National Library of Energy BETA

Sample records for dc peter gross

  1. Peter Thelin

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    peter thelin Peter Thelin The Art of Optics Peter Thelin Peter Thelin Growing up in a household of artists and engineers, Peter Thelin was destined for a career in which artistry mattered. Only for him, art has come in the form of manipulating the shapes, sizes, and qualities of optics. And now, as one of the few remaining practitioners of hand-polishing optics, Thelin is passing his artistry along to the next generation of optics specialists. "Art is anything you put your mind to,"

  2. Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Friday, April 15, 2011 Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Energy Washington, D.C. Dr. Peter B. Lyons was confirmed by the Senate on Thursday, April ...

  3. Peter H. Kobos

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter H. Kobos - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Peter H. Kobos HomePeter H. Kobos - Peter ...

  4. peter's report

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The "Acquisition" value of these sampled items amounts to $1,514,478. Special Inquiry U.S. Department of Energy Office of Inspector General Operations at Los Alamos National Laboratory DOE/IG-0584 January 2003 3 The "Acquisition" value of these sampled items amounts to $1,514,478. U. S. DEPARTMENT OF ENERGY Washington, DC 20585 January 28, 2003 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: "Special Inquiry

  5. Peter Hosemann: UC-Berkeley

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter Hosemann: UC-Berkeley Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Peter Hosemann: UC-Berkeley Exploring materials in harsh environments November 1, 2014 Peter Hosemann Peter Hosemann Contact Linda Anderman Email Peter Hosemann Peter Hosemann now at UC-Berkeley While Peter Hosemann was already interested in materials science when he began at the Lab as a summer student in 2003, it was during his time here in

  6. Peter W. Davidson | Department of Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter W. Davidson About Us Peter W. Davidson - Former Executive Director of the Loan Programs Office (LPO) Peter W. Davidson Printable biography (pdf) Peter W. Davidson served as ...

  7. Peter N. Ciesielski | Bioenergy | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter N. Ciesielski Research Scientist, Bioenergy and Biomaterials Peter.Ciesielski@nrel.g... My research encompasses many aspects of bioenergy and biomaterials science. Biomass is an ...

  8. Peter Stair | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter Stair Joint Appointment Telephone (630) 252-6499 E-mail pstair

  9. Peter Agre and Aquaporin Water Channels

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter Agre and Aquaporin Water Channels Resources with Additional Information Peter Agre Courtesy of Johns Hopkins University 'Peter Agre, MD received the Nobel Prize in Chemistry ...

  10. Peter Winter | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter W. Davidson About Us Peter W. Davidson - Former Executive Director of the Loan Programs Office (LPO) Peter W. Davidson Printable biography (pdf) Peter W. Davidson served as Executive Director of the Loan Programs Office (LPO) at the U.S. Department of Energy from May 2013 to June 2015. Mr. Davidson oversaw the program's more than $30 billion portfolio of clean energy and advanced vehicle loans and loan guarantees, making it the largest project finance organization in the U.S. government.

  11. Peter St. John | Bioenergy | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter St. John Postdoctoral Researcher, Systems Biology and Metabolic Engineering ... John applied techniques from systems biology and dynamic systems to understand the gene ...

  12. Dr. Peter S. Winokur- Biography

    Energy.gov [DOE]

    Dr. Peter S. Winokur of Maryland has been appointed a Member of the Defense Nuclear Facilities Safety Board for a term expiring October 18, 2014.

  13. Peter Adams | Photosynthetic Antenna Research Center

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter Adams Peter Adams Peter Adams Alumnus Dr. Adams is currently the BBSRC Anniversary Future Leader Fellow in the Molecular and Nanoscale Physics Group at the University of Leeds in the United Kingdom. Alumni

  14. Samantha Gross

    Energy.gov [DOE]

    Samantha Gross is the Director for International Climate and Clean Energy at the Office of International Affairs in the U.S. Department of Energy. She directs U.S. activities under the Clean Energy...

  15. Peter Zapol | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter Zapol News A new leaf: Scientists turn carbon dioxide back into fuel Copper clusters capture and convert carbon dioxide to make fuel Telephone 630-252-6085 E-mail zapol

  16. Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Energy Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Energy April 15, 2011 - 12:00am Addthis Washington, D.C. - Dr. Peter B. Lyons was confirmed by the Senate on Thursday, April 14, as the Department of Energy's Assistant Secretary for Nuclear Energy. "Pete Lyons' depth of expertise and experience make him uniquely qualified for this role, and I am confident he will continue to serve the

  17. Dr. David Peters | Photosynthetic Antenna Research Center

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    David Peters October 18, 2011 Dr. David Peters An Overview of Wind Energy Systems Published: October 18, 2011 As part of PARC's Events and Topics in Bioenergy Series, Dr. David...

  18. Employee Spotlight: Peter Friedman | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (Click image to view larger.) (Click image to view larger.) Employee Spotlight: Peter Friedman By Jo Napolitano * September 25, 2015 Tweet EmailPrint Peter Friedman, 30, is a...

  19. Peter Nugent Named Deputy for Scientific Engagement

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter Nugent Named Deputy for Scientific Engagement Peter Nugent Named Deputy for Scientific Engagement June 3, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov XBD201308-03524-01.jpg Peter Nugent working with 2013 summer student Kayla Mendel. Peter Nugent has been appointed Deputy for Scientific Engagement in Berkeley Lab's Computing Sciences. In his new role, Nugent will work with CRD and Computing Sciences leadership to develop and implement a strategy for engaging with other Berkeley Lab

  20. Peter B. Lyons | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Peter B. Lyons About Us Dr. Peter B. Lyons - Assistant Secretary for Nuclear Energy Photo of Assistant Secretary Lyons Dr. Peter B. Lyons was confirmed as the Assistant Secretary for Nuclear Energy on April 14, 2011 after serving as the Acting Assistant Secretary since November 2010. Dr. Lyons was appointed to his previous role as Principal Deputy Assistant Secretary of the Office of Nuclear Energy (NE) in September 2009. Under Dr. Lyons' leadership, the Office has made great strides in

  1. Peter B. Littlewood | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter B. Littlewood, Director, Argonne National Laboratory Peter B. Littlewood Director, Argonne National Laboratory Peter B. Littlewood is the Director of Argonne National Laboratory, one of the nation's largest science and engineering research centers, and a Professor of Physics in the James Franck Institute at the University of Chicago. Dr. Littlewood came to Argonne in 2011 after being appointed Associate Laboratory Director of Argonne's Physical Sciences and Engineering directorate, which

  2. Peter Christensen - PNNL - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    real-world problems, and I have the privilege of helping make that connection." Peter cites the scientists, engineers, and researchers at PNNL as the laboratory's greatest assets...

  3. Peter Schultz, 1991 | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter Schultz, 1991 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1990's Peter Schultz, 1991 Print Text Size: A A A FeedbackShare Page Life Sciences: For pioneering

  4. Peter Nugent and Elizabeth Bautista Honored for Exceptional Achievemen...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Exceptional Achievement August 12, 2013 Peter Nugent (left) accepting award from Eddy Rubin. (right). Peter Nugent and Elizabeth Bautista of the National Energy Research...

  5. Peter Dent, Electron Energy Corporation, Strategies for More...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Peter Dent, Electron Energy Corporation, Strategies for More Effective Critical Materials Use Peter Dent, Electron Energy Corporation, Strategies for More Effective Critical Materials ...

  6. QER- Comment of Peter Cross

    Energy.gov [DOE]

    To whom it may concern: We live in Orange, MA, which is one of the towns through which a natural gas pipeline (Kinder Morgan Co.) is proposed to go on its way to Dracut, MA. We are aware that these 30-inch pipelines have on average one leak every 8 miles or so, and we know there will be more than 8 miles of the line in our town if it is approved. Although we are not abutting property owners, we are opposed to the fracking techniques used to extract the gas that will be in this pipeline, primarily because of danger to water supplies. Additionally, we feel as though we're enabling and supporting these techniques by not speaking out about transporting the products of this process. And, just in case you think we are "not in my backyard "people, we SUPPORT both wind and solar power installations - we have both rather close to us! Thanks for taking our opinions into consideration. Peter and Candace Cross, Orange, MA

  7. Peter Agre and Aquaporin Water Channels

    Office of Scientific and Technical Information (OSTI)

    'Peter Agre, MD received the Nobel Prize in Chemistry in 2003 for his work with ... 'Dr. Agre received his BA in chemistry from Augsburg College in 1970, and his MD from ...

  8. Peter de Bock | Inventors | GE Global Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    de Bock Peter de Bock Mechanical Engineer Thermal Systems Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) "When you do things you enjoy and are curious about, you can do your work with a level of excitement that allows you to do great things." -Peter de Bock "There are so many exciting things to be

  9. Peter W. Davidson Executive Director of the Loan Programs Office

    Energy.gov (indexed) [DOE]

    Peter W. Davidson Executive Director of the Loan Programs Office Peter W. Davidson was appointed by President Obama in May 2013 to serve as the Executive Director of the Loan ...

  10. Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear...

    Office of Environmental Management (EM)

    Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Energy Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Energy April 15, 2011 - 3:53pm Addthis ...

  11. Peter Nugent and Elizabeth Bautista Honored for Exceptional Achievement

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter Nugent and Elizabeth Bautista Honored for Exceptional Achievement Peter Nugent and Elizabeth Bautista Honored for Exceptional Achievement August 12, 2013 Peter Nugent (left) accepting award from Eddy Rubin. (right). Peter Nugent and Elizabeth Bautista of the National Energy Research Scientific Computing Center (NERSC) have been recognized with Lawrence Berkeley National Laboratory (Berkeley Lab) Director's Awards of Exceptional Achievement. The awards were presented Aug. 8 in a ceremony in

  12. What is Gross Up?

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Gross up on relocation refers to money that is added to your pay to offset the federal and state tax deducted from the relocation reimbursement amount. You do not see the money in ...

  13. Peter_Lyons_Final_Testimony.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Peter B. Lyons Assistant Secretary for Nuclear Energy U.S. Department of Energy Before the Committee on Energy and Commerce Subcommittee on Environment and the Economy U.S. House of Representatives "The Department of Energy's Role in Managing Civilian Radioactive Waste" June 1, 2011 Chairman Shimkus, Ranking Member Green and Members of the Committee, thank you for the opportunity to testify on DOE's role in radioactive waste management, and in particular the April 2011 U.S. Government

  14. DOE Physicists at Work - Dr. Peter Beiersdorfer | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    confirmed in Peter Beiersdorfer's mind that experimental physics was the way to go. ... Beiersdorfer's mind was made up. He wanted to study physics. "Physics is the key to ...

  15. Dr. Peter B. Littlewood, President UChicago Argonne, LLC Argonne...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    January 20, 2016 Dr. Peter B. Littlewood, President UChicago Argonne, LLC Argonne National Laboratory 9700 S. Cass Avenue Lemont, Illinois 60439 Dear Dr. Littlewood: This letter ...

  16. DOE Physicists at Work - Dr. Peter Beiersdorfer | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    DOE Office of Science celebrates 2005 World Year of Physics DOE Physicists at Work ... confirmed in Peter Beiersdorfer's mind that experimental physics was the way to go. Dr. ...

  17. Saint Peter Municipal Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    With help from the Southern Minnesota Municipal Power Agency (SMMPA), Saint Peter Municipal Utilities provides incentives for its commercial and industrial customers to improve the energy...

  18. Saint Peter Municipal Utilities- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    With help from Southern Minnesota Municipal Power Agency (SMMPA), Saint Peter Municipal Utilities provides incentives for its residential and commercial customers to improve the energy efficiency...

  19. Dr. Peter Lyons Announced in Senior Nuclear Position

    Energy.gov [DOE]

    Today, the United States Department of Energy (DOE) announced the appointment of Dr. Peter Lyons to the position of Principal Deputy Assistant Secretary for Nuclear Energy.

  20. Michael Gross | Photosynthetic Antenna Research Center

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Michael Gross Michael Gross Michael Gross Principal Investigator E-mail: mgross@wustl.edu Phone: (314) 935-4814 Website: Washington University in St. Louis Principal Investigator...

  1. FIA-16-0017- In the Matter of Peter Shulman

    Office of Energy Efficiency and Renewable Energy (EERE)

    On February 5, 2015, OHA denied a Freedom of Information Act Appeal filed by Peter Shulman from a determination issued by the DOE Office of Information Resources (OIR). In the Appeal, the Appellant...

  2. Blue Peter Project Group Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search Name: Blue Peter Project Group Inc Place: Oakville, Ontario, Canada Zip: L6M 2B8 Sector: Solar Product: Alternative energy project developer in Canada,...

  3. Physicist Peter Winter wins Department of Energy Early Career Award |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Argonne National Laboratory Physicist Peter Winter wins Department of Energy Early Career Award By Jared Sagoff * May 19, 2015 Tweet EmailPrint High-energy physicist Peter Winter of the U.S. Department of Energy's (DOE) Argonne National Laboratory has received a DOE Early Career Award, a prestigious five-year research grant totaling $2.5 million. The grant will help to fund Winter's contributions to the muon g-2 ("g minus 2") experiment currently being assembled at Fermi National

  4. Bi-directional dc-dc Converter

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  5. Bi-directional dc-dc Converter

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  6. ,"West Virginia Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010WV2" "Date","West Virginia Natural Gas Gross Withdrawals (MMcf)" ...

  7. ,"New York Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...2016 10:10:10 AM" "Back to Contents","Data 1: New York Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010NY2" "Date","New York Natural Gas Gross Withdrawals (MMcf)" ...

  8. ,"New Mexico Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...2016 10:10:09 AM" "Back to Contents","Data 1: New Mexico Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010NM2" "Date","New Mexico Natural Gas Gross Withdrawals (MMcf)" ...

  9. From: Peter Schumann To: Congestion Study Comments Subject:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Peter Schumann To: Congestion Study Comments Subject: National Electric Transmission Congestion Study Date: Tuesday, September 23, 2014 5:24:51 PM We are opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) for the following reasons. First, the easements place an undo burden on landowners on and near the transmission lines. The compensation cannot begin to cover the all of the losses, tangible and intangible that landowners would suffer. Second, we believe

  10. Alaska--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) Alaska--State Offshore Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  11. US--Federal Offshore Natural Gas Gross Withdrawals (Million Cubic...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) US--Federal Offshore Natural Gas Gross Withdrawals ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  12. Louisiana--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) Louisiana--State Offshore Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  13. Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  14. Texas--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) Texas--State Offshore Natural Gas Gross Withdrawals ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  15. Federal Offshore--Texas Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Texas Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  16. US--State Offshore Natural Gas Gross Withdrawals (Million Cubic...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) US--State Offshore Natural Gas Gross Withdrawals ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  17. Alabama--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) Alabama--State Offshore Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  18. Federal Offshore--Louisiana Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  19. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells ... Natural Gas Gross Withdrawals from Gas Wells Nevada Natural Gas Gross Withdrawals and ...

  20. New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet) New Mexico Natural Gas Gross Withdrawals from Shale Gas ... Natural Gas Gross Withdrawals from Shale Gas Wells New Mexico Natural Gas Gross ...

  1. DC source assemblies

    DOE Patents [OSTI]

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  2. Washington, DC.20585

    Office of Legacy Management (LM)

    Department of ,En&gy Washington, DC.20585 , ' . The Honorable Thomas, Murphy : ,, 414 Grant.Street Pittsburgh, Pennsylvania 15219 Dear Rayor Murphy:. Secretary of Energy ...

  3. Peter L. Hagelstein, 1984 | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Peter J. O'Konski About Us Peter J. O'Konski - Director, Office of Administration Career Highlights Director of Facility Policy and Professional Development within the Office of Engineering and Construction Management Chief Engineer at the Navy Public Works Center Head of Facility Planning for the Naval District Washington Peter J. O'Konski was appointed Director, Office of Administration at the Department of Energy (DOE) in 2011. As Director, he is responsible for logistics and facility

  4. Peter G. Boyd | Center for Gas SeparationsRelevant to Clean Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    University of California, Berkeley Email: peter.boydatberkeley.edu Phone: 510-944-7213 PhD in Computational Chemistry, University of Ottawa, Canada BSc in Chemistry, University ...

  5. Mark Peters testifies for Congress on nuclear energy 5/19/10

    ScienceCinema (OSTI)

    Peters, Mark

    2013-04-19

    Mark Peters, Deputy Lab Director at Argonne National Laboratory, testifies before Congress on advanced nuclear fuel cycle R&D and the DOE nuclear roadmap. May 19, 2010.

  6. Mark Peters testifies for Congress on nuclear energy 5/19/10

    ScienceCinema (OSTI)

    Mark Peters

    2016-07-12

    Mark Peters, Deputy Lab Director at Argonne National Laboratory, testifies before Congress on advanced nuclear fuel cycle R&D and the DOE nuclear roadmap. May 19, 2010.

  7. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",10,"Monthly","72016","01151989" ,"Release ...

  8. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",10,"Monthly","72016","01151989" ,"Release ...

  9. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","72016","01151989" ,"Release ...

  10. ,"Michigan Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Gross Withdrawals and Production",10,"Monthly","72016","01151989" ,"Release ...

  11. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","72016","01151989" ,"Release ...

  12. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Monthly","72016","01151989" ,"Release ...

  13. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Monthly","72016","01151989" ,"Release ...

  14. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","72016","01151989" ,"Release ...

  15. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Monthly","72016","01151989" ,"Release ...

  16. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",10,"Monthly","72016","01151991" ,"Release ...

  17. David J. Gross and the Strong Force

    Office of Scientific and Technical Information (OSTI)

    from Cal Alum David Gross (PhD '66) Shares Nobel Prize in Physics, University of California Berkeley Resources with Additional Information Additional information about David ...

  18. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151989" ,"Release ...

  19. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151989" ,"Release ...

  20. ,"Michigan Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151989" ,"Release ...

  1. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151989" ,"Release ...

  2. ,"Ohio Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151991" ,"Release ...

  3. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151989" ,"Release ...

  4. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151989" ,"Release ...

  5. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151989" ,"Release ...

  6. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151989" ,"Release ...

  7. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151989" ,"Release ...

  8. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151991" ,"Release ...

  9. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151989" ,"Release ...

  10. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151991" ,"Release ...

  11. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151989" ,"Release ...

  12. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151991" ,"Release ...

  13. David J. Gross and the Strong Force

    Office of Scientific and Technical Information (OSTI)

    published their proposal simultaneously with H. David Politzer, a graduate student at Harvard University who independently came up with the same idea. ... The discovery of Gross,...

  14. David J. Gross and the Strong Force

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    David J. Gross and the Strong Force Resources with Additional Information The 2004 Nobel Prize in Physics was awarded to David Gross for "the discovery of asymptotic freedom in the theory of the strong interaction". 'Gross, who obtained his PhD in physics in 1966, currently is a professor of physics and director of the Kavli Institute for Theoretical Physics at UC Santa Barbara. ... David Gross Courtesy of UC Santa Barbara [When on the faculty at Princeton University,] he and

  15. Peter S. Winokur, Chainnan Jessie H. Roberson, Vice Chainnan

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Jessie H. Roberson, Vice Chainnan John E. Mansfield Joseph F. Bader Sean Sullivan DEFENSE NUCLEAR FACILITIES SAFETY BOARD Washington, DC 20004-2901 September 28,2012 The Honorable ...

  16. Multilevel DC link inverter

    DOE Patents [OSTI]

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  17. Slide 1

    Gasoline and Diesel Fuel Update

    Biofuels: Continuing Shifts in the Industry and the Long-Term Outlook April 6, 2010 2010 Energy Conference Washington, DC Peter Gross EIA's Long-Term Biofuels Outlook Peter Gross, 2010 Energy Conference, April 6, 2010 2 Outline * Projection highlights and assumptions behind projections * RFS2 mandate * Projections - AEO2010 reference case - AEO2009 price cases - Waxman-Markey * Projections of E85 and E10 * Future Issues Peter Gross, 2010 Energy Conference, April 6, 2010 3 Highlights of

  18. ,"Arkansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"10072016 7:57:22 AM" "Back to Contents","Data 1: Arkansas Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AR2","N9011AR2","N9012AR2","NGME...

  19. ,"Alabama Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"10072016 7:57:21 AM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AL2","N9011AL2","N9012AL2","NGME...

  20. ,"Alabama Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"10072016 7:57:22 AM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AL2","N9011AL2","N9012AL2","NGME...

  1. ,"Arkansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"08292016 11:11:29 AM" "Back to Contents","Data 1: Arkansas Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AR2","N9011AR2","N9012AR2","NGME...

  2. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"08292016 11:11:29 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  3. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"08292016 11:11:30 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  4. ,"Alabama Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"08292016 11:11:28 AM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AL2","N9011AL2","N9012AL2","NGME...

  5. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"4292016 6:48:19 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2","NGME...

  6. Illinois Natural Gas Gross Withdrawals from Shale Gas (Million...

    Gasoline and Diesel Fuel Update

    Release Date: 09302016 Next Release Date: 10312016 Referring Pages: Natural Gas Gross Withdrawals from Shale Gas Wells Illinois Natural Gas Gross Withdrawals and Production ...

  7. Floating Offshore Wind in California: Gross Potential for Jobs...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Floating Offshore Wind in California: Gross Potential for Jobs and Economic Impacts from ... April 2016 Floating Offshore Wind in California: Gross Potential for Jobs ...

  8. ,"Federal Offshore--Texas Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Gross Withdrawals ... AM" "Back to Contents","Data 1: Federal Offshore--Texas Natural Gas Gross Withdrawals ...

  9. ,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Gross Withdrawals ... AM" "Back to Contents","Data 1: Federal Offshore--Alabama Natural Gas Gross Withdrawals ...

  10. ,"Louisiana--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Gross Withdrawals ... to Contents","Data 1: Louisiana--State Offshore Natural Gas Gross Withdrawals (MMcf)" ...

  11. ,"Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Alaska--State Offshore Natural Gas Gross Withdrawals ... to Contents","Data 1: Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf)" ...

  12. ,"Federal Offshore--Louisiana Natural Gas Gross Withdrawals ...

    U.S. Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Federal Offshore--Louisiana Natural Gas Gross Withdrawals ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana Natural Gas Gross Withdrawals ...

  13. ,"Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Alabama--State Offshore Natural Gas Gross Withdrawals ... to Contents","Data 1: Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)" ...

  14. Quantification of the Potential Gross Economic Impacts of Five...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios ...

  15. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    Annual Energy Outlook

    Release Date: 05312016 Next Release Date: 06302016 Referring Pages: Natural Gas Gross Withdrawals from Gas Wells Nevada Natural Gas Gross Withdrawals and Production Natural Gas ...

  16. Property:DailyOpWaterUseGross | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Property Name DailyOpWaterUseGross Property Type Number Description Daily Operation Water Use (afday) Gross. Retrieved from "http:en.openei.orgwindex.php?titleProperty:...

  17. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab ... for" ,"Data 1","Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and ...

  18. DC attenuation meter

    DOE Patents [OSTI]

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  19. Faces of Energy: Peter O’Konski Builds a Better Forrestal and Germantown

    Energy.gov [DOE]

    Success for Peter O’Konski is often marked by people forgetting that he’s there – when they aren’t too cold or too hot and when their mail, car and printing arrives on time.

  20. DC arc weld starter

    DOE Patents [OSTI]

    Campiotti, Richard H. (Tracy, CA); Hopwood, James E. (Oakley, CA)

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  1. Dr. Mark Peters President and Laboratory Director Battelle Energy Alliance, LLC

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7, 2016 Dr. Mark Peters President and Laboratory Director Battelle Energy Alliance, LLC Idaho National Laboratory 2525 North Fremont Avenue Idaho Falls, Idaho 83415-3695 WCO-2016-01 Dear Dr. Peters: The Office of Enterprise Assessments' Office of Enforcement completed its investigation into the facts and circumstances associated with the arc flash event that occurred at the Idaho National Laboratory (INL) on April 23, 2015. Battelle Energy Alliance, LLC (BEA) documented this event in the

  2. DOE Physicists at Work - Dr. Peter Beiersdorfer | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Physicists at Work - Dr. Peter Beiersdorfer DOE Physicists at Work Archive DOE Office of Science celebrates 2005 World Year of Physics DOE Physicists at Work Profiles of representative DOE-sponsored physicists doing research at universities and national laboratories Compiled by the Office of Scientific and Technical Information Dr. Peter Beiersdorfer It was just a simple iron wire, strung across the ceiling, that when heated by a current

  3. OSTIblog Posts by Peter Lincoln | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Peter Lincoln Peter Lincoln's picture Senior Advisor, U.S. DOE Office of Scientific and Technical Information DOE Open Government Plan 3.0 Highlights OSTI Products Published on Jun 24, 2014 The Department of Energy recently issued its latest Open Government Plan, and the document recognizes the DOE Office of Scientific and Technical Information (OSTI) for advancing open government and the principles of transparency, participation, and collaboration by

  4. Nebraska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update

    www.eia.gov Joe Benneche July 31, 2012, Washington, DC Major assumption changes for AEO2013 Oil and Gas Working Group Natural Gas Transmission and Distribution Module DRAFT WORKING GROUP PRESENTATION DO NOT QUOTE OR CITE Overview 2 Joe Benneche, Washington, DC, July 31, 2012 * Replace regional natural gas wellhead price projections with regional spot price projections * Pricing of natural gas vehicles fuels (CNG and LNG) * Methodology for modeling exports of LNG * Assumptions on charges related

  5. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) (indexed site)

    2012 2013 2014 View History Gross Withdrawals 821 1,407 1,344 770 770 950 1979-2014 From Gas Wells 821 1,407 1,344 770 770 950 1979-2014 From Oil Wells 0 0 0 0 0 0 1996-2014 From ...

  6. Kansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) (indexed site)

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 325,591 309,952 296,299 292,467 286,080 292,450 1967-2015 From Gas Wells 247,651 236,834 264,610 264,223 260,715 ...

  7. Geological Carbon Sequestration Storage Resource Estimates for the Ordovician St. Peter Sandstone, Illinois and Michigan Basins, USA

    SciTech Connect (OSTI)

    Barnes, David; Ellett, Kevin; Leetaru, Hannes

    2014-09-30

    The Cambro-Ordovician strata of the Midwest of the United States is a primary target for potential geological storage of CO2 in deep saline formations. The objective of this project is to develop a comprehensive evaluation of the Cambro-Ordovician strata in the Illinois and Michigan Basins above the basal Mount Simon Sandstone since the Mount Simon is the subject of other investigations including a demonstration-scale injection at the Illinois Basin Decatur Project. The primary reservoir targets investigated in this study are the middle Ordovician St Peter Sandstone and the late Cambrian to early Ordovician Knox Group carbonates. The topic of this report is a regional-scale evaluation of the geologic storage resource potential of the St Peter Sandstone in both the Illinois and Michigan Basins. Multiple deterministic-based approaches were used in conjunction with the probabilistic-based storage efficiency factors published in the DOE methodology to estimate the carbon storage resource of the formation. Extensive data sets of core analyses and wireline logs were compiled to develop the necessary inputs for volumetric calculations. Results demonstrate how the range in uncertainty of storage resource estimates varies as a function of data availability and quality, and the underlying assumptions used in the different approaches. In the simplest approach, storage resource estimates were calculated from mapping the gross thickness of the formation and applying a single estimate of the effective mean porosity of the formation. Results from this approach led to storage resource estimates ranging from 3.3 to 35.1 Gt in the Michigan Basin, and 1.0 to 11.0 Gt in the Illinois Basin at the P10 and P90 probability level, respectively. The second approach involved consideration of the diagenetic history of the formation throughout the two basins and used depth-dependent functions of porosity to derive a more realistic spatially variable model of porosity rather than applying a

  8. D.C.

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Future scientists advance to national level April 3, 2012 Science Bowl winners represent NM in Washington, D.C. A team from Los Alamos bested 39 other teams from around New Mexico in the 10- hour New Mexico Regional Science Bowl, held recently at Albuquerque Academy. The team went on to represent New Mexico in the 22nd Annual Department of Energy (DOE) National Science Bowl. In addition to their travel expenses, the team also won $5,000 for their school. The team consists of students, Alexander

  9. Auxiliary resonant DC tank converter

    DOE Patents [OSTI]

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  10. Improved DC Gun Insulator

    SciTech Connect (OSTI)

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  11. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ... Natural Gas Gross Withdrawals from Coalbed Wells Kentucky Natural Gas Gross Withdrawals ...

  12. Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ... Natural Gas Gross Withdrawals from Coalbed Wells Maryland Natural Gas Gross Withdrawals ...

  13. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ... Natural Gas Gross Withdrawals from Coalbed Wells Nebraska Natural Gas Gross Withdrawals ...

  14. New York Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ... Natural Gas Gross Withdrawals from Coalbed Wells New York Natural Gas Gross Withdrawals ...

  15. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 ... Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Missouri Natural Gas Gross ...

  16. Michigan Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Michigan Natural Gas Gross Withdrawals (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  17. Maryland Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Maryland Natural Gas Gross Withdrawals (Million Cubic Feet) Maryland Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 ...

  18. Indiana Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Indiana Natural Gas Gross Withdrawals (Million Cubic Feet) Indiana Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21 ...

  19. Colorado Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Colorado Natural Gas Gross Withdrawals (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  20. Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  1. Kansas Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Kansas Natural Gas Gross Withdrawals (Million Cubic Feet) Kansas Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 64,057 ...

  2. Montana Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Montana Natural Gas Gross Withdrawals (Million Cubic Feet) Montana Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  3. Oregon Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Oregon Natural Gas Gross Withdrawals (Million Cubic Feet) Oregon Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 159 ...

  4. Nevada Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nevada Natural Gas Gross Withdrawals (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3 3 5 ...

  5. California Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    California Natural Gas Gross Withdrawals (Million Cubic Feet) California Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ...

  6. Ohio Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ohio Natural Gas Gross Withdrawals (Million Cubic Feet) Ohio Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,138 ...

  7. Pennsylvania Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Pennsylvania Natural Gas Gross Withdrawals (Million Cubic Feet) Pennsylvania Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ...

  8. Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet) Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ...

  9. Nebraska Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nebraska Natural Gas Gross Withdrawals (Million Cubic Feet) Nebraska Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 57 ...

  10. Oklahoma Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Oklahoma Natural Gas Gross Withdrawals (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  11. Florida Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Florida Natural Gas Gross Withdrawals (Million Cubic Feet) Florida Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 562 ...

  12. Missouri Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Missouri Natural Gas Gross Withdrawals (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 ...

  13. Illinois Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Illinois Natural Gas Gross Withdrawals (Million Cubic Feet) Illinois Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 41 ...

  14. Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet) Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  15. Peter (Jun Young) Ko > Project Scientist - CHESS > Researchers, Postdocs &

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Graduates > The Energy Materials Center at Cornell (Jun Young) Ko Project Scientist - CHESS jpk96@cornell.edu While he has never taken any formal courses in "synchrotron beamline science", Jun Young Peter Ko has worked on projects over the past 10 years that were clearly moving him towards expertise in the field. His current position at CHESS is "project scientist." Peter has played a key role in designing a new type of x-ray monochromator that provides uniquely

  16. DC Wafers | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wafers Jump to: navigation, search Name: DC Wafers Place: Leon, Spain Product: Spanish manufacturer of multicrystalline silicon wafers. Planning a 30MW wafer slicing line in Leon,...

  17. Triple voltage dc-to-dc converter and method

    DOE Patents [OSTI]

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  18. Bi-Directional DC-DC Converter for PHEV Applications

    SciTech Connect (OSTI)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  19. Washington DC | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    DC Home Linked Open Data Workshop in Washington, D.C. Description: A group organizing the LOD workshop in Washington, D.C. in fall 2012 A follow-up event to the successful LOD...

  20. D.C. | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    D.C. Home Kyoung's picture Submitted by Kyoung(150) Contributor 6 September, 2012 - 08:51 GRR Update Meeting scheduled for 913 in D.C. D.C. GRR meeting update The next Geothermal...

  1. Good Energies (Washington DC) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Good Energies (Washington DC) Name: Good Energies (Washington DC) Address: 1250 24th St., NW, Suite 250 Place: Washington, District of Columbia Zip: 20037 Product: Global investor...

  2. DC Pro Software Tool Suite

    SciTech Connect (OSTI)

    2009-04-01

    This fact sheet describes how DOE's Data Center Energy Profiler (DC Pro) Software Tool Suite and other resources can help U.S. companies identify ways to improve the efficiency of their data centers.

  3. ,"West Virginia Natural Gas Gross Withdrawals from Shale Gas...

    U.S. Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSWVMMCF" "Date","West Virginia ...

  4. ,"California Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSCAMMCF" "Date","California Natural ...

  5. ,"Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSMSMMCF" "Date","Mississippi Natural ...

  6. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSLAMMCF" "Date","Louisiana Natural ...

  7. ,"West Virginia Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151991" ,"Release ...

  8. Thrust 1: Structure and Dynamics of Simple Fluid-Solid Interfaces (Peter T. Cumm

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Thrust 1: Structure and Dynamics of Simple Fluid-Solid Interfaces (Peter T. Cummings, Vanderbilt University, Thrust Leader). This thrust integrate multiscale computational modeling and novel experimental probes of interfacial fluid properties at 'simple' interfaces, such as planar, cylindrical, and spherical surfaces, parallel slit and cylindrical pores, etc. which can be rigorously modeled with the minimum incorporation of simplifying approximations and assumptions. Such simple interfaces are

  9. Dr. Peter B. Littlewood, President UChicago Argonne, LLC Argonne National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    January 20, 2016 Dr. Peter B. Littlewood, President UChicago Argonne, LLC Argonne National Laboratory 9700 S. Cass Avenue Lemont, Illinois 60439 Dear Dr. Littlewood: This letter serves as notification of the Office of Enterprise Assessments' Office of Enforcement decision to conduct an investigation into the facts and circumstances associated with potential deficiencies in UChicago Argonne, LLC's implementation of the Department of Energy's (DOE) 10 C.F.R. Part 851 machine guarding program

  10. Microsoft PowerPoint - IAEA Safeguards Reporting Requirements for U.S. Facilities_Peter Habighorst

    National Nuclear Security Administration (NNSA)

    IAEA Safeguards Reporting Requirements for U.S. Facilities Peter Habighorst, MC&A Branch Chief U.S. Nuclear Regulatory Commission IAEA Nuclear Material Reporting to the IAEA BACKGROUND - Overview of Governing Requirements Reporting Requirements  IAEA Information Circular (INFCIRC)/207, Notification to the Agency of Exports and Imports of Nuclear Material, July 1974  IAEA INFCIRC/288, Agreement between the United States of America and the Agency for Safeguards in the United States,

  11. Microsoft PowerPoint - Implementation of IAEA safeguards_Peter Habighorst [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    Implementation of IAEA Safeguards in the U.S. Peter Habighorst, MC&A Branch Chief U.S. Nuclear Regulatory Commission Background 2 1957 Nonproliferation Treaty (NPT) 1970 INFCIRC/66 Safeguards Model INFCIRC/153 Comprehensive Safeguards Model 1965 1972 International Atomic Energy Agency (IAEA) 1945 INFCIRC/540 Additional Protocol Model 1997 1953 Atoms for Peace The NPT requires NNWS to accept full-scope safeguards and to conclude a comprehensive safeguards agreement with the IAEA Information

  12. Peter Beaucage > Graduate Student - Wiesner Group > Researchers, Postdocs &

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Graduates > The Energy Materials Center at Cornell Beaucage Graduate Student - Wiesner Group pab275@cornell.edu Peter Beaucage is from Cincinnati, Ohio and received his BS in Chemical Engineering from the University of Cincinnati. He joined the Wiesner group in 2013 and is currently working with the EMC2 center on using copolymers to create mesoporous metal oxides, nitrides, and other inorganic materials for energy applications. He is a joint student with the Gruner group in Physics,

  13. Catalog of DC Appliances and Power Systems

    SciTech Connect (OSTI)

    Garbesi, Karina; Vossos, Vagelis; Shen, Hongxia

    2010-10-13

    This document catalogs the characteristics of current and potential future DC products and power systems.

  14. Light-weight DC to very high voltage DC converter

    DOE Patents [OSTI]

    Druce, Robert L.; Kirbie, Hugh C.; Newton, Mark A.

    1998-01-01

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current.

  15. Light-weight DC to very high voltage DC converter

    DOE Patents [OSTI]

    Druce, R.L.; Kirbie, H.C.; Newton, M.A.

    1998-06-30

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current. 1 fig.

  16. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    DOE Patents [OSTI]

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  17. DC systems with transformerless converters

    SciTech Connect (OSTI)

    Vithayathil, J.J.; Mittlestadt, W.; Bjoerklund, P.E.

    1995-07-01

    A technical and economic feasibility study of HVDC systems without converter transformers is presented. The presentation includes proposed solutions to the drawback related to the absence of galvanic separation between the ac and dc systems, if the converter transformers are eliminated. The results show that HVDC systems without converter transformers are both technically and economically feasible. The cost savings can be substantial.

  18. Peter Murphy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Opportunities ESnet Staff & Org Chart Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Office of the CTO...

  19. Peter Nugent

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Supernova Factory data set with spectrophotometry at sufficiently late phases to ... We employ 76 type Ia supernovae (SNe Ia) with optical spectrophotometry within 2.5 days of ...

  20. DC to DC power converters and methods of controlling the same

    DOE Patents [OSTI]

    Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

    2012-12-11

    A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

  1. ARM - Campaign Instrument - dc8-nasa

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ...strumentsdc8-nasa Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NASA DC-8 (DC8-NASA) Instrument Categories ...

  2. What is the deal with DC Microgrids?

    Energy Savers

    2015 Acuity Brands What is the deal with DC Microgrids? and why would a Lighting company care? Yan Rodriguez VP Product and Technology 2015 Acuity Brands * Why DC Microgrids? *...

  3. Gross Gamma-Ray Calibration Blocks (May 1978) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gross Gamma-Ray Calibration Blocks (May 1978) Gross Gamma-Ray Calibration Blocks (May 1978) Gross Gamma-Ray Calibration Blocks (May 1978) Gross Gamma-Ray Calibration Blocks (May 1978) (1.74 MB) More Documents & Publications Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) A Brief Review of the Basis for, and the Procedures Currently Utilized in, Gross Gamma-Ray Log Calibration (October 1976) Parameter Assignments for Spectral

  4. ,"Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    8:00:06 AM" "Back to Contents","Data 1: Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSVAMMCF" "Date","Virginia Natural Gas ...

  5. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    8:00:06 AM" "Back to Contents","Data 1: Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSUTMMCF" "Date","Utah Natural Gas ...

  6. ,"Florida Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    8:00:00 AM" "Back to Contents","Data 1: Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSFLMMCF" "Date","Florida Natural Gas ...

  7. ,"Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    7:59:58 AM" "Back to Contents","Data 1: Arkansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSARMMCF" "Date","Arkansas Natural Gas ...

  8. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    8:00:02 AM" "Back to Contents","Data 1: Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSMTMMCF" "Date","Montana Natural Gas ...

  9. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    8:00:06 AM" "Back to Contents","Data 1: Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSWYMMCF" "Date","Wyoming Natural Gas ...

  10. ,"Indiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    8:00:00 AM" "Back to Contents","Data 1: Indiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSINMMCF" "Date","Indiana Natural Gas ...

  11. ,"Missouri Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    8:00:02 AM" "Back to Contents","Data 1: Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSMOMMCF" "Date","Missouri Natural Gas ...

  12. Other States Natural Gas Gross Withdrawals from Shale Gas (Million...

    Gasoline and Diesel Fuel Update

    Shale Gas (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 13,204 ...

  13. ,"Alabama Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    7:59:58 AM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSALMMCF" "Date","Alabama Natural Gas ...

  14. ,"Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    8:00:01 AM" "Back to Contents","Data 1: Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSMIMMCF" "Date","Michigan Natural Gas ...

  15. ,"Arizona Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    7:59:59 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSAZMMCF" "Date","Arizona Natural Gas ...

  16. ,"Kansas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    8:00:00 AM" "Back to Contents","Data 1: Kansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSKSMMCF" "Date","Kansas Natural Gas ...

  17. ,"Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    7:59:59 AM" "Back to Contents","Data 1: Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSCOMMCF" "Date","Colorado Natural Gas ...

  18. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    8:00:07 AM" "Back to Contents","Data 1: Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSWYMMCF" "Date","Wyoming Natural Gas ...

  19. ,"Florida Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    7:59:59 AM" "Back to Contents","Data 1: Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSFLMMCF" "Date","Florida Natural Gas ...

  20. ,"Missouri Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    8:00:01 AM" "Back to Contents","Data 1: Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSMOMMCF" "Date","Missouri Natural Gas ...

  1. Fact #564: March 30, 2009 Transportation and the Gross Domestic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Housing, health care, and food are the only categories with greater shares of the GDP. GDP ... Gross Domestic Product, 2007 Housing 24.3% Health Care 17.4% Food 11.6% ...

  2. Other States Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 72,328 ...

  3. Other States Natural Gas Gross Withdrawals from Coalbed Wells...

    U.S. Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 ...

  4. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    Gasoline and Diesel Fuel Update

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  5. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    Gasoline and Diesel Fuel Update

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  6. Physics Nobel winner David Gross gives public lecture at Jefferson...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) Physics ... "The Coming Revolutions in Fundamental Physics" beginning at 8 p.m. at Jefferson Lab on ...

  7. Montana Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 4,561 3,826 4,106 ...

  8. Utah Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Utah Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21,638 18,808 21,037 ...

  9. Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 7,051 6,368 ...

  10. Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 425,704 369,500 ...

  11. Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1 1 1 1 1 1 1 1 1 1 ...

  12. Michigan Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9,579 8,593 ...

  13. Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1,239 1,119 1,239 ...

  14. Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 11,582 10,461 ...

  15. Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1,273 1,150 ...

  16. Oregon Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    from Gas Wells (Million Cubic Feet) Oregon Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 246 244 232 ...

  17. Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 11,749 10,612 ...

  18. Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 14,797 13,076 ...

  19. Wyoming Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 58,111 51,244 ...

  20. Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet) Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 331 299 331 320 ...

  1. Colorado Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 15,390 18,697 ...

  2. Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    from Shale Gas (Million Cubic Feet) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 ...

  3. Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 107,415 97,020 ...

  4. Other States Natural Gas Gross Withdrawals from Oil Wells (Million...

    Annual Energy Outlook

    Oil Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3,459 3,117 ...

  5. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov ...

  6. Fact# 904: December 21, 2015 Gross Domestic Product and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    With the growth of VMT in 2015, the gap between the two series has narrowed for the first time since the Great Recession. GDP and VMT Trends, 1960-2015 Graph showing gross national ...

  7. Property:CoolingTowerWaterUseSummerGross | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Property Name CoolingTowerWaterUseSummerGross Property Type Number Description Cooling Tower Water use (summer average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  8. Ecological benefits of dc power transmission

    SciTech Connect (OSTI)

    Kutuzova, N. B.

    2011-05-15

    The environmental effects of dc overhead transmission lines are examined. The major effects of ac and dc transmission lines are compared. Dc lines have advantages compared to ac lines in terms of electrical safety for people under the lines, biological effects, corona losses, and clearance width.

  9. Utilization of the St. Peter Sandstone in the Illinois Basin for CO2 Sequestration

    SciTech Connect (OSTI)

    Will, Robert; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    This project is part of a larger project co-funded by the United States Department of Energy (US DOE) under cooperative agreement DE-FE0002068 from 12/08/2009 through 9/31/2014. The study is to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon Sandstone as potential targets for carbon dioxide (CO2) sequestration in the Illinois and Michigan Basins. This report evaluates the potential injectivity of the Ordovician St. Peter Sandstone. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data acquired through funding in this project as well as existing data from two additional, separately funded projects: the US DOE funded Illinois Basin Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium (MGSC) in Macon County, Illinois, and the Illinois Industrial Carbon Capture and Sequestration (ICCS) Project funded through the American Recovery and Reinvestment Act (ARRA), which received a phase two award from DOE. This study addresses the question of whether or not the St. Peter Sandstone may serve as a suitable target for CO2 sequestration at locations within the Illinois Basin where it lies at greater depths (below the underground source of drinking water (USDW)) than at the IBDP site. The work performed included numerous improvements to the existing St. Peter reservoir model created in 2010. Model size and spatial resolution were increased resulting in a 3 fold increase in the number of model cells. Seismic data was utilized to inform spatial porosity distribution and an extensive core database was used to develop porosity-permeability relationships. The analysis involved a Base Model representative of the St. Peter at in-situ conditions, followed by the creation of two hypothetical models at in-situ + 1,000 feet (ft.) (300 m) and in-situ + 2,000 ft. (600 m) depths through systematic depthdependent adjustment of the Base Model

  10. EA-377 DC Energy Texas LLC | Department of Energy

    Energy Savers

    7 DC Energy Texas LLC EA-377 DC Energy Texas LLC Order authorizing DC Energy Texas LLC to export electric energy to Mexico. PDF icon EA-377 DC Energy Texas LLC More Documents & ...

  11. Gross alpha analytical modifications that improve wastewater treatment compliance

    SciTech Connect (OSTI)

    Tucker, B.J.; Arndt, S.

    2007-07-01

    This paper will propose an improvement to the gross alpha measurement that will provide more accurate gross alpha determinations and thus allow for more efficient and cost-effective treatment of site wastewaters. To evaluate the influence of salts that may be present in wastewater samples from a potentially broad range of environmental conditions, two types of efficiency curves were developed, each using a thorium-230 (Th-230) standard spike. Two different aqueous salt solutions were evaluated, one using sodium chloride, and one using salts from tap water drawn from the Bergen County, New Jersey Publicly Owned Treatment Works (POTW). For each curve, 13 to 17 solutions were prepared, each with the same concentration of Th-230 spike, but differing in the total amount of salt in the range of 0 to 100 mg. The attenuation coefficients were evaluated for the two salt types by plotting the natural log of the counted efficiencies vs. the weight of the sample's dried residue retained on the planchet. The results show that the range of the slopes for each of the attenuation curves varied by approximately a factor of 2.5. In order to better ensure the accuracy of results, and thus verify compliance with the gross alpha wastewater effluent criterion, projects depending on gross alpha measurements of environmental waters and wastewaters should employ gross alpha efficiency curves prepared with salts that mimic, as closely as possible, the salt content of the aqueous environmental matrix. (authors)

  12. Montana Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Montana Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 317 313 314 307 308 303 307 309 309 312 320 329 2007 330 329 324 320 328 330 325 331 335 334 340 339 2008 334 330 332 331 327 323 324 327 330 330 326 302 2009 304 311 305 302 297 292 286 281 279 275 268 263 2010 265 264 267 265 259 258 256 251 251 249 247 236 2011 229 223 221 221 219 217 218 217 225 211 208 206 2012 202 202

  13. Ohio Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Ohio Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Ohio Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 247 244 238 236 230 228 224 224 228 240 249 252 2007 252 249 243 240 234 232 228 228 233 245 254 257 2008 243 232 234 232 226 224 220 220 224 236 245 248 2009 254 251 245 242 236 234 230 230 235 247 256 259 2010 223 221 215 213 208 206 203 203 206 217 225 228 2011 226 223 217 215 210 208 204 204 208 220 227 230

  14. Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 271 275 277 274 280 287 282 285 290 284 291 290 2007 295 299 302 298 304 312 307 310 316 309 316 316 2008 338 331 346 342 349 358 352 355 362 354 362 362 2009 375 376 369 377 379 380 394 395 396 400 404 383 2010 404 406 400 397 403 403 403 404 408 401 406 406 2011 414 430 413 409 410 407 411 418 410 416 413 419 2012 421 414

  15. Alabama Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Alabama Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 850 862 874 869 858 823 817 832 816 829 815 822 2007 815 808 802 769 774 767 768 815 805 794 792 814 2008 785 794 775 748 783 770 747 743 693 760 749 753 2009 689 749 740 724 730 727 726 704 686 637 622 686 2010 664 670 700 684 683 677 631 628 603 684 669 620 2011 644 651 648 639 581 626 627 629 522 546 501 575 2012 627 629

  16. California Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) California Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 998 992 986 967 989 976 962 924 934 917 927 909 2007 971 965 958 942 963 950 936 898 907 887 899 883 2008 953 914 940 925 945 932 919 881 890 870 882 866 2009 876 871 864 850 869 857 845 810 819 801 812 797 2010 915 909 901 883 906 895 883 848 857 839 849 836 2011 798 816 790 796 776 776 757 748 734 714 744 732 2012 685 697

  17. Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 190 280 281 279 248 310 196 231 398 95 257 377 2007 115 404 361 105 315 441 45 268 270 240 268 320 2008 175 265 281 299 316 316 463 379 289 283 479 198 2009 254 445 151 174 402 368 109 359 391 339 339 406 2010 332 624 146 355 356 344 394 335 382 623 167 408 2011 308 359 379 366 292 327 365 295 339 307 340 410 2012 290 290 290

  18. Active dc filter for HVDC systems

    SciTech Connect (OSTI)

    Zhang, W. ); Asplund, G.

    1994-01-01

    This article is a case history of the installation of active dc filters for high-performance, low-cost harmonics filtering at the Lindome converter station in the Konti-Skan 2 HVDC transmission link between Denmark and Sweden. The topics of the article include harmonics, interference, and filters, Lindome active dc filter, active dc filter design, digital signal processor, control scheme, protection and fault monitoring, and future applications.

  19. Simultaneous distribution of AC and DC power

    SciTech Connect (OSTI)

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  20. SSL Demonstration: Parking Garage Lighting, Washington, DC

    SciTech Connect (OSTI)

    2013-06-01

    GATEWAY program report brief summarizing an SSL parking garage demonstration at the Dept. of Labor headquarters parking garage in Washington, DC.

  1. Glass Ceramic Dielectrics for DC Bus Capacitors

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  2. Washington, D.C. Office | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Office NREL's Washington, D.C. office provides energy analysis and technical program support to the U.S. Department of Energy. View Larger Map National Renewable Energy Laboratory - D.C. Office 901 D Street, SW (also 370 L'Enfant Promenade, adjacent to the Forrestal building) Suite 930 Washington, D.C., 20024 202-488-2200 D.C. Visitor Information See local information to plan your trip. Security Procedures Building security will accept HSPD-12 badges (recognizable by gold chip on front) or valid

  3. High voltage DC power supply

    DOE Patents [OSTI]

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  4. High voltage DC power supply

    DOE Patents [OSTI]

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  5. Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 ...

  6. Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 ...

  7. New Mexico Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals 1,341,475 1,287,682 1,276,296 1,247,394 1,265,579 1,289,908 1967-2015 From Gas Wells 616,134 556,024 653,057 588,127 535,181 1967-2014 From Oil Wells 238,580 ...

  8. DC-based magnetic field controller

    DOE Patents [OSTI]

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  9. DC-based magnetic field controller

    DOE Patents [OSTI]

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  10. Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah

    SciTech Connect (OSTI)

    Clements, Craig B.; Whiteman, Charles D.; Horel, John D.

    2003-06-01

    The evolution of potential temperature and wind structure during the buildup of nocturnal cold-air pools was investigated during clear, dry, September nights in Utah's Peter Sinks basin, a 1-km-diameter limestone sinkhole that holds the Utah minimum temperature record of -56 C. The evolution of cold-pool characteristics depended on the strength of prevailing flows above the basin. On an undisturbed day, a 30 C diurnal temperature range and a strong nocturnal potential temperature inversion (22 K in 100 m) were observed in the basin. Initially, downslope flows formed on the basin sidewalls. As a very strong potential temperature jump (17 K) developed at the top of the cold pool, however, the winds died within the basin and over the sidewalls. A persistent turbulent sublayer formed below the jump. Turbulent sensible heat flux on the basin floor became negligible shortly after sunset while the basin atmosphere continued to cool. Temperatures over the slopes, except for a 1 to 2-m-deep layer, became warmer than over the basin center at the same altitude. Cooling rates for the entire basin near sunset were comparable to the 90 W m-2 rate of loss of net longwave radiation at the basin floor, but these rates decreased to only a few watts per square meter by sunrise. This paper compares the observed cold-pool buildup in basins with inversion buildup in valleys.

  11. Microsoft PowerPoint - 2_Peter J. Habighorst_NRC Remarks 2013 NMMSS Users Meeting.pptx

    National Nuclear Security Administration (NNSA)

    STATE OF NMMSS Brian Horn, NRC Peter Dessaules, DOE/NNSA Overview  NMMSS has had a highly successful year in which it reduced reconciliation and closing times, improved report products, and delivered commitments to DOE/NNSA, NRC, and other government agencies on schedule.  This would not be possible without your efforts. 2 Mission Statement  NMMSS is the U.S. Government's official information system containing current and historical accounting data and other related nuclear material

  12. Washington, D.C. Roundtable Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Washington, D.C. Roundtable Summary Washington, D.C. Roundtable Summary Summary of the DOE Office of Indian Energy roundtable held March 30, 2011, in Washington, D.C. PDF icon ...

  13. EA-327-A DC Energy, LLC | Department of Energy

    Energy.gov (indexed) [DOE]

    DC Energy to export electric energy to Canada. EA-327-A DC Energy.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-327-A DC Energy, LLC...

  14. Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88,258 418,474 760,566 1980's 949,177 1,010,772 1,120,830 992,041 1,021,260 942,413 1,169,038 1,330,604 1,376,093 1,457,841 1990's 1,555,568 1,494,494 1,411,147 1,355,333 1,392,727 1,346,674 1,401,753 1,351,067 1,241,264 1,206,045 2000's 1,177,257 53,649 57,063 53,569 44,946 36,932 24,785

  15. Texas--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) Texas--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,296,865 5,461,594 5,518,978 5,525,982 5,626,448 5,665,074 5,738,595 5,526,033 2000's 5,681,726 5,698,798 5,603,941 5,737,755 5,688,972 5,969,905 6,301,649 6,931,629 7,753,869 7,615,836 2010's 7,565,123 7,910,898 8,127,004 8,285,436 8,647,988 8,791,961 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,838,521 4,600,197 4,750,119 1980's 4,617,585 4,584,491 4,246,464 3,635,942 4,070,279 3,542,827 3,279,165 3,610,041 3,633,594 3,577,685 1990's 3,731,764 3,550,230 3,442,437 3,508,112 3,673,494 3,554,147 3,881,697 3,941,802 3,951,997 3,896,569 2000's 3,812,991 153,871 137,192 133,456

  17. Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,535,033 1,538,511 1,552,603 1,608,633 1,469,698 1,357,155 1,386,478 1,434,389 2000's 1,342,963 1,370,802 1,245,270 1,244,672 1,248,050 1,202,328 1,280,758 1,309,960 1,301,523 1,482,252 2010's 2,148,447 2,969,297 2,882,193 2,289,193 1,907,296 1,731,680 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 191,605 218,023 349,380 356,598 361,068 409,091 392,320 376,435 2000's 361,289 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,829 64,184 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,409,336 2,545,144 2,861,599 3,256,352 3,247,533 3,257,096 3,245,736 3,236,241 2000's 3,265,436 3,164,843 3,183,857 3,256,295 3,309,960 3,262,379 2,850,934 3,105,086 3,027,696 2,954,896 2010's 2,826,952 2,798,220 2,857,485 2,882,956 2,803,410 2,804,644 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Calif--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) Calif--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 386,382 346,733 334,987 322,544 326,919 317,137 315,701 347,667 2000's 334,983 336,629 322,138 303,480 287,205 291,271 301,921 286,584 281,088 258,983 2010's 273,136 237,388 214,509 219,386 218,668 217,517 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  1. California Natural Gas Gross Withdrawals Total Offshore (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Gross Withdrawals Total Offshore (Million Cubic Feet) California Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 19,929 20,394 1980's 19,980 26,692 31,904 38,084 60,207 84,062 77,355 67,835 60,308 59,889 1990's 58,055 59,465 62,473 58,635 60,765 60,694 73,092 80,516 81,868 84,547 2000's 83,882 78,209 74,884 64,961 61,622 60,773 47,217 52,805 51,931 47,281 2010's 46,755 41,742

  2. Federal Offshore California Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Gross Withdrawals (Million Cubic Feet) Federal Offshore California Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 5,166 5,431 1980's 5,900 12,763 17,751 24,168 46,363 64,558 59,078 54,805 49,167 50,791 1990's 49,972 51,855 55,231 52,150 53,561 54,790 66,784 73,345 74,985 77,809 2000's 76,075 70,947 67,816 58,095 54,655 54,088 40,407 45,516 44,902 41,229 2010's 41,200 36,579 27,262 27,454

  3. Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 520 546 489 552 551 583 595 593 606 630 653 653 2007 678 690 709 736 749 756 714 717 752 809 845 813 2008 847 877 880 896 929 913 927 948 945 1,046 1,057 1,091 2009 1,079 1,098 941 876 853 840 880 916 917 964 1,084 1,161 2010 1,040 1,011 1,055 960 1,024 1,048 1,090 1,110 1,180 1,200 1,262 1,219 2011 1,233 1,223 1,201 1,236

  4. Pennsylvania Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Pennsylvania Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 503 534 487 469 459 480 455 469 481 481 465 505 2007 521 553 505 486 475 497 471 486 498 499 482 523 2008 567 581 549 529 517 540 512 529 542 543 524 569 2009 783 832 758 730 714 746 708 731 749 749 724 785 2010 733 733 733 1,284 1,284 1,284 1,779 1,779 1,779 2,461 2,461 2,461 2011 2,718 2,718 2,718 3,178 3,178 3,178

  5. Tennessee Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Tennessee Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Tennessee Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 7 7 7 7 6 6 7 8 8 8 8 8 2007 10 10 10 10 10 10 11 11 11 12 12 12 2008 12 12 12 12 11 11 13 13 14 14 15 15 2009 14 14 14 14 13 13 15 15 16 16 17 17 2010 13 13 13 13 13 12 14 15 15 15 16 16 2011 13 13 12 12 12 12 14 14 14 14 15 15 2012 16 16 16 16 16 16 16 16 16 16 16 16 2013 15 15 15 15 15 15 15 15 15 15

  6. Arkansas Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Arkansas Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Arkansas Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 600 607 639 654 681 718 732 775 808 856 899 923 2007 596 603 636 651 680 717 731 774 810 861 899 923 2008 940 1,005 1,065 1,104 1,142 1,196 1,256 1,313 1,316 1,375 1,422 1,517 2009 1,605 1,627 1,679 1,774 1,816 1,877 1,839 2,047 1,571 2,028 2,217 2,273 2010 2,263 2,295 2,340 2,450 2,471 2,517 2,582 2,660

  7. Florida Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Florida Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Florida Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 8 8 9 9 8 7 8 8 8 7 7 7 2007 6 6 6 6 6 5 5 5 6 5 5 5 2008 8 8 9 8 8 7 7 7 8 7 7 7 2009 1 1 1 1 1 1 1 1 1 1 1 1 2010 19 30 27 34 33 32 37 49 50 48 50 49 2011 49 54 48 50 49 51 42 34 45 47 47 47 2012 51 50 49 53 36 37 43 56 60 57 67 53 2013 55 54 47 23 37 45 44 59 53 55 58 62 2014 8 9 9 10 8 8 9 9 9 8 8 8

  8. Illinois Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 44,712 56,555 53,775 2000's 47,189 46,801 81,867 32,168 30,624 58,418 42,729 62,567 34,586 33,214 2010's 45,900 47,510 89,300 52,266 42,538 83,570

    Gross Withdrawals (Million Cubic Feet per Day) Illinois Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 1 1 1 0 0 1 0 0 0 0 0 0 2007 4 5 4 4 4 4 3 3 3 3 3 4 2008 4 4 4 3 3 4 3 3 3 3 3 3

  9. Indiana Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Indiana Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 7 8 8 8 8 8 6 8 9 9 9 9 2007 9 8 9 11 10 9 10 11 10 12 12 7 2008 11 13 13 14 14 13 13 12 12 14 14 11 2009 14 11 14 14 14 13 12 14 12 15 15 15 2010 15 16 14 17 15 18 19 18 21 24 24 23 2011 25 22 26 25 26 25 24 24 25 25 25 25 2012 20 25 26 25 24 24 24 25 25 24 24 24 2013 23 23 23 23 23 23 22 21 22 17 22 19 2014 16 19 20 20 19 17

  10. Kansas Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Kansas Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 1,049 1,035 1,041 1,046 1,041 1,057 1,030 1,024 988 979 975 968 2007 1,034 1,021 1,027 1,031 1,026 1,043 1,015 1,010 974 965 962 954 2008 1,017 1,028 1,032 1,024 979 1,024 1,034 1,033 1,032 1,026 1,092 988 2009 1,009 1,018 994 984 994 976 952 985 972 953 951 901 2010 903 923 911 907 812 902 876 904 890 899 895 886 2011 873 838

  11. Michigan Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Michigan Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 665 635 896 482 548 1,023 668 792 739 717 550 1,103 2007 941 681 675 563 869 679 741 790 832 695 776 642 2008 439 435 438 429 433 435 437 443 436 434 424 422 2009 408 412 503 404 388 406 482 402 427 392 511 504 2010 383 381 379 374 373 374 371 379 378 371 370 365 2011 394 399 399 399 393 390 393 395 399 391 393 385 2012 362

  12. Property:CoolingTowerWaterUseWinterGross | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    lingTowerWaterUseWinterGross Property Type Number Description Cooling Tower Water use (winter average) (afday) Gross. Retrieved from "http:en.openei.orgwindex.php?titleProper...

  13. Property:CoolingTowerWaterUseAnnlAvgGross | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Property Name CoolingTowerWaterUseAnnlAvgGross Property Type Number Description Cooling Tower Water use (annual average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  14. Report Now Available: DC Microgrids Scoping Study--Estimate of...

    Office of Environmental Management (EM)

    Report Now Available: DC Microgrids Scoping Study--Estimate of Technical and Economic Benefits (March 2015) Report Now Available: DC Microgrids Scoping Study--Estimate of Technical ...

  15. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Testing Reports DC Fast Charge Impacts on Battery Life and Vehicle Performance INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems

  16. INL Efficiency and Security Testing of EVSE, DC Fast Chargers...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging ...

  17. Washington, D.C. and Indiana: Allison Hybrid Technology Achieves...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Washington, D.C. and Indiana: Allison Hybrid Technology Achieves Commercial Success Washington, D.C. and Indiana: Allison Hybrid Technology Achieves Commercial Success August 21,...

  18. Maryland DC Virginia Solar Energy Industries Association MDV...

    Open Energy Information (Open El) [EERE & EIA]

    DC Virginia Solar Energy Industries Association MDV SEIA Jump to: navigation, search Name: Maryland-DC-Virginia Solar Energy Industries Association (MDV-SEIA) Place: Bethesda,...

  19. Multilevel cascade voltage source inverter with seperate DC sources...

    Office of Scientific and Technical Information (OSTI)

    Multilevel cascade voltage source inverter with seperate DC sources Citation Details In-Document Search Title: Multilevel cascade voltage source inverter with seperate DC sources ...

  20. Multilevel cascade voltage source inverter with seperate DC sources...

    Office of Scientific and Technical Information (OSTI)

    Multilevel cascade voltage source inverter with seperate DC sources Citation Details In-Document Search Title: Multilevel cascade voltage source inverter with seperate DC sources A ...

  1. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low Cost, High Temperature, High Ripple Current DC Bus Capacitors Low Cost, High Temperature, High Ripple Current DC Bus Capacitors 2010 DOE Vehicle Technologies and Hydrogen...

  2. Logan Daum > Analyst - DC Energy > Center Alumni > The Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Logan Daum Analyst - DC Energy lrd56@cornell.edu Formerly a graduate student with the Fennie Group, Logan joined DC Energy in June of 2013...

  3. DC High School Science Bowl Regionals

    Energy.gov [DOE]

    This event is the Washington, D.C. High School Regional competition for the US National Science Bowl. The regional competition is run by the Office of Economic Impact and Diversity, and the...

  4. Microsoft Word - ivanova-dc.doc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the large, small and very small modes (named here as mode 3, 2, and 1). Figure 7. Mean dimension measured by the 2DC vs. temperature for this study (CEPEX). Vertical bars are...

  5. Physics Nobel winner David Gross gives public lecture at Jefferson Lab on

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    June 12 (Monday) | Jefferson Lab Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) Physics Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) June 6, 2006 David Gross David Gross, Nobel Prize recipient and lecturer David Gross, Nobel Prize recipient is scheduled to give a free, public lecture titled "The Coming Revolutions in Fundamental Physics" beginning at 8 p.m. at Jefferson Lab on (Monday) June 12. He is one of

  6. Improved DC Gun Insulator Assembly

    SciTech Connect (OSTI)

    Sah, R.; Dudas, A.; Neubauer, M. L.; Poelker, M.; Surles-Law, K. E.L.

    2010-05-23

    Many user fa­cil­i­ties such as syn­chrotron ra­di­a­tion light sources and free elec­tron lasers re­quire ac­cel­er­at­ing struc­tures that sup­port elec­tric fields of 10-100 MV/m, es­pe­cial­ly at the start of the ac­cel­er­a­tor chain where ce­ram­ic in­su­la­tors are used for very high gra­di­ent DC guns. These in­su­la­tors are dif­fi­cult to man­u­fac­ture, re­quire long com­mis­sion­ing times, and often ex­hib­it poor re­li­a­bil­i­ty. Two tech­ni­cal ap­proach­es to solv­ing this prob­lem will be in­ves­ti­gat­ed. First­ly, in­vert­ed ce­ram­ics offer so­lu­tions for re­duced gra­di­ents be­tween the elec­trodes and ground. An in­vert­ed de­sign will be pre­sent­ed for 350 kV, with max­i­mum gra­di­ents in the range of 5-10 MV/m. Sec­ond­ly, novel ce­ram­ic man­u­fac­tur­ing pro­cess­es will be stud­ied, in order to pro­tect triple junc­tion lo­ca­tions from emis­sion, by ap­ply­ing a coat­ing with a bulk re­sis­tiv­i­ty. The pro­cess­es for cre­at­ing this coat­ing will be op­ti­mized to pro­vide pro­tec­tion as well as be used to coat a ce­ram­ic with an ap­pro­pri­ate gra­di­ent in bulk re­sis­tiv­i­ty from the vac­u­um side to the air side of an HV stand­off ce­ram­ic cylin­der. Ex­am­ple in­su­la­tor de­signs are being com­put­er mod­elled, and in­su­la­tor sam­ples are being man­u­fac­tured and test­ed

  7. New York State oil company gross receipts taxation

    SciTech Connect (OSTI)

    Brown, P.E., Jr.

    1983-12-01

    New York's Governor Cuomo was able to mediate a settlement with 18 major oil companies subject to gross receipts taxation. The compromise was intended to end three years of litigation and to assure a tax revenue flow to the state of hundreds of millions of dollars. It represents New York's effort to single out a handful of large national companies for special burdens and a final resolution of a dispute over the state's attempt to prevent these companies from passing through their tax liabilities to consumers in the prices of petroleum products. This article reviews oil company taxation in New York State and the effects of the recent accord. 95 references.

  8. EA-351 DC Energy Dakota, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    51 DC Energy Dakota, LLC EA-351 DC Energy Dakota, LLC Order authorizing DC Energy Dakota, LLC to export electric energy to Canada EA-351 DC Energy Dakota, LLC (383.98 KB) More Documents & Publications Application to Export Electric Energy OE Docket No. EA-351 DC Energy Dakota, LLC EA-344 Twin Cities Power-Canada, LLC EA-354 Endure Energy, L.L.C.

  9. Glass Ceramic Dielectrics for DC Bus Capacitors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Glass Ceramic Dielectrics for DC Bus Capacitors Glass Ceramic Dielectrics for DC Bus Capacitors 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ape010_lanagan_2012_p.pdf (486.5 KB) More Documents & Publications Glass Ceramic Dielectrics for DC Bus Capacitors Glass Dielectrics for DC Bus Capacitors Glass Ceramic Dielectrics for DC Bus Capacitors

  10. California--State Offshore Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) Gross Withdrawals (Million Cubic Feet) California--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,763 14,963 1980's 14,080 13,929 14,153 13,916 13,844 19,504 18,277 13,030 11,141 9,098 1990's 8,083 7,610 7,242 6,484 7,204 5,904 6,309 7,171 6,883 6,738 2000's 7,808 7,262 7,068 6,866 6,966 6,685 6,809 7,289 7,029 6,052 2010's 5,554 5,163 5,051 5,470 5,805 5,146 - = No Data Reported;

  11. Nebraska Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Nebraska Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 3 3 3 3 3 4 4 3 3 3 3 3 2007 2 3 3 3 4 4 4 4 5 7 6 6 2008 8 9 8 8 8 8 9 8 9 9 9 8 2009 9 10 10 9 9 9 7 7 7 7 7 6 2010 6 6 6 6 7 6 6 6 6 6 6 5 2011 5 5 5 6 5 6 6 6 6 5 5 5 2012 5 5 5 3 4 4 3 3 3 3 3 3 2013 3 3 3 3 3 3 3 3 3 4 2 4 2014 1 1 1 1 1 1 1 1 1 1 1 1 2015 1 1 1 1 1 1 2 2 2 2 1 1 2016 NA NA NA NA NA NA NA NA - = No Data

  12. Oklahoma Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Oklahoma Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 4,412 4,442 4,472 4,563 4,567 4,760 4,700 4,664 4,722 4,747 4,732 4,739 2007 4,634 4,850 5,019 4,778 4,979 4,916 4,902 4,924 4,892 4,945 4,909 4,888 2008 5,018 5,144 5,074 5,208 5,215 5,241 5,256 4,896 5,224 5,126 5,145 5,318 2009 5,322 5,433 5,262 5,207 5,325 5,331 5,293 5,241 5,076 5,055 5,067 4,923 2010 4,915 4,976 5,005

  13. Oregon Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Oregon Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 2 2 2 2 2 2 2 1 2 1 1 1 2007 2 2 1 1 1 1 1 1 1 0 1 1 2008 3 2 2 1 2 2 2 2 3 3 2 3 2009 2 2 2 2 2 2 1 2 1 1 2 8 2010 6 7 5 5 5 4 3 1 2 2 3 4 2011 5 6 4 3 4 4 5 3 2 3 3 3 2012 3 2 2 2 3 2 2 1 1 2 2 3 2013 3 3 2 2 3 2 2 1 1 2 2 3 2014 4 3 3 3 4 4 4 3 2 2 3 3 2015 3 2 2 2 3 1 2 2 2 2 3 3 2016 NA NA NA NA NA NA NA NA - = No Data

  14. Texas Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Texas Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 17,026 16,952 17,141 17,220 17,297 17,234 17,273 17,375 17,575 17,553 17,641 17,679 2007 17,566 18,044 18,509 18,549 18,805 19,080 19,125 19,431 19,564 19,755 20,088 20,268 2008 20,241 20,613 20,917 21,066 21,391 21,446 21,547 21,777 20,435 21,948 22,218 22,112 2009 22,211 22,025 22,007 21,633 21,304 21,058 20,772 20,705 20,303

  15. Utah Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Utah Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 919 931 941 945 953 956 948 987 1,010 1,023 1,046 1,053 2007 997 1,050 1,093 1,098 1,126 1,083 1,091 1,098 984 900 1,057 1,092 2008 1,092 1,130 1,148 1,185 1,196 1,198 1,200 1,277 1,276 1,241 1,275 1,259 2009 1,273 1,289 1,300 1,278 1,254 1,218 1,224 1,222 1,178 1,195 1,203 1,148 2010 1,146 1,169 1,188 1,223 1,234 1,216 1,198

  16. Wyoming Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Wyoming Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 5,624 5,636 5,666 5,613 5,495 5,656 5,823 5,730 5,658 6,063 6,164 6,284 2007 6,196 6,040 6,149 6,093 6,046 6,085 6,094 6,179 6,176 6,047 6,512 6,604 2008 6,469 6,436 6,722 6,767 6,771 6,839 6,940 6,835 6,447 6,909 7,126 7,297 2009 7,067 7,220 7,135 7,028 6,957 7,030 6,446 6,746 6,461 7,010 7,256 7,057 2010 7,074 7,092 7,110

  17. Alaska Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Alaska Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 9,244 9,681 9,288 8,745 7,770 8,330 7,865 8,192 8,642 9,084 9,268 9,369 2007 10,019 10,510 10,078 9,495 8,441 9,040 8,531 8,899 9,389 9,855 10,059 10,159 2008 9,833 9,963 9,894 9,323 8,290 8,875 8,375 8,739 9,221 9,674 9,876 9,972 2009 9,533 10,007 9,594 9,042 8,040 8,606 8,120 8,476 8,943 9,380 9,577 9,668 2010 9,389 9,849

  18. Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 1 2 2 2 2 2 2 2 2 2 2 2 2007 2 2 2 1 2 2 2 2 2 2 2 2 2008 2 2 2 2 2 1 1 1 1 2 1 1 2009 1 2 2 2 2 2 2 2 2 2 2 2 2010 1 1 1 0 0 1 1 0 0 0 0 0 2011 1 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 NA NA NA NA NA NA

  19. Colorado Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Colorado Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 3,344 3,357 3,340 3,314 3,325 3,313 3,299 3,357 3,329 3,380 3,369 3,202 2007 3,377 3,358 3,396 3,475 3,462 3,485 3,477 3,393 3,617 3,456 3,543 3,209 2008 3,707 3,645 3,679 3,900 3,707 3,576 3,834 4,056 4,049 3,860 3,978 3,998 2009 4,330 4,353 4,298 4,238 4,244 4,149 4,148 4,104 4,032 3,985 4,025 3,810 2010 4,233 4,350 4,295

  20. Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 3,649 3,687 3,775 3,772 3,822 3,858 3,789 3,785 3,810 3,799 3,786 3,776 2007 3,718 3,672 3,750 3,794 3,866 3,875 3,869 3,759 3,784 3,789 3,785 3,793 2008 3,797 3,791 3,820 3,852 3,934 3,989 4,008 3,896 2,960 3,718 3,916 3,802 2009 3,829 3,925 3,941 4,034 4,119 4,134 4,220 4,382 4,448 4,616 4,801 4,772 2010 4,930 5,193 5,385

  1. Fact# 904: December 21, 2015 Gross Domestic Product and Vehicle Travel:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Both Increased during 2015 | Department of Energy 4: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 Fact# 904: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 SUBSCRIBE to the Fact of the Week The nation's highway vehicle miles of travel (VMT) and the U.S. gross domestic product (GDP) reflect strikingly similar patterns, indicating the strong relationship between the nation's economy and its travel. Beginning in

  2. Fact #904: December 21, 2015 Gross Domestic Product and Vehicle Travel:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Both Increased during 2015 - Dataset | Department of Energy Fact #904: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 - Dataset Fact #904: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 - Dataset Excel file and dataset for Gross Domestic Product and Vehicle Travel: Both Increased during 2015 fotw#904_web_rev.xlsx (19.75 KB) More Documents & Publications Vehicle Technologies Office Spring 2016 Quarterly

  3. Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011

    U.S. Energy Information Administration (EIA) (indexed site)

    Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011 Year Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, and Shale Gas Wells Natural Gas Well Productivity Texas 1 Louisiana 1 Oklahoma Other States 1 Federal Gulf of Mexico 2 Total Onshore Offshore Total Gross With- drawals From Natural Gas Wells 3 Producing Wells 4 Average Productivity Federal State Total Million Cubic Feet Million Cubic Feet Million Cubic Feet Number Cubic Feet per Well 1960 6,964,900

  4. U.S. Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) (indexed site)

    Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Gross Withdrawals 26,056,893 26,816,085 28,479,026 29,542,313 30,005,254 31,895,427 1936-2014 From Gas Wells 14,414,287 13,247,498 12,291,070 12,504,227 11,255,616 1967-2013 From Oil Wells 5,674,120 5,834,703 5,907,919 4,965,833 5,427,676 1967-2013 From Shale Gas Wells 3,958,315 5,817,122

  5. Gross national happiness as a framework for health impact assessment

    SciTech Connect (OSTI)

    Pennock, Michael; Ura, Karma

    2011-01-15

    The incorporation of population health concepts and health determinants into Health Impact Assessments has created a number of challenges. The need for intersectoral collaboration has increased; the meaning of 'health' has become less clear; and the distinctions between health impacts, environmental impacts, social impacts and economic impacts have become increasingly blurred. The Bhutanese concept of Gross National Happiness may address these issues by providing an over-arching evidence-based framework which incorporates health, social, environmental and economic contributors as well as a number of other key contributors to wellbeing such as culture and governance. It has the potential to foster intersectoral collaboration by incorporating a more limited definition of health which places the health sector as one of a number of contributors to wellbeing. It also allows for the examination of the opportunity costs of health investments on wellbeing, is consistent with whole-of-government approaches to public policy and emerging models of social progress.

  6. Missouri Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Missouri Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 NA NA NA NA NA NA NA NA NA NA NA NA 2009 NA NA NA NA NA NA NA NA NA NA NA NA 2010 NA NA NA NA NA NA NA NA NA NA NA NA 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA 2013 NA NA NA NA NA NA NA NA NA NA NA NA 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA

  7. Halbach array DC motor/generator

    DOE Patents [OSTI]

    Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  8. Halbach array DC motor/generator

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  9. Spatial confinement and thermal deconfinement in the Gross-Neveu model

    SciTech Connect (OSTI)

    Malbouisson, J. M. C.; Khanna, F. C.; Malbouisson, A. P. C.

    2007-06-19

    We discuss the occurrence of spatial confinement and thermal deconfinement in the massive, D-dimensional, Gross-Neveu model with compactified spatial dimensions.

  10. Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Logging Systems (December 1983) | Department of Energy Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) (2.28 MB)

  11. DC multi-infeed study. Final report

    SciTech Connect (OSTI)

    Szechtman, M.; Pilotto, L.A.S.; Ping, W.W.; Salgado, E.; Dias de Carvalho, A.R.C.; Long, W.F.; Alvarado, F.L.; DeMarco, C.L.; Canizares, C.A.; Wey, A.

    1994-12-01

    An HVdc multiconverter configuration results when more than one converter station is located within the same electrical region. Such a situation will be a natural consequence of the growing use of the HVdc technology. Relevant questions relating to multiconverter configurations have been analyzed in the scope of this research project. In particular, special emphasis has been devoted to the HVdc inverter multiinfeed schemes, since such a situation will be more commonly found in future applications and usually results in the most severe ac/dc interactions. The main purpose of this project is to present a general insight into the potential problems resulting from multiinfeed HVdc operation, using networks based on realistic power system configurations. Power system studies have been performed using several digital (Load-Flow, Transient Stability, Eigenvalue and EMTP programs) and analog (DC Simulator) tools in a complementary basis to investigate both low and high frequency interaction phenomena. The project was conducted to evaluate the technical aspects of the various ac/dc and dc/dc interactions. It addressed small signal stability, an overview of the entire system transient and dynamic stability, some aspects of the ac voltage stability problem and HVdc control stability including the effects of the VDCOL units and possible occurrence of commutation failures at inverter stations after recovery from faults. This report identifies the potential problems resulting from multiinfeed situations and proposes practical solutions. It also presents a survey on how the various HVdc system controllers can be coordinated to provide the interconnected ac system with an improved dynamic performance, a high level of operational flexibility and the maximization of the overall system loadability.

  12. SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles

    SciTech Connect (OSTI)

    Marlino, Laura D; Zhu, Lizhi

    2007-07-01

    The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.

  13. PowerCentsDC Program Final Report | Department of Energy

    Energy Savers

    PowerCentsDC Program Final Report In 2007 the Smart Meter Pilot Program Inc initiated PowerCentsDC to test the reactions and impacts on consumer behavior of smart prices, smart ...

  14. Global DC Power System Market Analysis | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    either positive or negative. It can be powered from an AC or DC source. A basic DC power system consists of a transformer, a rectifier, a filter, and a regulator. All these...

  15. Global DC Power System Market Growth | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    either positive or negative. It can be powered from an AC or DC source. A basic DC power system consists of a transformer, a rectifier, a filter, and a regulator. All these...

  16. Global DC Power System Market Space | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    either positive or negative. It can be powered from an AC or DC source. A basic DC power system consists of a transformer, a rectifier, a filter, and a regulator. All these...

  17. Washington DC Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    for your school's state, county, city, or district. For more information, please visit the Middle School Coach page. Washington, DC Region Middle School Regional Washington, DC DC...

  18. Washington DC Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) [DOE]

    school's state, county, city, or district. For more information, please visit the High School Coach page. Washington, DC Region High School Regional Washington, DC Washington, DC...

  19. Categorical Exclusion Determinations: Washington, D.C. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Washington, D.C. Categorical Exclusion Determinations: Washington, D.C. Location Categorical Exclusion Determinations issued for actions in Washington, D.C. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2016 CX-100670 Categorical Exclusion Determination Boosting Energy Efficiency and Economic Development Through Chambers of Commerce Award Number: DE-EE0007557 CX(s) Applied: A9, A11 Building Technologies Program Date: 7/26/2016 Location(s): DC Office(s): Golden Field Office January 20,

  20. Energy Training Session for DC Elementary School Teachers

    Energy.gov [DOE]

    Are you an elementary school teacher in Washington, DC, looking for creative ideas to introduce energy curriculum to your students?

  1. DC Survey 2013 | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Management / Aerial Measuring System DC Survey 2013 DC Background Survey (.zip) DC 2013 survey Related Topics ams Emergency Response Related News NNSA stays prepared with world-class response units Department of Energy's chief risk officer visits Nevada National Security Site NNSA sites prepared for disasters using real-time response management system NNSA emergency response assets highlighted NNSA displays helicopter in Baltimore

  2. EA-377 DC Energy Texas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 DC Energy Texas EA-377 DC Energy Texas Order authorizing DC Energy Texas to export electric energy to Mexico. EA-377 DCE Texas Order.pdf (1.96 MB) More Documents & Publications Application to export electric energy OE Docket No. EA-377 Alston&Bird LLP EA-403 Frontera Marketing,

  3. Energy Challenge Two: The WeatherizeDC Campaign

    Energy.gov [DOE]

    WeatherizeDC is a campaign of The DC Project, a nonprofit based in Washington, D.C., founded by former leaders of the Obama for America campaign around a mission to advance economic and environmental justice by creating clean energy career opportunities for people who need them most.

  4. Q&A: Kristen Psaki of WeatherizeDC

    Energy.gov [DOE]

    Roughly 20 percent of carbon emissions come from inefficient homes. The DC Project says it has found a way to mitigate emissions and create jobs, a winning combination. WeatherizeDC is the non-profit’s effort to use a community engagement model to help DC residents find green jobs and live a more energy efficient lifestyle.

  5. Recovery Act State Memos Washington, DC

    Energy.gov (indexed) [DOE]

    Washington, DC For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  6. DC side filters for multiterminal HVDC systems

    SciTech Connect (OSTI)

    Shore, N.L.; Adamson, K.; Bard, P.

    1996-10-01

    Multiterminal HVDC systems present challenges in the specification and design of suitable dc side filtering. This document examines the existing experience and addresses the particular technical problems posed by multiterminal systems. The filtering requirements of small taps are discussed, as is the potential use of active filters. Aspects of calculation and design are considered and recommendations made to guide the planners and designers of future multiterminal schemes.

  7. AVTA: Hasdec DC Fast Charging Testing Results

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the Hasdec DC fast charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

  8. Nevada Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Nevada Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 NA NA NA NA NA NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available;

  9. Maryland Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Maryland Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 NA NA NA NA NA NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not

  10. DC dielectric characteristics and conception of insulation design for DC GIS

    SciTech Connect (OSTI)

    Hasegawa, T.; Yamaji, K.; Hatano, M.; Aoyagi, H.; Taniguchi, Y.; Kobayashi, A.

    1996-10-01

    In order to discuss the dielectric performance of DC GIS, the flashover characteristics of gas-insulated bus were studied under conical- and disk-type spacers. The test involves the investigation on effect of electrification for charge to be accumulated in spacers and the effect of metallic particles. As the result, it was found that the dielectric characteristics of conical-type spacer are better than disk type. Moreover, the dielectric performance of DC GIS is more affected by the characteristics of coaxial electrode system than spacer surface with regard to metallic particle. On the basis of the results of these tests, this report presents the conception of insulation design for DC GIS.

  11. A High Power Density DC-DC Converter for Distributed PV Architectures

    SciTech Connect (OSTI)

    Mohammed S. Agamy; Song Chi; Ahmed Elasser; Maja Harfman-Todorovic; Yan Jiang; Frank Mueller; Fengfeng Tao

    2012-06-01

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  12. DC-DC Converter Topology Assessment for Large Scale Distributed Photovoltaic Plant Architectures

    SciTech Connect (OSTI)

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Sabate, Juan A; Steigerwald, Robert L; Jiang, Yan; Essakiappan, Somasundaram

    2011-07-01

    Distributed photovoltaic (PV) plant architectures are emerging as a replacement for the classical central inverter based systems. However, power converters of smaller ratings may have a negative impact on system efficiency, reliability and cost. Therefore, it is necessary to design converters with very high efficiency and simpler topologies in order not to offset the benefits gained by using distributed PV systems. In this paper an evaluation of the selection criteria for dc-dc converters for distributed PV systems is performed; this evaluation includes efficiency, simplicity of design, reliability and cost. Based on this evaluation, recommendations can be made as to which class of converters is best fit for this application.

  13. Improved DC Gun and Insulator Assembly

    SciTech Connect (OSTI)

    Neubauer, Michael; Johnson, Rolland P

    2015-01-11

    Many user facilities such as synchrotron radiation light sources and free electron lasers rely on DC high voltage photoguns with internal field gradients as high as 10 to 15 MV/m. These high gradients often lead to field emission which poses serious problems for the photocathode used to generate the electron beam and the ceramic insulators used to bias the photocathode at high voltage. Ceramic insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic causing a buildup of charge and eventual puncture, and also because large diameter ceramics are difficult to braze reliably. The lifetimes of photo cathodes inside high current DC guns exhibiting field emission are limited to less than a hundred hours. Reducing the surface gradients on the metals reduces the field emission, which serves to maintain the required ultrahigh vacuum condition. A novel gun design with gradients around 5 MV/m and operating at 350 kV, a major improvement over existing designs, was proposed that allows for the in-situ replacement of photo cathodes in axially symmetric designs using inverted ceramics. In this project, the existing JLAB CEBAF asymmetric gun design with an inverted ceramic support was modeled and the beam dynamics characterized. An improved structure was designed that reduces the surface gradients and improves the beam optics. To minimize the surface gradients, a number of electrostatic gun designs were studied to determine the optimum configuration of the critical electrodes within the gun structure. Coating experiments were carried out to create a charge dissipative coating for cylindrical ceramics. The phase II proposal, which was not granted, included the design and fabrication of an axially symmetric DC Gun with an inverted ceramic that would operate with less than 5 MV/m at 350 kV and would be designed with an in-situ replaceable photo-cathode.

  14. Fun D.C. Jobs for Physicists

    SciTech Connect (OSTI)

    Clark Cully

    2009-09-30

    Physicists make valuable contributions in a wide variety of careers, including those in Washington. Many national challenges, including energy, innovation, and security, create a demand for technically-competent individuals across government. Clark will discuss some of the many programs in D.C. designed to attract the best and brightest minds, from grad-students to professors, from short-term assignments to whole new careers. These are great opportunities to use your expertise and enrich your knowledge of the broader scientific enterprise, all while serving society.

  15. National Press Club Washington, D.C.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Is the Energy Race our new "Sputnik" Moment? National Press Club Washington, D.C. 29 November, 2010 1 October 4, 1957, the Soviet Union placed a 184 pound satellite into orbit. "The Soviet Union now has - in the combined category of scientists and engineers - a greater number than the United States. And it is producing graduates in these fields at a much faster rate ... This trend is disturbing. Indeed, according to my scientific advisers, this is for the American people the most

  16. Fact #768: February 25, 2013 New Light Vehicle Sales and Gross Domestic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Product | Department of Energy 8: February 25, 2013 New Light Vehicle Sales and Gross Domestic Product Fact #768: February 25, 2013 New Light Vehicle Sales and Gross Domestic Product Over the last four decades, new light vehicle sales have gone from a low of 9.9 million vehicles in 1970 to a high of 17.1 million vehicles sold in 2001, but along the way, there have been significant ups and downs. Those ups and downs are also reflected in the change in Gross Domestic Product (GDP) over time

  17. Architectures and Control of Submodule Integrated DC-DC Converters for Photovoltaic Applications

    SciTech Connect (OSTI)

    Olalla, C; Clement, D; Rodriguez, M; Maksimovic, D

    2013-06-01

    This paper describes photovoltaic (PV) module architectures with parallel-connected submodule-integrated dc-dc converters (subMICs) that improve efficiency of energy capture in the presence of partial shading or other mismatch conditions. The subMICs are bidirectional isolated dc-dc converters capable of injecting or subtracting currents to balance the module substring voltages. When no mismatches are present, the subMICs are simply shut down, resulting in zero insertion losses. It is shown that the objective of minimum subMIC power processing can be solved as a linear programming problem. A simple close-to-optimal distributed control approach is presented that allows autonomous subMIC control without the need for a central controller or any communication among the subMICs. Furthermore, the proposed control approach is well suited for an isolated-port architecture, which yields additional practical advantages including reduced subMIC power and voltage ratings. The architectures and the control approach are validated by simulations and experimental results using three bidirectional flyback subMICs attached to a standard 180-W, 72-cell PV module, yielding greater than 98% module-level power processing efficiency for a mismatch less than 25%.

  18. Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight

    Energy.gov [DOE]

    The gross weight of a vehicle (GVW) is the weight of the empty vehicle plus the weight of the maximum payload that the vehicle was designed to carry. In cars and small light trucks, the difference...

  19. ,"U.S. Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    7:59:57 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSNUSMMCF" "Date","U.S. Natural Gas ...

  20. EIA Energy Efficiency-Table 4e. Gross Output by Selected Industries...

    Annual Energy Outlook

    e Page Last Modified: May 2010 Table 4e. Gross Output1by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002...

  1. EIA Energy Efficiency-Table 3e. Gross Output by Selected Industries...

    Annual Energy Outlook

    e Page Last Modified: May 2010 Table 3e. Gross Output1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998...

  2. Fact #564: March 30, 2009 Transportation and the Gross Domestic Product, 2007

    Energy.gov [DOE]

    Transportation plays a major role in the U.S. economy. About 10% of the U.S. Gross Domestic Product (GDP) in 2007 is related to transportation. Housing, health care, and food are the only...

  3. OSTIblog Articles in the David Gross Topic | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    David Gross Topic 100th DOE R&D Accomplishments Feature Page Celebration by Linda McBrearty 07 Jul, 2013 in Products and Content 7566 Accomp100slide.preview.jpg 100th DOE R&D ...

  4. The one-dimensional Gross-Pitaevskii equation and its some excitation states

    SciTech Connect (OSTI)

    Prayitno, T. B.

    2015-04-16

    We have derived some excitation states of the one-dimensional Gross-Pitaevskii equation coupled by the gravitational potential. The methods that we have used here are taken by pursuing the recent work of Kivshar et. al. by considering the equation as a macroscopic quantum oscillator. To obtain the states, we have made the appropriate transformation to reduce the three-dimensional Gross-Pitaevskii equation into the one-dimensional Gross-Pitaevskii equation and applying the time-independent perturbation theory in the general solution of the one-dimensional Gross-Pitaevskii equation as a linear superposition of the normalized eigenfunctions of the Schrödinger equation for the harmonic oscillator potential. Moreover, we also impose the condition by assuming that some terms in the equation should be so small in order to preserve the use of the perturbation method.

  5. 23 V.S.A. Section 1392 Gross Weight Limits on Highways | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Section 1392 Gross Weight Limits on HighwaysLegal Abstract Statute establishes the motor vehicle weight, load size, not to exceed 80,000 pounds without a permit. Published NA...

  6. Energy Incentive Programs, Washington DC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Washington DC Energy Incentive Programs, Washington DC Updated October 2015 What public-purpose-funded energy efficiency programs are available in the District of Columbia? In 2008, the Council of the District of Columbia passed the Clean and Affordable Energy Act (CAEA), establishing the DC Sustainable Energy Utility (DCSEU), whose mission is to provide energy assistance to low-income residents and support energy efficiency and renewable energy programs. The DCSEU, funded by the Sustainable

  7. DC OPC Comments. September 17, 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OPC Comments. September 17, 2010 DC OPC Comments. September 17, 2010 Comments of the office of peoples counsel, washington DC in response to the department of energy's request for information concerning smart grid issues. DC OPC Comments. September 17, 2010 (104.21 KB) More Documents & Publications Addressing Policy and Logistical Challenges to smart grid Implementation: eMeter Response to Department of Energy RFI Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical

  8. Fault Detection and Isolation in Low-Voltage DC Distribution...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Find More Like This Return to Search Fault Detection and Isolation in Low-Voltage DC Distribution System University of Colorado Contact CU About This Technology Publications: PDF ...

  9. PHOTOVOLTAIC DC ARC FAULT DETECTOR TESTING AT SANDIA NATIONAL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    PHOTOVOLTAIC DC ARC FAULT DETECTOR TESTING AT SANDIA NATIONAL LABORATORIES Jay Johnson 1 , ... ) added Article 690.11 that requires photovoltaic (PV) systems on or penetrating a ...

  10. Energy Department Completes Cool Roof Installation on DC Headquarters...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Headquarters Building to Save Money by Saving Energy Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy December 14, ...

  11. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Washington DC Reliability Requirements and the Need to Operate...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Washington DC Reliability Requirements and the Need to Operate Mirant's Potomac River Generation Station to Support Local Area Reliability (Oak Ridge National Laboratory 2005) ...

  13. DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Raft River Geothermal Area (1974-1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Schlumberger Array) At Raft River...

  14. Persons Who Received the DC PSC's Emergency Petition and Complaint...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ("DC PSC") Emergency Petition Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant ...

  15. VA-MD-DC Hydrogen Education for Decision Makers

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  16. DC Fast Charge Impacts on Battery Life and Vehicle Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing AVTA: 2011 Honda CRZ HEV Testing Results AVTA: 2011 ...

  17. A Segmented Drive System with a Small DC Bus Capacitor

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  18. DC Resistivity Survey (Dipole-Dipole Array) At Coso Geothermal...

    Open Energy Information (Open El) [EERE & EIA]

    Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: DC Resistivity Survey (Dipole-Dipole Array) At Coso Geothermal Area...

  19. Washington DC's First Electric Vehicle Charging Station | Department...

    Energy.gov (indexed) [DOE]

    Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo ...

  20. Grid-Interactive Electric Vehicle DC-Link Photovoltaic Charging...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Find More Like This Return to Search Grid-Interactive Electric Vehicle DC-Link Photovoltaic Charging System University of Colorado Contact CU About This Technology Publications: ...

  1. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  2. Development of a Novel Bi-Directional Isolated Multiple-Input DC-DC Converter

    SciTech Connect (OSTI)

    Li, H.

    2005-10-24

    There is vital need for a compact, lightweight, and efficient energy-storage system that is both affordable and has an acceptable cycle life for the large-scale production of electric vehicles (EVs) and hybrid electric vehicles (HEVs). Most of the current research employs a battery-storage unit (BU) combined with a fuel cell (FC) stack in order to achieve the operating voltage-current point of maximum efficiency for the FC system. A system block diagram is shown in Fig.1.1. In such a conventional arrangement, the battery is sized to deliver the difference between the energy required by the traction drive and the energy supplied by the FC system. Energy requirements can increase depending on the drive cycle over which the vehicle is expected to operate. Peak-power transients result in an increase of losses and elevated temperatures which result in a decrease in the lifetime of the battery. This research will propose a novel two-input direct current (dc) dc to dc converter to interface an additional energy-storage element, an ultracapacitor (UC), which is shown in Fig.1.2. It will assist the battery during transients to reduce the peak-power requirements of the battery.

  3. Read-out electronics for DC squid magnetic measurements

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-01-01

    Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.

  4. National Small Business Federal Contracting Summit-DC Fall Conference

    Energy.gov [DOE]

    The 2014 National Small Business Federal Contracting Summit - DC Fall Conference is presented jointly by the National Association of Small Business Contractors (the Supplier Council of The American Small Business Chamber of Commerce) and the U.S. Women's Chamber of Commerce in Washington DC.

  5. Dynamic microscopic theory of fusion using DC-TDHF

    SciTech Connect (OSTI)

    Umar, A. S.; Oberacker, V. E.; Keser, R.; Maruhn, J. A.; Reinhard, P.-G.

    2012-10-20

    The density-constrained time-dependent Hartree-Fock (DC-TDHF) theory is a fully microscopic approach for calculating heavy-ion interaction potentials and fusion cross sections below and above the fusion barrier. We discuss recent applications of DC-TDHF method to fusion of light and heavy systems.

  6. Historical Material Analysis of DC745U Pressure Pads

    SciTech Connect (OSTI)

    Ortiz-Acosta, Denisse

    2012-07-30

    As part of the Enhance Surveillance mission, it is the goal to provide suitable lifetime assessment of stockpile materials. This report is an accumulation of historical publication on the DC745U material and their findings. It is the intention that the B61 LEP program uses this collection of data to further develop their understanding and potential areas of study. DC745U is a commercially available silicone elastomer consisting of dimethyl, methyl-phenyl, and methyl-vinyl siloxane repeat units. Originally, this material was manufactured by Dow Corning as Silastic{reg_sign} DC745U at their manufacturing facility in Kendallville, IN. Recently, Dow Corning shifted this material to the Xiameter{reg_sign} brand product line. Currently, DC745U is available through Xiameter{reg_sign} or Dow Corning's distributor R. D. Abbott Company. DC745U is cured using 0.5 wt% vinyl-specific peroxide curing agent known as Luperox 101 or Varox DBPH-50. This silicone elastomer is used in numerous parts, including two major components (outer pressure pads and aft cap support) in the W80 and as pressure pads on the B61. DC745U is a proprietary formulation, thus Dow Corning provides limited information on its composition and properties. Based on past experience with Dow Corning, DC745U is at risk of formulation changes without notification to the costumer. A formulation change for DC745U may have a significant impact because the network structure is a key variable in determining material properties. The purpose of this report is to provide an overview of historical DC745U studies and identify gaps that need to be addressed in future work. Some of the previous studies include the following: 1. Spectroscopic characterization of raw gum stock. 2. Spectroscopic, thermal, and mechanical studies on cured DC745U. 3. Nuclear Magnetic Resonance (NMR) and solvent swelling studies on DC745U with different crosslink densities. 4. NMR, solvent swelling, thermal, and mechanical studies on thermally aged

  7. Linked Open Data Workshop in Washington, D.C. | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    Linked Open Data Workshop in Washington, D.C. Home > Linked Open Data Workshop in Washington, D.C. > Posts by term > Linked Open Data Workshop in Washington, D.C. Content Group...

  8. Application to Export Electric Energy OE Docket No. EA-351 DC...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DC Energy Dakota, LLC Application to Export Electric Energy OE Docket No. EA-351 DC Energy Dakota, LLC Application from DC Energy Dakota, LLC to export electric energy to Canada...

  9. ,"California--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  10. ,"Federal Offshore California Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  11. North Dakota Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    North Dakota Natural Gas Gross Withdrawals (Million Cubic Feet per Day) North Dakota Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 158 155 160 165 167 169 170 174 182 186 185 190 2007 187 188 185 189 191 194 196 204 202 203 207 182 2008 209 207 215 221 232 243 243 249 260 267 269 242 2009 241 243 245 250 247 249 258 263 260 255 267 262 2010 252 272 279 282 302 305 324 331 343 348 360 343 2011 340 342 360 359 364 397 434 466

  12. ,"Other States Total Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Other States Total Natural Gas Gross Withdrawals and Production",10,"Monthly","8/2016","01/15/1989" ,"Release Date:","10/31/2016" ,"Next Release

  13. ,"Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1060_rtxsf_2a.xls"

  14. ,"US--Federal Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","US--Federal Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1060_rusf_2a.xls"

  15. ,"US--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","US--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1060_russf_2a.xls"

  16. Peters_1972.pdf

    U.S. Department of Energy (DOE) all webpages (Extended Search)

  17. Jonas C. Peters - JCAP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Joint Trade Mission to China Joint Trade Mission to China Trade Mission Begins Trade Mission Begins The joint trade mission began in Beijing, and will also make stops in Shanghai and Guangzhou. Read more Green Buildings Green Buildings How American Businesses are leading the way in green building technology in Shanghai and around the world. Read more Top 3 Things Top 3 Things Deputy Secretary Sherwood-Randall spoke at Microsoft's Beijing Campus. These were the top 3 things from her speech. Read

  18. Implementing the DC Mode in Cosmological Simulations with Supercomoving Variables

    DOE PAGES-Beta [OSTI]

    Gnedin, Nickolay Y; Kravtsov, Andrey V; Rudd, Douglas H

    2011-06-02

    As emphasized by previous studies, proper treatment of the density fluctuation on the fundamental scale of a cosmological simulation volume - the 'DC mode' - is critical for accurate modeling of spatial correlations on scales ~> 10% of simulation box size. We provide further illustration of the effects of the DC mode on the abundance of halos in small boxes and show that it is straightforward to incorporate this mode in cosmological codes that use the 'supercomoving' variables. The equations governing evolution of dark matter and baryons recast with these variables are particularly simple and include the expansion factor, andmorehence the effect of the DC mode, explicitly only in the Poisson equation.less

  19. The Automotive X Prize rolls into Washington, DC 09/16/10 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Automotive X Prize rolls into Washington, DC 091610 The Automotive X Prize rolls into Washington, DC 091610 Addthis ProgressiveXPrizeEventSeptember162010Peraves187mpg...

  20. Improved DC Gun and Insulator Assembly (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Improved DC Gun and Insulator Assembly Citation Details In-Document Search Title: Improved DC Gun and Insulator Assembly Many user facilities such as synchrotron radiation light ...

  1. We Have a Winner - DC High School Regional Science Bowl Competition...

    Energy Savers

    We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday We Have a Winner - DC High School Regional Science Bowl Competition Held Last Saturday ...

  2. Microsoft PowerPoint - 8_Peter Habighorst_NRC_Act of 2012-status final 5-12 presentation.ppt [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    Use of NMMSS Data in Support of the American Medical Isotopes Production Act of 2012 Peter Habighorst Nuclear Regulatory Commission Background * Section 3175 of the act requires: - Chairman of NRC, after consulting with other relevant agencies, to submit to Congress by January 2, 2014 a report detailing certain U.S. exports of High Enriched Uranium (HEU)* * Uranium enriched to 20% or more in U-235 2 Information in report * "Current" disposition of U.S. exports of HEU used as fuel or

  3. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for Department of Veterans Affairs. James J. Peters VA Medical Center, Bronx, NY

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2014-10-01

    This report focuses on the Department of Veterans Affairs, James J. Peters VA Medical Center (VA - Bronx) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.

  4. Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion

    SciTech Connect (OSTI)

    Kim, J; Kim, M; Herrault, F; Park, JY; Allen, MG

    2015-09-01

    Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g., higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.

  5. Analysis of a transformer-less, multi-level DC-DC converter for HVDC operation

    SciTech Connect (OSTI)

    Karady, G.G.; Devarajan, S.

    1998-12-31

    HVDC systems require DC step up and DC step down units. The traditional approach is the application of twelve-pulse thyristor bridges with transformers. The developments of fast switching IGBT devices permit the development of transformer-less, multi-level converters. A multi-level circuit was suggested by Limpaecher. This paper presents a detailed simulation of the proposed circuit together with the analysis of its performance. The converter consists of a set of capacitors, air core inductors and solid state switches arranged in a ladder network. In the step-up mode, the closing of solid state switches resonantly charges the capacitors in parallel through an air-cored inductor. Then solid state switches resonantly charges the capacitors in parallel through an air-cored inductor. Then solid state switches connect the capacitors in series and discharge them through an air-core inductor to the load. In the step-down mode the capacitors are charged in series and discharged in parallel. The circuit has three modes of operation in each cycle: charge, inversion, and discharge. The circuit operation is analyzed in each mode using SPICE simulations. The selection of the components is discussed and output voltage regulation is analyzed. The results show that the proposed circuit promises significant reduction of losses, because of the zero current switching. The investment cost is reduced because of the elimination of transformers.

  6. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOE Patents [OSTI]

    Hilbert, C.; Martinis, J.M.; Clarke, J.

    1984-04-27

    A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.

  7. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOE Patents [OSTI]

    Hilbert, Claude; Martinis, John M.; Clarke, John

    1986-01-01

    A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.

  8. ARM - Field Campaign - DC-8 Cloud Radar Campaign

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Contact Lihua Li (lihua@mirsl.ecs.umass.edu) or Steve Sekelsky (sekelsky@mirsl.ecs.umass.edu). Summary The NASA DC-8 was based at Tinker Air Force Base near Oklahoma City between ...

  9. Simultaneous distribution of AC and DC power - Energy Innovation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Outlook, solar energy is expected to grow globally by 12.7% per year until 2035; more than any other renewable energy source. The growth of on-site DC (Direct ...

  10. National Science Bowl Brings Best and Brightest to DC

    Energy.gov [DOE]

    The National Science Bowl Finals in Washington D.C. April 27 to 30 pit 113 high and middle school teams against one another answering questions Jeopardy-style about biology, chemistry, earth science, physics, astronomy, and math.

  11. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon apearravt028boan2010...

  12. The War of the Currents: AC vs. DC Power

    Energy.gov [DOE]

    Nikola Tesla and Thomas Edison played key roles in the War of the Currents. Learn more about AC and DC power -- and how they affect our electricity use today.

  13. NREL: Energy Analysis - Washington D.C. Office Staff

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Washington D.C. Office The following SEAC staff are based in our Washington D.C. Office. They support a variety of programs and activities, and often are the liaison between the U.S. Department of Energy and staff based in Golden, Colorado. Team Lead: Robert Margolis Administrative Support: Kaitlyn Wingfield Austin Brown David J. Feldman Thomas Jenkin John (Jack) Mayernik Colin McMillan Kathleen Nawaz Monisha Shah Photo of Austin Brown. Austin Brown Senior Analyst (Strategic Planning) Areas of

  14. Energy Department Completes Cool Roof Installation on DC Headquarters

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building to Save Money by Saving Energy | Department of Energy Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy December 14, 2010 - 12:00am Addthis Washington - Secretary Steven Chu today announced the completion of a new cool roof installation on the Department of Energy's Headquarters West Building. There was no incremental cost to adding

  15. Memorandum From: Leo Breton, Founder Energy Innovations Washington, DC

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    From: Leo Breton, Founder Energy Innovations Washington, DC 202-329-6813 Lbreton2000@yahoo.com To: expartecommunications@hq.doe.gov Subj: Complying with DOE's "ex parte communications" requirements Leo Breton, representing Energy Innovations of Washington, DC, a small company engaged in improving the energy efficiency of appliances, automobiles, and HVAC systems, requested a meeting with DOE regarding residential cooktop and range efficiency standards and related test procedures. A

  16. User Science Exhibition March 28-29 in Washington DC

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Exhibition March 28-29 in Washington DC User Science Exhibition March 28-29 in Washington DC February 17, 2012 by Francesca Verdier This March 28 and 29 the National User Facilities Organization is holding a User Science Exhibition on Capitol Hill. All major DOE facilities will have posters and representatives there. NERSC users are welcome to attend. This event will highlight the significant and important role that scientific user facilities play in science education, economic

  17. "Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) (indexed site)

    Real Gross Domestic Product Growth Trends, Projected vs. Actual" "Projected Real GDP Growth Trend" " (cumulative average percent growth in projected real GDP from first year shown for each AEO)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  18. Gross error detection and stage efficiency estimation in a separation process

    SciTech Connect (OSTI)

    Serth, R.W.; Srikanth, B. . Dept. of Chemical and Natural Gas Engineering); Maronga, S.J. . Dept. of Chemical and Process Engineering)

    1993-10-01

    Accurate process models are required for optimization and control in chemical plants and petroleum refineries. These models involve various equipment parameters, such as stage efficiencies in distillation columns, the values of which must be determined by fitting the models to process data. Since the data contain random and systematic measurement errors, some of which may be large (gross errors), they must be reconciled to obtain reliable estimates of equipment parameters. The problem thus involves parameter estimation coupled with gross error detection and data reconciliation. MacDonald and Howat (1988) studied the above problem for a single-stage flash distillation process. Their analysis was based on the definition of stage efficiency due to Hausen, which has some significant disadvantages in this context, as discussed below. In addition, they considered only data sets which contained no gross errors. The purpose of this article is to extend the above work by considering alternative definitions of state efficiency and efficiency estimation in the presence of gross errors.

  19. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    SciTech Connect (OSTI)

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Steigerwald, Robert L; Sabate, Juan A; Chi, Song; McCann, Adam J; Zhang, Li; Mueller, Frank

    2012-09-01

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements

  20. DC Microgrids Scoping Study. Estimate of Technical and Economic Benefits

    SciTech Connect (OSTI)

    Backhaus, Scott N.; Swift, Gregory William; Chatzivasileiadis, Spyridon; Tschudi, William; Glover, Steven; Starke, Michael; Wang, Jianhui; Yue, Meng; Hammerstrom, Donald

    2015-03-23

    Microgrid demonstrations and deployments are expanding in US power systems and around the world. Although goals are specific to each site, these microgrids have demonstrated the ability to provide higher reliability and higher power quality than utility power systems and improved energy utilization. The vast majority of these microgrids are based on AC power transfer because this has been the traditionally dominant power delivery scheme. Independently, manufacturers, power system designers and researchers are demonstrating and deploying DC power distribution systems for applications where the end-use loads are natively DC, e.g., computers, solid-state lighting, and building networks. These early DC applications may provide higher efficiency, added flexibility, reduced capital costs over their AC counterparts. Further, when onsite renewable generation, electric vehicles and storage systems are present, DC-based microgrids may offer additional benefits. Early successes from these efforts raises a question - can a combination of microgrid concepts and DC distribution systems provide added benefits beyond what has been achieved individually?

  1. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_sca_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_sca_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  2. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_sco_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_sco_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  3. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1997" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_r3fm_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_r3fm_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  4. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_sfl_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_sfl_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  5. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_sil_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_sil_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  6. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_sks_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_sks_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  7. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_sla_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_sla_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  8. ,"Michigan Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_smi_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_smi_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  9. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_smt_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_smt_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  10. ,"U.S. Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1900" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_nus_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_nus_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  11. ,"U.S. Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016","01/15/1973" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_nus_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_nus_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  12. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_sut_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_sut_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  13. ,"West Virginia Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_swv_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_swv_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  14. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_swy_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_swy_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  15. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016","01/15/1989" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_sak_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_sak_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  16. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_saz_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_saz_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  17. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016","01/15/1991" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_saz_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_saz_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  18. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_snm_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_snm_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  19. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016","01/15/1989" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_snm_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_snm_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  20. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_snd_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_snd_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  1. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016","01/15/1989" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_snd_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_snd_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  2. ,"Ohio Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_soh_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_soh_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  3. ,"Ohio Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016","01/15/1991" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_soh_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_soh_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  4. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_sok_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_sok_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  5. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016","01/15/1989" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_sok_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_sok_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  6. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1979" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_sor_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_sor_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  7. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016","01/15/1991" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_sor_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_sor_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  8. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_spa_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_spa_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  9. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016","01/15/1991" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_spa_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_spa_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  10. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_stx_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_stx_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10/28/2016

  11. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016","01/15/1989" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_prod_sum_dc_stx_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_sum_dc_stx_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202)

  12. U.S. Natural Gas Gross Withdrawals Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals Offshore (Million Cubic Feet) U.S. Natural Gas Gross Withdrawals Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,932,196 5,111,413 5,603,025 1980's 5,650,097 5,693,432 5,466,050 4,734,843 5,220,061 4,631,756 4,588,565 5,078,178 5,180,875 5,231,028 1990's 5,509,312 5,308,457 5,324,039 5,373,300 5,700,666 5,431,665 5,843,661 5,906,329 5,800,561 5,689,438 2000's 5,699,377 5,815,542 5,312,348 5,215,683 4,736,252

  13. New York Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) New York Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 149 147 143 142 138 137 156 155 158 167 172 175 2007 146 144 141 139 136 135 153 152 155 164 169 172 2008 134 128 129 128 124 123 140 139 142 150 155 157 2009 119 118 115 114 111 110 125 124 127 134 138 140 2010 95 94 92 91 89 88 99 99 101 107 110 112 2011 83 82 80 79 77 76 86 86 88 93 96 97 2012 73 72 72 72 72 72 72 72 72 72

  14. South Dakota Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    South Dakota Natural Gas Gross Withdrawals (Million Cubic Feet per Day) South Dakota Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 31 32 31 26 29 29 28 28 28 30 29 28 2007 29 29 31 31 32 32 31 31 37 34 37 36 2008 34 31 32 34 17 34 36 37 37 36 34 32 2009 35 36 37 37 38 38 35 34 33 33 34 35 2010 33 36 35 34 35 34 33 33 43 35 32 29 2011 28 29 29 31 29 32 36 37 37 39 40 41 2012 41 42 43 43 45 43 42 40 40 39 41 35 2013 42 43 44 46

  15. West Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) West Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 588 611 599 584 608 616 606 654 628 622 645 652 2007 617 615 609 619 626 631 635 629 662 628 673 657 2008 662 676 663 662 658 670 674 678 657 692 681 657 2009 679 695 712 724 731 735 733 741 751 743 742 706 2010 702 711 708 714 717 727 729 730 738 751 754 737 2011 884 935 976 1,016 1,030 1,078 1,135 1,118 1,211 1,180

  16. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million

    Gasoline and Diesel Fuel Update

    Cubic Feet per Day) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 7,927 7,675 7,768 7,985 8,290 8,296 8,302 8,121 7,992 7,849 7,894 7,685 2007 7,628 7,682 7,741 7,786 7,857 7,672 7,490 7,395 7,410 7,720 7,778 8,322 2008 7,815 7,916 7,757 7,010 6,762 7,339 7,468 6,868 2,100 4,368 5,297 5,672 2009

  17. An integrated flyback converter for DC uninterruptible power supply

    SciTech Connect (OSTI)

    Ma, K.W.; Lee, Y.S.

    1996-03-01

    An integrated flyback converter performing the combined functions of uninterruptible power supply (UPS) and switch-mode power supply (SMPS) is presented. This converter has a high voltage main power input and a low voltage backup battery input. DC output is obtained form the main input via a flyback converter during normal operation and from the backup battery via another flyback converter when input power fails. High conversion efficiency is achieved in normal, backup, and charging modes as there is only a single dc-dc conversion in each mode. The converter circuit is very simple, with two switching transistors, a relay for mode switching, and a single magnetic structure only. This new design offers substantial improvement in efficiency, size, and cost over the conventional cascade of UPS and SMPS due to single voltage conversion, high frequency switching, and removal of design redundancy. The operation, design, analysis, and experimental results of the converter are presented.

  18. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    SciTech Connect (OSTI)

    Heaney, M.B. . Dept. of Physics Lawrence Berkeley Lab., CA )

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

  19. Graphite electrode DC arc furnace. Innovative technology summary report

    SciTech Connect (OSTI)

    1999-05-01

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of

  20. DC Students Take On Regional Science Bowl Competition | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy DC Students Take On Regional Science Bowl Competition DC Students Take On Regional Science Bowl Competition March 10, 2014 - 4:47pm Addthis The high school regional science bowl competition was held on Saturday, February 22, 2014 at the U.S. Department of Energy. The winning team was Woodrow Wilson High School. The high school regional science bowl competition was held on Saturday, February 22, 2014 at the U.S. Department of Energy. The winning team was Woodrow Wilson High School.

  1. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOE Patents [OSTI]

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  2. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOE Patents [OSTI]

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  3. Macro-Industrial Working Group Meeting 2: Industrial updates and Preliminary results

    U.S. Energy Information Administration (EIA) (indexed site)

    Macro-Industrial Working Group Meeting 2: Industrial updates and Preliminary results Macro Industrial Working Group (MIWG) Industrial Team: Kelly Perl, Team Leader; Peter Gross, Susan Hicks, Paul Otis February 18, 2016 | Washington, DC Preliminary Results. Do not Disseminate. AEO2016 additions for the Industrial Demand Module (IDM) * Technology choice models complete; end of 5 year effort * Benchmarking improvements - Individual industry benchmarking of tables complete - On-going effort to

  4. AEO2017 Industrial Working Group Meeting 1: Preview of Updates

    U.S. Energy Information Administration (EIA) (indexed site)

    1: preview of updates Industrial Working Group Industrial Team: Kelly Perl, Team Leader; Peter Gross, Susan Hicks, Paul Otis, & Matt Skelton August 16, 2016| Washington, DC Preliminary Results. Do not Disseminate. Macro-Industrial Working Group has split in two! * Macro working group had meeting July 28; materials available on http://www.eia.gov/forecasts/aeo/workinggroup/macroindustrial/ * Industrial working group will have two meetings this year - Second date: September 22, 2016: 1:30-3:00

  5. AEO2017 Industrial Working Group Meeting Preliminary Results

    U.S. Energy Information Administration (EIA) (indexed site)

    2: Preliminary results Industrial Working Group Industrial Team: Kelly Perl, Team Leader; Chris Dickerson, Peter Gross, Susan Hicks, Paul Otis, & Matt Skelton September 22, 2016| Washington, DC Preliminary Results. Do not Disseminate. AEO2017 What we did * Extend model to 2050 (now complete) * Individual industry benchmark improvements * Regulation: Kept Boiler MACT as is * Lowered DRI and relaxed constraints on EAF usage * Running Limited side cases: macro, price, and resource Industrial

  6. Active dc filter for HVDC system--A test installation in the Konti-Skan DC link at Lindome converter station

    SciTech Connect (OSTI)

    Zhang, Wenyan; Asplund, G. . HVDC Division); Aberg, A. . Dept. of Man-Machine Communication); Jonsson, U. ); Loeoef, O. . Region Vaestsverige)

    1993-07-01

    The purpose of introducing active dc filters is to meet the more and more stringent requirement from power utilities on limiting telephone interference caused by harmonic currents from HVdc transmission lines, without unnecessarily increasing the cost of HVdc stations. An active dc filter installed in the Konti-Skan HVdc link is described. The active dc filter is connected at the bottom of an existing passive dc filter at the Lindome station. The active dc filter includes optic harmonic current measuring unit, control system, protection and supervision system, PWM power amplifier, high-frequency transformer, surge arrester, and coupling apparatuses. The active dc filter has small physical size and occupies small ground area. The performance of the active dc filter for eliminating the disturbing harmonics is excellent. To achieve comparable results by passive filters would require something like ten times more high voltage equipment.

  7. Electrostatic coalescence system with independent AC and DC hydrophilic electrodes

    DOE Patents [OSTI]

    Hovarongkura, A. David; Henry, Jr., Joseph D.

    1981-01-01

    An improved electrostatic coalescence system is provided in which independent AC and DC hydrophilic electrodes are employed to provide more complete dehydration of an oil emulsion. The AC field is produced between an AC electrode array and the water-oil interface wherein the AC electrode array is positioned parallel to the interface which acts as a grounded electrode. The emulsion is introduced into the AC field in an evenly distributed manner at the interface. The AC field promotes drop-drop and drop-interface coalescence of the water phase in the entering emulsion. The continuous oil phase passes upward through the perforated AC electrode array and enters a strong DC field produced between closely spaced DC electrodes in which small dispersed droplets of water entrained in the continuous phase are removed primarily by collection at hydrophilic DC electrodes. Large droplets of water collected by the electrodes migrate downward through the AC electrode array to the interface. All phase separation mechanisms are utilized to accomplish more complete phase separation.

  8. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    SciTech Connect (OSTI)

    Shepard, Kenneth L

    2013-03-31

    In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile

  9. CO{sub 2} Injectivity, Storage Capacity, Plume Size, and Reservoir and Seal Integrity of the Ordovician St. Peter Sandstone and the Cambrian Potosi Formation in the Illnois Basin

    SciTech Connect (OSTI)

    Leetaru, Hannes; Brown, Alan; Lee, Donald; Senel, Ozgur; Coueslan, Marcia

    2012-05-01

    The Cambro-Ordovician strata of the Illinois and Michigan Basins underlie most of the states of Illinois, Indiana, Kentucky, and Michigan. This interval also extends through much of the Midwest of the United States and, for some areas, may be the only available target for geological sequestration of CO{sub 2}. We evaluated the Cambro-Ordovician strata above the basal Mt. Simon Sandstone reservoir for sequestration potential. The two targets were the Cambrian carbonate intervals in the Knox and the Ordovician St. Peter Sandstone. The evaluation of these two formations was accomplished using wireline data, core data, pressure data, and seismic data from the USDOE-funded Illinois Basin Decatur Project being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. Interpretations were completed using log analysis software, a reservoir flow simulator, and a finite element solver that determines rock stress and strain changes resulting from the pressure increase associated with CO{sub 2} injection. Results of this research suggest that both the St. Peter Sandstone and the Potosi Dolomite (a formation of the Knox) reservoirs may be capable of storing up to 2 million tonnes of CO{sub 2} per year for a 20-year period. Reservoir simulation results for the St. Peter indicate good injectivity and a relatively small CO{sub 2} plume. While a single St. Peter well is not likely to achieve the targeted injection rate of 2 million tonnes/year, results of this study indicate that development with three or four appropriately spaced wells may be sufficient. Reservoir simulation of the Potosi suggest that much of the CO{sub 2} flows into and through relatively thin, high permeability intervals, resulting in a large plume diameter compared with the St. Peter.

  10. ,"Alaska Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1090_sak_2a.xls"

  11. ,"California Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1090_sca_2a.xls"

  12. ,"Indiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Gross Withdrawals and Production",10,"Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  13. ,"Kentucky Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals and Production",10,"Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  14. ,"Maryland Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Gross Withdrawals and Production",10,"Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  15. ,"Mississippi Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Gross Withdrawals and Production",10,"Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  16. ,"Missouri Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Gross Withdrawals and Production",10,"Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  17. ,"Virginia Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Gross Withdrawals and Production",10,"Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  18. Soliton solutions of the 3D Gross-Pitaevskii equation by a potential control method

    SciTech Connect (OSTI)

    Fedele, R.; Eliasson, B.; Shukla, P. K.; Haas, F.; Jovanovic, D.; De Nicola, S.

    2010-12-14

    We present a class of three-dimensional solitary waves solutions of the Gross-Pitaevskii (GP) equation, which governs the dynamics of Bose-Einstein condensates (BECs). By imposing an external controlling potential, a desired time-dependent shape of the localized BEC excitation is obtained. The stability of some obtained localized solutions is checked by solving the time-dependent GP equation numerically with analytic solutions as initial conditions. The analytic solutions can be used to design external potentials to control the localized BECs in experiment.

  19. ,"Nebraska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Gross Withdrawals and Production",10,"Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  20. ,"Nevada Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Gross Withdrawals and Production",10,"Annual",2015,"06/30/1991" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  1. ,"Nevada Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  2. ,"New York Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Gross Withdrawals and Production",10,"Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  3. ,"Oregon Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  4. ,"South Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Gross Withdrawals and Production",10,"Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  5. ,"Tennessee Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) (indexed site)

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Gross Withdrawals and Production",10,"Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  6. ,"Texas Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1090_stx_2a.xls"

  7. ,"U.S. Natural Gas Gross Withdrawals Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Gross Withdrawals Offshore (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1090_nus_2a.xls" ,"Available

  8. D.C. Middle and High School Students Get a Chance to Experience...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D.C. Middle and High School Students Get a Chance to Experience the Regional Science Bowl Competition Setting D.C. Middle and High School Students Get a Chance to Experience the ...

  9. GRR Update Meeting scheduled for 9/13 in D.C. | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    GRR Update Meeting scheduled for 913 in D.C. Home > Blogs > Kyoung's blog Kyoung's picture Submitted by Kyoung(150) Contributor 6 September, 2012 - 08:51 D.C. GRR meeting update...

  10. Global DC Power System Market Trends, Analysis 2015-2019 | OpenEI...

    Open Energy Information (Open El) [EERE & EIA]

    either positive or negative. It can be powered from an AC or DC source. A basic DC power system consists of a transformer, a rectifier, a filter, and a regulator. All these...

  11. Global DC Power System Market Key Vendors | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    either positive or negative. It can be powered from an AC or DC source. A basic DC power system consists of a transformer, a rectifier, a filter, and a regulator. All these...

  12. Interviews in Washington, DC for Albert Einstein Fellowship Semi-Finalists

    Office of Energy Efficiency and Renewable Energy (EERE)

    Selected semi-finalists in the Albert Einstein Distinguished Educator Fellowship are invited to DC for interviews.

  13. Demonstration of LED Retrofit Lamps at the Smithsonian Art Museum, Washington, DC

    SciTech Connect (OSTI)

    Miller, N. J.; Rosenfeld, S. M.

    2012-06-01

    GATEWAY program report on a demonstration of LED retrofit lamps at the Smithsonian American Art Museum in Washington, DC.

  14. DC photogun vacuum characterization through photocathode lifetime studies

    SciTech Connect (OSTI)

    Marcy Stutzman; Joseph Grames; Matt Poelker; Kenneth Surles-Law; Philip Adderley

    2007-07-02

    Excellent vacuum is essential for long photocathode lifetimes in DC high voltage photoelectron guns. Vacuum Research at Thomas Jefferson National Accelerator Facility has focused on characterizing the existing vacuum systems at the CEBAF polarized photoinjector and on quantifying improvements for new systems. Vacuum chamber preprocessing, full activation of NEG pumps and NEG coating the chamber walls should improve the vacuum within the electron gun, however, pressure measurement is difficult at pressures approaching the extreme-high-vacuum (XHV) region and extractor gauge readings are not significantly different between the improved and original systems. The ultimate test of vacuum in a DC high voltage photogun is the photocathode lifetime, which is limited by the ionization and back-bombardment of residual gasses. Discussion will include our new load-locked gun design as well as lifetime measurements in both our operational and new photo-guns, and the correlations between measured vacuum and lifetimes will be investigated.

  15. Multilevel cascade voltage source inverter with seperate DC sources

    DOE Patents [OSTI]

    Peng, Fang Zheng (Knoxville, TN); Lai, Jih-Sheng (Blacksburg, VA)

    2002-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  16. Multilevel cascade voltage source inverter with separate DC sources

    DOE Patents [OSTI]

    Peng, F.Z.; Lai, J.S.

    1997-06-24

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.

  17. Multilevel cascade voltage source inverter with seperate DC sources

    DOE Patents [OSTI]

    Peng, Fang Zheng; Lai, Jih-Sheng

    2001-04-03

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  18. Multilevel cascade voltage source inverter with seperate DC sources

    DOE Patents [OSTI]

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  19. New Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) New Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 4,406 4,418 4,460 4,393 4,430 4,456 4,463 4,466 4,505 4,473 4,447 4,327 2007 4,201 4,250 4,287 4,273 4,345 4,341 4,323 4,217 4,363 4,284 4,262 3,997 2008 3,820 3,958 4,128 4,157 4,170 3,975 4,179 4,092 4,069 4,168 4,078 3,957 2009 3,968 4,063 4,018 3,979 3,960 3,857 3,863 3,927 3,818 3,914 3,865 3,635 2010 3,630 3,650 3,630

  20. Labor-Management Roundtable Forrestal Building, Washington, DC

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Labor-Management Roundtable Forrestal Building, Washington, DC June 27, 2014 10:00 - 11:30 AM (EST) 7E-069 AGENDA Reciprocity Certification Presentation Plaque Presentation by Secretary of Energy Introductory Remarks Ernest J. Moniz, Secretary of Energy Roundtable Remarks/Discussion Union Leadership Closing Remarks Ernest J. Moniz, Secretary of Energy This meeting is about hearing the concerns of the Unions on Safety, Operations, and Communications. Representatives of DOE contractor employees

  1. Modeling Microinverters and DC Power Optimizers in PVWatts

    SciTech Connect (OSTI)

    MacAlpine, S.; Deline, C.

    2015-02-01

    Module-level distributed power electronics including microinverters and DC power optimizers are increasingly popular in residential and commercial PV systems. Consumers are realizing their potential to increase design flexibility, monitor system performance, and improve energy capture. It is becoming increasingly important to accurately model PV systems employing these devices. This document summarizes existing published documents to provide uniform, impartial recommendations for how the performance of distributed power electronics can be reflected in NREL's PVWatts calculator (http://pvwatts.nrel.gov/).

  2. UNITED STATES DEPARTMENT OF ENERGY Washington, D.C.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Before the UNITED STATES DEPARTMENT OF ENERGY Washington, D.C. In the Matter of Request for Information ) Regarding Reducing Regulatory Burden ) ''Regulatory Burden RFI" 5 CFR Chapter XXII ) 10 CFR Chapters II, III, and X ) COMMENTS OF THE CONSUMER ELECTRONICS ASSOCIATION Introduction The Consumer Electronics Association (CEA) is the preeminent trade association promoting growth in the $285 billion U.S. consumer electronics industry. CEA represents more than 2,000 corporate members involved

  3. dc-plasma-sprayed electronic-tube device

    DOE Patents [OSTI]

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  4. Synthesis of silicon nanotubes by DC arc plasma method

    SciTech Connect (OSTI)

    Tank, C. M.; Bhoraskar, S. V.; Mathe, V. L.

    2012-06-05

    Plasma synthesis is a novel technique of synthesis of nanomaterials as they provide high rate of production and promote metastable reactions. Very thin walled silicon nanotubes were synthesized in a DC direct arc thermal plasma reactor. The effect of parameters of synthesis i.e. arc current and presence of hydrogen on the morphology of Si nanoparticles is reported. Silicon nanotubes were characterized by Transmission Electron Microscopy (TEM), Local Energy Dispersive X-ray analysis (EDAX), and Scanning Tunneling Microscopy (STM).

  5. AVTA: Battery Testing- DC Fast Charging's Effects on PEV Batteries

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes DC fast charging's effects on plug-in electric vehicle batteries. This research was conducted by Idaho National Laboratory.

  6. DC Microgrids Scoping Study: Estimate of Technical and Economic Benefits

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (March 2015) | Department of Energy Microgrids Scoping Study: Estimate of Technical and Economic Benefits (March 2015) DC Microgrids Scoping Study: Estimate of Technical and Economic Benefits (March 2015) Microgrid demonstrations and deployments have shown the ability of microgrids to provide higher reliability and higher power quality than utility power systems and improved energy utilization. The vast majority of these microgrids are based on AC power, but some manufacturers, power system

  7. The Use of DC Glow Discharges as Undergraduate Educational Tools

    SciTech Connect (OSTI)

    Stephanie A. Wissel and Andrew Zwicker, Jerry Ross, and Sophia Gershman

    2012-10-09

    Plasmas have a beguiling way of getting students excited and interested in physics. We argue that plasmas can and should be incorporated into the undergraduate curriculum as both demonstrations and advanced investigations of electromagnetism and quantum effects. Our device, based on a direct current (DC) glow discharge tube, allows for a number of experiments into topics such as electrical breakdown, spectroscopy, magnetism, and electron temperature.

  8. Multiphase soft switched DC/DC converter and active control technique for fuel cell ripple current elimination

    DOE Patents [OSTI]

    Lai, Jih-Sheng; Liu, Changrong; Ridenour, Amy

    2009-04-14

    DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.

  9. Application to Export Electric Energy OE Docket No. EA-351 DC Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dakota, LLC | Department of Energy 1 DC Energy Dakota, LLC Application to Export Electric Energy OE Docket No. EA-351 DC Energy Dakota, LLC Application from DC Energy Dakota, LLC to export electric energy to Canada Application to Export Electric Energy OE Docket No. EA-351 DC Energy Dakota, LLC (185.5 KB) More Documents & Publications EA-351 DC Energy Dakota, LLC Application to export electric energy OE Docket No. EA-210-B PPL EnergyPlus, LLC Application to Export Electric Energy OE

  10. Nevada Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 0

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  11. 1990 yearly calibration of Pacific Northwest Laboratory's gross-gamma borehole geophysical logging system

    SciTech Connect (OSTI)

    Arthur, R.J.

    1990-08-01

    This report describes the 1990 yearly calibration of a gross-gamma geophysical pulse logging system owned by the US Department of Energy (DOE) and operated by Pacific Northwest Laboratory (PNL). The calibration was conducted to permit the continued use of this system for geological and hydrologic studies associated with remedial investigation at the Hanford Site. Primary calibrations to equivalent uranium units were conducted in borehole model standards that were recently moved to the Hanford Site from the DOE field calibration facility in Spokane, Washington. The calibrations were performed in borehole models SBL/SBH and SBA/SBB, which contain low equivalent-uranium concentrations. The integrity of the system throughout the previous year from gamma-ray monitoring was demonstrated using the before- and after-logging field calibration readings with the field source in calibration Positions 1 and 2. Most of the Position 1 readings are within an 8% limit that is set by the governing PNL technical reference procedure as a critical value above which the instrument is considered suspect. Many of the Position 2 readings exceed the 8% limit; however, the fluctuation was traced to field-source geometry variability that affected Position 1 count rates by up to 6% and Position 2 count rates by as much as 16%. Correlations were established based on two similar approaches for relating observed count rate in before- and after-logging field calibrations to equivalent uranium concentrations. The temperature drift of the gamma-ray probe was documented and amounts to less than 0.1%/{degree}C within the temperature range 0{degree}C to 42{degree}C. The low-energy cutoff for the gross gamma-ray probe was determined to be between 46.5 and 59.5 keV. 10 refs., 4 figs., 13 tabs.

  12. Hardwired Control Changes For NSTX DC Power Feeds

    SciTech Connect (OSTI)

    Ramakrishnan, S.

    2013-06-28

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The original TFTR Hardwired Control System (HCS) with electromechanical relays was used for NSTX DC Power loop control and protection during NSTX operations. As part of the NSTX Upgrade, the HCS is being changed to a PLC-based system with the same control logic. This paper gives a description of the changeover to the new PLC-based system __________________________________________________

  13. Heteroepitaxial Ge-on-Si by DC magnetron sputtering

    SciTech Connect (OSTI)

    Steglich, Martin; Schrempel, Frank; Füchsel, Kevin; Kley, Ernst-Bernhard; Patzig, Christian; Berthold, Lutz; Höche, Thomas; Tünnermann, Andreas

    2013-07-15

    The growth of Ge on Si(100) by DC Magnetron Sputtering at various temperatures is studied by Spectroscopic Ellipsometry and Transmission Electron Microscopy. Smooth heteroepitaxial Ge films are prepared at relatively low temperatures of 380°C. Typical Stransky-Krastanov growth is observed at 410°C. At lower temperatures (320°C), films are essentially amorphous with isolated nanocrystallites at the Si-Ge interface. A minor oxygen contamination at the interface, developing after ex-situ oxide removal, is not seen to hinder epitaxy. Compensation of dislocation-induced acceptors in Ge by sputtering from n-doped targets is proposed.

  14. The dc modeling program (DCMP): Version 2. 0

    SciTech Connect (OSTI)

    Chapman, D.G. )

    1990-08-01

    In this project one of the main objectives was the refinement of tools for the study of HVDC systems. The original software was prepared in project RP1964-2 (EL-4365) as power flow and stability program models for HVDC systems. In this project new modeling capabilities were added to both the power flow and stability models. Additionally, the HVDC specific model capabilities were integrated into a new program, termed the Standalone program, for use in the development and testing of HVDC models. This manual provides technical background for programmers and those interested in understanding, augmenting or transporting the dc models.

  15. Positron lifetime spectrometer using a DC positron beam

    DOE Patents [OSTI]

    Xu, Jun; Moxom, Jeremy

    2003-10-21

    An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.

  16. Design and Performance of the Cornell ERL DC Photoemission Gun

    SciTech Connect (OSTI)

    Smolenski, K.; Bazarov, I.; Dunham, B.; Li, H.; Li, Y.; Liu, X.; Ouzounov, D.; Sinclair, C.

    2009-08-04

    Cornell University is planning to build an Energy Recovery Linac (ERL) X-ray facility. For an ERL, it is well known that the x-ray beam brightness for the users is mainly determined by the initial electron beam emittance provided by the injector. To address technical challenges of producing very low emittance beams at high average current as required for an ERL, Cornell University has proposed a prototype injector with 5-15 MeV beam energy, 100 mA maximum average current and 77 pC/bunch. In this article, we describe the design, construction and initial results for a DC photoemission gun now under operation.

  17. Notices Ave. SW., Room 3E207, Washington, DC

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5295 Federal Register / Vol. 81, No. 55 / Tuesday, March 22, 2016 / Notices Ave. SW., Room 3E207, Washington, DC 20202. Telephone: (202) 453-6891 or by email: ddra@ed.gov. If you use a TDD or a TTY, call the FRS, toll free, at 1-800-877-8339. If you request an application from ED Pubs, be sure to identify this program as follows: CFDA number 84.022A. VIII. Other Information Accessible Format: Individuals with disabilities can obtain this document and a copy of the application package in an

  18. DC switching regulated power supply for driving an inductive load

    DOE Patents [OSTI]

    Dyer, G.R.

    1983-11-29

    A dc switching regulated power supply for driving an inductive load is provided. The regulator basic circuit is a bridge arrangement of diodes and transistors. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. A dc power supply is connected to the input of the bridge and the output is connected to the load. A servo controller is provided to control the switching rate of the transistors to maintain a desired current to the load. The regulator may be operated in three stages or modes: (1) for current runup in the load, both first and second transistor switch arrays are turned on and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned off, and load current flywheels through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays off, allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load.

  19. Single-mode deformation via nanoindentation in dc-Si

    SciTech Connect (OSTI)

    Wong, Sherman; Haberl, Bianca; Williams, James S.; Bradby, Jodie E.

    2015-01-01

    The mixture of the metastable body-centered cubic (bc8) and rhombohedral (r8) phases of silicon that is formed via nanoindentation of diamond cubic (dc) silicon exhibits properties that are of scientifc and technological interest. This letter demonstrates that large regions of this mixed phase can be formed in crystalline Si via nanoindentation without signifcant damage to the surrounding crystal. Cross-sectional transmission electron microscopy is used to show that volumes 6 um wide and up to 650 nm deep can be generated in this way using a spherical tip of 21.5 um diameter. The phase transformed region is characterised using both Raman microspectroscopy and transmission electron microscopy. It is found that uniform loading using large spherical indenters can favor phase transformation as the sole deformation mechanism as long as the maximum load is below a critical level. We suggest that the sluggish nature of the transformation from the dc-Si phase to the metallic (b-Sn) phase normally results in competing deformation mechanisms such as slip and cracking but these can be suppressed by controlled loading conditions.

  20. Washington, DC Regional High School Science Bowl | U.S. DOE Office of

    Office of Science (SC) [DOE]

    Science (SC) Washington, DC Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Washington, DC