by President Obama on February 17th, 2009. It is an ...

  4. Uranium at Y-12: Recovery | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recovery Uranium at Y-12: Recovery Posted: July 22, 2013 - 3:44pm | Y-12 Report | Volume 10, Issue 1 | 2013 Recovery involves reclaiming uranium from numerous sources and ...

  5. Drain-Water Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat & Cool Water Heating Drain-Water Heat Recovery ... Diagram of a drain water heat recovery system. Any hot water ... Drain-water (or greywater) heat recovery systems capture ...

  6. Insurance recovery for manufactured gas plant liabilities

    SciTech Connect

    Koch, G.S.; Wise, K.T.; Hanser, P.

    1997-04-15

    This article addresses insurance and liability issues arising from former manufactured gas plant sites. Three issues are discussed in detail: (1) how to place a value on a potential insurance recovery or damage award, (2) how to maximize recovery through litigation or settlement, and (3) how to mediate coverage disputes to avoid litigation. The first issue, valuing potential recovery, is discussed in the most detail. An approach is outlined which includes organizing policy data, evaluating site facts relevant to coverage, estimating site costs, estimating coverage likelihoods, and assessing the expected value of litigation. Probability and cost estimate data is provided to aid in assessments.

  7. Recovery Progress Has WIPP Poised to

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Smart Grid Demonstration Program (SGDP) Recovery Act: Smart Grid Demonstration Program (SGDP) View a Map Showing Energy Storage Projects by State View a Map Showing Energy Storage Projects by State Read more View a Map Showing Smart Grid Energy Demo Projects by State View a Map Showing Smart Grid Energy Demo Projects by State Read more View a map which combines the above two maps View the full list of selected projects The American Recovery and Reinvestment Act of 2009 (Recovery Act)

  8. Recovery News Flashes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    News Flashes Recovery News Flashes RSS January 29, 2013 "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP With the American Recovery and Reinvestment Act funding, Savannah River Site (SRS) continues to safely treat and dispose of radioactive waste created while producing materials for nuclear weapons throughout the Cold War. The DOE site in Aiken, S.C., is safely, steadily, and cost-effectively making progress to

  9. Legacy Guidance: The Buy American Provision of the Recovery Act |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Legacy Guidance: The Buy American Provision of the Recovery Act Legacy Guidance: The Buy American Provision of the Recovery Act Projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act) were required to follow the Buy American Provision. This guidance only applied to Funding Opportunity Announcements (FOAs) associated with the Recovery Act. If the FOA received another source of funding-not from the Recovery Act-then the Buy America provision

  10. Subject: Calculation of Job Creating Through Recovery Act Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Subject: Calculation of Job Creating Through Recovery Act Funding Subject: Calculation of Job Creating Through Recovery Act Funding Subject: Calculation of Job Creating Through Recovery Act Funding (192.64 KB) More Documents & Publications WPN 10-14a: Calculation of Job Creation through DOE Recovery Act Funding - Updated Calculation of Job Creation Through DOE Recovery Act Funding WPN 10-14: Calculation of Job Creation through DOE Recovery Act Funding

  11. Model Recovery Procedure for Response to a Radiological Transportation Incident

    Energy.gov [DOE]

    This Transportation Emergency Preparedness Program (TEPP) Model Recovery Procedure contains the recommended elements for developing and conducting recovery planning at transportation incident scene...

  12. Supporting Statement: OE Recovery Act Financial Assistance Grants...

    Office of Environmental Management (EM)

    Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number 1910-5149 Supporting Statement: OE Recovery Act Financial Assistance Grants OMB Control Number ...

  13. ThermoChem Recovery International Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Product: ThermoChem Recovery International is commercialising proprietary technology for chemical and energy recovery systems for the pulp and paper industry. References:...

  14. American Recovery and Reinvestment Act of 2009 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    American Recovery and Reinvestment Act of 2009 American Recovery and Reinvestment Act of 2009 The full version of the law: "Making supplemental appropriations for job preservation ...

  15. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 mineral-webinar.pdf (3.45 MB) More Documents & ...

  16. Ethanol Oil Recovery Systems EORS | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Systems EORS Jump to: navigation, search Name: Ethanol Oil Recovery Systems (EORS) Place: Clayton, Georgia Product: Ethanol Oil Recovery Systems (EORS), a green technology...

  17. Planet Resource Recovery Inc formerly American Biodiesel Fuels...

    OpenEI (Open Energy Information) [EERE & EIA]

    Planet Resource Recovery Inc formerly American Biodiesel Fuels Corp Jump to: navigation, search Name: Planet Resource Recovery, Inc. (formerly American Biodiesel Fuels Corp.)...

  18. Faces of the Recovery Act - May Newsletter | Department of Energy

    Energy.gov [DOE] (indexed site)

    MayNewsletter.pdf (2.37 MB) More Documents & Publications Arkansas Recovery Act State Memo Florida Recovery Act State Memo CCIsEnergyEfficiencyBuildingRetrofitProgram

  19. State Assistance for Recovery Act Related Electricity Policies: Awards

    Energy.gov [DOE]

    List of State Energy Policy Awards under the American Recovery and Reinvestment Act including State, Agency, and Recovery Act funding amounts.

  20. Iowa Recovery Act State Memo | Department of Energy

    Energy Saver

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Iowa are ...

  1. American Samoa Recovery Act State Memo | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in American Samoa ...

  2. EM Recovery Act Funding Payment Summary by Site | Department...

    Energy.gov [DOE] (indexed site)

    Summary table of EM Recovery Act Spending Plan which shows dollar amounts obligated to contracts, payments to date and unpaid balances by site. EM Recovery Act Funding Payment ...

  3. Alabama Recovery Act State Memo | Department of Energy

    Energy Saver

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are ...

  4. District of Columbia Recovery Act State Memo | Department of...

    Office of Environmental Management (EM)

    District of Columbia Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. ...

  5. Massachusetts Recovery Act State Memo | Department of Energy

    Energy Saver

    Massachusetts Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The ...

  6. Indiana Recovery Act State Memo | Department of Energy

    Energy.gov [DOE] (indexed site)

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Indiana are ...

  7. South Dakota Recovery Act State Memo | Department of Energy

    Energy Saver

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in South Dakota ...

  8. Oregon Recovery Act State Memo | Department of Energy

    Energy Saver

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Oregon reflect ...

  9. Puerto Rico Recovery Act State Memo | Department of Energy

    Energy Saver

    Puerto Rico Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The ...

  10. EM Recovery Act Lessons Learned (Johnson) | Department of Energy

    Office of Environmental Management (EM)

    More Documents & Publications Info-Exch 2012 - Thomas Johnson Presentation EM Recovery Act Funding Payment Summary by Site American Recovery and Reinvestment Act Payments Surge ...

  11. Recovery Act Workers Clear Reactor Shields from Brookhaven Lab...

    Office of Environmental Management (EM)

    Clear Reactor Shields from Brookhaven Lab Recovery Act Workers Clear Reactor Shields from Brookhaven Lab American Recovery and Reinvestment Act workers are in the final stage of ...

  12. Evaluation of Reservoir Wettability and its Effect on Oil Recovery...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Reservoir Wettability and its Effect on Oil Recovery. Citation Details In-Document Search Title: Evaluation of Reservoir Wettability and its Effect on Oil Recovery. ...

  13. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL Citation Details In-Document Search Title: SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM ...

  14. American Recovery and Reinvestment Act of 2009: Biomass Program Investments

    SciTech Connect

    2012-06-01

    This fact sheet discusses the Biomass Program's investments using Recovery Act funding, as well as make note of how Recovery Act projects are currently doing.

  15. Louisiana Recovery Act State Memo | Department of Energy

    Energy Saver

    Louisiana Recovery Act State Memo Louisiana Recovery Act State Memo Louisiana has substantial natural resources, including abundant oil, gas, coal, biomass, and hydroelectric ...

  16. U.S. Department of Energy - American Recovery & Reinvestment...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. Department of Energy - American Recovery & Reinvestment Act U.S. Department of Energy - American Recovery & Reinvestment Act Waivers Issued by DOE under the Buy American...

  17. Powerpoint Presentation: Fossil Energy R&D American Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Powerpoint Presentation: Fossil Energy R&D American Recovery & Reinvestment Act Projects Powerpoint Presentation: Fossil Energy R&D American Recovery & Reinvestment Act Projects A ...

  18. Recovery Act Changes Hanford Skyline with Explosive Demolitions...

    Office of Environmental Management (EM)

    Changes Hanford Skyline with Explosive Demolitions Recovery Act Changes Hanford Skyline with Explosive Demolitions American Recovery and Reinvestment Act workers at the Hanford ...

  19. Progress Continues Post-Recovery Act Award at Hanford Site |...

    Office of Environmental Management (EM)

    Progress Continues Post-Recovery Act Award at Hanford Site (2.36 MB) More Documents & Publications Recovery Act Changes Hanford Skyline with Explosive Demolitions Hanford Treats ...

  20. FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act...

    Office of Environmental Management (EM)

    FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated Algal Biorefinery (IABR) FOIA Frequently Requested Documents: DE-EE0002884 Recovery Act - Integrated ...

  1. Department of Energy Issues Loan Guarantee Supported by Recovery...

    Energy Saver

    Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project ...

  2. DOE Surpasses Cleanup Target Ahead of Schedule: Recovery Act...

    Office of Environmental Management (EM)

    Recovery Act Investment Saves Money, Trains Workers, Creates Jobs DOE Surpasses Cleanup Target Ahead of Schedule: Recovery Act Investment Saves Money, Trains Workers, Creates Jobs ...

  3. Altamont Gas Recovery Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Altamont Gas Recovery Biomass Facility Facility Altamont Gas Recovery Sector Biomass Facility Type Landfill Gas Location Alameda County, California Coordinates...

  4. Miami Dade County Resource Recovery Fac Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Recovery Fac Biomass Facility Facility Miami Dade County Resource Recovery Fac Sector Biomass Facility Type Municipal Solid Waste Location Miami-Dade County, Florida...

  5. New Fact Sheet Highlights Waste Isolation Pilot Plant Recovery...

    Office of Environmental Management (EM)

    Fact Sheet Highlights Waste Isolation Pilot Plant Recovery Progress New Fact Sheet Highlights Waste Isolation Pilot Plant Recovery Progress February 25, 2016 - 12:00pm Addthis ...

  6. President Obama Announces Over $467 Million in Recovery Act Funding...

    Energy Saver

    Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar ...

  7. President Obama Announces Over $467 Million in Recovery Act Funding...

    Office of Environmental Management (EM)

    President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for ...

  8. Secretary Chu Announces $93 Million from Recovery Act to Support...

    Energy Saver

    Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects April ...

  9. Characterization and Recovery of Rare Earths from Coal and By...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Characterization and Recovery of Rare Earths from Coal and By-Products Citation Details In-Document Search Title: Characterization and Recovery of Rare Earths ...

  10. Recovery of sugars from ionic liquid biomass liquor by solvent...

    Office of Scientific and Technical Information (OSTI)

    Recovery of sugars from ionic liquid biomass liquor by solvent extraction Citation Details In-Document Search Title: Recovery of sugars from ionic liquid biomass liquor by solvent ...

  11. Recovery Act ? An Interdisciplinary Program for Education and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    tiarravt037anderson2010o.pdf More Documents & Publications Recovery Act An Interdisciplinary Program for Education and Outreach in Transportation Electrification Recovery...

  12. Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps Secretary Chu Announces Nearly 50 Million of Recovery Act Funding to Accelerate Deployment of ...

  13. Buckley, J.S. 02 PETROLEUM; PETROLEUM; ENHANCED RECOVERY; ASPHALTENES...

    Office of Scientific and Technical Information (OSTI)

    Reservoir Wettability and its Effect on Oil Recovery. Buckley, J.S. 02 PETROLEUM; PETROLEUM; ENHANCED RECOVERY; ASPHALTENES; MINERALS; SURFACES; MICA; WETTABILITY We report on the...

  14. Nanjing Green Waste Recovery Engineering Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nanjing Green Waste Recovery Engineering Co Ltd Jump to: navigation, search Name: Nanjing Green Waste Recovery Engineering Co. Ltd Place: Nanjing, Jiangsu Province, China Zip:...

  15. DOE Recovery Field Projects and State Memos | Department of Energy

    Energy.gov [DOE] (indexed site)

    DOE Recovery Field Projects and State Memos Click on a state to download the recovery memo for that state. View All Maps Addthis...

  16. Toward Local Failure Local Recovery (LFLR) Resilience Model Using...

    Office of Scientific and Technical Information (OSTI)

    Toward Local Failure Local Recovery (LFLR) Resilience Model Using MPI-ULFM. Citation Details In-Document Search Title: Toward Local Failure Local Recovery (LFLR) Resilience Model ...

  17. Battleground Energy Recovery Project - Presentation by the Houston...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battleground Energy Recovery Project - Presentation by the Houston Advanced Research Center, June 2011 Battleground Energy Recovery Project - Presentation by the Houston Advanced ...

  18. Recovery Act: Clean Coal Power Initiative | Department of Energy

    Energy.gov [DOE] (indexed site)

    A report detailling the Clean Coal Power initiative funded under the American Recovery and Renewal Act of 2009. Recovery Act: Clean Coal Power Initiative More Documents &...

  19. Synchrophasor Technologies and their Deployment in the Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) The American Recovery and Reinvestment Act of 2009 provided 4.5 billion for ...

  20. CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION...

    Office of Environmental Management (EM)

    CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM This...

  1. High Efficiency Microturbine with Integral Heat Recovery - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 High Efficiency Microturbine with Integral Heat Recovery - Fact Sheet, 2014 Capstone Turbine...

  2. Resource Conservation and Recovery Act | Department of Energy

    Energy Saver

    Resource Conservation and Recovery Act Resource Conservation and Recovery Act Hazardous wastes, mixed wastes, and non-hazardous solid wastes are generated, handled, and managed at ...

  3. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important ...

  4. Energy Recovery Potential from Wastewater Utilities through Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Potential from Wastewater Utilities through Innovation Energy Recovery Potential from Wastewater Utilities through Innovation Breakout Session 3A-Conversion Technologies ...

  5. Wastewater heat recovery method and apparatus (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Wastewater heat recovery method and apparatus Title: Wastewater heat recovery method and apparatus You are accessing a document from the Department of Energy's (DOE) DOE ...

  6. Recovery Act Incentives for Wind Energy Equipment Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Incentives for Wind Energy Equipment Manufacturing Recovery Act Incentives for Wind Energy Equipment Manufacturing Document that lists some of the major federal ...

  7. "Recovery Act: Advanced Energy Efficient BuildingTechnologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    "Recovery Act: Advanced Energy Efficient BuildingTechnologies" "Recovery Act: Advanced Energy Efficient BuildingTechnologies" Description of a FOA funding oppourtunity with funds ...

  8. Property:Heat Recovery Utility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Property Name Heat Recovery Utility Property Type Page Description The purpose of Distributed Generation heat recovery This is a property of type Page. Retrieved from...

  9. Montgomery County Resource Recovery Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Montgomery County Resource Recovery Biomass Facility Jump to: navigation, search Name Montgomery County Resource Recovery Biomass Facility Facility Montgomery County Resource...

  10. Product Recovery from HTGR Reactor Fuel Processing Salt Official...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Demonstration of Fuel and Fission Product Recovery from HTGR Reactor Fuel Processing Salt ... HTGR, MST, CST Retention: Permanent Demonstration of Fuel and Fission Product Recovery ...

  11. Recovery of Water from Boiler Flue Gas Using Condensing Heat...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers Citation Details In-Document Search Title: Recovery of Water from Boiler Flue Gas Using ...

  12. American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...

    Office of Environmental Management (EM)

    American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments ...

  13. Connecticut Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Connecticut Recovery Act State Memo (1.13 MB) More Documents & Publications CONNECTICUT RECOVERY ACT SNAPSHOT Final Report - Sun Rise New England - Open for Buisness State of the ...

  14. American Recovery & Reinvestment Act Newsletter July 2010

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    16 | EM Recovery Act Newsletter ARGONNE | BROOKHAVEN | ETEC | HANFORD | IDAHO | LANL | MOAB | MOUND | NTS DOE contractor CH2M HILL Plateau Remediation Company is using 250,000 in ...

  15. Renewable Energy Cost Recovery Incentive Payment

    Energy.gov [DOE]

    Note: Some utilities have reached their cap for incentive allocations under the Renewable Energy Cost Recovery Incentive Payment program. Some of these utilities have reduced per-customer incentive...

  16. Recovery Act Worker Update: Mike Gunnels

    ScienceCinema

    Tire, Brian

    2012-06-14

    Mike Gunnels at the Savannah River Site tells how the Recovery Act got him out of unemployment and the benefits of training and teamwork in his new job with the Department of Energy.

  17. recovery act | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    recovery act Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 15 August, 2013 - 09:09 DOE Report Describes Progress in the Deployment of Synchrophasor...

  18. American Recovery and Reinvestment Act, Financial Assistance...

    Energy.gov [DOE] (indexed site)

    American Recovery and Reinvestment Act, Financial Assistance Award: 212 Degrees Consulting, LLC, Las Vegas, Nevada. Award No. DE-FC36-10GO10589, Notice of Financial Assistance ...

  19. Recovery of metals from waste streams

    SciTech Connect

    Kremer, F.

    1983-10-01

    Four commercial metal recovery technologies are described: reverse osmosis, ion exchange, electrolytic treatment, and electrodialysis. First the technology is described briefly and then a case is given for its utilization. (MHR)

  20. RECOVERY ACT: TAPOCO PROJECT: CHEOAH UPGRADE

    SciTech Connect

    Tran, Paul

    2013-02-28

    Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

  1. Advanced Membrane Separation Technologies for Energy Recovery

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose goal is to develop novel materials for use in membrane separation technologies for the recovery of waste energy and water from industrial process streams.

  2. Lab completes Recovery Act-funded demolition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    tug from a piece of heavy equipment, the last bit of the 24th building crashed to the ground. The final building demolished under the Recovery Act program at Los Alamos...

  3. Unconventional gas recovery: state of knowledge document

    SciTech Connect

    Geffen, C.A.

    1982-01-01

    This report is a synthesis of environmental data and information relevant to the four areas of unconventional gas recovery (UGR) resource recovery: methane from coal, tight western sands, Devonian shales and geopressurized aquifers. Where appropriate, it provides details of work reviewed; while in other cases, it refers the reader to relevant sources of information. This report consists of three main sections, 2, 3, and 4. Section 2 describes the energy resource base involved and characteristics of the technology and introduces the environmental concerns of implementing the technology. Section 3 reviews the concerns related to unconventional gas recovery systems which are of significance to the environment. The potential health and safety concerns of the recovery of natural gas from these resources are outlined in Section 4.

  4. Exhaust Energy Recovery | Department of Energy

    Energy.gov [DOE] (indexed site)

    More Documents & Publications A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines Cummins Waste Heat Recovery Exhaust Energy ...

  5. American Recovery & Reinvestment Act Newsletter - Issue 12

    Office of Environmental Management (EM)

    ... We also support WIPP with other containers and NQA-1 custom equipment. Recovery Act Funding Keeps Workers Employed at the Idaho Site With three of his five children in college, ...

  6. Recovery Act Reports | Department of Energy

    Energy.gov [DOE] (indexed site)

    INS-RA-12-01 Alleged Misuse of American Recovery and Reinvestment Act Grant Funds by the Western Arizona Council of Governments January 26, 2012 Audit Report: OAS-RA-L-12-03 The...

  7. Surge recovery techniques for the Tevatron cold compressors

    SciTech Connect

    Martinez, A.; Klebaner, A.L.; Makara, J.N.; Theilacker, J.C.; /Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success.

  8. H-Canyon Recovery Crawler

    SciTech Connect

    Kriikku, E. M.; Hera, K. R.; Marzolf, A. D.; Phillips, M. H.

    2015-08-01

    The Nuclear Material Disposition Project group asked the Savannah River National Lab (SRNL) Research and Development Engineering (R&DE) department to help procure, test, and deploy a remote crawler to recover the 2014 Inspection Crawler (IC) that tipped over in the H-Canyon Air Exhaust Tunnel. R&DE wrote a Procurement Specification for a Recovery Crawler (RC) and SRNS Procurement Department awarded the contract to Power Equipment Manufacturing Inc. (PEM). The PEM RC was based on their standard sewer inspection crawler with custom arms and forks added to the front. The arms and forks would be used to upright the 2014 Inspection Crawler. PEM delivered the RC and associated cable reel, 2014 Inspection Crawler mockup, and manuals in late April 2015. R&DE and the team tested the crawler in May of 2015 and made modifications based on test results and Savannah River Site (SRS) requirements. R&DE delivered the RC to H-Area at the end of May. The team deployed the RC on June 9, 10, and 11, 2015 in the H-Canyon Air Exhaust Tunnel. The RC struggled with some obstacles in the tunnel, but eventually made it to the IC. The team spent approximately five hours working to upright the IC and eventually got it on its wheels. The IC travelled approximately 20 feet and struggled to drive over debris on the air tunnel floor. Unfortunately the IC tripped over trying to pass this obstacle. The team decided to leave the IC in this location and inspect the tunnel with the RC. The RC passed the IC and inspected the tunnel as it travelled toward H-Canyon. The team turned the RC around when it was about 20 feet from the H-Canyon crossover tunnel. From that point, the team drove the RC past the manway towards the new sand filter and stopped approximately 20 feet from the new sand filter. The team removed the RC from the tunnel, decontaminated the RC, and stored it the manway building, 294-2H. The RC deployment confirmed the IC was not in a condition to perform useful tunnel inspections and

  9. Faces of the Recovery Act: 1366 Technologies

    SciTech Connect

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2010-01-01

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  10. Department of Energy Releases WIPP Recovery Plan

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Department of Energy Releases WIPP Recovery Plan Washington, D.C. - Today, the Department of Energy (DOE) released the Waste Isolation Pilot Plant (WIPP) Recovery Plan, outlining the necessary steps to resume operations at the transuranic waste disposal site outside of Carlsbad, N.M. WIPP operations were suspended following an underground truck fire and a radiological release earlier this year. "Safety is our top priority," said Mark Whitney, Acting Assistant Secretary for DOE's Office

  11. American Reinvestment Recovery Act | Department of Energy

    Energy.gov [DOE] (indexed site)

    Office Investments | Department of Energy The Bioenergy Technologies Office rewarded about $178 million in American Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the deployment of commercialization of biofuels, and further the U.S. bioindustry through market transformation. recovery_act_factsheet.pdf (1.07 MB) More Documents & Publications Algae Biofuels Technology National Alliance for Advanced Biofuels and Bioproducts Synopsis

  12. Recovery of tritium from tritiated molecules

    DOEpatents

    Swansiger, W.A.

    1984-10-17

    This invention relates to the recovery of tritium from various tritiated molecules by reaction with uranium. More particularly, the invention relates to the recovery of tritium from tritiated molecules by reaction with uranium wherein the reaction is conducted in a reactor which permits the reaction to occur as a moving front reaction from the point where the tritium enters the reactor charged with uranium down the reactor until the uranium is exhausted.

  13. State Energy Program Recovery Act Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of a major national evaluation of the State Energy Program (SEP), under the Office of Energy Efficiency and Renewable Energy. The National Evaluation of SEP during the American Recovery and Reinvestment Act (ARRA) provides insight into the unique program that was administered by DOE in the national effort to create jobs and promote economic recovery. The National Evaluation was a multiyear, peer-reviewed, statistically robust effort led by Oak Ridge National Laboratory. The purpose of the

  14. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  15. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  16. Faces of the Recovery Act: 1366 Technologies

    ScienceCinema

    Sachs, Ely; Mierlo, Frank van; Obama, Barack

    2016-07-12

    LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

  17. Recovery of minerals from US coals

    SciTech Connect

    Vanderborgh, N.E.

    1982-01-01

    Projections show that domestic coal will serve for the majority of energy supplies during the next decades. Thorough chemical cleaning of this coal can be accomplished in long residence time, slurry transport systems to produce high-quality fuel product. Concurrently, mineral recovery from coals will supplement existing ores. This paper describes this concept and given preliminary engineering considerations for mineral recovery during transport operations.

  18. DNA damage checkpoint recovery and cancer development

    SciTech Connect

    Wang, Haiyong; Zhang, Xiaoshan; Teng, Lisong; Legerski, Randy J.

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  19. Waste Isolation Pilot Plant Recovery Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation’s defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department’s approach to meet that schedule while prioritizing safety, health, and environmental protection.

  20. Exhaust Gas Energy Recovery Technology Applications

    SciTech Connect

    Wagner, Robert M; Szybist, James P

    2014-01-01

    Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

  1. Lab completes Recovery Act-funded demolition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recovery Act-funded demolition completed Lab completes Recovery Act-funded demolition The building was the largest of the 24 demolished at LANL's historic Technical Area 21. January 19, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of

  2. Gills Onions Advanced Energy Recovery System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LEARNING FOR LOCAL LEADERS GILLS ONIONS ADVANCED ENERGY RECOVERY SYSTEM MAY 17, 2011 * INDUSTRIAL * FOODSERVICE * RETAIL * GENERATED UP TO 300,000 LBS OF ONION WASTE PER DAY (TOP, TAIL AND PEEL) * WASTE BECAME UNMANAGEABLE AND COST-PROHIBITIVE * CREATED ODOR PROBLEMS, POTENTIAL GROUND WATER CONTAMINATION SOLUTION ONION WASTE TO ENERGY ADVANCED ENERGY RECOVERY SYSTEM (AERS) * CONVERTS ONION WASTE TO RENEWABLE ENERGY, ULTRA-CLEAN BIOGAS AND CATTLE FEED * MEETS OUR GOALS FOR AIR QUALITY, ZERO WASTE

  3. Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event Symposium

    SciTech Connect

    Lesperance, Ann M.

    2008-06-30

    On March 19, 2008, policy makers, emergency managers, and medical and Public Health officials convened in Seattle, Washington, for a workshop on Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event. The day-long symposium was aimed at generating a dialogue about restoration and recovery through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems.

  4. Methods for enhancing mapping of thermal fronts in oil recovery

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  5. Methods for enhancing mapping of thermal fronts in oil recovery

    DOEpatents

    Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.

    1987-01-01

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  6. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

  7. Low-Temperature Mineral Recovery Program FOA Selections

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Department's geothermal technologies office awarded nine projects in low-temperature and mineral recovery.

  8. 2009 Recovery Act IMPLEMENTATION UPDATE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2009 Recovery Act IMPLEMENTATION UPDATE 2009 Recovery Act IMPLEMENTATION UPDATE A powerpoint presentation on the Recovery Act's progress, opportunities, and steps moving forward. 2009 Recovery Act IMPLEMENTATION UPDATE (661.03 KB) More Documents & Publications Before the Senate Small Business Committee Major Communications Report May 5, 2009 Major Communications Report April 30, 200

  9. American Recovery and Reinvestment Act Payments Surge Past $5 Billion |

    Office of Environmental Management (EM)

    Department of Energy 5 Billion American Recovery and Reinvestment Act Payments Surge Past $5 Billion More than $5 billion in Recovery Act payments are accelerating environmental cleanup American Recovery and Reinvestment Act Payments Surge Past $5 Billion (1.69 MB) More Documents & Publications American Recovery and Reinvestment Act Payments Surge Past $4

  10. WAPA Recovery Act Implementation Appropriation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WAPA Recovery Act Implementation Appropriation WAPA Recovery Act Implementation Appropriation Microsoft Word - PSRP May 15 2009 _WAPA Implementation Approp_ Final.docx (63.72 KB) More Documents & Publications Western Area Power Administration Borrowing Authority, Recovery Act Microsoft Word - PSRP Updates 6-25-10_v2 Bonneville Power Administration Program Specific Recovery Plan

  11. Application of Biochemical and Physiological Indicators for Assessing Recovery of Fish Populations in a Disturbed Stream

    SciTech Connect

    Adams, S. M.; Ham, Kenneth D.

    2011-06-01

    Recovery dynamics in a previously disturbed streamwere investigated to determine the influence of a series of remedial actions on stream recovery and to evaluate the potential application of bioindicators as an environmental management tool. A suite of bioindicators, representing five different functional response groups, were measured annually for a sentinel fish species over a 15 year period during which a variety of remedial and pollution abatement actions were implemented. Trends in biochemical, physiological, condition, growth, bioenergetic, and nutritional responses demonstrated that the health status of a sentinel fish species in the disturbed stream approached that of fish in the reference stream by the end of the study. Two major remedial actions, dechlorination and water flow management, had large effects on stream recovery resulting in an improvement in the bioenergetic, disease, nutritional, and organ condition status of the sentinel fish species. A subset of bioindicators responded rather dramatically to temporal trends affecting all sites, but some indicators showed little response to disturbance or to restoration activities. In assessing recovery of aquatic systems, application of appropriate integrative structural indices along with a variety of sensitive functional bioindicators should be used to understand the mechanistic basis of stress and recovery and to reduce the risk of false positives. Understanding the mechanistic processes involved between stressors, stress responses of biota, and the recovery dynamics of aquatic systems reduces the uncertainty involved in environmental management and regulatory decisions resulting in an increased ability to predict the consequences of restoration and remedial actions for aquatic systems.

  12. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    SciTech Connect

    Marsh, T.L.; Zhang, X.; Knapp, R.M.; McInerney, M.J.; Sharma, P.K.; Jackson, B.E.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gas produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.

  13. American Recovery and Reinvestment Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    American Recovery and Reinvestment Act American Recovery and Reinvestment Act President Obama signed the American Recovery and Reinvestment Act of 2009 (Recovery Act) into law on February 17, 2009. The Recovery Act provided DOE several billion dollars in funds to accelerate research, development, demonstration, and deployment activities that support jumpstarting our economy, promoting green jobs, and focusing on addressing long-neglected challenges so our country can thrive in the twenty-first

  14. Implementing the American Recovery and Reinvestment Act | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Implementing the American Recovery and Reinvestment Act Implementing the American Recovery and Reinvestment Act A presentation about the path to implement the Recovery Act, and the Department of Energy's role. Implementing the American Recovery and Reinvestment Act (1.11 MB) More Documents & Publications Recovery Act Incentives for Wind Energy Equipment Manufacturing US-China Clean Energy Forum 2010 U.S. And International Case Studies for Financing Bioeconomy Projects

  15. Cumulative Federal Payments to OE Recovery Act Recipients, through August

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    31, 2015 | Department of Energy Cumulative Federal Payments to OE Recovery Act Recipients, through August 31, 2015 Cumulative Federal Payments to OE Recovery Act Recipients, through August 31, 2015 Cumulative Federal Payments to OE Recovery Act Recipients, through August 31, 2015. OE ARRA Payments through August 2015 (20.9 KB) More Documents & Publications Cumulative Federal Payments to OE Recovery Act Recipients, through January 31, 2015 Cumulative Federal Payments to OE Recovery Act

  16. Recovery Act Funds at Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Center » 2009 Recovery Act » Recovery Act Funds at Work Recovery Act Funds at Work Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Central Maine Power is producing innovations in customer services, improvements in business operations, and lessons-learned that will be used for guiding future smart grid projects. Idaho Power Company is accelerating development

  17. Single well tracer method to evaluate enhanced recovery

    DOEpatents

    Sheely, Jr., Clyde Q.; Baldwin, Jr., David E.

    1978-01-01

    Data useful to evaluate the effectiveness of or to design an enhanced recovery process (the recovery process involving mobilizing and moving hydrocarbons through a hydrocarbon-bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well) are obtained by a process which comprises sequentially: determining hydrocarbon saturation in the formation in a volume in the formation near a well bore penetrating the formation, injecting sufficient of the mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore penetrating the formation, and determining by the single well tracer method a hydrocarbon saturation profile in a volume from which hydrocarbons are moved. The single well tracer method employed is disclosed by U.S. Pat. No. 3,623,842. The process is useful to evaluate surfactant floods, water floods, polymer floods, CO.sub.2 floods, caustic floods, micellar floods, and the like in the reservoir in much less time at greatly reduced costs, compared to conventional multi-well pilot test.

  18. Engineering analysis of recovery boiler superheater corrosion

    SciTech Connect

    Fond, J.F. La; Verloop, A.; Walsh, A.R.

    1994-12-31

    The occurrence of fire-side corrosion in kraft recovery boiler superheaters has increased in recent years due to the higher demands placed on recovery boilers. Recent research has led to new fundamental understanding of the mechanisms of corrosion in recovery boiler superheaters. However, there has been a need for development of engineering tools that combine fundamental data on superheater deposit chemistry, corrosion mechanisms, and heat transfer analysis to allow practical solutions to this problem. Factors that play an important role in superheater corrosion include superheater design and boiler operating parameters. These factors are reviewed thoroughly upon initiating an engineering analysis effort. The focal point of the superheater corrosion analysis is a comprehensive computer-based heat transfer analysis. This paper describes the engineering analysis process that has been developed and illustrates its application through three case studies.

  19. Inherently safe in situ uranium recovery

    DOEpatents

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  20. Energy Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect

    Sy, Amy; Krafft, Geoffrey A.; Johnson, Rolland; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  1. Heat recovery anti-icing system

    SciTech Connect

    Cummins, J.R.

    1982-05-11

    A heat recovery anti-icing system is disclosed. The heat recovery system includes a blower which removes air from the air flow path of a combustion turbine power generating system and circulates the air through a heat exchanger located in the exhaust stack of the combustion turbine. The heated air circulating through the heat exchanger is returned to an inlet filter compartment in the air flow path so as to maintain the temperature of the air in the inlet filter compartment at an elevated level.

  2. Methane recovery from landfill in China

    SciTech Connect

    Gaolai, L.

    1996-12-31

    GEF has approved a special project for a demonstration project for Methane Recovery from the Urban Refuse Land Fill. This paper will introduce the possibility of GHG reduction from the landfill in China, describe the activities of the GEF project, and the priorities for international cooperation in this field. The Global Environment Facility (GEF) approved the project, China Promoting Methane Recovery and Unlization from Mixed Municipal Refuse, at its Council meeting in last April. This project is the first one supported by international organization in this field.

  3. LANL sponsors Recovery Act Job Fair

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    sponsors Recovery Act Job Fair October 30, 2009 Nearly 500 seek positions, from laborers to project managers Los Alamos, New Mexico, October 30, 2009-Nearly 500 job seekers turned out for a Los Alamos National Laboratory-sponsored job fair near Española, New Mexico, on Thursday. The job fair was aimed at filling current and future positions with subcontractors working on environmental cleanup under the American Recovery and Reinvestment Act, as well as other Lab work. Ten of the Lab's prime

  4. Hanford Story: Recovery Act - Questions - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Hanford Story Hanford Story: Recovery Act - Questions The Hanford Story Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size What did the Department of Energy and its contractors do with nearly $2 billion in stimulus funding? Why was the Department able to put the funding to use quickly? How many jobs were created by stimulus funding received at the Hanford Site? How much of the cleanup footprint of Hanford is left after projects funded by the Recovery Act were

  5. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    SciTech Connect

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil; Holtze, Maria Sommer; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2014-09-15

    Highlights: • Ferrous and non-ferrous metals were quantified in MSWI bottom ashes. • Metal recovery system efficiencies for bottom ashes were estimated. • Total content of critical elements was determined in bottom ash samples. • Post-incineration recovery is not viable for most critical elements. - Abstract: Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2 mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results

  6. PROCESS FOR RECOVERY OF CONSTITUENTS OF ORES

    DOEpatents

    McCullough, R.F.

    1959-05-01

    A process for U recovery from leached zone material is described. Calcination with alkali metal carbonate at 600 to 2000 deg F followed by digestion with H/sub 2/SO/sub 4/ and filtration forms the basis of the process. (T.R.H.)

  7. Recovery of ammonia from industrial wastewater

    SciTech Connect

    Marr, R. ); Koncar, M. )

    1993-07-01

    The ecological problems of ammonia and ammonium salts in wastewater, and the sources of effluents containing these two products, are discussed. Feasible separation processes and methods of recovery are reviewed, and the advantages and disadvantages of the individual processes are compared.

  8. DOE Completes Five Recovery Act Projects

    Energy.gov [DOE]

    DOE's EM program recently completed five projects at the Oak Ridge site funded through the Recovery Act. The projects included the expansion of two landfills at the Oak Ridge Reservation (ORR) and pre-demolition and demolition projects at ETTP and Y-12.

  9. Recovery Act Weekly Video: 200 West Drilling

    ScienceCinema

    None

    2012-06-14

    President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

  10. Disaster Resiliency and Recovery: Capabilities (Fact Sheet)

    SciTech Connect

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) is the nation's leader in energy efficient and renewable energy technologies, practices, and strategies. For the last 15 years, NREL has provided expertise, tools, and innovations to private industry; federal, state, and local governments; non-profit organizations; and communities during the planning, recovery, and rebuilding stages after disaster strikes.

  11. Recovery Act Weekly Video: 200 West Drilling

    SciTech Connect

    2010-01-01

    President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

  12. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  13. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  14. CX-002023: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    023: Categorical Exclusion Determination CX-002023: Categorical Exclusion Determination Adult Detention Facility - Energy Conservation Projects - Energy Recovery Ventilators CX(s) Applied: B2.5, B5.1 Date: 04/27/2010 Location(s): Lancaster County, Nebraska Office(s): Energy Efficiency and Renewable Energy Installation of energy recovery ventilators at the Lancaster County Adult Detention Facility. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-002023.pdf (583.04 KB) More Documents & Publications

  15. CX-005569: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    569: Categorical Exclusion Determination CX-005569: Categorical Exclusion Determination Montgomery County American Recovery and Reinvestment Act -Energy Efficiency and Conservation Block Grant - Act 1 (County Retrofits - Madison Lakes Park Geothermal) CX(s) Applied: B5.1 Date: 04/04/2011 Location(s): Montgomery County, Ohio Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Montgomery County is proposing to use Energy Efficiency and Conservation Block Grant, American Recovery

  16. Categorical Exclusion Determinations: B2.6 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Categorical Exclusion Determinations: B2.6 Existing Regulations B2.6: Recovery of radioactive sealed sources Recovery of radioactive sealed sources and sealed source-containing devices from domestic or foreign locations provided that (1) the recovered items are transported and stored in compliant containers, and (2) the receiving site has sufficient existing storage capacity and all required licenses, permits, and approvals. Previous Regulations Categorical Exclusion Determinations dated

  17. CX-005449: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5449: Categorical Exclusion Determination CX-005449: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act Greenwood Scaling Biomass Boilers - Washington CX(s) Applied: A9, B1.7, B5.1 Date: 03/23/2011 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The SIRTI Foundation and Greenwood Clean Energy Company are proposing to use $300,000 in State Energy Program American Recovery and Reinvestment Act funding

  18. Alkaline assisted thermal oil recovery: Kinetic and displacement studies

    SciTech Connect

    Saneie, S.; Yortsos, Y.C.

    1993-06-01

    This report deals with two major issues of chemical assisted flooding - the interaction of caustic, one of the proposed additives to steam flood, with the reservoir rock, and the displacement of oil by a chemical flood at elevated temperatures. A mathematical model simulating the kinetics of silica dissolution and hydroxyl ion consumption in a typical alkaline flooding environment is first developed. The model is based on the premise that dissolution occurs via hydrolysis of active sites through the formation of an intermediate complex, which is in equilibrium with the silicic acid in solution. Both static (batch) and dynamic (core flood) processes are simulated to examine the sensitivity of caustic consumption and silica dissolution to process parameters, and to determine rates of propagation of pH values. The model presented provides a quantitative description of the quartz-alkali interaction in terms of pH, salinity, ion exchange properties, temperature and contact time, which are of significant importance in the design of soluble silicate flooding processes. The modeling of an adiabatic hot waterflood assisted by the simultaneous injection of a chemical additive is next presented. The model is also applicable to the hot alkaline flooding under conditions of negligible adsorption of the generated anionic surfactant and of hydroxide adsorption being Langmuirian. The theory of generalized simple waves (coherence ) is used to develop solutions for the temperature, concentration, and oil saturation profiles, as well as the oil recovery curves. It is shown that, for Langmuir adsorption kinetics, the chemical resides in the heated region of the reservoir if its injection concentration is below a critical value, and in the unheated region if its concentration exceeds this critical value. Results for a chemical slug injection in a tertiary recovery process indicate recovery performance is maximized when chemical resides in the heated region of the reservior.

  19. Davis-Bacon Award Term for Financial Assistance Awards under the American Recovery and Reinvestment Act (ARRA) of 2009

    Energy.gov [DOE]

    Section 1606 of the Recovery Act requires that all laborers and mechanics employed by contractors and subcontractors on projects funded directly by or assisted in whole or in part by and through the Federal Government pursuant to the Recovery Act shall be paid wages at rates not less than those prevailing on projects of a character similar in the locality as determined by the Secretary of Labor in accordance with subchapter IV of chapter 3 1 of title 40, United States Code.

  20. Environmental Assessment Radioactive Source Recovery Program

    SciTech Connect

    1995-12-20

    In a response to potential risks to public health and safety, the U.S. Department of Energy (DOE) is evaluating the recovery of sealed neutron sources under the Radioactive Source Recovery Program (RSRP). This proposed program would enhance the DOE`s and the U.S. Nuclear Regulatory Commission`s (NRC`s) joint capabilities in the safe management of commercially held radioactive source materials. Currently there are no federal or commercial options for the recovery, storage, or disposal of sealed neutron sources. This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the DOE were to implement a program for the receipt and recovery at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, of unwanted and excess plutonium-beryllium ({sup 238}Pu-Be) and americium-beryllium ({sup 241}Am-Be) sealed neutron sources. About 1 kg (2.2 lb) plutonium and 3 kg (6.6 lb) americium would be recovered over a 15-year project. Personnel at LANL would receive neutron sources from companies, universities, source brokers, and government agencies across the country. These neutron sources would be temporarily stored in floor holes at the CMR Hot Cell Facility. Recovery reduces the neutron emissions from the source material and refers to a process by which: (1) the stainless steel cladding is removed from the neutron source material, (2) the mixture of the radioactive material (Pu-238 or Am-241) and beryllium that constitutes the neutron source material is chemically separated (recovered), and (3) the recovered Pu-238 or Am-241 is converted to an oxide form ({sup 238}PuO{sub 2} or {sup 241}AmO{sub 2}). The proposed action would include placing the {sup 238}PuO{sub 2} or {sup 241}AmO{sub 2} in interim storage in a special nuclear material vault at the LANL Plutonium Facility.

  1. American Recovery and Reinvestment Act Payments Surge Past $4 Billion |

    Office of Environmental Management (EM)

    Department of Energy 4 Billion American Recovery and Reinvestment Act Payments Surge Past $4 Billion EM has made more than $4 billion in Recovery Act payments, or 32 percent of the DOE's $12.4 billion in Recovery Act payments. DOE received $35.2 billion from the Recovery Act, and EM's portion of that was $6 billion, or 17 percent. American Recovery and Reinvestment Act Payments Surge Past $4 Billion (1.64 MB) More Documents & Publications American Recovery and Reinvestment Act Payments

  2. Economic Implementation and Optimization of Secondary Oil Recovery Process: St. Mary West Field, Lafayette County, Arkansas

    SciTech Connect

    Brock P.E., Cary D.

    2003-03-10

    The purpose of this study was to investigate the economic appropriateness of several enhanced oil recovery processes that are available to a small mature oil field located in southwest Arkansas and to implement the most economic efficient process evaluated. The State of Arkansas natural resource laws require that an oilfield is to be unitized before conducting a secondary recovery project. This requires all properties that can reasonably be determined to include the oil productive reservoir must be bound together as one common lease by a legal contract that must be approved to be fair and equitable to all property owners within the proposed unit area.

  3. Recovery efficiency test project, Phase 2 activity report

    SciTech Connect

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for data frac'' stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.

  4. Recovery Efficiency Test Project: Phase 1, Activity report

    SciTech Connect

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  5. Economic Impact of Recovery Act Investments in the Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Economic Impact of Recovery Act Investments in the Smart Grid Report Now Available Economic Impact of Recovery Act Investments in the Smart Grid Report Now Available April 25, 2013 ...

  6. Secretary Chu Highlights Recovery Act Cleanup Progress | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Safety and Ecology Corporation (SEC), based in Knoxville, Tenn., is one of the small businesses to benefit from Recovery Act funding. The company has been awarded four Recovery ...

  7. DOE OIG Recovery Act Work Plan (FY 2011).xls

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OIG Recovery Act Plan Overview OIG Name: Department of Energy Office of Inspector General ... Materials Link to OIG Recovery Act Work Plan: http:www.ig.energy.govrecoveryact.htm ...

  8. Enhanced Oil Recovery Affects the Future Energy Mix | GE Global...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Enhanced Oil Recovery Affects the Future Energy Mix Click to email this to a friend (Opens ... Enhanced Oil Recovery Affects the Future Energy Mix Trevor Kirsten 2012.11.19 One of the ...

  9. Secretary Chu Announces $93 Million from Recovery Act to Support...

    Energy Saver

    93 Million from Recovery Act to Support Wind Energy Projects Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects April 29, 2009 - 12:00am Addthis ...

  10. Organic Rankine Cycle Turbine for Exhaust Energy Recovery in...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbine for Exhaust Energy Recovery in a Heavy Truck Engine Organic Rankine Cycle Turbine for Exhaust Energy Recovery in a Heavy Truck Engine Presentation given at the 16th ...

  11. BLM to Invest Recovery Act Funds on Renewable Energy Permitting...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Invest Recovery Act Funds on Renewable Energy Permitting BLM to Invest Recovery Act Funds on Renewable Energy Permitting May 6, 2009 - 10:43am Addthis The Bureau of Land...

  12. GE Develops High Water Recovery Technology in China | GE Global...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Develops High Water Recovery Technology in China Click to email this to a friend (Opens in ... GE Develops High Water Recovery Technology in China Technology aims to boost development ...

  13. Energy Secretary Steven Chu to Attend Grand Opening of Recovery...

    Energy Saver

    to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant Energy Secretary Steven Chu to Attend Grand Opening of Recovery Act-Funded A123 Systems Battery Plant ...

  14. Z-Bed Recovery Water Disposal | Department of Energy

    Office of Environmental Management (EM)

    Z-Bed Recovery Water Disposal Z-Bed Recovery Water Disposal Presentation from the 33rd Tritium Focus Group Meeting held in Aiken, South Carolina on April 22-24, 2014. Z-Bed ...

  15. Welcome to the Department of Energy's Recovery Act webinar on...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Welcome to the Department of Energy&8217;s Recovery Act webinar on reporting in to federalreporting Welcome to the Department of Energy&8217;s Recovery Act webinar on reporting ...

  16. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf (177.31 KB) More Documents ...

  17. SRS Recovery Act Completes Major Lower Three Runs Project Cleanup

    Office of Environmental Management (EM)

    ENVIRONMENTAL MANAGEMENT OFFICE OF For More Information on EM Recovery Act Work, Visit Us on the Web: http:www.em.doe.govemrecovery EM Recovery NEWS FLASH August 14, 2012 ...

  18. Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish

    SciTech Connect

    Gingerich, Andrew J.; Philipp, D. P.; Suski, C. D.

    2010-11-20

    The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.

  19. [Waste water heat recovery system]. Final report, September 30, 1992

    SciTech Connect

    Not Available

    1993-04-28

    The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

  20. Secretary Chu Announces Changes to Expedite Economic Recovery Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Changes to Expedite Economic Recovery Funding Secretary Chu Announces Changes to Expedite Economic Recovery Funding February 19, 2009 - 12:00am Addthis WASHINGTON D.C. --- Two days after President Obama signed the historic American Recovery and Reinvestment Act into law, Energy Secretary Steven Chu announced a sweeping reorganization of the Department of Energy's dispersal of direct loans, loan guarantees and funding contained in the new recovery legislation. The goal of

  1. Pennsylvania Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pennsylvania Recovery Act State Memo Pennsylvania Recovery Act State Memo Pennsylvania has substantial natural resources, including coal reserves, wind power and abundant hydropower. The American Recovery and Reinvestment Act( ARRA) is making a meaningful downpayment on the nation's energy and environmental future. The Recovery Act investments in Pennsylvania are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, hydro and

  2. Microsoft PowerPoint - WIPP Recovery Workshop_Final

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    WIPP Recovery Workshop U.S. Department of Energy Waste Isolation Pilot Plant January 14, 2015 1 Agenda * Introduction and Workshop Objective * WIPP Recovery Approach * Interim Performance Measurement Baseline * WIPP Recovery Project Summary Level Schedule * Questions and Answers 2 Introductions and Workshop Objective * Introductions * The objective of this workshop is to provide a forum for a detailed discussion of the WIPP Recovery Project Interim Baseline and to address stakeholder questions

  3. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect

    McInerney, M.J.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.

    2003-01-24

    The overall goal of this research was to develop effective biosurfactant production for enhanced oil recovery in the United States.

  4. Recovery Act Federal Register Notices | Department of Energy

    Energy Saver

    Information Center » 2009 Recovery Act » Recovery Act Federal Register Notices Recovery Act Federal Register Notices October 12, 2011 Federal Register Notice (PDF Version) on the DOE's invitation for public comment on its request to the Office of Management and Budget (OMB) to extend for three years the Information Collection Request Title: OE Recovery Act Financial Assistance Grants, OMB Control No. 1910-5149 that DOE is developing for submission to OMB pursuant to the Paperwork Reduction Act

  5. CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ASSISTANCE PROGRAM | Department of Energy CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM This document contains information on closeout procedures for Recovery Act Grants under the Weatherization Assistance Program (WAP). wap_closeout_guidance.pdf (82.87 KB) More Documents & Publications WPN 12-3: Closeout Procedures for Recovery Act Grants Under the

  6. Hanford's Recovery Act Payments Jump Past $1 Billion

    Energy.gov [DOE]

    The Richland Operations Office's (RL) American Recovery and Reinvestment Act payments at Hanford recently surpassed $1 billion.

  7. 200,000 homes weatherized under the Recovery Act

    Energy.gov [DOE]

    Today Vice President Biden announced that the Weatherization Assistance Program has weatherized 200,000 homes under the Recovery Act.

  8. Recovery Act funds advance cleanup efforts at Cold War site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recovery Act » Recovery Act Reports Recovery Act Reports The following is a list of the oversight results by the Office of Inspector General regarding The Department's programs, grants, and projects funded under the Recovery Act. June 17, 2014 Audit Report: OAS-RA-14-04 Selected Activities of the Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office April 14, 2014 Special Report: OAS-RA-L-14-01 Allegations Regarding the Department of Energy's State Energy Program

  9. EM Recovery Act Top Line Messages | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Top Line Messages EM Recovery Act Top Line Messages The latest Recovery Act performance related information and metrics. EM Recovery Act Top Line Messages - April, 2013 (1.96 MB) More Documents & Publications Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of Schedule Audit Report: IG-0426 Testimony of Mark Whitney Principal Deputy Assistant Secretary for Environmental Management Before the Subcommittee on Environment and the Economy House Energy and Commerce

  10. Cumulative Federal Payments to OE Recovery Act Recipients, through January

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    31, 2015 | Department of Energy January 31, 2015 Cumulative Federal Payments to OE Recovery Act Recipients, through January 31, 2015 Cumulative Federal Payments to OE Recovery Act Recipients, through January 31, 2015. OE ARRA Payments through January 2015 (20.68 KB) More Documents & Publications Cumulative Federal Payments to OE Recovery Act Recipients, through March 31, 2015 Cumulative Federal Payments to OE Recovery Act Recipients, through July 31,

  11. Cumulative Federal Payments to OE Recovery Act Recipients, through March

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    31, 2015 | Department of Energy March 31, 2015 Cumulative Federal Payments to OE Recovery Act Recipients, through March 31, 2015 Cumulative Federal Payments to OE Recovery Act Recipients, through March 31, 2015. OE ARRA Payments through March 2015 (21.05 KB) More Documents & Publications Cumulative Federal Payments to OE Recovery Act Recipients, through January 31, 2015 Cumulative Federal Payments to OE Recovery Act Recipients, through July 31,

  12. Sandia Energy - Upcoming Publication on Recovery Strategies for...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Critical Infrastructures accepted "Optimal recovery sequencing for enhanced resilience and service restoration in transportation networks" for publication. The paper,...

  13. Minnesota Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Minnesota Recovery Act State Memo Minnesota Recovery Act State Memo Minnesota has substantial natural resources, including biomass, wind power, and is a large ethanol producer. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Minnesota are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal power, and the

  14. Mississippi Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mississippi Recovery Act State Memo Mississippi Recovery Act State Memo Mississippi has substantial natural resources, including biomass, oil, coal, and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Mississippi are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to advanced biofuels. Through these investments,

  15. Missouri Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Missouri Recovery Act State Memo Missouri Recovery Act State Memo Missouri has substantial natural resources, including wind and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Missouri are supporting a broad range of clean energy projects from energy efficiency and the smart grid to advanced biofuels and transportation electrification initiatives. Through

  16. Montana Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Montana Recovery Act State Memo Montana Recovery Act State Memo Montana has substantial natural resources, including coal, oil, natural gas, hydroelectric, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Montana are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal. Through these investments,

  17. Nebraska Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nebraska Recovery Act State Memo Nebraska Recovery Act State Memo Nebraska has substantial natural resources, including oil, coal, wind, and hydro electric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Nebraska are supporting abroad range of clean energy projects, from weatherization and retrofits to the smart grid and wind power. Through these investments, Nebraska's

  18. Nevada Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nevada Recovery Act State Memo Nevada Recovery Act State Memo Nevada has substantial natural resources, including geothermal, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Nevada are supporting a broad range of clean energy projects from energy efficiency and the smart grid to geothermal, advanced battery manufacturing, and environmental

  19. New Hampshire Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hampshire Recovery Act State Memo New Hampshire Recovery Act State Memo New Hampshire has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New Hampshire are supporting a broad range of clean energy projects, from weatherization and retrofits to the smart grid. Through these investments, New

  20. New Jersey Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Jersey Recovery Act State Memo New Jersey Recovery Act State Memo New Jersey has substantial natural resources, including wind and biomass. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New Jersey are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to alternative fuels and vehicles, as well as the Princeton Plasma Physics

  1. New Mexico Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mexico Recovery Act State Memo New Mexico Recovery Act State Memo New Mexico has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New Mexico are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and solar, geothermal and hydro,

  2. New York Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    York Recovery Act State Memo New York Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a broad range of clean energy projects from energy efficiency and the smart grid to advanced battery manufacturing, the Brookhaven National Lab in Upton, and cleanup of the state's Cold War legacy nuclear sites. Through these investments, New

  3. North Carolina Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Carolina Recovery Act State Memo North Carolina Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in North Carolina are supporting a broad range of clean energy projects from energy efficiency and the smart grid to solar power and biofuels. Through these investments, North Carolina's businesses, universities, non-profits, and local governments are creating

  4. North Dakota Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dakota Recovery Act State Memo North Dakota Recovery Act State Memo North Dakota has substantial natural resources, including coal, natural gas, oil, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in North Dakota are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to clean coal, wind, and carbon capture

  5. Northern Mariana Islands Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northern Mariana Islands Recovery Act State Memo Northern Mariana Islands Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. Through these investments, Northern Mariana businesses, non-profits, and local governments are creating quality jobs today and positioning Florida to play an important role in the new energy economy of the future. Northern Mariana Islands Recovery Act State Memo

  6. Ohio Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ohio Recovery Act State Memo Ohio Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Ohio are supporting a broad range of clean energy projects from the smart grid and energy efficiency to advanced batter manufacturing, biofuels, carbon capture and storage, and cleanup of the state's Cold War legacy nuclear sites. Through these investments, Ohio's

  7. FY 2011 OIG Recovery Act Plan Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FY 2011 OIG Recovery Act Plan Overview FY 2011 OIG Recovery Act Plan Overview The primary objective of the Office of Inspector General's oversight strategy involves the implementation of a review, evaluation, and investigation protocol designed to assist the Department of Energy in: (1) maximizing the performance and effectiveness of activities related to the Recovery Act; (2) preventing and detecting the fraudulent misuse of Recovery Act funds; and (3) identifying opportunities for cost savings

  8. Business Owners: Prepare a Business Recovery Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Smart business owners develop and test a written business recovery plan to support them through disasters and help them stay in operation. Planning ahead will help your company get back to business more quickly. Consider your risks-How might a disaster affect your business operations? What natural disasters are most likely where you operate? Identify your critical business

  9. American Recovery & Reinvestment Act Newsletter - Issue 29

    Office of Environmental Management (EM)

    Department of Energy | Offi ce of Environmental Management American Recovery & Reinvestment Act Newsletter October 2011 | Issue 29 U.S. Department of Energy Office of Environmental Management http://www.em.doe.gov 1000 Independence Avenue, SW Washington, DC 20585 2 | EM Recovery Act Newsletter October Issue 29 2011 EM Recovery News Highlights Accomplishments in $6 Billion Environmental Cleanup In 2009, the American Recovery and Reinvestment Act invested $6 billion in 91 projects across U.S.

  10. Model Recovery Procedure for Response to a Radiological Transportation...

    Office of Environmental Management (EM)

    for Response to a Radiological Transportation Incident Model Recovery Procedure for Response to a Radiological Transportation Incident This Transportation Emergency...

  11. NREL: Technology Deployment - Disaster Recovery Support at FEMA

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Incorporates Sustainability in Rebuilding Efforts Disaster Recovery Support at FEMA Incorporates Sustainability in Rebuilding Efforts News FEMA Engages NREL in Hurricane Sandy Recovery Effort NREL's Federal Fueling Station Data Supports Superstorm Sandy Recovery Publications NREL's Disaster Resiliency and Recovery Capabilities Alternative Energy Generation Opportunities in Critical Infrastructure Sponsors Federal Emergency Management Agency Key Partners U.S. Army Corps of Engineers State of

  12. Use Feedwater Economizers for Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Feedwater Economizers for Waste Heat Recovery Use Feedwater Economizers for Waste Heat Recovery This tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #3 Use Feedwater Economizers for Waste Heat Recovery (January 2012) (381.06 KB) More Documents & Publications Consider Installing a Condensing Economizer Considerations When Selecting a Condensing Economizer

  13. Video: Recovery Act by the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Video: Recovery Act by the Numbers Video: Recovery Act by the Numbers February 17, 2016 - 11:30am Addthis Watch this video to learn how the Recovery Act helped jumpstart America's clean energy economy. | Video by Simon Edelman and graphics by Carly Wilkins, Energy Department. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs Simon Edelman Simon Edelman Chief Creative Officer Carly Wilkins Carly Wilkins Multimedia Designer MORE ON THE RECOVERY ACT MAP: Learn about the

  14. Rhode Island Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island has substantial natural resources, including wind and biomass. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Rhode Island are supporting a broad range of clean energy projects, from weatherization to smart grid workforce training. Through these investments, Rhode Island's businesses,

  15. Texas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Texas Recovery Act State Memo Texas Recovery Act State Memo Texas has substantial natural resources, including oil, gas, solar, biomass, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Texas are supporting a broad range of clean energy projects, from carbon capture and storage to energy efficiency, the smart grid, solar, geothermal, and biomass projects.

  16. Arizona Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Arizona Recovery Act State Memo Arizona Recovery Act State Memo Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arizona reflect a broad range of clean energy projects, from energy efficiency and the smart grid to transportation, carbon capture and storage, and geothermal energy.

  17. Arkansas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Arkansas Recovery Act State Memo Arkansas Recovery Act State Memo Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to advanced battery manufacturing and renewable energy.

  18. Award Selections for Industrial Technologies Program Recovery Act Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Award Selections for Industrial Technologies Program Recovery Act Funding Award Selections for Industrial Technologies Program Recovery Act Funding A chart detailling Award Selections for Industrial Technologies Program Recovery Act Funding Energy Efficient Information and Communication Technology (ICT) Award Selections for Industrial Technologies Program Recovery Act Funding (17.44 KB) More Documents & Publications ITP_Data_Centers.xls QER - Comment of Information

  19. Hawaii Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii has substantial natural resources, including solar, biomass , geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Hawaii are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind power and biofuels. Through these investments,

  20. Georgia Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Georgia Recovery Act State Memo Georgia Recovery Act State Memo Georgia has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these

  1. Guam Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Guam Recovery Act State Memo Guam Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful downpayment on the nation's energy and environmental future. The Recovery Act investments in Guam are supporting abroad range of clean energy projects, from solar power and wind. Through these investments, Guam's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Guam to play an important role in the new

  2. Utah Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Utah Recovery Act State Memo Utah Recovery Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Utah are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, alternative fuel vehicles, and the

  3. Vermont Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vermont Recovery Act State Memo Vermont Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Vermont are supporting a broad range of clean energy projects from energy efficiency and the smart grid to solar power and biofuels. Through these investments, Vermont's businesses, universities, non-profits, and local governments are creating quality jobs today and

  4. Virgin Islands Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Virgin Islands Recovery Act State Memo Virgin Islands Recovery Act State Memo The American Recovery & Reinvestment Act( ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the U.S. Virgin Islands are supporting a broad range of clean energy projects from energy efficiency and the smart grid to solar power and biofuels. Through these investments, the U.S. Virgin Islands' businesses, universities, non-profits, and local

  5. Virginia Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Virginia Recovery Act State Memo Virginia Recovery Act State Memo Virginia has substantial natural resources, including coal and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Virginia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to alternative fuel vehicles and the Thomas Jefferson National Accelerator Facility

  6. Washington Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Washington Recovery Act State Memo Washington Recovery Act State Memo Washington State has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Washington are supporting a broad range of clean energy projects from energy efficiency and the smart grid to wind, biomass, and geothermal, as well

  7. Weatherization Formula Grants - American Recovery and Reinvestment Act

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (ARRA) | Department of Energy Formula Grants - American Recovery and Reinvestment Act (ARRA) Weatherization Formula Grants - American Recovery and Reinvestment Act (ARRA) U.S. Department of Energy Weatherization Assistance Program, funding for the states, energy efficiency for low-income families, American Recovery and Reinvestment Act of 2009 wap_recovery_act_foa.pdf (273.02 KB) More Documents & Publications Microsoft Word - nDE-FOA-0000051.rtf Weatherization Formula Grants - American

  8. West Virginia Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    West Virginia Recovery Act State Memo West Virginia Recovery Act State Memo West Virginia has substantial natural resources, including coal and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in West Virginia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid, to carbon capture and storage, transportation

  9. A field laboratory for improved oil recovery

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  10. HIGH CURRENT ENERGY RECOVERY LINAC AT BNL.

    SciTech Connect

    LITVINENKO,V.N.; BEN-ZVI,I.; BARTON,D.S.; ET AL.

    2005-05-16

    We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1-1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.

  11. High Current Energy Recovery Linac at BNL

    SciTech Connect

    Vladimir N. Litvinenko; Donald Barton; D. Beavis; Ilan Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X. Chang; Roger Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. McIntyre; W. Meng; T. C. Nehring; A. Nicoletti; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith; T. Srinivasan-Rao; N. Williams; K.-C. Wu; Vitaly Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble

    2004-08-01

    We present the design, the parameters of a small test Energy Recovery Linac (ERL) facility, which is under construction at Collider-Accelerator Department, BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. A possibility for future up-grade to a two-pass ERL is considered. The heart of the facility is a 5-cell 700 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. ERL is also perfectly suited for a far-IR FEL. We present the status and our plans for construction and commissioning of this facility.

  12. Aqueous flooding methods for tertiary oil recovery

    DOEpatents

    Peru, Deborah A.

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  13. Microbial enhanced oil recovery and compositions therefor

    DOEpatents

    Bryant, Rebecca S.

    1990-01-01

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  14. Microbial enhancement of oil recovery: Recent advances

    SciTech Connect

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  15. RECOVERY OF TETRAVALENT CATIONS FROM AQUEOUS SOLUTIONS

    DOEpatents

    Moore, R.L.

    1958-05-01

    The recovery of plutonium, zirconium, and tetravalent cerium values from aqueous solutions is described. It consists of adding an alkyl phosphate to a nnineral acid aqueous solution containing the metal to be recovered, whereby a precipitate forms with the tetravalent values, and separating the precipitate from the solution. All alkyl phosphates, if water-soluble, are suitable for the process; however, monobutyl phosphate has been found best.

  16. Nitric acid recovery from waste solutions

    DOEpatents

    Wilson, A. S.

    1959-04-14

    The recovery of nitric acid from aqueous nitrate solutions containing fission products as impurities is described. It is desirable to subject such solutions to concentration by evaporation since nitric acid is regenerated thereby. A difficulty, however, is that the highly radioactive fission product ruthenium is volatilized together with the nitric acid. It has been found that by adding nitrous acid, ruthenium volatilization is suppressed and reduced to a negligible degree so that the distillate obtained is practically free of ruthenium.

  17. OE Recovery Act News | Department of Energy

    Energy Saver

    News OE Recovery Act News RSS March 23, 2015 Conference Proceedings Available - The Smart Grid Experience: Applying Results, Reaching Beyond In October 2014, the Electric Power Research Institute (EPRI) and the U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) held a conference to assess progress, impacts, benefits, and lessons learned from utility smart grid projects and to exchange information about future challenges and opportunities. The summary

  18. Recovery | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Recovery NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both domestic and international nuclear terrorism. NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder

  19. PROCESS FOR THE RECOVERY OF URANIUM

    DOEpatents

    Morris, G.O.

    1955-06-21

    This patent relates to a process for the recovery of uranium from impure uranium tetrafluoride. The process consists essentially of the steps of dissolving the impure uranium tetrafluoride in excess dilute sulfuric acid in the presence of excess hydrogen peroxide, precipitating ammonium uranate from the solution so formed by adding an excess of aqueous ammonia, dissolving the precipitate in sulfuric acid and adding hydrogen peroxide to precipitate uranium peroxdde.

  20. EM's National TRU Program and WIPP Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EM's National TRU Program and WIPP Recovery Frank Marcinowski, Associate Principal Deputy Assistant Secretary for Regulatory & Policy Affairs for National Cleanup Workshop September 15, 2016 www.energy.gov/EM 2 Today's DOE Panel Participants DOE Field Office Managers: * Todd Shrader, Manager, Carlsbad Field Office, DOE-EM * Doug Hintze, Manager, Los Alamos Field Office, DOE-EM * Jack Zimmerman, Deputy Manager for the Idaho Cleanup Project, Idaho Operations Office, DOE www.energy.gov/EM 3

  1. ARRA521 Recovery Act - Project Daily Report

    Office of Environmental Management (EM)

    Energy ARRA Grid Modernization Investment Highlights - Fact Sheet ARRA Grid Modernization Investment Highlights - Fact Sheet The power grid of the future is a platform that delivers reliable, affordable, and clean electricity to American consumers where they want it, when they want it, and how they want it. To jump start the modernization of our nation's aging energy infrastructure, the American Recovery and Reinvestment Act of 2009 invested $4.5 billion in the electric sector - matched by

  2. Oil recovery by surfactant-alcohol waterflooding

    SciTech Connect

    Chen, C.S.; Luh, Y.

    1983-01-25

    Waterflooding process for the recovery of oil from a subterranean formation in which at least a portion of the injected water preferably comprises a preferentially oil-soluble alcohol, a sulfobetaine, a quaternary ammonium compound containing at least one long chain hydrocarbyl group and a quaternary ammonium compound with short chain hydrocarbyl groups. This formulation serves both as a surfactant and a mobility control agent.

  3. material recovery | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    recovery Material Management and Minimization The Office of Material Management and Minimization (M3) presents an integrated approach to addressing the persistent threat posed by nuclear materials through a full cycle of materials management and minimization efforts. Consistent with the President's highly enriched uranium (HEU) and... Nonproliferation Working in close collaboration with DOE laboratories, DNN develops and tests new technologies to advance U.S. capabilities to monitor

  4. Cement Kiln Flue Gas Recovery Scrubber Project

    SciTech Connect

    National Energy Technology Laboratory

    2001-11-30

    The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

  5. Inherently safe in situ uranium recovery (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Inherently safe in situ uranium recovery Citation Details In-Document Search Title: Inherently safe in situ uranium recovery An in situ recovery of uranium operation involves...

  6. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM mineral-webinar.pdf (3.45 MB) More Documents & Publications LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014 Geothermal Play Fairway Analysis Geothermal Play Fairway Analysis

  7. EM's National TRU Program and WIPP Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EM's National TRU Program and WIPP Recovery EM's National TRU Program and WIPP Recovery Presentation from the 2016 DOE National Cleanup Workshop by Frank Marcinowski, Associate Principal Deputy Assistant Secretary for Regulatory & Policy Affairs. EM's National TRU Program and WIPP Recovery (1015.93 KB) More Documents & Publications Welcome - Opening Remarks Agenda for the 2016 National Cleanup Workshop Resuming Operations at WIPP

  8. Recovery Act Awardees June 25, 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Awardees June 25, 2010 Recovery Act Awardees June 25, 2010 Excel file of Recovery Act Awardees as of June 25th, 2010. recoveryactawardess06252010.xls (929.5 KB) More Documents & Publications Reovery Act Awardees July 22, 2011 Recovery Act Recipient Data Microsoft Word - PSRP Updates 6-25-10_v2

  9. Recovery Act Monthly Reporting Spreadsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recovery Act Monthly Reporting Spreadsheet Recovery Act Monthly Reporting Spreadsheet Monthly Update Report Data Recovery Act Monthly Reporting Spreadsheet (84.9 KB) More Documents & Publications Audit Letter Report: OAS-RA-L-10-01 Audit Report: OAS-RA-L-12-02 Audit Special Report: OAS-RA-10-0

  10. Maximizing NGL recovery by refrigeration optimization

    SciTech Connect

    Baldonedo H., A.H.

    1999-07-01

    PDVSA--Petroleo y Gas, S.A. has within its facilities in Lake Maracaibo two plants that extract liquids from natural gas (NGL), They use a combined mechanic refrigeration absorption with natural gasoline. Each of these plants processes 420 MMsccfd with a pressure of 535 psig and 95 F that comes from the compression plants PCTJ-2 and PCTJ-3 respectively. About 40 MMscfd of additional rich gas comes from the high pressure system. Under the present conditions these plants produce in the order of 16,800 and 23,800 b/d of NGL respectively, with a propane recovery percentage of approximately 75%, limited by the capacity of the refrigeration system. To optimize the operation and the design of the refrigeration system and to maximize the NGL recovery, a conceptual study was developed in which the following aspects about the process were evaluated: capacity of the refrigeration system, refrigeration requirements, identification of limitations and evaluation of the system improvements. Based on the results obtained it was concluded that by relocating some condensers, refurbishing the main refrigeration system turbines and using HIGH FLUX piping in the auxiliary refrigeration system of the evaporators, there will be an increase of 85% on the propane recovery, with an additional production of 25,000 b/d of NGL and 15 MMscfd of ethane rich gas.

  11. Inherently safe in situ uranium recovery.

    SciTech Connect

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  12. Doppler-resolved kinetics of saturation recovery

    SciTech Connect

    Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; Dagdigian, Paul J.; Sears, Trevor J.; Hall, Gregory E.

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Total recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.

  13. Doppler-resolved kinetics of saturation recovery

    DOE PAGES [OSTI]

    Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; Dagdigian, Paul J.; Sears, Trevor J.; Hall, Gregory E.

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmore » recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.« less

  14. Neutral beamline with improved ion energy recovery

    DOEpatents

    Dagenhart, William K.; Haselton, Halsey H.; Stirling, William L.; Whealton, John H.

    1984-01-01

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  15. Neutral beamline with improved ion energy recovery

    DOEpatents

    Kim, Jinchoon

    1984-01-01

    A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.

  16. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovic; De, Asoke Kumar

    2005-06-07

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  17. DEVELOPMENT PROGRAM FOR PU-238 AQUEOUS RECOVERY PROCESS

    SciTech Connect

    M. PANSOY-HJELVIK; M. REIMUS; ET AL

    2000-10-01

    Aqueous processing is necessary for the removal of impurities from {sup 238}Pu dioxide ({sup 238}PuO{sub 2}) fuel due to unacceptable levels of {sup 234}U and other non-actinide impurities in the scrap fuel. Impurities at levels above General Purpose Heat Source (GPHS) fuel specifications may impair the performance.of the heat sources. Efforts at Los Alamos have focused on developing the bench scale methodology for the aqueous process steps which includes comminution, dissolution, ion exchange, precipitation, and calcination. Recently, work has been performed to qualify the bench scale methodology, to show that the developed process produces pure {sup 238}PuO{sub 2} meeting GPHS fuel specifications. In addition, this work has enabled us to determine how waste volumes may be minimized during full-scale processing. Results of process qualification for the bench scale aqueous recovery operation and waste minimization efforts are presented.

  18. PROCESS STUDY OF NOMINAL 2 K REFRIGERATION RECOVERY

    SciTech Connect

    Knudsen, Peter; Ganni, Venkatarao

    2008-03-01

    There is an increased interest in the nominal 2-K helium refrigeration systems (below lambda) for various test stands and applications at the present time. This paper presents the process parameter choices and their influence on the system performance of various noncold compressor configurations. This study is intended to facilitate the adoption of this process in conjunction with commercially-available small 4.5-K helium liquefaction systems. By way of an introduction, the efficiency of some commonly employed (but inefficient) 2-K process configurations are analyzed. Then the analyses of three nominal 2-K refrigeration-recovery process configurations are presented. The effect of the process parameters, such as flow imbalance, heat-exchanger size, supply pressure and 4.5-K plant interaction location(s) are investigated so that the optimum conditions yielding the required performance can be determined.

  19. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovich; De, Asoke Kumar

    2007-07-24

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  20. Geomechanical Study of Bakken Formation for Improved Oil Recovery

    SciTech Connect

    Ling, Kegang; Zeng, Zhengwen; He, Jun; Pei, Peng; Zhou, Xuejun; Liu, Hong; Huang, Luke; Ostadhassan, Mehdi; Jabbari, Hadi; Blanksma, Derrick; Feilen, Harry; Ahmed, Salowah; Benson, Steve; Mann, Michael; LeFever, Richard; Gosnold, Will

    2013-12-31

    On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.