National Library of Energy BETA

Sample records for btu fuel type

  1. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  2. Sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  3. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    Energy Information Administration (EIA) (indexed site)

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  4. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  5. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  6. Table 3.1 Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu)

    Energy Information Administration (EIA) (indexed site)

    Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu) Year Coal 1 Natural Gas 2 Crude Oil 3 Fossil Fuel Composite 4 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Percent Change 7 1949 0.21 1.45 0.05 0.37 0.44 3.02 0.26 1.81 – – 1950 .21 1.41 .06 .43 .43 2.95 [R] .26 1.74 -3.6 1951 .21 1.35 .06 .40 .44 2.78 .26 1.65 -5.4 1952 .21 1.31 [R] .07 .45 .44 2.73 .26 1.63 -1.0 1953 .21 1.29 .08 .50 .46 2.86 .27 1.69 3.3 1954 .19 1.18 .09 .55 .48 2.94 .28 1.70 .7 1955

  7. Investigation of Fuel Quality Impact on the Combustion and Exhaust Emissions of a Turbo-Charged SI Engine Operated on Low BTU Gases

    Energy.gov [DOE]

    Research results validate an engine simulation model and provide guidelines for the improved control of combustion stability of SI engines operated on low-BTU gaseous fuels.

  8. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  9. Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    "Opportunity fuels" offer an alternative to natural gas. These unconventional fuels are often derived from agricultural, industrial, and municipal waste streams or from byproducts ...

  10. COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal

    SciTech Connect

    Smith, V.E.; Merriam, N.W.

    1994-10-01

    Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

  11. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOEpatents

    Scheffer, Karl D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  12. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOEpatents

    Scheffer, K.D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  13. Btu)","per Building

    Energy Information Administration (EIA) (indexed site)

    ,"Number of Buildings (thousand)","Floorspace (million square feet)","Floorspace per Building (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per...

  14. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  15. First BTU | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    that is consumed by the United States.3 References First BTU First BTU Green Energy About First BTU Retrieved from "http:en.openei.orgwindex.php?titleFirstBT...

  16. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    F2: Jet fuel consumption, price, and expenditure estimates, 2014 State Jet fuel a Consumption Prices Expenditures Thousand barrels Trillion Btu Dollars per million Btu Million ...

  17. Property:Geothermal/CapacityBtuHr | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalCapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  18. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalAnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  19. Types of Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells » Types of Fuel Cells Types of Fuel Cells Fuel cells are classified primarily by the kind of electrolyte they employ. This classification determines the kind of electro-chemical reactions that take place in the cell, the kind of catalysts required, the temperature range in which the cell operates, the fuel required, and other factors. These characteristics, in turn, affect the applications for which these cells are most suitable. There are several types of fuel cells currently under

  20. IMPROVED TYPE OF FUEL ELEMENT

    DOEpatents

    Monson, H.O.

    1961-01-24

    A radiator-type fuel block assembly is described. It has a hexagonal body of neutron fissionable material having a plurality of longitudinal equal- spaced coolant channels therein aligned in rows parallel to each face of the hexagonal body. Each of these coolant channels is hexagonally shaped with the corners rounded and enlarged and the assembly has a maximum temperature isothermal line around each channel which is approximately straight and equidistant between adjacent channels.

  1. BTU International Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    1862 Product: US-based manufacturer of thermal processing equipment, semiconductor packaging, and surface mount assembly. References: BTU International Inc1 This article is a...

  2. Catalytic reactor for low-Btu fuels

    DOEpatents

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  3. Subtask 3.16 - Low-BTU Field Gas Application to Microturbines

    SciTech Connect

    Darren Schmidt; Benjamin Oster

    2007-06-15

    Low-energy gas at oil production sites presents an environmental challenge to the sites owners. Typically, the gas is managed in flares. Microturbines are an effective alternative to flaring and provide on-site electricity. Microturbines release 10 times fewer NOx emissions than flaring, on a methane fuel basis. The limited acceptable fuel range of microturbines has prevented their application to low-Btu gases. The challenge of this project was to modify a microturbine to operate on gases lower than 350 Btu/scf (the manufacturer's lower limit). The Energy & Environmental Research Center successfully operated a Capstone C30 microturbine firing gases between 100-300 Btu/scf. The microturbine operated at full power firing gases as low as 200 Btu/scf. A power derating was experienced firing gases below 200 Btu/scf. As fuel energy content decreased, NO{sub x} emissions decreased, CO emissions increased, and unburned hydrocarbons remained less than 0.2 ppm. The turbine was self-started on gases as low as 200 Btu/scf. These results are promising for oil production facilities managing low-Btu gases. The modified microturbine provides an emission solution while returning valuable electricity to the oilfield.

  4. Major Fuels","Site Electricity","Natural Gas","Fuel Oil","District...

    Energy Information Administration (EIA) (indexed site)

    C1. Total Energy Consumption by Major Fuel, 1999" ,"All Buildings",,"Total Energy Consumption (trillion Btu)",,,,,"Primary Electricity (trillion Btu)" ,"Number of Buildings...

  5. Bronx Zoo Fuel Cell Project

    SciTech Connect

    Hoang Pham

    2007-09-30

    A 200 kW Fuel Cell has been installed in the Lion House, Bronx Zoo, NY. The Fuel Cell is a 200 kW phosphoric acid type manufactured by United Technologies Corporation (UTC) and will provide thermal energy at 725,000 Btu/hr.

  6. Thermal Analysis of Ball Type Fuel Element for PBR. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Thermal Analysis of Ball Type Fuel Element for PBR. Citation Details In-Document Search Title: Thermal Analysis of Ball Type Fuel Element for PBR. Authors: ...

  7. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for ...

  8. Fuel assembly transfer basket for pool type nuclear reactor vessels

    DOEpatents

    Fanning, Alan W.; Ramsour, Nicholas L.

    1991-01-01

    A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

  9. Commercial low-Btu coal-gasification plant

    SciTech Connect

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The feasibility study consisted of the following tasks: perform preliminary engineering of a gasification facility; provide a definitive full gas cost estimate based upon the preliminary engineering fuel design; determine the preferred source of coal; determine the potential for the disposition of, and income from, by-products; develop a health and safety program; perform an analysis of the risks involved in constructing and operating such a facility; and prepare a Financial Analysis of General Refractories selected Dravo Engineers and Constructors based upon the qualifications of Dravo in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts and, if the present natural gas decontrol plan is not fully implemented, some budgetary risks would occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  10. Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison

    Buildings Energy Data Book

    4 Average Annual Carbon Dioxide Emissions for Various Functions Stock Refrigerator (1) kWh - Electricity Stock Electric Water Heater kWh - Electricity Stock Gas Water Heater million Btu - Natural Gas Stock Oil Water Heater million Btu - Fuel Oil Single-Family Home million Btu Mobile Home million Btu Multi-Family Unit in Large Building million Btu Multi-Family Unit in Small Building million Btu School Building million Btu Office Building million Btu Hospital, In-Patient million Btu Stock Vehicles

  11. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Energy Information Administration (EIA) (indexed site)

    District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale...

  12. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  13. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, Ramkrishna G.

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  14. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    Energy Information Administration (EIA) (indexed site)

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  15. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    Energy Information Administration (EIA) (indexed site)

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  16. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of inherent safety concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical

  17. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear

    Office of Scientific and Technical Information (OSTI)

    Research Reactors (Technical Report) | SciTech Connect Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors Citation Details In-Document Search Title: Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a

  18. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    SciTech Connect

    Not Available

    1980-12-01

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  19. Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu )

    Energy Information Administration (EIA) (indexed site)

    Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products 20 0 41 1 1 3 30 11 -0 107 313 Textile Mills 32 0 65 (s) (s) 2 66 12 -0 178 314 Textile Product Mills 3 0 46 (s) 1 Q 20 (s) -0 72 315 Apparel 0 0 7 (s) (s)

  20. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    Energy Information Administration (EIA) (indexed site)

    12:23:06 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  1. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    Energy Information Administration (EIA) (indexed site)

    12:23:08 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  2. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    Energy Information Administration (EIA) (indexed site)

    12:23:12 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  3. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  4. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this draft environmental impact statement that evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky. DOE cancelled this project after publication of the draft.

  5. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    Energy Information Administration (EIA) (indexed site)

    . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003" ,"All Buildings*",,"Total Energy Consumption (trillion Btu)" ,"Number of Buildings (thousand)","Floorspace...

  6. Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

    SciTech Connect

    Clark, C.R.; Briggs, R.J.

    2004-10-06

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.

  7. Combined compressed air storage-low BTU coal gasification power plant

    DOEpatents

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  8. ,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes...

    Energy Information Administration (EIA) (indexed site)

    Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or ... Data for" ,"Data 1","Kerosene-Type Jet Fuel Sales to End Users Refiner Sales ...

  9. U.S. Total Consumption of Heat Content of Natural Gas (BTU per...

    Gasoline and Diesel Fuel Update

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  10. Fuel Tables.indd

    Annual Energy Outlook

    ... Where shown, (s) Btu value less than 0.05. Notes: Motor gasoline estimates include fuel ethanol blended into motor gasoline. * Totals may not equal sum of components due to ...

  11. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    Where shown, (s) Physical unit value less than 0.5 or Btu value less than 0.05. Notes: * There are no direct fuel costs for hydroelectric power. * Totals may not equal sum of ...

  12. Fission rate measurements in fuel plate type assembly reactor cores

    SciTech Connect

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs.

  13. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    Energy Information Administration (EIA) (indexed site)

    Type, PAD District, and Selected States Energy Information Administration Petroleum Marketing Annual 1996 233 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  14. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    Energy Information Administration (EIA) (indexed site)

    Type, PAD District, and Selected States Energy Information Administration Petroleum Marketing Annual 1997 233 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  15. Biomass fuel use in agriculture under alternative fuel prices

    SciTech Connect

    Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.

    1984-11-01

    A linear programming model is used to analyze cost-competitiveness of biomass fuels in agricultural applications for the projected year 1990. With all else held constant, the prices of conventional fuels are increased and analytically compared to prices for biomass fuel products across a variety of end uses. Potential penetration of biomass fuels is measured as the share of each conventional fuel for which cost savings could be realized by substituting biomass fuels. This study examines the cost competitiveness of biomass fuels produced on farms, relative to conventional fuels (diesel, gasoline, natural gas, LPG, fuel oil, and electricity), as the prices of conventional fuels change. The study is targeted at the year 1990 and considers only fuel use in the agricultural sector. The method of analysis is to project fuel demands for ten farm operations in the year 1990 and to match these with biomass fuel substitutes from ten feedstock and nine process alternatives. In all, 61 feedstock/process combinations are possible. The matching of fuel demands and biomass fuels occurs in a linear programming model that seeks to meet fuel demands at minimum cost. Two types of biomass fuel facilities are considered, assuming a decentralized fuel distribution system. The first includes on-farm production units such as oil presses, low-Btu gasifiers, biogas digestors and direct combustion units. The second type of facility would be run by a farm co-operative. The primary data describing the biomass technologies are cost per unit output, where costs are calculated as first-year capital charges, plus al l allocable operating expenses, less any by-products of value. All costs assume commercial purchase of equipment. Homemade or makeshift installations are not considered. 1 reference.

  16. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    Energy Information Administration (EIA) (indexed site)

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value

  17. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    Energy Information Administration (EIA) (indexed site)

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and

  18. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Gasoline and Diesel Fuel Update

    "Resellers'Retailers' Monthly Petroleum Product Sales Report." 16. U.S. No. 2 Diesel Fuel Prices by Sales Type 30 Energy Information Administration Petroleum Marketing Annual...

  19. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  20. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR

  1. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type...

    Office of Scientific and Technical Information (OSTI)

    fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. ...

  2. Estimating Source Terms for Diverse Spent Nuclear Fuel Types

    SciTech Connect

    Brett Carlsen; Layne Pincock

    2004-11-01

    The U.S. Department of Energy (DOE) National Spent Nuclear Fuel Program is responsible for developing a defensible methodology for determining the radionuclide inventory for the DOE spent nuclear fuel (SNF) to be dispositioned at the proposed Monitored Geologic Repository at the Yucca Mountain Site. SNF owned by DOE includes diverse fuels from various experimental, research, and production reactors. These fuels currently reside at several DOE sites, universities, and foreign research reactor sites. Safe storage, transportation, and ultimate disposal of these fuels will require radiological source terms as inputs to safety analyses that support design and licensing of the necessary equipment and facilities. This paper summarizes the methodology developed for estimating radionuclide inventories associated with DOE-owned SNF. The results will support development of design and administrative controls to manage radiological risks and may later be used to demonstrate conformance with repository acceptance criteria.

  3. Table 5.5 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  4. Investigation of Fuel Quality Impact on the Combustion and Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Quality Impact on the Combustion and Exhaust Emissions of a Turbo-Charged SI Engine Operated on Low BTU Gases Investigation of Fuel Quality Impact on the Combustion and ...

  5. Development of a 200kW multi-fuel type PAFC power plant

    SciTech Connect

    Take, Tetsuo; Kuwata, Yutaka; Adachi, Masahito; Ogata, Tsutomu

    1996-12-31

    Nippon Telegraph and Telephone Corporation (NFT) has been developing a 200 kW multi-fuel type PAFC power plant which can generate AC 200 kW of constant power by switching fuel from pipeline town gas to liquefied propane gas (LPG) and vice versa. This paper describes the outline of the demonstration test plant and test results of its fundamental characteristics.

  6. Fact #920: April 11, 2016 Electric Charging Stations are the Fastest Growing Type of Alternative Fueling Station- Dataset

    Energy.gov [DOE]

    Excel file and dataset for Electric Charging Stations are the Fastest Growing Type of Alternative Fueling Station

  7. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    Energy Information Administration (EIA) (indexed site)

    62.4 65.5 51.3 See footnotes at end of table. Energy Information AdministrationPetroleum Marketing Annual 1999 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  8. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    Energy Information Administration (EIA) (indexed site)

    64.6 54.0 See footnotes at end of table. Energy Information Administration Petroleum Marketing Annual 1995 233 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  9. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    Energy Information Administration (EIA) (indexed site)

    60.4 60.0 45.2 See footnotes at end of table. Energy Information AdministrationPetroleum Marketing Annual 1998 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District,...

  10. Table 5.1 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  11. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOEpatents

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  12. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  13. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    Gasoline and Diesel Fuel Update

    Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011

  14. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  15. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, George A. (West Hartford, CT)

    1986-08-05

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  16. DOE Fuel Cell Technologies Office Record 13010: Onboard Type...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Table 1 Projected Performance and Cost of Type IV Compressed Hydrogen Storage Systems 1 Storage System Targets Gravimetric (kWhkg sys) Volumetric (kWhL sys) Cost (kWh) (500,000 ...

  17. Recovery of Technetium and Iodine from Spent ATW TRISO Type Fuels.

    SciTech Connect

    Schroeder, N. C.; Attrep, Moses

    2001-01-01

    The Accelerator Transmutation of Waste (ATW) program is being developed to determine the feasibility of separating and transmutating the transactinides (Pu-Cm) and long-lived fission product (99Tc and 129I) from spent LWR fuel. Several types of ATW fuels have been suggested to transmutate the Pu-Cm fraction including TRISO type fuels. An ATW TRISO fuel would consist of a Pu-Cm oxide kernel surrounded by several layers of pyrolytic carbon, a layer of SiC, and an outer layer of pyrolytic carbon. Processing of the spent ATW fuel would involve the crush, burn, and leach approach used on normal TRISO fuels. This report describes experiments that determine the potential behavior of the two long-lived fission products, 99Tc and 129I, in this processing. Iodine can be removed and trapped during the burning of the carbon from the fuel. Some technetium may volatilize in the latter stages of the burn but the bulk of it will have to be recovered after dissolution of the oxide residue.

  18. Low/medium Btu coal gasification assessment of central plant for the city of Philadelphia, Pennsylvania. Final report

    SciTech Connect

    Not Available

    1981-02-01

    The objective of this study is to assess the technical and economic feasibility of producing, distributing, selling, and using fuel gas for industrial applications in Philadelphia. The primary driving force for the assessment is the fact that oil users are encountering rapidly escalating fuel costs, and are uncertain about the future availability of low sulfur fuel oil. The situation is also complicated by legislation aimed at reducing oil consumption and by difficulties in assuring a long term supply of natural gas. Early in the gasifier selection study it was decided that the level of risk associated with the gasification process sould be minimal. It was therefore determined that the process should be selected from those commercially proven. The following processes were considered: Lurgi, KT, Winkler, and Wellman-Galusha. From past experience and a knowledge of the characteristics of each gasifier, a list of advantages and disadvantages of each process was formulated. It was concluded that a medium Btu KT gas can be manufactured and distributed at a lower average price than the conservatively projected average price of No. 6 oil, provided that the plant is operated as a base load producer of gas. The methodology used is described, assumptions are detailed and recommendations are made. (LTN)

  19. Low-Btu coal gasification in the United States: company topical. [Brick producers

    SciTech Connect

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  20. POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL

    SciTech Connect

    Booz, Allen, and Hamilton, Inc.,

    1980-04-01

    It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

  1. Table 8.4c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.4a; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.4a; Billion Btu) Year Fossil Fuels Nuclear Electric Power Renewable Energy Other 9 Electricity Net Imports Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 Commercial Sector 10<//td> 1989 9,135 6,901 18,424 1,143 35,603 [–] 685 1,781 9,112 [–] – – 11,578 – –

  2. Chemical Kinetic Reaction Mechanisms for Combustion of Hydrocarbon and Other Types of Chemical Fuels

    DOE Data Explorer

    The central feature of the Combustion Chemistry project at LLNL is the development, validation, and application of detailed chemical kinetic reaction mechanisms for the combustion of hydrocarbon and other types of chemical fuels. For the past 30 years, LLNL's Chemical Sciences Division has built hydrocarbon mechanisms for fuels from hydrogen and methane through much larger fuels including heptanes and octanes. Other classes of fuels for which models have been developed include flame suppressants such as halons and organophosphates, and air pollutants such as soot and oxides of nitrogen and sulfur. Reaction mechanisms have been tested and validated extensively through comparisons between computed results and measured data from laboratory experiments (e.g., shock tubes, laminar flames, rapid compression machines, flow reactors, stirred reactors) and from practical systems (e.g., diesel engines, spark-ignition engines, homogeneous charge, compression ignition (HCCI) engines). These kinetic models are used to examine a wide range of combustion systems.

  3. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  4. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels This fact sheet provides an overview of the Next Generation Manufacturing Processes project to develop a unique, fuel-flexible catalytic combustor capable of enabling ultra-low emission, lean premixed combustion of a wide range of gaseous opportunity fuels. Fact sheet - Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas

  5. U. S. Btu tax plan revised; industry wary of results

    SciTech Connect

    Crow, P.

    1993-04-12

    The Clinton administration has changed its U.S. energy tax proposal to remove some objection voiced by industry and consumers. The Treasury Department's revised plan will still tax oil products at double the rate of other types of energy except for home heating oil, which now is to be taxed at the lower rate for natural gas. Of major importance to California producers, the revision will not tax natural gas used in enhanced recovery for heavy oil. This paper describes exemptions; effects on natural gas; the credibility gap; inhibition of gas market recovery; tax on NGL; and forecasting the future.

  6. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  7. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  8. Fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  9. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  10. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    SciTech Connect

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  11. High-temperature Chemical Compatibility of As-fabricated TRIGA Fuel and Type 304 Stainless Steel Cladding

    SciTech Connect

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Eric Woolstenhulme; Kurt Terrani; Glenn A. Moore

    2012-09-01

    Chemical interaction between TRIGA fuel and Type-304 stainless steel cladding at relatively high temperatures is of interest from the point of view of understanding fuel behavior during different TRIGA reactor transient scenarios. Since TRIGA fuel comes into close contact with the cladding during irradiation, there is an opportunity for interdiffusion between the U in the fuel and the Fe in the cladding to form an interaction zone that contains U-Fe phases. Based on the equilibrium U-Fe phase diagram, a eutectic can develop at a composition between the U6Fe and UFe2 phases. This eutectic composition can become a liquid at around 725°C. From the standpoint of safe operation of TRIGA fuel, it is of interest to develop better understanding of how a phase with this composition may develop in irradiated TRIGA fuel at relatively high temperatures. One technique for investigating the development of a eutectic phase at the fuel/cladding interface is to perform out-of-pile diffusion-couple experiments at relatively high temperatures. This information is most relevant for lightly irradiated fuel that just starts to touch the cladding due to fuel swelling. Similar testing using fuel irradiated to different fission densities should be tested in a similar fashion to generate data more relevant to more heavily irradiated fuel. This report describes the results for TRIGA fuel/Type-304 stainless steel diffusion couples that were annealed for one hour at 730 and 800°C. Scanning electron microscopy with energy- and wavelength-dispersive spectroscopy was employed to characterize the fuel/cladding interface for each diffusion couple to look for evidence of any chemical interaction. Overall, negligible fuel/cladding interaction was observed for each diffusion couple.

  12. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    Energy Information Administration (EIA) (indexed site)

    Table 1. Fossil fuel sales of production from federal lands, FY 2003-14 Fiscal Year Crude Oil and Lease Condensate Natural Gas Plant Liquids 2 Natural Gas Coal Fossil Fuels Million Barrels 1 Trillion Btu Percent of U.S. Total Million Barrels 1 Trillion Btu Percent of U.S. Total Billion Cubic Feet 1 Trillion Btu Percent of U.S. Total Million Short Tons 1 Trillion Btu Percent of U.S. Total Trillion Btu Percent of U.S. Total 2003 679 3,939 33.0% 93 347 14.7% 6,798 6,981 35.7% 436 8,960 40.6%

  13. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    Energy Information Administration (EIA) (indexed site)

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  14. ,"U.S. Residual Fuel Oil Prices by Sales Type"

    Energy Information Administration (EIA) (indexed site)

    Prices by Sales Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Average",2,"Monthly","8/2016","1/15/1983" ,"Data 2","Sulfur Less Than or Equal to 1%",2,"Monthly","8/2016","1/15/1983" ,"Data 3","Sulfur

  15. ATR LEU Monolithic Foil-Type Fuel with Integral Cladding Burnable Absorber Neutronics Performance Evaluation

    SciTech Connect

    Gray Chang

    2012-03-01

    The Advanced Test Reactor (ATR), currently operating in the United States, is used for material testing at very high neutron fluxes. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting HEU driven reactor cores to low-enriched uranium (LEU) cores. The burnable absorber - 10B, was added in the inner and outer plates to reduce the initial excess reactivity, and to improve the peak ratio of the inner/outer heat flux. The present work investigates the LEU Monolithic foil-type fuel with 10B Integral Cladding Burnable Absorber (ICBA) design and evaluates the subsequent neutronics operating effects of this proposed fuel designs. The proposed LEU fuel specification in this work is directly related to both the RERTR LEU Development Program and the Advanced Test Reactor (ATR) LEU Conversion Project at Idaho National Laboratory (INL).

  16. Effects of fuel type and equivalence ratios on the flickering of triple flames

    SciTech Connect

    Sahu, K.B.; Kundu, A.; Ganguly, R.; Datta, A.

    2009-02-15

    An experimental study has been conducted in axisymmetric, co-flowing triple flames with different equivalence ratios of the inner and outer reactant streams (2<{phi}{sub in}<3 and 0{<=}{phi}{sub out}<0.7). Different fuel combinations, like propane/propane, propane/methane or methane/methane in the inner and outer streams respectively, have been used in the experiments. The structures of the triple flames have been compared for the different fuel combinations and equivalence ratios. The conditions under which triple flames exhibit oscillation have been identified. During the oscillation, the non-premixed flame and the outer lean premixed flame flicker strongly, while the inner rich premixed flame remains more or less stable. The flickering frequency has been evaluated through image processing and fast Fourier transform (FFT) of the average pixel intensity of the image frames. It is observed that, for all the fuel combinations, the frequency decreases with the increase in the outer equivalence ratio, while it is relatively invariant with the change in the inner equivalence ratio. However, an increase in the inner equivalence ratio affects the structure of the flame by increasing the heights of the inner premixed flame and non-premixed flame and also enlarges the yellow soot-laden zone at the tip of the inner flame. A scaling analysis of the oscillating flames has been performed based on the measured parameters, which show a variation of Strouhal number (St) with Richardson number (Ri) as St {proportional_to} Ri{sup 0.5}. The fuel type is found to have no influence on this correlation. (author)

  17. EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected...

    Gasoline and Diesel Fuel Update

    b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector...

  18. EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for...

    Gasoline and Diesel Fuel Update

    b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS...

  19. Effects of spent fuel types on offsite consequences of hypothetical accidents

    SciTech Connect

    Courtney, J. C.; Dwight, C. C.; Lehto, M. A.

    2000-02-18

    Argonne National Laboratory (ANL) conducts experimental work on the development of waste forms suitable for several types of spent fuel at its facility on the Idaho National Engineering and Environmental Laboratory (INEEL) located 48 km West of Idaho Falls, ID. The objective of this paper is to compare the offsite radiological consequences of hypothetical accidents involving the various types of spent nuclear fuel handled in nonreactor nuclear facilities. The highest offsite total effective dose equivalents (TEDEs) are estimated at a receptor located about 5 km SSE of ANL facilities. Criticality safety considerations limit the amount of enriched uranium and plutonium that could be at risk in any given scenario. Heat generated by decay of fission products and actinides does not limit the masses of spent fuel within any given operation because the minimum time elapsed since fissions occurred in any form is at least five years. At cooling times of this magnitude, fewer than ten radionuclides account for 99% of the projected TEDE at offsite receptors for any credible accident. Elimination of all but the most important nuclides allows rapid assessments of offsite doses with little loss of accuracy. Since the ARF (airborne release fraction), RF (respirable fraction), LPF (leak path fraction) and atmospheric dilution factor ({chi}/Q) can vary by orders of magnitude, it is not productive to consider nuclides that contribute less than a few percent of the total dose. Therefore, only {sup 134}Cs, {sup 137}Cs-{sup 137m}Ba, and the actinides significantly influence the offsite radiological consequences of severe accidents. Even using highly conservative assumptions in estimating radiological consequences, they remain well below current Department of Energy guidelines for highly unlikely accidents.

  20. Table 8.4b Consumption for Electricity Generation by Energy Source: Electric Power Sector, 1949-2011 (Subset of Table 8.4a; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    b Consumption for Electricity Generation by Energy Source: Electric Power Sector, 1949-2011 (Subset of Table 8.4a; Billion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995,055 414,632 569,375 NA 2,979,062 0 1,349,185 5,803 NA NA NA NA 1,354,988 NA 5,420 4,339,470 1950 2,199,111

  1. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines

    SciTech Connect

    2008-12-01

    General Electric Global Research will define, develop, and test new fuel nozzle technology concepts for gas turbine operation on a wide spectrum of opportunity fuels and/or fuel blends. This will enable gas turbine operation on ultra-low Btu fuel streams such as very weak natural gas, highly-diluted industrial process gases, or gasified waste streams that are out of the capability range of current turbine systems.

  2. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels

    SciTech Connect

    2009-11-01

    Precision Combustion, Inc. will develop a unique, fuel-flexible Rich Catalytic Lean-Burn (RCL) injector with catalytic combustor capable of enabling ultralow-emission, lean premixed combustion of a wide range of gaseous opportunity fuels. This will broaden the range of opportunity fuels that can be utilized to include low- and ultralow-Btu gases, such as digester and blast furnace gases, and fuels containing reactive species, such as refinery, wellhead, and industrial byproduct gases.

  3. Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison

    Buildings Energy Data Book

    1 Key Definitions Quad: Quadrillion Btu (10^15 or 1,000,000,000,000,000 Btu) Generic Quad for the Buildings Sector: One quad of primary energy consumed in the buildings sector (includes the residential and commercial sectors), apportioned between the various primary fuels used in the sector according to their relative consumption in a given year. To obtain this value, electricity is converted into its primary energy forms according to relative fuel contributions (or shares) used to produce

  4. Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu)

    Energy Information Administration (EIA) (indexed site)

    1 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education 15 74 83 11 113 2 16 4 32 21 371 Food Sales 6 12 7 Q 46 2 119 2 2 10 208 Food Service 10 28 24 10 42 13 70 2 2 15 217 Health Care 6 34 42 2 105 1 8 4 10 36 248 Inpatient 3 25 38 2 76 1 4 2 7 21

  5. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    SciTech Connect

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio.

  6. Health Care Buildings: Consumption Tables

    Energy Information Administration (EIA) (indexed site)

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  7. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    SciTech Connect

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  8. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    3: Nuclear Energy Consumption, Price, and Expenditure Estimates, 2014 State Nuclear Electric Power Nuclear Fuel Consumption Prices Expenditures Million Kilowatthours Trillion Btu Dollars per Million Btu Million Dollars Alabama 41,244 431.4 0.80 344.2 Alaska 0 0.0 - - Arizona 32,321 338.0 0.82 276.7 Arkansas 14,478 151.4 0.83 126.1 California 16,986 177.7 0.65 115.2 Colorado 0 0.0 - - Connecticut 15,841 165.7 0.72 120.0 Delaware 0 0.0 - - Dist. of Col. 0 0.0 - - Florida 27,868 291.5 0.74 215.7

  9. Enhanced air/fuel mixing for automotive Stirling engine turbulator-type combustors

    SciTech Connect

    Riecke, G.T.; Stotts, R.E.

    1992-02-25

    This patent describes a combustor for use in a Stirling engine and the like. It comprises: a combustor chamber; a fuel inlet couple to the chamber to inject fuel therein; a turbulator means disposed in the chambers downstream of the fuel inlet means for injecting combustion air into the chamber, the turbulator means being so positioned to cause a mixing of the combustion air and fuel injected in the chamber; diverter means for dividing the combustion air and creating a primary mixing zone downstream fa the primary mixing zone; and wherein the primary mixing zone comprises a fuel rich zone where combustion initiates and the secondary mixing zone has sufficient combustion air to complete combustion of the fuel.

  10. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    4: Other Petroleum Products Consumption, Price, and Expenditure Estimates, 2014 State Consumption Prices Expenditures Thousand Barrels Trillion Btu Dollars per Million Btu Million ...

  11. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    F5: Aviation gasoline consumption, price, and expenditure estimates, 2014 State Consumption Prices a Expenditures Thousand barrels Trillion Btu Dollars per million Btu Million ...

  12. In-pile post-DNB behavior of a nine-rod PWR-type fuel bundle

    SciTech Connect

    Gunnerson, F.S.; MacDonald, P.E.

    1980-01-01

    The results of an in-pile power-cooling-mismatch (PCM) test designed to investigate the behavior of a nine-rod, PWR-type fuel bundle under intermittent and sustained periods of high temperature film boiling operation are presented. Primary emphasis is placed on the DNB and post-DNB events including rod-to-rod interactions, return to nucleate boiling (RNB), and fuel rod failure. A comparison of the DNB behavior of the individual bundle rods with single-rod data obtained from previous PCM tests is also made.

  13. Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c)

    Energy Information Administration (EIA) (indexed site)

    a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 16,509,639 1,410,151 16,356,550 353,000 247,409 19,356,746

  14. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    Energy Information Administration (EIA) (indexed site)

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  15. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    Energy Information Administration (EIA) (indexed site)

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  16. Impact Analysis of a Dipper-Type and Multi Spring-Type Fuel Rod Support Grid Assemblies in PWR

    SciTech Connect

    Song, K.N.; Yoon, K.H.; Park, K.J.; Park, G.J.; Kang, B.S.

    2002-07-01

    A spacer grid is one of the main structural components in a fuel assembly of a Pressurized light Water Reactor (PWR). It supports fuel rods, guides cooling water, and maintains geometry from external impact loads. A simulation is performed for the strength of a spacer grid under impact load. The critical impact load that leads to plastic deformation is identified by a free-fall test. A finite element model is established for the nonlinear simulation of the test. The simulation model is tuned based on the free-fall test. The model considers the aspects of welding and the contacts between components. Nonlinear finite element analysis is carried out by a software system called LS/DYNA3D. The results are discussed from a design viewpoint. (authors)

  17. Combustion and fuel characterization of coal-water fuels

    SciTech Connect

    Chow, O.K.; Gralton, G.W.; Lachowicz, Y.V.; Laflesh, R.C.; Levasseur, A.A.; Liljedahl, G.N.

    1989-02-01

    This five-year research project was established to provide sufficient data on coal-water fuel (CWF) chemical, physical, and combustion properties to assess the potential for commercial firing in furnaces designed for gas or oil firing. Extensive laboratory testing was performed at bench-scale, pilot-scale (4 {times} 10{sup 6}Btu/hr) and commercial-scale (25 {times} 10{sup 6} to 50 {times} 10{sup 6}Btu/hr) on a cross-section of CWFs. Fuel performance characteristics were assessed with respect to coal properties, level of coal beneficiation, and slurry formulation. The performance of four generic burner designs was also assessed. Boiler performance design models were applied to analyze the impacts associated with conversion of seven different generic unit designs to CWF firing. Equipment modifications, operating limitations, and retrofit costs were determined for each design when utilizing several CWFs. Unit performance analyses showed significantly better load capacity for utility and industrial boilers as the CWF feed coal ash content is reduced to 5% or 2.6%. In general, utility units had more attractive capacity limits and retrofit costs than the industrial boilers and process heaters studied. Economic analyses indicated that conversion to CWF firing generally becomes feasible when differential fuel costs are above $1.00/10{sup 6}Btu. 60 figs., 24 tabs.

  18. Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors

    DOEpatents

    Riecke, George T.; Stotts, Robert E.

    1992-01-01

    The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

  19. Design criteria for an independent spent fuel storage installation (water pool type)

    SciTech Connect

    Not Available

    1981-01-01

    This standard is intended to be used by those involved in the ownership and operation of an Independent Spent Fuel Storage Installation (ISFSI) in specifying the design requirements and by the designer in meeting the minimum design requirements of such installations. This standard continues the set of American National Standards on spent fuel storage design. Similar standards are: Design Objectives for Light Water Reactor Spent Fuel Storage Facilities at Nuclear Power Stations, N210-1976 (ANS-57.2); Design Objectives for Highly Radioactive Solid Material Handling and Storage Facilities in a Reprocessing Plant, ANSI N305-1975; and Guidelines for Evaluating Site-Related Parameters for an Independent Spent Fuel Storage Installation, ANSI/ANS-2.19-1981.

  20. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  1. American National Standard: design criteria for an independent spent-fuel-storage installation (water pool type)

    SciTech Connect

    Not Available

    1981-01-01

    This standard provides design criteria for systems and equipment of a facility for the receipt and storage of spent fuel from light water reactors. It contains requirements for the design of major buildings and structures including the shipping cask unloading and spent fuel storage pools, cask decontamination, unloading and loading areas, and the surrounding buildings which contain radwaste treatment, heating, ventilation and air conditioning, and other auxiliary systems. It contains requirements and recommendations for spent fuel storage racks, special equipment and area layout configurations, the pool structure and its integrity, pool water cleanup, ventilation, residual heat removal, radiation monitoring, fuel handling equipment, cask handling equipment, prevention of criticality, radwaste control and monitoring systems, quality assurance requirements, materials accountability, and physical security. Such an installation may be independent of both a nuclear power station and a reprocessing facility or located adjacent to any of these facilities in order to share selected support systems. Support systems shall not include a direct means of transferring fuel assemblies from the nuclear facility to the installation.

  2. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  3. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  4. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    0: Residual Fuel Oil Price and Expenditure Estimates, 2014 State Prices Expenditures Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation Electric Power Total Dollars per Million Btu Million Dollars Alabama - 15.65 11.37 - 12.59 - 34.4 62.9 - 97.2 Alaska - - - 18.87 18.87 - - - 14.1 14.1 Arizona - - - - - - - - - - Arkansas - 16.03 - 19.89 16.12 - 1.0 - (s) 1.1 California 15.94 15.94 21.60 - 21.60 0.1 0.5 1,825.7 - 1,826.3 Colorado - - - - - - - - - -

  5. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  6. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Energy Information Administration (EIA) (indexed site)

    58.8 64.9 67.0 67.7 63.6 54.6 Dash (-) No data reported. a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  7. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Energy Information Administration (EIA) (indexed site)

    ... 60.5 64.5 68.5 69.4 65.4 55.2 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  8. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Energy Information Administration (EIA) (indexed site)

    ... 51.6 56.2 59.3 60.4 56.2 45.4 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories...

  9. Carbon-Type Analysis and Comparison of Original and Reblended FACE Diesel Fuels (FACE 2, FACE 4, and FACE 7)

    SciTech Connect

    Bays, J. Timothy; King, David L.; O'Hagan, Molly J.

    2012-10-01

    This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of Fuels for Advanced Combustion Engines (FACE) diesel blends, FD-2B, FD 4B, and FD-7B, and makes comparison of the new blends with the original FACE diesel blends, FD 2A, FD 4A, and FD-7A, respectively. Generally, FD-2A and FD-2B are more similar than the A and B blends of FD-4 and FD-7. The aromatic carbon content is roughly equivalent, although the new FACE blends have decreased monoaromatic content and increased di- and tri-cycloaromatic content, as well as a higher overall aromatic content, than the original FACE blends. The aromatic components of the new FACE blends generally have a higher alkyl substitution with longer alkyl substituents. The naphthenic and paraffinic contents remained relatively consistent. Based on aliphatic methyl and methylene carbon ratios, cetane numbers for FD-2A and -2B, and FD-7A and -7B are predicted to be consistent, while the cetane number for FD-4B is predicted to be higher than FD-4A. Overall, the new FACE fuel blends are fairly consistent with the original FACE fuel blends, but there are observable differences. In addition to providing important comparative compositional information on reformulated FACE diesel blends, this report also provides important information about the capabilities of the team at Pacific Northwest National Laboratory in the use of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  10. Table 5.6 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733

  11. Table 5.8 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    8 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP

  12. Conversion of raw carbonaceous fuels

    DOEpatents

    Cooper, John F.

    2007-08-07

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  13. Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 323,191 95,675 461,905 92,556 973,327 546,354 30,217 576,571 39,041 1,588,939 1990 362,524 127,183 538,063 140,695 1,168,465 650,572 36,433 687,005 40,149 1,895,619 1991 351,834 112,144 546,755 148,216 1,158,949 623,442 36,649

  14. Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 12,768 8,013 66,801 2,243 89,825 19,346 4,550 23,896 679 114,400 1990 20,793 9,029 79,905 3,822 113,549 18,091 6,418 24,509 28 138,086 1991 21,239 5,502 82,279 3,940 112,960 17,166 9,127 26,293 590 139,843 1992 27,545 6,123 101,923

  15. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 – 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 – 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  16. Table 8.4a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu)

    Energy Information Administration (EIA) (indexed site)

    a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995,055 414,632 569,375 NA 2,979,062 0 1,424,722 5,803 NA NA NA NA 1,430,525 NA 5,420 4,415,007 1950

  17. Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu)

    Energy Information Administration (EIA) (indexed site)

    9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year Square Footage Category Principal Building Activity Census Region 1 All Buildings 1,001 to 10,000 10,001 to 100,000 Over 100,000 Education Food Sales Food Service Health Care Lodging Mercantile and Service Office All Other Northeast Midwest South West Major Sources 2 1979 1,255 2,202 1,508 511 [3] 336 469 278 894 861 1,616 1,217 1,826 1,395 526 4,965 1983 1,242 1,935 1,646 480 [3]

  18. Table 5.7 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18

  19. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    Energy Information Administration (EIA) (indexed site)

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand

  20. Temperature modeling for analysis and design of the sintering furnance in HTR fuel type of ball

    SciTech Connect

    Saragi, Elfrida; Setiadji, Moch

    2013-09-09

    One of the factors that determine the safety of the operation of the sintering furnace fuel HTR ball is the temperature distribution in the ceramic tube furnace. The temperature distribution must be determined at design stage. The tube has a temperature of 1600 C at one end and about 40 C at the other end. The outside of the tube was cooled by air through natural convection. The tube is a furnace ceramic tube which its geometry are 0.08, 0.09 and 0.5 m correspondingly for the inner tube diameter, outer tube diameter and tube length. The temperature distribution of the tube is determined by the natural convection coefficient (NCF), which is difficult to be calculated manually. The determination of NCF includes the Grasshoff, Prandtl, and Nusselt numbers which is a function of the temperature difference between the surrounding air with the ceramic tube. If the temperature vary along the tube, the complexity of the calculations increases. Thus the proposed modeling was performed to determine the temperature distribution along the tube and heat transfer coefficient using a self-developed software which permit the design process easier.

  1. Flashback Characteristics of Syngas-Type Fuels Under Steady and Pulsating Conditions

    SciTech Connect

    Tim Lieuwen

    2007-09-30

    The objective of this project was to improve understanding and modeling of flashback, a significant issue in low emissions combustors containing high levels of hydrogen. Experimental studies were performed over a range of fuel compositions, flow velocities, reactant temperatures, and combustor pressures to study the factors leading to flashback. In addition, high speed imaging of the flashback phenomenon was obtained. One of the key conclusions of this study was that there existed multiple mechanisms which lead to flashback, each with different underlying parametric dependencies. Specifically, two mechanisms of 'flashback' were noted: rapid flashback into the premixer, presumably through the boundary layer, and movement of the static flame position upstream along the centerbody. The former and latter mechanisms were observed at high and low hydrogen concentrations. In the latter mechanism, flame temperature ratio, not flame speed, appeared to be the key parameter describing flashback tendencies. We suggested that this was due to an alteration of the vortex breakdown location by the adverse pressure gradient upstream of the flame, similar to the mechanism proposed by Sattelmayer and co-workers [1]. As such, a key conclusion here was that classical flashback scalings derived from, e.g., Bunsen flames, were not relevant for some parameter regimes found in swirling flames. In addition, it was found that in certain situations, pure H2 flames could not be stabilized, i.e., the flame would either flashback or blowout at ignition. This result could have significant implications on the development of future high hydrogen turbine systems.

  2. Table 5.3 End Uses of Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    3 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL

  3. Irradiation Performance of U-Mo Alloy Based ‘Monolithic’ Plate-Type Fuel – Design Selection

    SciTech Connect

    A. B. Robinson; G. S. Chang; D. D. Keiser, Jr.; D. M. Wachs; D. L. Porter

    2009-08-01

    A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.

  4. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  5. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    F7: Distillate Fuel Oil Consumption Estimates, 2014 State Residential Commercial Industrial Transportation Electric Power Total Residential Commercial Industrial Transportation Electric Power Total Thousand Barrels Trillion Btu Alabama 18 677 3,447 20,567 177 24,885 0.1 3.9 19.9 118.8 1.0 143.7 Alaska 1,155 1,264 4,022 5,738 507 12,686 6.7 7.3 23.2 33.1 2.9 73.2 Arizona 2 1,025 5,201 18,452 108 24,789 (s) 5.9 30.0 106.5 0.6 143.1 Arkansas 5 570 5,157 15,448 45 21,225 (s) 3.3 29.8 89.2 0.3 122.6

  6. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    F4: Fuel ethanol consumption estimates, 2014 State Commercial Industrial Transportation Total Commercial a Industrial a Transportation a Total a Thousand barrels Trillion Btu Alabama 5 55 6,340 6,400 (s) 0.2 22.0 22.2 Alaska 6 11 562 580 (s) (s) 2.0 2.0 Arizona 4 94 6,159 6,257 (s) 0.3 21.4 21.7 Arkansas 8 69 3,442 3,520 (s) 0.2 12.0 12.2 California 27 482 35,819 36,329 0.1 1.7 124.4 126.1 Colorado 4 62 4,280 4,346 (s) 0.2 14.9 15.1 Connecticut 4 40 3,487 3,530 (s) 0.1 12.1 12.3 Delaware 1 17

  7. Alternative Fuel Vehicle Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, ...

  8. No Fossil Fuel - Kingston | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fossil Fuel - Kingston Jump to: navigation, search Name No Fossil Fuel - Kingston Facility No Fossil Fuel - Kingston Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Table A23. Quantity of Purchased Electricity, Steam, and Natural Gas by Type

    Energy Information Administration (EIA) (indexed site)

    3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (Million kWh)",," (Billion Btu)",," (Billion cu ft)" ,," -------------------------",," -------------------------",,"

  10. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  11. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  12. Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)

    SciTech Connect

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-10-01

    This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

  13. Mobile Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center

    Energy - Energy Efficiency & Renewable Energy Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen ...

  14. Comparison of Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Information More information on the Fuel Cell Technologies Offce is available at http:www.hydrogenandfuelcells.energy.gov. Fuel Cell Type Common Electrolyte Operating ...

  15. Co-production of electricity and alternate fuels from coal. Final report, August 1995

    SciTech Connect

    1995-12-31

    The Calderon process and its process development unit, PDU, were originally conceived to produce two useful products from a bituminous coal: a desulfurized medium BTU gas containing primarily CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and H{sub 2}O; and a desulfurized low BTU gas containing these same constituents plus N{sub 2} from the air used to provide heat for the process through the combustion of a portion of the fuel. The process was viewed as a means for providing both a synthesis gas for liquid fuel production (perhaps CH{sub 3}OH, alternatively CH{sub 4} or NH{sub 3}) and a pressurized, low BTU fuel gas, for gas turbine based power generation. The Calderon coal process comprises three principle sections which perform the following functions: coal pyrolysis in a continuous, steady flow unit based on coke oven technology; air blown, slagging, coke gasification in a moving bed unit based on a blast furnace technology; and a novel, lime pebble based, product gas processing in which a variety of functions are accomplished including the cracking of hydrocarbons and the removal of sulfur, H{sub 2}S, and of particulates from both the medium and low BTU gases. The product gas processing unit, based on multiple moving beds, has also been conceived to regenerate the lime pebbles and recover sulfur as elemental S.

  16. Fuel Cell Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cells » Fuel Cell Systems Fuel Cell Systems The design of fuel cell systems is complex, and can vary significantly depending upon fuel cell type and application. However, several basic components are found in many fuel cell systems: Fuel cell stack Fuel processor Power conditioners Air compressors Humidifiers Fuel Cell Stack The fuel cell stack is the heart of a fuel cell power system. It generates electricity in the form of direct current (DC) from electro-chemical reactions that take place in

  17. Alternative Fuels Data Center: Idle Reduction

    Alternative Fuels and Advanced Vehicles Data Center

    Clean Cities Annual Petroleum Savings Clean Cities Annual Petroleum Savings Incentive and Law Additions by FuelTechnology Type Incentive and Law Additions by FuelTechnology Type ...

  18. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies Program (VTP) (Fact Sheet) | Department of Energy Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are

  19. Development and validation of capabilities to measure thermal properties of layered monolithic U-Mo alloy plate-type fuel

    SciTech Connect

    Burkes, Douglas; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-19

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of thermal conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify and validate the functionality of equipment methods installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, procedures to operate the equipment, and models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a zirconium diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  20. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    : Asphalt and road oil consumption, price, and expenditure estimates, 2014 State Asphalt and road oil a Consumption Prices Expenditures Thousand barrels Trillion Btu Dollars per ...

  1. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    6: Geothermal Energy Consumption Estimates, 2014 State Geothermal Energy Electric Power Residential Commercial Industrial Electric Power Total Million Kilowatthours Trillion Btu ...

  2. Apparatus and method for combusting low quality fuel

    DOEpatents

    Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

    2003-11-04

    A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

  3. LIFE vs. LWR: End of the Fuel Cycle

    SciTech Connect

    Farmer, J C; Blink, J A; Shaw, H F

    2008-10-02

    The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources [International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of

  4. Solid fuel combustion system for gas turbine engine

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  5. Fuel injector system

    DOEpatents

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  6. COMPOSITE FUEL ELEMENT

    DOEpatents

    Hurford, W.J.; Gordon, R.B.; Johnson, W.A.

    1962-12-25

    A sandwich-type fuel element for a reactor is described. This fuel element has the shape of an elongated flat plate and includes a filler plate having a plurality of compartments therein in which the fuel material is located. The filler plate is clad on both sides with a thin cladding material which is secured to the filler plate only to completely enclose the fuel material in each compartment. (AEC)

  7. The Green Fuel Project: The Solar / Biodiesel Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    solar energy efficiency energy transference shading Parabolic Trough Laws of Thermodynamics solar gain Entropy BTU, solar mass RESOURCES AND MATERIALS: Resources: BTU or Bust...

  8. Tips: Heating and Cooling | Department of Energy

    Energy Saver

    Year and Fuel Type (Quadrillion Btu and Percent of Total). ... and cooling Natural gas and oil heating Programmable ... Rebates & Tax Credits Federal tax credits are available for ...

  9. Seventh Edition Fuel Cell Handbook

    SciTech Connect

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  10. Fuel Systems Solutions Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    company with divisions focusing on bringing cleaner-burning gaseous fuel (such as propane and natural gas) technology to various types of vehicles. References: Fuel Systems...

  11. Table N1.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998

    Energy Information Administration (EIA) (indexed site)

    .3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First

  12. Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002

    Energy Information Administration (EIA) (indexed site)

    5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First

  13. Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    Energy Information Administration (EIA) (indexed site)

    .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources; Column: First Use per Energy Sources and Shipments; Unit: Trillion Btu. Total Energy Source First Use Total United States Coal 1,328 Natural Gas 5,725 Net Electricity 2,437 Purchases 2,510 Transfers In 33 Onsite Generation from Noncombustible Renewable Energy 7 Sales and Transfers Offsite 113 Coke and Breeze 374

  14. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    Energy.gov [DOE]

    Municipal solid waste (MSW) is a domestic energy resource with the potential to provide a significant amount of energy to meet US liquid fuel requirements. MSW is defined as household waste, commercial solid waste, nonhazardous sludge, conditionally exempt, small quantity hazardous waste, and industrial solid waste. It includes food waste, residential rubbish, commercial and industrial wastes, and construction and demolition debris. It has an average higher heating value (HHV) of approximately 5100 btu/lb (as arrived basis).

  15. DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems—Current Performance and Cost

    Office of Energy Efficiency and Renewable Energy (EERE)

    This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive applications when manufactured at a volume of 500,000 units per year, and presents the current projected performance and cost of these systems against the DOE hydrogen storage system targets.

  16. Fuel Options

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Fuel Options HomeCapabilitiesFuel ...

  17. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    F9: Residual Fuel Oil Consumption Estimates, 2014 State Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation Electric Power Total Thousand Barrels Trillion Btu Alabama 0 349 880 0 1,229 0.0 2.2 5.5 0.0 7.7 Alaska 0 0 0 119 119 0.0 0.0 0.0 0.7 0.7 Arizona 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 Arkansas 0 10 0 (s) 10 0.0 0.1 0.0 (s) 0.1 California 1 5 13,442 0 13,448 (s) (s) 84.5 0.0 84.5 Colorado 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 Connecticut 19 5 0 636 659 0.1 (s) 0.0

  18. Thermal breeder fuel enrichment zoning

    DOEpatents

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  19. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  20. Effect of simulated medium-Btu coal gasifier atmospheres on the biaxial stress rupture behavior of four candidate coal gasifier alloys

    SciTech Connect

    Horton, R.M.; Smolik, G.R.

    1982-01-01

    Tests were conducted to determine whether the biaxial stress rupture behavior of four alloys was adversely affected by exposure to four simulated medium-Btu coal gasifier atmospheres. The results of exposures up to approximately 500 h at temperatures between 649 and 982/sup 0/C are presented. Exposure to these atmospheres at temperatures below 900/sup 0/C did not significantly reduce the rupture properties from those measured in air. Only at 982/sup 0/C were the rupture strength and life in the simulated coal gasifier atmospheres lower than those measured in air at atmospheric pressure. Possible reasons for this reduction in strength/life are discussed. The results of detailed examination of specimen ruptures are also presented.

  1. Compare All CBECS Activities: Fuel Oil Use

    Gasoline and Diesel Fuel Update

    Fuel Oil Use Compare Activities by ... Fuel Oil Use Total Fuel Oil Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 1.3 billion gallons...

  2. Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction...

    Alternative Fuels and Advanced Vehicles Data Center

    Clean Cities Annual Petroleum Savings Clean Cities Annual Petroleum Savings Incentive and Law Additions by FuelTechnology Type Incentive and Law Additions by FuelTechnology Type ...

  3. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    DOEpatents

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  4. Neutronic fuel element fabrication

    DOEpatents

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure

  5. Alternative Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alternative Fuel Basics Alternative Fuel Basics August 19, 2013 - 5:42pm Addthis Photo of a man in goggles looking at test tubes full of biodiesel. There are a number of fuels available for alternative fuel vehicles. Learn about the following types of fuels: Biodiesel Electricity Ethanol Hydrogen Natural Gas Propane Addthis Related Articles Advanced Technology and Alternative Fuel Vehicle Basics Glossary of Energy-Related Terms Natural Gas Fuel Basics Energy Basics Home Renewable Energy Homes

  6. Premium Fuel Production From Mining and Timber Waste Using Advanced Separation and Pelletizing Technologies

    SciTech Connect

    Honaker, R. Q.; Taulbee, D.; Parekh, B. K.; Tao, D.

    2005-12-05

    agents for the briquetting of 90% coal and 10% sawdust blends. Guar gum, wheat starch, and a multi-component formulation were identified as most cost-effective for the production of briquettes targeted for the pulverized-coal market with costs being around $8 per ton of the coal-sawdust blend. REAX/lime and a second multi-component formulation were identified as the most cost-effective for the production of briquettes targeted for the stoker-coal market. Various sources of sawdust generated from different wood types were also investigated to determine their chemical properties and to evaluate their relative performance when briquetted with clean coal to form a premium fuel. The highest heating values, approaching 7,000 Btu/lb, were obtained from oak. Sawdusts from higher-density, red oak, white oak, hickory, and beech trees provided higher quality briquettes relative to their lower-density counterparts. In addition to sawdust type, a number of other parameters were evaluated to characterize their impact on briquette properties. The parameters that exhibited the greatest impact on briquette performance were binder concentration; sawdust concentration and particle size; cure temperature; and ash content. Parameters that had the least impact on briquette properties, at least over the ranges studied, were moisture content, briquetting force, and briquetting dwell time. The continuous production of briquettes from a blend of coal and sawdust was evaluated using a 200 lbs/hr Komarek Model B-100 briquetter. The heating values of briquettes produced by the unit exceeded the goal of the project by a large margin. A significant observation was the role of feed moisture on the stability of the mass flow rate through the briquetter and on briquette strength. Excessive feed moisture levels caused inconsistent or stoppage of material flow through the feed hopper and resulted in the production of variable-quality briquettes. Obviously, the limit on feed moisture content has a

  7. Gaseous-fuel engine technology

    SciTech Connect

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  8. Petroleum coke: A viable fuel for power generation

    SciTech Connect

    Dymond, R.E.

    1995-09-01

    As the power generation industry struggles to meet the seemingly divergent goals of reduced emissions and increased electricity demand during the 1990s, petroleum coke`s use as a low cost BTU source should be seriously considered. Since this material is produced at petroleum refineries-thus affected by variables unfamiliar to most power generators-industry participants often do not understand what forces drive coke markets. This article will address these forces and provide some insight about petroleum coke`s future as a viable fuel for power generation.

  9. Petroleum coke: A viable fuel for power generation

    SciTech Connect

    Dymond, R.E.

    1994-12-31

    As the power generation industry struggles to meet the seemingly divergent goals of reduced emissions and increased electricity demand during the 1990s, petroleum coke`s use as a low cost BTU source should be seriously considered. since this material is produced at petroleum refineries - thus affected by variables unfamiliar to most power generators - industry participants often do not understand what forces drive coke markets. This article will address these forces and provide some insight about petroleum coke`s future as a viable fuel for power generation.

  10. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    SciTech Connect

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  11. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1963-06-11

    A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

  12. Fuel cell arrangement

    DOEpatents

    Isenberg, A.O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  13. Fuel cell arrangement

    DOEpatents

    Isenberg, Arnold O.

    1987-05-12

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

  14. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Anderson, W.F.; Tellefson, D.R.; Shimazaki, T.T.

    1962-04-10

    A plate type fuel element which is particularly useful for organic cooled reactors is described. Generally, the fuel element comprises a plurality of fissionable fuel bearing plates held in spaced relationship by a frame in which the plates are slidably mounted in grooves. Clearance is provided in the grooves to allow the plates to expand laterally. The plates may be rigidly interconnected but are floatingly supported at their ends within the frame to allow for longi-tudinal expansion. Thus, this fuel element is able to withstand large temperature differentials without great structural stresses. (AEC)

  15. Alternative Fuels Data Center: Biodiesel Fueling Stations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling ...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    for a pilot program to operate Type II school buses that are retrofitted with an auxiliary fuel tank to enable the use of biodiesel, waste vegetable oil, or straight vegetable oil. ...

  17. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  18. Fuel pin

    DOEpatents

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  19. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  20. Fuel cell market applications

    SciTech Connect

    Williams, M.C.

    1995-12-31

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  1. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  2. Development of high energy density fuels from mild gasification of coal

    SciTech Connect

    Not Available

    1990-10-01

    The overall objective of the program is the determination of the minimal processing requirements to produce High Energy Density Fuels (HEDF), meeting a minimal energy density of 130,000 Btu/gal (conventional jet fuels have energy densities in the vicinity of 115,000--120,000 Btu/gal) and having acceptable advanced fuel specifications in accordance with the three defined categories of HEDF. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. A task breakdown structure was developed containing eight key tasks. This report summarizes the work that Amoco Oil Company (AOC), as key subcontractor, performed in the execution of Task 4, Proposed Upgrading Schemes for Advanced Fuel. The intent of the Task 4 study was to represent all the candidate processing options, that were either studied in the experimental efforts of Task 3 or were available from the prior art in the open literature, in a linear program (LP) model. The LP model would allow scaling of the bench-scale Task 3 results to commercial scale and would perform economic evaluations on any combination of the processes which might be used to make HEDF. Section 2.0 of this report summarizes the process and economic bases used. Sections 3.0 and 4.0 details the economics and processing sensitivities for HEDF production. 1 ref., 15 figs., 9 tabs.

  3. World wide IFC phosphoric acid fuel cell implementation

    SciTech Connect

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  4. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  5. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  6. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  7. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  8. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  9. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  10. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  11. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Reformer Development Putting the 'Fuel' in Fuel Cells Subir Roychoudhury Precision Combustion, Inc. (PCI), North Haven, CT Shipboard Fuel Cell Workshop March 29, 2011 ...

  12. Transportation Fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the

  13. BTU LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Small start-up with breakthrough technology seeking funding to prove commercial feasibility Coordinates: 45.425788, -122.765754 Show Map Loading map......

  14. American Ref-Fuel of Hempstead Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hempstead Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Hempstead Biomass Facility Facility American Ref-Fuel of Hempstead Sector Biomass Facility Type...

  15. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  16. Proposed revision 2 to regulatory guide 3. 44: Standard format and content for the safety analysis report for an independent spent fuel storage installation (water-basin type)

    SciTech Connect

    Not Available

    1986-11-01

    The Nuclear Regulatory Commission has published a proposed Part 72, ''Licensing Requirements for the Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste.'' All references to Part 72 in this draft regulatory guide refer to this proposed version that was published for comment in the Federal Register on May 27, 1986 (51 FR 19106). The proposed Part 72 specifies the information to be supplied in applications for licenses to store spent fuel in an independent spent fuel storage installation (ISFSI). However, Part 72 does not specify the format for the safety analysis report (SAR). This regulatory guide provides guidance on preparing an SAR, and the NRC staff suggests its use for presenting the required information. Chapters are devoted to site characteristics, principal design criteria installation design, operation systems, site-generated waste confinement and managment, radiation protection, accident analyses, conduct of operations, and operating controls and limits.

  17. Fuel-cycle assessment of selected bioethanol production.

    SciTech Connect

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel

  18. A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique and Three Types of Gamma-ray Detectors

    SciTech Connect

    Jorge Navarro; Rahmat Aryaeinejad,; David W. Nigg

    2011-05-01

    A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique1 Rahmat Aryaeinejad, Jorge Navarro, and David W Nigg Idaho National Laboratory Abstract Effective and efficient Advanced Test Reactor (ATR) fuel management require state of the art core modeling tools. These new tools will need isotopic and burnup validation data before they are put into production. To create isotopic, burn up validation libraries and to determine the setup for permanent fuel scanner system a feasibility study was perform. The study consisted in measuring short and long cooling time fuel elements at the ATR canal. Three gamma spectroscopy detectors (HPGe, LaBr3, and HPXe) and two system configurations (above and under water) were used in the feasibility study. The first stage of the study was to investigate which detector and system configuration would be better suited for different scenarios. The second stage of the feasibility study was to create burnup and cooling time calibrations using experimental isotopic data collected and ORIGEN 2.2 burnup data. The results of the study establish that a better spectra resolution is achieve with an above the water configuration and that three detectors can be used in the permanent fuel scanner system for different situations. In addition it was conclude that a number of isotopic ratios and absolute measurements could be used to predict ATR fuel burnup and cooling times. 1This work was supported by the U.S. Department of Energy (DOE) under Battelle Energy Alliance, LLC Contract No. DE-AC07-05ID14517.

  19. Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System

    SciTech Connect

    Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

    2005-03-01

    Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the

  20. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell ...

  1. Assessment of the potential of colloidal fuels in future energy usage. Final report. [97 references

    SciTech Connect

    Not Available

    1980-02-25

    Pulverized coal has been an increasing important source of energy over the past century. Most large utility boilers, all modern coking plants, and many industrial boilers and blast furnaces employ pulverized coal as a major feed stream. In periods of oil shortages, such as during World Wars I and II, the concept of adding powdered coal to oil for use in combustion equipment originally designed for oil has been actively pursued but rarely used. Over this same period of time, there have been attempts to use air suspensions of coal dust in diesel engines in Germany, and in turbines in various countries. The economic advantages to be enjoyed by substitution of powdered coal in oil are not generally realized. Oil costs at $30/bbl represent a fuel value of about $5.00/10/sup 6/ Btu; coal at $25/ton is equivalent to approximately $1.00/10/sup 6/ Btu. Although capital costs for the use of coal are higher than those associated with the use of oil, coal is clearly becoming the least costly fuel. Not only are considerable cost advantages possible, but an improvement in balance of payments and an increase in reliability of fuel supplies are other potential benefits. It is therefore recommended that increased national attention be given to develop these finer grinds of carbonaceous fuels to be used in various suspending fluids. Technical areas where significant additional support appear desirable are described.

  2. Trends in characteristics of hazardous waste-derived fuel burned for energy recovery in cement kilns

    SciTech Connect

    Lusk, M.G.; Campbell, C.S.

    1996-12-31

    The Cement Kiln Recycling Coalition (CKRC) is a national trade association representing virtually all the U.S. cement companies involved in the use of waste-derived fuel in the cement manufacturing process as well as those companies involved in the collection, processing, managing, and marketing of such fuel. CKRC, in conjunction with the National Association of Chemical Recyclers (NACR), completed several data collection activities over the past two years to provide the Environmental Protection Agency (EPA) and other interested parties with industry-wide trend analyses. The analyses evaluated the content of specific metals in waste fuels utilized by cement kilns, average Btu value of substitute fuels used by kilns, and provides insight into the trends of these properties. With the exception of the data collected by NACR, the study did not evaluate materials sent to hazardous waste incinerators or materials that are combusted at {open_quotes}on-site{close_quotes} facilities.

  3. Manufacturing fuel-switching capability, 1988

    SciTech Connect

    Not Available

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  4. Aviation turbine fuels, 1980

    SciTech Connect

    Shelton, E M

    1981-03-01

    Properties of some aviation turbine fuels marketed in the United States during 1980 are presented in this report. The samples represented are typical 1980 production and were analyzed in the laboratories of 17 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 98 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5 and commercial type Jet A.

  5. Fuel Cells at NASCAR

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells at NASCAR Ned Stetson U.S. Department of Energy Fuel Cell Technologies Office Catherine Kummer - NASCAR Green Norm Bessette - Acumentrics Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov 3 Selected Milestone Accomplishments * 5 years of NASCAR Green with now most impactful sustainability platform in history of U.S. based on numbers; most impactful in sports * 75% of avid NASCAR fans are now aware of NASCAR green and believe the

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations Box-type trailers that are at least 53 feet long and the heavy-duty tractors that pull these trailers must be equipped with fuel-efficient tires and aerodynamic trailer devices that improve fuel economy and lower greenhouse gas emissions. Tractors and trailers subject to the regulation must either use U.S. Environmental Protection Agency SmartWay certified tractors and trailers or retrofit existing equipment with SmartWay verified

  7. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    1: Kerosene Consumption, Price, and Expenditure Estimates, 2014 State Consumption Prices Expenditures Residential Commercial Industrial Total Residential Commercial Industrial Total Residential and Commercial Industrial Total Residential Commercial Industrial Total Thousand Barrels Trillion Btu Dollars per Million Btu Million Dollars Alabama 4 3 4 11 (s) (s) (s) 0.1 25.33 20.88 23.77 0.6 0.4 0.4 1.4 Alaska 6 3 (s) 9 (s) (s) (s) 0.1 31.05 25.59 30.88 1.0 0.5 (s) 1.6 Arizona (s) (s) (s) (s) (s)

  8. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    8: Coal Price and Expenditure Estimates and Imports and Exports of Coal Coke, 2014 State Coal Coal Coke Prices Expenditures Prices Expenditures Residential Commercial Industrial Electric Power Total Residential Commercial Industrial Electric Power Total Imports Exports Imports Exports Dollars per Million Btu Million Dollars Dollars per Million Btu Million Dollars Alabama - - 4.13 2.69 2.91 - - 360.8 1,316.5 1,677.3 - - - - Alaska - 4.83 4.85 4.91 4.87 - 40.1 0.1 48.5 88.8 - - - - Arizona - -

  9. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    7: Coal Consumption Estimates and Imports and Exports of Coal Coke, 2014 State Coal Coal Coke Residential a Commercial Industrial Electric Power Total Residential a Commercial Industrial Electric Power Total Imports Exports Imports Exports Thousand Short Tons Trillion Btu Thousand Short Tons Trillion Btu Alabama - 0 3,234 23,901 27,135 - 0.0 87.3 488.6 575.9 - - - - Alaska - 544 1 655 1,200 - 8.3 (s) 9.9 18.2 - - - - Arizona - 0 221 22,911 23,132 - 0.0 5.2 442.7 447.8 - - - - Arkansas - 0 227

  10. Fuels Technologies

    Office of Environmental Management (EM)

    ... and why do NO x x emissions emissions increase when fueling with biodiesel? increase when fueling with biodiesel? NO NO x x increase is larger at higher increase is larger ...

  11. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2016-07-12

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  12. Alternatives to traditional transportation fuels: An overview

    SciTech Connect

    Not Available

    1994-06-01

    This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

  13. Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  14. An Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Introduction to SAE Hydrogen Fueling Standardization Will James U.S. Department of Energy Fuel Cell Technologies Office 2 | Fuel Cell Technologies Office eere.energy.gov 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov SAE INTERNATIONAL U.S. DOE WEBINAR: An Introduction to SAE Hydrogen Fueling Standardization SAE INTERNATIONAL PARTICIPANTS AND AGENDA 4 DOE WEBINAR: An Introduction to SAE Hydrogen Fueling Standardization *Will James -

  15. 1990 fuel cell seminar: Program and abstracts

    SciTech Connect

    Not Available

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  16. New developments in RTR fuel recycling

    SciTech Connect

    Lelievre, F.; Brueziere, J.; Domingo, X.; Valery, J.F.; Leroy, J.F.; Tribout-Maurizi, A.

    2013-07-01

    As most utilities in the world, Research and Test Reactors (RTR) operators are currently facing two challenges regarding the fuel, in order to comply with local safety and waste management requirements as well as global non-proliferation obligation: - How to manage used fuel today, and - How fuel design changes that are currently under development will influence used fuel management. AREVA-La-Hague plant has a large experience in used fuel recycling, including traditional RTR fuel (UAl). Based on that experience and deep knowledge of RTR fuel manufacturing, AREVA is currently examining possible options to cope with both challenges. This paper describes the current experience of AREVA-La-Hague in UAl used fuels recycling and its plan to propose recycling for various types of fuels such as U{sub 3}Si{sub 2} fuel or UMo fuel on an industrial scale. (authors)

  17. Fuel Cell Handbook - Seventh Edition (DOE FE)

    Publication and Product Library

    This handbook is a technical explanation of the science of the fuel cell. Descriptions and explanations of the many different types of fuel cells are also included. Explanations of the chemistry, phys

  18. FUEL CELLS Fuel Cell Cars

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CELLS Fuel Cell Cars Power, performance, and pollution - free Only water from tailpipe More efficient than traditional combustion Only water and heat as byproducts Produce electricity without any combustion Scale up easily to meet many power needs Hydrogen in. Electricity, Heat and Water Out. Share the knowledge #FuelCellsNow #HydrogenNow Learn more: energy.gov/eere/fuelcells Most abundant element in universe Fuel Cell Cars Power, performance, and pollution - free Only water from tailpipe Fuel

  19. Defining the politics changing markets of fuel reformulation: A perspective from Washington

    SciTech Connect

    Potter, F.L. )

    1994-01-01

    On the specific issue of RFG and US motor fuel policy, 1993 NPRA Annual meeting keynote speaker Daniel Yergin said it best, once the refining industry proved it could compete on an environmental basis with alternative fuels through the introduction of ARCO's EC-1, the challenge of economic competitiveness once again became the burden of proof for the alternative fuels industry. This economic need for turning the wheels of public policy change, along with the new tax revenue requirements to fulfill the president's campaign promises, created the policy foundation for President Clinton's original Btu tax proposal. Through the leadership of the NPRA and the chief executive officers of the major oil companies, the petroleum industry turned back the Btu tax. This was accomplished by emphasizing the importance of jobs and cost-effective public policy. The increase in the Btu tax proposal was eventually replaced by a modest increase in the gasoline excise tax. The see-saw battle of economic versus environmental-benefit claims continues in Washington today. No case study is as insightful as the battle over RFG and EPA's newly proposed renewable oxygenate standard (ROS). EPA's proposed ROS offers US petroleum refiners certain benefits not now well understood. The paper discusses the US public policy and economics of the petroleum industry; possible benefits to US refiners from EPA's ROS; public policy formation and campaign contributions; American agriculture and the politics of productivity; how US petroleum refiners can seize public policy initiative; and the choice of foreign methanol and MTBE or ROS and US hydrocarbons. Appendices contain three articles from recent journals, two related to reformulated gasoline and the third about ethanol processing and the federal budget impact.

  20. Fuel Cell Handbook, Fifth Edition

    SciTech Connect

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  1. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    DOEpatents

    Varatharajan, Balachandar; Ziminsky, Willy Steve; Yilmaz, Ertan; Lacy, Benjamin; Zuo, Baifang; York, William David

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  2. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis Stationary Fuel Cell Systems Analysis NREL's technology validation team analyzes the performance of stationary fuel cell systems operating in real-world conditions and reports on the technology's performance, progress, and challenges. This analysis includes multiple fuel cell types-proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate-with system sizes ranging from 5 kW to 2.8 MW. Overview Composite Data Products Publications Learn More Contacts Photo of

  3. Fully ceramic nuclear fuel and related methods

    DOEpatents

    Venneri, Francesco; Katoh, Yutai; Snead, Lance Lewis

    2016-03-29

    Various embodiments of a nuclear fuel for use in various types of nuclear reactors and/or waste disposal systems are disclosed. One exemplary embodiment of a nuclear fuel may include a fuel element having a plurality of tristructural-isotropic fuel particles embedded in a silicon carbide matrix. An exemplary method of manufacturing a nuclear fuel is also disclosed. The method may include providing a plurality of tristructural-isotropic fuel particles, mixing the plurality of tristructural-isotropic fuel particles with silicon carbide powder to form a precursor mixture, and compacting the precursor mixture at a predetermined pressure and temperature.

  4. Alternative Fuels Data Center: Biodiesel Fuel Basics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter ...

  5. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;

    Energy Information Administration (EIA) (indexed site)

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0

  6. Table 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002

    Energy Information Administration (EIA) (indexed site)

    3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," ",," " " "," ",," "," ",," ","

  7. Comparison of Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Fuel Cell Type Common Electrolyte Operating Temperature Typical Stack Size Electrical Efficiency (LHV) Applications Advantages Challenges Polymer Electrolyte Membrane (PEM) Perfluorosulfonic acid <120°C <1 kW - 100 kW 60% direct H 2 ; i 40% reformed fuel ii * Backup power * Portable power * Distributed generation * Transportation * Specialty vehicles * Solid electrolyte reduces corrosion & electrolyte management problems * Low temperature * Quick start-up and

  8. --No Title--

    Annual Energy Outlook

    . Fuel Oil Consumption (Btu) and Energy Intensities by End Use for Non-Mall Buildings, 2003 Total Fuel Oil Consumption (trillion Btu) Fuel Oil Energy Intensity (thousand Btusquare...

  9. Production of a pellet fuel from Illinois coal fines. Technical report, September 1--November 30, 1994

    SciTech Connect

    Rapp, D.; Lytle, J.; Berger, R.

    1994-12-31

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. Stokers are an attractive market for pellets because pellets are well-suited for this application and because western coal is not a competitor in the stoker market. Compliance stoker fuels come from locations such as Kentucky and West Virginia and the price for fuels from these locations is high relative to the current price of Illinois coal. This market offers the most attractive near-term economic environment for commercialization of pelletization technology. For this effort, the authors will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. This quarter pellet production work commenced and planning for collection and processing of a preparation plant fines fraction is underway.

  10. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  11. Occupational safety data and casualty rates for the uranium fuel cycle. [Glossaries

    SciTech Connect

    O'Donnell, F.R.; Hoy, H.C.

    1981-10-01

    Occupational casualty (injuries, illnesses, fatalities, and lost workdays) and production data are presented and used to calculate occupational casualty incidence rates for technologies that make up the uranium fuel cycle, including: mining, milling, conversion, and enrichment of uranium; fabrication of reactor fuel; transportation of uranium and fuel elements; generation of electric power; and transmission of electric power. Each technology is treated in a separate chapter. All data sources are referenced. All steps used to calculate normalized occupational casualty incidence rates from the data are presented. Rates given include fatalities, serious cases, and lost workdays per 100 man-years worked, per 10/sup 12/ Btu of energy output, and per other appropriate units of output.

  12. Fuel Cell/Turbine Ultra High Efficiency Power System

    SciTech Connect

    Hossein, Ghezel-Ayagh

    2001-11-06

    FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will

  13. Fuel Model | NISAC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  14. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_6_roychoudhury.pdf (4.83 MB) More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  15. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  16. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    Energy Information Administration (EIA) (indexed site)

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  17. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Partnership - Alternative Fuels Research TNS Automotive Chris White Communications Director cwhite@cafcp.org 2 TNS Automotive for California Fuel Cell Partnership ...

  18. Environmental data energy technology characterizations: synthetic fuels

    SciTech Connect

    Not Available

    1980-04-01

    Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides documentation on synthetic fuels (coal-derived and oil shale). The transformation of the energy in coal and oil shale into a more useful form is described in this publication in terms of major activity areas in the synthetic fuel cycles, that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are coal liquefaction, coal gasification, in-situ gasification, and oil shales. These activities represent both well-documented and advanced activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The advanced activity areas examined are those like coal liquefaction and in-situ retorting of oil shale. For these areas, data from pilot or demonstration plants were used where available; otherwise, engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary volume. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

  19. Fuel injector

    DOEpatents

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  20. Palcan Fuel Cells | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Partnership with NREL Yes Partnership Type MOU Partnering Center within NREL National Bioenergy Center Partnership Year 2004 Palcan Fuel Cells is a company located in British...

  1. Fuel Mix Disclosure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Website http:www.commerce.wa.govProgramsEnergyOfficeUtilitiesPagesFuelMi... State Washington Program Type Generation Disclosure Summary Washington's retail electric...

  2. Fuel cell-fuel cell hybrid system

    DOEpatents

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  3. Alternative Fuel Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alternative Fuel Vehicles Alternative Fuel Vehicles Check out our <a href="http://www.afdc.energy.gov/">Alternative Fuels Data Center</a> for information, maps, and tools related to all types of advanced vehicles. Check out our Alternative Fuels Data Center for information, maps, and tools related to all types of advanced vehicles. From electric cars and propane vehicles to natural gas-powered buses and trucks that run on biodiesel, today's options for alternative fuel

  4. Advanced Technology and Alternative Fuel Vehicle Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Advanced Technology and Alternative Fuel Vehicle Basics Advanced Technology and Alternative Fuel Vehicle Basics August 20, 2013 - 9:00am Addthis Photo of a large blue truck with 'PG&amp;E Cleanair' written on the side. There are a variety of alternative fuel and advanced technology vehicles that run on fuels other than traditional petroleum. Learn about the following types of vehicles: Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid and Plug-In Electric Vehicles Natural Gas

  5. Updated NGNP Fuel Acquisition Strategy

    SciTech Connect

    David Petti; Tim Abram; Richard Hobbins; Jim Kendall

    2010-12-01

    A Next Generation Nuclear Plant (NGNP) fuel acquisition strategy was first established in 2007. In that report, a detailed technical assessment of potential fuel vendors for the first core of NGNP was conducted by an independent group of international experts based on input from the three major reactor vendor teams. Part of the assessment included an evaluation of the credibility of each option, along with a cost and schedule to implement each strategy compared with the schedule and throughput needs of the NGNP project. While credible options were identified based on the conditions in place at the time, many changes in the assumptions underlying the strategy and in externalities that have occurred in the interim requiring that the options be re-evaluated. This document presents an update to that strategy based on current capabilities for fuel fabrication as well as fuel performance and qualification testing worldwide. In light of the recent Pebble Bed Modular Reactor (PBMR) project closure, the Advanced Gas Reactor (AGR) fuel development and qualification program needs to support both pebble and prismatic options under the NGNP project. A number of assumptions were established that formed a context for the evaluation. Of these, the most important are: • Based on logistics associated with the on-going engineering design activities, vendor teams would start preliminary design in October 2012 and complete in May 2014. A decision on reactor type will be made following preliminary design, with the decision process assumed to be completed in January 2015. Thus, no fuel decision (pebble or prismatic) will be made in the near term. • Activities necessary for both pebble and prismatic fuel qualification will be conducted in parallel until a fuel form selection is made. As such, process development, fuel fabrication, irradiation, and testing for pebble and prismatic options should not negatively influence each other during the period prior to a decision on reactor type

  6. FUEL ELEMENT

    DOEpatents

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  7. Fuel economy and range estimates for fuel cell powered automobiles

    SciTech Connect

    Steinbugler, M.; Ogden, J.

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  8. Fuel Cells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of 175 per kW, and ...

  9. Fuel economizer

    SciTech Connect

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  10. " by Type of Supplier, Census Region, Census Division, Industry Group,"

    Energy Information Administration (EIA) (indexed site)

    3. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Dollars per Physical Units)" ,," Electricity",," Steam" ,," (kWh)",," (million Btu)" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row"

  11. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    0: Total Energy Consumption, Price, and Expenditure Estimates, 2014 State Consumption Prices Expenditures a Residential b Commercial b Industrial b,c Transportation Total c Residential Commercial Industrial Transportation Total Residential Commercial Industrial d Transportation Total d Trillion Btu Dollars per Million Btu Million Dollars Alabama 378.7 262.4 848.4 468.7 1,958.2 28.34 26.06 8.74 25.94 18.64 4,535.1 2,943.4 5,006.2 11,661.7 24,146.5 Alaska 47.8 63.2 329.0 163.0 603.1 23.25 19.78

  12. Synthetic fuel aromaticity and staged combustion

    SciTech Connect

    Longanbach, J. R.; Chan, L. K.; Levy, A.

    1982-11-15

    Samples of middle and heavy SRC-II distillates were distilled into 50 C boiling point range fractions. These were characterized by measurements of their molecular weight, elemental analysis and basic nitrogen content and calculation of average molecular structures. The structures typically consisted of 1 to 3 aromatic rings fused to alicyclic rings with short, 1 to 3 carbon aliphatic side chains. The lower boiling fractions contained significant amounts (1 atom/molecule) of oxygen while the heavier fractions contained so few heteroatoms that they were essentially hydrocarbons. Laboratory scale oxidative-pyrolysis experiments were carried out at pyrolysis temperatures of 500 to 1100 C and oxygen concentrations from 0 to 100 percent of stoichiometry. Analysis of liquid products, collected in condensers cooled with liquid nitrogen showed that aromatization is a major reaction in the absence of oxygen. The oxygen-containing materials (phenolics) seem to be more resistant to thermal pyrolysis than unsubstituted aromatics. Nitrogen converts from basic to nonbasic forms at about 500 C. The nonbasic nitrogen is more stable and survives up to 700 C after which it is slowly removed. A recently constructed 50,000 Btu/hr staged combustor was used to study the chemistry of the nitrogen and aromatics. SRC II combustion was studied under fuel-rich, first-stage conditions at air/fuel ratios from 0.6 to 1.0 times stoichiometric. The chemistry of the fuel during combustion calls for further investigation in order to examine the mechanism by which HCN is evolved as a common intermediate for the formation of the nitrogen-containing gaseous combustion products. 25 references, 45 figures, 25 tables.

  13. Update on US High Density Fuel Fabrication Development

    SciTech Connect

    C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

    2007-03-01

    Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompasses—fuel powder to monolithic foil and binary fuel systems to multiple element additions—significant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

  14. Production of a pellet fuel from Illinois coal mines. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Rapp, D.; Lytle, J.; Berger, R.; Ho, Ken

    1995-12-31

    The goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. Stokers are an attractive market for pellets because pellets are well-suited for this application and because western coal is not a competitor in the stoker market. Compliance stoker fuels come from locations such as Kentucky and West Virginia and the price for fuels from these locations is high relative to the current price of Illinois coal. This market offers the most attractive near-term economic environment for commercialization of pelletization technology. For this effort, we will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach.

  15. Plasma enhancement of combustion of solid fuels

    SciTech Connect

    Askarova, A.S.; Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B.

    2006-03-15

    Plasma fuel systems that increase the coal burning efficiency are discussed. The systems were tested for fuel oil-free startup of boilers and stabilizating a pulverized-coal flame in power-generating boilers equipped with different types of burner and burning all types of power-generating coal. Plasma ignition, thermochemical treatment of an air-fuel mixture prior to combustion, and its burning in a power-generating boiler were numerically simulated. Environmental friendliness of the plasma technology was demonstrated.

  16. Combined Heat and Power Market Potential for Opportunity Fuels

    SciTech Connect

    Jones, David; Lemar, Paul

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  17. Economic Analysis of Alternative Fuel School Buses

    SciTech Connect

    Laughlin, M.

    2004-04-01

    This Clean Cities final report provides a general idea of the potential economic impacts of choosing alternative fuels for school bus fleets. It provides information on different school bus types, as well as analysis of the three main types of alternative fuel used in school bus fleets today (natural gas, propane, and biodiesel).

  18. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  19. American Ref-Fuel of Niagara Biomass Facility | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Niagara Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Niagara Biomass Facility Facility American Ref-Fuel of Niagara Sector Biomass Facility Type Municipal...

  20. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell ...

  1. Electrochemical Processing of Used Nuclear Fuel

    SciTech Connect

    K. M. Goff; J. C. Wass; G. M. Teske

    2011-08-01

    As part of the Department of Energys Fuel Cycle Research and Development Program an electrochemical technology employing molten salts is being developed for recycle of metallic fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. This technology has been deployed for treatment of used fuel from the Experimental Breeder Reactor II (EBR-II) in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory. This process is based on dry (non-aqueous) technologies that have been developed and demonstrated since the 1960s. These technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including preparation of associated high-level waste forms.

  2. Development of fuel processors for transportation and stationary fuel cell systems

    SciTech Connect

    Mitchell, W.L.; Bentley, J.M.; Thijssen, J.H.J.

    1996-12-31

    Five years of development effort at Arthur D. Little have resulted in a family of low-cost, small-scale fuel processor designs which have been optimized for multiple fuels, applications, and fuel cell technologies. The development activities discussed in this paper involve Arthur D. Little`s proprietary catalytic partial oxidation fuel processor technology. This technology is inherently compact and fuel-flexible, and has been shown to have system efficiencies comparable to steam reformers when integrated properly with a wide range of fuel cell types.

  3. Industrial process fuel switching analysis. Topical report, September 1990-March 1991

    SciTech Connect

    Not Available

    1991-06-01

    The study was undertaken to develop accurate, up-to-date profiles of process heat energy consumption and assess the fuel switching capability from natural gas to No. 6 oil for the industrial sector. Energy profiles of drying, calcining, clay firing, petroleum refining, copper smelting, chemical fluid heating, steel heating, iron melting, iron smelting, and ferrous heat treating processes were developed. The natural gas capacity switchable to No. 6 residual oil was also determined. It was determined that 18% (262 trillion Btu) of the natural gas capacity was convertible to No. 6 oil in these processes. Fuel switching capability of No. 6 oil is on the decline in many of the industrial processes. This is due to: replacement of aging equipment capable to burning both natural gas and No. 6 oil, availability and cost effectiveness of natural gas utilization, and emission standards set by amendments to the Clean Air Act and other environmental regulations.

  4. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  5. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  6. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Clean Vehicle and Infrastructure Grants The Texas Commission on Environmental Quality (TCEQ) administers the Emissions Reduction Incentive Grants (ERIG) Program as part of the Texas Emissions Reduction Plan. The ERIG Program provides grants for various types of clean air projects to improve air quality in the state's nonattainment areas. Eligible projects include those that involve replacement, retrofit, repower, or lease or purchase of new heavy-duty vehicles; alternative fuel dispensing

  8. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  9. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  10. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    petroleum gas (propane); coal-derived liquid fuels; hydrogen; electricity; pure biodiesel (B100); fuels, other than alcohol, derived from biological materials; and P-Series fuels. ...

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Select Fuels Clear all All Fuels GasolineE10 Low Sulfur Diesel Biodiesel Compressed ... chart. More fuel information: Biodiesel EthanolE100 Electricity Hydrogen ...

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Beginning January 1, 2017, alternative fuels will be taxed equal to the motor fuel tax on a gallon equivalent basis. Alternative fuels include natural gas, propane, hydrogen, and ...

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    buses and other motor vehicles to use U.S. Environmental Protection Agency compliant alternative fuel systems, purchase alternative fuel equipment, and install fueling stations. ...

  15. ,"Total Fuel Oil Expenditures

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  16. ,"Total Fuel Oil Consumption

    Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  17. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Seminar Orlando, FL Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 1112011 2 | Fuel Cell Technologies Program Source: US ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Clean Transportation Fuel Standards The Oregon Department of Environmental Quality (DEQ) administers the Oregon Clean Fuels Program (Program), which requires fuel producers and ...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Vehicle and Fueling Infrastructure Grants and Loans The Utah Clean Fuels and Vehicle Technology Grant and Loan Program, funded through the Clean Fuels and Vehicle Technology Fund, ...

  20. Fueling of tandem mirror reactors

    SciTech Connect

    Gorker, G.E.; Logan, B.G.

    1985-01-01

    This paper summarizes the fueling requirements for experimental and demonstration tandem mirror reactors (TMRs), reviews the status of conventional pellet injectors, and identifies some candidate accelerators that may be needed for fueling tandem mirror reactors. Characteristics and limitations of three types of accelerators are described; neutral beam injectors, electromagnetic rail guns, and laser beam drivers. Based on these characteristics and limitations, a computer module was developed for the Tandem Mirror Reactor Systems Code (TMRSC) to select the pellet injector/accelerator combination which most nearly satisfies the fueling requirements for a given machine design.

  1. Apparatus for shearing spent nuclear fuel assemblies

    DOEpatents

    Weil, Bradley S.; Metz, III, Curtis F.

    1980-01-01

    A method and apparatus are described for shearing spent nuclear fuel assemblies of the type comprising an array of fuel pins disposed within an outer metal shell or shroud. A spent fuel assembly is first compacted in a known manner and then incrementally sheared using fixed and movable shear blades having matched laterally projecting teeth which slidably intermesh to provide the desired shearing action. Incremental advancement of the fuel assembly after each shear cycle is limited to a distance corresponding to the lateral projection of the teeth to ensure fuel assembly breakup into small uniform segments which are amenable to remote chemical processing.

  2. Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report

    SciTech Connect

    Not Available

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  3. Fuel Cells & Alternative Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cells & Alternative Fuels Fuel Cells & Alternative Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and ...

  4. Tips: Heating and Cooling | Department of Energy

    Energy.gov [DOE] (indexed site)

    us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total)....

  5. Manufacturing Consumption of Energy 1994

    Energy Information Administration (EIA) (indexed site)

    A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at...

  6. Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines

    SciTech Connect

    Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

    2007-03-01

    Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    To qualify, fuel must also meet the U.S. Environmental Protection Agency fuel and fuel additive registration requirements. Alcohol with a proof of less than 150, fuel with a water ...

  8. Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel cells are the most energy efficient devices for extracting power from fuels. Capable of running on a variety of fuels, including hydrogen, natural gas, and biogas, fuel cells ...

  9. American Ref-Fuel of SE CT Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ref-Fuel of SE CT Biomass Facility Jump to: navigation, search Name American Ref-Fuel of SE CT Biomass Facility Facility American Ref-Fuel of SE CT Sector Biomass Facility Type...

  10. Alternative Fuels Data Center: Fuel Prices

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and conventional fuel prices for biodiesel, compressed natural gas, ethanol, ... National Average Price Between July 1 and July 15, 2016 Fuel Price Biodiesel (B20) 2.54...

  11. California Fuel Cell Partnership: Alternative Fuels Research...

    Energy.gov [DOE] (indexed site)

    This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research. cafcpinitiativescall.pdf (133.97 KB) More ...

  12. COMPARTMENTED REACTOR FUEL ELEMENT

    DOEpatents

    Cain, F.M. Jr.

    1962-09-11

    A method of making a nuclear reactor fuel element of the elongated red type is given wherein the fissionable fuel material is enclosed within a tubular metal cladding. The method comprises coating the metal cladding tube on its inside wall with a brazing alloy, inserting groups of cylindrical pellets of fissionable fuel material into the tube with spacing members between adjacent groups of pellets, sealing the ends of the tubes to leave a void space therewithin, heating the tube and its contents to an elevated temperature to melt the brazing alloy and to expand the pellets to their maximum dimensions under predetermined operating conditions thereby automatically positioning the spacing members along the tube, and finally cooling the tube to room temperature whereby the spacing disks become permanently fixed at their edges in the brazing alloy and define a hermetically sealed compartment for each fl group of fuel pellets. Upon cooling, the pellets contract thus leaving a space to accommodate thermal expansion of the pellets when in use in a reactor. The spacing members also provide lateral support for the tubular cladding to prevent collapse thereof when subjected to a reactor environment. (AEC)

  13. Nuclear Fuel Reprocessing

    SciTech Connect

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  14. Comparison of Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Comparison of Fuel Cell Technologies Comparison of Fuel Cell Technologies Each fuel cell technology has advantages and challenges. See how fuel cell technologies compare with one another. This comparison chart is also available as a fact sheet. Fuel Cell Type Common Electrolyte Operating Temperature Typical Stack Size Electrical Efficiency (LHV) Applications Advantages Challenges Polymer Electrolyte Membrane (PEM) Perfluorosulfonic acid <120°C <1 kW-100 kW 60% direct H2;a 40% reformed

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Renewable Fuel Distributor and Vehicle Manufacturer Liability Protection Renewable fuel refiners, suppliers, terminals, wholesalers, distributors, retailers, and motor vehicle manufacturers and dealers are not liable for property damages related to a customer's purchase of renewable fuel, including blends, if the consumer selected the fuel for use. Motor fuel blended with any amount of renewable fuel will not be considered a defective product provided the fuel compiles with motor fuel quality

  16. Fuel Cells at NASCAR

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "Fuel Cells at NASCAR" held on April 17, 2014.

  17. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  18. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  19. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on

  20. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  1. Alternative Fuels Data Center: Natural Gas Fuel Safety

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on

  2. Alcohol Fuels Program technical review, Spring 1984

    SciTech Connect

    Not Available

    1984-10-01

    The alcohol fuels program consists of in-house and subcontracted research for the conversion of lignocellulosic biomass into fuel alcohols via thermoconversion and bioconversion technologies. In the thermoconversion area, the SERI gasifier has been operated on a one-ton per day scale and produces a clean, medium-Btu gas that can be used to manufacture methanol with a relatively small gas-water shift reaction requirement. Recent research has produced catalysts that make methanol and a mixture of higher alcohols from the biomass-derived synthetic gas. Three hydrolysis processes have emerged as candidates for more focused research. They are: a high-temperature, dilute-acid, plug-flow approach based on the Dartmouth reactor; steam explosion pretreatment followed by hydrolysis using the RUT-C30 fungal organism; and direct microbial conversion of the cellulose to ethanol using bacteria in a single or mixed culture. Modeling studies, including parametric and sensitivity analyses, have recently been completed. The results of these studies will lead to a better definition of the present state-of-the-art for these processes and provide a framework for establishing the research and process engineering issues that still need resolution. In addition to these modeling studies, economic feasibility studies are being carried out by commercial engineering firms. Their results will supplement and add commercial validity to the program results. The feasibility contractors will provide input at two levels: Technical and economic assessment of the current state-of-the-art in alcohol production from lignocellulosic biomass via thermoconversion to produce methanol and higher alcohol mixtures and bioconversion to produce ethanol; and identification of research areas having the potential to significantly reduce the cost of production of alcohols.

  3. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels

    SciTech Connect

    Gardiner, D.; Bardon, M.; Pucher, G.

    2008-10-01

    Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.

  4. Diesel fuel from biomass

    SciTech Connect

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  5. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this

  6. Synthetic fuels

    SciTech Connect

    Not Available

    1989-01-01

    In January 1982, the Department of Energy guaranteed a loan for the construction and startup of the Great Plains project. On August 1, 1985, the partnership defaulted on the $1.54 billion loan, and DOE acquired control of, and then title to, the project. DOE continued to operate the plant, through the ANG Coal Gasification Company, and sell synthetic fuel. The DOE's ownership and divestiture of the plant is discussed.

  7. MOX fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    2001-07-17

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

  8. Mox fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    2001-05-15

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.

  9. MOX fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    1998-01-01

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

  10. MOX fuel arrangement for nuclear core

    DOEpatents

    Kantrowitz, M.L.; Rosenstein, R.G.

    1998-10-13

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.

  11. Alternatives to traditional transportation fuels 1995

    SciTech Connect

    1996-12-01

    This report provides information on transportation fuels other than gasoline and diesel, and the vehicles that use these fuels. The Energy Information Administration (EIA) provides this information to support the U.S. Department of Energy`s reporting obligations under Section 503 of the Energy Policy Act of 1992 (EPACT). The principal information contained in this report includes historical and year-ahead estimates of the following: (1) the number and type of alterative-fueled vehicles (AFV`s) in use; (2) the consumption of alternative transportation fuels and {open_quotes}replacement fuels{close_quotes}; and (3) the number and type of alterative-fueled vehicles made available in the current and following years. In addition, the report contains some material on special topics. The appendices include a discussion of the methodology used to develop the estimates (Appendix A), a map defining geographic regions used, and a list of AFV suppliers.

  12. Winters fuels report

    SciTech Connect

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  13. Spent fuel storage alternatives

    SciTech Connect

    O'Connell, R.H.; Bowidowicz, M.A.

    1983-01-01

    This paper compares a small onsite wet storage pool to a dry cask storage facility in order to determine what type of spent fuel storage alternatives would best serve the utilities in consideration of the Nuclear Waste Policy Act of 1982. The Act allows the DOE to provide a total of 1900 metric tons (MT) of additional spent fuel storage capacity to utilities that cannot reasonably provide such capacity for themselves. Topics considered include the implementation of the Act (DOE away-from reactor storage), the Act's impact on storage needs, and an economic evaluation. The Waste Act mandates schedules for the determination of several sites, the licensing and construction of a high-level waste repository, and the study of a monitored retrievable storage facility. It is determined that a small wet pool storage facility offers a conservative and cost-effective approach for many stations, in comparison to dry cask storage.

  14. Engineered fuel: Renewable fuel of the future?

    SciTech Connect

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.

  15. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Infrastructure Research and Station Technology Erika Sutherland U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Hydrogen Fueling Infrastructure Research and Station Technology Chris Ainscough, Joe Pratt, Jennifer Kurtz, Brian Somerday, Danny Terlip, Terry Johnson November 18, 2014 Objective: Ensure that FCEV customers have a positive fueling experience relative to conventional

  16. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients. [PWR

    SciTech Connect

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results.

  17. Modeling the Nuclear Fuel Cycle

    SciTech Connect

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  18. Alternative Fuels Data Center: Strategies to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center

    Strategies to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Strategies to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Strategies to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Strategies to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center:

  19. Strategy for Used Fuel Acquisition

    SciTech Connect

    Steven C. Marschman; Chris Rusch

    2013-09-01

    prototypical of how used nuclear fuel is prepared for dry storage; these fuels are not subjected to the same vacuum drying conditions that can lead to changes in hydride morphology that will affect the mechanical properties of the fuel. It is recognized that sources of used high burnup fuel that can be handled in a manner consistent with how fuel is readied for dry storage is essential to the mission of the UFDC. This report documents what types of fuel are of interest to the campaign, and how those fuels could be acquired and shipped to the Idaho National Laboratory (INL) for incorporation into the campaign R&D mission. It also identifies any gaps in INL capabilities that might preclude working with one fuel type or another.

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Summary Tables Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuel Definition and Specifications Alternative fuels include biofuel, ethanol, methanol, hydrogen, coal-derived liquid fuels, electricity, natural gas, propane gas, or a synthetic transportation fuel. Biofuel is defined as a renewable, biodegradable, combustible liquid or gaseous fuel derived from biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery feedstock and that meets ASTM specifications and federal quality requirements for

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  7. RERTR Fuel Developmemt and Qualification Plan

    SciTech Connect

    Dan Wachs

    2007-01-01

    In late 2003 it became evident that U-Mo aluminum fuels under development exhibited significant fuel performance problems under the irradiation conditions required for conversion of most high-powered research reactors. Solutions to the fuel performance issue have been proposed and show promise in early testing. Based on these results, a Reduced Enrichment Research and Test Reactor (RERTR) program strategy has been mapped to allow generic fuel qualification to occur prior to the end of FY10 and reactor conversion to occur prior to the end of FY14. This strategy utilizes a diversity of technologies, test conditions, and test types. Scoping studies using miniature fuel plates will be completed in the time frame of 2006-2008. Irradiation of larger specimens will occur in the Advanced Test Reactor (ATR) in the United States, the Belgian Reactor-2 (BR2) reactor in Belgium, and in the OSIRIS reactor in France in 2006-2009. These scoping irradiation tests provide a large amount of data on the performance of advanced fuel types under irradiation and allow the down selection of technology for larger scale testing during the final stages of fuel qualification. In conjunction with irradiation testing, fabrication processes must be developed and made available to commercial fabricators. The commercial fabrication infrastructure must also be upgraded to ensure a reliable low enriched uranium (LEU) fuel supply. Final qualification of fuels will occur in two phases. Phase I will obtain generic approval for use of dispersion fuels with density less than 8.5 g-U/cm3. In order to obtain this approval, a larger scale demonstration of fuel performance and fabrication technology will be necessary. Several Materials Test Reactor (MTR) plate-type fuel assemblies will be irradiated in both the High Flux Reactor (HFR) and the ATR (other options include the BR2 and Russian Research Reactor, Dmitrovgrad, Russia [MIR] reactors) in 2008-2009. Following postirradiation examination, a report

  8. Gasification of refuse derived fuel in the Battelle high throughput gasification system

    SciTech Connect

    Paisley, M.A.; Creamer, K.S.; Tweksbury, T.L.; Taylor, D.R. )

    1989-07-01

    This report presents the results of an experimental program to demonstrate the suitability of the Battelle High Throughput Gasification Process to non-wood biomass fuels. An extensive data base on wood gasification was generated during a multi-year experimental program. This data base and subsequent design and economic analysis activities led to the discussion to study the gasification character of other fuels. The specific fuel studied was refuse derived fuel (RDF) which is a prepared municipal solid waste (MSW). The use of RDF, while providing a valuable fuel, can also provide a solution to MSW disposal problems. Gasification of MSW provides advantages over land fill or mass burn technology since a more usable form of energy, medium Btu gas, is produced. Land filling of wastes produces no usable products and mass burning while greatly reducing the volume of wastes for disposal can produce only steam. This steam must be used on site or very nearby this limiting the potential locations for mass burn facilities. Such a gas, if produced from currently available supplies of MSW, can contribute 2 quads to the US energy supply. 3 refs., 12 figs., 7 tabs.

  9. Office Buildings: Consumption Tables

    Energy Information Administration (EIA) (indexed site)

    and Type of Office Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per Million Btu All Office Buildings 1,089 1,475 90.5 16.32...

  10. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    an FFV? An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel system, and engine. And they are available in a wide range of models such as sedans, pickups, and minivans. Light-duty FFVs are designed to operate with at least 15% gasoline in the fuel, mainly to ensure they start in cold weather. FFVs are

  11. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center

    What is an FFV? An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel system, and engine. And they are available in a wide range of models such as sedans, pickups, and minivans. Light-duty FFVs are designed to operate with at least 15% gasoline in the fuel, mainly to ensure they start in cold weather. FFVs

  12. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Current and Anticipated FCEVs Jason Marcinkoski U.S. Department of Energy Fuel Cell Technologies Office Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov 3 | Fuel Cell Technologies Office eere.energy.gov Hydrogen Fueling for Current and Anticipated FCEVs Jason Marcinkoski U.S. Department of Energy Fuel Cell Technologies Office C A L I F O R N I A E N E R G Y C O M M I S S I O N Alternative and Renewable Fuel and Vehicle Technology Program

  13. Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biodiesel Fuels Education in Alabama to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Facebook Tweet about Alternative Fuels Data ...

  14. Alternative Fuels Data Center: Biodiesel Fueling Station Locations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Twitter ...

  15. Alternative Fuels Data Center: Natural Gas Fueling Stations

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural ...

  16. Microbial fuel cell treatment of fuel process wastewater (Patent...

    Office of Scientific and Technical Information (OSTI)

    Microbial fuel cell treatment of fuel process wastewater Title: Microbial fuel cell treatment of fuel process wastewater The present invention is directed to a method for cleansing ...

  17. Microbial fuel cell treatment of fuel process wastewater (Patent...

    Office of Scientific and Technical Information (OSTI)

    Microbial fuel cell treatment of fuel process wastewater Title: Microbial fuel cell treatment of fuel process wastewater You are accessing a document from the Department of ...

  18. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Energy.gov [DOE] (indexed site)

    Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)" held on June 24, 2014. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles ...

  19. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by Sunita Satyapal at the 2010 Fuel ...

  20. Dry Processing of Used Nuclear Fuel

    SciTech Connect

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energys Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) requires that hydrogen fuel used in internal combustion engines and fuel cells must meet the SAE International J2719 standard for hydrogen fuel quality. For more information, see the DMS Hydrogen Fuel News website. (Reference California Code of Regulations Title 4, Section 4180-4181

  2. Polyvalent fuel treatment facility (TCP): shearing and dissolution of used fuel at La Hague facility

    SciTech Connect

    Brueziere, J.; Tribout-Maurizi, A.; Durand, L.; Bertrand, N.

    2013-07-01

    Although many used nuclear fuel types have already been recycled, recycling plants are generally optimized for Light Water Reactor (LWR) UO{sub x} fuel. Benefits of used fuel recycling are consequently restricted to those fuels, with only limited capacity for the others like LWR MOX, Fast Reactor (FR) MOX or Research and Test Reactor (RTR) fuel. In order to recycle diverse fuel types, an innovative and polyvalent shearing and dissolving cell is planned to be put in operation in about 10 years at AREVA's La Hague recycling plant. This installation, called TCP (French acronym for polyvalent fuel treatment) will benefit from AREVA's industrial feedback, while taking part in the next steps towards a fast reactor fuel cycle development using innovative treatment solutions. Feasibility studies and R/Development trials on dissolution and shearing are currently ongoing. This new installation will allow AREVA to propose new services to its customers, in particular in term of MOX fuel, Research Test Reactors fuel and Fast Reactor fuel treatment. (authors)

  3. Method for shearing spent nuclear fuel assemblies

    DOEpatents

    Weil, Bradley S.; Watson, Clyde D.

    1977-01-01

    A method is disclosed for shearing spent nuclear fuel assemblies of the type wherein a plurality of long metal tubes packed with ceramic fuel are supported in a spaced apart relationship within an outer metal shell or shroud which provides structural support to the assembly. Spent nuclear fuel assemblies are first compacted in a stepwise manner between specially designed gag-compactors and then sheared into short segments amenable to chemical processing by shear blades contoured to mate with the compacted surface of the fuel assembly.

  4. Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center

    Vehicle Maintenance to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Vehicle Maintenance to Conserve Fuel on Digg Find

  5. Alternative Fuels Data Center: CNG Vehicle Fueling Animation

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: CNG Vehicle Fueling Animation to someone by E-mail Share Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Facebook Tweet about Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Twitter Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Google Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Delicious Rank Alternative Fuels Data

  6. Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels

  7. Alternative Fuels Data Center: Test Your Alternative Fuel IQ

    Alternative Fuels and Advanced Vehicles Data Center

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Test Your Alternative Fuel IQ to someone by E-mail Share Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Facebook Tweet about Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Twitter Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Google Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Delicious Rank Alternative Fuels Data

  8. Alternative Fuels Data Center: Alternative Fuels Save Money in Indy

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuels Save Money in Indy to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Digg Find

  9. Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance

    Alternative Fuels and Advanced Vehicles Data Center

    CNG Fuel System and Tank Maintenance to someone by E-mail Share Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance on Facebook Tweet about Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance on Twitter Bookmark Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance on Google Bookmark Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance on Delicious Rank Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance on Digg Find

  10. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center

    Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel

  11. Alternative Fuels Data Center: South Florida Fleet Fuels with Propane

    Alternative Fuels and Advanced Vehicles Data Center

    South Florida Fleet Fuels with Propane to someone by E-mail Share Alternative Fuels Data Center: South Florida Fleet Fuels with Propane on Facebook Tweet about Alternative Fuels Data Center: South Florida Fleet Fuels with Propane on Twitter Bookmark Alternative Fuels Data Center: South Florida Fleet Fuels with Propane on Google Bookmark Alternative Fuels Data Center: South Florida Fleet Fuels with Propane on Delicious Rank Alternative Fuels Data Center: South Florida Fleet Fuels with Propane on

  12. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center

    Generatedthumb20140128-29009-1lwk08e Incentive and Law Additions by FuelTechnology Type Generatedthumb20140128-29009-1lwk08e Trend of state incentive and law enactments listed ...

  13. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center

    ... Generatedthumb20140128-29009-1lwk08e Incentive and Law Additions by FuelTechnology Type Generatedthumb20140128-29009-1lwk08e Trend of state incentive and law enactments listed ...

  14. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Energy.gov [DOE] (indexed site)

    fry.pdf (257.11 KB) More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles

  15. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  16. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    Energy Information Administration (EIA) (indexed site)

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  17. Apparatus for inspecting fuel elements

    DOEpatents

    Kaiser, B.J.; Oakley, D.J.; Groves, O.J.

    1984-12-21

    This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  18. Apparatus for inspecting fuel elements

    DOEpatents

    Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.

    1986-01-01

    Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  19. Clean Cities' Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market.

  20. Metal Matrix Microencapsulated (M3) fuel neutronics performance...

    Office of Scientific and Technical Information (OSTI)

    ... in order to obtain fuel cycle length, reactivity coefficients, and power peaking factors ... HOT PRESSING; PWR TYPE REACTORS; REACTIVITY COEFFICIENTS; STEAM; SWELLING; THERMAL ...

  1. Safety and Regulatory Issues of the Thorium Fuel Cycle (Technical...

    Office of Scientific and Technical Information (OSTI)

    Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, ...

  2. Property:RenewableFuelStandard/RenewableBiofuel | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardRenewableBiofuel Jump to: navigation, search This is a property of type Number. Pages...

  3. Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardAdvancedBiofuel Jump to: navigation, search This is a property of type Number. Pages...

  4. Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel...

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardUndifferentiatedAdvancedBiofuel Jump to: navigation, search This is a property of type...

  5. Experimental Program for Used Fuel Disposition in Crystalline...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the DOE Fuel Cycle Technology Annula Review Meeting held ...

  6. Alternative Fuels Data Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Alternative Fuel and Vehicle Tax Alternative fuels used to operate on-road vehicles are taxed at a rate of 0.162 per gasoline gallon equivalent (GGE). Alternative fuels are taxed ...

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative fuels are defined as E85, fuel blends containing at least 20% biodiesel (B20), natural gas, propane, hydrogen, or any fuel that the U.S. Department of Energy ...

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations Converting a vehicle to operate on an alternative fuel in lieu of the original gasoline or diesel fuel is ...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Fuel Dispenser Labeling Requirement All equipment used to dispense motor fuel containing at least 1% ethanol or methanol must be clearly labeled to inform customers that the fuel contains ethanol or methanol. (Reference Texas Statutes, Agriculture Code 17.051

  10. A Combined Nonfertile and UO{sub 2} PWR Fuel Assembly for Actinide...

    Office of Scientific and Technical Information (OSTI)

    the CONFU assembly exhibits negative reactivity feedback coefficients comparable in ... NUCLEAR FUELS; PWR TYPE REACTORS; REACTIVITY COEFFICIENTS; REPROCESSING; SIMULATION; ...

  11. Greater fuel diversity needed to meet growing US electricity demand

    SciTech Connect

    Burt, B.; Mullins, S.

    2008-01-15

    Electricity demand is growing in the USA. One way to manage the uncertainty is to diversity fuel sources. Fuel sources include coal, natural gas, nuclear and renewable energy sources. Tables show actual and planned generation projects by fuel types. 1 fig., 2 tabs.

  12. Hydrogen Fuel Cell Engines and Related Technologies Course Manual

    Office of Energy Efficiency and Renewable Energy (EERE)

    This course manual features technical information on the use of hydrogen as a transportation fuel. It covers hydrogen properties, use, and safety as well as fuel cell technologies, systems, engine design, safety, and maintenance. It also presents the different types of fuel cells and hybrid electric vehicles.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the United States to contain a minimum volume of renewable fuels. The RFS originated with the Energy Policy Act of 2005 and was expanded and extended by the Energy Independence and Security Act of 2007 (EISA). The RFS requires renewable fuel to be blended into transportation fuel in increasing amounts each year, escalating to 36 billion

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Fuels Tax Exemption and Refund for Government Fleet Vehicles State excise tax does not apply to special fuels, including gaseous special fuels, when used in state or federal government owned vehicles. Special fuels include compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and fuel suitable for use in diesel engines. In addition, state excise tax paid on special fuels used in state or federal government vehicles is subject to a refund, as long as the tax was

  15. Fuel Fabrication Development

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit

  16. Launching Renewable Aviation Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bulk Fuel Purchases / Farm to Fleet * Rocky Mountain/ West Coast bulk fuels contract awarded for fuel delivery starting December 2015 awarded 77.6 MM gallons of F-76 with 10% synthetic fuels content (142 MM gallons total F-76) - Covers San Diego, Bremerton, Hawaii - Synthetic fuel supplied by AltAir (Paramount, CA) using the HEFA process - Provides the fuel for RIMPAC 2016 - Solicitation for deliveries starting 1 October 2016 recently closed * Inland/ East/ Gulf Coast solicitation recently

  17. Ohio Fuel Cell Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Top 5 Fuel Cell States: Why Local Policies Mean Green Growth Jun 21 st , 2011 2 * Ohio Fuel Cell Initiative * Ohio Fuel Cell Coalition * Accomplishments * Ohio Successes Discussion Areas 3 Ohio's Fuel Cell Initiative * Announced on 5/9/02 * Part of Ohio Third Frontier Initiative * $85 million investment to date * Core focus areas: 1) Expand the state's research capabilities; 2) Participate in demonstration projects; and 3) Expand the fuel cell industry in Ohio 4 OHIO'S FUEL CELL INITIATIVE

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuel Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient vehicles. Reductions may be met by petroleum displaced through the use of biodiesel, ethanol, other alternative fuels, the use of hybrid electric vehicles, other fuel-efficient or low emission vehicles, or additional methods the North Carolina Division of Energy, Mineral and Land Resources approves.

  19. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  20. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOEpatents

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  1. Fuel vaporization improves fuel economy of alcohol-burning Sl engines

    SciTech Connect

    Hardenberg, H.O.; Metsch, H.I.; Schaefer, A.J.

    1982-10-01

    Fuel vaporization and combustion of the thereby achieved homogeneous mixtures improve the overall efficiency of SI engines in comparison to operation with liquid fuels. The improvements result from a recovery of waste heat and the thus achieved greater usable energy of the fuel, which is increased by the heat of vaporization over the lower calorific value of the liquid fuel, and from the fact that very lean mixtures can be burnt without misfiring. The favorable fuel economy of the air/fuel-vapor mixture-aspirating engine is explained with the aid of engine cycle computation which also enables comparison of different combustion processes. Consideration of common substances shows that methanol is the fuel best suited for this type of SI engine.

  2. Role of fuel upgrading for industry and residential heating

    SciTech Connect

    Merriam, N.W.; Gentile, R.H.

    1995-12-01

    The Koppleman Series C Process is presently being used in pilot plant tests with Wyoming coal to upgrade the Powder River Basin coal containing 30 wt% moisture and having a heating value of 8100 Btu/lb to a product containing less than 1 wt% moisture and having a heating value of 12,200 Btu/lb. This process is described.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    funding for public and private alternative fueling stations, including DC fast electric vehicle supply equipment (EVSE), natural gas, propane, and hydrogen fueling infrastructure. ...

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Renewable Fuels Production Incentive Renewable fuels produced from renewable feedstocks, such as ethanol, hydrogen, biodiesel, and biofuel, may qualify for an income tax credit ...

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    ... million in 2008. Section 757 Biodiesel Engine Testing Program Directs DOE to work with engine and fuel injection manufacturers to test biodiesel in advanced diesel fuel engines, ...

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Fueling equipment for natural gas, liquefied petroleum gas (propane), liquefied hydrogen, electricity, E85, or diesel fuel blends containing a minimum of 20% biodiesel installed ...

  7. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    F8: Distillate Fuel Oil Price and Expenditure Estimates, 2014 State Prices Expenditures ... Where shown, (s) Expenditure value less than 0.05. Notes: Distillate fuel oil estimates ...

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied natural gas (LNG), or liquefied petroleum gas (propane) as a motor fuel ...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Residential Compressed Natural Gas (CNG) Fueling Infrastructure Rebate The Nebraska Energy Office (NEO) offers rebates for qualified CNG fueling infrastructure that is installed at ...

  10. Fuel Cell Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Building & Energy Initiatives * Solar 20 new; 30 total, ... * Alternative Energy-Fuel Cells, waste to electricity, ... History of Fuel Cell Contemplation * Back in 2006, UTC Power ...

  11. Hydrogen Fuel Cell Demonstration ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen fuel cells have a long track record of supplying efficient, emissions-free power ... power, by demonstrating a hydrogen fuel cell deployment in a commercial port setting. ...

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10% ethanol by volume must be labeled with the capital letter "E" ...

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    fuel use. For these purposes, alternative fuels are natural gas, hydrogen, propane, or electricity used to operate a motor vehicle. (Reference Connecticut General Statutes 4a-59

  14. Alternative Fuels Data Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    alternative fuels are defined as methanol, ethanol, natural gas, liquefied petroleum gas (propane), coal-derived liquid fuels, hydrogen, electricity, biodiesel, renewable diesel,...

  15. Alternative Fuels Data Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tax Exemptions and Reductions Propane, natural gas, electricity, and hydrogen, also known as special fuel, used to operate motor vehicles are exempt from state fuel taxes, but...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Fuel Vehicle (AFV) and Fueling Infrastructure Loans The Nebraska Energy Office administers the Dollar and Energy Saving Loan Program, which makes low-cost loans available for a ...

  17. Alternative Fuels Data Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    License Fee Effective July 1, 2015, each alternative fuel supplier, refiner, distributor, terminal operator, importer or exporter of alternative fuel used in motor vehicles must...

  18. Alternative Fuels Data Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding The Alternative Fuels Incentive Grant (AFIG) Program provides financial assistance for qualified projects; ...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Last Updated August 2016 State Incentives Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support updated 9132016 Alternative Fuel and Idle Reduction Grants ...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    For the purpose of the credit, alternative fuels vehicles include dedicated or bi-fuel natural gas, propane, and hydrogen vehicles. Through December 31, 2016, purchased or leased ...

  1. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Overview Flow Cell Workshop Washington, DC Dr. Sunita Satyapal & Dr. Dimitrios Papageorgopoulos U.S. Department of Energy Fuel Cell Technologies Program 37...

  2. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3142012 2 | Fuel Cell ...

  3. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Report to NEAC Fuel Cycle Subcommittee Meeting of October 22, 2015 Washington, DC December ... The agenda for the October 22, 2015 Fuel Cycle Subcommittee meeting is given below. ...

  4. Fuel Cell 101

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Don Hoffman Ship Systems & Engineering Research Division March 2011 Distribution Statement A: Approved for public release; distribution is unlimited. Fuel Cell Operation * A Fuel ...

  5. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cell Technologies Overview States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3...

  6. Fuel Cell Development Status

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    60% of Sales are in building technologies Transportation Stationary Fuel Cells Space & Defense * Fuel cell technology leader since 1958 * 550 employees * 768+ Active U.S. ...

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Clean Transportation Fuels for School Buses The Kentucky Department of Education (Department) must consider the use of clean transportation fuels in school buses as part of its ...

  8. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  9. Fuel Processors for PEM Fuel Cells

    SciTech Connect

    Levi T. Thompson

    2008-08-08

    Fuel cells are being developed to power cleaner, more fuel efficient automobiles. The fuel cell technology favored by many automobile manufacturers is PEM fuel cells operating with H2 from liquid fuels like gasoline and diesel. A key challenge to the commercialization of PEM fuel cell based powertrains is the lack of sufficiently small and inexpensive fuel processors. Improving the performance and cost of the fuel processor will require the development of better performing catalysts, new reactor designs and better integration of the various fuel processing components. These components and systems could also find use in natural gas fuel processing for stationary, distributed generation applications. Prototype fuel processors were produced, and evaluated against the Department of Energy technical targets. Significant advances were made by integrating low-cost microreactor systems, high activity catalysts, π-complexation adsorbents, and high efficiency microcombustor/microvaporizers developed at the University of Michigan. The microreactor system allowed (1) more efficient thermal coupling of the fuel processor operations thereby minimizing heat exchanger requirements, (2) improved catalyst performance due to optimal reactor temperature profiles and increased heat and mass transport rates, and (3) better cold-start and transient responses.

  10. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002

    Energy Information Administration (EIA) (indexed site)

    6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " ","

  11. Systems and methods for optically measuring properties of hydrocarbon fuel gases

    DOEpatents

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz; Gersh, Michael E.; Goldstein, Neil

    1998-10-13

    A system and method for optical interrogation and measurement of a hydrocarbon fuel gas includes a light source generating light at near-visible wavelengths. A cell containing the gas is optically coupled to the light source which is in turn partially transmitted by the sample. A spectrometer disperses the transmitted light and captures an image thereof. The image is captured by a low-cost silicon-based two-dimensional CCD array. The captured spectral image is processed by electronics for determining energy or BTU content and composition of the gas. The innovative optical approach provides a relatively inexpensive, durable, maintenance-free sensor and method which is reliable in the field and relatively simple to calibrate. In view of the above, accurate monitoring is possible at a plurality of locations along the distribution chain leading to more efficient distribution.

  12. Systems and methods for optically measuring properties of hydrocarbon fuel gases

    DOEpatents

    Adler-Golden, S.; Bernstein, L.S.; Bien, F.; Gersh, M.E.; Goldstein, N.

    1998-10-13

    A system and method for optical interrogation and measurement of a hydrocarbon fuel gas includes a light source generating light at near-visible wavelengths. A cell containing the gas is optically coupled to the light source which is in turn partially transmitted by the sample. A spectrometer disperses the transmitted light and captures an image thereof. The image is captured by a low-cost silicon-based two-dimensional CCD array. The captured spectral image is processed by electronics for determining energy or BTU content and composition of the gas. The innovative optical approach provides a relatively inexpensive, durable, maintenance-free sensor and method which is reliable in the field and relatively simple to calibrate. In view of the above, accurate monitoring is possible at a plurality of locations along the distribution chain leading to more efficient distribution. 14 figs.

  13. Internal reforming fuel cell assembly with simplified fuel feed

    SciTech Connect

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  14. Missouri Renewable Fuel Standard Brochure

    Alternative Fuels and Advanced Vehicles Data Center

    The Missouri Renewable Fuel Standard requires ethanol in most gasoline beginning January 1, 2008. ARE YOU READY? TEN THINGS MISSOURI TANK OWNERS AND OPERATORS NEED TO KNOW ABOUT ETHANOL 1. Ethanol is a type of alcohol made usually from corn in Missouri and other states. 2. E10 is a blend of 10% ethanol and 90% unleaded gasoline. E85 is a blend of 75% to 85% fuel ethanol and 25% to 15% unleaded gasoline. Blends between E10 and E85 are not allowed to be sold at retail. 3. Any vehicle or small

  15. Equipment specifications for an electrochemical fuel reprocessing plant

    SciTech Connect

    Hemphill, Kevin P

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  16. Materials issues in solid oxide fuel cell systems

    SciTech Connect

    Ziomek-Moroz, M.

    2007-03-02

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). The presence of carbon oxides in the fuel can cause significant performance problems resulting in decreasing the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC below ~800 C may allow less expensive metallic materials to be used for interconnects. This presentation provides insight on the material performance of ferritic steels in fuels containing carbon oxides and seeks to quantify the extent of possible degradation due to carbon species in the gas stream.

  17. JV Task 75 - Lignite Fuel Enhancement via Air-Jigging Technology

    SciTech Connect

    Jason Lamb; Steven Benson; Joshua Stanislowski

    2007-03-01

    Several North Dakota lignite coals from the Falkirk Mine were processed in a 5-ton-per-hour dry coal-cleaning plant. The plant uses air-jigging technology to separate undesirable ash constituents as well as sulfur and mercury. The results of this study indicate average ash, sulfur, and mercury reductions on a weight basis of 15%, 22%, and 28%, respectively. The average heating value was increased by 2% on a Btu/lb basis. Two computer models were used to understand the impact of a cleaned fuel on boiler performance: PCQUEST{reg_sign} and Vista. The PCQUEST model indicated improvements in slagging and fouling potential when cleaned coals are used over feed coals. The Vista model was set up to simulate coal performance and economics at Great River Energy's Coal Creek Station. In all cases, the cleaned fuel performed better than the original feed coal, with economic benefits being realized for all fuels tested. The model also indicated that one fuel considered to be unusable before cleaning was transformed into a potentially salable product. While these data indicate full-scale implementation of air-jigging technology may be beneficial to the mine and the plant, complete economic analysis, including payback period, is needed to make the final decision to implement.

  18. US RERTR FUEL DEVELOPMENT POST IRRADIATION EXAMINATION RESULTS

    SciTech Connect

    A. B. Robinson; D. M. Wachs; D. E. Burkes; D. D. Keiser

    2008-10-01

    Post irradiation examinations of irradiated RERTR plate type fuel at the Idaho National Laboratory have led to in depth characterization of fuel behavior and performance. Both destructive and non-destructive examination capabilities at the Hot Fuels Examination Facility (HFEF) as well as recent results obtained are discussed herein. New equipment as well as more advanced techniques are also being developed to further advance the investigation into the performance of the high density U-Mo fuel.

  19. Renewable & Alternative Fuels - U.S. Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    (EIA) Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative transportation fuels All renewable & alternative fuels data reports Analysis & Projections Major Topics Most popular Alternative Fuels Capacity and generation Consumption Environment Industry Characteristics Prices Production Projections Recurring Renewable energy type All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues &

  20. Hydrogen Fuel Cells for Small Unmanned Air Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells for Small Unmanned Air Vehicles U.S. Department of Energy Fuel Cell Technologies Office May 26 th , 2016 Presenter: Karen Swider-Lyons : US Naval Research Laboratory DOE Host: Pete Devlin : Market Transformation Manager, FCTO 2 | Fuel Cell Technologies Office eere.energy.gov Question and Answer * Please type your questions into the question box 2 U.S. Naval Research Laboratory Hydrogen Fuel Cells for Small Unmanned Air Vehicles Karen Swider-Lyons US Naval Research Laboratory Code

  1. Alternative Fuels Data Center: About the Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data

  2. Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center

    Efficient Driving Behaviors to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Efficient

  3. Alternative Fuels Data Center: Flexible Fuel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center

    Availability to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Digg Find More places to share Alternative

  4. Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center

    Techniques for Drivers to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Techniques for Drivers to Conserve

  5. Alternative Fuels Data Center: Ethanol Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative

  6. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank

  7. Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks

    Alternative Fuels and Advanced Vehicles Data Center

    Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves

  8. Alternative Fuels Data Center: Propane Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative

  9. Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With

    Alternative Fuels and Advanced Vehicles Data Center

    EVs Reynolds Logistics Reduces Fuel Costs With EVs to someone by E-mail Share Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Facebook Tweet about Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Twitter Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Google Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Delicious Rank Alternative Fuels Data

  10. Buying and Driving Fuel Efficient and Alternative Fuel Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Electricity & Fuel » Vehicles & Fuels » Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder, NREL. Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder,

  11. Fuel Cells and Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Cells and Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Breakout Session 3-C: Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Sarah Studer, ORISE Fellow-Fuel Cell Technologies Office, U.S. Department of Energy studer_bioenergy_2015.pdf (2 MB) More Documents & Publications Workshop on Gas Clean-Up for Fuel Cell Applications U.S Department of Energy Fuel Cell Technologies Office Overview: 2015 Smithsonian Science Education Academies for Teachers Novel

  12. Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling

  13. Alternative Fuels Data Center: Technician Training for Alternative Fuels

    Alternative Fuels and Advanced Vehicles Data Center

    Technician Training for Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Technician Training for Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Technician Training for Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Technician Training for Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Technician Training for Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Technician Training for

  14. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Program describing hydrogen fuel cell technology. Fuel Cells Fact Sheet (545.14 KB) More Documents & Publications Comparison of Fuel Cell Technologies: Fact Sheet Fuel Cells Fact Sheet 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies

  15. Fuel dissipater for pressurized fuel cell generators

    DOEpatents

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  16. Fuel Oil Use in Manufacturing

    Energy Information Administration (EIA) (indexed site)

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  17. Fueling opportunities

    SciTech Connect

    Williams, P.L.

    1994-02-01

    The newly restructured natural gas industry is providing greater opportunities for independent energy producers searching to match fuel supply contracts with project needs. Order No. 636's unbundling of the services offered by pipelines completed the deregulation of the gas industry started by the Natural Gas Policy Act of 1978, which began a phased deregulation of wellhead natural gas prices. Traditionally, the pipelines aggregated gas from numerous producers, transported it, stored it if necessary and sold it to a local distribution company or major customer, such as an electric generator. Order No. 636 separates pipeline transportation, sales and storage services and provides open access to pipelines. Customers are now subject to balancing requirements, scheduling penalties and operational flow orders, but there are new flexibilities in purchase and receipt of gas. The capacity release provisions allow those with excess transportation capacity entitlements to market that capacity. The order also favors the straight fixed-variable rate design which increases demand charges by including all fixed charges, including a pipeline's return and taxes, in the demand component of the rate. Under the previous modified fixed-variable methodology, a pipeline's fixed-cost recovery and earnings depended at least in part on maintaining throughput. Critics say the change will reduce the pipelines' incentive to operate efficiently and to market gas aggressively to power generators.

  18. 1995 CECS C&E Tables

    Energy Information Administration (EIA) (indexed site)

    Major Fuel, 1995 Building Characteristics RSE Column Factor: All Buildings Total Energy Consumption (trillion Btu) Primary Electricity (trillion Btu) RSE Row Factor Number of...

  19. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    Energy Information Administration (EIA) (indexed site)

    Content, Sales Type, and PAD District 242 Energy Information Administration Petroleum Marketing Annual 1997 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  20. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    Energy Information Administration (EIA) (indexed site)

    Content, Sales Type, and PAD District 242 Energy Information Administration Petroleum Marketing Annual 1996 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  1. Combustion and fuel characterization of coal-water fuels

    SciTech Connect

    Chow, O.K.; Durant, J.F.; Griffith, B.F.; Miemiec, L.S.; Levasseur, A.A.; Teigen, B.C.

    1987-07-01

    The ash deposition and performance behavior of a cross-section of coal-water fuels (CWFs) were investigated during comprehensive pilot-scale testing under Task 5 of the Department of Energy's Combustion and Fuel Characterization of Coal-Water Fuels project. The key results from this effort including combustion, furnace slagging, convective pass fouling, fly ash erosion and electrostatic precipitator collection characteristics of the test fuels, are summarized in this report. Data were obtained on twelve different CWFs as well as three baseline pulverized coals. Three coal types were fired at different levels of coal beneficiation to assess the effects of coal cleaning on performance. Five CWFs prepared from the same feed coal by different manufactures were tested to assess the effects of slurry processing. CWFs prepared from both standard grind and microfine grind coals were evaluated. In addition a microfine CWF was fired at fuel temperatures up to 220{degree}F to evaluate the effect of thermal atomization on performance. 8 refs., 16 figs., 12 tabs.

  2. Green Fuel

    Education - Teach & Learn

    This activity allows students the opportunity to explore different methods for collecting solar energy and using that energy for heating, creating electricity and applying that energy to an industrial process. Experimenting with different types of materials will also allow them to understand how the properties of different materials can drastically affect the outcome of their experiment.

  3. FUEL ELEMENT FOR NEUTRONIC REACTORS

    DOEpatents

    Evans, T.C.; Beasley, E.G.

    1961-01-17

    A fuel element for neutronic reactors, particularly the gas-cooled type of reactor, is described. The element comprises a fuel-bearing plate rolled to form a cylinder having a spiral passageway passing from its periphery to its center. In operation a coolant is admitted to the passageway at the periphery of the element, is passed through the spiral passageway, and emerges into a central channel defined by the inner turn of the rolled plate. The advantage of the element is that the fully heated coolant (i.e., coolant emerging into the central channel) is separated and thus insulated from the periphery of the element, which may be in contact with a low-temperature moderator, by the intermediate turns of the spiral fuel element.

  4. Post-crash fuel dispersal

    SciTech Connect

    Tieszen, S.R.

    1997-03-01

    This paper is a brief overview of work over the last several decades in understanding what occurs to jet fuel stored in aircraft fuel tanks on impact with the ground. Fuel dispersal is discussed in terms of the overall crash dynamics process and impact regimes are identified. In a generic sense, the types of flow regimes which can occur are identified and general descriptions of the processes are given. Examples of engineering level tools, both computational and experimental, which have applicability to analyzing the complex environments are presented. Finally, risk based decision is discussed as a quick means of identifying requirements for development of preventative or mitigation strategies, such as further work on the development of an anti-misting agent.

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuels Technician Certificates The Department of Labor (DOL) will issue a certificate to any person who has successfully passed the appropriate alternative fuels equipment, alternative fuels compression, or electric vehicle technician examination as provided in the Alternative Fuels Technician Certification Act. A certification fee applies. For companies, partnerships, or corporations involved in the business of installing, servicing, repairing, modifying, or renovating equipment used

  6. Advanced nuclear fuel

    SciTech Connect

    Terrani, Kurt

    2014-07-14

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  7. FUEL ROD CLUSTERS

    DOEpatents

    Schultz, A.B.

    1959-08-01

    A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.

  8. Advanced nuclear fuel

    ScienceCinema

    Terrani, Kurt

    2016-07-12

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel is exempt from the diesel fuel tax. The biodiesel or ethanol fuel blend must be clearly identified on the retail pump, storage tank, and sales invoice in order to be eligible for the exemption. (Reference Texas Statutes, Tax Code 162.2

  10. Fuel transfer system

    DOEpatents

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  11. Fuel transfer system

    DOEpatents

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  12. Alternative Fuels Data Center: Maps and Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    State & Alt Fuel Providers All Categories Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production ...

  13. Solid polymer MEMS-based fuel cells

    DOEpatents

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  14. Solid oxide MEMS-based fuel cells

    DOEpatents

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  15. Extended life aluminide fuel. Final report

    SciTech Connect

    Miller, L.G.; Beeston, J.M.

    1986-06-01

    As the price of fuel fabrication, shipment of both new and spent fuel, and fuel reprocessing continue to rise at a rapid rate, researchers look for alternate methods to keep reactor fuel costs within their limited funding. Extended fuel element lifetimes, without jeopardizing reactor safety, can reduce fuel costs by up to a factor of two. The Extended Life Aluminide (ELAF) program was started at the Idaho National Engineering Laboratory (INEL) as a joint project of the United States Department of Energy (DOE), the University of Missouri, and the Massachusetts Institute of Technology research reactors. Fuel plates of Advanced Test Reactor (ATR) type construction were fabricated at Atomics International and irradiated in the ATR at the INEL. Four fuel matrix compositions were tested (i.e., 50 vol% UAl/sub x/ cores for reference, and 40, 45 and 50 vol% UAl/sub 2/ cores). The 50 vol% UAl/sub 2/ cores contained up to 3 grams U-235 per cm/sup 3/ of core. Three plates of each composition were irradiated to peak burnup levels of 3 x 10/sup 21/ fission/cm/sup 3/ of core. The only observed damage was due to external corrosion at similar rates experienced by UAl/sub x/ fuel elements in test reactors.

  16. Fuel elements of research reactor CM

    SciTech Connect

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  17. Integrated Recycling Test Fuel Fabrication

    SciTech Connect

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  18. Fuel-Flexible Combustion System for Co-production Plant Applications

    SciTech Connect

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  19. Coal gasification. Quarterly report, April-June 1979

    SciTech Connect

    1980-04-01

    In DOE's program for the conversion of coal to gaseous fuels both high-and low-Btu gasification processes are being developed. High-Btu gas can be distributed economically to consumers in the same pipeline systems now used to carry natural gas. Low-Btu gas, the cheapest of the gaseous fuels produced from coal, can be used economically only on site, either for electric power generation or by industrial and petrochemical plants. High-Btu natural gas has a heating value of 950 to 1000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to High-Btu gas requires a chemical and physical transformation of solid coal. Coals have widely differing chemical and physical properties, depending on where they are mined, and are difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, DOE, together with the American Gas Association (AGA), is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, each of the processes under development have unique characteristics. A number of the processes for converting coal to high-Btu gas have reached the pilot plant Low-Btu gas, with a heating value of up to 350 Btu per standard cubic foot, is an economical fuel for industrial use as well as for power generation in combined gas-steam turbine power cycles. Because different low-Btu gasification processes are optimum for converting different types of coal, and because of the need to provide commercially acceptable processes at the earliest possible date, DOE is sponsoring the concurrent development of several basic types of gasifiers (fixed-bed, fluidized-bed, and entrained-flow).

  20. Alcohol-fuel symposium

    SciTech Connect

    Not Available

    1980-01-01

    A symposium was conducted on the state-of-the-art of ethanol production and use. The following topics were discussed: ethanol as a fuel for internal combustion engines; ethanol production system design; the economics of producing fuel alcohol in form size plants; alternate feedstocks for ethanol stillage as a cattle feed; high energy sorghum, ethanol versus other alternative fuels; alcohol-fuel; legal and policy issues in ethanol production; and small scale fuel alcohol production. (DMC)

  1. Vegetable oil fuel

    SciTech Connect

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Biodiesel Tax Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the $0.30 per gallon state fuel excise tax. The exemption does not apply to fuel used in vehicles with a gross vehicle weight rating of 26,001 pounds or more, fuel not sold in retail operations, or fuel sold in operations involving fleet fueling or bulk sales. The exemption expires after December 31, 2019. (Reference Oregon Revised Statutes 319.530

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    State Agency Low Carbon Fuel Use Requirement Beginning January 1, 2017, at least 3% of the aggregate amount of bulk transportation fuel purchased by the state government must be from very low carbon transportation fuel sources. Beginning January 1, 2018, the required amount of very low carbon transportation fuel purchased will increase by 1% annually until January 1, 2024. Some exemptions may apply, as determined by the California Department of General Services (DGS). Very low carbon fuel is

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center

    Low Carbon Fuel Standard California's Low Carbon Fuel Standard (LCFS) Program requires a reduction in the carbon intensity of transportation fuels that are sold, supplied, or offered for sale in the state by a minimum of 10% by 2020. The California Air Resources Board (ARB) regulations require transportation fuel producers and importers to meet specified average carbon intensity requirements for fuel. In the regulations, carbon intensity reductions are based on reformulated gasoline mixed with

  5. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    6: Total Petroleum Price and Expenditure Estimates, 2014 State Prices Expenditures Residential Commercial Industrial Transportation Electric Power Total Residential Commercial Industrial Transportation Electric Power Total Dollars per Million Btu Million Dollars Alabama 30.97 22.16 22.83 25.95 20.94 25.64 148.3 137.6 1,111.7 11,659.5 21.4 13,078.4 Alaska 27.46 26.38 24.72 25.46 22.14 25.38 194.0 221.5 897.3 4,142.6 81.4 5,536.8 Arizona 34.87 23.57 22.63 27.19 22.60 26.70 134.7 183.8 1,230.9

  6. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    5: Wood and Biomass Waste Price and Expenditure Estimates, 2014 State Prices Expenditures Wood Wood and Biomass Waste a Total b Wood Wood and Biomass Waste a Total b Residential Commercial Industrial Electric Power Residential Commercial Industrial Electric Power Dollars per Million Btu Million Dollars Alabama 12.12 12.12 3.24 2.70 3.43 36.3 4.3 443.8 13.6 498.0 Alaska 16.31 4.23 1.74 - 10.91 17.0 2.8 0.2 - 20.0 Arizona 16.31 16.31 2.41 2.70 6.73 22.6 2.7 0.2 9.7 35.3 Arkansas 12.12 11.35 3.23

  7. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    1: Electricity Consumption Estimates, 2014 State Residential Commercial Industrial Transportation Total Residential Commercial Industrial Transportation Total Million Kilowatthours Trillion Btu Alabama 32,930 22,929 34,635 0 90,494 112.4 78.2 118.2 0.0 308.8 Alaska 2,044 2,762 1,360 0 6,165 7.0 9.4 4.6 0.0 21.0 Arizona 32,346 29,290 14,662 0 76,298 110.4 99.9 50.0 0.0 260.3 Arkansas 18,441 11,988 16,651 (s) 47,080 62.9 40.9 56.8 (s) 160.6 California 89,361 119,494 52,898 832 262,585 304.9 407.7

  8. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    2: Liquefied Petroleum Gases Consumption Estimates, 2014 State Residential Commercial Industrial Transportation Total Residential Commercial Industrial Transportation Total Thousand Barrels Trillion Btu Alabama 1,216 536 344 143 2,239 4.7 2.1 1.2 0.5 8.5 Alaska 95 185 9 22 311 0.4 0.7 (s) 0.1 1.2 Arizona 1,004 430 229 281 1,945 3.9 1.7 0.8 1.1 7.4 Arkansas 1,221 359 750 128 2,457 4.7 1.4 2.6 0.5 9.1 California 4,624 2,393 5,550 1,395 13,962 17.7 9.2 19.2 5.4 51.5 Colorado 2,958 589 513 250 4,310

  9. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    9: Natural Gas Consumption Estimates, 2014 State Residential Commercial Industrial Transpor- tation a Electric Power Total Residential Commercial Industrial Transpor- tation a Electric Power Total Billion Cubic Feet Trillion Btu Alabama 39 28 204 19 346 636 39.9 28.2 209.0 19.4 355.1 651.5 Alaska 18 18 261 (s) 32 329 17.8 18.0 261.5 0.3 32.0 329.6 Arizona 32 30 22 16 206 307 33.3 31.3 23.1 16.0 211.6 315.4 Arkansas 38 51 96 12 72 268 38.9 51.7 98.1 11.9 74.1 274.8 California 397 238 845 39 832

  10. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    5: Total Petroleum Consumption Estimates, 2014 State Residential Commercial Industrial Transportation Electric Power Total Residential Commercial Industrial Transportation Electric Power Total Thousand Barrels Trillion Btu Alabama 1,237 1,260 9,846 85,349 177 97,869 4.8 6.2 58.3 449.4 1.0 519.7 Alaska 1,256 1,525 8,925 29,298 626 41,631 7.1 8.4 53.7 162.7 3.7 235.6 Arizona 1,006 1,500 9,267 85,556 108 97,437 3.9 7.8 54.4 448.3 0.6 515.0 Arkansas 1,229 1,010 10,617 50,347 45 63,248 4.7 5.1 61.1

  11. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  12. Drop In Fuels: Where the Road Leads

    Office of Energy Efficiency and Renewable Energy (EERE)

    Reviews key fuel industry drivers, renewable fuel mandates and projected impact on hydrocarbon fuels

  13. Alternative Fuels Data Center: Federal and State Laws and Incentives

    Alternative Fuels and Advanced Vehicles Data Center

    Use an advanced or keyword search to find a specific federal or state law or incentive. ... Additions by Regulation Type Incentive and Law Additions by FuelTechnology Type Incentive ...

  14. Characterization plan for Fort St. Vrain and Peach Bottom graphite fuels

    SciTech Connect

    Maarschman, S.C.; Berting, F.M.; Clemmer, R.G.; Gilbert, E.R.; Guenther, R.J.; Morgan, W.C.; Sliva, P.

    1993-09-01

    Part of Fort St. Vrain (FSV) and most of the Peach Bottom (PB) reactor spent fuels are currently stored at INEL and may remain in storage for many years before disposal. Three disposal pathways have been proposed: intact disposal, fuels partially disassembled and the high-level waste fraction conditioned prior to disposal, and fuels completed disassembled and conditioned prior to disposal. Many options exist within each of these pathways. PNL evaluated the literature and other reference to develop a fuels characterization plan for these fuels. This plan provides guidance for the characteristics of the fuel which will be needed to pursue any of the storage or disposal pathways. It also provides a suggested fuels monitoring program for the current storage facilities. This report recommends a minimum of 7 fuel elements be characterized: PB Core 1 fuel: one Type II nonfailed element, one Type II failed element, and one Type III nonfailed element; PB Core 2 fuel: two Type II nonfailed fuel elements; and FSV fuel: at least two fuel blocks from regions of high temperature and fluence and long in-reactor performance (preferably at reactor end-of- life). Selection of PB fuel elements should focus on these between radial core position 8 and 14 and on compacts between compact numbers 10 and 20. Selection of FSV fuel elements should focus on these from Fuel Zones II and III, located in Core Layers 6, 7, and possibly 8.

  15. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    SciTech Connect

    Mao, Chien-Pei; Short, John; Klemm, Jim; Abbott, Royce; Overman, Nick; Pack, Spencer; Winebrenner, Audra

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  16. Alternative Fuels Data Center: Alternative Fueling Station Counts by State

    Alternative Fuels and Advanced Vehicles Data Center

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Counts by State to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Google Bookmark Alternative Fuels Data Center:

  17. Alternative Fuels Data Center: About the Alternative Fueling Station Data

    Alternative Fuels and Advanced Vehicles Data Center

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fueling Station Data to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fueling Station Data on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fueling Station Data on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fueling Station Data on Google Bookmark Alternative Fuels Data Center: About the

  18. Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version

    Alternative Fuels and Advanced Vehicles Data Center

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version to someone by E-mail Share Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version on Facebook Tweet about Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version on Twitter Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version on Google Bookmark Alternative Fuels Data Center: CNG Vehicle

  19. Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel

    Alternative Fuels and Advanced Vehicles Data Center

    Vehicles GE Showcases Innovation in Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel Vehicles on

  20. Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

    Alternative Fuels and Advanced Vehicles Data Center

    Upstate New York Green Fueling Station Powers Fleets in Upstate New York to someone by E-mail Share Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Facebook Tweet about Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Twitter Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Google Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in