National Library of Energy BETA

Sample records for btu sources energy

  1. First BTU | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    that is consumed by the United States.3 References First BTU First BTU Green Energy About First BTU Retrieved from "http:en.openei.orgwindex.php?titleFirstBT...

  2. Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year Square Footage Category Principal Building Activity Census Region 1 All Buildings 1,001 to 10,000 10,001 to 100,000 Over 100,000 Education Food Sales Food Service Health Care Lodging Mercantile and Service Office All Other Northeast Midwest South West Major Sources 2 1979 1,255 2,202 1,508 511 [3] 336 469 278 894 861 1,616 1,217 1,826 1,395 526 4,965 1983 1,242 1,935 1,646 480 [3]

  3. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  4. Table 8.4c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.4a; Billion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.4a; Billion Btu) Year Fossil Fuels Nuclear Electric Power Renewable Energy Other 9 Electricity Net Imports Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 Commercial Sector 10<//td> 1989 9,135 6,901 18,424 1,143 35,603 [–] 685 1,781 9,112 [–] – – 11,578 – –

  5. Table 8.4b Consumption for Electricity Generation by Energy Source: Electric Power Sector, 1949-2011 (Subset of Table 8.4a; Billion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    b Consumption for Electricity Generation by Energy Source: Electric Power Sector, 1949-2011 (Subset of Table 8.4a; Billion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995,055 414,632 569,375 NA 2,979,062 0 1,349,185 5,803 NA NA NA NA 1,354,988 NA 5,420 4,339,470 1950 2,199,111

  6. BTU International Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    1862 Product: US-based manufacturer of thermal processing equipment, semiconductor packaging, and surface mount assembly. References: BTU International Inc1 This article is a...

  7. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    Gasoline and Diesel Fuel Update

    Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011

  8. Table 8.4a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995,055 414,632 569,375 NA 2,979,062 0 1,424,722 5,803 NA NA NA NA 1,430,525 NA 5,420 4,415,007 1950

  9. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalCapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  10. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalAnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  11. Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu )

    U.S. Energy Information Administration (EIA) (indexed site)

    Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products 20 0 41 1 1 3 30 11 -0 107 313 Textile Mills 32 0 65 (s) (s) 2 66 12 -0 178 314 Textile Product Mills 3 0 46 (s) 1 Q 20 (s) -0 72 315 Apparel 0 0 7 (s) (s)

  12. British Thermal Units (Btu) - Energy Explained, Your Guide To...

    U.S. Energy Information Administration (EIA) (indexed site)

    Wood and Wood Waste Waste-to-Energy (MSW) Landfill Gas and Biogas Biomass & the Environment See also: Biofuels Biofuels: Ethanol & Biodiesel Ethanol Use of Ethanol Ethanol & the ...

  13. Btu)","per Building

    U.S. Energy Information Administration (EIA) (indexed site)

    ,"Number of Buildings (thousand)","Floorspace (million square feet)","Floorspace per Building (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per...

  14. Nonrenewable Energy Sources - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) (indexed site)

    Energy - Energy Information Administration Sources Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for

  15. Renewable Energy Sources - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) (indexed site)

    Energy - Energy Information Administration Sources Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for

  16. Secondary Energy Sources - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) (indexed site)

    Energy - Energy Information Administration Sources Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for

  17. Table 3.3 Consumer Price Estimates for Energy by Source, 1970...

    U.S. Energy Information Administration (EIA) (indexed site)

    Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars 1 per Million Btu) Year Primary Energy 2 Electric Power Sector 11,12 Retail Electricity 13 Total Energy 9,10,14 ...

  18. Energy Units - Energy Explained, Your Guide To Understanding...

    U.S. Energy Information Administration (EIA) (indexed site)

    Calculators Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  19. Hydrogen - Energy Explained, Your Guide To Understanding Energy...

    U.S. Energy Information Administration (EIA) (indexed site)

    Hydrogen Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  20. Solar - Energy Explained, Your Guide To Understanding Energy...

    U.S. Energy Information Administration (EIA) (indexed site)

    Solar Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  1. Ethanol - Energy Explained, Your Guide To Understanding Energy...

    U.S. Energy Information Administration (EIA) (indexed site)

    Ethanol Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  2. Energy Use in Homes - Energy Explained, Your Guide To Understanding...

    U.S. Energy Information Administration (EIA) (indexed site)

    Homes Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  3. Geothermal - Energy Explained, Your Guide To Understanding Energy...

    U.S. Energy Information Administration (EIA) (indexed site)

    Geothermal Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  4. Hydropower - Energy Explained, Your Guide To Understanding Energy...

    U.S. Energy Information Administration (EIA) (indexed site)

    Hydropower Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  5. Energy Use in Industry - Energy Explained, Your Guide To Understanding...

    U.S. Energy Information Administration (EIA) (indexed site)

    Industry Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  6. Coal - Energy Explained, Your Guide To Understanding Energy ...

    U.S. Energy Information Administration (EIA) (indexed site)

    Coal Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  7. Biomass - Energy Explained, Your Guide To Understanding Energy...

    U.S. Energy Information Administration (EIA) (indexed site)

    Biomass Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  8. Nuclear - Energy Explained, Your Guide To Understanding Energy...

    U.S. Energy Information Administration (EIA) (indexed site)

    Nuclear Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  9. Electricity - Energy Explained, Your Guide To Understanding Energy...

    U.S. Energy Information Administration (EIA) (indexed site)

    Electricity Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  10. Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003

    U.S. Energy Information Administration (EIA) (indexed site)

    0 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major Sources 2

  11. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) (indexed site)

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  12. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  13. Energy Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sources Energy Sources Renewable Energy Renewable Energy Learn more about energy from solar, wind, water, geothermal and biomass. Read more Nuclear Nuclear Learn more about how we use nuclear energy. Read more Electricity Electricity Learn more about how we use electricity as an energy source. Read more Fossil Fossil Learn more about our fossil energy sources: coal, oil and natural gas. Read more Primary energy sources take many forms, including nuclear energy, fossil energy -- like oil, coal

  14. Annual Energy Outlook 2015 - Appendix A

    U.S. Energy Information Administration (EIA) (indexed site)

    6 Reference case Energy Information Administration Annual Energy Outlook 2015 Table A3. Energy prices by sector and source (2013 dollars per million Btu, unless otherwise noted) ...

  15. Annual Energy Outlook 2015 - Appendix A

    Annual Energy Outlook

    Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration Annual Energy Outlook 2015 ...

  16. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) (indexed site)

    1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," ","

  17. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) (indexed site)

    with the national average of 81 thousand Btu per square foot), while buildings using solar energy or passive solar features used the major energy sources more intensively...

  18. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural

  19. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural

  20. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) (indexed site)

    1. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," ","

  1. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) (indexed site)

    2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," ","

  2. BTU LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Small start-up with breakthrough technology seeking funding to prove commercial feasibility Coordinates: 45.425788, -122.765754 Show Map Loading map......

  3. Energy Sources: Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Why Hydrogen? * Fossil fuels release CO 2 , SO X , NO X SO X , NO X * Declining reserves, national security security GM Hydrogen Energy Hydrogen- the use of Hydrogen gas in...

  4. Table 7.2 Average Prices of Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; " " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"

  5. Table N8.2. Average Prices of Purchased Energy Sources, 1998

    U.S. Energy Information Administration (EIA) (indexed site)

    2. Average Prices of Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural

  6. Energy Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sources Energy Sources August 18, 2016 A significant focus will be how to strategically monitor a geologic system to reduce uncertainty in its performance and build confidence that CO2 is effectively and safely stored. DOE's Carbon Storage Advances Featured in Special Issue of International Journal of Greenhouse Gas Control A special issue of the International Journal of Greenhouse Gas Control (IJGGC) was released on August 17, 2016 highlighting carbon-storage research conducted under the Energy

  7. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  8. How Much Energy Does Each State Produce? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Does Each State Produce? How Much Energy Does Each State Produce? Energy Production in Trillion Btu: 2012 Click on each state to learn more about how much energy it produces Source: EIA State Energy Data Systems

  9. Level: National and Regional Data; Row: End Uses; Column: Energy...

    Gasoline and Diesel Fuel Update

    Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. ... from noncombustible renewable resources, minus quantities sold and transferred out. ...

  10. Level: National and Regional Data; Row: End Uses; Column: Energy...

    Gasoline and Diesel Fuel Update

    Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. ... from noncombustible renewable resources, minus quantities sold and transferred out. ...

  11. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) (indexed site)

    S4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," ","

  12. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this draft environmental impact statement that evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky. DOE cancelled this project after publication of the draft.

  13. Commercial low-Btu coal-gasification plant

    SciTech Connect (OSTI)

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The feasibility study consisted of the following tasks: perform preliminary engineering of a gasification facility; provide a definitive full gas cost estimate based upon the preliminary engineering fuel design; determine the preferred source of coal; determine the potential for the disposition of, and income from, by-products; develop a health and safety program; perform an analysis of the risks involved in constructing and operating such a facility; and prepare a Financial Analysis of General Refractories selected Dravo Engineers and Constructors based upon the qualifications of Dravo in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts and, if the present natural gas decontrol plan is not fully implemented, some budgetary risks would occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  14. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for ...

  15. Fact #792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that time – from about...

  16. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) (indexed site)

    1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  17. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) (indexed site)

    2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " ","

  18. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " ","

  19. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " ","

  20. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  1. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " ","

  2. "Table A22. Total Quantity of Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) (indexed site)

    2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC","

  3. "Table A32. Total Quantity of Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) (indexed site)

    Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC","

  4. Subtask 3.16 - Low-BTU Field Gas Application to Microturbines

    SciTech Connect (OSTI)

    Darren Schmidt; Benjamin Oster

    2007-06-15

    Low-energy gas at oil production sites presents an environmental challenge to the sites owners. Typically, the gas is managed in flares. Microturbines are an effective alternative to flaring and provide on-site electricity. Microturbines release 10 times fewer NOx emissions than flaring, on a methane fuel basis. The limited acceptable fuel range of microturbines has prevented their application to low-Btu gases. The challenge of this project was to modify a microturbine to operate on gases lower than 350 Btu/scf (the manufacturer's lower limit). The Energy & Environmental Research Center successfully operated a Capstone C30 microturbine firing gases between 100-300 Btu/scf. The microturbine operated at full power firing gases as low as 200 Btu/scf. A power derating was experienced firing gases below 200 Btu/scf. As fuel energy content decreased, NO{sub x} emissions decreased, CO emissions increased, and unburned hydrocarbons remained less than 0.2 ppm. The turbine was self-started on gases as low as 200 Btu/scf. These results are promising for oil production facilities managing low-Btu gases. The modified microturbine provides an emission solution while returning valuable electricity to the oilfield.

  5. Alternative Energy Sources Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sources Inc Jump to: navigation, search Name: Alternative Energy Sources Inc Place: Kansas City, Missouri Zip: 64108 Product: Kansas City-based company that constructs, owns and...

  6. Table 7.5 Average Prices of Selected Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) (indexed site)

    5 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Row"

  7. Energy Intensity Indicators: Commercial Source Energy Consumption

    Energy.gov [DOE]

    Figure C1 below reports as index numbers over the period 1970 through 2011: 1) commercial building floor space, 2) energy use based on source energy consumption, 3) energy intensity, and 4) the...

  8. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect (OSTI)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  9. Alternate sources of energy

    SciTech Connect (OSTI)

    1980-01-01

    Eleven papers are included. A separate abstract was prepared for each for Energy Research Abstracts (ERA); seven were selected for Energy Abstracts for Policy Analysis (EAPA).

  10. Tips: Heating and Cooling | Department of Energy

    Energy.gov (indexed) [DOE]

    us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total)....

  11. Energy Bill Literature Sources

    Energy.gov (indexed) [DOE]

    Of the "PURPA Standards" in the Energy Policy Act of 2005 March 22, 2006 Sponsored by ... federal standards that are part of the Energy Policy Act of 2005. This is not intended ...

  12. Energy Bill Literature Sources

    Energy.gov (indexed) [DOE]

    of the "PURPA Standards" in the Energy Independence and Security Act of 2007 August 11, ... federal standards that are part of the Energy Independence and Security Act of 2007. ...

  13. " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) (indexed site)

    1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," ","

  14. " Row: Selected SIC Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) (indexed site)

    1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," ","

  15. " Row: Selected SIC Codes; Column: Energy Sources and Shipments;"

    U.S. Energy Information Administration (EIA) (indexed site)

    2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",,"

  16. Renewable energy generation sources

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    technology. The result is a reliable, competitive solution that optimizes CLFR technology benefits by ensuring that the energy harvested can be dispatched night or day through the...

  17. Renewable energy generation sources...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Renewable Systems & Energy Infrastructure | Solar Programs For more information please contact: William Kolb E-mail: wjkolb@sandia.gov Phone (505) 844-1935 Website: ...

  18. "Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"

    U.S. Energy Information Administration (EIA) (indexed site)

    Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" "

  19. Understanding Earth's Energy Sources

    Education Teach & Learn

    In Part 1, students will know how fossil fuels were formed; recognize common uses of Earth’s fossil energy resources and develop an understanding of the risks and benefits of their continued use. In Part 2, students focus on the importance of renewable energy resources for a sustainable future. Current renewable energy technologies (solar, wind, biomass, hydrogen, hydroelectric, and geothermal) are discussed. Information on solar is located on a separate power point (2006 Solar PP) as is hydrogen and transportation alternatives. Students will be able to distinguish between renewable and nonrenewable energy resources and identify the positive and negative effects of each. The long-term understanding of this unit is for the students to make informed energy decisions in the future.

  20. International Energy Outlook 2016-Coal - Energy Information Administration

    Gasoline and Diesel Fuel Update

    4. Coal print version Overview In the IEO2016 Reference case, coal remains the second-largest energy source worldwide-behind petroleum and other liquids-until 2030. From 2030 through 2040, it is the third-largest energy source, behind both liquid fuels and natural gas. World coal consumption increases from 2012 to 2040 at an average rate of 0.6%/year, from 153 quadrillion Btu in 2012 to 169 quadrillion Btu in 2020 and to 180 quadrillion Btu in 2040. The Reference case estimates do not include

  1. higher penetration of renewable energy sources

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    higher penetration of renewable energy sources - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ...

  2. Alternative Energy Sources - An Interdisciplinary Module for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    An Interdisciplinary Module for Energy Education Alternative Energy Sources - An ... Energy Basics, Wind Energy, Solar Summary Find activities focused on renewable energy ...

  3. Alternative Energy Sources - An Interdisciplinary Module for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alternative Energy Sources - An Interdisciplinary Module for Energy Education Alternative ... Energy Basics, Wind Energy, Solar Summary: Find activities focused on renewable energy ...

  4. Energy Bill Literature Sources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of the "PURPA Standards" in the Energy Independence and Security Act of 2007 August 11, 2008 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National Association of Regulatory Utility Commissioners (NARUC) National Rural Electric Cooperative Association (NRECA) Prepared by: Kenneth Rose and Mike Murphy iii Preface This manual was prepared by Kenneth Rose, a consultant and Senior Fellow at the Institute of Public Utilities at Michigan State

  5. Energy Bill Literature Sources

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Of the "PURPA Standards" in the Energy Policy Act of 2005 March 22, 2006 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National Association of Regulatory Utility Commissioners (NARUC) National Rural Electric Cooperative Association (NRECA) Prepared by: Kenneth Rose and Karl Meeusen Preface This manual was prepared by Kenneth Rose, a consultant and Senior Fellow at the Institute of Public Utilities at Michigan State University, and Karl Meeusen,

  6. E Source | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    use and provision of energy. Who Is E Source? Whether you're an electric or natural gas utility or a large business customer served by a utility, your problems are probably...

  7. Energy Intensity Indicators: Residential Source Energy Consumption

    Energy.gov [DOE]

    Figure R1 below reports as index numbers over the period 1970 through 2011: 1) the number of U.S. households, 2) the average size of those housing units, 3) residential source energy consumption, 4...

  8. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG

  9. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG

  10. " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) (indexed site)

    N4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," ","

  11. "Table A25 Average Prices of Selected Purchased Energy Sources by Census"

    U.S. Energy Information Administration (EIA) (indexed site)

    Average Prices of Selected Purchased Energy Sources by Census" " Region, Industry Group, and Selected Industries, 1991: Part 2" " (Estimates in Dollars per Million Btu)" ,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate"," "," "," ","Row" "Code(a)","Industry Groups and Industry","Electricity","Fuel Oil","Fuel

  12. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  13. Low-Btu coal gasification in the United States: company topical. [Brick producers

    SciTech Connect (OSTI)

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  14. Alternative Energy Sources -- An Interdisciplinary Module for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education | Department of Energy - An Interdisciplinary Module for Energy Education Alternative Energy Sources -- An Interdisciplinary Module for Energy Education Find activities focused on renewable energy sources such as solar and wind. lesson302.pdf (735.79 KB) More Documents & Publications Alternative Energy Sources - An Interdisciplinary Module for Energy Education Alternative Energy Sources

  15. U.S. primary energy consumption by source and sector, 2015

    U.S. Energy Information Administration (EIA) (indexed site)

    33 35 24 9 53 100 14 9 <1 91 28 72 23 4 1 92 3 5 44 39 7 11 76 1 9 1 26 37 13 22 petroleum 1 35.4 (36%) sector natural gas 2 28.3 (29%) coal 3 15.7 (16%) renewable energy 4 9.7 (10%) nuclear electric power 8.3 (9%) source percent of sources percent of sectors industrial 5 21.2 (22%) residential and commercial 6 10.6 (11%) electric power 7 38.2 (39%) 15 transportation 27.6 (28%) U.S. primary energy consumption by source and sector, 2015 Total = 97.7 quadrillion British thermal units (Btu) 1

  16. Property:EnergyAccessPowerSource | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search Property Name EnergyAccessPowerSource Property Type String Description Power Source Retrieved from "http:en.openei.orgwindex.php?titleProperty:Energy...

  17. Aparna Renewable Energy Sources Pvt Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Aparna Renewable Energy Sources Pvt Ltd Jump to: navigation, search Name: Aparna Renewable Energy Sources Pvt. Ltd. Place: Bangalore, Karnataka, India Zip: 56003 Sector: Wind...

  18. Wuxi Guofei Green Energy Source Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Guofei Green Energy Source Co Ltd Jump to: navigation, search Name: Wuxi Guofei Green Energy Source Co Ltd Place: Wuxi, Jiangsu Province, China Zip: 214142 Sector: Solar Product:...

  19. Alternative Water Sources Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities Water Efficiency Alternative Water Sources Map Alternative Water Sources Map The Federal Energy Management Program (FEMP) created the Alternative Water Map to...

  20. Ground Source Solutions | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Kingdom Zip: NG22 9GW Sector: Buildings Product: UK-based installer of ground source energy systems to domestic and commercial buildings. References: Ground Source...

  1. Power Sources Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sources Inc Jump to: navigation, search Name: Power Sources Inc. Place: Charlotte, North Carolina Sector: Biomass Product: US-based operator and developer of biomass-to-energy...

  2. Alternative Water Sources Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Facilities Water Efficiency Alternative Water Sources Map Alternative Water Sources Map The Federal Energy Management Program (FEMP) created the Alternative Water Map to ...

  3. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) (indexed site)

    12:23:06 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  4. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) (indexed site)

    12:23:08 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  5. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) (indexed site)

    12:23:12 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  6. Alternative Energy Sources - An Interdisciplinary Module for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education | Department of Energy Alternative Energy Sources - An Interdisciplinary Module for Energy Education Alternative Energy Sources - An Interdisciplinary Module for Energy Education Below is information about the student activity/lesson plan from your search. Grades: 5-8 Subject: Energy Basics, Wind Energy, Solar Summary: Find activities focused on renewable energy sources such as solar and wind. Curriculum: Science, Mathematics, Language Arts Plan Time: Varies by activity Standards:

  7. Biodiesel - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) (indexed site)

    Information Administration Biodiesel Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  8. Home - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) (indexed site)

    Information Administration Explained Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  9. Wind - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) (indexed site)

    Information Administration Wind Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future Emissions

  10. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) (indexed site)

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  11. Wind Energy and the Environment - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) (indexed site)

    Understanding Energy - Energy Information Administration Wind > Wind Energy & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the

  12. Energy Demand | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the...

  13. Energy and the Environment - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) (indexed site)

    Energy - Energy Information Administration Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook

  14. EnergySource formerly Char LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Char LLC Jump to: navigation, search Name: EnergySource (formerly Char LLC) Place: El Centro, California Zip: 92244 Product: California-based clean energy project developer....

  15. Reaching Underground Sources (from MIT Energy Initiative's Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Reaching Underground Sources (from MIT Energy Initiative's Energy Futures, Spring 2012) American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Reaching ...

  16. Wonder Source Energy Technology Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Wonder Source Energy Technology Co, Ltd Place: China Product: China-based maker of Lithium Polymer and LiFeO4 batteries. References: Wonder Source Energy Technology Co, Ltd1...

  17. U.S. Energy Facts - Energy Explained, Your Guide To Understanding Energy -

    U.S. Energy Information Administration (EIA) (indexed site)

    Energy Information Administration U.S. Energy Facts Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook

  18. ThermaSource Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ThermaSource Inc Jump to: navigation, search Name: ThermaSource Inc Place: Santa Rosa, California Zip: 95403 Sector: Geothermal energy, Services Product: A US-based company...

  19. Power Sources Challenge Video | Department of Energy

    Office of Environmental Management (EM)

    Power Sources - Plasma Ball Power Sources.jpg What if we could harness the power of the Sun for energy here on Earth? What would it take to accomplish this feat? Is it possible? In ...

  20. Alternative Energy Sources - An Interdisciplinary Module for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education | Department of Energy An Interdisciplinary Module for Energy Education Alternative Energy Sources - An Interdisciplinary Module for Energy Education Below is information about the student activity/lesson plan from your search. Grades 5-8 Subject Energy Basics, Wind Energy, Solar Summary Find activities focused on renewable energy sources such as solar and wind. Curriculum Science, Mathematics, Language Arts Plan Time Varies by activity Materials Vary by activity Standards not

  1. Source Selection | Department of Energy

    Office of Environmental Management (EM)

    Status Reporting Requirement (pdf) Source Evaluation Board (SEB) Secretariat and Knowledge Manager - Acquisition Guide Chapter 1.4 (pdf) Acquisition Planning - Acquisition...

  2. Power conditioning system for energy sources

    DOE Patents [OSTI]

    Mazumder, Sudip K.; Burra, Rajni K.; Acharya, Kaustuva

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  3. How Much Energy Does Your State Produce? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Does Your State Produce? How Much Energy Does Your State Produce? November 10, 2014 - 2:52pm Addthis Energy Production in Trillion Btu: 2012 Click on each state to learn more about how much energy it produces Source: EIA State Energy Data Systems Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs More Energy Maps Interested in learning more about national energy trends? Learn how much you spend on energy and how much energy you consume. Here

  4. BrightSource Energy | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    California-based company that develops, builds, owns, and operates large scale solar plants. These solar plants deliver solar energy to industrial and utility companies....

  5. Use of Energy in the United States - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) (indexed site)

    Understanding Energy - Energy Information Administration Energy Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  6. Waste-to-Energy (Municipal Solid Waste) - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) (indexed site)

    Understanding Energy - Energy Information Administration Waste-to-Energy (MSW) Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse

  7. Harvesting Energy from Abundant, Low Quality Sources of Heat - Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Harvesting Energy from Abundant, Low Quality Sources of Heat Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing SummaryThe basic concept of energy harvesting is to collect energy from solar or other free sources of thermal energy that exist in the environment and convert them to

  8. U.S. Total Consumption of Heat Content of Natural Gas (BTU per...

    Gasoline and Diesel Fuel Update

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  9. Ground Source Heat Pumps | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    efficient when cooling your home. Not only does this save energy and money, it reduces air pollution. GSHP System Ground source heat pump systems consist of three parts: the...

  10. Canada's energy picture: Prospects for renewable and nonrenewable energy sources

    SciTech Connect (OSTI)

    Dixon, R.S.

    1980-12-01

    Canada's historical energy consumption, its current consumption and its likely requirements by the turn of the century are reviewed. It is estimated that up to 50% more energy will be required in the year 2000 than is consumed now. Both non-renewable and renewable energy resources are reviewed in the light of these future energy requirements and the need to substitute alternative energy sources for conventional oil. Most of the increase in energy consumption and the substitution of oil are likely to be met by conventional energy sources, since their reserves are extensive and their technologies well-established. Use of these resources will help Canada to reduce and eventually eliminate its dependency on imported oil and achieve energy selfsufficiency in the future. It will also allow time to carefully assess nonconventional energy sources, the most successful of which could become a significant part of the energy picture in the next century. This use of established energy sources and the gradual development and incorporation of new energy sources will cause minimal disruption to society and will lay the foundation for a future society with its energy options secured.

  11. Wood and Wood Waste - Energy Explained, Your Guide To Understanding Energy

    U.S. Energy Information Administration (EIA) (indexed site)

    - Energy Information Administration Wood and Wood Waste Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From

  12. Energy Upgrade of the Siam Photon Source

    SciTech Connect (OSTI)

    Rugmai, S.; Rujirawat, S.; Hoyes, G. G.; Prawanta, S.; Kwankasem, A.; Siriwattanapitoon, S.; Suradet, N.; Pimol, P.; Junthong, N.; Boonsuya, S.; Janpuang, P.; Prawatsri, P.; Klysubun, P.

    2007-01-19

    The energy upgrade of the storage ring is part of the plans to develop x-ray production capability of the Siam Photon Source. Simulations have been carried out. The bending magnet power supply has been replaced. Energy of the injected 1 GeV beam from the injector is then ramped up 20% in the storage ring. Studies for modification of bending magnet poles have been done to evaluate possibility of further increasing the beam energy to 1.4 GeV in the future. Studies of the energy upgrade plan and details of energy ramping process, together with beam measurements are presented.

  13. Capital Sources and Providers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Capital Sources and Providers Capital Sources and Providers An image of a blue diagram showing an arrow labeled "Lender" pointing to a rectangle labeled "Borrower" with a curved arrow labeled "Repayment" pointing back to "Lender." Another arrow labeled "Capital Sources" also points to the arrow labeled "Lender." The most important elements of a clean energy lending program are the capital source and the capital provider. The capital

  14. Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    U.S. Energy Information Administration (EIA) (indexed site)

    .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources; Column: First Use per Energy Sources and Shipments; Unit: Trillion Btu. Total Energy Source First Use Total United States Coal 1,328 Natural Gas 5,725 Net Electricity 2,437 Purchases 2,510 Transfers In 33 Onsite Generation from Noncombustible Renewable Energy 7 Sales and Transfers Offsite 113 Coke and Breeze 374

  15. Biomass and the Environment - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) (indexed site)

    Energy - Energy Information Administration Biomass & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases

  16. Ethanol and the Environment - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) (indexed site)

    Energy - Energy Information Administration Ethanol & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases

  17. Gasoline and the Environment - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) (indexed site)

    Understanding Energy - Energy Information Administration Gasoline > Gasoline & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the

  18. Landfill Gas and Biogas - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) (indexed site)

    Energy - Energy Information Administration Landfill Gas and Biogas Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  19. Natural Gas and the Environment - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) (indexed site)

    Understanding Energy - Energy Information Administration Gas > Natural Gas & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the

  20. Nuclear Power and the Environment - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) (indexed site)

    Understanding Energy - Energy Information Administration Nuclear > Nuclear Power & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on

  1. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  2. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  3. Energy conservation in ethanol production from renewable resources and non-petroleum energy sources

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The dry milling process for the conversion of grain to fuel ethanol is reviewed for the application of energy conservation technology, which will reduce the energy consumption to 70,000 Btu per gallon, a reduction of 42% from a distilled spirits process. Specific energy conservation technology applications are outlined and guidelines for the owner/engineer for fuel ethanol plants to consider in the selection on the basis of energy conservation economics of processing steps and equipment are provided. The process was divided into 5 sections and the energy consumed in each step was determined based on 3 sets of conditions; a conventional distilled spirits process; a modern process incorporating commercially proven energy conservation; and a second generation process incorporating advanced conservation technologies which have not yet been proven. Steps discussed are mash preparation and cooking, fermentation, distillation, and distillers dried grains processing. The economics of cogeneration of electricity on fuel ethanol plants is also studied. (MCW)

  4. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Gasoline and Diesel Fuel Update

    National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. ... National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. ...

  5. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Annual Energy Outlook

    Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ... Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; ...

  6. Table N1.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998

    U.S. Energy Information Administration (EIA) (indexed site)

    .3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First

  7. Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002

    U.S. Energy Information Administration (EIA) (indexed site)

    5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First

  8. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) (indexed site)

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  9. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value

  10. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and

  11. Kansas Energy Sources: A Geological Review

    SciTech Connect (OSTI)

    Merriam, Daniel F.; Brady, Lawrence L.; Newell, K. David

    2012-03-15

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U.S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer.

  12. Central airport energy systems using alternate energy sources

    SciTech Connect (OSTI)

    Not Available

    1982-07-01

    The purpose of this project was to develop the concept of a central airport energy system designed to supply energy for aircraft ground support and terminal complex utility systems using municipal waste as a fuel. The major task was to estimate the potential for reducing aircraft and terminal fuel consumption by the use of alternate renewable energy sources. Additional efforts included an assessment of indirect benefits of reducing airport atmospheric and noise pollution.

  13. Combined compressed air storage-low BTU coal gasification power plant

    DOE Patents [OSTI]

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  14. Electric Power From Ambient Energy Sources

    SciTech Connect (OSTI)

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  15. Annual Energy Review, 1996

    Annual Energy Outlook

    condensate. b Natural gas plant liquids. c Biofuels, conventional hydroelectric power, geothermal energy, solar energy, and wind energy. d Includes -0.03 quadrillion Btu for...

  16. Annual Energy Review 1998

    Annual Energy Outlook

    condensate. b Natural gas plant li uids. c Biomass, conventional hydroelectric power, geothermal energy, solar energy, and wind energy. d Includes -0.05 uadrillion Btu...

  17. Annual Energy Review 1997

    Annual Energy Outlook

    condensate. b Natural gas plant liquids. c Biofuels, conventional hydroelectric power, geothermal energy, solar energy, and wind energy. d Includes -0.04 quadrillion Btu...

  18. EA-164 Constellation Power Source, Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Constellation Power Source, Inc EA-164 Constellation Power Source, Inc Order authorizing Constellation Power Source, Inc to export electric energy to Canada. EA-164 Constellation Power Source, Inc (44.81 KB) More Documents & Publications EA-162 PP&L, Inc EA-163 Duke Energy Trading and Marketing, L.L.C EA-158 Williams Energy Services Company

  19. U.S. Energy Information Administration | Renewable Energy...

    Annual Energy Outlook

    Biom ass Energy Consum ption (Trillion Btu) 26 U.S. Energy Information Administration | Renewable Energy Annual 2009 Table 1.8 Industrial biomass energy consumption and electricity ...

  20. State Energy Price and Expenditure Estimates

    Reports and Publications

    2016-01-01

    Energy price and expenditure estimates in dollars per million Btu and in million dollars, by state, 1970-2014.

  1. Energy Recovery Linacs for Light Source Applications

    SciTech Connect (OSTI)

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  2. Purchasing Energy-Efficient Residential Air Source Heat Pumps

    Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for residential air-source heat pumps, which is an ENERGY STAR qualified product category.

  3. Sandia Energy - Sandia Releases Open-Source Hydrokinetic Turbine...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Releases Open-Source Hydrokinetic Turbine Design Model, CACTUS Home Renewable Energy Energy Water Power News News & Events Computational Modeling & Simulation Sandia Releases...

  4. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  5. Alternative Water Sources Maps | Department of Energy

    Energy Savers

    Facilities Water Efficiency Alternative Water Sources Maps Alternative Water Sources Maps Rainwater Harvesting Regulations Rainwater Harvesting Regulations Read more ...

  6. Carbon Emissions: Paper Industry

    U.S. Energy Information Administration (EIA) (indexed site)

    Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994...

  7. Property:HeatSource | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    HeatSource Jump to: navigation, search Property Name HeatSource Property Type String Description A description of the resource heat source in the geothermal area. Describes what...

  8. 1999 Commercial Buildings Characteristics--Energy Sources and...

    U.S. Energy Information Administration (EIA) (indexed site)

    that is used to answer questions about the use of energy in the commercial buildings sector. Questions such as: What kind of energy sources are used? What is energy used for? and...

  9. Agri Source Fuels | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: Agri-Source Fuels Place: Pensacola, Florida Zip: 32505 Product: Biodiesel producer located in Florida that owns a plant in Dade City. References: Agri-Source...

  10. Open Source Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    What are the benefits of open source software?The open source approach to software development engages a community of interested users and developers in a collaborative ...

  11. Blue Source LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Source LLC Jump to: navigation, search Name: Blue Source LLC Place: Salt Lake City, Utah Zip: 84121 Product: Salt Lake City-based emission offset aggregation company. References:...

  12. Source Selection Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Source Selection Guide PDF icon Source Selection Guide More Documents & Publications Acquisition Guide Chapter 50.1- Extraordinary Contractual Actions (January 2009) Chapter...

  13. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update

    2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments NAICS Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 1,162 257 12 23 583 8 182 2 96 * 3112 Grain and Oilseed Milling 355 56 * 1 123 Q

  14. FACTSHEET: Energy Department Launches Open-Source Online Training Resource

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Help Students, Workers Gain Valuable Skills | Department of Energy FACTSHEET: Energy Department Launches Open-Source Online Training Resource to Help Students, Workers Gain Valuable Skills FACTSHEET: Energy Department Launches Open-Source Online Training Resource to Help Students, Workers Gain Valuable Skills June 21, 2012 - 7:47am Addthis The Energy Department and SRI International today officially launched the National Training and Education Resource (NTER), an open-source platform for

  15. Home Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat & Cool » Home Heating Systems Home Heating Systems Household Heating Systems: Although several different types of fuels are available to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, nearly half of us use natural gas. | Source:

  16. Vermont Source Testing Review | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ReviewLegal Abstract This form initiates the review and approval process for required studies and testing to be conducted on source(s) to serve Proposed or Existing Public...

  17. Colorado Nonpoint Source Website | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Source Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Nonpoint Source Website Abstract This is the website of the Colorado...

  18. Annual Energy Outlook 2015

    Gasoline and Diesel Fuel Update

    ... GDP Gross domestic product. Btu British thermal unit. - - Not applicable. Sources: 2012 and 2013: IHS Economics, Industry and Employment models, November 2014. Projections: ...

  19. Thermoelectric power source utilizing ambient energy harvesting...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Program Website Abstract: A method and apparatus for providing electrical energy to an electrical device wherein the electrical energy is originally generated from ...

  20. EA-164-A Constellation Power Source, Inc | Department of Energy

    Office of Environmental Management (EM)

    PDF icon EA-164-A Constellation Power Source, Inc More Documents & Publications EA-164 Constellation Power Source, Inc EA-196-A Minnesota Power, Sales EA-232 OGE Energy Resources

  1. EIA's Energy in Brief: What are the major sources and users of energy in

    Gasoline and Diesel Fuel Update

    the United States? the major sources and users of energy in the United States? Last Updated: December 29, 2015 The major energy sources consumed in the United States are petroleum (oil), natural gas, coal, nuclear energy, and renewable energy. The major user sectors of these energy sources are residential and commercial buildings, industry, transportation, and electric power. The pattern of energy use varies widely by sector. For example, petroleum provides 92% of the energy used for

  2. Armenia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ,"inlineLabel":"","visitedicon":"" Country Profile Name Armenia Population Unavailable GDP Unavailable Energy Consumption 0.22 Quadrillion Btu 2-letter ISO code AM 3-letter ISO...

  3. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North...

  4. Slovenia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Slovenia Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code SI 3-letter ISO code SVN Numeric ISO code...

  5. Peru: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Peru Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code PE 3-letter ISO code PER Numeric ISO code...

  6. Guadeloupe: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Guadeloupe Population Unavailable GDP Unavailable Energy Consumption 0.03 Quadrillion Btu 2-letter ISO code GP 3-letter ISO code GLP Numeric ISO...

  7. Marshall Islands: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Marshall Islands Population 56,429 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code MH 3-letter ISO code MHL Numeric ISO code...

  8. Australia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Australia Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code AU 3-letter ISO code AUS Numeric ISO code...

  9. San Marino: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name San Marino Population 32,576 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code SM 3-letter ISO code SMR Numeric ISO code...

  10. Anguilla: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Anguilla Population 13,452 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code AI 3-letter ISO code AIA Numeric ISO code...

  11. Gambia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Gambia Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code GM 3-letter ISO code GMB Numeric ISO code...

  12. Thailand: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Thailand Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code TH 3-letter ISO code THA Numeric ISO code...

  13. Sierra Leone: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Sierra Leone Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code SL 3-letter ISO code SLE Numeric ISO code...

  14. Djibouti: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Djibouti Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code DJ 3-letter ISO code DJI Numeric ISO code...

  15. Saint Barthlemy: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Saint Barthlemy Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code BL 3-letter ISO code BLM Numeric ISO code...

  16. Taiwan: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Taiwan Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code TW 3-letter ISO code TWN Numeric ISO code...

  17. Georgia (country): Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Georgia Population Unavailable GDP Unavailable Energy Consumption 0.17 Quadrillion Btu 2-letter ISO code GE 3-letter ISO code GEO Numeric ISO...

  18. France: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name France Population Unavailable GDP Unavailable Energy Consumption 11.29 Quadrillion Btu 2-letter ISO code FR 3-letter ISO code FRA Numeric ISO...

  19. Croatia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Croatia Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code HR 3-letter ISO code HRV Numeric ISO code...

  20. Palau: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Palau Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code PW 3-letter ISO code PLW Numeric ISO code...

  1. Uganda: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Uganda Population Unavailable GDP Unavailable Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code UG 3-letter ISO code UGA Numeric ISO...

  2. Tuvalu: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Tuvalu Population 10,837 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code TV 3-letter ISO code TUV Numeric ISO code...

  3. Ireland: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Ireland Population Unavailable GDP Unavailable Energy Consumption 0.69 Quadrillion Btu 2-letter ISO code IE 3-letter ISO code IRL Numeric ISO...

  4. Cayman Islands: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Cayman Islands Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code KY 3-letter ISO code CYM Numeric ISO code...

  5. Myanmar: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Myanmar Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code MM 3-letter ISO code MMR Numeric ISO code...

  6. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

  7. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  8. EPA Climate Leaders Mobile Source Guidance | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    EPA Climate Leaders Mobile Source Guidance AgencyCompany Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Phase: Determine...

  9. Solar Energy Sources SES Solar Inc formerly Electric Network...

    Open Energy Information (Open El) [EERE & EIA]

    SES Solar Inc formerly Electric Network com Jump to: navigation, search Name: Solar Energy Sources - SES Solar Inc (formerly Electric Network.com) Place: Vancouver, British...

  10. VOLTTRONTM as an Open Source Platform for Energy Management Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Saifur Rahman (srahman@vt.edu) Virginia Tech VOLTTRON TM as an Open Source Platform for Energy Management Applications HVAC Controllers Lighting Controllers Lighting circuit(s) ...

  11. Level: National and Regional Data; Row: Energy Sources; Column...

    Annual Energy Outlook

    Table 10.1 Nonswitchable Minimum and Maximum Consumption, 2006; Level: National and Regional Data; Row: Energy Sources; Column: Consumption Potential; Unit: Physical Units. Actual ...

  12. June 2014 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    June 2014 Most Viewed Documents for Renewable Energy Sources Chapter 6. Drilling and Well Construction Culver, Gene (1998) 426 Chapter 11. Heat Exchangers Rafferty, Kevin D.; ...

  13. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Gasoline and Diesel Fuel Update

    Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. ... from noncombustible renewable resources, minus quantities sold and transferred out. ...

  14. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Annual Energy Outlook

    Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. ... from noncombustible renewable resources, minus quantities sold and transferred out. ...

  15. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    Gasoline and Diesel Fuel Update

    Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts. ... from noncombustible renewable resources, minus quantities sold and transferred out. ...

  16. Level: National Data; Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) (indexed site)

    Data; Row: NAICS Codes; Column: Energy Sources and Shipments Unit: Establishment Counts. ... from noncombustible renewable resources, minus quantities sold and transferred out. ...

  17. Sources for Department of Energy Scientific and Technical Reports...

    Office of Scientific and Technical Information (OSTI)

    Sources for Department of Energy Scientific and Technical Reports You can find full-text scientific and technical reports produced since 1991 (and some reports published prior to ...

  18. Iowa's 2nd congressional district: Energy Resources | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    district in Iowa. Registered Energy Companies in Iowa's 2nd congressional district Big River Resources LLC EnerGenetics International First BTU Iowa Renewable Energy LLC...

  19. U.S. Energy Information Administration | State Energy Data 2014...

    Annual Energy Outlook

    Note: EIA "biomass waste" data also include energy crops grown specifically for energy production, which would not normally constitute waste. British thermal unit (Btu): The ...

  20. Air-Source Heat Pumps | Department of Energy

    Energy.gov (indexed) [DOE]

    When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of...

  1. Green Source Consulting | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Consulting Jump to: navigation, search Name: Green Source Consulting Place: Wien Vienna, Austria Zip: 1010 Product: Private Austrian project developer with a focus in the Central...

  2. Prototype Testing Could Help Prove a Promising Energy Source | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Prototype Testing Could Help Prove a Promising Energy Source Prototype Testing Could Help Prove a Promising Energy Source June 8, 2015 - 1:36pm Addthis Prototype Testing Could Help Prove a Promising Energy Source Alison LaBonte Marine and Hydrokinetic Technology Manager The first third-party-validated, grid-tied wave energy device in North American waters started feeding renewable electricity to Marine Corps Base Hawaii last week. In coordination with the U.S. Navy, Northwest

  3. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update

    2a. Consumption of Energy (Primary 1 Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) Note: 1. The Btu conversion factors used...

  4. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  5. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  6. Advanced Photon Source Upgrade Project - Energy

    ScienceCinema (OSTI)

    Gibson, Murray; Chamberlain, Jeff; Young, Linda

    2013-04-19

    An upgrade to the Advanced Photon Source (announced by DOE - http://go.usa.gov/ivZ) will help scientists better understand complex environments such as in catalytic reactions.

  7. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) (indexed site)

    ... It does not include electricity inputs from onsite" "cogeneration or generation from combustible fuels because that energy has" "already been included as generating fuel (for ...

  8. " Row: NAICS Codes; Column: Energy Sources...

    U.S. Energy Information Administration (EIA) (indexed site)

    ... "establishments that should probably be classified in other industries within 324. Their " ... "higher energy intensities of correctly classified petroleum refineries." " NFNo ...

  9. Air-Source Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat & Cool » Heat Pump Systems » Air-Source Heat Pumps Air-Source Heat Pumps An air-source heat pump can provide efficient heating and cooling for your home. When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. This is possible because a heat pump moves heat rather than converting it from a fuel like combustion heating systems do. Air-source heat pumps have been used for many years in

  10. POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL

    SciTech Connect (OSTI)

    Booz, Allen, and Hamilton, Inc.,

    1980-04-01

    It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

  11. A Requirement for Significant Reduction in the Maximum BTU Input...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Barbecue Association's Comments on DOE's Regulatory Burden RFI Department of Energy Request for Information: Reducing Regulatory Burden (Reply Comments) Re: Regulatory Burden RFI

  12. Radiological Source Registry and Tracking (RSRT) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Radiological Source Registry and Tracking (RSRT) Radiological Source Registry and Tracking (RSRT) Department of Energy (DOE) Notice N 234.1 Reporting of Radioactive Sealed Sources has been superseded by DOE Order O 231.1B Environment, Safety and Health Reporting. O 231.1B identifies the requirements for centralized inventory and transaction reporting for radioactive sealed sources. Each DOE site/facility operator that owns, possesses, uses or maintains in custody those accountable radioactive

  13. EarthSource Energy Solutions Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Zip: 02446 Region: Greater Boston Area Sector: Geothermal energy Product: Manufacture geothermal heat pumps Website: www.earthsource-energy.com Coordinates:...

  14. Property:File/Source | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    (next 25) A Australia-Solar-Map.png + Australian Government + Awstwspd100onoff3-1.jpg + National Renewable Energy Laboratory + B BOEMRE OCS.oil.gas.2007-12.map.pdf + Bureau of...

  15. Solar: A Clean Energy Source for Utilities

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  16. Department Announces Loan Guarantee for BrightSource Energy Inc.

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy has finalized a $1.6 billion loan guarantee with the California company BrightSource Energy, Inc. to complete the construction of three concentrated solar power plants. A projected that is projected to create more than 1,000 jobs and, once operational, will produce enough solar energy to power 85,000 homes a year.

  17. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book

    3 2003 Commercial Buildings Delivered Energy End-Use Intensities, by Building Activity (Thousand Btu per SF) (1) Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other Total Note(s): Source(s): 43.5 45.2

  18. Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption

    Buildings Energy Data Book

    1 FY 2007 Federal Primary Energy Consumption (Quadrillion Btu) Buildings and Facilities 0.88 Vehicles/Equipment 0.69 (mostly jet fuel and diesel) Total Federal Government Consumption 1.57 Source(s): DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-1, p. 90 for total consumption and Table A-7, p. 95 for vehicle and equipment operations

  19. U. S. Btu tax plan revised; industry wary of results

    SciTech Connect (OSTI)

    Crow, P.

    1993-04-12

    The Clinton administration has changed its U.S. energy tax proposal to remove some objection voiced by industry and consumers. The Treasury Department's revised plan will still tax oil products at double the rate of other types of energy except for home heating oil, which now is to be taxed at the lower rate for natural gas. Of major importance to California producers, the revision will not tax natural gas used in enhanced recovery for heavy oil. This paper describes exemptions; effects on natural gas; the credibility gap; inhibition of gas market recovery; tax on NGL; and forecasting the future.

  20. Nuclear energy is an important source of power, supplying 20

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear

  1. SourceGas- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    SourceGas offers the Excess is Out Program for residential customers in Colorado. The Excess is Out Program offers various rebates for the installation of energy efficient equipment. The Program...

  2. SourceGas- Commercial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    SourceGas offers the Excess is Out Program for commercial customers in Colorado. The Excess is Out Program offers various rebates for the installation of energy efficient equipment. The Program...

  3. Building Energy Management Open-Source Software (BEMOSS)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VOLTTRON MeeKng July 23, 2015 Saifur Rahman (srahman@vt.edu) Virginia Tech What is BEMOSS? BEMOSS is a Building Energy Management Open Source Soware (BEMOSS) soluKon that is ...

  4. Building Energy Management Open-Source Software Development (BEMOSS) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Management Open-Source Software Development (BEMOSS) Building Energy Management Open-Source Software Development (BEMOSS) Image courtesy of Virginia Tech and BTO Peer Review. Image courtesy of Virginia Tech and BTO Peer Review. Lead Performer: Virginia Tech Advanced Research Institute - Alexandria, VA Project Partners: -- Arlington County, Virginia -- Danfoss Corporation - Baltimore, MD -- Virginia Tech Foundation - Blacksburg, VA DOE Funding: $1,918,034 Cost Share:

  5. Carbon Capture and Storage from Industrial Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Carbon Capture and Storage from Industrial Sources Carbon Capture and Storage from Industrial Sources In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from DOE's Energy Information Administration. In a major step forward in the fight to reduce CO2 emissions from industrial plants, DOE has allocated American Recovery and Reinvestment Act (Recovery Act)

  6. The Spallation Neutron Source Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Spallation Neutron Source Project The Spallation Neutron Source Project When the Department of Energy (DOE) set out in the 1990s to develop a neutron scattering research facility that was ten times more powerful than the state of the art, the concept for the project that it chose was as ambitious as the scientific capability it sought to deliver. The Spallation Neutron Source (SNS) Project called for unprecedented collaboration among six national laboratories as well as significant research

  7. Electron energy recovery system for negative ion sources

    DOE Patents [OSTI]

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  8. RSF Workshop Session I: Energy Goals and Features of the RSF

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    +1 Exemplary Performance Credit for EAc1 Baseline 132 kBtuSFyear Design 33 kBtuSFyear ... Power (kW) Time of Day ASHRAE 90.1 Baseline Lighting Power Installed Lighting Power Energy ...

  9. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update

    Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) Note: The Btu conversion factors used for...

  10. Opportunities for renewable energy sources in Central Asia countries

    SciTech Connect (OSTI)

    Obozov, A.J.; Loscutoff, W.V.

    1998-07-01

    This report presents an overview of the state of conventional energy sources and the potential for development of renewable energy sources in the Central Asia countries of Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan. The region has a population of about 50 million in an area of more than four million square kilometers. The per capita gross internal product is more than $2,500, although the economy has been declining the past five years. The area has substantial coal, oil, uranium, and natural gas reserves, although they are not distributed equally among the five countries. Energy production is such that the countries do not have to rely heavily on imports. One of the problems in Central Asia is that the energy prices are substantially below the world prices. This is a factor in development of renewable energy sources. The primary renewable energy resources available are wind in Kazakhstan, solar in the entire region, biomass in Kyrgyzstan, and micro-hydropower stations in Kazakhstan and Kyrgyzstan. All of these have the potential to provide a significant amount of the required energy for the region. However, all of the countries have an abundance of various renewable energy resources. To effectively use these resources, however, a number of barriers to their development and commercialization must be overcome. These include low prices of conventional energy sources, absence of legislative support, lack of financing for new technologies, and lack of awareness of renewable energy sources by the population. A number of specific actions are proposed to overcome these barriers. These include establishment of a Central Asia coordinating council for renewable energy, development of a regional renewable energy program, and setting up a number of large demonstration projects. 16 figs.

  11. Antigua and Barbuda: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Antigua and Barbuda Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code AG 3-letter ISO code ATG Numeric ISO code...

  12. Methods of performing downhole operations using orbital vibrator energy sources

    DOE Patents [OSTI]

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  13. Low energy spread ion source with a coaxial magnetic filter

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette

    2000-01-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  14. Biogas as a source of rural energy

    SciTech Connect (OSTI)

    Kalia, A.K.

    2000-01-01

    The hilly state of Himachal Pradesh, with nearly 2.15 million cattle and 0.7 million buffalo, has the potential to install 0.64 million biogas plants of 1 m{sup 3} size. These plants could generate nearly 4.90 x 105 m{sup 3} of biogas, equivalent to 3.07 x 10{sup 5} L kerosene per day to meet domestic energy needs of nearly one-fourth of its rural population. During 1982--1998, only 12.8% of this potential was achieved. The percent of possible potential achieved in plant installations in 12 districts of this state, namely, Bilaspur, Chamba, Hamirpur, Kangra, Kinnaur, Kullu, Lahul-Spiti, Mandi, Shimla, Sirmour, Solan, and Una, are 35.35, 1.70, 20.96, 8.67, 1.54, 6.96, 0.00, 18.49, 3.84, 8.521, 18.29, and 13.23%, respectively. There is a need to strengthen biogas promotion, particularly in the districts of Kangra, Mandi, Solan, and Una, which range from mid-hill to low-hill terrain and which have large potential due to high concentration of bovine population. Increased costs and comparatively low rate of subsidies has resulted in a decreasing rate of plant installation annually, from 3,500 during 1987--1992 to fewer than 1,200 during 1995--1998. The percentage of functioning plants was 82% in 1987--1988 but has decreased to 63%. To ensure proper installation and functionality of plants, the authors discuss the needed improvements in the biogas promotion program.

  15. A compact, versatile low-energy electron beam ion source

    SciTech Connect (OSTI)

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  16. U.S. Department of Energy Categorical Exclusion Determination Form

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Proposed Rulemaking for Energy Conservation Standards for Certain Industrial Equipment (RIN: 1904-AD23) EERE- Buildings Technology Program Nationwide In this Proposed Rulemaking, DOE proposes to adopt energy conservation standards specified by ASHRAE Standard 90.1-2013 including standards for three classes of small phase commercial air cooled air conditioners and heat pumps less than 65,000 Btu/h, three classes of water source heat pumps, and one class of commercial oil fired storage water

  17. Oil shale as an energy source in Israel

    SciTech Connect (OSTI)

    Fainberg, V.; Hetsroni, G.

    1996-01-01

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

  18. Energy Intensity Indicators: Electricity Generation Energy Intensity

    Energy.gov [DOE]

    A kilowatt-hour (kWh) of electric energy delivered to the final user has an energy equivalent to 3,412 British thermal units (Btu). Figure E1, below, tracks how much energy was used by the various...

  19. The source of multi spectral energy of solar energetic electron

    SciTech Connect (OSTI)

    Herdiwijaya, Dhani

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  20. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book

    3 Energy Consumption and Expenditures per Square Foot of Office Floorspace, by Function and Class (1) | | Medical Offices | Financial Offices | Corporate Facilities(2) | Class A | Class B | Class C | | All Buildings | Note(s): Source(s): 2006 2004 Energy Intensity Energy Energy Intensity Energy (thousand Btu/SF) Expenditures ($2010/SF) (thousand Btu/SF) Expenditures ($2010/SF) 90.79 2.56 N.A. 2.36 N.A. 3.12 N.A. 3.32 96.78 2.74 89.38 2.72 81.88 2.44 78.84 2.08 74.87 2.30 N.A. 2.04 1) Categories

  1. Buildings Energy Data Book: 3.9 Educational Facilities

    Buildings Energy Data Book

    2003 Delivered Energy End-Use Intensities and Consumption of Educational Facilities, by Building Activity (1) Space Heating 389 47% 39.4 Cooling 79 10% 8.0 Ventilation 83 10% 8.4 Water Heating 57 7% 5.8 Lighting 113 14% 11.5 Cooking 8 1% 0.8 Refrigeration 16 2% 1.6 Office Equipment 4 0% 0.4 Computers 32 4% 3.4 Other 39 5% 4.0 Total 820 100% 83.1 (2) Note(s): Source(s): Energy Consumption Energy Intensity (10^12 Btu) (thousand Btu/SF) 1) Educational facilities include K-12 as well as higher

  2. Combined Electric Machine and Current Source Inverter Drive System - Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Combined Electric Machine and Current Source Inverter Drive System Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00249_ID2505.pdf (764 KB) Technology Marketing SummaryThis technology is a drive system that includes a permanent magnet-less (PM-L) electric motor

  3. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) (indexed site)

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS","

  4. Pulsed Ionization Source for Ion Mobility Spectrometers - Energy Innovation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Pulsed Ionization Source for Ion Mobility Spectrometers Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 12-G00261-1114-1209.pdf (185 KB) Technology Marketing SummaryORNL's new wave of detection devices based on ion mobility spectrometry offer enhanced sensitivity and resolution and increased safety and flexibility. Leading the

  5. Most Viewed Documents for Renewable Energy Sources: December 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Renewable Energy Sources: December 2014 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 339 Generalized displacement correlation method for estimating stress intensity factors Fu, P; Johnson, S M; Settgast, R R; Carrigan, C R (2011) 107 Seventh Edition Fuel Cell Handbook NETL (2004) 96 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman

  6. Most Viewed Documents for Renewable Energy Sources: September 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Renewable Energy Sources: September 2014 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 224 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman Turnquist; Farshad Ghasripoor (2012) 179 Generalized displacement correlation method for estimating stress intensity factors Fu, P; Johnson, S M; Settgast, R R; Carrigan, C R (2011) 138 Hybrid Cooling

  7. September 2013 Most Viewed Documents for Renewable Energy Sources | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information September 2013 Most Viewed Documents for Renewable Energy Sources Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 362 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 79 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman Turnquist; Farshad Ghasripoor (2012) 79 A study of

  8. September 2015 Most Viewed Documents for Renewable Energy Sources | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information September 2015 Most Viewed Documents for Renewable Energy Sources Calculation of brine properties. [Above 80/sup 0/F and for salt content between 5 and 25%] Dittman, G.L. (1977) 257 Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 217 Thermal conductivity of aqueous NaCl solutions

  9. Compact, energy EFFICIENT neutron source: enabling technology for various applications

    SciTech Connect (OSTI)

    Hershcovitch, A.; Roser, T.

    2009-12-01

    A novel neutron source comprising of a deuterium beam (energy of about 100 KeV) injected into a tube filled with tritium gas and/or tritium plasma that generates D-T fusion reactions, whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles, is described. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Beryllium walls of proper thickness can be utilized to absorb 14 MeV neutrons and release 2-3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Unlike currently proposed methods, where accelerator-based neutron sources are very expensive, large, and require large amounts of power for operation, this neutron source is compact, inexpensive, easy to test and to scale up. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and transmutation of radioactive waste.

  10. Residential | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy use and the...

  11. Commercial | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy consumption. The residential sector accounted for 57 percent of that energy use and the...

  12. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) (indexed site)

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  13. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  14. EIA Energy Efficiency-Table 1d. Nonfuel Consumption (Site Energy...

    Annual Energy Outlook

    d Page Last Modified: May 2010 Table 1d. Nonfuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and...

  15. Israel: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Consumption 0.86 Quadrillion Btu 2-letter ISO code IL 3-letter ISO code ISR Numeric ISO code 376 UN Region1 Western Asia OpenEI Resources Energy Maps 0 Tools 2...

  16. Sources for Department of Energy Scientific and Technical Reports | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Sources for Department of Energy Scientific and Technical Reports You can find full-text scientific and technical reports produced since 1991 (and some reports published prior to 1991) online at SciTech Connect. A fee-based digitization or copying service for reports currently not available in digital format is available by calling (865) 576-8401 or e-mailing reports@osti.gov. If you do not find what you are searching for in

  17. Directory of financing sources for foreign energy projects

    SciTech Connect (OSTI)

    La Ferla, L.

    1995-09-01

    The Office of National Security Policy has produced this Directory of Financing Sources for Foreign Energy Projects. The Directory reviews programs that offer financing from US government agencies, multilateral organizations, public, private, and quasi-private investment funds, and local commercial and state development banks. The main US government agencies covered are the US Agency for International Development (USAID), the Export-Import Bank of the US (EXIM Bank), Overseas Private Investment Corporation (OPIC), US Department of Energy, US Department of Defense, and the US Trade and Development Agency (TDA). Other US Government Sources includes market funds that have been in part capitalized using US government agency funds. Multilateral organizations include the World Bank, International Finance Corporation (IFC), Asian Development Bank (ADB), European Bank for Reconstruction and Development (EBRD), and various organizations of the United Nations. The Directory lists available public, private, and quasi-private sources of financing in key emerging markets in the Newly Independent States and other developing countries of strategic interest to the US Department of Energy. The sources of financing listed in this directory should be considered indicative rather than inclusive of all potential sources of financing. Initial focus is on the Russian Federation, Ukraine, india, China, and Pakistan. Separate self-contained sections have been developed for each of the countries to enable the user to readily access market-specific information and to support country-specific Departmental initiatives. For each country, the directory is organized to follow the project life cycle--from prefeasibility, feasibility, project finance, cofinancing, and trade finance, through to technical assistance and training. Programs on investment and export insurance are excluded.

  18. Building Energy Management Open-Source Software (BEMOSS)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building Energy Management Open-Source Software (BEMOSS) 2014 Building Technologies Office Peer Review Saifur Rahman (srahman@vt.edu) Virginia Tech Project Summary Timeline: Key Partners: Start date: November 1, 2013 Planned end date: October 31, 2014 Key Milestones 1.First cut of the BEMOSS software - 10/31/2014 2.User interface app - 10/31/2014 3.Functioning plug & play compatible controllers - 10/31/2014 Arlington County, VA Danfoss Corporation Virginia Tech Foundation Project Goal:

  19. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) (indexed site)

    4 Number of Establishments by Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS","

  20. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) (indexed site)

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS","

  1. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  2. Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    1 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education 15 74 83 11 113 2 16 4 32 21 371 Food Sales 6 12 7 Q 46 2 119 2 2 10 208 Food Service 10 28 24 10 42 13 70 2 2 15 217 Health Care 6 34 42 2 105 1 8 4 10 36 248 Inpatient 3 25 38 2 76 1 4 2 7 21

  3. Table 7. Carbon intensity of the energy supply by State (2000...

    U.S. Energy Information Administration (EIA) (indexed site)

    Carbon intensity of the energy supply by State (2000-2011)" "kilograms of energy-related carbon dioxide per million Btu" ,,,"Change" ,,,"2000 to 2011"...

  4. Monthly energy review: September 1996

    SciTech Connect (OSTI)

    1996-09-01

    Energy production during June 1996 totaled 5.6 quadrillion Btu, a 0.5% decrease from the level of production during June 1995. Energy consumption during June 1996 totaled 7.1 quadrillion Btu, 2.7% above the level of consumption during June 1995. Net imports of energy during June 1996 totaled 1.6 quadrillion Btu, 4.5% above the level of net imports 1 year earlier. Statistics are presented on the following topics: energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. 37 figs., 59 tabs.

  5. On the Frontiers of a New Energy Source | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    On the Frontiers of a New Energy Source On the Frontiers of a New Energy Source May 2, 2012 - 3:59pm Addthis Building on this initial, small-scale test, the Department is launching a new research effort to conduct a long-term production test in the Arctic. Building on this initial, small-scale test, the Department is launching a new research effort to conduct a long-term production test in the Arctic. Secretary Chu Secretary Chu Former Secretary of Energy What are the key facts? Methane hydrates

  6. Electron energy recovery system for negative ion sources

    DOE Patents [OSTI]

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  7. Improved design of proton source and low energy beam transport line for European Spallation Source

    SciTech Connect (OSTI)

    Neri, L. Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G.; Torrisi, G.; Dipartimento di Ingegneria dellInformazione, delle Infrastrutture e dellEnergia Sostenibile, Universit Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria ; Cheymol, B.; Ponton, A.; Galat, A.; Patti, G.; Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'universit 2, 35020 Legnaro ; Gozzo, A.; Lega, L.; Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Universit degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  8. Tennessee Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Tennessee" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",7749,4940,5646,10212,8138 "Solar","-","-","-","-","-" "Wind",55,50,50,52,41 "Wood/Wood Waste",698,868,879,862,914 "MSW Biogenic/Landfill Gas",24,19,27,29,23 "Other Biomass",35,33,9,7,11

  9. Tennessee Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Tennessee" "Energy Source",2006,2007,2008,2009,2010 "Fossil",61336,61205,57753,42242,46203 " Coal",60498,60237,57058,41633,43670 " Petroleum",160,232,216,187,217 " Natural Gas",664,722,467,409,2302 " Other Gases",14,13,12,12,13 "Nuclear",24679,28700,27030,26962,27739 "Renewables",8559,5910,6611,11162,9125 "Pumped Storage",-668,-704,-739,-650,-721 "Other",5,3,8,1,3

  10. Texas Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",662,1644,1039,1029,1262 "Solar","-","-","-","-",8 "Wind",6671,9006,16225,20026,26251 "Wood/Wood Waste",892,914,976,649,900 "MSW Biogenic/Landfill Gas",219,322,401,398,449 "Other Biomass",37,45,38,31,96

  11. Texas Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",349849,351720,344813,333227,341054 " Coal",146391,147279,147132,139107,150173 " Petroleum",1789,1309,1034,1405,708 " Natural Gas",197870,199531,193247,189066,186882 " Other Gases",3798,3601,3401,3649,3291 "Nuclear",41264,40955,40727,41498,41335 "Renewables",8480,11932,18679,22133,28967 "Pumped

  12. Pennsylvania Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2844,2236,2549,2683,2332 "Solar","-","-","s",4,8 "Wind",361,470,729,1075,1854 "Wood/Wood Waste",683,620,658,694,675 "MSW Biogenic/Landfill Gas",1411,1441,1414,1577,1706 "Other Biomass",18,16,2,3,3

  13. Pennsylvania Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Fossil",138173,143909,137862,136047,145210 " Coal",122558,122693,117583,105475,110369 " Petroleum",1518,1484,938,915,571 " Natural Gas",13542,19198,18731,29215,33718 " Other Gases",554,534,610,443,552 "Nuclear",75298,77376,78658,77328,77828 "Renewables",5317,4782,5353,6035,6577 "Pumped Storage",-698,-723,-354,-731,-708

  14. Louisiana Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",713,827,1064,1236,1109 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",2881,2898,2639,2297,2393 "MSW Biogenic/Landfill

  15. Louisiana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69795,71028,72850,70155,80110 " Coal",24395,23051,24100,23067,23924 " Petroleum",1872,2251,2305,1858,3281 " Natural Gas",41933,43915,45344,44003,51344 " Other Gases",1595,1811,1101,1227,1561 "Nuclear",16735,17078,15371,16782,18639 "Renewables",3676,3807,3774,3600,3577 "Pumped

  16. Maine Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",4278,3738,4457,4212,3810 "Solar","-","-","-","-","-" "Wind","-",99,132,299,499 "Wood/Wood Waste",3685,3848,3669,3367,3390 "MSW Biogenic/Landfill Gas",235,208,206,232,237 "Other Biomass",48,52,52,41,27

  17. Maine Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8214,7869,8264,7861,8733 " Coal",321,376,352,72,87 " Petroleum",595,818,533,433,272 " Natural Gas",7298,6675,7380,7355,8374 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",8246,7945,8515,8150,7963 "Pumped

  18. Maryland Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2104,1652,1974,1889,1667 "Solar","-","-","-","-","s" "Wind","-","-","-","-",1 "Wood/Wood Waste",218,203,198,175,165 "MSW Biogenic/Landfill Gas",408,400,415,376,407 "Other

  19. Maryland Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32091,33303,29810,26529,27102 " Coal",29408,29699,27218,24162,23668 " Petroleum",581,985,406,330,322 " Natural Gas",1770,2241,1848,1768,2897 " Other Gases",332,378,338,269,215 "Nuclear",13830,14353,14679,14550,13994 "Renewables",2730,2256,2587,2440,2241 "Pumped Storage","-","-","-","-","-"

  20. Massachusetts Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1513,797,1156,1201,996 "Solar","-","-","s","s",1 "Wind","-","-",4,6,22 "Wood/Wood Waste",125,119,123,115,125 "MSW Biogenic/Landfill Gas",1126,1094,1128,1104,1125 "Other Biomass",27,27,2,4,1

  1. Massachusetts Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",36773,40001,34251,30913,34183 " Coal",11138,12024,10629,9028,8306 " Petroleum",2328,3052,2108,897,296 " Natural Gas",23307,24925,21514,20988,25582 " Other Gases","-","-","-","-","-" "Nuclear",5830,5120,5869,5396,5918 "Renewables",2791,2038,2411,2430,2270 "Pumped

  2. Michigan Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1520,1270,1364,1372,1251 "Solar","-","-","-","-","-" "Wind",2,3,141,300,360 "Wood/Wood Waste",1704,1692,1710,1489,1670 "MSW Biogenic/Landfill Gas",735,721,738,829,795 "Other Biomass",2,1,1,5,8

  3. Minnesota Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",572,654,727,809,840 "Solar","-","-","-","-","-" "Wind",2055,2639,4355,5053,4792 "Wood/Wood Waste",590,727,725,796,933 "MSW Biogenic/Landfill Gas",412,423,399,384,340 "Other Biomass",3,143,372,503,576

  4. Minnesota Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",36125,36463,34879,32263,32454 " Coal",33070,32190,31755,29327,28083 " Petroleum",494,405,232,65,31 " Natural Gas",2561,3842,2866,2846,4341 " Other Gases","-",26,27,24,"-" "Nuclear",13183,13103,12997,12393,13478 "Renewables",3631,4586,6578,7546,7480 "Pumped

  5. Mississippi Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",1535,1488,1386,1417,1503 "MSW

  6. Mississippi Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",34254,39184,37408,36266,43331 " Coal",18105,17407,16683,12958,13629 " Petroleum",399,399,76,17,81 " Natural Gas",15706,21335,20607,23267,29619 " Other Gases",44,42,40,25,2 "Nuclear",10419,9359,9397,10999,9643 "Renewables",1541,1493,1391,1424,1504 "Pumped Storage","-","-","-","-","-"

  7. Missouri Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",199,1204,2047,1817,1539 "Solar","-","-","-","-","-" "Wind","-","-",203,499,925 "Wood/Wood Waste","s","s",2,2,"s" "MSW Biogenic/Landfill Gas",15,22,30,50,58 "Other

  8. Missouri Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Fossil",81245,80127,78788,75122,79870 " Coal",77450,75084,73532,71611,75047 " Petroleum",61,60,57,88,126 " Natural Gas",3729,4979,5196,3416,4690 " Other Gases",5,3,3,7,7 "Nuclear",10117,9372,9379,10247,8996 "Renewables",223,1234,2293,2391,2527 "Pumped Storage",48,383,545,567,888 "Other",54,37,24,27,32

  9. Montana Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",10130,9364,10000,9506,9415 "Solar","-","-","-","-","-" "Wind",436,496,593,821,930 "Wood/Wood Waste",94,111,111,95,97 "MSW Biogenic/Landfill Gas","-","-","-","-","-"

  10. Montana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",17583,18960,18822,16181,19068 " Coal",17085,18357,18332,15611,18601 " Petroleum",419,479,419,490,409 " Natural Gas",68,106,66,78,57 " Other Gases",11,19,6,1,2 "Nuclear","-","-","-","-","-" "Renewables",10661,9971,10704,10422,10442 "Pumped

  11. Nebraska Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",893,347,346,434,1314 "Solar","-","-","-","-","-" "Wind",261,217,214,383,422 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill Gas",37,46,45,47,53 "Other

  12. Nevada Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",1344,1253,1383,1633,2070 "Hydro Conventional",2058,2003,1751,2461,2157 "Solar","-",44,156,174,217 "Wind","-","-","-","-","-" "Wood/Wood Waste","-","-","-",1,"-" "MSW Biogenic/Landfill Gas","-","-","-","-","-"

  13. Oklahoma Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",624,3066,3811,3553,2809 "Solar","-","-","-","-","-" "Wind",1712,1849,2358,2698,3808 "Wood/Wood Waste",297,276,23,68,255 "MSW Biogenic/Landfill Gas","-",4,5,"-","-" "Other

  14. Oregon Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",37850,33587,33805,33034,30542 "Solar","-","-","-","-","-" "Wind",931,1247,2575,3470,3920 "Wood/Wood Waste",799,843,717,674,632 "MSW Biogenic/Landfill Gas",71,100,131,128,205 "Other

  15. Alabama Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",7252,4136,6136,12535,8704 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",3865,3784,3324,3035,2365 "MSW Biogenic/Landfill

  16. Alabama Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97827,101561,97376,87580,102762 " Coal",78109,77994,74605,55609,63050 " Petroleum",180,157,204,219,200 " Natural Gas",19407,23232,22363,31617,39235 " Other Gases",131,178,204,135,277 "Nuclear",31911,34325,38993,39716,37941 "Renewables",11136,7937,9493,15585,11081 "Pumped

  17. Alaska Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1224,1291,1172,1324,1433 "Solar","-","-","-","-","-" "Wind",1,1,"s",7,13 "Wood/Wood Waste",1,"s","-","-","-" "MSW Biogenic/Landfill

  18. Alaska Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5443,5519,5598,5365,5308 " Coal",617,641,618,631,620 " Petroleum",768,1010,978,1157,937 " Natural Gas",4058,3868,4002,3577,3750 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1231,1302,1177,1337,1452 "Pumped

  19. Arizona Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",73385,79794,82715,74509,73386 " Coal",40443,41275,43840,39707,43644 " Petroleum",73,49,52,63,66 " Natural Gas",32869,38469,38822,34739,29676 " Other Gases","-","-","-","-","-" "Nuclear",24012,26782,29250,30662,31200 "Renewables",6846,6639,7400,6630,6941 "Pumped Storage",149,125,95,169,209

  20. Arkansas Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1551,3237,4660,4193,3659 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",1689,1581,1466,1529,1567 "MSW Biogenic/Landfill Gas",7,33,36,34,38

  1. Arkansas Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",33626,34203,34639,36385,40667 " Coal",24183,25744,26115,25075,28152 " Petroleum",161,94,64,88,45 " Natural Gas",9282,8364,8461,11221,12469 " Other Gases","-","-","-","-","-" "Nuclear",15233,15486,14168,15170,15023 "Renewables",3273,4860,6173,5778,5283 "Pumped Storage",15,30,48,100,-1

  2. California Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    California" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",12821,12991,12883,12853,12600 "Hydro Conventional",48047,27328,24128,27888,33431 "Solar",495,557,670,647,769 "Wind",4883,5585,5385,5840,6079 "Wood/Wood Waste",3422,3407,3484,3732,3551 "MSW Biogenic/Landfill Gas",1685,1657,1717,1842,1812 "Other Biomass",610,648,645,626,639 "Total",71963,52173,48912,53428,58881 "

  3. California Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    California" "Energy Source",2006,2007,2008,2009,2010 "Fossil",112317,122151,125699,118679,112376 " Coal",2235,2298,2280,2050,2100 " Petroleum",2368,2334,1742,1543,1059 " Natural Gas",105691,115700,119992,113463,107522 " Other Gases",2022,1818,1685,1623,1695 "Nuclear",31959,35792,32482,31764,32201 "Renewables",71963,52173,48912,53428,58881 "Pumped Storage",96,310,321,153,-171

  4. Utah Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",191,164,254,279,277 "Hydro Conventional",747,539,668,835,696 "Solar","-","-","-","-","-" "Wind","-","-",24,160,448 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill Gas",15,31,24,48,56 "Other

  5. Vermont Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1519,647,1493,1486,1347 "Solar","-","-","-","-","-" "Wind",11,11,10,12,14 "Wood/Wood Waste",439,453,415,393,443 "MSW Biogenic/Landfill Gas","-","-","-",24,25 "Other

  6. Virginia Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1351,1248,1011,1479,1500 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",1780,1792,1916,1708,1404 "MSW Biogenic/Landfill Gas",662,753,761,695,802

  7. Prospects for inertial fusion as an energy source

    SciTech Connect (OSTI)

    Hogan, W.J.

    1989-06-26

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

  8. Stochastic Optimal Scheduling of Residential Appliances with Renewable Energy Sources

    SciTech Connect (OSTI)

    Wu, Hongyu; Pratt, Annabelle; Chakraborty, Sudipta

    2015-07-03

    This paper proposes a stochastic, multi-objective optimization model within a Model Predictive Control (MPC) framework, to determine the optimal operational schedules of residential appliances operating in the presence of renewable energy source (RES). The objective function minimizes the weighted sum of discomfort, energy cost, total and peak electricity consumption, and carbon footprint. A heuristic method is developed for combining different objective components. The proposed stochastic model utilizes Monte Carlo simulation (MCS) for representing uncertainties in electricity price, outdoor temperature, RES generation, water usage, and non-controllable loads. The proposed model is solved using a mixed integer linear programming (MILP) solver and numerical results show the validity of the model. Case studies show the benefit of using the proposed optimization model.

  9. Conceptual Architecture of Building Energy Management Open Source Software (BEMOSS)

    SciTech Connect (OSTI)

    Khamphanchai, Warodom; Saha, Avijit; Rathinavel, Kruthika; Kuzlu, Murat; Pipattanasomporn, Manisa; Rahman, Saifur; Akyol, Bora A.; Haack, Jereme N.

    2014-12-01

    The objective of this paper is to present a conceptual architecture of a Building Energy Management Open Source Software (BEMOSS) platform. The proposed BEMOSS platform is expected to improve sensing and control of equipment in small- and medium-sized buildings, reduce energy consumption and help implement demand response (DR). It aims to offer: scalability, robustness, plug and play, open protocol, interoperability, cost-effectiveness, as well as local and remote monitoring. In this paper, four essential layers of BEMOSS software architecture -- namely User Interface, Application and Data Management, Operating System and Framework, and Connectivity layers -- are presented. A laboratory test bed to demonstrate the functionality of BEMOSS located at the Advanced Research Institute of Virginia Tech is also briefly described.

  10. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book

    1 2003 Commercial Delivered Energy Consumption Intensities, by Ownership of Unit (1) Ownership Nongovernment Owned 85.1 72% Owner-Occupied 87.3 35% Nonowner-Occupied 88.4 36% Government Owned 105.3 28% 100% Note(s): Source(s): Consumption (thousand Btu/SF) 1) Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, June 2006,

  11. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book

    8 Commercial Delivered Energy Consumption Intensities, by Vintage Consumption per Year Constructed Square Foot (thousand Btu/SF) Prior to 1960 84.4 23% 1960 to 1969 91.5 12% 1970 to 1979 97.0 18% 1980 to 1989 100.0 19% 1990 to 1999 90.3 19% 2000 to 2003 81.6 8% Average 91.0 Source(s): EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Oct. 2006, Table C1a

  12. OLED Testing Call for Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OLED Testing Call for Sources OLED Testing Call for Sources PDF icon OLED Testing Call for Sources - November 2015 More Documents & Publications CX-010821: Categorical Exclusion ...

  13. Bibliography of information sources on East Asian energy

    SciTech Connect (OSTI)

    Salosis, J.

    1982-11-01

    The first section of this bibliography is a subject index by title to sources of information on East Asian energy. The countries considered were: Brunei, the PRC, Taiwan, Hong Kong, Indonesia, Japan, the Koreas, Malaysia, the Philippines, Singapore, Thailand and Vietnam. If the geographic coverage by any source is restricted to a particular country and was not indicated by the title, a country abbreviation in parentheses was added. Titles that include the term data base are computerized. The second section contains the Title Index which lists each printed publication alphabetically with frequency of publication and the US$ price for a yearly air mail subscription. The publisher or distribution office is listed below the title. The Data Base Index lists computerized sources with the author and the vendor providing either online access or tapes. No prices have been quoted in this section because of the wide range of methods in use and the impossibility of running benchmarks for this study. The Address Index lists the publishers, data base authors and vendors alphabetically.

  14. Energy Sources for Yotta-TeV Iceberg Showers (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Energy Sources for Yotta-TeV Iceberg Showers Citation Details In-Document Search Title: Energy Sources for Yotta-TeV Iceberg Showers You are accessing a document from the ...

  15. ReneSola Ltd aka Zhejiang Yuhui Solar Energy Source Co Ltd |...

    Open Energy Information (Open El) [EERE & EIA]

    ReneSola Ltd aka Zhejiang Yuhui Solar Energy Source Co Ltd Jump to: navigation, search Name: ReneSola Ltd (aka Zhejiang Yuhui Solar Energy Source Co Ltd) Place: Jiashan County,...

  16. Energy Sources for Yotta-TeV Iceberg Showers (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Energy Sources for Yotta-TeV Iceberg Showers Citation Details In-Document Search Title: Energy Sources for Yotta-TeV Iceberg Showers In late February of 2002, warming climate along ...

  17. Geek-Up[3.11.2011]: Energy Efficiency, Catalysis and Open Source...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Efficiency, Catalysis and Open Source Tools Geek-Up3.11.2011: Energy Efficiency, Catalysis and Open Source Tools March 11, 2011 - 4:37pm Addthis L. Keith Woo | Photo ...

  18. Alaska Strategic Energy Plan and Planning Handbook

    Energy.gov (indexed) [DOE]

    Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE levelized cost of energy NSEDC ...

  19. Investigation of Fuel Quality Impact on the Combustion and Exhaust Emissions of a Turbo-Charged SI Engine Operated on Low BTU Gases

    Energy.gov [DOE]

    Research results validate an engine simulation model and provide guidelines for the improved control of combustion stability of SI engines operated on low-BTU gaseous fuels.

  20. Monthly energy review, December 1985. 1985 Annual data and summaries

    SciTech Connect (OSTI)

    Not Available

    1986-03-26

    US energy production during 1985 was 64.7 quadrillion British thermal units (Btu), 1.4% below the record level attained in 1984. US consumption of energy totaled 73.8 quadrillion Btu, about the same as in 1984 but well below the 78.9 quadrillion Btu consumed during the peak year of 1979. Net imports of energy fell from 9.0 quadrillion Btu in 1984 to 7.8 quadrillion Btu in 1985, a 12.8% decline that brought net imports to the second lowest level since the 1973-1974 oil embargo. Net imports remained significantly below the all-time high of 18.0 quadrillion Btu reached in 1977.

  1. Table 3.1 Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu) Year Coal 1 Natural Gas 2 Crude Oil 3 Fossil Fuel Composite 4 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Percent Change 7 1949 0.21 1.45 0.05 0.37 0.44 3.02 0.26 1.81 – – 1950 .21 1.41 .06 .43 .43 2.95 [R] .26 1.74 -3.6 1951 .21 1.35 .06 .40 .44 2.78 .26 1.65 -5.4 1952 .21 1.31 [R] .07 .45 .44 2.73 .26 1.63 -1.0 1953 .21 1.29 .08 .50 .46 2.86 .27 1.69 3.3 1954 .19 1.18 .09 .55 .48 2.94 .28 1.70 .7 1955

  2. Afghanistan: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    nlineLabel":"","visitedicon":"" Country Profile Name Afghanistan Population 15,500,000 GDP 21,747,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code AF 3-letter...

  3. Solomon Islands: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Solomon Islands Population 523,000 GDP 840,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code SB 3-letter ISO code SLB Numeric ISO...

  4. Kenya: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Kenya Population 38,610,097 GDP Unavailable Energy Consumption 0.21 Quadrillion Btu 2-letter ISO code KE 3-letter ISO code KEN Numeric ISO...

  5. Madagascar: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Madagascar Population 12,238,914 GDP 10,025,000,000 Energy Consumption 0.05 Quadrillion Btu 2-letter ISO code MG 3-letter ISO code MDG Numeric ISO...

  6. Mauritius: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    "","visitedicon":"" Country Profile Name Mauritius Population 1,236,817 GDP 14 Energy Consumption 0.06 Quadrillion Btu 2-letter ISO code MU 3-letter ISO code MUS Numeric ISO...

  7. Senegal: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Senegal Population 13,508,715 GDP 13,864,000,000 Energy Consumption 0.09 Quadrillion Btu 2-letter ISO code SN 3-letter ISO code SEN Numeric ISO...

  8. Greenland: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Greenland Population 56,968 GDP Unavailable Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code GL 3-letter ISO code GRL Numeric ISO...

  9. Maldives: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Maldives Population 393,500 GDP 1,944,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code MV 3-letter ISO code MDV Numeric ISO...

  10. United States: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    page. Country Profile Name United States Population 320,206,000 GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO...

  11. Tanzania: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    "","visitedicon":"" Country Profile Name Tanzania Population 44,928,923 GDP 37 Energy Consumption 0.12 Quadrillion Btu 2-letter ISO code TZ 3-letter ISO code TZA Numeric ISO...

  12. Syria: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Syria Population 17,951,639 GDP Unavailable Energy Consumption 0.84 Quadrillion Btu 2-letter ISO code SY 3-letter ISO code SYR Numeric ISO...

  13. Saint Lucia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Saint Lucia Population 173,765 GDP 1,239,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code LC 3-letter ISO code LCA Numeric ISO...

  14. Yemen: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Yemen Population 19,685,000 GDP 36,700,000,000 Energy Consumption 0.31 Quadrillion Btu 2-letter ISO code YE 3-letter ISO code YEM Numeric ISO...

  15. Seychelles: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Seychelles Population 84,000 GDP 2,760,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code SC 3-letter ISO code SYC Numeric ISO...

  16. South Korea: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name South Korea Population 51,302,044 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code KR 3-letter ISO code KOR Numeric ISO code...

  17. Guyana: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Guyana Population 747,884 GDP 2,788,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code GY 3-letter ISO code GUY Numeric ISO...

  18. Albania: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Albania Population 2,821,977 GDP 14,000,000,000 Energy Consumption 0.11 Quadrillion Btu 2-letter ISO code AL 3-letter ISO code ALB Numeric ISO...

  19. Romania: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Romania Population 20,121,641 GDP 191,581,000,000 Energy Consumption 1.68 Quadrillion Btu 2-letter ISO code RO 3-letter ISO code ROU Numeric ISO...

  20. Morocco: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Morocco Population 33,250,000 GDP 114,700,000,000 Energy Consumption 0.56 Quadrillion Btu 2-letter ISO code MA 3-letter ISO code MAR Numeric ISO...

  1. Dominica: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Dominica Population 72,301 GDP 497,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code DM 3-letter ISO code DMA Numeric ISO...

  2. Tonga: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Tonga Population 103,036 GDP 439,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code TO 3-letter ISO code TON Numeric ISO...

  3. Cape Verde: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Cape Verde Population 512,096 GDP 2,071,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code CV 3-letter ISO code CPV Numeric ISO...

  4. Burundi: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Burundi Population 8,053,574 GDP 3,037,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code BI 3-letter ISO code BDI Numeric ISO...

  5. Somalia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Somalia Population 10,428,043 GDP Unavailable Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code SO 3-letter ISO code SOM Numeric ISO...

  6. Ethiopia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Ethiopia Population 73,750,932 GDP 51,000,000,000 Energy Consumption 0.12 Quadrillion Btu 2-letter ISO code ET 3-letter ISO code ETH Numeric ISO...

  7. Montserrat: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Montserrat Population 4,900 GDP Unavailable Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code MS 3-letter ISO code MSR Numeric ISO...

  8. Faroe Islands: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Faroe Islands Population 48,351 GDP 2,450,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code FO 3-letter ISO code FRO Numeric ISO...

  9. Nepal: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Nepal Population 26,494,504 GDP Unavailable Energy Consumption 0.08 Quadrillion Btu 2-letter ISO code NP 3-letter ISO code NPL Numeric ISO...

  10. Panama: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Panama Population 3,608,431 GDP 49,142,000,000 Energy Consumption 0.24 Quadrillion Btu 2-letter ISO code PA 3-letter ISO code PAN Numeric ISO...

  11. Iran: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Iran Population 77,176,930 GDP 402,700,000,000 Energy Consumption 8.12 Quadrillion Btu 2-letter ISO code IR 3-letter ISO code IRN Numeric ISO...

  12. Nauru: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    "","visitedicon":"" Country Profile Name Nauru Population 9,275 GDP Unavailable Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code NR 3-letter ISO code NRU Numeric ISO...

  13. Guinea: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Guinea Population 10,628,972 GDP 5,212,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code GN 3-letter ISO code GIN Numeric ISO...

  14. Tunisia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Tunisia Population 10,982,754 GDP 45,611,000,000 Energy Consumption 0.35 Quadrillion Btu 2-letter ISO code TN 3-letter ISO code TUN Numeric ISO...

  15. Lithuania: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Lithuania Population 3,043,429 GDP 51,002,000,000 Energy Consumption 0.39 Quadrillion Btu 2-letter ISO code LT 3-letter ISO code LTU Numeric ISO...

  16. Cambodia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Cambodia Population 13,388,910 GDP 17,250,000,000 Energy Consumption 0.07 Quadrillion Btu 2-letter ISO code KH 3-letter ISO code KHM Numeric ISO...

  17. Kosovo: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Kosovo Population 1,733,842 GDP 7,813,000,000 Energy Consumption Quadrillion Btu 2-letter ISO code XK 3-letter ISO code XKX Numeric ISO code N...

  18. Togo: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Togo Population 5,337,000 GDP 3,685,000,000 Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code TG 3-letter ISO code TGO Numeric ISO...

  19. Uruguay: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Uruguay Population 3,286,314 GDP 58,283,000,000 Energy Consumption 0.17 Quadrillion Btu 2-letter ISO code UY 3-letter ISO code URY Numeric ISO...

  20. Rwanda: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Rwanda Population 10,515,973 GDP 7,431,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code RW 3-letter ISO code RWA Numeric ISO...

  1. Grenada: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Grenada Population 109,590 GDP 790,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code GD 3-letter ISO code GRD Numeric ISO...

  2. Burkina Faso: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Burkina Faso Population 14,017,262 GDP 13,000,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code BF 3-letter ISO code BFA Numeric ISO...

  3. Iraq: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Iraq Population 36,004,552 GDP 164,600,000,000 Energy Consumption 1.36 Quadrillion Btu 2-letter ISO code IQ 3-letter ISO code IRQ Numeric ISO...

  4. Benin: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Benin Population 9,983,884 GDP 7,429,000,000 Energy Consumption 0.05 Quadrillion Btu 2-letter ISO code BJ 3-letter ISO code BEN Numeric ISO...

  5. Portugal: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Portugal Population 10,562,178 GDP Unavailable Energy Consumption 1.06 Quadrillion Btu 2-letter ISO code PT 3-letter ISO code PRT Numeric ISO...

  6. Oman: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Oman Population 2,773,479 GDP 78,788,000,000 Energy Consumption 0.71 Quadrillion Btu 2-letter ISO code OM 3-letter ISO code OMN Numeric ISO...

  7. Angola: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Angola Population 18,498,000 GDP 129,785,000,000 Energy Consumption 0.20 Quadrillion Btu 2-letter ISO code AO 3-letter ISO code AGO Numeric ISO...

  8. Lebanon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Lebanon Population 4,965,914 GDP 44,967,000,000 Energy Consumption 0.20 Quadrillion Btu 2-letter ISO code LB 3-letter ISO code LBN Numeric ISO...

  9. Belize: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Belize Population 324,528 GDP 1,554,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code BZ 3-letter ISO code BLZ Numeric ISO...

  10. Slovakia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Slovakia Population 5,397,036 GDP Unavailable Energy Consumption 0.80 Quadrillion Btu 2-letter ISO code SK 3-letter ISO code SVK Numeric ISO...

  11. Bhutan: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Bhutan Population Unavailable GDP 1,488,000,000 Energy Consumption 0.05 Quadrillion Btu 2-letter ISO code BT 3-letter ISO code BTN Numeric ISO...

  12. Comoros: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Comoros Population 798,000 GDP 655,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code KM 3-letter ISO code COM Numeric ISO...

  13. Finland: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Finland Population 5,180,000 GDP 276,275,000,000 Energy Consumption 1.29 Quadrillion Btu 2-letter ISO code FI 3-letter ISO code FIN Numeric ISO...

  14. Latvia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Latvia Population 2,070,371 GDP 34,118,000,000 Energy Consumption 0.16 Quadrillion Btu 2-letter ISO code LV 3-letter ISO code LVA Numeric ISO...

  15. Cuba: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Cuba Population 11,210,064 GDP 78,694,000,000 Energy Consumption 0.42 Quadrillion Btu 2-letter ISO code CU 3-letter ISO code CUB Numeric ISO...

  16. Barbados: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Barbados Population 277,821 GDP 4,490,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code BB 3-letter ISO code BRB Numeric ISO...

  17. Cyprus: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Cyprus Population 838,897 GDP 23,006,000,000 Energy Consumption 0.13 Quadrillion Btu 2-letter ISO code CY 3-letter ISO code CYP Numeric ISO...

  18. Kiribati: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Kiribati Population 103,500 GDP 167,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code KI 3-letter ISO code KIR Numeric ISO...

  19. Saint Helena: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Saint Helena Population 4,255 GDP Unavailable Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code SH 3-letter ISO code SHN Numeric ISO...

  20. Brunei: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Brunei Population 415,717 GDP 17,092,000,000 Energy Consumption 0.19 Quadrillion Btu 2-letter ISO code BN 3-letter ISO code BRN Numeric ISO...

  1. Kuwait: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Kuwait Population 2,213,403 GDP 173,438,000,000 Energy Consumption 1.19 Quadrillion Btu 2-letter ISO code KW 3-letter ISO code KWT Numeric ISO...

  2. Malaysia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Malaysia Population 28,334,135 GDP Unavailable Energy Consumption 2.45 Quadrillion Btu 2-letter ISO code MY 3-letter ISO code MYS Numeric ISO...

  3. New Zealand: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name New Zealand Population 4,242,048 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code NZ 3-letter ISO code NZL Numeric ISO code...

  4. Zimbabwe: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    "","visitedicon":"" Country Profile Name Zimbabwe Population 13,061,239 GDP 11 Energy Consumption 0.16 Quadrillion Btu 2-letter ISO code ZW 3-letter ISO code ZWE Numeric ISO...

  5. Togo: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Togo Population 7,154,237 GDP 3,685,000,000 Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code TG 3-letter ISO code TGO Numeric ISO...

  6. Estonia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Estonia Population 1,294,486 GDP 27,410,000,000 Energy Consumption 0.24 Quadrillion Btu 2-letter ISO code EE 3-letter ISO code EST Numeric ISO...

  7. Suriname: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Suriname Population 492,829 GDP 5,273,000,000 Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code SR 3-letter ISO code SUR Numeric ISO...

  8. Bulgaria: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Bulgaria Population 7,364,570 GDP 57,596,000,000 Energy Consumption 0.83 Quadrillion Btu 2-letter ISO code BG 3-letter ISO code BGR Numeric ISO...

  9. Switzerland: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Switzerland Population 7,954,700 GDP 679,028,000,000 Energy Consumption 1.32 Quadrillion Btu 2-letter ISO code CH 3-letter ISO code CHE Numeric ISO...

  10. Jordan: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Jordan Population 5,611,202 GDP 33,516,000,000 Energy Consumption 0.31 Quadrillion Btu 2-letter ISO code JO 3-letter ISO code JOR Numeric ISO...

  11. Costa Rica: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Costa Rica Population 4,586,353 GDP 52,968,000,000 Energy Consumption 0.20 Quadrillion Btu 2-letter ISO code CR 3-letter ISO code CRI Numeric ISO...

  12. Guatemala: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Guatemala Population 15,806,675 GDP 49,880,000,000 Energy Consumption 0.21 Quadrillion Btu 2-letter ISO code GT 3-letter ISO code GTM Numeric ISO...

  13. Liechtenstein: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Liechtenstein Population 37,132 GDP 5,155,000,000 Energy Consumption Quadrillion Btu 2-letter ISO code LI 3-letter ISO code LIE Numeric ISO code...

  14. Gabon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Gabon Population 1,475,000 GDP 20,664,000,000 Energy Consumption 0.05 Quadrillion Btu 2-letter ISO code GA 3-letter ISO code GAB Numeric ISO...

  15. Niger: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Niger Population 17,138,707 GDP 6,022,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code NE 3-letter ISO code NER Numeric ISO...

  16. Singapore: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ","visitedicon":"" Country Profile Name Singapore Population 5,469,700 GDP 298 Energy Consumption 2.38 Quadrillion Btu 2-letter ISO code SG 3-letter ISO code SGP Numeric ISO...

  17. Cameroon: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Cameroon Population 17,463,836 GDP 30,000,000,000 Energy Consumption 0.10 Quadrillion Btu 2-letter ISO code CM 3-letter ISO code CMR Numeric ISO...

  18. Honduras: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Honduras Population 7,529,403 GDP 19,567,000,000 Energy Consumption 0.13 Quadrillion Btu 2-letter ISO code HN 3-letter ISO code HND Numeric ISO...

  19. Pakistan: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Pakistan Population 196,174,380 GDP Unavailable Energy Consumption 2.48 Quadrillion Btu 2-letter ISO code PK 3-letter ISO code PAK Numeric ISO...

  20. Moldova: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Moldova Population Unavailable GDP 8,738,000,000 Energy Consumption 0.14 Quadrillion Btu 2-letter ISO code MD 3-letter ISO code MDA Numeric ISO...

  1. Jamaica: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Jamaica Population 2,889,187 GDP 15,569,000,000 Energy Consumption 0.17 Quadrillion Btu 2-letter ISO code JM 3-letter ISO code JAM Numeric ISO...

  2. Hungary: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Hungary Population 9,937,628 GDP 145,153,000,000 Energy Consumption 1.11 Quadrillion Btu 2-letter ISO code HU 3-letter ISO code HUN Numeric ISO...

  3. Paraguay: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Paraguay Population 6,800,284 GDP 30,558,000,000 Energy Consumption 0.44 Quadrillion Btu 2-letter ISO code PY 3-letter ISO code PRY Numeric ISO...

  4. Algeria: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Algeria Population 37,900,000 GDP 227,802,000,000 Energy Consumption 1.71 Quadrillion Btu 2-letter ISO code DZ 3-letter ISO code DZA Numeric ISO...

  5. Bangladesh: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Bangladesh Population 156,594,962 GDP Unavailable Energy Consumption 0.87 Quadrillion Btu 2-letter ISO code BD 3-letter ISO code BGD Numeric ISO...

  6. Nigeria: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Nigeria Population 140,431,790 GDP 594,257,000,000 Energy Consumption 1.09 Quadrillion Btu 2-letter ISO code NG 3-letter ISO code NGA Numeric ISO...

  7. Chad: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Chad Population 6,279,921 GDP 15,986,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code TD 3-letter ISO code TCD Numeric ISO...

  8. Eritrea: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Eritrea Population 6,380,803 GDP 3,881,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code ER 3-letter ISO code ERI Numeric ISO...

  9. Bolivia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Bolivia Population 10,556,102 GDP 29,802 Energy Consumption 0.25 Quadrillion Btu 2-letter ISO code BO 3-letter ISO code BOL Numeric ISO...

  10. Andorra: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Andorra Population 85,458 GDP 4,510,000,000 Energy Consumption Quadrillion Btu 2-letter ISO code AD 3-letter ISO code AND Numeric ISO code...

  11. Liberia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Liberia Population 3,476,608 GDP 1,735,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code LR 3-letter ISO code LBR Numeric ISO...

  12. Bahamas: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name The Bahamas Population 254,685 GDP 8,043,000,000 Energy Consumption Quadrillion Btu 2-letter ISO code BS 3-letter ISO code BHS Numeric ISO code...

  13. Ivory Coast: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Ivory Coast Population 15,366,672 GDP 32,000,000,000 Energy Consumption Quadrillion Btu 2-letter ISO code CI 3-letter ISO code CIV Numeric ISO code...

  14. Mauritania: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Mauritania Population 3,537,368 GDP 4,547,000,000 Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code MR 3-letter ISO code MRT Numeric ISO...

  15. Dominican Republic: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Dominican Republic Population 9,378,818 GDP 62,484,000,000 Energy Consumption 0.30 Quadrillion Btu 2-letter ISO code DO 3-letter ISO code DOM Numeric ISO...

  16. Bahrain: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Bahrain Population 1,234,571 GDP Unavailable Energy Consumption 0.55 Quadrillion Btu 2-letter ISO code BH 3-letter ISO code BHR Numeric ISO...

  17. Laos: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    bel":"","visitedicon":"" Country Profile Name Laos Population 4,574,848 GDP 11 Energy Consumption 0.04 Quadrillion Btu 2-letter ISO code LA 3-letter ISO code LAO Numeric ISO...

  18. Qatar: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Qatar Population 1,699,435 GDP 213,784,000,000 Energy Consumption 1.00 Quadrillion Btu 2-letter ISO code QA 3-letter ISO code QAT Numeric ISO...

  19. Lesotho: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Lesotho Population 2,031,348 GDP 2,616,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code LS 3-letter ISO code LSO Numeric ISO...

  20. Sweden: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Sweden Population 9,658,301 GDP Unavailable Energy Consumption 2.22 Quadrillion Btu 2-letter ISO code SE 3-letter ISO code SWE Numeric ISO...

  1. Vanuatu: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Vanuatu Population 243,304 GDP 743,000,000 Energy Consumption 0.00 Quadrillion Btu 2-letter ISO code VU 3-letter ISO code VUT Numeric ISO...

  2. Cape Verde: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    0.00 Quadrillion Btu 2-letter ISO code CV 3-letter ISO code CPV Numeric ISO code 132 UN Region1 Western Africa OpenEI Resources Energy Maps 0 Tools 0 Programs 4 view...

  3. Azerbaijan: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Azerbaijan Population 9,494,600 GDP 73,537,000,000 Energy Consumption 0.68 Quadrillion Btu 2-letter ISO code AZ 3-letter ISO code AZE Numeric ISO...

  4. Mongolia: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Mongolia Population 3,000,000 GDP 11,516,000,000 Energy Consumption 0.09 Quadrillion Btu 2-letter ISO code MN 3-letter ISO code MNG Numeric ISO...

  5. Sierra Leone: Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Country Profile Name Sierra Leone Population 6,190,280 GDP 3,777,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code SL 3-letter ISO code SLE Numeric ISO...

  6. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook

    A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

  7. SEP Request for Approval Form 2 - Other Derived Energy Sources | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 2 - Other Derived Energy Sources SEP Request for Approval Form 2 - Other Derived Energy Sources SEP-Request-for-Approval-Form-2_Other-Derived-Energy-Sources.docx (38.18 KB) More Documents & Publications SEP Request for Approval Form 3 - Other Complex Regression Model Rationale Superior Energy Performance Enrollment and Application Forms SEP Request for Approval Form 7 - Other Situations for Consumption Adjustment

  8. International Energy Outlook 2016-Transportation sector energy consumption

    Gasoline and Diesel Fuel Update

    - Energy Information Administration 8. Transportation sector energy consumption print version Overview In the International Energy Outlook 2016 (IEO2016) Reference case, transportation sector delivered energy consumption increases at an annual average rate of 1.4%, from 104 quadrillion British thermal units (Btu) in 2012 to 155 quadrillion Btu in 2040. Transportation energy demand growth occurs almost entirely in regions outside of the Organization for Economic Cooperation and Development

  9. Ohio Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",632,410,386,528,429 "Solar","-","-","-","-",13 "Wind",14,15,15,14,13 "Wood/Wood Waste",410,399,418,410,399 "MSW Biogenic/Landfill Gas",24,11,183,198,264 "Other Biomass",10,10,8,11,12 "Total",1091,846,1010,1161,1

  10. Arizona Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) (indexed site)

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",6793,6598,7286,6427,6622 "Solar",13,9,15,14,16 "Wind","-","-","-",30,135 "Wood/Wood Waste",8,"-",76,137,140 "MSW Biogenic/Landfill Gas",28,29,19,18,24 "Other Biomass",4,4,4,4,4 "Total",6846,6639,7400,6630,6941

  11. HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON

    SciTech Connect (OSTI)

    Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

    2012-07-01

    We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

  12. Non-Invasive Energy Meter - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    flow systems (e.g., solar systems) using a simple technique that senses when the system is running and then estimates the BTU energy production. Current energy meters must be ...

  13. U.S. Energy Information Administration | Renewable Energy...

    Gasoline and Diesel Fuel Update

    7 Table 4.17 Geothermal energy consumption by direct use of energy and from heat pumps, 1990 - 2009 (quadrillion Btu) Year Direct Use Heat Pum ps Total 1990 0.0048 0.0054 0.0102 ...

  14. SunSource Technology Services Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    SunSource Technology Services Inc Jump to: navigation, search Name: SunSource Technology Services Inc. Place: Addison, Illinois Zip: IL 60101 Product: SunSource is a fluid power...

  15. Air-Source Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Air-Source Heat Pumps Air-Source Heat Pumps April 23, 2015 - 3:35pm Addthis When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat...

  16. Air-Source Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source...

  17. This Hybrid Power Plant Combines 3 Clean Energy Sources in One

    Energy.gov [DOE]

    Engineers at Idaho National Lab and the National Renewable Energy Laboratory helped build the world’s first triple hybrid renewable energy plant. It combines geothermal power, solar panels and concentrating solar power into one reliable energy source.

  18. A low energy ion source for electron capture spectroscopy

    SciTech Connect (OSTI)

    Tusche, C.; Kirschner, J.

    2014-06-15

    We report on the design of an ion source for the production of single and double charged Helium ions with kinetic energies in the range from 300 eV down to 5 eV. The construction is based on a commercial sputter ion gun equipped with a Wien-filter for mass/charge separation. Retardation of the ions from the ionizer potential (2 keV) takes place completely within the lens system of the sputter gun, without modification of original parts. For 15 eV He{sup +} ions, the design allows for beam currents up to 30 nA, limited by the space charge repulsion in the beam. For He{sup 2+} operation, we obtain a beam current of 320 pA at 30 eV, and 46 pA at 5 eV beam energy, respectively. In addition, operating parameters can be optimized for a significant contribution of metastable He*{sup +} (2s) ions.

  19. Buildings Energy Data Book: 3.10 Hotels/Motels

    Buildings Energy Data Book

    5 Energy Benchmarks for Newly Constructed Large Hotels, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 60.9 13.2 76.3 8.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are

  20. Buildings Energy Data Book: 3.10 Hotels/Motels

    Buildings Energy Data Book

    6 Energy Benchmarks for Newly Constructed Small Hotels, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 36.6 2.7 12.0 3.9 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are

  1. Buildings Energy Data Book: 3.9 Educational Facilities

    Buildings Energy Data Book

    0 Energy Benchmarks for Newly Constructed Primary Schools, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 59.6 0.5 3.1 1.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are

  2. Buildings Energy Data Book: 3.9 Educational Facilities

    Buildings Energy Data Book

    2 Energy Benchmarks for Newly Constructed Secondary Schools, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 96.7 2.2 2.8 5.5 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They

  3. EPA Mobile Source Rule Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mobile Source Rule Update EPA Mobile Source Rule Update 2003 DEER Conference Presentation: ... More Documents & Publications EPA Diesel Update Technical Challenges and Opportunities ...

  4. Utah Nonpoint Source Pollution Management Plan | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Nonpoint Source Pollution Management Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Nonpoint Source...

  5. The Spallation Neutron Source (SNS) Project | Department of Energy

    Office of Environmental Management (EM)

    The Spallation Neutron Source (SNS) Project The Spallation Neutron Source (SNS) Project SNS03.31.10.pdf More Documents & Publications EIS-0247: Draft Environmental Impact...

  6. Colorado 2012 Nonpoint Source Management Plan | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    agricultural lands or metals-laden sediments from mine waste or tailings. This diffuse nature distinguishes nonpoint source pollution from point source pollution, which in contrast...

  7. Montana 319 Projects (Nonpoint Source Programs) Wiki | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Source Programs) Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana 319 Projects (Nonpoint Source Programs) Wiki Abstract Provides...

  8. Montana Nonpoint Source FAQs Webpage | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Source FAQs Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Nonpoint Source FAQs Webpage Abstract Provides answers to common...

  9. Journal Sources | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    Journal Sources Science Search Tools Home DOE Collections Journal Sources Library and University Tools U.S. Federal Agencies Global Databases Customized Resources The following ...

  10. Journal Sources | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    Journal Sources Science Search Tools Home DOE Collections Journal Sources Library Tools ... SciTech Connect is a consolidation of two core DOE search engines, the Information Bridge ...

  11. Shanghai Pearl Hydrogen Power Source Technology | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Hydrogen Power Source Technology Jump to: navigation, search Name: Shanghai Pearl Hydrogen Power Source Technology Place: Shanghai, Shanghai Municipality, China Product: Chinese...

  12. Property:Incentive/UserSource | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy (Northern Nevada Gas) - SureBet Business Energy Efficiency Rebate Program (Nevada) National Grid (Gas) - Residential Energy Efficiency Rebate Programs (Upstate New York)...

  13. 3rd Miami international conference on alternative energy sources...

    Office of Scientific and Technical Information (OSTI)

    The conference includes sessions on solar energy, ocean thermal energy, wind energy, hydro power, nuclear breeders and nuclear fusion, synthetic fuels from coal or wastes, hydrogen ...

  14. Transportation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu...

  15. Table 3.4 Consumer Price Estimates for Energy by End-Use Sector...

    U.S. Energy Information Administration (EIA) (indexed site)

    Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars 1 per Million Btu) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity ...

  16. ARRA Economic Impact and Jobs | Department of Energy

    Office of Environmental Management (EM)

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  17. 3rd Miami international conference on alternative energy sources

    SciTech Connect (OSTI)

    Nejat Veziroglu, T.

    1980-01-01

    The conference includes sessions on solar energy, ocean thermal energy, wind energy, hydro power, nuclear breeders and nuclear fusion, synthetic fuels from coal or wastes, hydrogen production and uses, formulation of workable policies on energy use and energy conservation, heat and energy storage, and energy education. The volume of the proceedings presents the papers and lectures in condensed format grouped by subject under forty-two sessions for 319 presentations.

  18. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"11/16/2016 12:05:10

  19. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"11/16/2016

  20. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    SciTech Connect (OSTI)

    Hong, Tainzhen; Liu, Xaiobing

    2009-11-01

    With the current movement toward net zero energy buildings, many technologies are promoted with emphasis on their superior energy efficiency. The variable refrigerant flow (VRF) and ground source heat pump (GSHP) systems are probably the most competitive technologies among these. However, there are few studies reporting the energy efficiency of VRF systems compared with GSHP systems. In this article, a preliminary comparison of energy efficiency between the air-source VRF and GSHP systems is presented. The computer simulation results show that GSHP system is more energy efficient than the air-source VRF system for conditioning a small office building in two selected US climates. In general, GSHP system is more energy efficient than the air-source VRV system, especially when the building has significant heating loads. For buildings with less heating loads, the GSHP system could still perform better than the air-source VRF system in terms of energy efficiency, but the resulting energy savings may be marginal.

  1. ADEQ Nonpoint Source State Management Plan | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Nonpoint Source State Management Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Nonpoint Source State Management PlanLegal...

  2. New Mexico Nonpoint Source Management Program | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    Nonpoint Source Management Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: New Mexico Nonpoint Source Management ProgramLegal...

  3. GreenSource Solutions LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GreenSource Solutions LLC Jump to: navigation, search Name: GreenSource Solutions LLC Place: Novato, California Zip: 94945 Product: US-based PV system installer and consulting....

  4. Advanced Power Sources Ltd APS | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sources Ltd APS Jump to: navigation, search Name: Advanced Power Sources Ltd (APS) Place: United Kingdom Product: UK R&D company based at Loughborough University focusing on fuel...

  5. Ethics - Gifts from Outside Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    from Outside Sources Ethics - Gifts from Outside Sources When can I accept a gift? ... If you have a question about a gift, ask your ethics official. May I accept a lunch? Meals ...

  6. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    SciTech Connect (OSTI)

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  7. Trends in Commercial Buildings--Energy Sources Consumption Tables

    U.S. Energy Information Administration (EIA) (indexed site)

    ** estimates adjusted to match the 1995 CBECS definition of target population Energy Information Administration Commercial Buildings Energy Consumption Survey Table 2....

  8. DOE Finalizes $1.6 Billion Loan Guarantee for BrightSource Energy Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 6 Billion Loan Guarantee for BrightSource Energy Inc. DOE Finalizes $1.6 Billion Loan Guarantee for BrightSource Energy Inc. April 11, 2011 - 12:00am Addthis Washington D.C. - Announced this afternoon via Twitter.com/energy, the U.S. Department of Energy finalized $1.6 billion in loan guarantees to support the Ivanpah Solar Energy Generating System, three related utility-scale concentrated solar power plants. The Recovery Act funded project, sponsored by BrightSource

  9. Energy Secretary Moniz Dedicates the World’s Brightest Synchrotron Light Source

    Energy.gov [DOE]

    U.S. Department of Energy (DOE) Secretary Ernest Moniz today dedicated the world’s most advanced light source, the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL).

  10. Accounting Methodology for Source Energy of Non-Combustible Renewable Electricity Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    As non-combustible sources of renewable power (wind, solar, hydro, and geothermal) do not consume fuel, the “source” (or “primary”) energy from these sources cannot be accounted for in the same...

  11. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect (OSTI)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E., II; Rochau, Gary Eugene

    2009-09-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink{reg_sign}, an extension of MATLAB{reg_sign}, is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  12. Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;

    U.S. Energy Information Administration (EIA) (indexed site)

    Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources

  13. Accessing Creative Revenue Sources for Energy Efficiency Webinar

    Energy.gov [DOE]

    This webinar will cover innovative state and local programs that are successfully catalyzing energy efficiency.

  14. Thermoelectric power source utilizing ambient energy harvesting for remote

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    sensing and transmitting - Energy Innovation Portal 4,263 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This

  15. Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE...

    Office of Science (SC) [DOE]

    Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science ...

  16. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  17. A new source of additional tax revenue: Energy

    SciTech Connect (OSTI)

    Loper, J.W.

    1995-06-01

    Taxes on energy can be an important part of efforts to improve the nation`s energy efficiency, competitiveness and environmental quality. By making energy more expensive, energy taxes encourage conservation and investments in energy efficiency; they also allow the private sector to determine which investments are the most cost-effective given individual circumstances. In the past, state and local governments rarely considered energy and environmental issues when debating tax policies. Numerous other priorities--the need for revenues, tax fairness, economic development and competitiveness, and popular sentiment--received much greater attention. The result? Many existing taxes and tax provisions encourage energy consumption and the use of polluting energy resources over investments in such alternatives as solar, wind and efficiency. In other words, tax policies are energy and environmental policies by accident.

  18. North Village Ground Source Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    North Village Ground Source Heat Pumps North Village Ground Source Heat Pumps Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals. gshp_redderson_north_village.pdf (523.05 KB) More Documents & Publications Human Health Science Building Geothermal Heat Pumps City of Eagan …Civic Ice Arena Renovation Validation of Geothermal Tracer Methods in Highly Constrained Field Experiments

  19. Diversity Employment and Recruitment Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Diversity Employment and Recruitment Sources Diversity Employment and Recruitment Sources Guide to resources for diversity employment Diversity Employment and Recruitment Sources Guide (569.94 KB) Responsible Contacts Waldmann, George Director Employment Solutions Division E-mail george.waldmann@hq.doe.gov Phone 202-586-9904 More Documents & Publications DOE-TSL-2-2002 Public Meeting Attendee List: Sustainable Design Standards for Federal Buildings StateActivity.pdf

  20. Alternate Funding Sources for the International Atomic Energy Agency

    SciTech Connect (OSTI)

    Toomey, Christopher; Wyse, Evan T.; Kurzrok, Andrew J.; Swarthout, Jordan M.

    2012-09-04

    Since 1957, the International Atomic Energy Agency (IAEA) has worked to ensure the safe and responsible promotion of nuclear technology throughout the world. The IAEA operates at the intersection of the Nuclear Nonproliferation Treaty’s (NPT) fourth and third articles, which guarantee Parties to the Treaty the right to peaceful uses of nuclear technology, provided those activities are placed under safeguards verified by the IAEA. However, while the IAEA has enjoyed substantial success and prestige in the international community, there is a concern that its resources are being stretched to a point where it may no longer be possible to execute its multifaceted mission in its entirety. As noted by the Director General (DG) in 2008, demographics suggest that every aspect of the IAEA’s operations will be in higher demand due to increasing reliance on non-carbon-based energy and the concomitant nonproliferation, safety, and security risks that growth entails. In addition to these nuclear energy concerns, the demand for technical developmental assistance in the fields of food security, resource conservation, and human health is also predicted to increase as the rest of the world develops. Even with a 100% value-for-money rating by the U.S. Office of Management and Budget (OMB) and being described as an “extraordinary bargain” by the United Nations Secretary-General’s High-level Panel on Threats, Challenges and Change, real budget growth at the Agency has been limited to zero-real growth for a better part of the last two decades. Although the 2012 regular budget (RB) received a small increase for most programs, the 2013 RB has been set at zero-real growth. As a result, the IAEA has had to defer infrastructure investments, which has hindered its ability to provide the public goods its Members seek, decreased global security and development opportunities, and functionally transformed the IAEA into a charity, dependent on extrabudgetary (EB) contributions to sustain