National Library of Energy BETA

Sample records for btu trillion btu

  1. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  2. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    Energy Information Administration (EIA) (indexed site)

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  3. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    Energy Information Administration (EIA) (indexed site)

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  4. Btu)","per Building

    Energy Information Administration (EIA) (indexed site)

    ,"Number of Buildings (thousand)","Floorspace (million square feet)","Floorspace per Building (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per...

  5. Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu)

    Energy Information Administration (EIA) (indexed site)

    1 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education 15 74 83 11 113 2 16 4 32 21 371 Food Sales 6 12 7 Q 46 2 119 2 2 10 208 Food Service 10 28 24 10 42 13 70 2 2 15 217 Health Care 6 34 42 2 105 1 8 4 10 36 248 Inpatient 3 25 38 2 76 1 4 2 7 21

  6. Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu )

    Energy Information Administration (EIA) (indexed site)

    Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products 20 0 41 1 1 3 30 11 -0 107 313 Textile Mills 32 0 65 (s) (s) 2 66 12 -0 178 314 Textile Product Mills 3 0 46 (s) 1 Q 20 (s) -0 72 315 Apparel 0 0 7 (s) (s)

  7. Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu)

    Energy Information Administration (EIA) (indexed site)

    9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year Square Footage Category Principal Building Activity Census Region 1 All Buildings 1,001 to 10,000 10,001 to 100,000 Over 100,000 Education Food Sales Food Service Health Care Lodging Mercantile and Service Office All Other Northeast Midwest South West Major Sources 2 1979 1,255 2,202 1,508 511 [3] 336 469 278 894 861 1,616 1,217 1,826 1,395 526 4,965 1983 1,242 1,935 1,646 480 [3]

  8. First BTU | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    that is consumed by the United States.3 References First BTU First BTU Green Energy About First BTU Retrieved from "http:en.openei.orgwindex.php?titleFirstBT...

  9. BTU International Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    1862 Product: US-based manufacturer of thermal processing equipment, semiconductor packaging, and surface mount assembly. References: BTU International Inc1 This article is a...

  10. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for ...

  11. Property:Geothermal/CapacityBtuHr | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalCapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  12. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalAnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  13. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    Energy Information Administration (EIA) (indexed site)

    12:23:06 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  14. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    Energy Information Administration (EIA) (indexed site)

    12:23:08 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  15. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    Energy Information Administration (EIA) (indexed site)

    12:23:12 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  16. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this draft environmental impact statement that evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky. DOE cancelled this project after publication of the draft.

  17. U.S. Total Consumption of Heat Content of Natural Gas (BTU per...

    Gasoline and Diesel Fuel Update

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  18. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  19. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    Energy Information Administration (EIA) (indexed site)

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value

  20. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    Energy Information Administration (EIA) (indexed site)

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and

  1. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  2. Commercial low-Btu coal-gasification plant

    SciTech Connect

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The feasibility study consisted of the following tasks: perform preliminary engineering of a gasification facility; provide a definitive full gas cost estimate based upon the preliminary engineering fuel design; determine the preferred source of coal; determine the potential for the disposition of, and income from, by-products; develop a health and safety program; perform an analysis of the risks involved in constructing and operating such a facility; and prepare a Financial Analysis of General Refractories selected Dravo Engineers and Constructors based upon the qualifications of Dravo in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts and, if the present natural gas decontrol plan is not fully implemented, some budgetary risks would occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  3. Sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  4. Subtask 3.16 - Low-BTU Field Gas Application to Microturbines

    SciTech Connect

    Darren Schmidt; Benjamin Oster

    2007-06-15

    Low-energy gas at oil production sites presents an environmental challenge to the sites owners. Typically, the gas is managed in flares. Microturbines are an effective alternative to flaring and provide on-site electricity. Microturbines release 10 times fewer NOx emissions than flaring, on a methane fuel basis. The limited acceptable fuel range of microturbines has prevented their application to low-Btu gases. The challenge of this project was to modify a microturbine to operate on gases lower than 350 Btu/scf (the manufacturer's lower limit). The Energy & Environmental Research Center successfully operated a Capstone C30 microturbine firing gases between 100-300 Btu/scf. The microturbine operated at full power firing gases as low as 200 Btu/scf. A power derating was experienced firing gases below 200 Btu/scf. As fuel energy content decreased, NO{sub x} emissions decreased, CO emissions increased, and unburned hydrocarbons remained less than 0.2 ppm. The turbine was self-started on gases as low as 200 Btu/scf. These results are promising for oil production facilities managing low-Btu gases. The modified microturbine provides an emission solution while returning valuable electricity to the oilfield.

  5. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  6. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    Gasoline and Diesel Fuel Update

    Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011

  7. Low-Btu coal gasification in the United States: company topical. [Brick producers

    SciTech Connect

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  8. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    Energy Information Administration (EIA) (indexed site)

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  9. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    SciTech Connect

    Not Available

    1980-12-01

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  10. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  11. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  12. Investigation of Fuel Quality Impact on the Combustion and Exhaust Emissions of a Turbo-Charged SI Engine Operated on Low BTU Gases

    Energy.gov [DOE]

    Research results validate an engine simulation model and provide guidelines for the improved control of combustion stability of SI engines operated on low-BTU gaseous fuels.

  13. Combined compressed air storage-low BTU coal gasification power plant

    DOEpatents

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  14. Table 3.1 Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu) Year Coal 1 Natural Gas 2 Crude Oil 3 Fossil Fuel Composite 4 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Percent Change 7 1949 0.21 1.45 0.05 0.37 0.44 3.02 0.26 1.81 – – 1950 .21 1.41 .06 .43 .43 2.95 [R] .26 1.74 -3.6 1951 .21 1.35 .06 .40 .44 2.78 .26 1.65 -5.4 1952 .21 1.31 [R] .07 .45 .44 2.73 .26 1.63 -1.0 1953 .21 1.29 .08 .50 .46 2.86 .27 1.69 3.3 1954 .19 1.18 .09 .55 .48 2.94 .28 1.70 .7 1955

  15. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  16. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  17. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    Energy Information Administration (EIA) (indexed site)

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand

  18. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  19. COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal

    SciTech Connect

    Smith, V.E.; Merriam, N.W.

    1994-10-01

    Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

  20. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  1. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  2. Low/medium Btu coal gasification assessment of central plant for the city of Philadelphia, Pennsylvania. Final report

    SciTech Connect

    Not Available

    1981-02-01

    The objective of this study is to assess the technical and economic feasibility of producing, distributing, selling, and using fuel gas for industrial applications in Philadelphia. The primary driving force for the assessment is the fact that oil users are encountering rapidly escalating fuel costs, and are uncertain about the future availability of low sulfur fuel oil. The situation is also complicated by legislation aimed at reducing oil consumption and by difficulties in assuring a long term supply of natural gas. Early in the gasifier selection study it was decided that the level of risk associated with the gasification process sould be minimal. It was therefore determined that the process should be selected from those commercially proven. The following processes were considered: Lurgi, KT, Winkler, and Wellman-Galusha. From past experience and a knowledge of the characteristics of each gasifier, a list of advantages and disadvantages of each process was formulated. It was concluded that a medium Btu KT gas can be manufactured and distributed at a lower average price than the conservatively projected average price of No. 6 oil, provided that the plant is operated as a base load producer of gas. The methodology used is described, assumptions are detailed and recommendations are made. (LTN)

  3. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOEpatents

    Scheffer, Karl D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  4. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOEpatents

    Scheffer, K.D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  5. Table 8.4c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.4a; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.4a; Billion Btu) Year Fossil Fuels Nuclear Electric Power Renewable Energy Other 9 Electricity Net Imports Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 Commercial Sector 10<//td> 1989 9,135 6,901 18,424 1,143 35,603 [–] 685 1,781 9,112 [–] – – 11,578 – –

  6. Table 8.4b Consumption for Electricity Generation by Energy Source: Electric Power Sector, 1949-2011 (Subset of Table 8.4a; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    b Consumption for Electricity Generation by Energy Source: Electric Power Sector, 1949-2011 (Subset of Table 8.4a; Billion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995,055 414,632 569,375 NA 2,979,062 0 1,349,185 5,803 NA NA NA NA 1,354,988 NA 5,420 4,339,470 1950 2,199,111

  7. Effect of simulated medium-Btu coal gasifier atmospheres on the biaxial stress rupture behavior of four candidate coal gasifier alloys

    SciTech Connect

    Horton, R.M.; Smolik, G.R.

    1982-01-01

    Tests were conducted to determine whether the biaxial stress rupture behavior of four alloys was adversely affected by exposure to four simulated medium-Btu coal gasifier atmospheres. The results of exposures up to approximately 500 h at temperatures between 649 and 982/sup 0/C are presented. Exposure to these atmospheres at temperatures below 900/sup 0/C did not significantly reduce the rupture properties from those measured in air. Only at 982/sup 0/C were the rupture strength and life in the simulated coal gasifier atmospheres lower than those measured in air at atmospheric pressure. Possible reasons for this reduction in strength/life are discussed. The results of detailed examination of specimen ruptures are also presented.

  8. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    SciTech Connect

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  9. BTU LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Small start-up with breakthrough technology seeking funding to prove commercial feasibility Coordinates: 45.425788, -122.765754 Show Map Loading map......

  10. C3DIV.xls

    Energy Information Administration (EIA) (indexed site)

    million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) NEW...

  11. Released: Dec 2006

    Energy Information Administration (EIA) (indexed site)

    (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per Square Foot (thousand Btu)","per Worker (million Btu)" "All Buildings* ...",4645...

  12. Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 323,191 95,675 461,905 92,556 973,327 546,354 30,217 576,571 39,041 1,588,939 1990 362,524 127,183 538,063 140,695 1,168,465 650,572 36,433 687,005 40,149 1,895,619 1991 351,834 112,144 546,755 148,216 1,158,949 623,442 36,649

  13. Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 12,768 8,013 66,801 2,243 89,825 19,346 4,550 23,896 679 114,400 1990 20,793 9,029 79,905 3,822 113,549 18,091 6,418 24,509 28 138,086 1991 21,239 5,502 82,279 3,940 112,960 17,166 9,127 26,293 590 139,843 1992 27,545 6,123 101,923

  14. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 – 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 – 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  15. Table 8.4a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995,055 414,632 569,375 NA 2,979,062 0 1,424,722 5,803 NA NA NA NA 1,430,525 NA 5,420 4,415,007 1950

  16. Carbon Emissions: Paper Industry

    Energy Information Administration (EIA) (indexed site)

    Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994...

  17. Catalytic reactor for low-Btu fuels

    DOEpatents

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  18. SAS Output

    Energy Information Administration (EIA) (indexed site)

    4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2004 through 2014 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks Period Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu)

  19. 1995 CECS C&E Tables

    Energy Information Administration (EIA) (indexed site)

    Major Fuel, 1995 Building Characteristics RSE Column Factor: All Buildings Total Energy Consumption (trillion Btu) Primary Electricity (trillion Btu) RSE Row Factor Number of...

  20. Major Fuels","Site Electricity","Natural Gas","Fuel Oil","District...

    Energy Information Administration (EIA) (indexed site)

    C1. Total Energy Consumption by Major Fuel, 1999" ,"All Buildings",,"Total Energy Consumption (trillion Btu)",,,,,"Primary Electricity (trillion Btu)" ,"Number of Buildings...

  1. Office Buildings: Consumption Tables

    Energy Information Administration (EIA) (indexed site)

    and Type of Office Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per Million Btu All Office Buildings 1,089 1,475 90.5 16.32...

  2. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.934 1.692 2.502 2.475 2.156 2.319 2000's 4.311 4.053 3.366 5.493 6.178 9.014 6.976 7.114 8.899 4.159 2010's 4.382 4.026 2.827 3.731 4.262 2.627

  3. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494 1.557 1.674 1.790 1.961 2.459 1996 2.483 2.458 2.353 2.309 2.283 2.544 2.521 2.049 1.933 2.481 3.023 3.645 1997 3.067 2.065 1.899 2.005 2.253 2.161 2.134 2.462 2.873 3.243 3.092 2.406 1998 2.101 2.263 2.253 2.465 2.160 2.168 2.147 1.855 2.040 2.201 2.321 1.927 1999 1.831 1.761 1.801 2.153 2.272 2.346 2.307 2.802 2.636

  4. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/14 2.231 01/21 2.297 01/28 2.404 1994-Feb 02/04 2.506 02/11 2.369 02/18 2.330 02/25 2.267 1994-Mar 03/04 2.178 03/11 2.146 03/18 2.108 03/25 2.058 1994-Apr 04/01 2.065 04/08 2.092 04/15 2.127 04/22 2.126 04/29 2.097 1994-May 05/06 2.025 05/13 1.959 05/20 1.933 05/27 1.855 1994-Jun 06/03 1.938 06/10 2.052 06/17 2.128 06/24 2.065 1994-Jul 07/01 2.183 07/08 2.087

  5. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,046 1,045 1,067

  6. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,015 1,025 1,029

  7. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025 ...

  8. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,016 1,038

  9. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021

  10. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012 1,002 1,002

  11. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,030 1,028 1,026

  12. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005 ...

  13. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,047 1,041 1,044

  14. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033 ...

  15. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,002 1,001 1,001 1,001 1,002 1,003 1,003 1,002 1,002 1,001 1,001 1,000 2014 1,002 1,004 1,001 1,002 1,001 1,001 1,001 ...

  16. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029 ...

  17. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,056 1,055 1,057 1,043 983 983 983 983 983 983 983 983 2014 947 946 947 947 947 947 951 978 990 968 974 962 2015 968 954 ...

  18. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043 ...

  19. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,015 1,025 1,037

  20. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,043 1,040 2010's 1,040 1,048 1,046 983 958 981

  1. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,027 1,030 1,033

  2. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038 ...

  3. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053 ...

  4. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031 ...

  5. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,030 1,029...

  6. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Annual Energy Outlook

    Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177...

  7. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    2.29 0516 2.22 0523 2.22 0530 2.28 1997-Jun 0606 2.17 0613 2.16 0620 2.22 0627 2.27 1997-Jul 0704 2.15 0711 2.15 0718 2.24 0725 2.20 1997-Aug 0801 2.22 0808 2.37 ...

  8. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 ... 2.25 2.34 2.33 2.30 1997 May-12 to May-16 2.27 2.18 2.22 2.25 2.19 1997 May-19 to May-23 ...

  9. POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL

    SciTech Connect

    Booz, Allen, and Hamilton, Inc.,

    1980-04-01

    It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

  10. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor ...

  11. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.001 1.720 2.433 2.463 2.231 2.376 2000's 4.304 4.105 3.441 5.497 6.417 9.186 7.399 7.359 9.014 4.428 2010's 4.471 4.090 2.926 3.775 4.236 2.684

  12. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836

  13. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/14 2.113 01/21 2.159 01/28 2.233 1994-Feb 02/04 2.303 02/11 2.230 02/18 2.223 02/25 2.197 1994-Mar 03/04 2.144 03/11 2.150 03/18 2.148 03/25 2.095 1994-Apr 04/01 2.076 04/08 2.101 04/15 2.137 04/22 2.171 04/29 2.133 1994-May 05/06 2.056 05/13 2.017 05/20 1.987 05/27 1.938 1994-Jun 06/03 2.023 06/10 2.122 06/17 2.173 06/24 2.118 1994-Jul 07/01 2.182 07/08 2.119

  14. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.039 1.739 2.350 2.418 2.290 2.406 2000's 4.217 4.069 3.499 5.466 6.522 9.307 7.852 7.601 9.141 4.669 2010's 4.564 4.160 3.020 3.822 4.227 2.739

  15. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977

  16. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/21 2.055 01/28 2.133 1994-Feb 02/04 2.189 02/11 2.159 02/18 2.174 02/25 2.163 1994-Mar 03/04 2.127 03/11 2.136 03/18 2.141 03/25 2.103 1994-Apr 04/01 2.085 04/08 2.105 04/15 2.131 04/22 2.175 04/29 2.149 1994-May 05/06 2.076 05/13 2.045 05/20 2.034 05/27 1.994 1994-Jun 06/03 2.078 06/10 2.149 06/17 2.172 06/24 2.142 1994-Jul 07/01 2.187 07/08 2.143 07/15 2.079

  17. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.906 2.054 1.746 2.270 2.363 2.332 2.418 2000's 4.045 4.103 3.539 5.401 6.534 9.185 8.238 7.811 9.254 4.882 2010's 4.658 4.227 3.109 3.854 4.218 2.792

  18. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1993 1.906 1994 2.012 2.140 2.120 2.150 2.081 2.189 2.186 2.168 2.079 1.991 1.843 1.672 1995 1.519 1.541 1.672 1.752 1.810 1.763 1.727 1.826 1.886 1.827 1.770 1.844 1996 1.877 1.985 2.040 2.245 2.275 2.561 2.503 2.293 2.296 2.436 2.317 2.419 1997 2.227 1.999 1.987 2.084 2.249 2.194 2.274 2.689 2.997 2.873 2.532 2.204 1998 2.124 2.324 2.333 2.533 2.289 2.291 2.428 2.419 2.537 2.453 2.294 1.940 1999 1.880 1.850 1.886 2.214 2.331 2.429 2.539

  19. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187

  20. U. S. Btu tax plan revised; industry wary of results

    SciTech Connect

    Crow, P.

    1993-04-12

    The Clinton administration has changed its U.S. energy tax proposal to remove some objection voiced by industry and consumers. The Treasury Department's revised plan will still tax oil products at double the rate of other types of energy except for home heating oil, which now is to be taxed at the lower rate for natural gas. Of major importance to California producers, the revision will not tax natural gas used in enhanced recovery for heavy oil. This paper describes exemptions; effects on natural gas; the credibility gap; inhibition of gas market recovery; tax on NGL; and forecasting the future.

  1. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033 ...

  2. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,033 1,034 1,043

  3. British Thermal Units (Btu) - Energy Explained, Your Guide To...

    Energy Information Administration (EIA) (indexed site)

    Wood and Wood Waste Waste-to-Energy (MSW) Landfill Gas and Biogas Biomass & the Environment See also: Biofuels Biofuels: Ethanol & Biodiesel Ethanol Use of Ethanol Ethanol & the ...

  4. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,043 1,040 2010's 1,040 1,048 1,046 983 958...

  5. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18

  6. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25

  7. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to

  8. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12...

  9. A Requirement for Significant Reduction in the Maximum BTU Input...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Barbecue Association's Comments on DOE's Regulatory Burden RFI Department of Energy Request for Information: Reducing Regulatory Burden (Reply Comments) Re: Regulatory Burden RFI

  10. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 ...

  11. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.49 2.09 2.27 2000's 4.31 3.96 3.38 5.47 5.89 8.69 6.73 6.97 8.86 3.94 2010's 4.37 4.00 2.75 ...

  12. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021 1,037

  13. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012 1,002 1,002 1,001

  14. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050

  15. Released: September, 2008

    Energy Information Administration (EIA) (indexed site)

    E3A. Electricity Consumption (Btu) by End Use for All Buildings, 2003" ,"Total Electricity Consumption (trillion Btu)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  16. Released: September, 2008

    Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption (Btu) by End Use for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (trillion Btu)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  17. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    4: Other Petroleum Products Consumption, Price, and Expenditure Estimates, 2014 State Consumption Prices Expenditures Thousand Barrels Trillion Btu Dollars per Million Btu Million ...

  18. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    F2: Jet fuel consumption, price, and expenditure estimates, 2014 State Jet fuel a Consumption Prices Expenditures Thousand barrels Trillion Btu Dollars per million Btu Million ...

  19. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    F5: Aviation gasoline consumption, price, and expenditure estimates, 2014 State Consumption Prices a Expenditures Thousand barrels Trillion Btu Dollars per million Btu Million ...

  20. --No Title--

    Annual Energy Outlook

    . Fuel Oil Consumption (Btu) and Energy Intensities by End Use for Non-Mall Buildings, 2003 Total Fuel Oil Consumption (trillion Btu) Fuel Oil Energy Intensity (thousand Btusquare...

  1. Health Care Buildings: Consumption Tables

    Energy Information Administration (EIA) (indexed site)

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  2. Sifting Through a Trillion Electrons

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sifting Through a Trillion Electrons Sifting Through a Trillion Electrons Berkeley researchers design strategies for extracting interesting data from massive scientific datasets June 26, 2012 Linda Vu, lvu@lbl.gov, +1 510 495 2402 VPIC1.jpg After querying a dataset of approximately 114,875,956,837 particles for those with Energy values less than 1.5, FastQuery identifies 57,740,614 particles, which are mapped on this plot. Image by Oliver Rubel, Berkeley Lab. Modern research tools like

  3. R A O I A P O N Sne., WNIV. OF CALIF. (15 crs]Hu~r~ ON LOAN

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 Table C10. Energy Consumption Estimates by End-Use Sector, Ranked by State, 2014 Rank Residential Sector Commercial Sector Industrial Sector a Transportation Sector Total Consumption a State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,709.5 Texas 1,638.8 Texas 6,288.8 Texas 3,262.4 Texas 12,899.5 2 California 1,397.4 California 1,418.5 Louisiana 3,024.3 California 2,948.3 California 7,620.1 3 Florida 1,199.2 New York 1,134.8 California

  4. First trillion particle cosmological simulation completed

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    First trillion particle cosmological simulation completed First trillion particle cosmological simulation completed A team of astrophysicists and computer scientists has created high-resolution cyber images of our cosmos. January 8, 2015 Simulation of the cosmic web of the dark matter mass distribution. This region represents about 1/10,000 of the total simulation volume. Simulation of the cosmic web of the dark matter mass distribution. This region represents about 1/10,000 of the total

  5. --No Title--

    Gasoline and Diesel Fuel Update

    E3A. Electricity Consumption (Btu) by End Use for All Buildings, 2003 Total Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing...

  6. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update

    Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) Note: The Btu conversion factors used for...

  7. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update

    2a. Consumption of Energy (Primary 1 Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) Note: 1. The Btu conversion factors used...

  8. Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003

    Energy Information Administration (EIA) (indexed site)

    0 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major Sources 2

  9. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    3 Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major

  10. Trillion Particle Simulation on Hopper Honored with Best Paper

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Trillion Particle Simulation on Hopper Honored with Best Paper Trillion Particle Simulation on Hopper Honored with Best Paper Berkeley Lab Researchers Bridge Gap to Exascale May...

  11. Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,038 1,037 1,028 2010's 1,023 1,014 1,014 1,019 1,027 1,029

  12. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,024 1,031 1,034

  13. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,032

  14. U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12.91 15.20 8.99 2010's 11.83 15.12 10.98 9.94 9.56 4.97

  15. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,030

  16. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 NA NA NA NA NA NA NA NA NA NA NA NA 2013 1,026 1,026 1,026 1,026 1,027 1,027 1,027 1,027 1,027 1,027 1,028 1,028 2014 ...

  17. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,038 1,037 2010's 1,034 1,036 1,040 1,048 1,048 1,047

  18. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,047 1,046 1,047 1,047 1,047 1,048 1,051 1,048 1,049 1,049 1,054 1,053 2014 1,052 1,050 1,048 1,046 1,044 1,044 1,046 1,046 1,045 1,044 1,049 1,052 2015 1,053 1,054 1,049 1,049 1,050 1,046 1,044 1,044 1,044 1,045 1,046 1,046 2016 1,048 1,045 1,042 1,042 1,042 1,041 1,040 1,039

  19. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,026 1,022 1,023 2010's 1,017 1,020 1,031 1,032

  20. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,030 1,030 1,032 1,034 1,031 1,032 1,032 1,033 1,034 1,031 1,031 2014 1,031 1,032 1,031 1,030 1,028 1,023 1,029 1,029 1,027 1,030 1,029 1,029 2015 1,029 1,029 1,029 1,029 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 2016 1,032 1,027 1,025 1,034 1,029 1,028

  1. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,034 1,034 2010's 1,026 1,026 1,023 1,020 1,024

  2. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,020 1,021 1,019 1,019 1,017 1,019 1,020 1,020 1,020 1,020 1,020 2014 1,022 1,021 1,022 1,022 1,022 1,023 1,022 1,024 1,028 1,027 1,028 1,029 2015 1,030 1,028 1,028 1,029 1,030 1,030 1,031 1,029 1,031 1,031 1,030 1,030 2016 1,031 1,031 1,029 1,031 1,030 1,029 1,029

  3. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,003 1,003 1,002 2010's 1,005 1,005 1,018 1,031 1,041 1,054

  4. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,028 1,030 1,029 1,028 1,028 1,029 1,031 1,030 1,029 1,031 1,030 1,034 2014 1,034 1,034 1,035 1,036 1,039 1,041 1,039 1,045 1,045 1,049 1,048 1,048 2015 1,048 1,048 1,047 1,051 1,054 1,059 1,062 1,060 1,056 1,053 1,053 1,058 2016 1,060 1,058 1,053 1,052 1,054 1,058 1,060 1,057

  5. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,021 1,023 1,021 2010's 1,016 1,014 1,017 1,021 1,019 1,033

  6. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,019 1,023 1,029 2010's 1,010 1,010 1,019 1,023 1,033 1,040

  7. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,026 1,019 2010's 1,014 1,010 1,012 1,015 1,028 1,030

  8. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,017 1,016 1,011 2010's 1,012 1,016 1,025 1,033 1,025 1,026

  9. Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,011 1,012 2010's 1,004 1,011 1,019 1,036 1,042 1,057

  10. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,034 1,034 1,042

  11. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,035 1,033 1,029 2010's 1,026 1,026 1,029 1,044 1,042 1,045

  12. North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,046 1,042 1,055 2010's 1,055 1,073 1,065 1,069 1,086 1,086

  13. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,037 1,057 1,068

  14. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,016 1,029 1,03

  15. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,014 1,015 1,016 2010's 1,012 1,017 1,015 1,021 1,017 1,020

  16. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,028 1,027 2010's 1,023 1,020 1,022 1,027 1,030 1,036

  17. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,025 1,027 1,027 1,027 1,031 1,028 1,026 1,026 1,025 1,024 1,025 2014 1,025 1,023 1,024 1,028 1,029 1,028 1,028 1,031 1,033 1,034 1,035 1,034 2015 1,034 1,035 1,033 1,034 1,033 1,037 1,037 1,037 1,037 1,035 1,037 1,037 2016 1,038 1,036 1,034 1,035 1,021 1,042 1,035 1,038

  18. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,020 1,019 2010's 1,019 1,032 1,039 1,037 1,047 1,060

  19. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,046 1,041 1,044

  20. Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,001 1,005 1,005 2010's 1,007 1,008 1,012 1,015 1,017 1,025

  1. West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,074 1,073 1,082 2010's 1,076 1,083 1,080 1,076 1,090 1,097

  2. Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,014 1,014 1,014 2010's 1,010 1,014 1,019 1,026 1,035 1,042

  3. Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,036 1,031 1,031 2010's 1,031 1,034 1,034 1,042 1,040 1,060

  4. Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    "Opportunity fuels" offer an alternative to natural gas. These unconventional fuels are often derived from agricultural, industrial, and municipal waste streams or from byproducts ...

  5. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,026 1,027 2010's 1,022 1,018 1,015 1,016 1,020 1,027

  6. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,022 1,017 1,030

  7. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,015 1,014 1,013 2010's 1,008 1,011 1,011 1,016 1,023 1,029

  8. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,022 1,013 1,015 2010's 1,012 1,012 1,012 1,015 1,019 1,02

  9. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,029 1,040 1,053

  10. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    Energy Information Administration (EIA) (indexed site)

    Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"11/16/2016 12:05:10

  11. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"11/16/2016

  12. 1992 CBECS C & E

    Energy Information Administration (EIA) (indexed site)

    Consumption of Electricity by End Use, 1989 Electricity Consumption (trillion Btu) Office Space Ventil- Water Refrig- Equip- Total Heating Cooling ation Heating Lighting Cooking...

  13. 1992 CBECS C & E

    Energy Information Administration (EIA) (indexed site)

    Table B4. Consumption of Electricity by End Use, 1989 Electricity Consumption (trillion Btu) Office Space Ventil- Water Refrig- Equip- Total Heating Cooling ation Heating Lighting...

  14. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    Energy Information Administration (EIA) (indexed site)

    . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003" ,"All Buildings*",,"Total Energy Consumption (trillion Btu)" ,"Number of Buildings (thousand)","Floorspace...

  15. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    Table 3.2. Total Energy Consumption by Major Fuel, 1992 Building Characteristics RSE Column Factor: All Buildings Total Energy Consumption (trillion Btu) RSE Row Factor Number of...

  16. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    9. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu)...

  17. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    . Total Energy Consumption by Major Fuel, 1992 Building Characteristics RSE Column Factor: All Buildings Total Energy Consumption (trillion Btu) RSE Row Factor Number of Buildings...

  18. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    Energy Intensity for Sum of Major Fuels for Mercantile and Office Buildings, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  19. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    Energy Intensity for Sum of Major Fuels in Older Buildings by Year Constructed, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  20. 1989 CBECS EUI

    Energy Information Administration (EIA) (indexed site)

    Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  1. C15DIV.xls

    Energy Information Administration (EIA) (indexed site)

    million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (billion cubic feet) Total (million dollars) NEW ENGLAND ... 45...

  2. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    : Asphalt and road oil consumption, price, and expenditure estimates, 2014 State Asphalt and road oil a Consumption Prices Expenditures Thousand barrels Trillion Btu Dollars per ...

  3. --No Title--

    Gasoline and Diesel Fuel Update

    (trillion Btu) District Heat Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  4. EIA Energy Efficiency-Table 1d. Nonfuel Consumption (Site Energy...

    Annual Energy Outlook

    d Page Last Modified: May 2010 Table 1d. Nonfuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and...

  5. --No Title--

    Gasoline and Diesel Fuel Update

    (trillion Btu) Natural Gas Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  6. --No Title--

    Gasoline and Diesel Fuel Update

    (trillion Btu) Fuel Oil Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  7. --No Title--

    Gasoline and Diesel Fuel Update

    Major Fuel Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  8. --No Title--

    Gasoline and Diesel Fuel Update

    Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  9. Annual Report to Congress on Federal Government Energy Management...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... trillion Btu of petroleum-based fuels were used for ... This total included 1,682 solar hot water systems, 58 ... Tritium Extraction Facility (in design execution). ...

  10. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ... Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel ...

  11. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ... Coal","Row" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel ...

  12. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ... ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel ...

  13. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ... Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel ...

  14. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ... Coal","Row" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel ...

  15. Level: National Data; Row: End Uses within NAICS Codes; Column...

    Gasoline and Diesel Fuel Update

    within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. ... from noncombustible renewable resources, minus quantities sold and transferred out. ...

  16. Level: National and Regional Data; Row: End Uses; Column: Energy...

    Gasoline and Diesel Fuel Update

    Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. ... from noncombustible renewable resources, minus quantities sold and transferred out. ...

  17. U.S. Energy Information Administration | Renewable Energy...

    Annual Energy Outlook

    Biom ass Energy Consum ption (Trillion Btu) 26 U.S. Energy Information Administration | Renewable Energy Annual 2009 Table 1.8 Industrial biomass energy consumption and electricity ...

  18. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    6: Geothermal Energy Consumption Estimates, 2014 State Geothermal Energy Electric Power Residential Commercial Industrial Electric Power Total Million Kilowatthours Trillion Btu ...

  19. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

  20. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  1. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    Energy Information Administration (EIA) (indexed site)

    Table 1. Fossil fuel sales of production from federal lands, FY 2003-14 Fiscal Year Crude Oil and Lease Condensate Natural Gas Plant Liquids 2 Natural Gas Coal Fossil Fuels Million Barrels 1 Trillion Btu Percent of U.S. Total Million Barrels 1 Trillion Btu Percent of U.S. Total Billion Cubic Feet 1 Trillion Btu Percent of U.S. Total Million Short Tons 1 Trillion Btu Percent of U.S. Total Trillion Btu Percent of U.S. Total 2003 679 3,939 33.0% 93 347 14.7% 6,798 6,981 35.7% 436 8,960 40.6%

  2. DYNAMIC MANUFACTURING ENERGY FLOWS TOOL (2010, UNITS: TRILLION...

    Energy.gov [DOE] (indexed site)

    this diagram to explore (zoom, pan, select) and compare energy flows across U.S. manufacturing and key subsectors. Line widths indicate the volume of energy flow in trillions of...

  3. Fresh Way to Cut Combustion, Crop and Air Heating Costs Avoids Million BTU Purchases: Inventions and Innovation Combustion Success Story

    SciTech Connect

    Wogsland, J.

    2001-01-17

    Success story written for the Inventions and Innovation Program about a new space heating method that uses solar energy to heat incoming combustion, crop, and ventilation air.

  4. Test and evaluate the TRI-GAS low-Btu coal gasification process. Quarterly report, January-March 1980

    SciTech Connect

    Not Available

    1980-04-01

    New silicon carbide liners were cast for all three reactor vessels. The new liners will facilitate installation of the new reactor heaters and make possible a better seal between the heaters and vessel internals. Globar heating elements were received, cut to length, and installed on the new silicon carbide vessel liners in States 2 and 3. The heater for Stage 1 was reassembled on the new silicon carbide liner and installed in the vessel. Preliminary tests were made following the installation of the silicon carbide liners and heaters. The Stage 2 heater failed open, due to poor contact, after a few hours of testing. This problem was solved by nickel plating the ends of the Globars and using graphite packing to cushion the connector set screws.

  5. Da Liu | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Department of Energy Information Resources » Energy Analysis » DYNAMIC MANUFACTURING ENERGY SANKEY TOOL (2010, UNITS: TRILLION BTU) DYNAMIC MANUFACTURING ENERGY SANKEY TOOL (2010, UNITS: TRILLION BTU) About the Energy Data Use this diagram to explore (zoom, pan, select) and compare energy flows across U.S. manufacturing and key subsectors. Line widths indicate the volume of energy flow in trillions of British thermal units (TBtu). The 15 manufacturing subsectors together consume 95% of all

  6. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    3 Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu 1989 16,510 1,410 16,357

  7. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    45 Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, Selected Years, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu

  8. Consumption

    Energy Information Administration (EIA) (indexed site)

    . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003" ,"Sum of Major Fuel Consumption (trillion Btu)",,,"Total Floorspace...

  9. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    Annual Energy Outlook

    federal and Indian lands by statearea, FY 2003-14 trillion Btu State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Alabama 75 57 51 47 40 42 60 88 86 71 46 29 Alaska ...

  10. Table A39. Selected Combustible Inputs of Energy for Heat...

    Energy Information Administration (EIA) (indexed site)

    and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" ...

  11. EIA Energy Efficiency-Table 1a. Table 1a. Consumption of Site...

    Annual Energy Outlook

    a Page Last Modified: May 2010 Table 1a. Consumption of Energy (Site Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey...

  12. EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected...

    Gasoline and Diesel Fuel Update

    b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector...

  13. Table 1c. Off-Site Produced Energy (Site Energy)For Selected...

    Annual Energy Outlook

    c Page Last Modified: May 2010 Table 1c. Off-Site Produced Energy (Site Energy) for Selected Industries, 1998, 2002 and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and...

  14. EIA Energy Efficiency-Table 2a. First Use for All Purposes (Primary...

    Annual Energy Outlook

    a Page Last Modified: May 2010 Table 2a. Consumption of Energy (Primary 1 Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS...

  15. EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for...

    Gasoline and Diesel Fuel Update

    b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS...

  16. --No Title--

    Gasoline and Diesel Fuel Update

    End Use for Non-Mall Buildings, 2003 Total Major Fuel Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  17. Level: National and Regional Data; Row: End Uses; Column: Energy...

    Annual Energy Outlook

    including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel ...

  18. 1992 CBECS C & E

    Energy Information Administration (EIA) (indexed site)

    of District Heat by End Use, 1989 District Heat Consumption (trillion Btu) Space Water a Total Heating Heating Other RSE Building Row Characteristics Factor 1.0 NF NF NF RSE...

  19. 1992 CBECS C & E

    Energy Information Administration (EIA) (indexed site)

    0. Consumption of Fuel Oil by End Use, 1989 Fuel Oil Consumption (trillion Btu) Space Water a Total Heating Heating Other RSE Building Row Characteristics Factor 1.0 NF NF NF RSE...

  20. Released: September, 2008

    Energy Information Administration (EIA) (indexed site)

    Consumption (trillion Btu)" ,"Total ","Space Heat- ing","Cool- ing","Venti- lation","Water Heat- ing","Light- ing","Cook- ing","Refrig- eration","Office Equip- ment","Com-...

  1. 1992 CBECS C & E

    Energy Information Administration (EIA) (indexed site)

    of Natural Gas by End Use, 1989 Natural Gas Consumption (trillion Btu) Space Water a Total Heating Heating Cooking Other RSE Building Row Characteristics Factor 1.0 NF...

  2. How Much Energy Does Each State Produce? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Does Each State Produce? How Much Energy Does Each State Produce? Energy Production in Trillion Btu: 2012 Click on each state to learn more about how much energy it produces Source: EIA State Energy Data Systems

  3. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

  4. Word Pro - Untitled1

    Annual Energy Outlook

    Years 1975-2011 (Trillion Btu) Year Coal Natural Gas 1 Petroleum Electricity Purchased Steam and Other 6 Total Aviation Gasoline Fuel Oil 2 Jet Fuel LPG 3 and Other 4 Motor...

  5. Table 5.1 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  6. Table 5.5 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  7. table5.1_02

    Energy Information Administration (EIA) (indexed site)

    1 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Row Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total

  8. table5.5_02

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE Total Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Other(e) Row End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States RSE

  9. Trillion Particles, 120,000 cores, and 350 TBs: Lessons Learned...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lessons Learned from a Hero IO Run on Hopper Trillion Particles, 120,000 cores, and 350 TBs: Lessons Learned from a Hero IO Run on Hopper May 23, 2013 byna Suren Byna Berkeley...

  10. c25.xls

    Energy Information Administration (EIA) (indexed site)

    per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All...

  11. c26.xls

    Energy Information Administration (EIA) (indexed site)

    Btu) per Square Foot (thousand Btu) per Worker (million Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings...

  12. U.S. Energy Information Administration (EIA) - Residential

    Gasoline and Diesel Fuel Update

    Consumption Glossary › FAQS › Overview Industrial Commercial Industrial Transportation Manufacturing Energy Consumption Survey Data 2006 Analysis & Reports Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, based

  13. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    Table 1.6 State-Level Energy Consumption, Expenditure, and Price Estimates, 2010 Rank Consumption Consumption per Capita Expenditures 1 Expenditures 1 per Capita Prices 1 Trillion Btu Million Btu Million Dollars 2 Dollars 2 Dollars 2 per Million Btu 1 Texas 11,769.9 Wyoming 948.1 Texas 137,532 Alaska 8,807 Hawaii 30.75 2 California 7,825.7 Alaska 898.5 California 117,003 Louisiana 8,661 District of Columbia 26.19 3 Florida 4,381.9 Louisiana 894.4 New York 61,619 Wyoming 7,904 Connecticut 25.63

  14. Trillion Particles,

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cray Inc., USA. Email: knaak@cray.com Abstract-Modern petascale applications can present a variety of configuration, runtime, and data management challenges when run at scale. ...

  15. Natural Gas Processing Plants in the United States: 2010 Update / National

    Gasoline and Diesel Fuel Update

    Overview Btu Content National Overview Btu Content The natural gas received and transported by the major intrastate and interstate mainline transmission systems must be within a specific energy (Btu) content range. Generally, the acceptable Btu content is 1,035 Btu per cubic foot, with an acceptable deviation of +/-50 Btu. However, when natural gas is extracted, its Btu content can be very different from acceptable pipeline specifications. The Btu content of natural gas extracted varies

  16. Word Pro - S7

    Energy Information Administration (EIA) (indexed site)

    5 Table 7.3c Consumption of Selected Combustible Fuels for Electricity Generation: Commercial and Industrial Sectors (Subset of Table 7.3a) Commercial Sector a Industrial Sector b Coal c Petroleum d Natural Gas e Biomass Coal c Petroleum d Natural Gas e Other Gases g Biomass Other i Waste f Wood h Waste f Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1990 Total .................... 417 953 28 15 10,740

  17. Word Pro - S7

    Energy Information Administration (EIA) (indexed site)

    19 Table 7.4c Consumption of Selected Combustible Fuels for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors (Subset of Table 7.4a) Commercial Sector a Industrial Sector b Coal c Petroleum d Natural Gas e Biomass Coal c Petroleum d Natural Gas e Other Gases g Biomass Other i Waste f Wood h Waste f Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1990 Total

  18. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    7: Coal Consumption Estimates and Imports and Exports of Coal Coke, 2014 State Coal Coal Coke Residential a Commercial Industrial Electric Power Total Residential a Commercial Industrial Electric Power Total Imports Exports Imports Exports Thousand Short Tons Trillion Btu Thousand Short Tons Trillion Btu Alabama - 0 3,234 23,901 27,135 - 0.0 87.3 488.6 575.9 - - - - Alaska - 544 1 655 1,200 - 8.3 (s) 9.9 18.2 - - - - Arizona - 0 221 22,911 23,132 - 0.0 5.2 442.7 447.8 - - - - Arkansas - 0 227

  19. 1994 Washington State directory of Biomass Energy Facilities

    SciTech Connect

    Deshaye, J.A.; Kerstetter, J.D.

    1994-03-01

    This is the fourth edition of the Washington Directory of Biomass Energy Facilities, the first edition was published in 1987. The purpose of this directory is to provide a listing of and basic information about known biomass producers and users within the state to help demonstrate the importance of biomass energy in fueling our state`s energy needs. In 1992 (latest statistical year), estimates show that the industrial sector in Washington consumed nearly 128 trillion Btu of electricity, nearly 49.5 trillion Btu of petroleum, over 82.2 trillion Btu of natural gas, and over 4.2 trillion Btu of coal. Facilities listed in this directory generated approximately 114 trillion Btu of biomass energy - 93 trillion were consumed from waste wood and spent chemicals. In the total industrial energy picture, wood residues and chemical cooking liquors placed second only to electricity. This directory is divided into four main sections biogas production, biomass combustion, ethanol production, and solid fuel processing facilities. Each section contains maps and tables summarizing the information for each type of biomass. Provided in the back of the directory for reference are a conversion table, a table of abbreviations, a glossary, and an index. Chapter 1 deals with biogas production from both landfills and sewage treatment plants in the state. Biogas produced from garbage and sewage can be scrubbed and used to generate electricity. At the present time, biogas collected at landfills is being flared on-site, however four landfills are investigating the feasibility of gas recovery for energy. Landfill biogas accounted for approximately 6 percent of the total biomass reported. Sewage treatment biogas accounted for 0.6 percent. Biogas generated from sewage treatment plants is primarily used for space and process heat, only one facility presently scrubs and sells methane. Together, landfill and sewage treatment plant biogas represented over 6.6 percent of the total biomass reported.

  20. Development of Highly Selective Oxidation Catalysts by Atomic Layer Deposition

    Energy.gov [DOE]

    This factsheet describes a research project whose goal is to use Atomic Layer Deposition to construct nanostructured catalysts to improve the effectiveness of oxidative dehydrogenation of alkanes. More effective catalysts could enable higher specific conversion rates and result in drastic energy savings - up to 25 trillion Btu per year by 2020.

  1. Long Wavelength Catalytic Infrared Drying System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    conventional drying. 2006 2007 2008 2009 2010 2011 Energy Savings (Trillion Btu) 0.003 0.003 0.003 0.003 0.003 0.003 Emissions Reductions (Thousand Tons) Carbon 0.046 0.046 0.046 ...

  2. U.S. Energy Information Administration | State Energy Data 2013...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Estimates in Trillion Btu, 2013 Alabama 1,463 1,931 468 Alaska 1,514 609 -905 Arizona 595 1,415 820 Arkansas 1,439 1,093 -346 California 2,391 7,684 5,293 Colorado 2,832...

  3. Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison

    Buildings Energy Data Book

    4 Average Annual Carbon Dioxide Emissions for Various Functions Stock Refrigerator (1) kWh - Electricity Stock Electric Water Heater kWh - Electricity Stock Gas Water Heater million Btu - Natural Gas Stock Oil Water Heater million Btu - Fuel Oil Single-Family Home million Btu Mobile Home million Btu Multi-Family Unit in Large Building million Btu Multi-Family Unit in Small Building million Btu School Building million Btu Office Building million Btu Hospital, In-Patient million Btu Stock Vehicles

  4. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    1: Kerosene Consumption, Price, and Expenditure Estimates, 2014 State Consumption Prices Expenditures Residential Commercial Industrial Total Residential Commercial Industrial Total Residential and Commercial Industrial Total Residential Commercial Industrial Total Thousand Barrels Trillion Btu Dollars per Million Btu Million Dollars Alabama 4 3 4 11 (s) (s) (s) 0.1 25.33 20.88 23.77 0.6 0.4 0.4 1.4 Alaska 6 3 (s) 9 (s) (s) (s) 0.1 31.05 25.59 30.88 1.0 0.5 (s) 1.6 Arizona (s) (s) (s) (s) (s)

  5. takara-98.pdf

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources RSE NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft)

  6. Word Pro - S2.lwp

    Energy Information Administration (EIA) (indexed site)

    Manufacturing Energy Consumption for Heat, Power, and Electricity Generation, 2006 By Selected End Use¹ By Energy Source 48 U.S. Energy Information Administration / Annual Energy Review 2011 1 Excludes inputs of unallocated energy sources (5,820 trillion Btu). 2 Heating, ventilation, and air conditioning. Excludes steam and hot water. 3 Excludes coal coke and breeze. 4 Liquefied petroleum gases. 5 Natural gas liquids. (s)=Less than 0.05 quadrillion Btu. Source: Table 2.3. 3.3 1.7 0.7 0.2 0.2

  7. c3.pdf

    Energy Information Administration (EIA) (indexed site)

    Btu) per Square Foot (thousand Btu) per Worker (million Btu) All Buildings ... 4,657 67,338 14.5 5,733 1,231 85.1 70.0 Building...

  8. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","32016" ,"Release ...

  9. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for ... Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","32016" ,"Release ...

  10. The Green Fuel Project: The Solar / Biodiesel Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    solar energy efficiency energy transference shading Parabolic Trough Laws of Thermodynamics solar gain Entropy BTU, solar mass RESOURCES AND MATERIALS: Resources: BTU or Bust...

  11. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    ... "Date","Weekly Natural Gas Futures Contract 1 (Dollars per Million Btu)","Weekly Natural Gas Futures Contract 2 (Dollars per Million Btu)","Weekly Natural Gas ...

  12. Lawrence Livermore National Laboratory- Completing the Human Genome Project and Triggering Nearly $1 Trillion in U.S. Economic Activity

    SciTech Connect

    Stewart, Jeffrey S.

    2015-07-28

    The success of the Human Genome project is already nearing $1 Trillion dollars of U.S. economic activity. Lawrence Livermore National Laboratory (LLNL) was a co-leader in one of the biggest biological research effort in history, sequencing the Human Genome Project. This ambitious research effort set out to sequence the approximately 3 billion nucleotides in the human genome, an effort many thought was nearly impossible. Deoxyribonucleic acid (DNA) was discovered in 1869, and by 1943 came the discovery that DNA was a molecule that encodes the genetic instructions used in the development and functioning of living organisms and many viruses. To make full use of the information, scientists needed to first sequence the billions of nucleotides to begin linking them to genetic traits and illnesses, and eventually more effective treatments. New medical discoveries and improved agriculture productivity were some of the expected benefits. While the potential benefits were vast, the timeline (over a decade) and cost ($3.8 Billion) exceeded what the private sector would normally attempt, especially when this would only be the first phase toward the path to new discoveries and market opportunities. The Department of Energy believed its best research laboratories could meet this Grand Challenge and soon convinced the National Institute of Health to formally propose the Human Genome project to the federal government. The U.S. government accepted the risk and challenge to potentially create new healthcare and food discoveries that could benefit the world and the U.S. Industry.

  13. Appendix G - Conversion factors

    Gasoline and Diesel Fuel Update

    G-1 U.S. Energy Information Administration | Annual Energy Outlook 2016 Table G1. Heat contents Fuel Units Approximate heat content Coal 1 Production .................................................. million Btu per short ton 20.02 Consumption .............................................. million Btu per short ton 19.49 Coke plants ............................................. million Btu per short ton 28.69 Industrial 2 ................................................. million Btu per short

  14. Enclosures Standing Technical Committee Strategic Plan report

    Energy Saver

    ... Consumption Data ...... 2 Figure 2: Total Btu consumption per household (US Census Bureau 2001) ...

  15. Table A17. Total First Use (formerly Primary Consumption) of Energy for All P

    Energy Information Administration (EIA) (indexed site)

    Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and

  16. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," ","

  17. Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    Energy Information Administration (EIA) (indexed site)

    Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," ","

  18. Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent

  19. Table N1.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998

    Energy Information Administration (EIA) (indexed site)

    .3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First

  20. Released: August 2009

    Energy Information Administration (EIA) (indexed site)

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," ","

  1. Released: March 2013

    Energy Information Administration (EIA) (indexed site)

    2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Residual","Distillate",,"LPG

  2. Released: March 2013

    Energy Information Administration (EIA) (indexed site)

    3 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," "

  3. Released: May 2013

    Energy Information Administration (EIA) (indexed site)

    3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," ","

  4. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  5. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  6. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and

  7. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and

  8. Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002

    Energy Information Administration (EIA) (indexed site)

    5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First

  9. Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    Energy Information Administration (EIA) (indexed site)

    .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources; Column: First Use per Energy Sources and Shipments; Unit: Trillion Btu. Total Energy Source First Use Total United States Coal 1,328 Natural Gas 5,725 Net Electricity 2,437 Purchases 2,510 Transfers In 33 Onsite Generation from Noncombustible Renewable Energy 7 Sales and Transfers Offsite 113 Coke and Breeze 374

  10. Word Pro - S10

    Energy Information Administration (EIA) (indexed site)

    U.S. Energy Information Administration / Monthly Energy Review October 2016 157 Table 10.5 Solar Energy Consumption (Trillion Btu) Distributed a Solar Energy b Utility-Scale c Solar Energy b Total k Heat f Electricity d Total g Electricity e Residential Sector Commercial Sector Industrial Sector Total Commercial Sector h Industrial Sector i Electric Power Sector j Total 1985 Total ...................... NA NA NA NA NA NA NA NA (s) (s) (s) 1990 Total ...................... 55 (s) (s) (s) (s) 55 -

  11. Word Pro - S3

    Energy Information Administration (EIA) (indexed site)

    0 U.S. Energy Information Administration / Monthly Energy Review October 2016 Table 3.8a Heat Content of Petroleum Consumption: Residential and Commercial Sectors (Trillion Btu) Residential Sector Commercial Sector a Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Total Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Motor Gasoline b Petroleum Coke Residual Fuel Oil Total 1950 Total ........................ 829 347 146 1,322 262 47 39 100 NA 424 872 1955 Total

  12. How Much Energy Does Your State Produce? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Does Your State Produce? How Much Energy Does Your State Produce? November 10, 2014 - 2:52pm Addthis Energy Production in Trillion Btu: 2012 Click on each state to learn more about how much energy it produces Source: EIA State Energy Data Systems Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs More Energy Maps Interested in learning more about national energy trends? Learn how much you spend on energy and how much energy you consume. Here

  13. Implementing an Industrial Energy Efficiency Program in Minnesota |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Implementing an Industrial Energy Efficiency Program in Minnesota Implementing an Industrial Energy Efficiency Program in Minnesota Map highlighting Minnesota In 2008, industry in Minnesota consumed 615 trillion British thermal units (Btu), accounting for approximately 33% of all the energy used in the state that year. To support the Minnesota state legislature's requirement that utilities meet an energy-savings goal of 1.5% of gross annual retail energy sales, the state

  14. Millisecond Oxidation of Alkanes

    Energy.gov [DOE]

    This factsheet describes a project whose goal is to commercialize a production process for propylene and acrylic acid from propane using a catalytic auto-thermal oxydehydrogenation process operating at short contact times. Auto-thermal oxidation for conversion of propane to propylene and acrylic acid promises energy savings of 20 trillion Btu per year by 2020. In addition to reducing energy consumption, this technology can reduce manufacturing costs by up to 25 percent, and reduce a variety of greenhouse gas emissions.

  15. New Jersey Industrial Energy Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Jersey Industrial Energy Program New Jersey Industrial Energy Program Map highlighting New Jersey New Jersey is home to energy-intensive industrial manufacturing sectors such as chemicals, computers and electronics, and transportation equipment manufacturing. In 2007, industrial manufacturing in the state contributed to approximately 10% of New Jersey's gross domestic product and 20% of the state's energy usage, consuming 452.1 trillion British thermal units (Btu). As part of an initiative to

  16. " by Census Region, Census Division, Industry Group, Selected Industries, and"

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 1" " (Estimates in Trillion Btu)",," ",,,,,,," "," "," " ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One

  17. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    4 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net

  18. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    2 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End

  19. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " ","

  20. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " ","

  1. " Row: NAICS Codes; Column: Energy Sources;"

    Energy Information Administration (EIA) (indexed site)

    2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural

  2. " Row: NAICS Codes; Column: Energy Sources;"

    Energy Information Administration (EIA) (indexed site)

    2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural

  3. " Row: Selected SIC Codes; Column: Energy Sources;"

    Energy Information Administration (EIA) (indexed site)

    2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," ","

  4. Development of Real-Time, Gas Quality Sensor Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Real-Time, Gas Quality Sensor Technology Introduction Landfll gas (LFG), composed largely of methane and carbon dioxide, is used in over 645 operational projects in 48 states. These projects convert a large source of greenhouse gases into a fuel that currently provides approximately 51 trillion Btu of electricity and supplies 108 billion cubic feet of LFG annually to direct use applications and natural gas pipelines. However, there is still a signifcant resource base for new projects, with over

  5. Gasoline and Diesel Fuel Update

    Steel Industry Energy Consumption: Sensitivity to Technology Choice, Fuel Prices, and Carbon Prices in the AEO2016 Industrial Demand Module peter gross, kelly perl Release Date: 7/7/16 The manufacture of steel and related products is an energy-intensive process. According to the U.S. Energy Information Administration's (EIA) Manufacturing Energy Consumption Survey (MECS), steel industry energy consumption in 2010 totaled 1,158 trillion British thermal units (Btu), representing 8% of total

  6. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    47 Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food ................................................................................. 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products ..................................... 20 0 41 1 1 3 30 11 -0

  7. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    5 Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings .................................... 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education ...................................... 15 74 83 11 113 2 16 4 32 21 371 Food Sales ................................... 6 12 7 Q 46 2 119 2 2 10 208

  8. 1990 Washington State directory of biomass energy facilities

    SciTech Connect

    Deshaye, J.A.; Kerstetter, J.D.

    1990-01-01

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

  9. 1990 Washington State directory of biomass energy facilities

    SciTech Connect

    Deshaye, J.A.; Kerstetter, J.D.

    1990-12-31

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington`s industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state`s total industrial fuel demand. This is a sizable contribution to the state`s energy needs.

  10. Development of Next Generation Heating System for Scale Free Steel Reheating

    SciTech Connect

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  11. Coal Markets

    Energy Information Administration (EIA) (indexed site)

    Coal Markets | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago change Central Appalachia 12,500 Btu, 1.2 SO2 Northern Appalachia 13,000 Btu, < 3.0 SO2 Illinois Basin 11,800 Btu, 5.0 SO2 Powder River Basin 8,800 Btu, 0.8 SO2 Uinta Basin 11,700 Btu, 0.8 SO2 Source: With permission, SNL Energy Note: Coal prices shown reflect those of relatively high-Btu coal selected in each region

  12. Part-Per-Trillion Level SF6 Detection Using a Quartz Enhanced Photoacoustic Spectroscopy-Based Sensor with Single-Mode Fiber-Coupled Quantum Cascade Laser Excitation

    SciTech Connect

    Spagnolo, V.; Patimisco, P.; Borri, Simone; Scamarcio, G.; Bernacki, Bruce E.; Kriesel, J.M.

    2012-10-23

    A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 µm and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-infrared fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor . The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and micro-resonator tubes. SF6 was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with a QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7x10-10 W•cm-1/Hz1/2.

  13. Windows technology assessment

    SciTech Connect

    Baron, J.J.

    1995-10-01

    This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

  14. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    3: Nuclear Energy Consumption, Price, and Expenditure Estimates, 2014 State Nuclear Electric Power Nuclear Fuel Consumption Prices Expenditures Million Kilowatthours Trillion Btu Dollars per Million Btu Million Dollars Alabama 41,244 431.4 0.80 344.2 Alaska 0 0.0 - - Arizona 32,321 338.0 0.82 276.7 Arkansas 14,478 151.4 0.83 126.1 California 16,986 177.7 0.65 115.2 Colorado 0 0.0 - - Connecticut 15,841 165.7 0.72 120.0 Delaware 0 0.0 - - Dist. of Col. 0 0.0 - - Florida 27,868 291.5 0.74 215.7

  15. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    0: Total Energy Consumption, Price, and Expenditure Estimates, 2014 State Consumption Prices Expenditures a Residential b Commercial b Industrial b,c Transportation Total c Residential Commercial Industrial Transportation Total Residential Commercial Industrial d Transportation Total d Trillion Btu Dollars per Million Btu Million Dollars Alabama 378.7 262.4 848.4 468.7 1,958.2 28.34 26.06 8.74 25.94 18.64 4,535.1 2,943.4 5,006.2 11,661.7 24,146.5 Alaska 47.8 63.2 329.0 163.0 603.1 23.25 19.78

  16. U.S. Heat Content of Natural Gas Deliveries to Other Sectors...

    Energy Information Administration (EIA) (indexed site)

    Other Sectors Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  17. U.S. Heat Content of Natural Gas Deliveries to Electric Power...

    Energy Information Administration (EIA) (indexed site)

    Electric Power Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  18. Lighting in Commercial Buildings

    Energy Information Administration (EIA) (indexed site)

    Ballast: See High-Efficiency Ballast. Btu: British thermal unit. A unit quantity of energy consumed by or delivered to a building. A Btu is defined as the amount of energy...

  19. "NAICS",,"per Employee","of Value Added","of Shipments" "Code...

    Energy Information Administration (EIA) (indexed site)

    Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand ...

  20. Word Pro - S3

    Annual Energy Outlook

    ... converted to Btu by multiplying by the biodiesel heat content factor in Table A1; for ... converted to Btu by multiplying by the biodiesel heat content factor in Table A1; for ...

  1. Word Pro - S1

    Gasoline and Diesel Fuel Update

    ... converted to Btu by multiplying by the biodiesel 22 U.S. Energy Information ... converted to Btu by multiplying by the biodiesel heat content factor in Table A1; for ...

  2. Annual Energy Review 2000

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Includes 0.07 quadrillion Btu coal coke net imports and 0.10 electricity net imports from fossil fuels. Includes, in quadrillion Btu, 0.10 electricity net imports from fossil...

  3. Energy Information Administration/Annual Energy Review

    Gasoline and Diesel Fuel Update

    in quadrillion Btu, 0.04 coal coke net imports and 0.05 electricity net imports from fossil fuels. Includes, in quadrillion Btu, -0.09 hydroelectric pumped storage and -0.15...

  4. The Ninth Annual DOE Solid-State Lighting Market Development...

    Energy.gov [DOE] (indexed site)

    ... the 188 tBtu it saved in 2013 is just a drop in the bucket compared to the 4,060 tBtu ... that adapt to interchangeable modules, following line and low-voltage control standards. ...

  5. Energy Demand | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the...

  6. RSF Workshop Session I: Energy Goals and Features of the RSF

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    +1 Exemplary Performance Credit for EAc1 Baseline 132 kBtuSFyear Design 33 kBtuSFyear ... Power (kW) Time of Day ASHRAE 90.1 Baseline Lighting Power Installed Lighting Power Energy ...

  7. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    ...C1","RNGC2","RNGC3","RNGC4" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)","Natural Gas Futures Contract 2 (Dollars per Million Btu)","Natural Gas Futures ...

  8. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    to Contents","Data 1: Natural Gas Futures Contract 4 (Dollars per Million Btu)" "Sourcekey","RNGC4" "Date","Natural Gas Futures Contract 4 (Dollars per Million Btu)" 34318,1.906 ...

  9. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    to Contents","Data 1: Natural Gas Futures Contract 3 (Dollars per Million Btu)" "Sourcekey","RNGC3" "Date","Natural Gas Futures Contract 3 (Dollars per Million Btu)" 34349,2.116 ...

  10. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    to Contents","Data 1: Natural Gas Futures Contract 2 (Dollars per Million Btu)" "Sourcekey","RNGC2" "Date","Natural Gas Futures Contract 2 (Dollars per Million Btu)" 34349,2.188 ...

  11. Portable Heaters | Department of Energy

    Energy Saver

    Space heater capacities generally range between 10,000 Btu and 40,000 Btu per hour, and commonly run on electricity, propane, natural gas, and kerosene (see wood and pellet heating ...

  12. Small Space Heater Basics | Department of Energy

    Energy.gov [DOE] (indexed site)

    Space heater capacities generally range between 10,000 Btu to 40,000 Btu per hour. Common fuels used for this purpose are electricity, propane, natural gas, and kerosene. Although ...

  13. Portable Heaters | Department of Energy

    Office of Environmental Management (EM)

    range between 10,000 Btu and 40,000 Btu per hour, and commonly run on electricity, propane, natural gas, and kerosene (see wood and pellet heating for information on wood and...

  14. Sifting Through a Trillion Electrons

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    from massive scientific datasets June 26, 2012 Linda Vu, ... particles for those with Energy values less than 1.5, ... northern lights) and solar flares, as well as ...

  15. Powered by 500 Trillion Calculations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Argonne's supercomputer is using its superpowers to map the movement of red blood cells -- which will hopefully lead to better diagnoses and treatments for patients with blood flow complications.

  16. State Energy Price and Expenditure Estimates

    Reports and Publications

    2016-01-01

    Energy price and expenditure estimates in dollars per million Btu and in million dollars, by state, 1970-2014.

  17. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.1 66.1 144.2 37 17 29.1 10 678 0.31 539 192 Census Region and Division

  18. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.7 66.0 142.2 36 16 28.0 10 708 0.33 558 204 Census Region and Division

  19. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 86.3 67.4 144.3 37 17 28.8 11 808 0.38 632 234 Census Region and Division

  20. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 90.5 70.4 156.8 39 18 30.5 12 875 0.39 680 262 Census Region and Division

  1. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 101.4 83.2 168.8 42 21 35.0 13 1,061 0.52 871 337 Census Region and

  2. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 107.0 85.2 211.2 46 18 36.0 14 1,178 0.48 938 366 Census Region and Division

  3. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    square feet) Total (million dollars) per Building (thousand dollars) per Square Foot (dollars) per Million Btu (dollars) All Buildings ......

  4. Sandia National Laboratories: Fact Sheets

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fact Sheets Sensors Chemical Microsensors Chemiresistors Electrochemical Chemometrics Micromachined Combustible Gas Detector High Temperature Acoustic Wave Gas Sensors Hot Plate Based Technology and BTU Monitors Microfabricated BTU SAND Report Hydrogen Sensor Minature Ion Mobility Spectrometer Integrated SAWs Using GaAs Microcalibrator Chip Nano Electrode Arrays Nanoparticle Based Detection Microfabricated Btu Monitoring Device SAW Chemical Microsensor Arrays Smart SAND Physical Microsensors

  5. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0

  6. Table 5.6 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733

  7. Table 5.8 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    8 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP

  8. Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu

    Energy Information Administration (EIA) (indexed site)

    2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke

  9. Table A1. Total Primary Consumption of Energy for All Purposes by Census

    Energy Information Administration (EIA) (indexed site)

    2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," ",," "," "," "," "," "," "," "," ","RSE" "SIC"," ",,"Net","Residual","Distillate "," "," ","

  10. Table A14. Total First Use (formerly Primary Consumption) of Energy for All P

    Energy Information Administration (EIA) (indexed site)

    4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," ","

  11. Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry

  12. Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ

    Energy Information Administration (EIA) (indexed site)

    Nonfuel" " Purposes by Census Region, Industry Group, and Selected Industries, 1994: Part 2" " (Estimates in Trillion Btu) " " "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," ","

  13. Table A30. Total Primary Consumption of Energy for All Purposes by Value of

    Energy Information Administration (EIA) (indexed site)

    0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," ","

  14. Table A33. Total Primary Consumption of Energy for All Purposes by Employment

    Energy Information Administration (EIA) (indexed site)

    Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and

  15. Table A34. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Employment Size Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,"1,000","Row"

  16. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate","

  17. Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation

    Energy Information Administration (EIA) (indexed site)

    by Census Region, Census Division, Industry Group, and Selected Industries, 1994: Part 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC","

  18. Released: March 2013

    Energy Information Administration (EIA) (indexed site)

    3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",,"

  19. Released: March 2013

    Energy Information Administration (EIA) (indexed site)

    5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," " " "," " ,"Total" "Energy Source","First Use" ,"Total United States" "Coal ",1328

  20. Released: November 2009

    Energy Information Administration (EIA) (indexed site)

    1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",,"

  1. Released: November 2009

    Energy Information Administration (EIA) (indexed site)

    2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," " " "," "," "," ",," "," ",," "

  2. Released: October 2009

    Energy Information Administration (EIA) (indexed site)

    .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." ,"Total" "Energy Source","First Use" ,"Total United States" "Coal ",1433 "Natural Gas",5911 "Net Electricity",2851

  3. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion Btu)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"Coal Coke",,"Row" "Code(a)","End-Use

  4. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    Energy Information Administration (EIA) (indexed site)

    1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion

  5. Table A12. Selected Combustible Inputs of Energy for Heat, Power, and

    Energy Information Administration (EIA) (indexed site)

    Type" " and End Use, 1994: Part 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,"Residual","Distillate",,,"(excluding","RSE" "SIC",,"Net Demand","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code(a)","End-Use Categories","for Electricity(b)","Oil","Diesel

  6. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    Energy Information Administration (EIA) (indexed site)

    " Part 2" " (Estimates in Trillion Btu)",,,,,,,,"Coal" ,,,,,"Distillate",,,"(excluding" ,,,,,"Fuel Oil",,,"Coal Coke",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"and",,"Row" "Code(a)","End-Use Categories","Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural

  7. Table A38. Selected Combustible Inputs of Energy for Heat, Power, and

    Energy Information Administration (EIA) (indexed site)

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,"Net Demand","Residual","Distillate",,,"(excluding","RSE" "SIC",,"for Electri-","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code","End-Use Categories","city(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and

  8. Table 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002

    Energy Information Administration (EIA) (indexed site)

    3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," ",," " " "," ",," "," ",," ","

  9. Word Pro - S10

    Energy Information Administration (EIA) (indexed site)

    2 U.S. Energy Information Administration / Monthly Energy Review October 2016 Table 10.2a Renewable Energy Consumption: Residential and Commercial Sectors (Trillion Btu) Residential Sector Commercial Sector a Geo- thermal b Solar c Biomass Total Hydro- electric Power e Geo- thermal b Solar f Wind g Biomass Total Wood d Wood d Waste h Fuel Ethanol i Total 1950 Total .................... NA NA 1,006 1,006 NA NA NA NA 19 NA NA 19 19 1955 Total .................... NA NA 775 775 NA NA NA NA 15 NA NA

  10. Word Pro - S10

    Energy Information Administration (EIA) (indexed site)

    4 U.S. Energy Information Administration / Monthly Energy Review October 2016 Table 10.2c Renewable Energy Consumption: Electric Power Sector (Trillion Btu) Hydro- electric Power a Geo- thermal b Solar c Wind d Biomass Total Wood e Waste f Total 1950 Total .................... 1,346 NA NA NA 5 NA 5 1,351 1955 Total .................... 1,322 NA NA NA 3 NA 3 1,325 1960 Total .................... 1,569 (s) NA NA 2 NA 2 1,571 1965 Total .................... 2,026 2 NA NA 3 NA 3 2,031 1970 Total

  11. Word Pro - S2

    Energy Information Administration (EIA) (indexed site)

    9 Table 2.6 Electric Power Sector Energy Consumption (Trillion Btu) Primary Consumption a Fossil Fuels Nuclear Electric Power Renewable Energy b Elec- tricity Net Imports f Total Primary Coal Natural Gas c Petro- leum Total Hydro- electric Power d Geo- thermal Solar e Wind Bio- mass Total 1950 Total ...................... 2,199 651 472 3,322 0 1,346 NA NA NA 5 1,351 6 4,679 1955 Total ...................... 3,458 1,194 471 5,123 0 1,322 NA NA NA 3 1,325 14 6,461 1960 Total ......................

  12. Word Pro - S2

    Energy Information Administration (EIA) (indexed site)

    1 Table 2.2 Residential Sector Energy Consumption (Trillion Btu) Primary Consumption a Electricity Retail Sales e Electrical System Energy Losses f Total Fossil Fuels Renewable Energy b Total Primary Coal Natural Gas c Petro- leum Total Geo- thermal Solar d Bio- mass Total 1950 Total .................... 1,261 1,240 1,322 3,824 NA NA 1,006 1,006 4,829 246 913 5,989 1955 Total .................... 867 2,198 1,767 4,833 NA NA 775 775 5,608 438 1,232 7,278 1960 Total .................... 585 3,212

  13. Word Pro - S2

    Energy Information Administration (EIA) (indexed site)

    3 Table 2.3 Commercial Sector Energy Consumption (Trillion Btu) Primary Consumption a Elec- tricity Retail Sales g Electrical System Energy Losses h Total Fossil Fuels Renewable Energy b Total Primary Coal Natural Gas c Petro- leum d Total Hydro- electric Power e Geo- thermal Solar f Wind Bio- mass Total 1950 Total .................... 1,542 401 872 2,815 NA NA NA NA 19 19 2,834 225 834 3,893 1955 Total .................... 801 651 1,095 2,547 NA NA NA NA 15 15 2,561 350 984 3,895 1960 Total

  14. Word Pro - S2

    Energy Information Administration (EIA) (indexed site)

    5 Table 2.4 Industrial Sector Energy Consumption (Trillion Btu) Primary Consumption a Elec- tricity Retail Sales h Electrical System Energy Losses i Total e Fossil Fuels Renewable Energy b Total Primary Coal Natural Gas c Petro- leum d Total e Hydro- electric Power f Geo- thermal Solar g Wind Bio- mass Total 1950 Total .................... 5,781 3,546 3,960 13,288 69 NA NA NA 532 602 13,890 500 1,852 16,241 1955 Total .................... 5,620 4,701 5,123 15,434 38 NA NA NA 631 669 16,103 887

  15. Word Pro - S3

    Energy Information Administration (EIA) (indexed site)

    3 Table 3.6 Heat Content of Petroleum Products Supplied by Type (Trillion Btu) Asphalt and Road Oil Aviation Gasoline Distillate Fuel Oil b Jet Fuel c Kero- sene LPG a Lubri- cants Motor Gasoline e Petro- leum Coke Residual Fuel Oil Other f Total Propane d Total 1950 Total ...................... 435 199 2,300 c ( ) 668 NA 343 236 5,015 90 3,482 546 13,315 1955 Total ...................... 615 354 3,385 301 662 NA 592 258 6,640 147 3,502 798 17,255 1960 Total ...................... 734 298 3,992

  16. Word Pro - S3

    Energy Information Administration (EIA) (indexed site)

    1 Table 3.8b Heat Content of Petroleum Consumption: Industrial Sector (Trillion Btu) Industrial Sector a Asphalt and Road Oil Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Lubricants Motor Gasoline b Petroleum Coke Residual Fuel Oil Other c Total 1950 Total ........................ 435 698 274 156 94 251 90 1,416 546 3,960 1955 Total ........................ 615 991 241 323 103 332 147 1,573 798 5,123 1960 Total ........................ 734 1,016 161 507 107 381 328 1,584 947 5,766 1965

  17. Word Pro - S7

    Energy Information Administration (EIA) (indexed site)

    4 U.S. Energy Information Administration / Monthly Energy Review October 2016 Table 7.3b Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector (Subset of Table 7.3a) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total .................... 91,871

  18. Word Pro - S7

    Energy Information Administration (EIA) (indexed site)

    7 Table 7.4a Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Total (All Sectors) (Sum of Tables 7.4b and 7.4c) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total .................... 91,871 5,423 69,998 NA NA 75,421 629 NA 5 NA NA 1955

  19. Word Pro - S7

    Energy Information Administration (EIA) (indexed site)

    8 U.S. Energy Information Administration / Monthly Energy Review October 2016 Table 7.4b Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Electric Power Sector (Subset of Table 7.4a) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total

  20. Word Pro - S7

    Energy Information Administration (EIA) (indexed site)

    3 Table 7.3a Consumption of Combustible Fuels for Electricity Generation: Total (All Sectors) (Sum of Tables 7.3b and 7.3c) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total .................... 91,871 5,423 69,998 NA NA 75,421 629 NA 5 NA NA 1955 Total ....................

  1. " by Census Region, Census Division, Industry Group, Selected Industries, and"

    Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," "," "," " ,," ","Computer Control","or

  2. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," ","

  3. " Row: End Uses;"

    Energy Information Administration (EIA) (indexed site)

    8 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " ",," ","Distillate"," "," ",," " " ","Net Demand",,"Fuel Oil",,,"Coal","RSE" " ","for ","Residual","and","Natural

  4. " Row: End Uses;"

    Energy Information Administration (EIA) (indexed site)

    8 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel

  5. " Row: End Uses;"

    Energy Information Administration (EIA) (indexed site)

    8 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel

  6. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG

  7. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG

  8. " Row: Selected SIC Codes; Column: Energy Sources and Shipments;"

    Energy Information Administration (EIA) (indexed site)

    2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",,"

  9. " Electricity Sales/Transfers Out",96,4

    Energy Information Administration (EIA) (indexed site)

    4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Selected Energy Sources, 1994" " (Estimates in Trillion Btu)" ,,"RSE" ,,"Row" "Selected Energy Sources","Total","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",2105,4 "Natural Gas",6835,3 "Net Electricity",2656,2 " Purchased Electricity",2689,1 " Transfers

  10. "Table A3. Total Primary Consumption of Combustible Energy for Nonfuel"

    Energy Information Administration (EIA) (indexed site)

    Nonfuel" " Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2" " (Estimates in Trillion Btu) " " "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," ","

  11. DOE/EIA-0214(2014)

    Gasoline and Diesel Fuel Update

    214(2014) June 2016 State Energy Consumption Estimates 1960 Through 2014 2014 Consumption Summary Tables S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2014: Consumption 3 Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2014 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity f Net Electricity Imports g Residential Commercial

  12. Next Release Date: August 2013

    Gasoline and Diesel Fuel Update

    5. Biofuels overview, 2006 - 2010 (trillion Btu) Type 2006 2007 2008 2009 2010 Ethanol Feedstock 1 688 914 1300 1517 1839 Losses and Co-products 2 285 376 531 616 742 Denaturant 11 14 21 26 30 Production 3 414 553 790 928 1127 Net Imports 4 62 37 45 17 -32 Stock Change 5 11 6 13 8 5 Consumption 465 584 821 936 1090 Consumption minus Denaturant 453 569 800 910 1061 Biodiesel Feedstock 6 32 63 88 R67 44 Losses and Co-products 7 * 1 1 1 1 Production 8 32 62 87 R66 44 Net Imports 1 -17 -46 -24 -10

  13. Next Release Date: August 2013

    Gasoline and Diesel Fuel Update

    6. Waste energy consumption by type of waste and energy-use sector, 2010 (trillion Btu) Electric Utilities Independent Power Producers Total 36 169 17 247 469 Landfill Gas 3 107 10 93 213 MSW Biogenic 1 28 4 3 130 165 Other Biomass 2 5 59 4 23 91 MSW = Municipal Solid Waste. 1 Includes paper and paper board, wood, food, leather, textiles and yard trimmings. 2 Agriculture byproducts/crops, sludge waste, and other biomass solids, liquids and gases. Note: Totals may not equal sum of components due

  14. Other States Natural Gas Coalbed Methane, Reserves Based Production

    Gasoline and Diesel Fuel Update

    August 2009 Revised: October 2009 Next MECS will be conducted in 2010 Table 3.5 Selected Byproducts in Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Waste Blast Pulping Liquor Oils/Tars NAICS Furnace/Coke Petroleum or Wood Chips, and Waste Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Materials Total United States 311 Food 10 0 3 0 0 7 Q 3112 Grain and Oilseed Milling 7 0 1 0 0 6 *

  15. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update

    2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments NAICS Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 1,162 257 12 23 583 8 182 2 96 * 3112 Grain and Oilseed Milling 355 56 * 1 123 Q

  16. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update

    3 Table 10.2b Renewable Energy Consumption: Industrial and Transportation Sectors, Selected Years, 1949-2011 (Trillion Btu) Year Industrial Sector 1 Transportation Sector Hydro- electric Power 2 Geo- thermal 3 Solar/PV 4 Wind 5 Biomass Total Biomass Wood 6 Waste 7 Fuel Ethanol 8 Losses and Co-products 9 Total Fuel Ethanol 10 Biodiesel Total 1949 76 NA NA NA 468 NA NA NA 468 544 NA NA NA 1950 69 NA NA NA 532 NA NA NA 532 602 NA NA NA 1955 38 NA NA NA 631 NA NA NA 631 669 NA NA NA 1960 39 NA NA NA

  17. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    Table 1.13 U.S. Government Energy Consumption by Agency and Source, Fiscal Years 2003, 2010, and 2011 (Trillion Btu) Resource and Fiscal Years Agriculture Defense Energy GSA 1 HHS 2 Interior Justice NASA 3 Postal Service Trans- portation Veterans Affairs Other 4 Total Coal 2003 ..................................... (s) 15.4 2.0 0.0 (s) (s) 0.0 0.0 0.0 0.0 0.2 0.0 17.7 2010 ..................................... (s) 15.5 4.5 .0 0.0 0.0 .0 .0 (s) .0 .1 .0 20.1 2011 P

  18. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    1 Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year Square Footage Category Principal Building Activity Census Region 1 All Buildings 1,001 to 10,000 10,001 to 100,000 Over 100,000 Education Food Sales Food Service Health Care Lodging Mercantile and Service Office All Other Northeast Midwest South West Major Sources 2 1979 ................ 1,255 2,202 1,508 511 3 ( ) 336 469 278 894 861 1,616 1,217 1,826 1,395 526 4,965

  19. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    1 Commercial Buildings Electricity Consumption by End Use, 2003 By End Use By Principal Building Activity 64 U.S. Energy Information Administration / Annual Energy Review 2011 1,340 481 436 381 167 156 88 69 24 418 Lighting Cooling Ventilation Refrigeration Space Computers Water Office Cooking Other¹ 0 500 1,000 1,500 Trillion Btu Heating Heating Equipment and Storage Assembly 733 719 371 248 244 235 217 208 167 149 267 Mercantile Office Education Health Care Warehouse Lodging Food Service Food

  20. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    4 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.4b Consumption for Electricity Generation by Energy Source: Electric Power Sector, Selected Years, 1949-2011 (Subset of Table 8.4a; Trillion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995 415 569 NA

  1. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    5 Table 8.4c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, Selected Years, 1989-2011 (Subset of Table 8.4a; Trillion Btu) Year Fossil Fuels Nuclear Electric Power Renewable Energy Other 9 Electricity Net Imports Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 Commercial Sector 10 1989 9 7 18 1 36 - 1 2 9 - - - 12 - - - 47 1990 9 6 28 1 45 - 1 2

  2. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    0 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, Selected Years, 1989-2011 (Breakout of Table 8.5b) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu

  3. DOE-HUD Initiative: Making Housing Affordable Through Energy Efficiency

    SciTech Connect

    Not Available

    1991-10-01

    A new collaborative program of the U.S. Department of Energy (DOE) and the U.S. Department of Housing and Urban Development (HUD) is a significant step toward making HUD-aided housing more comfortable and affordable through greater energy efficiency. The initiative on Energy Efficiency in Housing combines DOE's technical capabilities and HUD's experience in housing assistance. Over the next decade, the energy savings potential of this initiative is estimated to be 150 trillion Btu (0.15 quad) per year, or nearly $1.5 billion in annual energy costs.

  4. Building America Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing PROJECT INFORMATION Project Name: Reduced Flow Room Air Mixing Risks Location: Various U.S. areas IBACOS, ibacos.com Application: Retrofit Component: Heating and cooling equipment Year Tested: 2013-2014 Climate Zone: All PERFORMANCE DATA Modeled Load Reduction (Btu/h) Heating Load: Pre-Retrofit: 80,000 Btu/h Post-Retrofit: 25,000 Btu/h Cooling Load: Pre-Retrofit: 30,000 Btu/h Post-Retrofit: 12,000 Btu/h Modeled Airflow Reduction

  5. Monthly energy review, December 1985. 1985 Annual data and summaries

    SciTech Connect

    Not Available

    1986-03-26

    US energy production during 1985 was 64.7 quadrillion British thermal units (Btu), 1.4% below the record level attained in 1984. US consumption of energy totaled 73.8 quadrillion Btu, about the same as in 1984 but well below the 78.9 quadrillion Btu consumed during the peak year of 1979. Net imports of energy fell from 9.0 quadrillion Btu in 1984 to 7.8 quadrillion Btu in 1985, a 12.8% decline that brought net imports to the second lowest level since the 1973-1974 oil embargo. Net imports remained significantly below the all-time high of 18.0 quadrillion Btu reached in 1977.

  6. Presentation Title

    Energy Information Administration (EIA) (indexed site)

    International Energy Outlook 2016 For Center for Strategic and International Studies May 11, 2016 | Washington, DC By Adam Sieminski, Administrator Key findings in the IEO2016 Reference case * World energy consumption increases from 549 quadrillion Btu in 2012 to 629 quadrillion Btu in 2020 and then to 815 quadrillion Btu in 2040, a 48% increase (1.4%/year). Non-OECD Asia (including China and India) account for more than half of the increase. * The industrial sector continues to account for the

  7. Word Pro - S1

    Energy Information Administration (EIA) (indexed site)

    Table 1.7 Primary Energy Consumption, Energy Expenditures, and Carbon Dioxide Emissions Indicators Primary Energy Consumption a Energy Expenditures b Carbon Dioxide Emissions c Consump- tion Consump- tion per Capita Consumption per Real Dollar d of GDP e Expendi- tures Expendi- tures per Capita Expenditures as Share of GDP e Expenditures as Share of Gross Output f Emissions Emissions per Capita Emissions per Real Dollar d of GDP e Quadrillion Btu Million Btu Thousand Btu per Chained (2009)

  8. ARRA Economic Impact and Jobs | Department of Energy

    Office of Environmental Management (EM)

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  9. Presentation Title

    Gasoline and Diesel Fuel Update

    Center for Strategic and International Studies May 11, 2016 | Washington, DC By Adam Sieminski, Administrator Key findings in the IEO2016 Reference case * World energy consumption increases from 549 quadrillion Btu in 2012 to 629 quadrillion Btu in 2020 and then to 815 quadrillion Btu in 2040, a 48% increase (1.4%/year). Non-OECD Asia (including China and India) account for more than half of the increase. * The industrial sector continues to account for the largest share of delivered energy

  10. Presentation Title

    Gasoline and Diesel Fuel Update

    Schlumberger June 23, 2016 | Cambridge, MA By Adam Sieminski, Administrator Key findings in the IEO2016 Reference case * World energy consumption increases from 549 quadrillion Btu in 2012 to 629 quadrillion Btu in 2020 and then to 815 quadrillion Btu in 2040, a 48% increase (1.4%/year). Non-OECD Asia (including China and India) account for more than half of the increase. * The industrial sector continues to account for the largest share of delivered energy consumption; the world industrial

  11. Presentation Title

    Gasoline and Diesel Fuel Update

    Dentons 2016 Energy Outlook August 2, 2016 | Washington, DC By Adam Sieminski, Administrator Key findings in the IEO2016 Reference case * World energy consumption increases from 549 quadrillion Btu in 2012 to 629 quadrillion Btu in 2020 and then to 815 quadrillion Btu in 2040, a 48% increase (1.4%/year). Non-OECD Asia (including China and India) account for more than half of the increase. * The industrial sector continues to account for the largest share of delivered energy consumption; the

  12. Presentation Title

    Gasoline and Diesel Fuel Update

    Temple University, Fox School of Business September 12, 2016 | Philadelphia, PA By Adam Sieminski, Administrator International Energy Outlook: key findings in the 2016 Reference case * World energy consumption increases from 549 quadrillion Btu in 2012 to 629 quadrillion Btu in 2020 and then to 815 quadrillion Btu in 2040, a 48% increase (1.4%/year). Non-OECD Asia (including China and India) account for more than half of the increase. * The industrial sector continues to account for the largest

  13. IESP Exascale Challenge: Co-Design of Architectures and Algorithms

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    U.S. Energy Information Administration | International Energy Outlook 2016 Chapter 1 World energy demand and economic outlook Overview The International Energy Outlook 2016 (IEO2016) Reference case projects significant growth in worldwide energy demand over the 28-year period from 2012 to 2040. Total world consumption of marketed energy expands from 549 quadrillion British thermal units (Btu) in 2012 to 629 quadrillion Btu in 2020 and to 815 quadrillion Btu in 2040-a 48% increase from 2012 to

  14. Contemplating 10 Trillion Digits of π

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contango in Cushing? Evidence on Financial-Physical Interactions in the U.S. Crude Oil Market Louis H. Ederington, University of Oklahoma Chitru S. Fernano, University of Oklahoma Kateryna Holland, University of Oklahoma Thomas K. Lee, U.S. Energy Information Administration March, 2012 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions

  15. Team B: The trillion dollar experiment

    SciTech Connect

    Cahn, A.H.; Prados, J.

    1993-04-01

    Team B was an experiment in competetive threat assessments approved by the director of the CIA at that time, George Bush. Teams of experts were to make independent assessments of highly classified data used by the intelligence community to assess Soviet strategic forces in the yearly National Intelligence Estimates. In this article, two experts report on how a group of Cold War outside experts were invited to second-guess the policies of the CIA. The question explored here is whether or not these outside experts of the 1970s contributed to the military buildup of the 1980s.

  16. First trillion particle cosmological simulation completed

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A team of astrophysicists and computer scientists has created high-resolution cyber images ... National Laboratory researchers, has created high-resolution cyber images of our cosmos. ...

  17. Revised: December, 2008

    Energy Information Administration (EIA) (indexed site)

    E4. Electricity Consumption (Btu) Intensities by End Use for Non-Mall Buildings, 2003" ,"Electricity Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heat- ing","Cool-...

  18. Released: September, 2008

    Energy Information Administration (EIA) (indexed site)

    E4A. Electricity Consumption (Btu) Intensities by End Use for All Buildings, 2003" ,"Electricity Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heat- ing","Cool-...

  19. Armenia: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ,"inlineLabel":"","visitedicon":"" Country Profile Name Armenia Population Unavailable GDP Unavailable Energy Consumption 0.22 Quadrillion Btu 2-letter ISO code AM 3-letter ISO...

  20. C4DIV.xls

    Energy Information Administration (EIA) (indexed site)

    Floorspace per Building (thousand square feet) Total (million dollars) per Building (thousand dollars) per Square Foot (dollars) per Million Btu (dollars) NEW ENGLAND...

  1. Word Pro - A

    Energy Information Administration (EIA) (indexed site)

    Table A3. Approximate Heat Content of Petroleum Consumption and Fuel Ethanol (Million Btu ... renewable diesel fuel (including biodiesel) blended into distillate fuel oil. d ...

  2. Table 3.4 Consumer Price Estimates for Energy by End-Use Sector...

    Energy Information Administration (EIA) (indexed site)

    Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars 1 per Million Btu) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity ...

  3. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North...

  4. Word Pro - A

    Energy Information Administration (EIA) (indexed site)

    ... be 5.359 million Btu per barrel or equal to the thermal conversion factor for Biodiesel. ... Approximate Heat Content of Biofuels Biodiesel. EIA estimated the thermal conversion ...

  5. EIS-0007: Draft Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EIS-0007: Draft Environmental Impact Statement Low-BTU Coal Gasification Facility and Industrial Park PDF icon EIS-0007-DEIS.pdf More Documents & Publications EIS-0099: Final ...

  6. Commercial Buildings Energy Consumption and Expenditures 1992...

    Energy Information Administration (EIA) (indexed site)

    with the national average of 81 thousand Btu per square foot), while buildings using solar energy or passive solar features used the major energy sources more intensively...

  7. Iowa's 2nd congressional district: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    district in Iowa. Registered Energy Companies in Iowa's 2nd congressional district Big River Resources LLC EnerGenetics International First BTU Iowa Renewable Energy LLC...

  8. Energy Units - Energy Explained, Your Guide To Understanding...

    Energy Information Administration (EIA) (indexed site)

    Calculators Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  9. Annual Energy Review 2009 - Released August 2010

    Annual Energy Outlook

    less than 0.1 quadrillion Btu of coal coke net exports. 4 Conventional hydroelectric power, geothermal, solarPV, wind, and biomass. 5 Includes industrial...

  10. Annual Energy Outlook 2015 - Appendix A

    Energy Information Administration (EIA) (indexed site)

    6 Reference case Energy Information Administration Annual Energy Outlook 2015 Table A3. Energy prices by sector and source (2013 dollars per million Btu, unless otherwise noted) ...

  11. Table A13. Selected Combustible Inputs of Energy for Heat...

    Energy Information Administration (EIA) (indexed site)

    Use, 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,"Coal" ,,,"Distillate",,,"(excluding" ,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,"for","Residual","and","Natural ...

  12. Ak-Chin Indian Community - Biomass Feasibiltiy Study

    Energy Saver

    ... AK-CHIN INDIAN COMMUNITY BIOMASS FEASIBILITY STUDY Chicken Litter Test * Digestion - Dry BTU Content - Wet Digestibility - Nutrient Value * Gasification - Energy Values - ...

  13. This Week In Petroleum Summary Printer-Friendly Version

    Annual Energy Outlook

    Users can also compare data across different energy sources by converting to British thermal units (Btu) and tons of oil equivalent (TOE). New visualization features include...

  14. Annual Energy Review, 1996

    Annual Energy Outlook

    condensate. b Natural gas plant liquids. c Biofuels, conventional hydroelectric power, geothermal energy, solar energy, and wind energy. d Includes -0.03 quadrillion Btu for...

  15. Annual Energy Review 1998

    Annual Energy Outlook

    condensate. b Natural gas plant li uids. c Biomass, conventional hydroelectric power, geothermal energy, solar energy, and wind energy. d Includes -0.05 uadrillion Btu...

  16. Annual Energy Review 1997

    Annual Energy Outlook

    condensate. b Natural gas plant liquids. c Biofuels, conventional hydroelectric power, geothermal energy, solar energy, and wind energy. d Includes -0.04 quadrillion Btu...

  17. Hydrogen - Energy Explained, Your Guide To Understanding Energy...

    Energy Information Administration (EIA) (indexed site)

    Hydrogen Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  18. Solar - Energy Explained, Your Guide To Understanding Energy...

    Energy Information Administration (EIA) (indexed site)

    Solar Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  19. Ethanol - Energy Explained, Your Guide To Understanding Energy...

    Energy Information Administration (EIA) (indexed site)

    Ethanol Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  20. Energy Use in Homes - Energy Explained, Your Guide To Understanding...

    Energy Information Administration (EIA) (indexed site)

    Homes Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  1. Geothermal - Energy Explained, Your Guide To Understanding Energy...

    Energy Information Administration (EIA) (indexed site)

    Geothermal Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  2. Hydropower - Energy Explained, Your Guide To Understanding Energy...

    Energy Information Administration (EIA) (indexed site)

    Hydropower Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  3. Energy Use in Industry - Energy Explained, Your Guide To Understanding...

    Energy Information Administration (EIA) (indexed site)

    Industry Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  4. Coal - Energy Explained, Your Guide To Understanding Energy ...

    Energy Information Administration (EIA) (indexed site)

    Coal Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  5. Biomass - Energy Explained, Your Guide To Understanding Energy...

    Energy Information Administration (EIA) (indexed site)

    Biomass Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  6. Nuclear - Energy Explained, Your Guide To Understanding Energy...

    Energy Information Administration (EIA) (indexed site)

    Nuclear Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  7. Electricity - Energy Explained, Your Guide To Understanding Energy...

    Energy Information Administration (EIA) (indexed site)

    Electricity Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  8. Tips: Heating and Cooling | Department of Energy

    Energy Saver

    Year and Fuel Type (Quadrillion Btu and Percent of Total). ... and cooling Natural gas and oil heating Programmable ... Rebates & Tax Credits Federal tax credits are available for ...

  9. The B.E.A.M. Project: Building Efficient Architectural Models

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    climate passive solar energy efficiency energy transference shading fuel Laws of Thermodynamics solar gain Energy Star label BTU, solar mass RESOURCES AND MATERIALS: Resources:...

  10. Word Pro - Untitled1

    Energy Information Administration (EIA) (indexed site)

    in the United States, Selected Years, 1635-1945 (Quadrillion Btu) Year Fossil Fuels Renewable Energy Electricity Net Imports Total Coal Natural Gas Petroleum Total...

  11. Word Pro - S2

    Gasoline and Diesel Fuel Update

    Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solarphotovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP)...

  12. Word Pro - S2.lwp

    Gasoline and Diesel Fuel Update

    Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solarphotovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP)...

  13. Slovenia: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Slovenia Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code SI 3-letter ISO code SVN Numeric ISO code...

  14. A

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Btu, as raw material feedstocks for making nonenergy products, respectively). Total fuel oil consumption accounted for as well as fuel uses. It excludes the energy produced at...

  15. Peru: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Peru Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code PE 3-letter ISO code PER Numeric ISO code...

  16. Guadeloupe: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Guadeloupe Population Unavailable GDP Unavailable Energy Consumption 0.03 Quadrillion Btu 2-letter ISO code GP 3-letter ISO code GLP Numeric ISO...

  17. Marshall Islands: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Marshall Islands Population 56,429 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code MH 3-letter ISO code MHL Numeric ISO code...

  18. Australia: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Australia Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code AU 3-letter ISO code AUS Numeric ISO code...

  19. San Marino: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name San Marino Population 32,576 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code SM 3-letter ISO code SMR Numeric ISO code...

  20. Anguilla: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Anguilla Population 13,452 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code AI 3-letter ISO code AIA Numeric ISO code...

  1. Gambia: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Gambia Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code GM 3-letter ISO code GMB Numeric ISO code...

  2. Antigua and Barbuda: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Antigua and Barbuda Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code AG 3-letter ISO code ATG Numeric ISO code...

  3. Thailand: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Thailand Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code TH 3-letter ISO code THA Numeric ISO code...

  4. Sierra Leone: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Sierra Leone Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code SL 3-letter ISO code SLE Numeric ISO code...

  5. Djibouti: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Djibouti Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code DJ 3-letter ISO code DJI Numeric ISO code...

  6. Saint Barthlemy: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Saint Barthlemy Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code BL 3-letter ISO code BLM Numeric ISO code...

  7. Taiwan: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Taiwan Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code TW 3-letter ISO code TWN Numeric ISO code...

  8. Georgia (country): Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Georgia Population Unavailable GDP Unavailable Energy Consumption 0.17 Quadrillion Btu 2-letter ISO code GE 3-letter ISO code GEO Numeric ISO...

  9. France: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name France Population Unavailable GDP Unavailable Energy Consumption 11.29 Quadrillion Btu 2-letter ISO code FR 3-letter ISO code FRA Numeric ISO...

  10. Croatia: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Croatia Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code HR 3-letter ISO code HRV Numeric ISO code...

  11. Palau: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Palau Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code PW 3-letter ISO code PLW Numeric ISO code...

  12. Uganda: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Uganda Population Unavailable GDP Unavailable Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code UG 3-letter ISO code UGA Numeric ISO...

  13. Tuvalu: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Tuvalu Population 10,837 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code TV 3-letter ISO code TUV Numeric ISO code...

  14. Ireland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Ireland Population Unavailable GDP Unavailable Energy Consumption 0.69 Quadrillion Btu 2-letter ISO code IE 3-letter ISO code IRL Numeric ISO...

  15. Cayman Islands: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Cayman Islands Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code KY 3-letter ISO code CYM Numeric ISO code...

  16. Myanmar: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Country Profile Name Myanmar Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code MM 3-letter ISO code MMR Numeric ISO code...

  17. Appendix A: Reference case

    Annual Energy Outlook

    Reference case Energy Information Administration Annual Energy Outlook 2014 Table A17. Renewable energy consumption by sector and source (quadrillion Btu) Sector and source...

  18. --No Title--

    Gasoline and Diesel Fuel Update

    Btu) District Heat Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  19. --No Title--

    Gasoline and Diesel Fuel Update

    Btu) Natural Gas Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  20. Annual Energy Outlook 2015 - Appendix A

    Annual Energy Outlook

    Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration Annual Energy Outlook 2015 ...

  1. Appendix A: Reference case

    Annual Energy Outlook

    4 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration Annual Energy Outlook 2014...

  2. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ... ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Diesel ...

  3. " Row: End Uses within NAICS Codes;"

    Energy Information Administration (EIA) (indexed site)

    Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ... and Breeze)" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel ...

  4. Microsoft PowerPoint - Tribal Leader Forum Waste to Energy Introductio...

    Energy Saver

    ... Breaks down organic material in absence of oxygen * Sewage, food waste, waste grease, organics from waste stream Produces low to medium Btu biogas and residues Emerging technology ...

  5. --No Title--

    Annual Energy Outlook

    E4A. Electricity Consumption (Btu) Intensities by End Use for All Buildings, 2003 Electricity Energy Intensity (thousand Btusquare foot) Total Space Heat- ing Cool- ing Venti-...

  6. CBEI - Virtual Refrigerant Charge Sensing and Load Metering

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Challenge: Cost of BTU thermal submetering (10Kpoint) prohibitive, inhibiting uptake of energy monitoring and analytics Run functional tests Flow rate estimation Collect ...

  7. DOE Issues ESPC IDIQ Solicitation: Deadline for Response Extended...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    emissions reduction goals by streamlining contract funding for energy management projects. ... Btu per year and thereby avoiding 2.4 million tons in greenhouse gas emissions per year. ...

  8. --No Title--

    Gasoline and Diesel Fuel Update

    E4. Electricity Consumption (Btu) Intensities by End Use for Non-Mall Buildings, 2003 Electricity Energy Intensity (thousand Btusquare foot) Total Space Heat- ing Cool- ing Venti-...

  9. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... ,"Data 1","District of Columbia Heat Content of Natural Gas Deliveries to Consumers ...

  10. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Idaho Heat Content of Natural Gas Deliveries to Consumers ...

  11. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","New Mexico Heat Content of Natural Gas Deliveries to Consumers ...

  12. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Utah Heat Content of Natural Gas Deliveries to Consumers ...

  13. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Oklahoma Heat Content of Natural Gas Deliveries to Consumers ...

  14. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","North Carolina Heat Content of Natural Gas Deliveries to Consumers ...

  15. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","West Virginia Heat Content of Natural Gas Deliveries to Consumers ...

  16. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Georgia Heat Content of Natural Gas Deliveries to Consumers ...

  17. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Arizona Heat Content of Natural Gas Deliveries to Consumers ...

  18. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Kansas Heat Content of Natural Gas Deliveries to Consumers ...

  19. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Louisiana Heat Content of Natural Gas Deliveries to Consumers ...

  20. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Vermont Heat Content of Natural Gas Deliveries to Consumers ...

  1. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Colorado Heat Content of Natural Gas Deliveries to Consumers ...

  2. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Rhode Island Heat Content of Natural Gas Deliveries to Consumers ...

  3. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Arkansas Heat Content of Natural Gas Deliveries to Consumers ...

  4. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Wisconsin Heat Content of Natural Gas Deliveries to Consumers ...

  5. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Wyoming Heat Content of Natural Gas Deliveries to Consumers ...

  6. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Ohio Heat Content of Natural Gas Deliveries to Consumers ...

  7. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","South Carolina Heat Content of Natural Gas Deliveries to Consumers ...

  8. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Iowa Heat Content of Natural Gas Deliveries to Consumers ...

  9. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Nebraska Heat Content of Natural Gas Deliveries to Consumers ...

  10. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Alabama Heat Content of Natural Gas Deliveries to Consumers ...

  11. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Mississippi Heat Content of Natural Gas Deliveries to Consumers ...

  12. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Alaska Heat Content of Natural Gas Deliveries to Consumers ...

  13. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Oregon Heat Content of Natural Gas Deliveries to Consumers ...

  14. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Missouri Heat Content of Natural Gas Deliveries to Consumers ...

  15. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Hawaii Heat Content of Natural Gas Deliveries to Consumers ...

  16. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Montana Heat Content of Natural Gas Deliveries to Consumers ...

  17. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Florida Heat Content of Natural Gas Deliveries to Consumers ...

  18. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Massachusetts Heat Content of Natural Gas Deliveries to Consumers ...

  19. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Tennessee Heat Content of Natural Gas Deliveries to Consumers ...

  20. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Illinois Heat Content of Natural Gas Deliveries to Consumers ...