National Library of Energy BETA

Sample records for deep water royalty

  1. Deep Water Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deepwater Technology Deepwater (and Ultra-Deepwater, 5000 feet of water depth and beyond) is recognized as one of the last remaining areas of the world were oil and natural gas resources remain to be discovered and produced. The architecture of the systems employed to cost-effectively develop these resources in an environmentally safe manner, reflect some of industry's most advanced engineering accomplishments. NETL funds research to catalyze further advances that can help Gulf of Mexico

  2. Deepwater royalty relief product of 3 1/2 year U.S. political effort

    SciTech Connect

    Davis, R.E.; Neff, S.

    1996-04-01

    Against the backdrop of more than 20 years of increasingly stringent environmental regulation, ever-expanding exploration and development moratoria on the Outer Continental Shelf (OCS), and reductions in producer tax incentives, oil and natural gas exploration companies active in deep waters of the Gulf of Mexico recently won a significant legislative victory. On Nov. 28, 1995, President Clinton signed into law S.395, the Alaska Power Administration Sale Act. Title 3 of S.395 embodies the Outer Continental Shelf Deep Water Royalty Relief Act. This landmark legislation provides substantial incentives for oil and natural gas production in the gulf of Mexico by temporarily eliminating royalties on certain deepwater leases. It is the first direct incentive for oil and gas production enacted at the federal level in many years. This paper reviews the elements used to arrive at this successful legislation including the congressional leadership. It describes debates, cabinet level discussions, and use of parlimentary procedures.

  3. Hawaii Deep Water Cable Program: Executive Summary

    SciTech Connect

    1990-09-01

    The Hawaii Deep Water Cable Program has succeeded unequivocally in determining the feasibility of deploying a submarine power cable system between the islands of Hawaii and Oahu. Major accomplishments of the program include designing, fabricating and testing an appropriate power cable, developing an integrated system to control all aspects of the cable laying operation, and testing all deployment systems at sea in the most challenging sections of the route.

  4. Articulated plural well deep water production system

    SciTech Connect

    Lawson, J.

    1980-07-08

    Apparatus for subsea production of fluids through a manifold and central riser from a plurality of individual wells drilled in different parts of a field in deep water, is described that is comprised of: a central manifold base having flow line connectors thereon; an elongated boom for each well to be produced in a field, each boom being rigidly attached to the manifold base; a temporary guide base mounted to the other end of each boom for establishing a well site; and a flow line extending along each boom from a flow line connector on the central manifold base. A method of producing well fluids from a number of individual wells drilled in different parts of a field located in deep water to a production platform via a central riser, which comprises the steps of: submerging to the ocean floor a subsea production apparatus which includes a central manifold base having an elongated boom for each well articulated thereto at one end and mounting a temporary guide base at the other end of the boom for establishing a well site, and a preinstalled flow line extending along each boom from the manifold base; landing a manifold section on the manifold; and landing a subsea tree on each temporary guide base.

  5. Cost reduction in deep water production systems

    SciTech Connect

    Beltrao, R.L.C.

    1995-12-31

    This paper describes a cost reduction program that Petrobras has conceived for its deep water field. Beginning with the Floating Production Unit, a new concept of FPSO was established where a simple system, designed to long term testing, can be upgraded, on the location, to be the definitive production unit. Regarding to the subsea system, the following projects will be considered. (1) Subsea Manifold: There are two 8-well-diverless manifolds designed for 1,000 meters presently under construction and after a value analysis, a new design was achieved for the next generation. Both projects will be discussed and a cost evaluation will also be provided. (2) Subsea Pipelines: Petrobras has just started a large program aiming to reduce cost on this important item. There are several projects such as hybrid (flexible and rigid) pipes for large diameter in deep water, alternatives laying methods, rigid riser on FPS, new material...etc. The authors intend to provide an overview of each project.

  6. Deep Water Drilling to Catalyze the Global Drilling Fluids Market...

    OpenEI (Open Energy Information) [EERE & EIA]

    Deep Water Drilling to Catalyze the Global Drilling Fluids Market Home > Groups > Renewable Energy RFPs John55364's picture Submitted by John55364(100) Contributor 13 May, 2015 -...

  7. ULTRA-DEEP WATER ADVISORY COMMITTEE FINDINGS AND

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ULTRA-DEEP WATER ADVISORY COMMITTEE FINDINGS AND RECOMMENDATIONS 2014 ULTRA-DEEPWATER ADVISORY COMMITTEE COMMITTEE FINDINGS AND RECOMMENDATIONS i Table of Contents Research and Development Program Committee ............................................ 1 Sunset Committee .................................................................................................. 5 Advisory Committee Members ........................................................................... 7 ULTRA-DEEPWATER

  8. Application of water-base mud in deep well drilling

    SciTech Connect

    Li, Y.; Qian, F.; Lo, P.

    1982-01-01

    This paper reports the results of laboratory research and field practice on the application of temperature resistant water-base muds for deep drilling in Sichuan Province, China. The major problems discussed include mud stability; adjustment and control of mud properties under high temperatures and pressures; the effect of pH on the properties of mud systems. Some means of solving these and other problems involved in deep well drilling are proposed.

  9. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our

  10. Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement

    SciTech Connect

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-02-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300–480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  11. MHK Technologies/Deep Ocean Water Application Facility DOWAF...

    OpenEI (Open Energy Information) [EERE & EIA]

    the temperature differential between the warm surface and the cold deep seawater The OTEC heat engine converts the thermal energy into usable mechanical energy which in turn is...

  12. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-08-12

    We are now entering the final stages of our ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342). We have now developed several techniques to help distinguish economic hydrocarbon deposits from false ''Fizz'' gas signatures. These methods include using the proper in situ rock and fluid properties, evaluating interference effects on data, and doing better constrained inversions for saturations. We are testing these techniques now on seismic data from several locations in the Gulf of Mexico. In addition, we are examining the use of seismic attenuation as indicated by frequency shifts below potential reservoirs. During this quarter we have: Began our evaluation of our latest data set over the Neptune Field; Developed software for computing composite reflection coefficients; Designed and implemented stochastic turbidite reservoir models; Produced software & work flow to improve frequency-dependent AVO analysis; Developed improved AVO analysis for data with low signal-to-noise ratio; and Examined feasibility of detecting fizz gas using frequency attenuation. Our focus on technology transfer continues, both by generating numerous presentations for the upcoming SEG annual meeting, and by beginning our planning for our next DHI minisymposium next spring.

  13. Crude oil and natural gas dissolved in deep, hot geothermal waters...

    Office of Scientific and Technical Information (OSTI)

    oil and natural gas dissolved in deep, hot geothermal waters of petroleum basins--a possible significant new energy source Citation Details In-Document Search Title: Crude oil and ...

  14. Subsea innovative boosting technologies on deep water scenarios -- Impacts and demands

    SciTech Connect

    Caetano, E.F.; Mendonca, J.E.; Pagot, P.R.; Cotrim, M.L.; Camargo, R.M.T.; Assayag, M.I.

    1995-12-31

    This paper presents the importance of deep water scenario for Brazil, the PETROBRAS Deep and Ultra-Deep Water R and D Program (PROCAP-2000) and the candidate fields for the deployment of subsea innovative boosting technologies (ESPS -- electrical submersible pump in subsea wells, SSS -- subsea separation systems and SBMS -- subsea multiphase flow pumping system) as well as the problems associated with the flow assurance in such conditions. The impact of those innovative systems, their technological stage and remaining demands to make them available for deployment in offshore subsea areas, mainly in giant deepwater fields, are discussed and predicted.

  15. MHK Technologies/Deep water capable hydrokinetic turbine | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Hills Inc...

  16. Federal Oil and Gas Royalty Management Act of 1982 | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Management Act of 1982 Jump to: navigation, search Statute Name Federal Oil and Gas Royalty Management Act of 1982 Year 1982 Url RoyaltyAct.jpg Description The Royalty Management...

  17. Sandia National Laboratories Work to Reduce Cost of Deep-Water Offshore

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wind | Department of Energy Work to Reduce Cost of Deep-Water Offshore Wind Sandia National Laboratories Work to Reduce Cost of Deep-Water Offshore Wind October 24, 2016 - 4:26pm Addthis Many U.S. coastal regions have both large population centers and strong offshore wind resources, making offshore wind energy an attractive solution for meeting the energy needs of coastal communities. However, the biggest barrier to realizing the potential benefits of offshore wind is its cost, particularly

  18. Overview of the Federal Offshore Royalty Relief Program

    Reports and Publications

    2006-01-01

    This special report briefly explains the set of laws that govern royalty payments for federal offshore oil and natural gas production.

  19. Federal Oil and Gas Royalty Simplification and Fairness Act of...

    OpenEI (Open Energy Information) [EERE & EIA]

    Simplification and Fairness Act of 1996 Jump to: navigation, search Statute Name Federal Oil and Gas Royalty Simplification and Fairness Act Year 1996 Url Royaltysimplact.jpg...

  20. Business and technical overview of the Gulf of Mexico deep-water play

    SciTech Connect

    Van Den Berg, A.N.; Dirks, W.K. )

    1993-09-01

    A steadily growing volume of publicly available data (well logs, speculative seismic surveys, press releases, etc.) strongly suggests that the deep-water part of the Gulf of Mexico contains large reserves of recoverable hydrocarbons. Well logs available through the minerals management Service Order 4 Release Program indicate at least 25 potentially developable accumulations have been found, some 14 of which had been publicized at the time of this paper. We estimate that industry has spent more than $4 billion nominal to discover at least 1.5 billion bbl of oil equivalent, of which only a small fraction has been developed and produced. Most volumetrically significant deep-water discoveries can be geographically grouped into six [open quotes]corridors[close quotes] in which industry collaboration in terms of shared infrastructure, operating principles, service company support, etc., seems inevitable. Given the tremendous technical challenges and uncertainties associated with the play, coupled with the high cost of building, installing, and operating deep-water production systems, industry cooperation similar to that found in some international arenas will be critical to achieving production in this promising new area of an established basin.

  1. Three Companies Awarded Contracts for Royalty-in-Kind Exchanges...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy (DOE) today awarded contracts to Shell Trading Company, Sunoco Logistics, and BP North America for exchange of 12.3 million barrels of royalty oil produced...

  2. The development of a subsea power transmission system for deep water boosting applications

    SciTech Connect

    Godinho, C.A.; Campagnac, L.A.; Nicholson, A.; Magalhaes, W.M.

    1996-12-31

    This paper presents the development of a subsea power transmission in medium voltage and variable frequency, as a key system for application of Boosting Technology and, more particularly, for Electrical Submersible Pumping in deep water wells. The focuses of this paper are mainly on the design and manufacture of subsea power cables and transformers for 1,000 m water depth. The production from a subsea well equipped with ESP`s is a fact since October/94, with the first installation in the Campos Basin, Brazil. The development of the subsea power transmission in medium voltage and variable frequency will allow the installation of a Boosting System in deep water at long distance (25 km or more) from the production platform. The design and manufacture of subsea power cables and subsea power transformers, as well as the integration of the complete power system is a result of a Technological Cooperation Agreement with Tronic, Pirelli, Siemens A.G. and Siemens Brazil. As a result from this agreement subsea power cables up to 12/20 kV voltage level, conductor sizes from 35 to 150 mm{sup 2}, oil filled subsea power transformer rated at 750 kVA, nominal voltage ratio 10,000/3,000 V and the electrical connectors to X-tree will be developed and manufactured.

  3. Ground-water hydraulics of the deep-basin brine aquifer, Palo Duro Basin, Texas panhandle

    SciTech Connect

    Smith, D.A.

    1985-01-01

    The Deep-Basin Brine aquifer of the Palo Duro Basin (Texas Panhandle) underlies thick Permian bedded evaporites that are being evaluated as a potential high-level nuclear waste isolation repository. Potentiometric surface maps of 5 units of the Deep-Basin Brine aquifer were drawn using drill-stem test (DST) pressure data, which were analyzed by a geostatistical technique (kriging) to smooth the large variation in the data. The potentiometric surface maps indicate that the Deep-Basin Brine aquifer could be conceptually modeled as 5 aquifer units; a Lower Permian (Wolfcamp) aquifer, upper and lower Pennsylvanian aquifers, a pre-Pennsylvanian aquifer, and a Pennsylvanian to Wolfcampian granite-wash aquifer. The hydraulic head maps indicate that ground-water flow in each of the units is west to east with a minor northerly component near the Amarillo Uplift, the northern structural boundary of the basin. The Wolfcamp potentiometric surface indicates the strongest component of northerly flow. Inferred flow direction in Pennsylvanian aquifers is easterly, and in the pre-Pennsylvanian aquifer near its pinch-out in the basin center, flow is inferred to be to the north. In the granite-wash aquifer the inferred flow direction is east across the northern edge of the basin and southeast along the Amarillo Uplift.

  4. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    SciTech Connect

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  5. Early Permian deep-water allochthonous limestone facies and reservoir, west Texas

    SciTech Connect

    Hobson, J.P.; Caldwell, C.D.; Toomey, D.F.

    1985-12-01

    Conventional cores from six wells in southwest Reagan and northern Crockett Counties, Texas, recovered interbedded limestone conglomerate, intraclast and bioclast limestone, calcarenite, and shale. Twenty-one lithologies are grouped into six lithofacies based on study of slabbed core surfaces. The limestone facies are interpreted on the basis of petrologic characteristics, biota regional stratigraphic setting, and facies stratigraphy as deep water and allochthonous. Biotic constituents within the lithoclasts and matrix indicate an Early Permian (Wolfcamp) age. Age and facies determinations from cores in the Gunnx area significantly alter earlier stratigraphic interpretations made with wireline logs alone. Late Paleozoic allochthonous carbonate facies may provide significant new reserves in the Permian basin. 19 figures, 2 tables.

  6. Deep water pipeline intervention work with an acoustically controlled power module

    SciTech Connect

    Conter, A.; Launaro, F.; Bigoni, G.

    1995-12-31

    The stabilisation of submarine pipeline free spans along uneven sea bottoms is conventionally performed using technologies such as gravel dumping, post trenching, matresses installation etc.. A new technology has been developed to support free spans along the 26 inches Transmed Gas Pipelines crossing the Sicily Channel in water depths ranging from 50m to 510m. This technology is based on the pipeline mechanical supports {open_quotes}Atlantis{close_quotes} and their installation module {open_quotes}Pegaso{close_quotes} and was developed having in mind requirements such as short installation time, system redundancy, operational flexibility and simple interface with the support vessel. The installation time reduction is achieved by automatic operational procedures which are acoustically controlled from surface. Power is stored inside two dedicated battery packs placed onboard Pegaso; no umbilical cable is necessary so that a vessel equipped with a normal crane is enough to launch and operate the system. Marine operations carried out in 1993 showed that a support can be installed in about one hour; in good weather conditions three Atlantis were installed in 24 hours including deck operations for recharging the battery packs; as a total sixteen supports were installed along the 4th and 5th Transmed Gas Pipelines. The system has proved to be a cost effective and flexible alternative to conventional technologies for free span support, especially in deep waters. A cost/benefit analysis also shows the breakeven point of the new technology versus gravel dumping.

  7. INJECTION PROFILE MODIFICATION IN A HOT, DEEP MINNELUSA WATER INJECTION PROJECT

    SciTech Connect

    Lyle A. Johnson Jr.

    2001-09-01

    As oil fields in the United States age, production enhancements and modifications will be needed to increase production from deeper and hotter oil reservoirs. New techniques and products must be tested in these areas before industry will adapt them as common practice. The Minnelusa fields of northeastern Wyoming are relatively small, deep, hot fields that have been developed in the past ten to twenty years. As part of the development, operators have established waterfloods early in the life of the fields to maximize cumulative oil production. However, channeling between injectors and producers does occur and can lead to excessive water production and bypassed oil left in the reservoir. The project evaluated the use of a recently developed, high-temperature polymer to modify the injection profiles in a waterflood project in a high-temperature reservoir. The field is the Hawk Point field in Campbell County, Wyoming. The field was discovered in 1986 and initially consisted of eight producing wells with an average depth of 11,500 feet and a temperature of 260 F (127 C). The polymer system was designed to plug the higher permeable channels and fractures to provide better conformance, i.e. sweep efficiency, for the waterflood. The project used a multi-well system to evaluate the treatment. Injection profile logging was used to evaluate the injection wells both before and after the polymer treatment. The treatment program was conducted in January 2000 with a treatment of the four injection wells. The treatment sizes varied between 500 bbl and 3,918 bbl at a maximum allowable pressure of 1,700 psig. Injection in three of the wells was conducted as planned. However, the injection in the fourth well was limited to 574 bbl instead of the planned 3,750 bbl because of a rapid increase in injection pressure, even at lower than planned injection rates. Following completion of polymer placement, the injection system was not started for approximately one week to permit the gel to

  8. Significance of water fluxes in a deep arid-region vadose zone to waste disposal strategies

    SciTech Connect

    Johnejack, K.R.; Blout, D.O.; Sully, M.J.; Emer, D.F.; Hammermeister, D.P. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States); Dever, L.G.; O`Neill, L.J. [DOE Nevada Operations Office, Las Vegas, NV (United States). Waste Management Div.; Tyler, S.W. [Desert Research Institute, Reno, NV (United States). Water Resources Center; Chapman, J. [Desert Research Institute, Las Vegas, NV (United States). Water Resources Center

    1994-03-01

    Recently collected subsurface site characterization data have led to the development of a conceptual model of water movement beneath the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) that differs significantly from the conceptual model of water movement inherent in Resource Conservation and Recovery Act (RCRA) regulations. At the Area 5 RWMS, water fluxes in approximately the upper 75 m (250 ft) of the vadose zone point in the upward direction (rather than downward) which effectively isolates this region from the deep (approximately 250 m (820 ft)) uppermost aquifer. Standard RCRA approaches for detection and containment (groundwater monitoring and double liners/leachate collection/leak detection systems) are not able to fulfill their intended function in this rather unique hydrogeologic environment. In order to better fulfill the waste detection and containment intentions of RCRA for mixed waste disposal at the Area 5 RWMS, the Department of Energy, Nevada Operations Office (DOE/NV) is preparing a single petition for both a waiver from groundwater monitoring and an exemption from double liners with leachate collection/leak detection. DOE/NV proposes in this petition that the containment function of liners and leachate collection is better accomplished by the natural hydrogeologic processes operating in the upper vadose zone; and the detection function of groundwater monitoring and the leak detection system in liners is better fulfilled by an alternative vadose zone monitoring system. In addition, an alternative point of compliance is proposed that will aid in early detection, as well as limit the extent of potential contamination before detection. Finally, special cell design features and operation practices will be implemented to limit leachate formation, especially while the cell is open to the atmosphere during waste emplacement.

  9. Critique of the Saskatchewan Uranium Royalty in the light of neutral taxation

    SciTech Connect

    Kwon, O.Y.

    1982-01-01

    The Saskatchewan Uranium Royalty System, in operation since 1976, is the provincial government's prime policy vehicle towards the uranium industry. The enunciated objectives of the royalty system are (Sask., 1977): (a) to ensure a minimum return to the province from the extraction of uranium; (b) to capture a fair share of the ''excess'' profits; (c) to provide the producers with an adequate rate of return on investment; and (d) to leave marginal production decisions unaffected. The purpose of this paper is to evaluate the royalty system in light of these objectives. This article evaluates neutral taxation and how it effects the Saskatchwan Royalty System.

  10. LABORATORY ROYALTY USE PROGRAM ANNUAL REPORT TO THE DEPARTMENT OF ENERGY

    SciTech Connect

    OGEKA,G.J.; FOX,K.J.

    1999-12-31

    Brookhaven National Laboratory was established in 1947 on the site of the former Army Camp Upton. Brookhaven is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical and environmental sciences, and in selected energy technologies. Associated Universities, Inc. managed the Laboratory, under contract with the US Department of Energy until April 30, 1998. On March 1, 1998, Brookhaven Science Associates LLC (BSA) was awarded a contract by the US Department of Energy to manage the Laboratory. Brookhaven Science Associates has taken responsibility for all aspects of the existing Royalty Use Program from the prior contractor, AUI. This report is limited to FY 1998 activities of the Royalty Use Program that were funded by royalty income from prior fiscal years. Any FY 1998 royalty income allocated in FY 1998 shall be reported in the FY 1999 Royalty Use Program Report.

  11. Layman's guide to oil and gas investments and royalty income

    SciTech Connect

    Brown, T.E.; Miller, S.

    1985-01-01

    This thoroughly revised second edition explains the basics of what oil and gas are, where they can be found, the people who find and produce it, the deal process, detecting the ''wormy'' and fraudulent deal, and what tax advantages you might expect. Government controls, oil and reserve estimates, leasing updated to 1985. New material includes effects of the dramatic drop in drilling costs over the last three years, new deductions and write-offs, sample tax calculations, rights and royalties, conservation rules, regulations, and laws, a thorough examination of lease agreement clauses, and a special section on OTC energy stocks.

  12. Three Companies Awarded Contracts for Royalty-in-Kind Exchanges for the SPR

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Companies Awarded Contracts for Royalty-in-Kind Exchanges for the SPR Three Companies Awarded Contracts for Royalty-in-Kind Exchanges for the SPR November 8, 2007 - 4:31pm Addthis Deliveries to Begin in January 2008 WASHINGTON, DC - The U.S. Department of Energy (DOE) today awarded contracts to Shell Trading Company, Sunoco Logistics, and BP North America for exchange of 12.3 million barrels of royalty oil produced from the Gulf Coast for crude oil meeting the

  13. Deep-water density current deposits of Delaware Mountain Group (Permian), Delaware basin, Texas and New Mexico

    SciTech Connect

    Harms, J.C.; Williamson, C.R.

    1988-03-01

    The Guadalupian Delaware Mountain Group is a 1000-1600-m (3281-5250-ft) thick section of siltstone and sandstone deposited in a deep-water density-stratified basin surrounded by carbonate banks or reefs and broad shallow evaporite-clastic shelves. The most prevalent style of basinal deposition was suspension settling of silt. Laminated siltstone beds are laterally extensive and cover basin-floor topographic irregularities and flat-floored channels as much as 30 m (99 ft) deep and 1 km or more wide. Channels can be observed in outcrop at the basin margin and can be inferred from closely spaced wells in the basin. The channels are straight to slightly sinuous, trend at high angles to the basin margin, and extend at least 70 km (43 mi) into the basin. Sandstone beds, confined to channels, form numerous stratigraphic traps. Hydrocarbon sealing beds are provided by laminated organic siltstone, which laterally can form the erosional margin where channels are cut into siltstone beds. Thick beds of very fine-grained sandstones fill the channels. These sandstones contain abundant large and small-scale traction-current-produced stratification. These sandy channel deposits generally lack texturally graded sedimentation units and show no regular vertical sequence of stratification types or bed thickness. Exploration predictions based on submarine fan models formed by turbidity currents would anticipate very different proximal-distal changes in sandstone geometry and facies. 16 figures.

  14. I.C. 47-1605 - Geothermal Resources - Leases--Rental and Royalty...

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: I.C. 47-1605 - Geothermal Resources - Leases--Rental and RoyaltyLegal Abstract This code...

  15. Porosity distribution in Wolfcamp strata, Palo Duro basin, Texas panhandle: implications for deep-basin ground-water flow

    SciTech Connect

    Conti, R.D.; Wirojanagud, P.

    1984-04-01

    Average-porosity distributions in the Wolfcamp deep-basin aquifer are critical to discernment of the geographic trends in effective-porosity in the Palo Duro basin. Precise data are used to improved resolution of porosity values for computer-simulated areal ground-water modeling. Assessing vertical distributions of lithology and porosity in each well studied involves analysis of crossplotted neutron- and density-porosity log responses. This method more accurately identifies lithology and porosity than does the commonly employed crossplotted neutron-porosity and sonic (interval travel time) responses. Log-derived average-porosity distributions yield information about effective pore volume (i.e., movable water) in the Wolfcamp aquifer and enhance the accuracy of estimated of travel times and velocities of brines in basinwide traverses. Mathematical analysis of average travel time and total effective pore volume yield estimates of the rates of annual discharge from the Wolfcamp aquifer in the Palo Duro basin. Based on average flush rates between 2.2 and 1.5 m.y., annual discharge rates from the Wolfcamp aquifer across the northern and eastern basin boundaries, are about 3.6 x 10/sup 5/ m/sup 3/ year/sup -1/ to 5.3 x 10/sup 5/m/sup 3/ year/sup -1/.

  16. A decision support system for real-time management of dissolvedoxygen in the Stockton deep water ship channel

    SciTech Connect

    Quinn, N.W.T.; Chen, Carl W.; Stringfellow, William T.

    2003-07-16

    A decision support system(DSS)is under development to assistin the control and management of episodes of dissolved oxygen sag in aDeep Water Ship Channel (DWSC), located in Stockton, California. The DWSCwas formed by excavating the bed of the San Joaquin River in the 1950'sto allow navigation by ocean-going cargo ships to the Port of Stockton.The deepened channel has the effect of increasing hydraulic residencetime by a factor of ten. allowing accumulation of decaying algae andother oxygen demanding substances - which creates a barrier to themigration of anadromous fish. This problem, which manifests itself inlate summer and early autumn, is an impediment to a multimillion dollarhabitat restoration effort for the salmon fishery in the San JoaquinRiver basin (SJRB). A hydrodynamic and water quality model of the Deltaand San Joaquin River forms the basis of the DSS which will provideforecasts of dissolved oxygen sag in the DWSC and provide modelingsupport for management actions such as forced aeration to improvedissolved oxygen concentrations in the Ship Channel. A graphical userinterlace, currently used for displaying flow and salinity forecasts onthe San Joaquin River, is being adapted to allow the display of dissolvedoxygen forecasts and to encourage the formation of a stakeholder-ledentity or institution to adaptively manage the problem.

  17. Alloy 825 and 718 gasket corrosion in deep water (500 m) connections

    SciTech Connect

    Amen, C.; Howl, R.; Oldfield, J.W.

    1999-11-01

    Corrosion has been observed on a number of alloy 718 (UNS N07718) and alloy 825 (UNS N08825) gaskets from subsea connections. The gaskets were in contact with either weld overlaid alloy 625 (UNS N06625) or super duplex stainless steel hubs (UNS S32750). A few hubs also showed some limited corrosion in regions where severe gasket corrosion had occurred. Corrosion was more prevalent on jumpers that had been exposed to sea water for a few months at alloy 718 (UNS N07718) gaskets in contact with alloy 625 (UNS N06625) weld overlay. General observations were that short term exposures of up to 20 days did not result in corrosion but longer exposures of 40--50 days resulted in severe attack. A program of work was carried out to determine the reason for the observed attack and to suggest ways of avoiding it in the future. This paper describes the findings of the study.

  18. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES

    SciTech Connect

    Steve Holditch; Emrys Jones

    2003-01-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

  19. Salt tectonics and structural styles in the deep-water province of the Cabo Frio Region, Rio de Janeiro, Brazil

    SciTech Connect

    Mohriak, W.U.; Macedo, J.M.; Castellani, R.T.

    1996-12-31

    The Cabo Frio region, offshore Rio de Janeiro, lies between two of the most prolific Brazilian oil provinces, the Campos and Santos basins. Major geologic features have been identified using a multidisciplinary approach integrating seismic, gravity, petrographic, and borehole data. The Cabo Frio frontier region is characterized by marked changes in stratigraphy and structural style and is unique among the Brazilian marginal basins. Major geologic features include the deflection of the coastline and pre-Aptian hings line from northeast to east; a large east-striking offshore graben related to salt tectonics; a northwest-trending lineament extending from oceanic crust to the continent; basement-involved landward-dipping (antithetic) normal faults in shallow water; a stable platform in the southern Campos Basin; a thick sequence of postbreakup intrusive and extrusive rocks; and, near the Santos Basin, a mobilized sequence of deep-water postrift strata affected by landward-dipping listric normal faults. These faults are unusual in salt-related passive margins in that they dip landward, apparently detach on the Aptian salt, and show large late Tertiary offsets. Locally, the older sequences do not show substantial growth in the downthrown blocks. South of the Rio de Janeiro coast, a phenomenal landward-dipping fault system detaches blocks of the Albian platform to the north and, to the south, coincides with the depositional limit of the Albian platform. Two end-member processes of salt tectonics in the Cabo Frio region result in either synthetic or antithetic basal shear along the fault weld under the overburden: (1) thin-skinned processes, in which the listric faults were caused by salt flow in response to gravity forces related to massive clastic progradation from the continent; and (2) thick-skinned processes, in which faulting was indirectly triggered by diastrophic causes or disequilibrium in the basement topography.

  20. Deep Vadose Zone

    Energy.gov [DOE]

    The Mission of the Deep Vadose Zone Applied Field Research Initiative is to protect water resources across the DOE complex over the long-term by developing effective solutions to solve DOEā€™s most...

  1. Impact of geothermal technology improvements on royalty collections on federal lands: Volume II: Appendices

    SciTech Connect

    Not Available

    1988-10-01

    This volume contains the appendices for the ''Impact of Geothermal Technology Improvements on Royalty Collections on Federal Lands, Final Report, Volume I.'' The material in this volume supports the conclusions presented in Volume I and details each Known Geothermal Resource Area's (KGRA's) royalty estimation. Appendix A details the physical characteristics of each KGRA considered in Volume I. Appendix B supplies summary narratives on each state which has a KGRA. The information presented in Appendix C shows the geothermal power plant area proxies chosen for each KGRA considered within the report. It also provides data ranges which fit into the IMGEO model for electric energy cost estimates. Appendix D provides detailed cost information from the IMGEO model if no Geothermal Program RandD goals were completed beyond 1987 and if all the RandD goals were completed by the year 2000. This appendix gives an overall electric cost and major system costs, which add up to the overall electric cost. Appendix E supplies information for avoided cost projections for each state involved in the study that were used in the IMGEO model run to determine at what cost/kWh a 50 MWe plant could come on line. Appendix F supplies the code used in the determination of royalty income, as well as, tabled results of the royalty runs (detailed in Appendix G). The tabled results show royalty incomes, assuming a 10% discount rate, with and without RandD and with and without a $0.01/kWh transmission cost. Individual data sheets for each KGRA royalty income run are presented in Appendix G.

  2. SPR to Continue Royalty-in-Kind Fill Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    April 4, 2008 - 2:47pm Addthis Solicitation to Exchange Royalty Oil from Offshore U.S. Leases WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued a solicitation seeking contracts to exchange up to 13 million barrels of royalty oil from Federal leases in the Gulf of Mexico for crude oil that meets the specifications of the Strategic Petroleum Reserve (SPR). Bids are due by May 13, 2008. This action is taken in accordance with the provisions of the Energy Policy Act of 2005, which

  3. Numerical modeling of regional ground-water flow in the deep-basin brine aquifer of the Palo Duro Basin, Texas Panhandle

    SciTech Connect

    Wirojanagud, P.; Kreitler, C.W.; Smith, D.A.

    1986-01-01

    Bedded Permian-age evaporite sequences in the Palo Duro Basin are being considered for a permanent nuclear waste repository by the U.S. Department of Energy. The purpose of this modeling study is to provide an understanding of regional ground-water flow in the formations beneath the Permian evaporite section. From this understanding, more detailed, smaller scale studies can be designed. This study is also intended to provide a better understanding of the boundary conditions and permeabilities of the aquifer and aquitard system as well as provide estimates of ground-water travel times across the basin. Numerical simulations were made of the Wolfcamp aquifer modeled as a single layer and of the entire Deep-Basin Brine aquifer system, including the Wolfcamp aquifer, modeled as a single layer.

  4. Deep Lysimeter

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2004-06-01

    A deep lysimeter including a hollow vessel having a chamber, a fill conduit extending into the chamber through apertures, a semi-permeable member mounted on the vessel and in fluid communication with the fill conduit, and a line connection for retrieving the lysimeter.

  5. SPR to Continue Royalty-in-Kind Fill Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 10, 2007 - 3:14pm Addthis Solicitation to Exchange Royalty Oil from Offshore U.S. Leases WASHINGTON, DC -The U.S. Department of Energy today issued a solicitation seeking contracts to exchange up to approximately 13 million barrels from Federal leases in the Gulf of Mexico for crude oil that meets the specifications of the Strategic Petroleum Reserve (SPR). Bids are due by November 6, 2007. This action is taken in accordance with the provisions of the Energy Policy Act of 2005 which

  6. Waveā€“current interaction in the presence of a three-dimensional bathymetry: Deep water wave focusing in opposing current conditions

    SciTech Connect

    Rey, V. Charland, J. Touboul, J.

    2014-09-15

    Large scale experiments were carried out in the Ocean Engineering Basin FIRST, France. A tri-dimensional bathymetry consisting of two symmetrical submerged mounds was displayed on the flat bed on both sides of the basin. Regular waves of frequency corresponding to deep water conditions above the bathymetry were generated in opposing current conditions. A strong tri-dimensional behaviour is observed for the wave amplitude, leading to a strong focusing (up to twice the incident amplitude) of the wave energy towards the central deeper zone. This amplification cannot be ascribed to the increase of the current intensity in the main wave direction, nor to a current gradient normally to the wave direction. A wave phase gradient, normal to its main direction, is observed up-wave (or downstream) the mounds. This phase lag depends on the wave amplitude, it is the higher for the moderate amplitude case. The experimental data are compared with calculations of a refraction-diffraction model assuming a depth-averaged current. If the model qualitatively predicts the wave amplification in the centerline of the basin, discrepancies are observed in the vicinity of the depth changes. The observed mean current vertical profile shape is then supposed to play a significant role in the wave focusing, especially near the steep slopes down-stream the mounds. In addition, the waves are found to modify substantially both horizontal and vertical current fields.

  7. Selectively reducing offshore royalty rates in the Gulf of Mexico could increase oil production and federal government revenue

    SciTech Connect

    Bowsher, C.A.

    1985-05-10

    The US government leases large areas in the Outer Continental Shelf in the Gulf of Mexico for the development of oil resources and receives royalties on the oil produced. Conventional methods of oil recovery have recovered or are expected to recover about half of the 16 billion barrels of oil discovered in this area. Other oil recovery methods, collectively known as enhanced oil recovery (EOR), could potentially increase production by about 1 billion barrels of oil. EOR in the Gulf is expensive and does not appear to be economically justified in most cases. Under existing economic conditions and federal policies, GAO's review indicates that utilizing EOR methods will probably produce only about 10 percent of the additional recoverable oil. However, financial incentives in the form of royalty reductions could increase both oil production and federal government revenue if applied on a project-by-project basis. Universal applications of royalty reduction for EOR, however, while achieving increased oil production, would not increase federal government revenue. GAO recommends that the Department of the Interior's Minerals Management Service initiate action that would allow for selective royalty reductions for EOR projects in the Gulf in instances where both total oil production and federal government revenue will increase. 6 figs., 1 tab.

  8. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOEpatents

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  9. Applied Field Research Initiative Deep Vadose Zone

    Office of Environmental Management (EM)

    Applied Field Research Initiative Deep Vadose Zone Located on the Hanford Site in Richland, Washington, the Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources by addressing the challenge of preventing contamination in the deep vadose zone from reaching groundwater. Led by the Pacific Northwest National Laboratory, the Initiative is a collaborative effort that leverages Department of Energy (DOE) investments in basic science and applied

  10. S. 403: A Bill to amend the Internal Revenue Code of 1986 to allow a tax credit for fuels produced from offshore deep-water projects. Introduced in the Senate of the United States, One Hundred Third Congress, First Session, February 18, 1993

    SciTech Connect

    1993-12-31

    The report S.403 is a bill to amend the Internal Revenue Code of 1986 to allow a tax credit for fuels produced from offshore deep-water projects. The proposed legislative text is included.

  11. Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

    2013-06-28

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

  12. Deep Geothermal Reservoir Temperatures in the Eastern Snake River...

    Office of Scientific and Technical Information (OSTI)

    ESRP. Masking much of the deep thermal potential of the ... apply the RTEst model to water compositions measured from ... on Geothermal Reservoir Engineering,Stanford,02242014,02...

  13. Pre-feasibility Study to Identify Opportunities for Increasing CO2 Storage in Deep, Saline Aquifers by Active Aquifer Management and Treatment of Produced Water

    SciTech Connect

    Stauffer, Philip H.

    2014-09-05

    In this report, we present initial estimates of CO2 injectivity and plume radius for injection of 0.1 MT/yr and 1 MT/yr. Results for 1 and 10 years of injection are used to show how the plume from a single injector well could grow through time for a simplified, idealized system. Most results are for a 2 km deep injection well, while several results from a deeper plume are also presented to demonstrate the impact of changing depth and temperature.

  14. Sandia and Partners Complete Phase I of a Vertical-Axis Deep...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    I of a Vertical-Axis Deep-Water Offshore Turbine Study - Sandia Energy Energy Search Icon ... Sandia and Partners Complete Phase I of a Vertical-Axis Deep-Water Offshore Turbine Study ...

  15. Deep Web video

    SciTech Connect

    None Available

    2009-06-01

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  16. Deep Web video

    ScienceCinema

    None Available

    2012-03-28

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  17. Combining Multicomponent Seismic Attributes, New Rock Physics Models, and In Situ Data to Estimate Gas-Hydrate Concentrations in Deep-Water, Near-Seafloor Strata of the Gulf of Mexico

    SciTech Connect

    Bureau of Economic Geology

    2009-04-30

    The Bureau of Economic Geology was contracted to develop technologies that demonstrate the value of multicomponent seismic technology for evaluating deep-water hydrates across the Green Canyon area of the Gulf of Mexico. This report describes the methodologies that were developed to create compressional (P-P) and converted-shear (P-SV) images of near-seafloor geology from four-component ocean-bottom-cable (4C OBC) seismic data and the procedures used to integrate P-P and P-SV seismic attributes with borehole calibration data to estimate hydrate concentration across two study areas spanning 16 and 25 lease blocks (or 144 and 225 square miles), respectively. Approximately 200 km of two-dimensional 4C OBC profiles were processed and analyzed over the course of the 3-year project. The strategies we developed to image near-seafloor geology with 4C OBC data are unique, and the paper describing our methodology was peer-recognized with a Best Paper Award by the Society of Exploration Geophysicists in the first year of the project (2006). Among the valuable research findings demonstrated in this report, the demonstrated ability to image deep-water near-seafloor geology with sub-meter resolution using a standard-frequency (10-200 Hz) air gun array on the sea surface and 4C sensors on the seafloor has been the accomplishment that has received the most accolades from professional peers. Our study found that hydrate is pervasive across the two study areas that were analyzed but exists at low concentrations. Although our joint inversion technique showed that in some limited areas, and in some geologic units across those small areas, hydrates occupied up to 40-percent of the sediment pore space, we found that when hydrate was present, hydrate concentration tended to occupy only 10-percent to 20-percent of the pore volume. We also found that hydrate concentration tended to be greater near the base of the hydrate stability zone than it was within the central part of the stability

  18. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory

  19. Deep Sky Astronomical Image Database

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of...

  20. Exploration for deep coal

    SciTech Connect

    2008-12-15

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  1. Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) - Overview

    SciTech Connect

    2011-02-01

    The Deep Vadoze Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources and to address the challenge of preventing contamination in the deep vadose zone from reaching groundwater. This factsheet provides an overview of the initiative and the approach to integrate basic science and needs-driven applied research activities with cleanup operations.

  2. Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI)

    Energy.gov [DOE]

    Located on the Hanford Site in Richland, Washington, the Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources by addressing the challenge of...

  3. FORT UNION DEEP

    SciTech Connect

    Lyle A. Johnson Jr.

    2002-03-01

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback

  4. FORT UNION DEEP

    SciTech Connect

    Lyle A. Johnson Jr.

    2002-09-01

    Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback

  5. Ultrafast Core-Hole Induced Dynamics in Water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Waters If you look deeply enough at even the stillest of waters, as deep as the molecular level, you will find a surprisingly turbulent, dynamic universe. The water...

  6. Deep Energy Retrofits & State Applications

    Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Deep Energy Retrofits & State Applications

  7. Nervana Neon - Scalable Deep Learning library

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Neon Nervana Neon - Scalable Deep Learning library Description and Overview neon is an easy to use, python-based scalable Deep Learning library. Deep Learning has recently achieved...

  8. Quantitative damage evaluation of localized deep pitting

    SciTech Connect

    Al Beed, A.A.; Al Garni, M.A.

    2000-04-01

    Localized deep pitting is considered difficult to precisely measure and evaluate using simple techniques and daily-use analysis approaches. A case study was made of carbon steel heat exchangers in a typical fresh cooling water environment that experienced severe pitting. To effectively and precisely evaluate the encountered pitting damage, a simple measurement and analyses approach was devised. In this article, the pitting measurement technique and the damage evaluation approach are presented and discussed in detail.

  9. Regulatory issues for deep borehole plutonium disposition

    SciTech Connect

    Halsey, W.G.

    1995-03-01

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission.

  10. Assessing 116 Deep Retrofits Across the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ASSESSING 116 DEEP RETROFITS ACROSS THE U.S. By: Brennan Less & Iain Walker, LBNL, Residential Building Systems ACI National Home Performance Conference, Detroit, MI, 04/30/2014 Defining a Deep Energy Retrofit- Variable and Flexible 2 ļ‚Ø Comprehensive upgrades to the building enclosure, heating, cooling and hot water equipment. ļ‚Ø Often incorporates appliance and lighting upgrades, plug load reductions, renewable energy and occupant conservation. % Reduction >50% Absolute Reduction

  11. Benchmark field study of deep neutron penetration

    SciTech Connect

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  12. Deep drawing of uranium metal

    SciTech Connect

    Jackson, R J; Lundberg, M R

    1987-01-19

    A procedure was developed to fabricate uranium forming blanks with high ''draw-ability'' so that cup shapes could be easily and uniformly deep drawn. The overall procedure involved a posttreatment to develop optimum mechanical and structural properties in the deep-drawn cups. The fabrication sequence is casting high-purity logs, pucking cast logs, cross-rolling pucks to forming blanks, annealing and outgassing forming blanks, cold deep drawing to hemispherical shapes, and stress relieving, outgassing, and annealing deep-drawn parts to restore ductility and impart dimensional stability. The fabrication development and the resulting fabrication procedure are discussed in detail. The mechanical properties and microstructural properties are discussed.

  13. A deep earthquake goes supershear

    SciTech Connect

    Wilson, R. Mark

    2014-09-01

    Seismic analysis of an aftershock off Russia’s Kamchatka Peninsula offers evidence that deep earthquakes are more complicated than geoscientists realized.

  14. Method of deep drilling

    DOEpatents

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  15. Deep Vadose Zone - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Documents Deep Vadose Zone Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS 100-D/H Operable Units RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Email Email Page | Print Print Page | Text Increase

  16. Deep Blue No. 1-A Slimhole Geothermal Discovery at Blue Mountain...

    OpenEI (Open Energy Information) [EERE & EIA]

    drilling of Deep Blue No.1. This well was sited on the basis of proximity to numerous gold exploration holes that indicated thermal water, high temperature gradients recorded in...

  17. Other: Small Reactor for Deep Space Exploration | ScienceCinema

    Office of Scientific and Technical Information (OSTI)

    Small Reactor for Deep Space Exploration Citation Details Title: Small Reactor for Deep Space Exploration

  18. National Grid Deep Energy Retrofit Pilot

    SciTech Connect

    Neuhauser, K.

    2012-03-01

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aim of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.

  19. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  20. Going Deep vs. Going Wide

    Energy.gov [DOE]

    Going Deep vs. Going Wide, from the Residential Energy Efficiency Solutions Conference 2012. Provides an overview on the progress of four energy efficiency programs: Clean Energy Works Oregon, Efficiency Maine, Energy Upgrade California Flex Path, and EcoHouse Loan Program.

  1. Stimulation Technologies for Deep Well Completions

    SciTech Connect

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  2. Constructing Hydraulic Barriers in Deep Geologic Formations

    SciTech Connect

    Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01

    Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

  3. Deep Borehole Disposal Research: Demonstration Site Selection...

    Office of Environmental Management (EM)

    The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper ...

  4. Deep Learning and General Machine Learning

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Learning Deep Learning and General Machine Learning NERSC supports several software frameworks for machine learning and deep learning (and it is growing!). The list includes: Deep Learning Python-Based Frameworks Theano Lasagne Keras TensorFlow (not available on Edison, except through a shifter image) To use the python based deep learning frameworks on Cori or Edison enter the following command in the shell: module load deeplearning Then you can proceed to write python scripts that use any of

  5. Generic Deep Geologic Disposal Safety Case

    Energy.gov [DOE]

    The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options (e.g., salt, shale, granite, deep borehole) in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW).

  6. The deep hydrogeologic flow system underlying the Oak Ridge Reservation

    SciTech Connect

    Nativ, R.; Hunley, A.E.

    1993-07-01

    The deep hydrogeologic system underlying the Oak Ridge Reservation contains some areas contaminated with radionuclides, heavy metals, nitrates, and organic compounds. The groundwater at that depth is saline and has previously been considered stagnant. On the basis of existing and newly collected data, the nature of flow of the saline groundwater and its potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial temperature variations, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. In addition, chemical analyses of brine in adjacent areas in Tennessee, Kentucky, Ohio, Pennsylvania, and West Virginia were compared with the deep water underlying the reservation to help assess the origin of the brine. Preliminary conclusions suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active and freshwater-bearing units. The confined water (along with dissolved solutes) moves along open fractures (or man-made shortcuts) at relatively high velocity into adjacent, more permeable units. Groundwater volumes involved in this flow probably are small.

  7. Oxygen and hydrogen isotopes in thermal waters at Zunil, Guatemala

    SciTech Connect

    Fournier, R.O.; Hanshaw, B.B.; Urrutia Sole, J.F.

    1982-10-01

    Enthalpy-chloride relations suggest that a deep reservoir exists at Zunil with a temperature near 300/sup 0/C. Water from that reservoir moves to shallower and cooler local reservoirs, where it mixes with diluted water and then attains a new water-rock chemical equilibrium. This mixed water, in turn, generally is further diluted before being discharged from thermal springs. The stable-isotopic composition of the thermal water indicates that recharge for the deep water at Zunil comes mainly from local sources. The presence of measurable tritium, which suggests that the deep water has been underground about 20 to 30 years, also indicates a local source for the recharge.

  8. Deep Ultrasound Enhancements Final Report

    SciTech Connect

    Quarry, M; Thomas, G; Ward, W; Gardner, D

    2006-05-01

    This study involves collaboration between Los Alamos National Laboratory and Lawrence Livermore National Laboratory to enhance and optimize LANL's ultrasonic inspection capabilities for production. Deep-penetrating ultrasonic testing enhancement studies will extend the current capabilities, which only look for disbonds. Current ultrasonic methods in production use 15-20 MHz to inspect for disbonds. The enhanced capabilities use 5 MHz to penetrate to the back surface and image the back surface for any flaws. The enhanced capabilities for back surface inspection use transducers and squirter modifications that can be incorporated into the existing production system. In a production setup the current 15-20 MHz transducer and squirter would perform a bond inspection, followed by a deep inspection that would be performed by simply swapping out the 5 MHz transducer and squirter. Surrogate samples were manufactured of beryllium and bismuth to perform the ultrasonic enhancement studies. The samples were used to simulate flaws on the back surface and study ultrasound's ability to image them. The ultrasonic technique was optimized by performing experiments with these samples and analyzing transducer performance in detecting flaws in the surrogate. Beam patterns were also studied experimentally using a steel ball reflector to measure beam patterns, focal points, and sensitivities to better understand the relationship between design and performance. Many transducers were evaluated including transducers from LANL's production system, LLNL, and other commercially available transducers. Squirter design was also analyzed while performing experiments Flat-bottom holes and ball-mill defects of various sizes were introduced into the samples for experimentation. Flaws depths were varied from .020'' to 0.060'', and diameters varied from 0.0625'' to 0.187''. The smallest defect, .020'' depth and 0.0625'', was detected. Ultrasonic amplitude features produced better images than time

  9. Transportation Energy Futures: Combining Strategies for Deep...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  10. Vehicle Technologies Program Deep Dive Briefing

    SciTech Connect

    none,

    2009-09-22

    Deep-Dive briefing presentation dated September 22, 2009. Included in the briefing are mission, goals, targets, and budget of the Vehicle Technologies Program.

  11. DeepStream Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Bangor, United Kingdom Zip: LL57 4EZ Product: DeepStream Technologies produces digital sensors and controls that measure, monitor, and manage energy usage. References:...

  12. ULTRA-DEEP WATER ADVISORY COMMITTEE FINDINGS AND

    Energy Saver

    ... A first action could be to establish an expert in the occupational behavioral sciences and ... There is no effort to monitor the overburden changes throughout the complete lifecycle of ...

  13. Near-field effects of asteroid impacts in deep water

    SciTech Connect

    Gisler, Galen R; Weaver, Robert P; Gittings, Michael L

    2009-06-11

    Our previous work has shown that ocean impacts of asteroids below 500 m in diameter do not produce devastating long-distance tsunamis. Nevertheless, a significant portion of the ocean lies close enough to land that near-field effects may prove to be the greatest danger from asteroid impacts in the ocean. Crown splashes and central jets that rise up many kilometres into the atmosphere can produce, upon their collapse, highly non-linear breaking waves that could devastate shorelines within a hundred kilometres of the impact site. We present illustrative calculations, in two and three dimensions, of such impacts for a range of asteroid sizes and impact angles. We find that, as for land impacts, the greatest dangers from oceanic impacts are the short-term near-field, and long-term atmospheric effects.

  14. MHK Technologies/Deep Water Pipelines | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Makai Ocean Engineering Inc Project(s) where this technology is utilized *MHK ProjectsOTEC Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type...

  15. Deep water X-mas tree standardization -- Interchangeability approach

    SciTech Connect

    Paula, M.T.R.; Paulo, C.A.S.; Moreira, C.C.

    1995-12-31

    Aiming the rationalization of subsea operations to turn the production of oil and gas more economical and reliable, standardization of subsea equipment interfaces is a tool that can play a very important role. Continuing the program initiated some years ago, Petrobras is now harvesting the results from the first efforts. Diverless guidelineless subsea Christmas trees from four different suppliers have already been manufactured in accordance to the standardized specification. Tests performed this year in Macae (Campos Basin onshore base), in Brazil, confirmed the interchangeability among subsea Christmas trees, tubing hangers, adapter bases and flowline hubs of different manufacturers. This interchangeability, associated with the use of proven techniques, results in operational flexibility, savings in rig time and reduction in production losses during workovers. By now, 33 complete sets of subsea Christmas trees have already been delivered and successfully tested. Other 28 sets are still being manufactured by the four local suppliers. For the next five years, more than a hundred of these trees will be required for the exploration of the new discoveries. This paper describes the standardized equipment, the role of the operator in an integrated way of working with the manufacturers on the standardization activities, the importance of a frank information flow through the involved companies and how a simple manufacturing philosophy, with the use of construction jigs, has proved to work satisfactorily.

  16. Procedures control total mud losses while drilling in deep water

    SciTech Connect

    Dewar, J. ); Halkett, D. )

    1993-11-01

    In the deepwater (830-1,000 m) drilling program offshore Philippines, reefal limestones were encountered in which total mud losses could be expected because of the presence of large fractures. The danger was that a sudden drop in hydrostatic head (resulting from the losses) could allow any natural gas to enter the well bore quickly. The gas could then migrate up the well bore and form hydrates in the blowout preventers (BOPs). Once hydrates form, they are difficult to remove and can make a BOP stack inoperable. To combat this potential problem, containment procedures were developed to cope with these fluid losses. The philosophy behind the procedures was to prevent hydrocarbons from entering the well bore and, if they did enter, to ensure that they did not move up the well bore and into the riser. Additionally, procedures were developed to allow drilling to continue during the losses and the curing of losses.

  17. Deep Vadose Zone Field Activities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1,000 1,500 2,000 2,500 3,000 Cumulative Gallons Removed Weekly Gallons Removed Perched Water Removal Shut down to address increased contamination levels and replace submersible...

  18. Coring in deep hardrock formations

    SciTech Connect

    Drumheller, D.S.

    1988-08-01

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  19. Fish debris record the hydrothermal activity in the Atlantis II deep sediments (Red Sea)

    SciTech Connect

    Oudin, E.; Cocherie, A.

    1988-01-01

    The REE and U, Th, Zr, Hf, Sc have been analyzed in samples from Atlantis II and Shaban/Jean Charcot Deeps in the Red Sea. The high Zr/Hf ratio in some sediments indicates the presence of fish debris or of finely crystallized apatite. The positive ..sigma..REE vs P/sub 2/O/sub 5/ and ..sigma..REE vs Zr/Hf correlations show that fish debris and finely crystallized apatite are the main REE sink in Atlantis II Deep sediments as in other marine environments. The hydrothermal sediments and the fish debris concentrates have similar REE patterns, characterized by a LREE enrichment and a large positive Eu anomaly. This REE pattern is also observed in E.P.R. hydrothermal solutions. Fish debris from marine environments acquire their REE content and signature mostly from sea water during early diagenesis. The hydrothermal REE signature of Atlantis II Deep fish debris indicate that they probably record the REE signature of their hydrothermal sedimentation and diagenetic environment. The different REE signatures of the Shaban/Jean Charcot and Atlantis II Deep hydrothermal sediments suggest a sea water-dominated brine in the Shaban/Jean Charcot Deep as opposed to the predominantly hydrothermal brine in Atlantis II Deep. Atlantis II Deep fish debris are also characterized by their high U but low Th contents. Their low Th contents probably reflect the low Th content of the various possible sources (sea water, brine, sediments). Their U contents are probably controlled by the redox conditions of sedimentation.

  20. Arctic Stratus and Tropical Deep Convection. Integrating Measurements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Arctic Stratus and Tropical Deep Convection. Integrating Measurements and Simulations Citation Details In-Document Search Title: Arctic Stratus and Tropical Deep ...

  1. Deep Bed Adsorption Testing using Silver-Functionalized Aerogel...

    Office of Scientific and Technical Information (OSTI)

    Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Citation Details In-Document Search Title: Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Nuclear ...

  2. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    much of the enhanced geothermal focus on stimulating fracture development (e.g., fracking) at depth is not directly relevant to deep borehole disposal. For deep borehole...

  3. Test of factorization in diffractive deep inelastic scattering...

    Office of Scientific and Technical Information (OSTI)

    Test of factorization in diffractive deep inelastic scattering and photoproduction at HERA Citation Details In-Document Search Title: Test of factorization in diffractive deep ...

  4. Deep Borehole Disposal of Spent Fuel. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Spent Fuel. Citation Details In-Document Search Title: Deep Borehole Disposal of Spent Fuel. Abstract not provided. Authors: Brady, Patrick V. Publication...

  5. Deep Borehole Disposal of Nuclear Waste. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste. Abstract not provided. Authors: Arnold, Bill Walter ;...

  6. Building America Webinar: Results from Phased Deep Retrofits...

    Energy Saver

    Results from Phased Deep Retrofits in Florida Building America Webinar: Results from Phased Deep Retrofits in Florida This presentation by Danny Parker is included in the Building ...

  7. Project Profile: Deep Eutectic Salt Formulations Suitable as...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Halotechnics ...

  8. MHK Technologies/Deep Green | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MHK TechnologiesDeep Green < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Green.jpg Technology Profile Primary Organization Minesto AB...

  9. Research Development and Demonstration Roadmap for Deep Borehole...

    Office of Scientific and Technical Information (OSTI)

    Research Development and Demonstration Roadmap for Deep Borehole Disposal. Citation Details In-Document Search Title: Research Development and Demonstration Roadmap for Deep...

  10. Deep Energy Retrofits & State Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deep Energy Retrofits & State Applications Deep Energy Retrofits & State Applications This presentation, given through the DOE's Technical Assitance Program (TAP), provides...

  11. Deep Sky Astronomical Image Database Project at NERSC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deep Sky Astronomical Image Database Deep Sky Astronomical Image Database Key Challenges: Develop, store, analyze, and make available an astronomical image database of...

  12. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

  13. Presentation at the Weatherization Program Deep Dive Briefing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 U.S. Department of...

  14. National Library of Energy : Main View : Deep Federated Search

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Library of Energy Search Powered By Deep Web Technologies New Search Preferences Powered by Deep Web Technologies energy.gov Office of Scientific and Technical Information...

  15. Chronic, Multi-Contact, Neural Interface for Deep Brain Stimulation...

    Office of Scientific and Technical Information (OSTI)

    Chronic, Multi-Contact, Neural Interface for Deep Brain Stimulation Citation Details In-Document Search Title: Chronic, Multi-Contact, Neural Interface for Deep Brain Stimulation ...

  16. Neural Interface for Deep Brain Stimulation (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Neural Interface for Deep Brain Stimulation Citation Details In-Document Search Title: Neural Interface for Deep Brain Stimulation Authors: Tooker, A C ; Madsen, T E ; Crowell, A ; ...

  17. Deep Borehole Disposal of Nuclear Waste: Science Needs. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Nuclear Waste: Science Needs. Citation Details In-Document Search Title: Deep Borehole Disposal of Nuclear Waste: Science Needs. Abstract not provided. ...

  18. Tanzania-Developing Energy Enterprises Project (DEEP) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Developing Energy Enterprises Project (DEEP) Jump to: navigation, search Logo: Tanzania-Developing Energy Enterprises Project (DEEP) Name Tanzania-Developing Energy Enterprises...

  19. Uganda-Developing Energy Enterprises Project (DEEP) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Developing Energy Enterprises Project (DEEP) Jump to: navigation, search Logo: Uganda-Developing Energy Enterprises Project (DEEP) Name Uganda-Developing Energy Enterprises Project...

  20. Kenya-Developing Energy Enterprises Project (DEEP) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Developing Energy Enterprises Project (DEEP) Jump to: navigation, search Logo: Kenya-Developing Energy Enterprises Project (DEEP) Name Kenya-Developing Energy Enterprises Project...

  1. Long-Baseline Neutrino Facility / Deep Underground Neutrino Project...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Long-Baseline Neutrino Facility Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline Neutrino Facility Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline ...

  2. OSTIblog Articles in the deep web technologies Topic | OSTI,...

    Office of Scientific and Technical Information (OSTI)

    During that time, working in close partnership with Deep Web Technologies, we have made ... individual source in Science.gov.... Related Topics: deep web technologies, energy portal

  3. MWD tool for deep, small diameter boreholes

    SciTech Connect

    Buytaert, J.P.R.; Duckworth, A.

    1992-03-17

    This patent describes an apparatus for measuring a drilling parameters while drilling a borehole in an earth formation, wherein the borehole includes a small diameter deep borehole portion and a large diameter upper borehole portion. It includes small diameter drillstring means for drilling the deep borehole portion; sensor means, disposed within the small diameter drillstring means, for measuring a drilling parameter characteristic of the deep portion of the borehole while drilling the deep portion of the borehole and for providing sensor output signals indicative of the measured parameter; an upper drillstring portion extending between the surface of the formation and the small diameter drillstring means, the upper drillstring portion including a large diameter drillstring portion; data transmission means disposed within the large diameter drillstring portion and responsive to the sensor output.

  4. An observational study of entrainment rate in deep convection

    SciTech Connect

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Zhang, Guang Jun; Liu, Yangang

    2015-09-22

    This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authorsā€™ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal, gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.

  5. An observational study of entrainment rate in deep convection

    DOE PAGES [OSTI]

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Zhang, Guang Jun; Liu, Yangang

    2015-09-22

    This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authorsā€™ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,moreĀ Ā» gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.Ā«Ā less

  6. Ultra Deep Wave Equation Imaging and Illumination

    SciTech Connect

    Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu

    2006-09-30

    In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).

  7. New proppant for deep hydraulic fracturing

    SciTech Connect

    Underdown, D.R.; Das, K.

    1982-01-01

    Much work has been done in the development and evaluation of various materials for use as proppants for hydraulic fracturing. Sand is most often used as a frac proppant in shallow wells. Deep wells having high closure stresses require a proppant such as sintered bauxite which will not crush under such adverse conditions. Proppants such as ceramic and zirconium oxide beads and resin coated sand have been developed for deep hydraulic fracturing; however, use of these materials has been limited. A new frac proppant has been developed which exhibits the properties necessary for use in deep hydraulic fracturing. This frac proppant is produced by precuring a specially modified phenol-formaldehyde resin onto sand. The new frac proppant maintains conductivity and resists crushing, similar to that of sintered bauxite at high closure stress. 11 references.

  8. New proppant for deep hydraulic fracturing

    SciTech Connect

    Das, K.; Underdown, D.R.

    1985-01-01

    Much work has focused on developing and evaluating various materials for use as proppants for hydraulic fracturing. Sand is used most often as a fracturing proppant in shallow wells. Deep wells with high closure stresses require a proppant, such as sintered bauxite, that will not crush under adverse conditions. Ceramic and zirconium oxide beads and resin-coated sand proppants also have been developed for deep hydraulic fracturing. A new fracturing proppant has been developed that exhibits the properties necessary for use in deep hydraulic fracturing. This proppant is produced by precuring a specially modified phenolformaldehyde resin onto sand. The new proppant maintains conductivity and resists crushing much better than does sand. The new proppant was compared to intermediate-density sintered bauxitic proppants and cured-in-place proppants and the tests were confirmed by an independent laboratory.

  9. Deep Energy Retrofit Case Studies: Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deep Energy Retrofit Case Studies: Lessons Learned. Alea German Alliance for Residential Building Innovation June 25, 2014 Davis Energy Group | June 25, 2014 ā€¹#ā€ŗ Agenda * Background / motivation * Results from 3 CA retrofits - Sonoma Passive House Retrofit - Stockton Hot Dry Retrofit - Sunnyvale Marine Deep Retrofit Davis Energy Group | June 25, 2014 ā€¹#ā€ŗ Background * >60 million homes in the U.S. over 30 yrs old * Huge potential - Energy savings ā€¹#ā€ŗ Davis Energy Group | June 25,

  10. Partonic Nuclear Effects in Deep Inelastic Scattering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Partonic Nuclear Effects in Deep Inelastic Scattering Measurement of Partonic Nuclear Effects in Deep-Inelastic Neutrino Scattering using MINERvA Phys. Rev. D 93, 071101 (2016) and hep-ex/1601.06313 Data Ancillary files for this result are available at http://arxiv.org/src/1601.06313v3/anc The available data files are: Readme file: please read before using ROOT File of all ratios / error matrices C code of all Ratios and Error Matrices for Carbon / Scintillator C code of all Ratios and Error

  11. Neutralizing Carbonic Acid in Deep Carbonate Strata below the North Atlantic

    SciTech Connect

    Klaus Lackner; Charles Harvey; Bruce Watson

    2008-01-14

    Carbon dioxide injection into deep sea sediments below 2700 m water depth and a few hundred meters to fifteen hundred meters deep in the sediment column may provide permanent geologic storage by gravitational trapping. At high pressures and low temperatures common in deep sea sediments a few hundred meters below sea floor, CO{sub 2} will be in its liquid phase and will be denser than the overlying pore fluid. The lower density of the pore fluid provides a cap to the denser CO{sub 2} and ensures gravitational trapping in the short term. The overall storage capacity for CO{sub 2} in such deep sea formations below the ocean floor is primarily determined by the permeability, and will vary with seafloor depth, geothermal gradient, porosity, and pore water salinity. Furthermore, the dissemination of the injected CO{sub 2} in the sediments and potential chemical reactions between CO{sub 2}, pore fluid and sediments will define its fate in the storage reservoir. The main objectives of our research was to evaluate the potential for sub-seabed CO{sub 2} storage in deep sea sediments using a range of approaches including experiments, permeability analysis, and modeling. Over the course of the three-year award, our results support an important role for sub-seabed storage in a diverse portfolio of carbons sequestration options. Our analysis has shown the feasibility of this type of storage, and also emphasizes that escape or leakage from such sites would be negligible. The most difficult challenge is to overcome the low permeability of typical deep-sea sediments, and a variety of approaches are suggested for future research.

  12. Langley Deep Field, discovery and interpretation

    SciTech Connect

    Henderson, G.J.; Lake, E.A.; Douglas, G.

    1984-01-01

    In May 1978, ARCO Oil and Gas Co. completed the Langley Deep Unit 1 well in Lea County, New Mexico, discovering a deep gas field with production from two horizons. The discovery well produces gas from a northwest-southeast-trending anticline that has a reverse fault at the Ellenburger formation on the northeast flank of the structure. This reverse fault, possibly persistent to the base of the Wolfcamp Formation, generated an anticlinal feature in the upthrown block at the Devonian level. The fault itself is the trap at the Ellenburger formation. Since the discovery of the Langley Deep field in 1978, a new geologic interpretation has been proposed for the eastern rim of the Delaware basin. A major conclusion, based on seismic control, the well control from this field, and on subsurface control throughout southern Lea County, New Mexico, is that a strike-slip fault was activated during the Late Pennsylvanian and Early Permian and caused deformation resulting in the formation of the Langley Deep structure.

  13. Newfoundland and Labrador: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Canada) Land and Water Developments (Newfoundland and Labrador) Offshore Natural Gas Royalty Regime (Newfoundland and Labrador, Canada) Petroleum Exploration Enhancement...

  14. Origin of fluids and the evolution of the Atlantis II deep hydrothermal system, Red Sea: Strontium isotope study

    SciTech Connect

    Anschutz, P.; Blanc, G.; Stille, P.

    1995-12-31

    Atlantis II is the largest and most mineralized of the deeps along the axis of the Red Sea spreading center. Its basaltic substratum is covered by recent layered metalliferous sediments, which precipitated from an overlying brine pool. The {sup 87}Sr/{sup 86}Sr ratio and the strontium concentration of interstitial waters within these sediments range between 0.70708 and 0.70725 and between 43 and 53 ppm, respectively. They are close to what is found for the present-day deep brine pool (0.707105, 45.10 ppm). The strontium concentration and the {sup 87}Sr/{sup 86}Sr ratio of the Atlantis II Deep brines can be derived from those of the interstitial waters of the surrounding Miocene evaporite by hydrothermal interaction with oceanic basaltic rocks at a maximal water/rock ratio 2-3. This water/rock ratio is similar to that calculated for oceanic hydrothermal systems on sediment-free ridges. Interstitial waters show a linear trend on plot of {sup 87}Sr/{sup 86}Sr vs. 1/Sr. The highest strontium concentration and the most radiogenic interstitial waters correspond to sediment samples enriched in iron and manganese oxide minerals. These waters reflect the diagenetic release of strontium by oxide minerals and initially precipitated at the interface between the brine pool and more radiogenic seawater. The solid fraction of the sediment has {sup 87}sr{sup 86}Sr isotopic compositions intermediate to those of the brines and seawater. The solid fraction of the sediment has {sup 87}Sr/{sup 86}Sr isotopic compositions intermediate to those of the brines and seawater. The most radiogenic strontium values were observed in samples strongly enriched in marine microbiota. The gradual isotopic evolution in the lowest part of the western basin sediments testifies to the gradual influence of the hydrothermal activity in the deep in the beginning of the Atlantis II Deep sedimentary history. 62 refs., 6 figs., 2 tabs.

  15. Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region...

    OpenEI (Open Energy Information) [EERE & EIA]

    tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area. Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953-1968...

  16. Deep East Texas Elec Coop Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Deep East Texas Elec Coop Inc Jump to: navigation, search Name: Deep East Texas Elec Coop Inc Place: Texas Phone Number: 1-800-392-5986 Website: www.deepeast.com Facebook: https:...

  17. Co2 Deep Store Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Deep Store Ltd Jump to: navigation, search Name: Co2 Deep Store Ltd Place: Scotland, United Kingdom Zip: AB11 7LH Sector: Carbon Product: UK based organization focused on the...

  18. ARM - Field Campaign - Deep Convective Clouds and Chemistry

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govCampaignsDeep Convective Clouds and Chemistry Campaign Links DC3 Experiment Comments? ... Send Campaign : Deep Convective Clouds and Chemistry 2012.05.01 - 2012.06.30 Lead ...

  19. Energy Department selects Battelle team for a deep borehole field...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battelle team for a deep borehole field test in North Dakota Energy Department selects Battelle team for a deep borehole field test in North Dakota January 5, 2016 - 5:31pm ...

  20. Building America Webinar: A National Summary of Deep Energy Retrofits |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy A National Summary of Deep Energy Retrofits Building America Webinar: A National Summary of Deep Energy Retrofits This presentation by Brennan Less is included in the Building America webinar, Who's Successfully Doing Deep Energy Retrofits?, on June 25, 2014. BA Webinar_less_6-25-14.pdf (1016.92 KB) More Documents & Publications Building America Whole-House Solutions for Existing Homes: National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact

  1. Building America Webinar: Deep Energy Retrofit Case Studies: Lessons

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Learned | Department of Energy Deep Energy Retrofit Case Studies: Lessons Learned Building America Webinar: Deep Energy Retrofit Case Studies: Lessons Learned This presentation by Alea German is included in the Building America webinar, Who's Successfully Doing Deep Energy Retrofits?, on June 25, 2014. BA Webinar_german_6-25-14.pdf (1.23 MB) More Documents & Publications Building America Webinar: Introduction - Who's Successfully Doing Deep Energy Retrofits? Energy Auditor - Single

  2. Deep Challenges for Foundation Performance at Savannah River Site

    Energy.gov [DOE]

    Deep Challenges for Foundation Performance at Savannah River Site Frank H. Syms and Brent Gutierrez October 22, 2014

  3. NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science Computational Researchers Test Advanced Machine Learning Tools for HPC December 8, 2015 Contact: Kathy Kincade, kkincade@lbl.gov, 510-495-2124 braindeeplearning Researchers in Berkeley Lab's Biological Systems and Engineering Division are using a deep learning library to analyze recordings of the human brain during speech production. Image: Kris Bouchard Deep

  4. Jet-images ā€” deep learning edition

    DOE PAGES [OSTI]

    de Oliveira, Luke; Kagan, Michael; Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    2016-07-13

    Building on the notion of a particle physics detector as a camera and the collimated streams of high energy particles, or jets, it measures as an image, we investigate the potential of machine learning techniques based on deep learning architectures to identify highly boosted W bosons. Modern deep learning algorithms trained on jet images can out-perform standard physically-motivated feature driven approaches to jet tagging. We develop techniques for visualizing how these features are learned by the network and what additional information is used to improve performance. Finally, this interplay between physicallymotivated feature driven tools and supervised learning algorithms is generalmoreĀ Ā» and can be used to significantly increase the sensitivity to discover new particles and new forces, and gain a deeper understanding of the physics within jets.Ā«Ā less

  5. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1981-01-01

    An improved rod optic system for inspecting small diameter, deep bores. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90.degree. to minimize optical distortion in examining the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable of examining 1/16 inch diameter and up to 4 inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and right angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  6. Small diameter, deep bore optical inspection system

    DOEpatents

    Lord, D.E.; Petrini, R.R.; Carter, G.W.

    An improved rod optic system for inspecting small diameter, deep bores is described. The system consists of a rod optic system utilizing a curved mirror at the end of the rod lens such that the optical path through the system is bent 90/sup 0/ to minimize optical distortion in examing the sides of a curved bore. The system is particularly useful in the examination of small bores for corrosion, and is capable if examing 1/16 inch diameter and up to 4-inch deep drill holes, for example. The positioning of the curved mirror allows simultaneous viewing from shallow and righ angle points of observation of the same artifact (such as corrosion) in the bore hole. The improved rod optic system may be used for direct eye sighting, or in combination with a still camera or a low-light television monitor; particularly low-light color television.

  7. License for the Konrad Deep Geological Repository

    SciTech Connect

    Biurrun, E.; Hartje, B.

    2003-02-24

    Deep geological disposal of long-lived radioactive waste is currently considered a major challenge. Until present, only three deep geological disposal facilities have worldwide been operated: the Asse experimental repository (1967-1978) and the Morsleben repository (1971-1998) in Germany as well as the Waste Isolation Pilot Plant (WIPP) in the USA (1999 to present). Recently, the licensing procedure for the fourth such facility, the German Konrad repository, ended with a positive ''Planfeststellung'' (plan approval). With its plan approval decision, the licensing authority, the Ministry of the Environment of the state of Lower Saxony, approved the single license needed pursuant to German law to construct, operate, and later close down this facility.

  8. Completion practices in deep sour Tuscaloosa wells

    SciTech Connect

    Huntoon, G.G.

    1984-01-01

    Successful development of the Tuscaloosa trend in Louisiana has required unique completion practices to produce the trend's deep sour formations. Amoco's operations in the Tuscaloosa formation are between 16,000 and 21,000 ft (4877 and 6400 m), and a range of pressure environments, high temperatures, and corrosive elements is encountered. Application of proved completion practices and equipment has resulted in several techniques that enhance the safety, longevity, and production capacity of these wells. The design of deep Tuscaloosa completions is assisted by a series of correlations developed to project bottomhole and surface shut-in tubing pressures, temperature gradients, and flow capacities for deep sour wells. This paper discusses material selection, completion practices, completion fluids, wellhead equipment, packer designs, corrosion-inhibition systems, and safety and monitoring equipment used in the Tuscaloosa trend. The design of a wellhead surface installation used to detect equipment failure, to pump kill fluids, and to circulate corrosion inhibitors is reviewed. A case study illustrates the methods used in completing a Tuscaloosa well with surface pressures exceeding 16,000 psi (110.3 MPa). Deep high-pressure sour-gas wells can be completed safely if all the elements of the environment that will affect the mechanical integrity of the wellbore are considered in the completion designs. The development of higher-strength material capable of withstanding SSC is needed if wells are completed in formations deeper than 22,000 ft (6700 m). Further research is necessary on the use of alloy steels and nonferrous metals for sour service. Effective high-temperature corrosion inhibitors for heavy zinc bromide completion fluids must be developed before these brines can be used in the Tuscaloosa. The testing of new inhibitors for use in highpressure sour-gas completions should be continued.

  9. Deep Sludge Gas Release Event Analytical Evaluation

    SciTech Connect

    Sams, Terry L.

    2013-08-15

    Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environment from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, "Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge"). The purpose of this technical

  10. SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS

    SciTech Connect

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Hernquist, L.; Hora, J. L.; Arendt, R.; Barmby, P.; Barro, G.; Faber, S.; Guhathakurta, P.; Bouwens, R.; Cattaneo, A.; Croton, D.; Dave, R.; Dunlop, J. S.; Egami, E.; Finlator, K.; Grogin, N. A.; and others

    2013-05-20

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg{sup 2} to a depth of 26 AB mag (3{sigma}) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 {mu}m. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 {+-} 1.0 and 4.4 {+-} 0.8 nW m{sup -2} sr{sup -1} at 3.6 and 4.5 {mu}m to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  11. Water Quality

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  12. Deep Secrets of the Neutrino: Physics Underground

    SciTech Connect

    Rowson, P.C.

    2010-03-23

    Among the many beautiful, unexpected and sometimes revolutionary discoveries to emerge from subatomic physics, probably none is more bizarre than an elementary particle known as the 'neutrino'. More than a trillion of these microscopic phantoms pass unnoticed through our bodies every second, and indeed, through the entire Earth - but their properties remain poorly understood. In recent years, exquisitely sensitive experiments, often conducted deep below ground, have brought neutrino physics to the forefront. In this talk, we will explore the neutrino - what we know, what we want to know, and how one experiment in a New Mexico mine is trying to get there.

  13. National Grid Deep Energy Retrofit Pilot

    SciTech Connect

    Neuhauser, K.

    2012-03-01

    Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance.

  14. Coiled tubing facilitates deep underbalanced workover

    SciTech Connect

    Adams, L.S.; Overstreet, C.C.

    1997-03-31

    A recent workover shows the technical capability and cost effectiveness of coiled tubing for cleaning out scale in a 22,611-ft, low pressure, high-temperature gas well. The well, operated by Chevron USA Production Co., is in the Fort Stockton Gas Unit 5-1 Gomez (Ellenburger) field, in West Texas. The development of reliable 100,000-psi minimal yield strength coiled tubing was a major factor that allowed this work to succeed. The methods demonstrated by this workover are becoming a standard for deep well cleanouts in the Gomez (Ellenburger) field. The paper describes coiled tubing advantages, well history, and implementation.

  15. Optimization of Deep Borehole Systems for HLW Disposal

    SciTech Connect

    Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo; Lester, Richard; Brady, Patrick; Arnold, B. W.

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (ā‰¤ 1%) saline water content showed that vertical convection induced by the wasteā€™s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  16. Evaluation of Soil Flushing for Application to the Deep Vadose Zone in the Hanford Central Plateau

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Zhang, Z. F.; Carroll, Kenneth C.; Schramke, Janet A.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Gordon, Kathryn A.; Last, George V.

    2010-11-01

    Soil flushing was included in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau as a technology with the potential to remove contaminants from the vadose zone. Soil flushing operates through the addition of water, and if necessary an appropriate mobilizing agent, to mobilize contaminants and flush them from the vadose zone and into the groundwater where they are subsequently captured by a pump-and-treat system. There are uncertainties associated with applying soil flushing technology to contaminants in the deep vadose zone at the Hanford Central Plateau. The modeling and laboratory efforts reported herein are intended to provide a quantitative assessment of factors that impact water infiltration and contaminant flushing through the vadose zone and into the underlying groundwater. Once in the groundwater, capture of the contaminants would be necessary, but this aspect of implementing soil flushing was not evaluated in this effort. Soil flushing was evaluated primarily with respect to applications for technetium and uranium contaminants in the deep vadose zone of the Hanford Central Plateau.

  17. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    SciTech Connect

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  18. Building America Webinar: Results from Phased Deep Retrofits in Florida

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Phased Deep Retrofits in Florida D. Parker, D. Chasar, K. Sutherland, J. Montemurno, J. Kono Florida Solar Energy Center June, 2014 Phased Deep Retrofit (PDR) Project * Detailed residential field metering project in FPL Service Territory * Cooperative project between U.S. DOE and FPL * Sixty heavily metered homes evaluated over 2 years * Shallow retrofit in all & then deep retrofits in 10 * Collecting data of unique value to FPL/DOE PDR: Extensive end-use metering * January - July 2013: 60

  19. Energy Department Explores Deep Direct Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Explores Deep Direct Use Energy Department Explores Deep Direct Use Cascaded uses of geothermal energy include district heating and industrial uses as well as agricultural applications like greenhouses and fisheries. Cascaded uses of geothermal energy include district heating and industrial uses as well as agricultural applications like greenhouses and fisheries. Deep Direct Use (DDU) geothermal applications utilize natural geothermal fluid for a full spectrum of cascading uses, including

  20. Building America Efficient Solutions for Existing Homes Case Study: Deep

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Retrofit of 1910 House, Portland, Oregon | Department of Energy Deep Energy Retrofit of 1910 House, Portland, Oregon Building America Efficient Solutions for Existing Homes Case Study: Deep Energy Retrofit of 1910 House, Portland, Oregon This case study lists project information, cost and energy efficiency performance data, energy efficiency measures and lessons learned for a 100-year-old home in Portland, Oregon, audited by Pacific Northwest National Laboratory for a deep energy

  1. Building America Webinar: Who's Successfully Doing Deep Energy Retrofits? |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Who's Successfully Doing Deep Energy Retrofits? Building America Webinar: Who's Successfully Doing Deep Energy Retrofits? The webinar on June 25, 2014, focused on specific Building America projects that highlighted real-world examples of deep energy retrofits (DER) that are meeting with technical and market success. Presenters focused on technical strategies, modeled and actual performance results, and project costs. Danny Parker, Building America Partnership for

  2. Research, Development, and Demonstration Roadmap for Deep Borehole Disposal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Research, Development, and Demonstration Roadmap for Deep Borehole Disposal Research, Development, and Demonstration Roadmap for Deep Borehole Disposal This roadmap is intended to advance deep borehole disposal (DBD) from its current conceptual status to potential future deployment as a disposal system for spent nuclear fuel (SNF) and high-level waste (HLW). The objectives of the DBD RD&D roadmap include providing the technical basis for fielding a DBD

  3. Deep moonquakes reveal thickness of the lunar crust

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    September Ā» Deep moonquakes reveal thickness of the lunar crust Deep moonquakes reveal thickness of the lunar crust The researchers were the first to use body-wave seismic interferometry to study deep moonquakes. September 26, 2016 Photo of the Moon. Credit: NASA Photo of the Moon. Credit: NASA Communications Office (505) 667-7000 Knowledge of the crustal thickness is important for understanding the genesis and history of the Moon. Charlotte Rowe of the Laboratory's Geophysics group and

  4. Joint NSRC Workshop 2015: Big, Deep, and Smart Data Analytics...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NSRC Workshop 2015 Joint NSRC Workshop 2015: Big, Deep, and Smart Data Analytics in Materials Imaging Home Announcement Meeting REGISTRATION Call for Abstracts Abstract Submission...

  5. Analysis Procedure And Equipment For Deep Geoelectrical Soundings...

    OpenEI (Open Energy Information) [EERE & EIA]

    A brief description is given of a digital geoelectrical acquisition data system and of some examples of data filtering relative to a deep dipole-dipole sounding...

  6. Building America Webinar: Results from Phased Deep Retrofits in Florida

    Energy.gov [DOE]

    This presentation by Danny Parker is included in the Building America webinar, Who's Successfully Doing Deep Energy Retrofits?, on June 25, 2014.

  7. Application Of Electrical Resistivity And Gravimetry In Deep...

    OpenEI (Open Energy Information) [EERE & EIA]

    Electrical Resistivity And Gravimetry In Deep Geothermal Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Electrical...

  8. Deep Geothermal Reservoir Temperatures in the Eastern Snake River...

    Office of Scientific and Technical Information (OSTI)

    Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry Citation Details In-Document Search Title: Deep Geothermal Reservoir ...

  9. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Energy.gov [DOE] (indexed site)

    May 27, 2015 EA-1943: Draft Environmental Assessment Long Baseline Neutrino FacilityDeep Underground Neutrino Experiment (LBNFDUNE) at Fermilab, Batavia, Illinois and the...

  10. Big, Deep, and Smart Data in Energy Materials Research: Atomic...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Big, Deep, and Smart Data in Energy Materials Research: Atomic View on Materials Functionalities Event Sponsor: Computing, Environment, and Life Sciences Seminar Start Date: Sep 22...

  11. Whole-House Solutions Case Study: Sunnyvale Marine Climate Deep...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Whole-House Solutions Case Study: Sunnyvale Marine Climate Deep Retrofit The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated ...

  12. Research Development and Demonstration Roadmap for Deep Borehole...

    Office of Scientific and Technical Information (OSTI)

    Development and Demonstration Roadmap for Deep Borehole Disposal. Arnold, Bill W.; MacKinnon, Robert J.; Brady, Patrick V. Abstract Not Provided Sandia National Laboratories USDOE...

  13. MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal...

  14. Iodine Sorbent Performance in FY 2012 Deep Bed Tests (Technical...

    Office of Scientific and Technical Information (OSTI)

    Iodine Sorbent Performance in FY 2012 Deep Bed Tests Citation Details In-Document Search ... for lower iodine concentrations. * The depth of the mass transfer zone was determined ...

  15. Iodine Sorbent Performance in FY 2012 Deep Bed Tests (Technical...

    Office of Scientific and Technical Information (OSTI)

    Deep-bed iodine sorption tests for both silver-functionalized Aerogel and silver zeolite sorbents were performed during Fiscal Year 2012. These tests showed that: * Decontamination ...

  16. Building America Webinar: Who's Successfully Doing Deep Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building America Webinar: Who's Successfully Doing Deep Energy Retrofits? The webinar on June 25, 2014, focused on specific Building America projects that highlighted real-world ...

  17. Building America Webinar: Introduction- Who's Successfully Doing Deep Energy Retrofits?

    Energy.gov [DOE]

    This presentation provides the introduction for the Building America webinar, Who's Successfully Doing Deep Energy Retrofits, presented on June 25, 2014.

  18. Deep River, Connecticut: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Deep River, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3856546, -72.4356422 Show Map Loading map... "minzoom":false,"mappi...

  19. Deep River Center, Connecticut: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Deep River Center, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3729131, -72.4435674 Show Map Loading map......

  20. CBEI: Demonstrating On-Bill Financing to Encourage Deep Retrofits...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CBEI: Demonstrating On-Bill Financing to Encourage Deep Retrofits - 2015 Peer Review Presenter: Rudy Terry, Philadelphia Industrial Development Corp. View the Presentation PDF icon ...

  1. Final Technical Report. DeepCwind Consortium Research Program. January 15, 2010 - March 31, 2013

    SciTech Connect

    Dagher, Habib; Viselli, Anthony; Goupee, Andrew; Thaler, Jeffrey; Brady, Damian; Browne, Peter; Browning, James; Chung, Jade; Coulling, Alexander; Deese, Heather; Fowler, Matthew; Holberton, Rebecca; Anant, Jain; Jalbert, Dustin; Johnson, Theresa; Jonkman, Jason; Karlson, Benjamin; Kimball, Richard; Koo, Bonjun; Lackner, Matthew; Lambrakos, Kostas; Lankowski, Matthew; Leopold, Adrienne; Lim, Ho-Joon; Mangum, Linda; Martin, Heather; Masciola, Marco; Maynard, Melissa; McCleave, James; Mizrahi, Robert; Molta, Paul; Pershing, Andrew; Pettigrew, Neal; Prowell, Ian; Qua, Andrew; Sherwood, Graham; Snape, Thomas; Steneck, Robert; Stewart, Gordon; Stockwell, Jason; Swift, Andrew H. P.; Thomas, Dale; Viselli, Elizabeth; Zydlewski, Gayle

    2013-06-11

    This is the final technical report for the U.S. Department of Energy-funded program, DE-0002981: DeepCwind Consortium Research Program. The project objective was the partial validation of coupled models and optimization of materials for offshore wind structures. The United States has a great opportunity to harness an indigenous abundant renewable energy resource: offshore wind. In 2010, the National Renewable Energy Laboratory (NREL) estimated there to be over 4,000 GW of potential offshore wind energy found within 50 nautical miles of the US coastlines (Musial and Ram, 2010). The US Energy Information Administration reported the total annual US electric energy generation in 2010 was 4,120 billion kilowatt-hours (equivalent to 470 GW) (US EIA, 2011), slightly more than 10% of the potential offshore wind resource. In addition, deep water offshore wind is the dominant US ocean energy resource available comprising 75% of the total assessed ocean energy resource as compared to wave and tidal resources (Musial, 2008). Through these assessments it is clear offshore wind can be a major contributor to US energy supplies. The caveat to capturing offshore wind along many parts of the US coast is deep water. Nearly 60%, or 2,450 GW, of the estimated US offshore wind resource is located in water depths of 60 m or more (Musial and Ram, 2010). At water depths over 60 m building fixed offshore wind turbine foundations, such as those found in Europe, is likely economically infeasible (Musial et al., 2006). Therefore floating wind turbine technology is seen as the best option for extracting a majority of the US offshore wind energy resource. Volume 1 - Test Site; Volume 2 - Coupled Models; and Volume 3 - Composite Materials

  2. DEEP: A Database of Energy Efficiency Performance to Accelerate Energy Retrofitting of Commercial Buildings

    SciTech Connect

    Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof; Chen, Yixing; Piette, Mary Ann

    2015-05-01

    The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions and 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on usersā€™ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to conduct

  3. On using rational enzyme redesign to improve enzyme-mediated microbial dehalogenation of recalcitrant substances in deep-subsurface environments

    SciTech Connect

    Ornstein, R.L.

    1993-06-01

    Heavily halogenated hydrocarbons are one of the most prevalent classes of man-made recalcitrant environmental contaminants and often make their way into subsurface environments. Biodegradation of heavily chlorinated compounds in the deep subsurface often occurs at extremely slow rates because native enzymes of indigenous microbes are unable to efficiently metabolize such synthetic substances. Cost-effective engineering solutions do not exist for dealing with disperse and recalcitrant pollutants in the deep subsurface (i.e., ground water, soils, and sediments). Timely biodegradation of heavily chlorinated compounds in the deep subsurface may be best accomplished by rational redesign of appropriate enzymes that enhance the ability of indigenous microbes to metabolize these substances. The isozyme family cytochromes P450 are catalytically very robust and are found in all aerobic life forms and may be active in may anaerobes as well. The author is attempting to demonstrate proof-of-principle rational enzyme redesign of cytochromes P450 to enhance biodehalogenation.

  4. Deep Energy Retrofit Performance Metric Comparison: Eight California Case Studies

    SciTech Connect

    Walker, Iain; Fisher, Jeremy; Less, Brennan

    2014-06-01

    In this paper we will present the results of monitored annual energy use data from eight residential Deep Energy Retrofit (DER) case studies using a variety of performance metrics. For each home, the details of the retrofits were analyzed, diagnostic tests to characterize the home were performed and the homes were monitored for total and individual end-use energy consumption for approximately one year. Annual performance in site and source energy, as well as carbon dioxide equivalent (CO2e) emissions were determined on a per house, per person and per square foot basis to examine the sensitivity to these different metrics. All eight DERs showed consistent success in achieving substantial site energy and CO2e reductions, but some projects achieved very little, if any source energy reduction. This problem emerged in those homes that switched from natural gas to electricity for heating and hot water, resulting in energy consumption dominated by electricity use. This demonstrates the crucial importance of selecting an appropriate metric to be used in guiding retrofit decisions. Also, due to the dynamic nature of DERs, with changes in occupancy, size, layout, and comfort, several performance metrics might be necessary to understand a projectā€™s success.

  5. Deep z-band observations of the coolest Y dwarf

    SciTech Connect

    Kopytova, Taisiya G.; Crossfield, Ian J. M.; Deacon, Niall R.; Brandner, Wolfgang; Buenzli, Esther; Bayo, Amelia; Schlieder, Joshua E.; Manjavacas, Elena; Kopon, Derek; Biller, Beth A.

    2014-12-10

    WISE J085510.83-071442.5 (hereafter, WISE 0855-07) is the coolest Y dwarf known to date and is located at a distance of 2.31 ± 0.08 pc, giving it the fourth largest parallax of any known star or brown dwarf system. We report deep z-band observations of WISE 0855-07 using FORS2 on UT1/Very Large Telescope. We do not detect any counterpart to WISE 0855-07 in our z-band images and estimate a brightness upper limit of AB mag > 24.8 (F {sub ?} < 0.45 ?Jy) at 910 ± 65 nm with 3? confidence. We combine our z-band upper limit with previous near- and mid-infrared photometry to place constraints on the atmospheric properties of WISE 0855-07 via comparison to models which implement water clouds in the atmospheres of T {sub eff} < 300 K substellar objects. We find that none of the available models that implement water clouds can completely reproduce the observed spectral energy distribution of WISE 0855-07. Every model significantly disagrees with the (3.6 ?m/4.5 ?m) flux ratio and at least one other bandpass. Since methane is predicted to be the dominant absorber at 3-4 ?m, these mismatches might point to an incorrect or incomplete treatment of methane in current models. We conclude that (a) WISE0855-07 has T {sub eff} ? 200-250 K, (b) <80% of its surface is covered by clouds, and (c) deeper observations, and improved models of substellar evolution, atmospheres, clouds, and opacities will be necessary to better characterize this object.

  6. Issues Related to Seismic Activity Induced by the Injection of CO2 in Deep Saline Aquifers

    SciTech Connect

    Sminchak, Joel; Gupta, Neeraj; Byrer, Charles; Bergman, Perry

    2001-05-31

    Case studies, theory, regulation, and special considerations regarding the disposal of carbon dioxide (CO2) into deep saline aquifers were investigated to assess the potential for induced seismic activity. Formations capable of accepting large volumes of CO2 make deep well injection of CO2 an attractive option. While seismic implications must be considered for injection facilities, induced seismic activity may be prevented through proper siting, installation, operation, and monitoring. Instances of induced seismic activity have been documented at hazardous waste disposal wells, oil fields, and other sites. Induced seismic activity usually occurs along previously faulted rocks and may be investigated by analyzing the stress conditions at depth. Seismic events are unlikely to occur due to injection in porous rocks unless very high injection pressures cause hydraulic fracturing. Injection wells in the United States are regulated through the Underground Injection Control (UIC) program. UIC guidance requires an injection facility to perform extensive characterization, testing, and monitoring. Special considerations related to the properties of CO2 may have seismic ramifications to a deep well injection facility. Supercritical CO2 liquid is less dense than water and may cause density-driven stress conditions at depth or interact with formation water and rocks, causing a reduction in permeability and pressure buildup leading to seismic activity. Structural compatibility, historical seismic activity, cases of seismic activity triggered by deep well injection, and formation capacity were considered in evaluating the regional seismic suitability in the United States. Regions in the central, midwestern, and southeastern United States appear best suited for deep well injection. In Ohio, substantial deep well injection at a waste disposal facility has not caused seismic events in a seismically active area. Current

  7. Characterization of failure modes in deep UV and deep green LEDs utilizing advanced semiconductor localization techniques.

    SciTech Connect

    Tangyunyong, Paiboon; Miller, Mary A.; Cole, Edward Isaac, Jr.

    2012-03-01

    We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.

  8. Focused Crawling of the Deep Web Using Service Class Descriptions

    SciTech Connect

    Rocco, D; Liu, L; Critchlow, T

    2004-06-21

    Dynamic Web data sources--sometimes known collectively as the Deep Web--increase the utility of the Web by providing intuitive access to data repositories anywhere that Web access is available. Deep Web services provide access to real-time information, like entertainment event listings, or present a Web interface to large databases or other data repositories. Recent studies suggest that the size and growth rate of the dynamic Web greatly exceed that of the static Web, yet dynamic content is often ignored by existing search engine indexers owing to the technical challenges that arise when attempting to search the Deep Web. To address these challenges, we present DynaBot, a service-centric crawler for discovering and clustering Deep Web sources offering dynamic content. DynaBot has three unique characteristics. First, DynaBot utilizes a service class model of the Web implemented through the construction of service class descriptions (SCDs). Second, DynaBot employs a modular, self-tuning system architecture for focused crawling of the DeepWeb using service class descriptions. Third, DynaBot incorporates methods and algorithms for efficient probing of the Deep Web and for discovering and clustering Deep Web sources and services through SCD-based service matching analysis. Our experimental results demonstrate the effectiveness of the service class discovery, probing, and matching algorithms and suggest techniques for efficiently managing service discovery in the face of the immense scale of the Deep Web.

  9. Water Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Water Security HomeTag:Water Security Electricity use by water service sector and county. Shown are electricity use by (a) ...

  10. Water Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary PowerEnergy Conversion EfficiencyWater Power Water Power Tara Camacho-Lopez 2016-06-01T22:32:54+00:00 Enabling a successful water power industry. Hydropower ...

  11. water scarcity

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  12. water savings

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  13. water infrastructure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  14. Water Demand

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  15. drinking water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    drinking water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  16. Water Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Security - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  17. Water Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Power bernadette Permalink Gallery Bernie Hernandez-Sanchez wins HENAAC Award for outstanding technical achievement News, Water Power Bernie Hernandez-Sanchez wins HENAAC ...

  18. Water Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  19. Workshop to develop deep-life continental scientific drilling projects

    DOE PAGES [OSTI]

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; Aloisi, V.; Colwell, F. S.; Engelen, B.; Fendrihan, S.; Gaidos, E.; Harms, U.; Head, I.; et al

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have includedmoreĀ Ā» a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcanoā€“tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP

  20. Workshop to develop deep-life continental scientific drilling projects

    SciTech Connect

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; Aloisi, V.; Colwell, F. S.; Engelen, B.; Fendrihan, S.; Gaidos, E.; Harms, U.; Head, I.; Kallmeyer, J.; Kiel Reese, B.; Lin, L.-H.; Long, P. E.; Moser, D. P.; Mills, H.; Sar, P.; Schulze-Makuch, D.; Stan-Lotter, H.; Wagner, D.; Wang, P.-L.; Westall, F.; Wilkins, M. J.

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have included a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcanoā€“tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP

  1. Low temperature hydrothermal maturation of organic matter in sediments form the Atlantis II Deep, Red Sea

    SciTech Connect

    Simoneit, B.R.; Grimalt, J.O.; Hayes, J.M.; Hartman, H.

    1987-04-01

    Hydrocarbons and bulk organic matter of two sediment cores located within the Atlantis II Deep have been analyzed. Although the brines overlying the coring areas were reported to be sterile, microbial inputs and minor terrestrial sources represent the major sedimentary organic material. This input is derived from the upper water column above the brines. Both steroid and triterpenoid hydrocarbons show that extensive acid-catalyzed reactions are occurring in the sediments. In comparison with other hydrothermal or intrusive systems, the Atlantis II Deep exhibits a lower degree of thermal maturation. This is easily deduced from the elemental composition of the kerogens and the absence of polynuclear aromatic hydrocarbons of a pyrolytic origin in the bitumen. The lack of carbon number preference among the n-alkanes suggests, especially in the case of the long chain homologs, that the organic matter of Atlantis II Deep sediments has undergone some degree catagenesis. However, the yields of hydrocarbons are much lower than those observed in other hydrothermal areas. The effect of lower temperature and poor source-rock characteristics appear to be responsible for the differences.

  2. Modeling Deep Burn TRISO Particle Nuclear Fuel

    SciTech Connect

    Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

    2012-01-01

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  3. The influence of deep-seabed CO2 sequestration on small metazoan (meiofaunal) viability and community structure: final technical report

    SciTech Connect

    Thistle, D

    2008-09-30

    Since the industrial revolution, the burning of fossil fuel has produced carbon dioxide at an increasing rate. Present atmospheric concentration is about ~1.5 times the preindustrial level and is rising. Because carbon dioxide is a greenhouse gas, its increased concentration in the atmosphere is thought to be a cause of global warming. If so, the rate of global warming could be slowed if industrial carbon dioxide were not released into the atmosphere. One suggestion has been to sequester it in the deep ocean, but theory predicts that deep-sea species will be intolerant of the increased concentrations of carbon dioxide and the increased acidity it would cause. The aim of our research was to test for consequences of carbon dioxide sequestration on deep-sea, sediment-dwelling meiofauna. Recent technical advances allowed us to test for effects in situ at depths proposed for sequestration. The basic experimental unit was an open-topped container into which we pumped ~20 L of liquid carbon dioxide. The liquid carbon dioxide mixed with near-bottom sea water, which produced carbon dioxide-rich sea water that flowed out over the near-by seabed. We did 30-day experiments at several locations and with different numbers of carbon dioxide-filled containers. Harpacticoid copepods (Crustacea) were our test taxon. In an experiment we did during a previous grant period, we found that large numbers of individuals exposed to carbon dioxide-rich sea water had been killed (Thistle et al. 2004). During the present grant period, we analyzed the species-level data in greater detail and discovered that, although individuals of many species had been killed by exposure to carbon dioxide-rich sea water, individuals of some species had not (Thistle et al. 2005). This result suggests that seabed sequestration of carbon dioxide will not just reduce the abundance of the meiofauna but will change the composition of the community. In another experiment, we found that some harpacticoid species swim

  4. Water Summit

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advisory: White House to host Water Summit March 21, 2016 Los Alamos watershed research among featured projects LOS ALAMOS, N.M., March 21, 2016-On Tuesday, March 22, 2016-World Water Day-the Administration will host a White House Water Summit to raise awareness of the national importance of water and to highlight new commitments and announcements that the Administration and non-Federal institutions are making to build a sustainable water future. A project from Los Alamos National Laboratory

  5. Water Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership Working Group November 5-6, 2014 Cape Canaveral, FL * Kate McMordie Stoughton - Pacific Northwest National Laboratory * kate.mcmordie@pnnl.gov * Francis Wheeler - Water Savers, LLC * fwheeler@watersaversllc.com Topics * Performance contracting analysis * Water industry terms * Federal reduction goals * Water balance * Water efficiency

  6. Deep Well #4 Backup Power Systems Project Closeout Report

    SciTech Connect

    Jeremy Westwood

    2010-04-01

    The project scope was to install a diesel generated power source to deep well 4 in addition to the existing commercial power source. The diesel power source and its fuel supply system shall be seismically qualified to withstand a Performance Category 4 (PC-4) seismic event. This diesel power source will permit the deep well to operate during a loss of commercial power. System design will incorporate the ability to select and transfer power between the new diesel power source and commercial power sources for the the deep well motor and TRA-672 building loads.

  7. Implementation of the national desalination and water purification technology roadmap : structuring and directing the development of water supply solutions.

    SciTech Connect

    Price, Kevin M.; Dorsey, Zachary; Miller, G. Wade; Brady, Patrick Vane; Mulligan, Conrad; Rayburn, Chris

    2006-06-01

    In the United States, economic growth increasingly requires that greater volumes of freshwater be made available for new users, yet supplies of freshwater are already allocated to existing users. Currently, water for new users is made available through re-allocation of xisting water supplies-for example, by cities purchasing agricultural water rights. Water may also be made available through conservation efforts and, in some locales, through the development of ''new'' water from non-traditional sources such as the oceans, deep aquifer rackish groundwater, and water reuse.

  8. Resource Recovery Opportunities at America's Water Resource Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities | Department of Energy Resource Recovery Opportunities at America's Water Resource Recovery Facilities Resource Recovery Opportunities at America's Water Resource Recovery Facilities Breakout Session 3A-Conversion Technologies III: Energy from Our Waste (Will we Be Rich in Fuel or Knee Deep in Trash by 2025?) Resource Recovery Opportunities at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL

  9. Nitrogen is a deep acceptor in ZnO

    DOE PAGES [OSTI]

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmoreĀ Ā» relative to the vacuum level.Ā«Ā less

  10. Building America Webinar: Deep Energy Retrofit Case Studies:...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This presentation by Alea German is included in the Building America webinar, Who's Successfully Doing Deep Energy Retrofits?, on June 25, 2014. PDF icon BA Webinargerman6-25-14....

  11. E-print Network : Main View : Deep Federated Search

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    javascript. Home About Contact Us Help E-print Network Search Powered By Deep Web Technologies New Search Preferences E-print Network E-print Network Skip to main content FAQ *...

  12. DISCOVERY AND CHARACTERIZATION OF AN EXTREMELY DEEP-ECLIPSING...

    Office of Scientific and Technical Information (OSTI)

    We report the discovery of an eclipsing cataclysmic variable with eclipse depths >5.7 mag, ... The optical light curves show a deep, 5-minute eclipse immediately followed by a shallow ...

  13. NERSC, Berkeley Lab Explore Frontiers of Deep Learning for Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Image: Kris Bouchard Deep learning is not a new concept in academic circles or behind the scenes at "Big Data" companies like Google and Facebook, where algorithms for automated ...

  14. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema

    None

    2010-01-08

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  15. Visit to the Deep Underground Science and Engineering Laboratory

    SciTech Connect

    2009-03-31

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  16. Visit to the Deep Underground Science and Engineering Laboratory

    SciTech Connect

    2009-01-01

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  17. Deep drilling data Raft River geothermal area, Idaho | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    data Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data Raft River geothermal area, Idaho Abstract...

  18. Deep Web Video, Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    Deep Web Video Download latest version of Flash Player exit federal site to view Video. ... To support the needs of web patrons, OSTI has developed state-of-the-art technologies and ...

  19. OSTIblog Articles in the deep web technologies Topic | OSTI,...

    Office of Scientific and Technical Information (OSTI)

    Recently, I pointed out that OSTI has been on the forefront of the development of federated search for over a decade. During that time, working in close partnership with Deep Web ...

  20. Trends and Future Challenges in Sampling the Deep Terrestrial Biosphere

    SciTech Connect

    Wilkins, Michael J.; Daly, Rebecca; Mouser, Paula J.; Trexler, Ryan; Sharma, Shihka; Cole, David R.; Wrighton, Kelly C.; Biddle , Jennifer F.; Denis, Elizabeth; Fredrickson, Jim K.; Kieft, Thomas L.; Onstott, T. C.; Peterson, Lee; Pfiffner, Susan M.; Phelps, Tommy J.; Schrenk, Matthew O.

    2014-09-12

    Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and metabolisms, biogeochemical cycling, and the impact of human activities on this ecosystem. As this interest continues to grow, it is important to ensure that when subsurface investigations are proposed, materials recovered from the subsurface are sampled and preserved in an appropriate manner to limit contamination and ensure preservation of accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014, a workshop on ā€œTrends and Future Challenges in Sampling The Deep Subsurfaceā€ was coordinated in Columbus, Ohio by The Ohio State University and West Virginia University faculty, and sponsored by The Ohio State University and the Sloan Foundationā€™s Deep Carbon Observatory. The workshop aims were to identify and develop best practices for the collection, preservation, and analysis of terrestrial deep rock samples. This document summarizes the information shared during this workshop.

  1. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Johnson, Christian D.; Clayton, Ray E.; Chronister, Glen B.

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  2. On polarimetric radar signatures of deep convection for model evaluation:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    columns of specific differential phase observed during MC3E | Argonne National Laboratory On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E Authors van Lier-Walqui, Marcus; Fridlind, Ann; Ackerman, Andrew; Collis, Scott; Helmus, Jonathan; MacGorman, Donald ; North, Kirk; Kollias, Pavlos; Posselt, Derek Division EVS Publication Year 2016 Publication Type Article Abstract The representation of deep convection

  3. Deep Bed Adsorption Testing using Silver-Functionalized Aerogel (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Citation Details In-Document Search Title: Deep Bed Adsorption Testing using Silver-Functionalized Aerogel Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing and evolve in gaseous species into the reprocessing facility off-gas systems. Analyses have shown that I129, due to its radioactivity, high

  4. Deep Web Technologies' Innovations Contribute to DOE Science Search

    Office of Scientific and Technical Information (OSTI)

    Technology | OSTI, US Dept of Energy Office of Scientific and Technical Information FOR IMMEDIATE RELEASE June 25, 2008 Deep Web Technologies' Innovations Contribute to DOE Science Search Technology Oak Ridge, TN - The 2008 SBIR Small Business of the Year award, announced today by the Department of Energy, acknowledged the web search innovations of Deep Web Technologies, Inc., which has made remarkable advances in an unconventional technology, called federated search. Using federated search,

  5. Parameterizing deep convection using the assumed probability density function method

    DOE PAGES [OSTI]

    Storer, R. L.; Griffin, B. M.; Höft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak.more »The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  6. Parameterizing deep convection using the assumed probability density function method

    SciTech Connect

    Storer, R. L.; Griffin, B. M.; Hoft, Jan; Weber, J. K.; Raut, E.; Larson, Vincent E.; Wang, Minghuai; Rasch, Philip J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection.These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.

  7. Parameterizing deep convection using the assumed probability density function method

    DOE PAGES [OSTI]

    Storer, R. L.; Griffin, B. M.; Hƶft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismoreĀ Ā» weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.Ā«Ā less

  8. Parameterizing deep convection using the assumed probability density function method

    DOE PAGES [OSTI]

    Storer, R. L.; Griffin, B. M.; Hƶft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.

    2014-06-11

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismoreĀ Ā» weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.Ā«Ā less

  9. Reusing Water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into...

  10. Reusing Water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into ...

  11. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    DOE PAGES [OSTI]

    Kimball, J.; Tripati, R. E.; Dunbar, R.

    2015-12-04

    Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near constant temperature, salinity and pH, and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop "clumped" isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly-substituted isotopologue 13C18O16O2 in carbonate minerals, analyzedmore »in CO2 gas liberated on phosphoric acid digestion of carbonates and reported as ?47 values. We analyzed ?47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and calcitic gorgonian (Isididae and Coralliidae) deep-sea corals, and compared results to published data for other aragonitic scleractinian taxa. Measured ?47 values were compared to in situ temperatures and the relationship between ?47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than calcitic gorgonian corals and the two groups of coral produce statistically different relationship between ?47-temperature calibrations. These data are significant in the interpretation of all carbonate "clumped" isotope calibration data as they show that distinct ?47-temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset between the corals

  12. Water Quality

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Renewables Ā» Water Power Technologies Office Water Power Technologies Office Wave Energy Prize Winners Announced Wave Energy Prize Winners Announced Four teams surpassed the difficult threshold of doubling the energy captured from ocean waves with their wave energy converter technologies. See who won the $2.25 million in cash prizes! Read more Direct Current: From Water to Wattage Podcast Direct Current: From Water to Wattage Podcast Hydropower is America's oldest and largest source of clean,

  13. Building America Webinar: Who's Successfully Doing Deep Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermal Encl. Low-Load Eff. HVAC Low-Load Eff. HVAC Water Man. Water Man. Eff. Comps MEL's Eff. Comps. MEL's Ventilat'nIAQ Ventilat'nIAQ Water Man. Water Man. Ventilat'nIAQ ...

  14. Deep Vadose Zone-Applied Field Research Initiative Fiscal Year 2011 Annual Report

    SciTech Connect

    Wellman, Dawn M.; Johnson, Timothy C.; Smith, Ronald M.; Truex, Michael J.; Matthews, Hope E.

    2011-10-01

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2011. The Department of Energy (DOE) Office of Technology Innovation and Development's (OTID) mission is to transform science into viable solutions for environmental cleanup. In 2010, OTID developed the Impact Plan, Science and Technology to Reduce the Life Cycle Cost of Closure to outline the benefits of research and development of the lifecycle cost of cleanup across the DOE complex. This plan outlines OTID's ability to reduce by $50 billion, the $200 billion life-cycle cost in waste processing, groundwater and soil, nuclear materials, and deactivation and decommissioning. The projected life-cycle costs and return on investment are based on actual savings realized from technology innovation, development, and insertion into remedial strategies and schedules at the Fernald, Mound, and Ashtabula sites. To achieve our goals, OTID developed Applied Field Research Initiatives to facilitate and accelerate collaborative development and implementation of new tools and approaches that reduce risk, cost and time for site closure. The primary mission of the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI) is to protect our nation's water resources, keeping them clean and safe for future generations. The DVZ-AFRI was established for the DOE to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination. Subsurface contaminants include radionuclides, metals, organics, and liquid waste that originated from various sources, including legacy waste from the nation's nuclear weapons complexes. The DVZ-AFRI project team is translating strategy into action by working to solve these complex challenges in a collaborative

  15. Quantum Tunneling of Water in Beryl. A New State of the Water Molecule

    DOE PAGES [OSTI]

    Kolesnikov, Alexander I.; Reiter, George F.; Choudhury, Narayani; Prisk, Timothy R.; Mamontov, Eugene; Podlesnyak, Andrey; Ehlers, George; Seel, Andrew G.; Wesolowski, David J.; Anovitz, Lawrence M.

    2016-04-22

    When using neutron scattering and ab initio simulations, we document the discovery of a new ā€œquantum tunneling stateā€ of the water molecule confined in 5 ƅ channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. Additionally, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.

  16. Water pollution

    SciTech Connect

    Not Available

    1990-06-01

    Ballast water, which is sea water that is carried in oil tankers to provide stability, can become contaminated with oil. Alyeska Pipeline Service Company runs a water treatment plant at its pipeline terminal at Prot Valdez, Alaska, to treat ballast water before it is discharged into the sea. GAO reviewed EPA's recently reissued National Pollution Discharge Elimination System permit for the Port Valdez facility. In this report, GAO compares the effluent limits and other requirements under the reissued permit with those of the old permit, determines the reasons for changes in the reissued permit, and examines Alyeska's initial efforts to comply with the reissued permit's effluent limits and reporting requirements.

  17. Land subsidence along the northeastern Texas Gulf coast: Effects of deep hydrocarbon production

    SciTech Connect

    Sharp, J.M. Jr.; Hill, D.W.

    1995-04-01

    The Texas Gulf of Mexico coast is experiencing high (5-11 mm/yr) rates of relative sea level (RSL) rise that are the sum of subsidence and eustatic sea level (ESL) rise. Even higher rates are associated with areas of ground-water pumping from confined aquifers. We investigate the possibility of deep petroleum production as a cause for the high regional rates of subsidence. The northeast Texas coast was chosen for the study because it has a high rate of RSL rise, very limited groundwater production, and a long history of petroleum production. We examine in detail the Big Hill and Fannett fields, for which adequate bottom hole pressure (BHP) and well log data are available. The hypothesis of deep petroleum production is tested in three ways. First, industry BHP tests show many of the fields are depressurized to far below hydrostatic pressures. Second, analysis of BHP data over time in the Big Hill and Fannett fields indicates that some zones in these fields were below hydrostatic when production commenced. This indicates that depressurization from production in neighboring fields or zones within the same filed is not limited to the production zone. Third, three models for subsidence (a general 1-D regional model, an intra-reservoir model, and a reservoir bounding layer model), using reasonable hydrogeological parameters, predict subsidence within the inferred range of data. The latter two models use data from the Big Hill and Fannett fields. Additional verification of the hypothesis that deep petroleum production is causing or accelerating regional subsidence will require the collection and analysis of data on the subsurface hydrogeological parameters and detailed measure ments of the spatial and temporal distribution of subsidence along the Texas Coast.

  18. Advances in technology for the construction of deep-underground facilities

    SciTech Connect

    Not Available

    1987-12-31

    The workshop was organized in order to address technological issues important to decisions regarding the feasibility of strategic options. The objectives of the workshop were to establish the current technological capabilities for deep-underground construction, to project those capabilities through the compressed schedule proposed for construction, and to identify promising directions for timely allocation of existing research and development resources. The earth has been used as a means of protection and safekeeping for many centuries. Recently, the thickness of the earth cover required for this purpose has been extended to the 2,000- to 3,000-ft range in structures contemplated for nuclear-waste disposal, energy storage, and strategic systems. For defensive missile basing, it is now perceived that the magnitude of the threat has increased through better delivery systems, larger payloads, and variable tactics of attack. Thus, depths of 3,000 to 8,000 ft are being considered seriously for such facilities. Moreover, it appears desirable that the facilities be operational (if not totally complete) for defensive purposes within a five-year construction schedule. Deep excavations such as mines are similar in many respects to nearsurface tunnels and caverns for transit, rail, sewer, water, hydroelectric, and highway projects. But the differences that do exist are significant. Major distinctions between shallow and deep construction derive from the stress fields and behavior of earth materials around the openings. Different methodologies are required to accommodate other variations resulting from increased depth, such as elevated temperatures, reduced capability for site exploration, and limited access during project execution. This report addresses these and other questions devoted to geotechnical characterization, design, construction, and excavation equipment.

  19. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  20. Dynamic underground stripping to remediate a deep hydrocarbon spill

    SciTech Connect

    Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.

    1995-09-01

    Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 26,500 liters (7000 gallons) of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat methods and vacuum extraction schemes for removing non-aqueous phase liquids (NAPLs) such as gasoline from deep subsurface plumes.

  1. A Deep Dive into the Subsea Environment | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A Deep Dive into the Subsea Environment Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) A Deep Dive into the Subsea Environment Bruno Betoni Parodi 2014.04.07 In 2012, we hosted a workshop at the Brazil Technology Center in Rio de Janeiro for the (then) recently created Subsea Systems Center of Excellence (CoE). A

  2. USDOE Deep Borehole Proposal River & Plateau Committee

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    USDOE Deep Borehole Proposal River & Plateau Committee February 9, 2016 Dirk Dunning, P.E. Basic idea * Drill one or more boreholes into crystalline basement rock to about 5,000 m depth * Emplace waste canisters in the lower 2,000 meters of the borehole * Seal the upper borehole * compacted bentonite clay, cement plugs, and cemented backfill * Deep borehole disposal of high-level radioactive waste has been considered since the 1950s and periodically studied since the 1970s * One of several

  3. Microsoft Word - Deep-Burn awards news release _2_.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    RELEASE Tim Jackson, DOE-Idaho Operations Office Wednesday, July 23, 2008 (208) 526-8484 U.S. Department of Energy Awards $7.3 million for "Deep-Burn" Gas-Reactor Technology Research & Development WASHINGTON, DC -Today the U.S. Department of Energy announced it has selected teams led by Idaho National Laboratory and Argonne National Laboratory to advance the technology of nuclear fuel "Deep-Burn," in which plutonium and higher transuranics recycled from spent nuclear fuel

  4. WATER TREATMENT

    DOEpatents

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  5. Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)

    SciTech Connect

    Lindstrom, Jason

    2010-01-31

    Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 Ā°F (250 Ā°C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energyā€™s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers an economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.

  6. Water Wars

    Energy Science and Technology Software Center

    2012-09-11

    Sandia National Laboratories and Intel Corporation are cooperating on a project aimed at developing serious games to assist in resource planners in conducting open and participatory projects. Water Wars serves as a prototype game focused on water issues. Water Wars is a multi-player, online role-playing "serious game" combining large-scale simulation (e.g. SimCity), with strategy and interpersonal interaction (e.g. Diplomacy). The game is about water use set in present-day New Mexico. Players enact various stakeholder rolesmoreĀ Ā» and compete for water while simultaneously cooperating to prevent environmental collapse. The gamespace utilizes immersive 3D graphics to bring the problem alive. The game integrates Intel's OpenSim visualization engine with Sandia developed agent-based and system dynamics models.Ā«Ā less

  7. ULTRAVIOLET NUMBER COUNTS OF GALAXIES FROM SWIFT ULTRAVIOLET/OPTICAL TELESCOPE DEEP IMAGING OF THE CHANDRA DEEP FIELD SOUTH

    SciTech Connect

    Hoversten, E. A.; Gronwall, C.; Koch, T. S.; Roming, P. W. A.; Siegel, M. H.; Berk, D. E. Vanden; Breeveld, A. A.; Curran, P. A.; Still, M.

    2009-11-10

    Deep Swift UV/Optical Telescope (UVOT) imaging of the Chandra Deep Field South is used to measure galaxy number counts in three near-ultraviolet (NUV) filters (uvw2: 1928 A, uvm2: 2246 A, and uvw1: 2600 A) and the u band (3645 A). UVOT observations cover the break in the slope of the NUV number counts with greater precision than the number counts by the Hubble Space Telescope Space Telescope Imaging Spectrograph and the Galaxy Evolution Explorer, spanning a range 21 approx< m{sub AB} approx< 25. Model number counts confirm earlier investigations in favoring models with an evolving galaxy luminosity function.

  8. Potential for Microbial Stimulation in Deep Vadose Zone Sediments by Gas-Phase Nutrients

    SciTech Connect

    Li, S.W.; Plymale, A. E.; Brockman, F.J.

    2006-04-05

    Viable microbial populations are low, typically 10{sup 4} cells per gram, in deep vadose zones in arid climates. There is evidence that microbial distribution in these environments is patchy. In addition, infiltration or injection of nutrient-laden water has the potential to spread and drive contaminants downward to the saturated zone. For these reasons, there are uncertainties regarding the feasibility of bioremediation of recalcitrant contaminants in deep vadose zones. The objectives of this study were to investigate the occurrence of denitrifying activity and gaseous carbon-utilizing activity in arid-climate deep vadose zone sediments contaminated with, and/or affected by past exposure to, carbon tetrachloride (CT). These metabolisms are known to degrade CT and/or its breakdown product chloroform under anoxic conditions. A second objective was to determine if CT would be degraded in these sediments under unsaturated, bulk-phase aerobic incubation conditions. Both denitrifier population (determined by MPN) and microbial heterotrophic activity (measured by mineralization of 14-C labeled glucose and acetate) were relatively low and the sediments with greater in situ moisture (10-21% versus 2-7%) tended to have higher activities. When sediments were amended with gaseous nutrients (nitrous oxide and triethyl/tributyl phosphate) and gaseous C sources (a mixture of methane, ethane, propylene, propane, and butane) and incubated for 6 months, approximately 50% of the samples showed removal of one or more gaseous C sources, with butane most commonly used (44% of samples), followed by propylene (42%), propane (31%), ethane (22%), and methane (4%). Gaseous N and gaseous P did not stimulate removal of gaseous C substrates compared to no addition of N and P. CT and gaseous C sources were spiked into the sediments that removed gaseous C sources to determine if hydrocarbon-degraders have the potential to degrade CT under unsaturated conditions. In summary, gaseous C sources

  9. Deep Residential Retrofits in East Tennessee

    SciTech Connect

    Boudreaux, Philip R; Hendrick, Timothy P; Christian, Jeffrey E; Jackson, Roderick K

    2012-04-01

    Executive Summary Oak Ridge National Laboratory (ORNL) is furthering residential energy retrofit research in the mixed-humid climate of East Tennessee by selecting 10 homes and guiding the homeowners in the energy retrofit process. The homeowners pay for the retrofits, and ORNL advises which retrofits to complete and collects post-retrofit data. This effort is in accordance with the Department of Energy s Building America program research goal of demonstrating market-ready energy retrofit packages that reduce home energy use by 30 50%. Through this research, ORNL researchers hope to understand why homeowners decide to partake in energy retrofits, the payback of home energy retrofits, and which retrofit packages most economically reduce energy use. Homeowner interviews help the researchers understand the homeowners experience. Information gathered during the interviews will aid in extending market penetration of home energy retrofits by helping researchers and the retrofit industry understand what drives homeowners in making positive decisions regarding these retrofits. This report summarizes the selection process, the pre-retrofit condition, the recommended retrofits, the actual cost of the retrofits (when available), and an estimated energy savings of the retrofit package using EnergyGauge . Of the 10 households selected to participate in the study, only five completed the recommended retrofits, three completed at least one but no more than three of the recommended retrofits, and two households did not complete any of the recommended retrofits. In the case of the two homes that did none of the recommended work, the pre-retrofit condition of the homes and the recommended retrofits are reported. The five homes that completed the recommended retrofits are monitored for energy consumption of the whole house, appliances, space conditioning equipment, water heater, and most of the other circuits with miscellaneous electric loads (MELs) and lighting. Thermal comfort is

  10. Deep, water-free gas potential is upside to New Albany shale play

    SciTech Connect

    Hamilton-Smith, T.

    1998-02-16

    The New Albany shale of the Illinois basin contains major accumulations of Devonian shale gas, comparable both to the Antrim shale of the Michigan basin and the Ohio shale of the Appalachian basin. The size of the resource originally assessed at 61 tcf has recently been increased to between 323 tcf and 528 tcf. According to the 1995 US Geological Survey appraisal, New Albany shale gas represents 52% of the undiscovered oil and gas reserves of the Illinois basin, with another 45% attributed to coalbed methane. New Albany shale gas has been developed episodically for over 140 years, resulting in production from some 40 fields in western Kentucky, 20 fields in southern Indiana, and at least 1 field in southern Illinois. The paper describes two different plays identified by a GRI study and prospective areas.

  11. Building America Webinar: Who's Successfully Doing Deep Energy Retrofits?

    Energy.gov [DOE]

    The webinar will focus on specific Building America projects and case studies that highlight real-world examples of deep energy retrofits that are meeting with technical and market success. Presenters will focus on technical strategies, modeled and actual performance results, and project costs.

  12. Deep Spatiotemporal Feature Learning with Application to Image Classification

    SciTech Connect

    Karnowski, Thomas Paul; Arel, Itamar; Rose, Derek C

    2010-01-01

    Deep machine learning is an emerging framework for dealing with complex high-dimensionality data in a hierarchical fashion which draws some inspiration from biological sources. Despite the notable progress made in the field, there remains a need for an architecture that can represent temporal information with the same ease that spatial information is discovered. In this work, we present new results using a recently introduced deep learning architecture called Deep Spatio-Temporal Inference Network (DeSTIN). DeSTIN is a discriminative deep learning architecture that combines concepts from unsupervised learning for dynamic pattern representation together with Bayesian inference. In DeSTIN the spatiotemporal dependencies that exist within the observations are modeled inherently in an unguided manner. Each node models the inputs by means of clustering and simple dynamics modeling while it constructs a belief state over the distribution of sequences using Bayesian inference. We demonstrate that information from the different layers of this hierarchical system can be extracted and utilized for the purpose of pattern classification. Earlier simulation results indicated that the framework is highly promising, consequently in this work we expand DeSTIN to a popular problem, the MNIST data set of handwritten digits. The system as a preprocessor to a neural network achieves a recognition accuracy of 97.98% on this data set. We further show related experimental results pertaining to automatic cluster adaptation and termination.

  13. Deep Borehole Disposal Remediation Costs for Off-Normal Outcomes

    SciTech Connect

    Finger, John T.; Cochran, John R.; Hardin, Ernest

    2015-08-17

    This memo describes rough-order-of-magnitude (ROM) cost estimates for a set of off-normal (accident) scenarios, as defined for two waste package emplacement method options for deep borehole disposal: drill-string and wireline. It summarizes the different scenarios and the assumptions made for each, with respect to fishing, decontamination, remediation, etc.

  14. Deep Borehole Field Test Requirements and Controlled Assumptions.

    SciTech Connect

    Hardin, Ernest

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  15. Supercement for Annular Seal and Long-Term Integrity in Deep, Hot Wells "DeepTrek"

    SciTech Connect

    CSI Technologies

    2007-08-31

    -R represent materials fulfilling the objectives of the DeepTrek project.

  16. Environmental genomics reveals a single species ecosystem deep within the Earth

    SciTech Connect

    Chivian, Dylan; Brodie, Eoin L.; Alm, Eric J.; Culley, David E.; Dehal, Paramvir S.; DeSantis, Todd Z.; Gihring, Thomas M.; Lapidus, Alla; Lin, Li-Hung; Lowry, Stephen R.; Moser, Duane P.; Richardson, Paul; Southam, Gordon; Wanger, Greg; Pratt, Lisa M.; Andersen, Gary L.; Hazen, Terry C.; Brockman, Fred J.; Arkin, Adam P.; Onstott, Tullis C.

    2008-09-17

    DNA from low biodiversity fracture water collected at 2.8 km depth in a South African gold mine was sequenced and assembled into a single, complete genome. This bacterium, Candidatus Desulforudis audaxviator, comprises>99.9percent of the microorganisms inhabiting the fluid phase of this particular fracture. Its genome indicates a motile, sporulating, sulfate reducing, chemoautotrophic thermophile that can fix its own nitrogen and carbon using machinery shared with archaea. Candidatus Desulforudis audaxviator is capable of an independent lifestyle well suited to long-term isolation from the photosphere deep within Earth?s crust, and offers the first example of a natural ecosystem that appears to have its biological component entirely encoded within a single genome.

  17. Project DEEP STEAM: third meeting of the technical advisory panel, Bakersfield, CA, March 1980

    SciTech Connect

    Fox, R. L.; Johnson, D. R.; Donaldson, A. B.; Mulac, A. J.; Krueger, D. A.

    1981-04-01

    The third meeting of the technical advisory panel for the Deep Steam project was held in March 1980 in Bakersfield, California. The following seven papers were presented: Materials Studies; Insulation/Packer Simulation Test; Enhanced Recovery Packer; High Pressure Downhole Steam Generator; Lower Pressure Downhole Steam Generator; Physical Simulations; and Field Testing. The panel made many recommendations, some of which are: shell calcium silicate insulation should be included in the injection string modification program; for metal packer, consider age hardening alloys, testing with thermal cycling, intentionally flawed casing, and operational temperatures effect on differential expansion, plus long term tests under temperature and corrosive environment; for minimum stress packer, consider testing environment carefully as some elastomers are especially susceptible to oil, oxygen, and combustion gases; for downhole steam generator, quality of water required with new low pressure combustion design needs to be investigated; in field testing, materials coupons, for corrosion monitoring, should be an integral part of field test operations.

  18. Neutralizing Carbonic Acid in Deep Carbonate Strata below the North Atlantic

    SciTech Connect

    Daniel P. Schrag

    2005-12-01

    Our research is aimed at investigating several technical issues associated with carbon dioxide sequestration in calcium carbonate sediments below the sea floor through laboratory experiments and chemical transport modeling. Our goal is to evaluate the basic feasibility of this approach, including an assessment of optimal depths, sediment types, and other issues related to site selection. Through laboratory and modeling efforts, we are studying the flow of liquid carbon dioxide and carbon dioxide-water mixtures through calcium carbonate sediments to better understand the geomechanical and structural stability of the sediments during and after injection. Our modeling efforts in the first year show that the idea is feasible, but requires more sophisticated analysis of fluid flow at high pressure in deep sea sediments. In addition, we are investigating the kinetics of calcium carbonate dissolution in the presence of CO{sub 2}-water fluids, which is a critical feature of the system as it allows for increased permeability during injection. Our experimental results from the first year of work have shown that the kinetics are likely to be fast enough to create dissolution which will affect permeability. However, additional experiments are needed at high pressures, which will be a focus for years 2 and 3. We are also investigating the possibility of carbon dioxide hydrate formation in the pore fluid, which might complicate the injection procedure by reducing sediment permeability but might also provide an upper seal in the sediment-pore fluid system, preventing release of CO{sub 2} into the deep ocean, particularly if depth and temperature at the injection point rule out immediate hydrate formation. Finally, we are in the beginning stages of an economic analysis to estimate costs of drilling and gas injection, site monitoring as well as the availability of potential disposal sites with particular emphasis on those sites that are within the 200-mile economic zone of the

  19. The deep hydrogeologic flow system underlying the Oak Ridge Reservation -- Assessing the potential for active groundwater flow and origin of the brine

    SciTech Connect

    Nativ, R.; Halleran, A.; Hunley, A.

    1997-08-01

    The deep hydrogeologic system underlying the Oak Ridge Reservation (ORR) contains contaminants such as radionuclides, heavy metals, nitrates, and organic compounds. The groundwater in the deep system is saline and has been considered to be stagnant in previous studies. This study was designed to address the following questions: is groundwater in the deep system stagnant; is contaminant migration controlled by diffusion only or is advection a viable mechanism; where are the potential outlet points? On the basis of existing and newly collected data, the nature of saline groundwater flow and potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial and temporal temperature variations at depth, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. The observations suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active, freshwater-bearing units. Influx of recent water does occur. Groundwater volumes involved in this flow are likely to be small. The origin of the saline groundwater was assessed by using existing and newly acquired chemical and isotopic data. The proposed model that best fits the data is modification of residual brine from which halite has been precipitated. Other models, such as ultrafiltration and halite dissolution, were also evaluated.

  20. Deep-Burn Modular Helium Reactor Fuel Development Plan

    SciTech Connect

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes

  1. Deep Vadose Zoneā€“Applied Field Research Initiative Fiscal Year 2012 Annual Report

    SciTech Connect

    Wellman, Dawn M.; Truex, Michael J.; Johnson, Timothy C.; Bunn, Amoret L.; Golovich, Elizabeth C.

    2013-03-14

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2012.

  2. Large-Scale Deep Learning on the YFCC100M Dataset (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Large-Scale Deep Learning on the YFCC100M Dataset Citation Details In-Document Search Title: Large-Scale Deep Learning on the YFCC100M Dataset Authors: Ni, K ; Boakye, ...

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........7 Water Sampling Field Activities Verification ... Quality Data New Rifle Surface Water Quality Data Old Rifle Surface Water ...

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Quality Data New Rifle Surface Water Quality Data Old Rifle Surface Water ...

  5. First results, problems of French deep gasification program

    SciTech Connect

    Gaussens, P.

    1983-01-01

    The development of a technology for the gasification of deep coal reserves that are technically and economically not exploitable by classic mining methods was investigated. The principal problem is the very low permeability of the deep coal which makes it necessary to create an artificial connection between the injection and production wells which is done of hydrofracturing method. The possibilities of an electrical connection are studied. Difficulties related to the spontaneous ignition of the coal and the creation of a backward combustion are revealed. Exploration of the factors that might limit the quality of the gas produced or the quantity of coal extracted by doublet is suggested which should lead to obtaining criteria for site selection. Knowledge of the natural conditions of a site is essential for the decision and the selection of the operating method. The characterization can be obtained by using exploration methods such as coring, logging, surface geophysics.

  6. Method for gasification of deep, thin coal seams. [DOE patent

    DOEpatents

    Gregg, D.W.

    1980-08-29

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face is given. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  7. Method for gasification of deep, thin coal seams

    DOEpatents

    Gregg, David W.

    1982-01-01

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  8. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on the Organic Geochemistry of Deep Groundwaters from the Palo Duro Basin, Texas

    SciTech Connect

    Fenster, D.F.; Brookins, D.G.; Harrison, W.; Seitz, M.G.; Lerman, A.; Stamoudis, V.C.

    1984-08-01

    This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) final report entitled The Organic Geochemistry of Deep Ground Waters from the Palo Duro Basin, Texas, dated September 1983. Recommendations are made for improving the ONWI report. The main recommendation is to make the text consistent with the title and with the objective of the project as stated in the introduction. Three alternatives are suggested to accomplish this.

  9. WATER CONSERVATION PLAN

    National Nuclear Security Administration (NNSA)

    ... Average water consumers can save thousands of gallons of water per year by being aware of ... program on the water distribution systems to include water saving replacement parts. ...

  10. DOE Tour of Zero Floorplans: 5th Street Deep Rehab by Carl Franklin Homes &

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Green Extreme Homes | Department of Energy 5th Street Deep Rehab by Carl Franklin Homes & Green Extreme Homes DOE Tour of Zero Floorplans: 5th Street Deep Rehab by Carl Franklin Homes & Green Extreme Homes DOE Tour of Zero Floorplans: 5th Street Deep Rehab by Carl Franklin Homes & Green Extreme Homes

  11. Deep drilling phase of the Pen Brand Fault Program

    SciTech Connect

    Stieve, A.

    1991-05-15

    This deep drilling activity is one element of the Pen Branch Fault Program at Savannah River Site (SRS). The effort will consist of three tasks: the extension of wells PBF-7 and PBF-8 into crystalline basement, geologic and drilling oversight during drilling operations, and the lithologic description and analysis of the recovered core. The drilling program addresses the association of the Pen Branch fault with order fault systems such as the fault that formed the Bunbarton basin in the Triassic.

  12. Next Step Toward Widespread Residential Deep Energy Retrofits

    SciTech Connect

    McIlvaine, J.; Saunders, S.; Bordelon, E.; Baden, S.; Elam, L.; Martin, E.

    2013-07-01

    The complexity of deep energy retrofits warrants additional training to successfully manage multiple improvements that will change whole house air, heat, and moisture flow dynamics. The home performance contracting industry has responded to these challenges by aggregating skilled labor for assessment of and implementation under one umbrella. Two emerging business models are profiled that seek to resolve many of the challenges, weaknesses, opportunities, and threats described for the conventional business models.

  13. The Next Step Toward Widespread Residential Deep Energy Retrofits

    SciTech Connect

    McIlvaine, J.; Martin, E.; Saunders, S.; Bordelon, E.; Baden, S.; Elam, L.

    2013-07-01

    The complexity of deep energy retrofits warrants additional training to successfully manage multiple improvements that will change whole house air, heat, and moisture flow dynamics. The home performance contracting industry has responded to these challenges by aggregating skilled labor for assessment of and implementation under one umbrella. Two emerging business models are profiled that seek to resolve many of the challenges, weaknesses, opportunities, and threats described for the conventional business models.

  14. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    SciTech Connect

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  15. Microsoft Word - Deep-Burn awardee team members _2_.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sheet: DEEP-BURN AWARDEES RECIPIENTS RECIPIENT TEAM MEMBERS Advanced Modeling and Simulation Capability R&D for $1 million University of Chicago Argonne Argonne National Laboratory Oak Ridge National Laboratory Lawrence Livermore National Lab University of Michigan Transuranic Management Capabilities R&D for $6.3 million Battelle Energy Alliance, LLC Idaho National Laboratory Oak Ridge National Laboratory Argonne National Laboratory Los Alamos National Laboratory University of

  16. DeepStar evaluation of subsea trees and manifold concepts

    SciTech Connect

    Kirkland, K.G.; Richardson, E.M.; Hey, C.

    1996-12-31

    This paper reviews the results of a study performed for the DeepStar Project, CTR A802-2, Concept Study and Investigation of Key Areas of Interest for Subsea Systems in Deepwater. The report documents the results of a study of subsea manifold systems as applied to the deepwater Gulf of Mexico. Of particular interest is the development of a range of system level philosophies based on recent and ongoing experience from the operators and vendors.

  17. Tiny travelers from deep space could assist in healing Fukushima's

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    nuclear scar Fukushima Daiichi nuclear reactors Tiny travelers from deep space could assist in healing Fukushima's nuclear scar Researchers have devised a method to use cosmic rays to gather detailed information from inside the damaged cores of the Fukushima Daiichi nuclear reactors. October 17, 2012 Los Alamos National Laboratory Muon Radiography team members stand in front of the damaged Fukushima Daiichi reactor complex during a visit to determine evaluate whether Los Alamos' Scattering

  18. Central Plateau Groundwater and Deep Vadose Zone Strategy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Vadose Zone Executive Council Hanford Advisory Board River and Plateau Committee Briant L. Charboneau DOE-RL, Soil and Groundwater Federal Project Director October 9, 2012 1 Discussion Topics * Purpose of the Executive Council - Why was this established? * Who participates? * What are the integration topics of interest to the Council? * Examples of groundwater and vadose zone integration - Deep Vadose Zone treatability testing leading to evaluation of measures to protect groundwater - B complex

  19. Active Suppression of Drilling System Vibrations For Deep Drilling

    SciTech Connect

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  20. Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and vicinity

    SciTech Connect

    Janik, C.J.; Nathenson, M.; Scholl, M.A.

    1994-12-31

    Published and new data for chemical and isotopic samples from wells and springs on Kilauea Volcano and vicinity are presented. These data are used to understand processes that determine the chemistry of dilute meteoric water, mixtures with sea water, and thermal water. Data for well and spring samples of non-thermal water indicate that mixing with sea water and dissolution of rock from weathering are the major processes that determine the composition of dissolved constituents in water. Data from coastal springs demonstrate that there is a large thermal system south of the lower east rift of Kilauea. Samples of thermal water from shallow wells in the lower east rift and vicinity have rather variable chemistry indicating that a number of processes operate in the near surface. Water sampled from the available deep wells is different in composition from the shallow thermal water, indicating that generally there is not a significant component of deep water in the shallow wells. Data for samples from available deep wells show significant gradients in chemistry and steam content of the reservoir fluid. These gradients are interpreted to indicate that the reservoir tapped by the existing wells is an evolving vapor-dominated system.

  1. A hybrid ED/RO process for TDS reduction of produced waters

    SciTech Connect

    Tsai, S.P.; Datta, R.; Frank, J.R.

    1995-12-31

    Large volumes of produced waters are generated from natural gas production. In the United States the prevailing management practice for produced waters is deep well injection, but this practice is costly. Therefore minimizing the need for deep well injection is desirable. A major treatment issue for produced waters is the reduction of total dissolved solids (TDS), which consist mostly of inorganic salts. A hybrid electrodialysis/reverse-osmosis (ED/RO) treatment process is being developed to concentrate the salts in produced waters and thereby reduce the volume of brine that needs to be managed for disposal. The desalted water can be used beneficially or discharged. In this study, laboratory feasibility experiments were conducted by using produced waters from multiple sites. A novel-membrane configuration approach to prevent fouling and scale formation was developed and demonstrated. Results of laboratory experiments and plans for field demonstration are discussed.

  2. Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico

    SciTech Connect

    Buss, Heather; Brantley, S. L.; Scatena, Fred; Bazilevskaya, Ekaterina; Blum, Alex; Schulz, M; Jimenez, M; White, Art; Rother, Gernot; Cole, David

    2013-01-01

    Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world s oceans, thereby exerting a primary control on global temperature via the well-known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g., soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed in the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared to the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream.

  3. Federal Water Management

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Cycle Potable water: water of sufficient quality for human consumption Industrial landscaping and agricultural (ILA) water: non-potable water from fresh surface or groundwater Alternative water: onsite non- potable water NOT supplied from fresh surface or groundwater Rainwater Reclaimed wastewater Process reuse Graywater Condensate Set goals Assess current water use Develop a water balance Evaluate efficiency Develop a plan Measure progress Water Management Planning Supply Uses Plumbing

  4. Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals

    SciTech Connect

    Roark, E B; Guilderson, T P; Dunbar, R B; Ingram, B L

    2006-01-13

    The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimens as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.

  5. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  6. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    SciTech Connect

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  7. Newporter Apartments: Deep Energy Retrofit Short-Term Results

    SciTech Connect

    Gordon, A.; Howard, L.; Kunkle, R.; Lubliner, M.; Auer, D.; Clegg, Z.

    2012-12-01

    This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960's vintage low-rise multi-family apartment community (120 units in three buildings).

  8. Generalized parton distributions from deep virtual compton scattering at CLAS

    DOE PAGES [OSTI]

    Guidal, M.

    2010-04-24

    Here, we have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration. Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting these data, in a largely model-independent procedure, we are able to extract numerical values for the two Compton Form FactorsmoreĀ Ā» $$H_{Im}$$ and $$\\tilde{H}_{Im}$$ with uncertainties, in average, of the order of 30%.Ā«Ā less

  9. Newporter Apartments. Deep Energy Retrofit Short Term Results

    SciTech Connect

    Gordon, Andrew; Howard, Luke; Kunkle, Rick; Lubliner, Michael; Auer, Dan; Clegg, Zach

    2012-12-01

    This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost-effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960ā€™s vintage low-rise multi-family apartment community (120 units in three buildings).

  10. Stable isotopic composition of deep sea gorgonian corals (Primnoa spp.): a new archive of surface processes.

    SciTech Connect

    Sherwood, O A; Heikoop, J M; Scott, D B; Risk, M J; Guilderson, T P; McKinney, R A

    2005-02-03

    The deep-sea gorgonian coral Primnoa spp. lives in the Atlantic and Pacific Oceans at depths of 65-3200 m. This coral has an arborescent growth form with a skeletal axis composed of annual rings made from calcite and gorgonin. It has a lifespan of at least several hundred years. It has been suggested that isotopic profiles from the gorgonin fraction of the skeleton could be used to reconstruct long-term, annual-scale variations in surface productivity. We tested assumptions about the trophic level, intra-colony isotopic reproducibility, and preservation of isotopic signatures in a suite of modern and fossil specimens. Measurements of gorgonin {Delta}{sup 14}C and {delta}{sup 15}N indicate that Primnoa spp. feed mainly on zooplankton and/or sinking particulate organic matter (POM{sub SINK}), and not on suspended POM (POM{sub SUSP}) or dissolved organic carbon (DOC). Gorgonin {delta}{sup 13}C and {delta}{sup 15}N in specimens from NE Pacific shelf waters, NW Atlantic slope waters, the Sea of Japan, and a South Pacific (Southern Ocean sector) seamount were strongly correlated with Levitus 1994 surface apparent oxygen utilization (AOU; the best available measure of surface productivity), demonstrating coupling between skeletal isotopic ratios and biophysical processes in surface water. Time-series isotopic profiles from different sections along the same colony were identical for {delta}{sup 13}C, while {delta}{sup 15}N profiles became more dissimilar with increasing separation along the colony axis. Similarity in C:N, {delta}{sup 13}C and {delta}{sup 15}N between modern and fossil specimens suggest that isotopic signatures are preserved over millennial timescales. Finally, the utility of this new archive was demonstrated by reconstruction of 20th century bomb radiocarbon.

  11. Conway Street Apartments: A Multifamily Deep Energy Retrofit...

    Office of Scientific and Technical Information (OSTI)

    CONSORTIUM FOR ADVANCED RESIDENTIAL BUILDINGS; MULTIFAMILY; RETROFIT; ZERO ENERGY; SOLAR THERMAL; DRAIN WATER RECOVERY SYSTEM; DEMAND-CONTROLLED RECIRCULATION SYSTEM; BRICK;...

  12. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    SciTech Connect

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-16

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, ā€œFoam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,ā€ submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate

  13. Neutralizing Carbonic Acid in Deep Carbonate Strata below the North Atlantic

    SciTech Connect

    Daniel P. Schrag

    2006-07-14

    Our research is aimed at investigating several technical issues associated with carbon dioxide sequestration in calcium carbonate sediments below the sea floor through laboratory experiments and chemical transport modeling. Our goal is to evaluate the basic feasibility of this approach, including an assessment of optimal depths, sediment types, and other issues related to site selection. The results of our modeling efforts were published this past summer in the Proceedings of the National Academy of Sciences. We are expanding on that work through a variety of laboratory and modeling efforts. In the laboratories at Columbia and at Harvard, we are studying the flow of liquid carbon dioxide and carbon dioxide-water mixtures through calcium carbonate sediments to better understand the geomechanical and structural stability of the sediments during and after injection. We are currently preparing the results of these findings for publication. In addition, we are investigating the kinetics of calcium carbonate dissolution in the presence of CO{sub 2}-water fluids, which is a critical feature of the system as it allows for increased permeability during injection. We are also investigating the possibility of carbon dioxide hydrate formation in the pore fluid, which might complicate the injection procedure by reducing sediment permeability but might also provide an upper seal in the sediment-pore fluid system, preventing release of CO{sub 2} into the deep ocean, particularly if depth and temperature at the injection point rule out immediate hydrate formation. This is done by injecting liquid CO{sub 2} into various types of porous media, and then monitoring the changes in permeability. Finally, we are performing an economic analysis to estimate costs of drilling and gas injection, site monitoring as well as the availability of potential disposal sites with particular emphasis on those sites that are within the 200-mile economic zone of the United States. We present some

  14. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    SciTech Connect

    N. Lubchenko; M. Rodrƭguez-BuƱo; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism

  15. Shallow-deep transitions of impurities in semiconductor nanostructures

    SciTech Connect

    Ranjan, V.; Singh, Vijay A.

    2001-06-01

    We study the hydrogenic impurity in a quantum dot (QD). We employ the effective mass theory with realistic barrier and variable effective mass. The model is simple, but it predicts features not previously observed. We observe that the shallow hydrogenic impurity becomes deeper as the dot size (R) is reduced and with further reduction of the dot size it becomes shallow and at times resonant with the conduction band. Such a shallow-deep (SHADE) transition is investigated and a critical size in terms of the impurity Bohr radius (a{sub I}{sup *}) is identified. A relevant aspect of a QD is reduction in the dielectric constant, {epsilon}, as its size decreases. Employing a size dependent {epsilon}(R), we demonstrate that the impurity level gets exceptionally deep in systems for which a{sub I}{sup *} is small. Thus, carrier {open_quotes}freeze out{close_quotes} is a distinct possibility in a wide class of materials such as ZnS, CdS, etc. The behavior of the impurity level with dot size is understood on the basis of simple scaling arguments. Calculations are presented for III{endash}V (AlGaAs) and II{endash}VI (ZnS, CdS) QDs. We speculate that the deepening of the impurity level is related to the high luminescence efficiency of QDs. It is suggested that quantum dots offer an opportunity for defect engineering. {copyright} 2001 American Institute of Physics.

  16. Deep Energy Retrofit Guidance for the Building America Solutions Center

    SciTech Connect

    Less, Brennan; Walker, Iain

    2015-01-01

    The U.S. DOE Building America program has established a research agenda targeting market-relevant strategies to achieve 40% reductions in existing home energy use by 2030. Deep Energy Retrofits (DERs) are part of the strategy to meet and exceed this goal. DERs are projects that create new, valuable assets from existing residences, by bringing homes into alignment with the expectations of the 21st century. Ideally, high energy using, dated homes that are failing to provide adequate modern services to their owners and occupants (e.g., comfortable temperatures, acceptable humidity, clean, healthy), are transformed through comprehensive upgrades to the building envelope, services and miscellaneous loads into next generation high performance homes. These guidance documents provide information to aid in the broader market adoption of DERs. They are intended for inclusion in the online resource the Building America Solutions Center (BASC). This document is an assemblage of multiple entries in the BASC, each of which addresses a specific aspect of Deep Energy Retrofit best practices for projects targeting at least 50% energy reductions. The contents are based upon a review of actual DERs in the U.S., as well as a mixture of engineering judgment, published guidance from DOE research in technologies and DERs, simulations of cost-optimal DERs, Energy Star and Consortium for Energy Efficiency (CEE) product criteria, and energy codes.

  17. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent

    DOE PAGES [OSTI]

    Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene

    2015-07-13

    From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are moremoreĀ Ā» spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).Ā«Ā less

  18. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent

    SciTech Connect

    Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene

    2015-07-13

    From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are more spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).

  19. The Mechanism of First Raindrops Formation in Deep Convective Clouds

    SciTech Connect

    Khain, Alexander; Prabha, Thara; Benmoshe, Nir; Pandithurai, G.; Ovchinnikov, Mikhail

    2013-08-22

    The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2-D and 3-D numerical bin microphysical simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study indicate that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of nucleation, diffusion growth and collisions. The results obtained in the study explain observational results reported by Freud and Rosenfeld (2012) according to which the height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites proposed by Rosenfeld et al. ( 2012). The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models, in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme.

  20. Deep Learning in Label-free Cell Classification

    DOE PAGES [OSTI]

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-15

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmoreĀ Ā» cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.Ā«Ā less

  1. Characterization and modeling of multiphase mixtures from deep, subsea wells

    SciTech Connect

    Song, S.; Hill, A.D.

    1996-09-01

    The effects of flow in a vertical pipe on the flow in subsequent horizontal pipes were investigated by performing both experimental and theoretical studies. This geometry mimics production from subsea wells connected to subsea horizontal flow lines. The fluids were conducted into a 153-meter deep well through two different casings, allowing the mixtures to flow up through a 5.08 cm ID vertical pipe and then into a horizontal flow loop which consists of two pipes with 6.35 cm ID and 18.4 cm ID, respectively. The flow regime behaviors in the horizontal pipes were studied for a wide range of flow rates. From the tests, it was found that the flow regimes in the small horizontal pipe were greatly affected by the flows in the vertical pipe while the flow regimes in the large horizontal pipe were hardly affected. A theoretical model based on wave mechanics was developed to simulate the process of the liquid slugs formed in the vertical pipe being carried over into the horizontal pipe. The theoretical predictions matched the experimental observations very well. The results of this study will greatly benefit the understanding of the flow regime behavior that will occur in deep, subsea flow lines transporting multiple phases from subsea completions.

  2. EM Telemetry Tool for Deep Well Drilling Applications

    SciTech Connect

    Jeffrey M. Gabelmann

    2005-11-15

    This final report discusses the successful development and testing of a deep operational electromagnetic (EM) telemetry system, produced under a cooperative agreement with the United States Department of Energy's National Energy Technology Laboratory. This new electromagnetic telemetry system provides a wireless communication link between sensors deployed deep within oil and gas wells and data acquisition equipment located on the earth's surface. EM based wireless telemetry is a highly appropriate technology for oil and gas exploration in that it avoids the need for thousands of feet of wired connections. In order to achieve the project performance objectives, significant improvements over existing EM telemetry systems were made. These improvements included the development of new technologies that have improved the reliability of the communications link while extending operational depth. A key element of the new design is the incorporation of a data-fusion methodology which enhances the communication receiver's ability to extract very weak signals from large amounts of ambient environmental noise. This innovative data-fusion receiver based system adapts advanced technologies, not normally associated with low-frequency communications, and makes them work within the harsh drilling environments associated with the energy exploration market. Every element of a traditional EM telemetry system design, from power efficiency to reliability, has been addressed. The data fusion based EM telemetry system developed during this project is anticipated to provide an EM tool capability that will impact both onshore and offshore oil and gas exploration operations, for conventional and underbalanced drilling applications.

  3. Efficient Water Use & Management

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL. Energy...

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... per liter (mgL) b New Mexico Ground Water and Surface Water Protection Standard ...

  5. National Grid Deep Energy Retrofit Pilot Program—Clark Residence

    SciTech Connect

    2010-03-30

    In this case study, Building Science Corporation partnered with local utility company, National Grid, Massachusetts homes. This project involved the renovation of a 18th century Cape-style building and achieved a super-insulated enclosure (R-35 walls, R-50+ roof, R-20+ foundation), extensive water management improvements, high-efficiency water heater, and state-of-the-art ventilation.

  6. Technical and Policy Challenges in Deep Vadose Zone Remediation of Metals and Radionuclides

    SciTech Connect

    Wellman, Dawn M.; Truex, Michael J.; Freshley, Mark D.; Dresel, P. E.; Cantrell, Kirk J.

    2012-03-21

    Deep vadose zone contamination is a significant issue facing the U.S. Department of Energy’s (DOE) Office of Environmental Management (EM). Contamination in the deep vadose zone is isolated from exposure such that direct contact is not a factor in risk to human health and the environment; rather, movement of contamination from the deep vadose zone to the groundwater creates the potential for exposure and risk to receptors. Transport of deep vadose zone contamination and discharge to the groundwater creates the potential for exposure and risk to receptors, so limiting flux to groundwater is key for protection of groundwater resources. Remediation approaches for the deep vadose zone need to be considered within the regulatory context, targeted at mitigating the source of contamination and reduce contaminant flux to groundwater. This paper reviews the processes for deep vadose zone metal and radionuclide remediation as well as challenges and opportunities for implementation.

  7. Low Temperature Deep Direct Use Program Draft White Paper | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Low Temperature Deep Direct Use Program Draft White Paper Low Temperature Deep Direct Use Program Draft White Paper Introduction The GTO is seeking to enable the widespread utilization of lower temperature geothermal resources that are shallower than most conventional hydrothermal resources, but deeper than geothermal heat pumps (GHPs) and other traditional direct-use systems. These reservoirs are being referred to as Deep Direct Use (DDU) resources, and it is believed that

  8. CBEI: Demonstrating On-Bill Financing to Encourage Deep Retrofits - 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Peer Review | Department of Energy Demonstrating On-Bill Financing to Encourage Deep Retrofits - 2015 Peer Review CBEI: Demonstrating On-Bill Financing to Encourage Deep Retrofits - 2015 Peer Review Presenter: Rudy Terry, Philadelphia Industrial Development Corp. View the Presentation CBEI: Demonstrating On-Bill Financing to Encourage Deep Retrofits - 2015 Peer Review (1.05 MB) More Documents & Publications Reducing Cost Barriers to Energy Efficiency Improvements (201) CBEI: Using DOE

  9. Evolution of deep centers in GaN grown by hydride vapor phaseepitaxy

    SciTech Connect

    Fang, Z.-Q.; Look, D.C.; Jasinski, J.; Benamara, M.; Liliental-Weber, Z.; Molnar, R.J.

    2001-04-18

    Deep centers and dislocation densities in undoped n GaN, grown by hydride vapor phase epitaxy (HVPE), were characterized as a function of the layer thickness by deep level transient spectroscopy and transmission electron microscopy, respectively. As the layer thickness decreases, the variety and concentration of deep centers increase, in conjunction with the increase of dislocation density. Based on comparison with electron irradiation induced centers, some dominant centers in HVPE GaN are identified as possible point defects.

  10. Vehicle Technologies Office Merit Review 2014: Voltage Fade, an ABR Deep

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dive Project: Status and Outcomes | Department of Energy Voltage Fade, an ABR Deep Dive Project: Status and Outcomes Vehicle Technologies Office Merit Review 2014: Voltage Fade, an ABR Deep Dive Project: Status and Outcomes Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the status and outcomes of Voltage Fade, an ABR Deep Dive Project. es161_burrell_2014_o.pdf

  11. EECLP Webinar #4: Residential Energy Efficiency Deep Dive Part 2-- Text Version

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the EECLP Webinar 4: Residential Energy Efficiency Deep Dive Part Two, presented in December 2014.

  12. Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009

    Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization Assistance Program presentation at Weatherization Deep Dive meeting, November 4, 2009.

  13. EECLP Webinar #3: Residential Energy Efficiency Deep Dive Part 1-- Text Version

    Energy.gov [DOE]

    Below is the text version of the EECLP Webinar 3: Residential Energy Efficiency Deep Dive Part 1, presented in December 2014.

  14. Technique Reveals Critical Physics in Deep Regions of Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2014-01-01

    NREL's improved time-resolved photoluminescence method measures minority-carrier lifetime deep within photovoltaic samples to help develop more efficient solar cells.

  15. Patterns of Nitrogen Utilization in Deep-Sea Syntrophic Consortia (2010 JGI User Meeting)

    ScienceCinema

    Wiegel, Detlef

    2011-04-26

    Victoria Orphan from Caltech discusses "Patterns of nitrogen utilization in deep-sea syntrophic consortia" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  16. OSTIblog Articles in the deep web Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Every diffusion process has a speed. Our thesis is that speeding up diffusion will accelerate the advancement of science.... Related Topics: deep web, diffusion of knowledge, isaac ...

  17. Waters LANL Protects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Waters LANL Protects Waters LANL Protects LANL watersheds source in the Jemez Mountains and end at the Rio Grande.

  18. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Alternate Water Supply System Sampling at the Riverton, Wyoming, Processing Site May .........5 Water Sampling Field Activities Verification ...

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........7 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Time-Concentration Graphs ...

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Naturita, Colorado Processing Site October 2013 LMSNAP.........5 Water Sampling Field Activities Verification ...

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Water Sampling at the Ambrosia Lake, New Mexico, Disposal Site February 2015 LMSAMB.........5 Water Sampling Field Activities Verification ...

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........7 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data Static ...

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing .........5 Water Sampling Field Activities Verification ...

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Hydrograph Time-Concentration ...

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Green River, Utah, Disposal Site August 2014 LMSGRN.........7 Water Sampling Field Activities Verification ...

  6. Radiation shielding requirements for manned deep space missions

    SciTech Connect

    Santoro, R.T.; Ingersoll, D.T.

    1991-04-01

    Galactic cosmic rays (GCR) and, particularly, solar flares (SF) constitute the major radiation hazards in deep space. The dose to astronauts from these radiation sources and the shielding required to mitigate its effect during a 480 day Mars mission is estimated here for a simplistic spacecraft geometry. The intent is to ball park'' the magnitude of the doses for the constant GCR background and for SF's that occur randomly during the mission. The spacecraft shielding and dose data are given only for primary GCR and SF radiation, recognizing that secondary particles produced by primary particle reactions in the spacecraft and High Z-High Energy particles will also contribute to the dose suffered by the astronauts. 22 refs., 7 figs., 2 tabs.

  7. Photon Detection System Designs for the Deep Underground Neutrino Experiment

    SciTech Connect

    Whittington, Denver

    2015-11-19

    The Deep Underground Neutrino Experiment (DUNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the DUNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. To maximize the active area while maintaining a small photocathode coverage, the experiment will utilize a design based on plastic light guides coated with a wavelength-shifting compound, along with silicon photomultipliers, to collect and record scintillation light from liquid argon. This report presents recent preliminary performance measurements of this baseline design and several alternative designs which promise significant improvements in sensitivity to low-energy interactions.

  8. Deep Energy Retrofit Guidance for the Building America Solutions Center

    SciTech Connect

    Less, Brennan; Walker, Iain

    2015-01-01

    The U.S. DOE Building America program has established a research agenda targeting market-relevant strategies to achieve 40% reductions in existing home energy use by 2030. Deep Energy Retrofits (DERs) are part of the strategy to meet and exceed this goal. DERs are projects that create new, valuable assets from existing residences, by bringing homes into alignment with the expectations of the 21st century. Ideally, high energy using, dated homes that are failing to provide adequate modern services to their owners and occupants (e.g., comfortable temperatures, acceptable humidity, clean, healthy), are transformed through comprehensive upgrades to the building envelope, services and miscellaneous loads into next generation high performance homes. These guidance documents provide information to aid in the broader market adoption of DERs.

  9. Investigation of the feasibility of deep microborehole drilling

    SciTech Connect

    Dreesen, D.S.; Cohen, J.H.

    1997-01-01

    Recent advances in sensor technology, microelectronics, and telemetry technology make it feasible to produce miniature wellbore logging tools and instrumentation. Microboreholes are proposed for subterranean telemetry installations, exploration, reservoir definition, and reservoir monitoring this assumes that very small diameter bores can be produced for significantly lower cost using very small rigs. A microborehole production concept based on small diameter hydraulic or pneumatic powered mechanical drilling, assemblies deployed on coiled tubing is introduced. The concept is evaluated using, basic mechanics and hydraulics, published theories on rock drilling, and commercial simulations. Small commercial drill bits and hydraulic motors were selected for laboratory scale demonstrations. The feasibility of drilling deep, directional, one to two-inch diameter microboreholes has not been challenged by the results to date. Shallow field testing of prototype systems is needed to continue the feasibility investigation.

  10. Deep patch technique for landslide repair. Final report

    SciTech Connect

    Helwany, B.M.

    1994-10-01

    The report describes the laboratory testing of the `USFS deep patch` technique and a CTI modification of this technique for repairing landslides with geosynthetic reinforcement. The technique involves replacing sections of roadway lost due to landslides on top of a geosynthetically-reinforced embankment. The CTI modification involves replacing the reinforced slope with a geosynthetically-reinforced retaining wall with a truncated base. Both techniques rely on the cantilevering ability of the reinforced mass to limit the load on the foundation with a high slide potential. The tests with road base showed that (1) both the USFS and CTI repair reduced effectively the adverse effects of local landsliding on the highway pavement by preventing crack propagation; (2) the USFS repair increased the stability of the repaired slope, which was in progressive failure, by reducing the stresses exerted on it; and (3) the CTI repair produced substantially greater stresses on its foundation due to the truncated base of the reinforced mass.

  11. Deep inelastic lepton nucleus scattering and hadronization at HERMES energies

    SciTech Connect

    Gruenewald, D.

    2005-06-14

    Semi-inclusive deep inelastic lepton nucleus scattering is studied. The possible hadron interactions inside the nucleus are taken into account by an absorption model which is based on flavor dependent hadron formation lengths, calculated in the framework of the LUND string fragmentation model. Additionally, the rescaling of parton distribution functions and fragmentation functions in the nuclear medium is considered, due to the hypothesis, that a quark in a bound nucleon has access to a larger region in space than in a free nucleon. The model predictions are compared with recent HERMES results for the multiplicity ratios normalized to deuterium on various hadron species and different nuclei. Beside the proton, a good agreement with the experimental data is found.

  12. Deep Borehole Emplacement Mode Hazard Analysis Revision 0

    SciTech Connect

    Sevougian, S. David

    2015-08-07

    This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent of this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.

  13. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit

    SciTech Connect

    Lyons, James; Moore, Mike; Thompson, Margo

    2013-08-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost effectiveness of efficiency upgrade measures for a tenant-in-place deep energy retrofit (DER) at the Bay Ridge multifamily development in Annapolis, Maryland. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

  14. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    SciTech Connect

    Less, Brennan; Walker, Iain

    2014-06-01

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  15. Characterization of deep weathering and nanoporosity development in shale - a neutron study

    SciTech Connect

    Jin, Lixin; Rother, Gernot; Cole, David R; Mildner, David; Duffy, Christopher S; Brantley, Susan L

    2011-01-01

    ) transport of reactants (e.g., water, O{sub 2}) into primary pores and fractures created by tectonic events and peri-glacial effects; (2) mineral-water reactions and particle loss that increase porosity and the access of water into the rock. From deep to shallow, mineral-water reactions may change from largely transport-limited where porosity was set largely by ancient tectonic activity to kinetic-limited where porosity is changing due to climate-driven processes.

  16. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  17. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  18. Interpretation of earth tide response of three deep, confined...

    OpenEI (Open Energy Information) [EERE & EIA]

    sfrom earth tide response. Except for the fact that barometric changes act both on the water surface in the well and on the aquifer as a whole while stress changes associated...

  19. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

  20. Analysis of mineral trapping for CO{sub 2} disposal in deep aquifers

    SciTech Connect

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2001-07-20

    CO{sub 2} disposal into deep aquifers has been suggested as a potential means whereby atmospheric emissions of greenhouse gases may be reduced. However, our knowledge of the geohydrology, geochemistry, geophysics, and geomechanics of CO{sub 2} disposal must be refined if this technology is to be implemented safely, efficiently, and predictably. As a prelude to a fully coupled treatment of physical and chemical effects of CO{sub 2} injection, we have analyzed the impact of CO{sub 2} immobilization through carbonate precipitation. A survey of all major classes of rock-forming minerals, whose alteration would lead to carbonate precipitation, indicated that very few minerals are present in sufficient quantities in aquifer host rocks to permit significant sequestration of CO{sub 2}. We performed batch reaction modeling of the geochemical evolution of three different aquifer mineralogies in the presence of CO{sub 2} at high pressure. Our modeling considered (1) redox processes that could be important in deep subsurface environments, (2) the presence of organic matter, (3) the kinetics of chemical interactions between the host rock minerals and the aqueous phase, and (4) CO{sub 2} solubility dependence on pressure, temperature and salinity of the system. The geochemical evolution under both natural background and CO{sub 2} injection conditions was evaluated. In addition, changes in porosity were monitored during the simulations. Results indicate that CO{sub 2} sequestration by matrix minerals varies considerably with rock type. Under favorable conditions the amount of CO{sub 2} that may be sequestered by precipitation of secondary carbonates is comparable with and can be larger than the effect of CO{sub 2} dissolution in pore waters. The precipitation of ankerite and siderite is sensitive to the rate of reduction of ferric mineral precursors such as glauconite, which in turn is dependent on the reactivity of associated organic material. The accumulation of carbonates in

  1. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    SciTech Connect

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    ,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.

  2. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect

    Xiaoliang Ma; Uday Turaga; Shingo Watanabe; Subramani Velu; Chunshan Song

    2004-05-01

    The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing and evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the break

  3. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Nick Soelberg; Tony Watson

    2014-08-01

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  4. Pilot Residential Deep Energy Retrofits and the PNNL Lab Homes

    SciTech Connect

    Widder, Sarah H.; Chandra, Subrato; Parker, Graham B.; Sande, Susan; Blanchard, Jeremy; Stroer, Dennis; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen

    2012-01-01

    This report summarizes research investigating the technical and economic feasibility of several pilot deep energy retrofits, or retrofits that save 30% to 50% or more on a whole-house basis while increasing comfort, durability, combustion safety, and indoor air quality. The work is being conducted for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. As part of the overall program, Pacific Northwest National Laboratory (PNNL) researchers are collecting and analyzing a comprehensive dataset that describes pre- and post-retrofit energy consumption, retrofit measure cost, health and comfort impacts, and other pertinent information for each home participating in the study. The research and data collection protocol includes recruitment of candidate residences, a thorough test-in audit, home energy modeling, and generation of retrofit measure recommendations, implementation of the measures, test-out, and continued evaluation. On some homes, more detailed data will be collected to disaggregate energy-consumption information. This multi-year effort began in October 2010. To date, the PNNL team has performed test-in audits on 51 homes in the marine, cold, and hot-humid climate zones, and completed 3 retrofits in Texas, 10 in Florida, and 2 in the Pacific Northwest. Two of the retrofits are anticipated to save 50% or more in energy bills and the others - savings are in the 30% to 40% range. Fourteen other retrofits are under way in the three climate zones. Metering equipment has been installed in seven of these retrofits - three in Texas, three in Florida, and one in the Pacific Northwest. This report is an interim update, providing information on the research protocol and status of the PNNL deep energy retrofit project as of December, 2011. The report also presents key findings and lessons learned, based on the body of work to date. In addition, the report summarizes the status of the PNNL Lab Homes that are new

  5. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    SciTech Connect

    Kwong, S.; Jivkov, A.P.

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  6. Water Power Research | Water Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research NREL conducts water power research; develops design tools; and evaluates, validates, and supports the demonstration of innovative water power technologies. Photo of a buoy designed around the oscillating water column principle wherein the turbine captures the wave energy and the generator converts it into electrical power. Marine and Hydrokinetic Research Marine and hydrokinetic renewable energy technologies extract power from moving water-whether waves, tidal flow, or ocean and river

  7. Deep soil mixing for reagent delivery and contaminant treatment

    SciTech Connect

    Korte, N.; Gardner, F.G.; Cline, S.R.; West, O.R.

    1997-12-31

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy`s Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd{sup 3}), there are few alternatives for soils of this type.

  8. A new ion sensing deep atomic force microscope

    SciTech Connect

    Drake, Barney; Randall, Connor; Bridges, Daniel; Hansma, Paul K.

    2014-08-15

    Here we describe a new deep atomic force microscope (AFM) capable of ion sensing. A novel probe assembly incorporates a micropipette that can be used both for sensing ion currents and as the tip for AFM imaging. The key advance of this instrument over previous ion sensing AFMs is that it uses conventional micropipettes in a novel suspension system. This paper focuses on sensing the ion current passively while using force feedback for the operation of the AFM in contact mode. Two images are obtained simultaneously: (1) an AFM topography image and (2) an ion current image. As an example, two images of a MEMS device with a microchannel show peaks in the ion current as the pipette tip goes over the edges of the channel. This ion sensing AFM can also be used in other modes including tapping mode with force feedback as well as in non-contact mode by utilizing the ion current for feedback, as in scanning ion conductance microscopy. The instrument is gentle enough to be used on some biological samples such as plant leaves.

  9. Radioisotope Electric Propulsion for Deep Space Sample Return

    SciTech Connect

    Noble, Robert J.; /SLAC

    2009-07-14

    The need to answer basic questions regarding the origin of the Solar System will motivate robotic sample return missions to destinations like Pluto, its satellite Charon, and objects in the Kuiper belt. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher return velocities. A sample return mission involves several complicated steps to reach an object and obtain a sample, but only the interplanetary return phase of the mission is addressed in this paper. Radioisotope electric propulsion is explored in this parametric study as a means to propel small, dedicated return vehicles for transferring kilogram-size samples from deep space to Earth. Return times for both Earth orbital rendezvous and faster, direct atmospheric re-entry trajectories are calculated for objects as far away as 100 AU. Chemical retro-rocket braking at Earth is compared to radioisotope electric propulsion but the limited deceleration capability of chemical rockets forces the return trajectories to be much slower.

  10. Energy Savings from GSA's National Deep Retrofit Program

    SciTech Connect

    Shonder, John A

    2014-09-01

    Under its National Deep Energy Retrofit (NDER) program, the U.S. General Services Administration (GSA) awarded 10 ESPC projects with the objectives of using innovative technologies and renewable energy technologies, and moving buildings toward net zero energy consumption. This report analyzes data on energy savings from the 10 NDER projects, and compares them with the savings of a sample of other recently awarded Federal ESPC projects. It is shown that by emphasizing the need for deeper energy savings, and by the establishment of a central Project Management Office (PMO) to provide authoritative contracting, technical and pricing assistance, the NDER projects achieved an average level of savings more than twice that of the other Federal ESPC projects. The level of savings achieved in each project seems to be dependent more on the availability of ECMs at the site than on energy price, energy cost per square foot, pre-retrofit EUI or the length of the contract term. This suggests that GSA can achieve similar results in a wide variety of building

  11. HIP clad nickel base Alloy 625 for deep sour wells

    SciTech Connect

    Uhl, W.K.; Pendley, M.R.

    1984-05-01

    The hot isostatic pressing (HIP) process was used to clad nickel base Alloy 625 to AISI 4130 low alloy steel. The performance of the HIP clad material in the corrosive environment characteristic of deep, sour oil and gas wells was evaluated in laboratory tests. Included in the test program were NACE TM-01-77 sulfide stress cracking tests, chloride stress corrosion cracking tests in boiling MgCl /SUB 2'/ , and pitting and crevice corrosion tests. The HIP clad 625 performed excellently, displaying essentially the same corrosion resistance as wrought 625. Specifically the HIP clad 625 resisted sulfide stress cracking at applied stresses as high as 120% of yield strength and resisted chloride stress corrosion cracking at stresses exceeding 100% of yield. The HIP clad 625 also displayed immunity to pitting and crevice corrosion, with corrosion rates of <0.025 mm/y (1 mil/y). The 4130 base metal, however, was attacked severly in all tests. SEM/EDX analysis of the 625/4130 interface demonstrated that dilution of the cladding by the base metal was essentially eliminated.

  12. Role of Cahn and Sivers effects in deep inelastic scattering

    SciTech Connect

    Anselmino, M.; Boglione, M.; Prokudin, A.; D'Alesio, U.; Murgia, F.; Kotzinian, A.

    2005-04-01

    The role of intrinsic k {sub perpendicular} in inclusive and semi-inclusive Deep Inelastic Scattering processes (lp{yields}lhX) is studied with exact kinematics within QCD parton model at leading order; the dependence of the unpolarized cross section on the azimuthal angle between the leptonic and the hadron production planes (Cahn effect) is compared with data and used to estimate the average values of k{sub perpendicular} both in quark distribution and fragmentation functions. The resulting picture is applied to the description of the weighted single spin asymmetry A{sub UT}{sup sin({phi}{sub {pi}}{sup -{phi}}{sub S})} recently measured by the HERMES collaboration at DESY; this allows to extract some simple models for the quark Sivers functions. These are compared with the Sivers functions which succeed in describing the data on transverse single spin asymmetries in p{sup {up_arrow}}p{yields}{pi}X processes; the two sets of functions are not inconsistent. The extracted Sivers functions give predictions for the COMPASS measurement of A{sub UT}{sup sin({phi}{sub {pi}}{sup -{phi}}{sub S})} in agreement with recent preliminary data, while their contribution to HERMES A{sub UL}{sup sin{phi}{sub {pi}}} is computed and found to be small. Predictions for A{sub UT}{sup sin({phi}{sub K}{sup -{phi}}{sub S})} for kaon production at HERMES are also given.

  13. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    SciTech Connect

    Sherwood, O; Edinger, E; Guilderson, T P; Ghaleb, B; Risk, M J; Scott, D B

    2008-08-15

    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface water bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.

  14. DOEā€™s Deep Capabilities and Wide Possibilities Highlighted at Executive Summit on Marine and Hydrokinetic Research and Development

    Energy.gov [DOE]

    When it comes to marine and hydrokinetic technology development, the Department of Energy (DOE) offers deep capabilities and wide possibilities.

  15. Clean Water Act Section 401 Water Quality Certification: A Water...

    OpenEI (Open Energy Information) [EERE & EIA]

    Certification: A Water Quality Protection Tool for States and Tribes Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  16. Clean Water Act Section 401 Water Quality Certification A Water...

    OpenEI (Open Energy Information) [EERE & EIA]

    Certification A Water Quality Protection Tool for States and Tribes Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  17. Appendix D Surface Water and Ground Water Time-Concentration...

    Office of Legacy Management (LM)

    Discharge Measurements, Ground Water Level Data, and Ground Water Well Hydrographs This ... Ground Water Level Data D4.0 ......

  18. Permafrost carbonā€”climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    DOE PAGES [OSTI]

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-09

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbonā€“nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost regionmoreĀ Ā» is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. The future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.Ā«Ā less

  19. Permafrost carbonā€”climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    SciTech Connect

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-09

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbonā€“nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. The future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

  20. Heat Pump Water Heaters

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  1. Electric Storage Water Heaters

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  2. Bioenergy Impacts Ā… Water

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    biofuel production on water quality and quantity, and determine which biofuel crops are best suited to different geographic locations. Biofuel research is enabling wise water use

  3. water for energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  4. water service provider

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  5. energy-water interdependency

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    water interdependency - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  6. "smart water" infrastructure

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    smart water" infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  7. Water Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Heating Water Heating Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo courtesy of Huntington Veterans Medical Ctr. Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo courtesy of Huntington Veterans Medical Ctr. Water heating accounts for about 18% of your home's energy use. Reducing your hot water use, employing energy-saving strategies, and choosing an energy efficient

  8. Sandia Energy » Water Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    doe-eere-technologist-in-residence-pilotfeed 0 Sandia Team Attends World Water Week in Stockholm http:energy.sandia.govsandia-team-attends-world-water-week-in-sto...

  9. Water Power Personnel

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  10. Water Infrastructure Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  11. Wind & Water Power Newsletter

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Water Power Newsletter - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  12. Water Monitoring & Treatment Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  13. Water Power Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  14. Energy/Water Nexus

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  15. Energy-Water Overview

    Gasoline and Diesel Fuel Update

    DOEEIA 2010 Energy Conference Mike Hightower Sandia National Laboratories mmhight@sandia.gov, 505-844-5499 Energy and Water are ... Interdependent Water for Energy and Energy for ...

  16. Energy-Water Nexus

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy-Water Nexus - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  17. Conceptual waste packaging options for deep borehole disposal

    SciTech Connect

    Su, Jiann -Cherng; Hardin, Ernest L.

    2015-07-01

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low

  18. Implementation of deep soil mixing at the Kansas City Plant

    SciTech Connect

    Gardner, F.G.; Korte, N.; Strong-Gunderson, J.; Siegrist, R.L.; West, O.R.; Cline, S.R.; Baker, J.

    1998-11-01

    In July 1996, the US Department of Energy (DOE) Kansas City Plant (KCP), AlliedSignal Federal Manufacturing and Technologies, and Oak Ridge National Laboratory (ORNL), conducted field-scale tests of in situ soil mixing and treatment technologies within the Northeast Area (NEA) of the KCP at the Former Ponds site. This demonstration, testing, and evaluation effort was conducted as part of the implementation of a deep soil mixing (DSM) innovative remedial technology demonstration project designed to test DSM in the low-permeability clay soils at the KCP. The clay soils and groundwater beneath this area are contaminated by volatile organic compounds (VOCs), primarily trichloroethene (TCE) and 1,2-dichloroethene (1,2-DCE). The demonstration project was originally designed to evaluate TCE and 1,2-DCE removal efficiency using soil mixing coupled with vapor stripping. Treatability study results, however, indicated that mixed region vapor stripping (MRVS) coupled with calcium oxide (dry lime powder) injection would improve TCE and 1,2-DCE removal efficiency in saturated soils. The scope of the KCP DSM demonstration evolved to implement DSM with the following in situ treatment methodologies for contaminant source reduction in soil and groundwater: DSM/MRVS coupled with calcium oxide injection; DSM/bioaugmentation; and DSM/chemical oxidation using potassium permanganate. Laboratory treatability studies were started in 1995 following collection of undisturbed soil cores from the KCP. These studies were conducted at ORNL, and the results provided information on optimum reagent concentrations and mixing ratios for the three in situ treatment agents to be implemented in the field demonstration.

  19. Water-heating dehumidifier

    DOEpatents

    Tomlinson, John J.

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  20. Chemical relationship between discharging fluids in the Siena-Radicofani Graben and the deep fluids produced by the geothermal fields of Mt Amiata, torre Afina and Latera (Central Italy)

    SciTech Connect

    Duchi, V.; Paolieri, M.; Prati, F ); Minissale, A. Centro di Studio per Mineralogia e la Geochimica dei Sedimenti, Via La Pira 4, 50121 Firenze ); Valori, A )

    1992-06-01

    This paper reports that the thermal springs discharging in the Siena-Radicofani basin and the deep fluids within the geothermal systems of Piancastagnaio (Mt Amiata), Torre Alfina and Latera (Vulsini Mts) have a common origin. The chemical composition and evolution towards the low enthalpy of the springs as compared to the high enthalpy of the geothermal fluids are affected by both the structural setting of the region and the deep hydraulic conditions. Recharge of both the shallow thermal aquifer and the deep geothermal systems takes place in the outcrop areas of Mesozoic carbonate rocks, which constitute the main potential geothermal reservoir in central Italy. The waters of meteoric origin are heated at depth, as a consequence of anomalous heat flow in the region; these waters acquire a CO[sub 2]-rich rising gas phase, equilibrate with the reservoir rocks and, finally, assume their Ca--HCO[sub 3]--SO[sub 4] composition. If these waters discharge rapidly from the border fault systems of the Siena-Radicofani basin they maintain their original composition. If, instead, they emerge from the inner faults of the graben, their temperature and dissolved solids increase so that they become Na--Cl with a high content of NH[sub 4], and H[sub 3]BO[sub 3].

  1. Hydrogeology, chemical and microbial activity measurement through deep permafrost

    SciTech Connect

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2010-04-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with {delta}{sup 18}O values {approx}5{per_thousand} lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH{sub 4} was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH{sub 4} is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.

  2. Characterization of Soluble Organics in Produced Water

    SciTech Connect

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion-selective electrodes and inductively

  3. Implementing Brackish Water Use

    SciTech Connect

    Sullivan Graham, Enid Joan

    2015-02-10

    This presentation describes the various water recovery initiatives, their key aspects, and implementation.

  4. Volume and accessibility of entrained (solution) methane in deep geopressured reservoirs - tertiary formations of the Texas Gulf Coast. Final report

    SciTech Connect

    Gregory, A.R.; Dodge, M.M.; Posey, J.S.; Morton, R.A.

    1980-10-01

    The objective of this project was to appraise the total volume of in-place methane dissolved in formation waters of deep sandstone reservoirs of the onshore Texas Gulf Coast within the stratigraphic section extending from the base of significant hydrocarbon production (8000 ft)* to the deepest significant sandstone occurrence. The area of investigation is about 50,000 mi/sup 2/. Factors that determine the total methane resource are reservoir bulk volume, porosity, and methane solubility; the latter is controlled by the temperature, pressure, and salinity of formation waters. Regional assessment of the volume and the distribution of potential sandstone reservoirs was made from a data base of 880 electrical well logs, from which a grid of 24 dip cross sections and 4 strike cross sections was constructed. Solution methane content in each of nine formations or divisions of formations was determined for each subdivision. The distribution of solution methane in the Gulf Coast was described on the basis of five reservoir models. Each model was characterized by depositional environment, reservoir continuity, porosity, permeability, and methane solubility.

  5. On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage

    SciTech Connect

    Zheng, L.; Apps, J.A.; Zhang, Y.; Xu, T.; Birkholzer, J.T.

    2009-07-01

    If carbon dioxide stored in deep saline aquifers were to leak into an overlying aquifer containing potable groundwater, the intruding CO{sub 2} would change the geochemical conditions and cause secondary effects mainly induced by changes in pH In particular, hazardous trace elements such as lead and arsenic, which are present in the aquifer host rock, could be mobilized. In an effort to evaluate the potential risks to potable water quality, reactive transport simulations were conducted to evaluate to what extent and mechanisms through which lead and arsenic might be mobilized by intrusion of CO{sub 2}. An earlier geochemical evaluation of more than 38,000 groundwater quality analyses from aquifers throughout the United States and an associated literature review provided the basis for setting up a reactive transport model and examining its sensitivity to model variation. The evaluation included identification of potential mineral hosts containing hazardous trace elements, characterization of the modal bulk mineralogy for an arenaceous aquifer, and augmentation of the required thermodynamic data. The reactive transport simulations suggest that CO{sub 2} ingress into a shallow aquifer can mobilize significant lead and arsenic, contaminating the groundwater near the location of intrusion and further downstream. Although substantial increases in aqueous concentrations are predicted compared to the background values, the maximum permitted concentration for arsenic in drinking water was exceeded in only a few cases, whereas that for lead was never exceeded.

  6. BetterBricks Leverages DOE Tools to Spark Deep Energy Retrofits

    Energy.gov [DOE]

    NEEA (Northwest Energy Efficiency Alliance) is using EnergyPlus and OpenStudio to help drive building renewal, a real estate strategy that targets deep energy savings in leased office buildings.

  7. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the ...

  8. FAST Code Verification of Scaling Laws for DeepCwind Floating Wind System Tests: Preprint

    SciTech Connect

    Jain, A.; Robertson, A. N.; Jonkman, J. M.; Goupee, A. J.; Kimball, R. W.; Swift, A. H. P.

    2012-04-01

    This paper investigates scaling laws that were adopted for the DeepCwind project for testing three different floating wind systems at 1/50 scale in a wave tank under combined wind and wave loading.

  9. Discovery of Genes and Genomes through Deep Metagenomic Sequencing of Cow Rumen (2010 JGI User Meeting)

    ScienceCinema

    Rubin, Eddy

    2011-04-25

    Director Eddy Rubin on "Discovery of Genes and Genomes through Deep Metagenomic Sequencing of Cow Rumen" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  10. The Sloan Digital Sky Survey COADD: 275 deg{sup 2} of deep Sloan...

    Office of Scientific and Technical Information (OSTI)

    Title: The Sloan Digital Sky Survey COADD: 275 degsup 2 of deep Sloan Digital Sky Survey imaging on stripe 82 We present details of the construction and characterization of the ...

  11. Resolving Carbon's Rainbow from Uplands to the Deep-sea | Argonne...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Resolving Carbon's Rainbow from Uplands to the Deep-sea Event Sponsor: Environmental Science Division Seminar Start Date: Sep 17 2015 - 11:00am BuildingRoom: Building 240Room...

  12. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-05-14

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ?10{sup 17}?cm{sup ?3} to (2–5)?×?10{sup 14}?cm{sup ?3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ?5?×?10{sup 13}?cm{sup ?3} versus 2.9?×?10{sup 16}?cm{sup ?3} in the standard samples, with a similar decrease in the electron traps concentration.

  13. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    OpenEI (Open Energy Information) [EERE & EIA]

    data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling...

  14. Novel Use of P- and S-Wave Seismic Attenuation for Deep Natural...

    Office of Scientific and Technical Information (OSTI)

    Title: Novel Use of P- and S-Wave Seismic Attenuation for Deep Natural Gas Exploration and ... Publication Date: 2007-09-30 OSTI Identifier: 915819 DOE Contract Number: FC26-04NT42243 ...

  15. TRANSPORTATION ENERGY FUTURES - Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    SciTech Connect

    Anya Breitenbach

    2013-03-15

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use.

  16. Single-Crystal Elasticity of the Deep-Mantle Magnesite at High...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Single-Crystal Elasticity of the Deep-Mantle Magnesite at High Pressure and Temperature Citation Details In-Document Search Title: Single-Crystal Elasticity of the ...

  17. P- and S-wave seismic attenuation for deep natural gas exploration...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: P- and S-wave seismic attenuation for deep natural gas exploration and development Citation Details In-Document Search Title: P- and S-wave seismic attenuation ...

  18. Novel Use of P- and S-Wave Seismic Attenuation for Deep Natural...

    Office of Scientific and Technical Information (OSTI)

    Novel Use of P- and S-Wave Seismic Attenuation for Deep Natural Gas Exploration and Development Citation Details In-Document Search Title: Novel Use of P- and S-Wave Seismic ...

  19. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Soil Desiccation Pilot Test Results

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Freedman, Vicky L.; Johnson, Christian D.; Greenwood, William J.; Ward, Anderson L.; Clayton, Ray E.; Lindberg, Michael J.; Peterson, John E.; Hubbard, Susan; Chronister, Glen B.; Benecke, Mark W.

    2012-05-01

    This report describes results of a pilot test of soil desiccation conducted as part of the Deep Vadose Zone Treatability Test program. The report is written in CERCLA treatabilty test report format.

  20. Vadose zone water fluxmeter

    DOEpatents

    Faybishenko, Boris A.

    2005-10-25

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  1. Something Deep Within: Nanocrystals Grown in Nanowires | U.S. DOE Office of

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science (SC) Something Deep Within: Nanocrystals Grown in Nanowires Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information Ā» 07.20.16 Something Deep

  2. Ground water and energy

    SciTech Connect

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  3. Water Vapor Experiment Concludes

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Department of Energy Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  4. Technical and Policy Challenges in Deep Vadose Zone Remediation of Metals and Radionuclides - 12025

    SciTech Connect

    Wellman, Dawn M.; Truex, Michael J.; Freshley, Mark; Cantrell, Kirk J.; Dresel, P. Evan

    2012-07-01

    Deep vadose zone contamination is a significant issue facing the U.S. Department of Energy's (DOE) Office of Environmental Management (EM). Contamination in the deep vadose zone is isolated from exposure such that direct contact is not a factor in risk to human health and the environment. Transport of deep vadose zone contamination and discharge to the groundwater creates the potential for exposure and risk to receptors, so limiting flux to groundwater is key for protection of groundwater resources. Remediation approaches for the deep vadose zone need to be considered within the regulatory context, targeted at mitigating the source of contamination and reducing contaminant flux to groundwater. Processes for deep vadose zone metal and radionuclide remediation are discussed, as well as challenges and opportunities for implementation. It may be useful to consider the risk and challenges with leaving contaminants in place as part of a flux-control remedy in comparison with risks associated with contaminant removal and final disposition elsewhere. Understanding and quantifying the ramifications of contaminant removal and disposition options are therefore warranted. While this review suggests that some additional development work is needed for deep vadose zone remediation techniques, the benefits of applying vadose zone remediation for groundwater protection are compelling and worthy of continued development. (authors)

  5. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    SciTech Connect

    Erdlac, Richard J., Jr.

    2006-10-12

    Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10ā€™s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is ā€œminedā€. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities

  6. Water cycling between ocean and mantle: Super-earths need not be waterworlds

    SciTech Connect

    Cowan, Nicolas B.; Abbot, Dorian S.

    2014-01-20

    Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planet's water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridges and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water partitioning on terrestrial planets. Critically, hydrostatic seafloor pressure is proportional to surface gravity, so super-Earths with a deep water cycle will tend to store more water in the mantle. We conclude that a tectonically active terrestrial planet of any mass can maintain exposed continents if its water mass fraction is less than āˆ¼0.2%, dramatically increasing the odds that super-Earths are habitable. The greatest source of uncertainty in our study is Earth's current mantle water inventory: the greater its value, the more robust planets are to inundation. Lastly, we discuss how future missions can test our hypothesis by mapping the oceans and continents of massive terrestrial planets.

  7. Water resources data, Kentucky. Water year 1991

    SciTech Connect

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  8. MOWII Webinar: The ECO TLP, an Economical and Ecologically Sound Tension Leg Platform for Deep Water Wind Farms

    Energy.gov [DOE]

    Join the Maine Ocean and Wind industry Initiative (MOWII) for a free webinar that describes the components and installation process of economical and ecologically sound tension leg platforms for...

  9. A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study.

    SciTech Connect

    Bull, Diana L; Fowler, Matthew; Goupee, Andrew

    2014-08-01

    This analysis utilizes a 5 - MW VAWT topside design envelope created by Sandia National Laborator ies to compare floating platform options fo r each turbine in the design space. The platform designs are based on two existing designs, the OC3 Hywind spar - buoy and Principal Power's WindFloat semi - submersible. These designs are scaled using Froude - scaling relationships to determine an appropriately sized spar - buoy and semi - submersible design for each topside. Both the physical size of the required platform as well as mooring configurations are considered. Results are compared with a comparable 5 - MW HAWT in order to identify potential differences in the platform and mooring sizing between the VAWT and HAWT . The study shows that there is potential for cost savings due to reduced platform size requirements for the VAWT.

  10. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  11. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  12. Method and apparatus for deep underwater well drilling and completion

    SciTech Connect

    Lawson, J.E.

    1984-01-24

    A method and apparatus are disclosed for remotely establishing an underwater well under conditions of great water depth including a drilling guide structure located on the floor of the body of water; a single handling and guiding string extending upwardly from the drilling guide structure and maintained in tension by an elongated buoy; a series of drilling guide arm units, flowline guide arm units and wellhead guide arm units to be lowered down the string, oriented relative to desired well positions and then retrieved once the wells have been drilled and the wellheads and flowlines secured in place; and a production gathering assembly to be lowered down the string, oriented relative to the wellheads and flowlines, and then coupled to these wellheads and flowlines. The orientation is accomplished between an orientation member on the outer surface of a tubular member extending upwardly from the guide structure and orientation members on the inner surfaces of open-ended members in the drilling guide arm units, flowline guide arm units, wellhead guide arm units and the production gathering assembly.

  13. ARM - Measurement - Precipitable water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govMeasurementsPrecipitable water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Precipitable water Total amount of water vapor in a vertical column of air, often expressed as the depth of the layer of water that would be formed if all the water vapor were condensed to liquid water. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following

  14. The exploration for a deep aquifer in the Hadhramaut, Yemen

    SciTech Connect

    Bauman, P.

    1996-11-01

    The Hadhramaut province of Yemen, an area with a population of more than half a million inhabitants, is presently facing a serious water crisis. A groundwater exploration project is presently drilling 23 exploration wells widely spaced over the Masila Block, an oil exploration lease are within the province. The main target is the Cretaceous Mukalla Formation, a 300 m thick highly permeable sandstone. Field reconnaissance was integrated with satellite images; geologic, hydrogeologic, geophysical, topographic maps; and local socioeconomic and political information to choose the well locations. Studying available seismic reflection data was particularly useful for choosing drilling locations over grabens buried in wadi fill. The various pieces of information were integrated in a geographic information system (GIS). To date, eight wells have been drilled and completed. Borehole geophysical logging has played an important role in all phases of well completion. All completed boreholes have tested from 200 to over 1,000 imperial gallons per minute.

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... on the water quality of the Little Wind River and of the other surface water features. ... DVP-June 2013, Riverton, Wyoming U.S. Department of Energy RIN 13065379 September 2013 ...

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... on the water quality of the Little Wind River and of the other surface water features. ... U.S. Department of Energy DVP-September 2015, Riverton, Wyoming February 2016 RINs ...

  17. NDN Water Summit 2015

    Energy.gov [DOE]

    The NDN Water Summit is a two-day summit to build tribal executive capacity through a strategic series of forums, events, and sharing of documentation and experiences. Speakers will cover topics on water policy, climate change, and more.

  18. Indian Water 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    Indian Water is a call to help plan a national water summit. This strategic session consist of a facilitated dialog with tribal leaders on important opportunities, challenges and tactics, which...

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... 2014 RIN 14015886 Page 7 Water Sampling Field Activities Verification Checklist Project Gnome-Coach, New Mexico Date(s) of Water Sampling February 19, 2014 Date(s) of ...

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... 2013 RIN 13015066 Page 7 Water Sampling Field Activities Verification Checklist Project Gnome-Coach, New Mexico Date(s) of Water Sampling January 29-30, 2013 Date(s) of ...

  1. Manus Water Isotope Investigation

    Office of Scientific and Technical Information (OSTI)

    ENERGY Office of Science DOESC-ARM-15-079 Manus Water Isotope Investigation Field ... DOESC-ARM-15-079 Manus Water Isotope Investigation Field Campaign Report JL Conroy, ...

  2. ARM Water Vapor IOP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ARM Water Vapor IOP The SGP CART site will host the third ARM water vapor IOP on September 18-October 8, 2000. The CART site is home to a powerful array of instruments capable of ...

  3. Water_Treatment.cdr

    Office of Legacy Management (LM)

    than 290 million gallons of contaminated water have been treated and released into the Missouri River from two similar water treatment facilities at the site and the nearby Quarry. ...

  4. Federal Water Use Indices

    Energy.gov [DOE]

    FEMP provides water use indices as a guide for Federal agencies. Note that each is a rough estimate of water usage at different types of sites. Your site may vary considerably.

  5. Manus Water Isotope Investigation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    9 Manus Water Isotope Investigation Field Campaign Report JL Conroy D Noone KM Cobb March ... DOESC-ARM-15-079 Manus Water Isotope Investigation Field Campaign Report JL Conroy, ...

  6. ARM - Water Vapor

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Vapor Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Water Vapor Water vapor is the most effective, fastest changing, and least understood of the greenhouse gases. Water vapor is a powerful greenhouse gas; as a matter of fact, it is the dominant greenhouse gas. But scientists don't

  7. Electrolysis of Water

    Education - Teach & Learn

    Students observe the electrolysis of water using either photovoltaics or a battery as the electric energy source.

  8. Water | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water The Energy Sector withdraws more freshwater than any other sector in the United States The Energy Sector withdraws more freshwater than any other sector in the United States Significant opportunities are emerging in the public and private sector to tackle water stewardship: the U.S. Department of Energy has identified the energy-water nexus as an emerging activity that require substantial R&D investment in the coming years, and DOE's Water Energy Nexus report has identified reclaimed

  9. Saving Water Saves Energy

    SciTech Connect

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-06-15

    Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced cost-effectively by up to 30 percent withcommercially available products. The energy savings associated with watersavings may represent a large additional and largely untappedcost-effective opportunity.

  10. Water treatment method

    DOEpatents

    Martin, Frank S.; Silver, Gary L.

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  11. Water Security Toolkit

    Energy Science and Technology Software Center

    2012-09-11

    The Water Security Toolkit (WST) provides software for modeling and analyzing water distribution systems to minimize the potential impact of contamination incidents. WST wraps capabilities for contaminant transport, impact assessment, and sensor network design with response action plans, including source identification, rerouting, and decontamination, to provide a range of water security planning and real-time applications.

  12. Energy-Water Nexus

    SciTech Connect

    Horak, W.

    2010-07-26

    Conclusions of this presentation are: (1) energy and water are interconnected; (2) new energy sources will place increased demands on water supplies; (3) existing energy sources will be subjected to increasing restrictions on their water use; and (4) integrated decision support tools will need to be developed to help policy makers decide which policies and advanced technologies can address these issues.

  13. Water treatment method

    DOEpatents

    Martin, F.S.; Silver, G.L.

    1991-04-30

    A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  14. CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-05-01

    Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.

  15. Impact of proton irradiation on deep level states in n-GaN

    SciTech Connect

    Zhang, Z.; Arehart, A. R.; Cinkilic, E.; Ringel, S. A.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; McSkimming, B.; Speck, J. S.

    2013-07-22

    Deep levels in 1.8 MeV proton irradiated n-type GaN were systematically characterized using deep level transient spectroscopies and deep level optical spectroscopies. The impacts of proton irradiation on the introduction and evolution of those deep states were revealed as a function of proton fluences up to 1.1 × 10{sup 13} cm{sup ?2}. The proton irradiation introduced two traps with activation energies of E{sub C} - 0.13 eV and 0.16 eV, and a monotonic increase in the concentration for most of the pre-existing traps, though the increase rates were different for each trap, suggesting different physical sources and/or configurations for these states. Through lighted capacitance voltage measurements, the deep levels at E{sub C} - 1.25 eV, 2.50 eV, and 3.25 eV were identified as being the source of systematic carrier removal in proton-damaged n-GaN as a function of proton fluence.

  16. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier

    DOE PAGES [OSTI]

    Liu, Jin; Lin, Jung -Fu; Prakapenka, Vitali B.

    2015-01-06

    In this study, knowledge of the physical and chemical properties of candidate deep-carbon carriers such as ferromagnesite [(Mg,Fe)CO3] at high pressure and temperature of the deep mantle is necessary for our understanding of deep-carbon storage as well as the global carbon cycle of the planet. Previous studies have reported very different scenarios for the (Mg,Fe)CO3 system at deep-mantle conditions including the chemical dissociation to (Mg,Fe)O+CO2, the occurrence of the tetrahedrally-coordinated carbonates based on CO4 structural units, and various high-pressure phase transitions. Here we have studied the phase stability and compressional behavior of (Mg,Fe)CO3 carbonates up to relevant lower-mantle conditions ofmoreĀ Ā» approximately 120 GPa and 2400 K. Our experimental results show that the rhombohedral siderite (Phase I) transforms to an orthorhombic phase (Phase II with Pmm2 space group) at approximately 50 GPa and 1400 K. The structural transition is likely driven by the spin transition of iron accompanied by a volume collapse in the Fe-rich (Mg,Fe)CO3 phases; the spin transition stabilizes the high-pressure phase II at much lower pressure conditions than its Mg-rich counterpart. It is conceivable that the low-spin ferromagnesite phase II becomes a major deep-carbon carrier at the deeper parts of the lower mantle below 1900 km in depth.Ā«Ā less

  17. Photosynthetic water oxidation versus photovoltaic water electrolysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center Objective The Science Center Publications Graduate Research opportunities Undergraduate research opportunities EFRC-501 graduate class Seminar schedules Center News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery Photosynthetic water oxidation versus photovoltaic water electrolysis 13 May 2011 Professor Tom Moore, a leader of Subtask 1 (Total systems analysis, assembly and testing) in the Center, is a coauthor of the review paper

  18. Water Power Research Facilities | Water Power | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Power Research Facilities NREL is a partner in advancing the marine and hydrokinetic industry by leveraging its vast experience gained in wind and water power research and development, along with established testing capabilities and facilities. Photo of a drivetrain undergoing testing on a dynamometer system. Dynamometer Facilities Our dynamometers can test a variety of drivetrain components and subsystems, including generators, gearboxes, mechanical or electronic brakes, power

  19. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of

  20. Heat from Beneath the Ground - Working to Advance Deep Direct-Use

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Cool Ā» Water Heating Ā» Solar Water Heaters Ā» Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks in solar water heating systems. When selecting a heat-transfer fluid, you and your solar heating contractor should consider the following criteria: Coefficient

  1. Deep Resistivity Structure of Yucca Flat, Nevada Test Site, Nevada.

    SciTech Connect

    Theodore H. Asch, Brian D. Rodriguez; Jay A. Sampson; Erin L. Wallin; and Jackie M. Williams.

    2006-09-18

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian – Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large fault

  2. California State Water Resources Control Board 401 Water Quality...

    OpenEI (Open Energy Information) [EERE & EIA]

    401 Water Quality Certification Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California State Water Resources Control Board 401 Water...

  3. Colorado Division of Water Resources Substitute Water Supply...

    OpenEI (Open Energy Information) [EERE & EIA]

    Substitute Water Supply Plans Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Division of Water Resources Substitute Water Supply...

  4. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE ...

  5. Future water Cherenkov detectors

    SciTech Connect

    Bergevin, Marc

    2015-05-15

    In these proceedings a review of the current proposed large-scale Warer Cherenkov experiments is given. An argument is made that future water Cherenkov detectors would benefit in the investment in neutron detection technology. A brief overview will be given of proposed water Cherenkov experiments such as HYPER-K and MEMPHYS and other R and D experiments to demonstrate neutron capture in water Cherenkov detectors. Finally, innovation developed in the context of the now defunct LBNE Water R and D option to improve Water Cherenkov technology will be described.

  6. Par Pond water balance

    SciTech Connect

    Hiergesell, R.A.; Dixon, K.L.

    1996-06-01

    A water budget for the Par Pond hydrologic system was established in order to estimate the rate of groundwater influx to Par Pond. This estimate will be used in modeling exercises to predict Par Pond reservoir elevation and spillway discharge in the scenario where Savannah River water is no longer pumped and discharged into Par Pond. The principal of conservation of mass was used to develop the water budget, where water inflow was set equal to water outflow. Components of the water budget were identified, and the flux associated with each was determined. The water budget was considered balanced when inflow and outflow summed to zero. The results of this study suggest that Par Pond gains water from the groundwater system in the upper reaches of the reservoir, but looses water to the groundwater system near the dam. The rate of flux of groundwater from the water table aquifer into Par Pond was determined to be 13 cfs. The rate of flux from Par Pond to the water table aquifer near the dam was determined to be 7 cfs.

  7. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  8. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  9. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

    SciTech Connect

    Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

    2011-06-15

    The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

  10. Sensitivity of IceCube-DeepCore to neutralino dark matter in the MSSM-25

    SciTech Connect

    Silverwood, Hamish; Adams, Jenni; Brown, Anthony M; Scott, Pat; Danninger, Matthias; Savage, Christopher; Edsjö, Joakim; Hultqvist, Klas E-mail: patscott@physics.mcgill.ca E-mail: savage@physics.utah.edu E-mail: jenni.adams@canterbury.ac.nz E-mail: klas.hultqvist@fysik.su.se

    2013-03-01

    We analyse the sensitivity of IceCube-DeepCore to annihilation of neutralino dark matter in the solar core, generated within a 25 parameter version of the minimally supersymmetric standard model (MSSM-25). We explore the 25-dimensional parameter space using scanning methods based on importance sampling and using DarkSUSY 5.0.6 to calculate observables. Our scans produced a database of 6.02 million parameter space points with neutralino dark matter consistent with the relic density implied by WMAP 7-year data, as well as with accelerator searches. We performed a model exclusion analysis upon these points using the expected capabilities of the IceCube-DeepCore Neutrino Telescope. We show that IceCube-DeepCore will be sensitive to a number of models that are not accessible to direct detection experiments such as SIMPLE, COUPP and XENON100, indirect detection using Fermi-LAT observations of dwarf spheroidal galaxies, nor to current LHC searches.

  11. Spectral light separator based on deep-subwavelength resonant apertures in a metallic film

    SciTech Connect

    Büyükalp, Yasin; Catrysse, Peter B. Shin, Wonseok; Fan, Shanhui

    2014-07-07

    We propose to funnel, select, and collect light spectrally by exploiting the unique properties of deep-subwavelength resonant apertures in a metallic film. In our approach, each aperture has an electromagnetic cross section that is much larger than its physical size while the frequency of the collected light is controlled by its height through the Fabry-Pérot resonance mechanism. The electromagnetic crosstalk between apertures remains low despite physical separations in the deep-subwavelength range. The resulting device enables an extremely efficient, subwavelength way to decompose light into its spectral components without the loss of photons and spatial coregistration errors. As a specific example, we show a subwavelength-size structure with three deep-subwavelength slits in a metallic film designed to operate in the mid-wave infrared range between 3 and 5.5??m.

  12. Deep crustal sediment study: Widespread precambrian layered rocks (sedimentary ?) beneath the US midcontinent

    SciTech Connect

    Hauser, E.C. [Cornell Univ., Ithaca, NY (United States)

    1992-05-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the U.S. midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1-3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the U.S. midcontinent, and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  13. Deep crustal sediment study: Widespread Precambrian layered rocks (Sedimentary ) beneath the US midcontinent

    SciTech Connect

    Hauser, E.C.

    1992-01-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the US midcontinent and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  14. Deep crustal sediment study: Widespread Precambrian layered rocks (Sedimentary ?) beneath the US midcontinent

    SciTech Connect

    Hauser, E.C.

    1992-06-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the US midcontinent and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  15. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    SciTech Connect

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  16. Evaluate fundamental approaches to longwall dust control: Subprogram B, Practical aspects of deep cutting

    SciTech Connect

    Ludlow, J.; Ruggieri, S.

    1990-05-01

    Deep/slow cutting is one of the few changes that a longwall operator can make that will simultaneously reduce respirable dust, increase production and decrease power consumption. Though extensively employed in other countries, the technique has not seen widespread use in the United States. The objective of this research effort was to promote the use of deep/slow cutting by examination of the real and perceived constraints to its application. This report discusses the theoretical and experimental background of cutting with high pick penetration, the benefits to be obtained in terms of reduced dust make and specific energy consumption and the practical imparts of deeper cutting in terms of shearer performance and coal loading. Included in the report are literature references, results of surveys of equipment manufacturers and US longwall operations, results of laboratory and underground testing of deep/slow cutting and specific conclusions and recommendations for use of the technique. 9 figs. 1 tab.

  17. dist_hot_water.pdf

    Gasoline and Diesel Fuel Update

    District Hot Water Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) ... District Hot Water Usage Was district hot water delivered to the building during the ...

  18. Oasys Water | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oasys Water Jump to: navigation, search Name: Oasys Water Place: Cambridge, Massachusetts Product: Cambridge-based developer of Engineered Osmosis, desalination and water treatment...

  19. Water Heaters | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Heaters Jump to: navigation, search TODO: Add description List of Water Heaters Incentives Retrieved from "http:en.openei.orgwindex.php?titleWaterHeaters&oldid267202"...

  20. Water Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Water Power (Redirected from Water) Jump to: navigation, search Water Power Community Forum...

  1. Super recycled water: quenching computers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Super recycled water: quenching computers Super recycled water: quenching computers New facility and methods support conserving water and creating recycled products. Using reverse ...

  2. Water Conservation | Department of Energy

    Energy Saver

    Water Conservation Water Conservation Mission The team facilitates the reduction of water consumption intensity at LM sites, as deemed appropriate for LM operations and approved by ...

  3. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs. Read more Selecting a New Water Heater Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn

  4. Technical Basis for Evaluating Surface Barriers to Protect Groundwater from Deep Vadose Zone Contamination

    SciTech Connect

    Fayer, Michael J.; Ward, Anderson L.; Freedman, Vicky L.

    2010-02-03

    This document presents a strategy for evaluating the effectiveness of surface barriers for site-specific deep vadose zone remediation. The strategy provides a technically defensible approach to determine the depth to which a surface barrier can effectively isolate contaminants in the vadose at a specific site as a function of subsurface properties, contaminant distribution, barrier design, and infiltration control performance. The strategy also provides an assessment of additional data and information needs with respect to surface barrier performance for deep vadose zone applications. The strategy addresses the linkage between surface barriers and deep vadose zone in situ remediation activities, monitoring issues, and emerging science, technology, and regulatory objectives. In short, the report documents the existing knowledge base, identifies knowledge needs (based on data gaps), and suggests tasks whose outcomes will address those knowledge needs. More important, the report serves as a starting point to engage the regulator and stakeholder community on the viability of deploying surface barriers for deep vadose zone contamination. As that engagement unfolds, a systematic methodology can be formalized and instituted. The strategy is focused on deep vadose zone contamination and the methods needed to determine the impact to groundwater from those deep vadose zone contaminants. Processes that affect surface barrier performance, recharge in the areas surrounding the surface barrier, and the near-surface vadose zone beneath the barrier are acknowledged but are not addressed by this strategy. In addition, the collection of site-specific data on contaminant distribution and geologic structure and properties are programmatic responsibilities and are not provided by this strategy.

  5. Concentrations of 23 trace elements in ground water and surface water at and near the Idaho National Engineering Laboratory, Idaho, 1988--91

    SciTech Connect

    Liszewski, M.J.; Mann, L.J.

    1993-12-31

    Analytical data for 23 trace elements are reported for ground- and surface-water samples collected at and near the Idaho National Engineering Laboratory during 1988--91. Water samples were collected from 148 wells completed in the Snake River Plain aquifer, 18 wells completed in discontinuous deep perched-water zones, and 1 well completed in an alluvial aquifer. Surface-water samples also were collected from three streams, two springs, two ponds, and one lake. Data are categorized by concentrations of total recoverable of dissolved trace elements. Concentrations of total recoverable trace elements are reported for unfiltered water samples and include results for one or more of the following: aluminum, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, silver, and zinc. Concentrations of dissolved trace elements are reported for water samples filtered through a nominal 0.45-micron filter and may also include bromide, fluoride, lithium, molybdenum, strontium, thallium, and vanadium. Concentrations of dissolved hexavalent chromium also are reported for many samples. The water samples were analyzed at the US Geological Survey`s National Water Quality Laboratory in Arvada, Colorado. Methods used to collect the water samples and quality assurance instituted for the sampling program are described. Concentrations of chromium equaled or exceeded the maximum contaminant level at 12 ground-water quality monitoring wells. Other trace elements did not exceed their respective maximum contaminant levels.

  6. ARM: Microwave Water Radiometer (MWR): water liq. and vapor along...

    Office of Scientific and Technical Information (OSTI)

    Microwave Water Radiometer (MWR): water liq. and vapor along line of sight (LOS) path Title: ARM: Microwave Water Radiometer (MWR): water liq. and vapor along line of sight (LOS) ...

  7. A Handy App for Deep Diving into Science Databases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Handy App for Deep Diving into Science Databases A Handy App for Deep Diving into Science Databases July 11, 2012 - 4:41pm Addthis Science.gov also serves as a portal for content from seventeen different organizations in thirteen separate federal science agencies, and searches a total of 200 million pages of science information. You can access the mobile application at <a href="http://m.science.gov">m.science.gov</a>. Science.gov also serves as a portal for content from

  8. Dynamic Underground Stripping: In situ steam sweeping and electrical heating to remediate a deep hydrocarbon spill

    SciTech Connect

    Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.; Udell, K.S.; Ziagos, J.P.

    1994-07-01

    Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 7000 gallons of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat and vacuum extraction schemes for removing non-aqueous phase liquids such as gasoline from deep subsurface plumes.

  9. DOE Tour of Zero: 5th Street Deep Rehab by Carl Franklin Homes & Green

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Extreme Homes | Department of Energy 5th Street Deep Rehab by Carl Franklin Homes & Green Extreme Homes DOE Tour of Zero: 5th Street Deep Rehab by Carl Franklin Homes & Green Extreme Homes 1 of 12 Carl Franklin Homes renovated this 1,108-square-foot home in Garland, Texas, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 12 This home was gutted down to the studs, partially reframed, and completely re-sided as part of an

  10. DOE Tour of Zero: 5th Street Deep Rehab by Carl Franklin Homes & Green

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Extreme Homes | Department of Energy 5th Street Deep Rehab by Carl Franklin Homes & Green Extreme Homes DOE Tour of Zero: 5th Street Deep Rehab by Carl Franklin Homes & Green Extreme Homes Addthis 1 of 12 Carl Franklin Homes renovated this 1,108-square-foot home in Garland, Texas, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 12 This home was gutted down to the studs, partially reframed, and completely re-sided as part of an

  11. Project DEEP STEAM: fourth meeting of the technical advisory panel, Albuquerque, NM, November 1980

    SciTech Connect

    Fox, R.L.; Donaldson, A.B.; Eisenhawer, S.W.; Hart, C.M.; Johnson, D.R.; Mulac, A.J.; Wayland, J.R.; Weirick, L.J.

    1981-07-01

    The Fourth Project DEEP STEAM Technical Advisory Panel Meeting was held on 5 and 6 November 1980 in Albuquerque, New Mexico, to review the status of project DEEP STEAM. This Proceedings, following the order of the meeting, is divided into five main sections: the injection string modification program, the downhole steam generator program, supporting activities, field testing, and the Advisory Panel recommendations and discussion. Each of the 17 presentations is summarized, and a final Discussion section has been added, when needed, for inclusion of comments and replies related to specific presentations. Finally, the Advisory Panel recommendations and the ensuing discussion are summarized in the closing section.

  12. Deep-Angled Drilling Enables EM Chromium Project to Meet Goals | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Deep-Angled Drilling Enables EM Chromium Project to Meet Goals Deep-Angled Drilling Enables EM Chromium Project to Meet Goals August 31, 2016 - 12:25pm Addthis Angled drilling at an injection well at the project site. Angled drilling at an injection well at the project site. LOS ALAMOS, N.M. - EM's Los Alamos Field Office is working to stop a contaminant plume in a regional aquifer from migrating beyond Los Alamos National Laboratory's boundary. The Los Alamos Field Office and its

  13. Neutrino oscillations with IceCube DeepCore and PINGU

    SciTech Connect

    DeYoung, T.; Collaboration: IceCube-PINGU Collaboration

    2014-11-18

    The IceCube neutrino telescope was augmented with the DeepCore infill array, completed in the 2010/11 austral summer, to enhance its response to neutrinos below 100 GeV. At these energies, neutrino oscillation effects are visible in the flux of atmospheric neutrinos traversing path lengths comparable to the Earth's diameter. Initial measurements of muon neutrino disappearance parameters using data from DeepCore are presented, as well as an estimate of potential future precision. In addition, plans for a Precision IceCube Next Generation Upgrade (PINGU), which could permit determination of the neutrino mass hierarchy within the coming decade, are discussed.

  14. ARM - Publications: Science Team Meeting Documents: The life stage of deep

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    convection defined by the MSG multi-channel data and rainfall type observed by PR/TRMM The life stage of deep convection defined by the MSG multi-channel data and rainfall type observed by PR/TRMM Inoue, Toshiro MRI/JMA The life cycle of deep convection is characterized as the cumulus/cumulonimbus type cloud classified by the method is dominant at the earlier stage and cirrus type cloud (anvil) is dominant at the decaying stage for no-split/no-merge case. We also know that convective rain is

  15. Microsoft PowerPoint - Aluminum Concentrations in Storm Water_w_lighter_photo_for_pdf.pptx

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    505 Approved for public release; distribution is unlimited. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this

  16. An acoustically controlled tetherless underwater vehicle for installation and maintenance of neutrino detectors in the deep ocean

    SciTech Connect

    Ballou, Philip J.

    1997-02-01

    The task of installing and servicing high energy neutrino detectors in the deep ocean from a surface support vessel is problematic using conventional tethered systems. An array of multiple detector strings rising 500 m from the ocean floor, and forming a grid with 50 m spacing between the strings, presents a substantial entanglement hazard for equipment cables deployed from the surface. Such tasks may be accomplished with fewer risks using a tetherless underwater remotely operated vehicle that has a local acoustic telemetry link to send control commands and sensor data between the vehicle and a stationary hydrophone suspended above or just outside the perimeter of the work site. The Phase I effort involves the development of an underwater acoustic telemetry link for vehicle control and sensor feedback, the evaluation of video compression methods for real-time acoustic transmission of video through the water, and the defining of local control routines on board the vehicle to allow it to perform certain basic maneuvering tasks autonomously, or to initiate a self-rescue if the acoustic control link should be lost. In Phase II, a prototype tetherless vehicle system will be designed and constructed to demonstrate the ability to install cable interconnections within a detector array at 4 km depth. The same control technology could be used with a larger more powerful vehicle to maneuver the detector strings into desired positions as they are being lowered to the ocean floor.

  17. Hydrogen Production: Photoelectrochemical Water Splitting | Department...

    Energy Saver

    Photoelectrochemical Water Splitting Hydrogen Production: Photoelectrochemical Water Splitting In photoelectrochemical (PEC) water splitting, hydrogen is produced from water using ...

  18. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    SciTech Connect

    FAYER JM; FREEDMAN VL; WARD AL; CHRONISTER GB

    2010-02-24

    The U.S. DOE and its predecessors released nearly 2 trillion liters (450 billion gallons) of contaminated liquid into the vadose zone at the Hanford Site. Some of the contaminants currently reside in the deeper parts of the vadose zone where they are much less accessible to characterization, monitoring, and typical remediation activities. The DOE Richland Operations Office (DOE-RL) prepared a treatability test plan in 2008 to examine remediation options for addressing contaminants in the deep vadose zone; one of the technologies identified was surface barriers (also known as engineered barriers, covers, and caps). In the typical configuration, the contaminants are located relatively close to the surface, generally within 15 m, and thus they are close to the base of the surface barrier. The proximity of the surface barrier under these conditions yielded few concerns about the effectiveness of the barrier at depth, particularly for cases in which the contaminants were in a lined facility. At Hanford, however, some unlined sites have contaminants located well below depths of 15 m. The issue raised about these sites is the degree of effectiveness of a surface barrier in isolating contaminants in the deep vadose zone. Previous studies by Hanford Site and PNNL researchers suggest that surface barriers have the potential to provide a significant degree of isolation of deep vadose zone contaminants. The studies show that the actual degree of isolation is site-specific and depends on many factors, including recharge rates, barrier size, depth of contaminants, geohydrologic properties ofthe sediments, and the geochemical interactions between the contaminants and the sediments. After the DOE-RL treatability test plan was published, Pacific Northwest National Laboratory was contracted to review the information available to support surface barrier evaluation for the deep vadose zone, identify gaps in the information and outcomes necessary to fill the data gaps, and outline

  19. Water Cooling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water Cooling Jump to: navigation, search Dictionary.png Water Cooling: Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an...

  20. Water Heating | Department of Energy

    Energy Saver

    Water Heating Water Heating September 2, 2015 - 11:07am Addthis Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo...

  1. NREL: Sustainable NREL - Water Efficiency

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Water Efficiency A photo of water spilling out of a downspout from the roof of a multi-story office building. NREL conserves water in a number of innovative ways. A photo of water ...

  2. Managing our water resources

    SciTech Connect

    Not Available

    1982-05-01

    Water is a plentiful, renewable resource if it is properly managed. The US allocates 82% of its water to agriculture, 10% to industries and utilities. American farmers are beginning to adopt water-conserving techniques long used in the world's arid regions because past profligate use and recent droughts lowered both water tables and farm productivity. Runoff and pollution are responsible for much of the waste of usable water. Because of local water shortages, there is interest in drip irrigation, setting aside more land for reservoirs, and other conservation techniques to ensure adequate supplies for industrial development and economic growth. American faith in technology has led to schemes for desalination, cloud seeding, iceberg towing, and aquifer recharging, as well as the existing system of dams. Proper management of river basins is an important step in the process. 1 figure. (DCK)

  3. Arsenic removal from water

    DOEpatents

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  4. Water Cycle Pilot Study

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 Water Cycle Pilot Study To learn more about Earth's water cycle, the U.S. Department of Energy (DOE) has established a multi-laboratory science team representing five DOE national laboratories: Argonne, Brookhaven, Lawrence Berkeley, Los Alamos, and Oak Ridge. The science team will conduct a three- year Water Cycle Pilot Study within the ARM SGP CART site, primarily in the Walnut River Watershed east of Wichita, Kansas. The host facility in the Walnut River Watershed is the Atmospheric

  5. Purified water quality study

    SciTech Connect

    Spinka, H.; Jackowski, P.

    2000-04-03

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals.

  6. Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Water Water America has vast wave, tidal and hydropower resources -- but much of this energy remains untapped. The Energy Department is committed to driving critical research and development efforts to expand electricity generation from these clean energy resources. This includes investments in existing hydropower facilities to equip them with the necessary infrastructure to produce electricity and leading marine and hydrokinetic technology advancements to generate energy from waves,

  7. Water Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Water Success Stories en Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii http:energy.goveeresuccess-storiesarticlescatching-wave-innovative-wave-en...

  8. Water Power Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2014 Hydropower Market Report Details Bookmark & Share View Related Welcome to the Water Power Program Publication and Product Library. This library will allow you to find...

  9. Sandia Energy - Water Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas...

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    ... Sample ShippingReceiving The Reston Stable Isotope Laboratory in Reston, Virginia, received six water samples on May 23, 2014, submitted for the determination of stable hydrogen, ...

  11. Water Conservation Measures

    SciTech Connect

    2010-12-31

    This software requires inputs of simple water fixture inventory information and calculates the water/energy and cost benefits of various retrofit opportunities. This tool includes water conservation measures for: Low-flow Toilets, Low-flow Urinals, Low-flow Faucets, and Low-flow Showheads. This tool calculates water savings, energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  12. Cooling water distribution system

    DOEpatents

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  13. Water Conservation Measures

    Energy Science and Technology Software Center

    2010-12-31

    This software requires inputs of simple water fixture inventory information and calculates the water/energy and cost benefits of various retrofit opportunities. This tool includes water conservation measures for: Low-flow Toilets, Low-flow Urinals, Low-flow Faucets, and Low-flow Showheads. This tool calculates water savings, energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits ofmoreĀ Ā» a project.Ā«Ā less

  14. Sandia Energy - Water Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News & Events, Partnership, Renewable Energy, Systems Analysis, Systems Engineering, Water Power WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory...

  15. Sandia Energy - Water Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6, a backward--bent duct buoy (BBDB) oscillating water column wave energy converter design. The team from HMRC included Tom Walsh, Brian Holmes, Florent Thiebaut, Neil...

  16. Storm Water Analytical Period

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    water associated with historical industrial activities at LANL from specified solid waste management units and areas of concern, collectively referred to as Sites. Contact...

  17. Selecting a new water heater

    SciTech Connect

    1995-03-01

    This fact sheet describes the types of water heaters available (storage water heaters, demand water heaters, heat pump water heaters, tankless coil and indirect water heaters, and solar water heaters). The criteria for selection are discussed. These are capacity, efficiency rating, and cost. A resource list is provided for further information.

  18. Discriminating a deep gallium antisite defect from shallow acceptors in GaAs using supercell calculations

    DOE PAGES [OSTI]

    Schultz, Peter A.

    2016-03-01

    For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematicmoreĀ Ā» approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.Ā«Ā less

  19. Model of the magmatic thermolysis of coal matter deep in the earth (short communication)

    SciTech Connect

    Yu.M. Korolev; S.G. Gagarin

    2008-06-15

    A model of contact thermolysis was constructed based on a combined set of equations for heat transfer from a magmatic intrusion to a coal bed and the kinetics of thermal coal conversion. This model was illustrated by the generation of petroleum hydrocarbons deep in the earth by the thermolysis of the sapropelic matter of boghead.

  20. Coupled interactions of organized deep convection over the tropical western pacific

    SciTech Connect

    Hong, X.; Raman, S.

    1996-04-01

    The relationship between sea surface temperature (SST) and deep convection is complex. In general, deep convection occurs more frequently and with more intensity as SSTs become higher. This theory assumes that the atmospheric stability is sufficiently reduced to allow the onset of moist convection. However, the amount and intensity of convection observed tends to decrease with increasing SST because very warm SSTs. A reason for such decrease is the enhancements to surface fluxes of heat and moisture out of the ocean surface because of the vertical overturning associated with deep convection. Early studies used the radiative-convective models of the atmosphere to examine the role of the convective exchange of heat and moisture in maintaining the vertical temperature profile. In this paper we use a Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to simulate a squall line over a tropical ocean global atmosphere/coupled ocean atmosphere response experiment (TOGA/COARE) area and to investigate how the ocean cooling mechanisms associated with organized deep convection act to limit tropical SSTs.