National Library of Energy BETA

Sample records for btu btu million

  1. Btu)","per Building

    U.S. Energy Information Administration (EIA) (indexed site)

    ,"Number of Buildings (thousand)","Floorspace (million square feet)","Floorspace per Building (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per...

  2. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) (indexed site)

    12:23:06 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  3. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) (indexed site)

    12:23:08 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  4. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) (indexed site)

    12:23:12 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  5. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value

  6. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and

  7. First BTU | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    that is consumed by the United States.3 References First BTU First BTU Green Energy About First BTU Retrieved from "http:en.openei.orgwindex.php?titleFirstBT...

  8. Table 3.1 Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu) Year Coal 1 Natural Gas 2 Crude Oil 3 Fossil Fuel Composite 4 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Percent Change 7 1949 0.21 1.45 0.05 0.37 0.44 3.02 0.26 1.81 – – 1950 .21 1.41 .06 .43 .43 2.95 [R] .26 1.74 -3.6 1951 .21 1.35 .06 .40 .44 2.78 .26 1.65 -5.4 1952 .21 1.31 [R] .07 .45 .44 2.73 .26 1.63 -1.0 1953 .21 1.29 .08 .50 .46 2.86 .27 1.69 3.3 1954 .19 1.18 .09 .55 .48 2.94 .28 1.70 .7 1955

  9. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) (indexed site)

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  10. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) (indexed site)

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  11. BTU International Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    1862 Product: US-based manufacturer of thermal processing equipment, semiconductor packaging, and surface mount assembly. References: BTU International Inc1 This article is a...

  12. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) (indexed site)

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand

  13. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for ...

  14. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) (indexed site)

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  15. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) (indexed site)

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  16. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalCapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  17. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalAnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  18. Low-Btu coal gasification in the United States: company topical. [Brick producers

    SciTech Connect (OSTI)

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  19. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this draft environmental impact statement that evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky. DOE cancelled this project after publication of the draft.

  20. U.S. Total Consumption of Heat Content of Natural Gas (BTU per...

    Gasoline and Diesel Fuel Update

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  1. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  2. Commercial low-Btu coal-gasification plant

    SciTech Connect (OSTI)

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The feasibility study consisted of the following tasks: perform preliminary engineering of a gasification facility; provide a definitive full gas cost estimate based upon the preliminary engineering fuel design; determine the preferred source of coal; determine the potential for the disposition of, and income from, by-products; develop a health and safety program; perform an analysis of the risks involved in constructing and operating such a facility; and prepare a Financial Analysis of General Refractories selected Dravo Engineers and Constructors based upon the qualifications of Dravo in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts and, if the present natural gas decontrol plan is not fully implemented, some budgetary risks would occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  3. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  4. Subtask 3.16 - Low-BTU Field Gas Application to Microturbines

    SciTech Connect (OSTI)

    Darren Schmidt; Benjamin Oster

    2007-06-15

    Low-energy gas at oil production sites presents an environmental challenge to the sites owners. Typically, the gas is managed in flares. Microturbines are an effective alternative to flaring and provide on-site electricity. Microturbines release 10 times fewer NOx emissions than flaring, on a methane fuel basis. The limited acceptable fuel range of microturbines has prevented their application to low-Btu gases. The challenge of this project was to modify a microturbine to operate on gases lower than 350 Btu/scf (the manufacturer's lower limit). The Energy & Environmental Research Center successfully operated a Capstone C30 microturbine firing gases between 100-300 Btu/scf. The microturbine operated at full power firing gases as low as 200 Btu/scf. A power derating was experienced firing gases below 200 Btu/scf. As fuel energy content decreased, NO{sub x} emissions decreased, CO emissions increased, and unburned hydrocarbons remained less than 0.2 ppm. The turbine was self-started on gases as low as 200 Btu/scf. These results are promising for oil production facilities managing low-Btu gases. The modified microturbine provides an emission solution while returning valuable electricity to the oilfield.

  5. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect (OSTI)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  6. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    Gasoline and Diesel Fuel Update

    Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011

  7. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  8. Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    1 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education 15 74 83 11 113 2 16 4 32 21 371 Food Sales 6 12 7 Q 46 2 119 2 2 10 208 Food Service 10 28 24 10 42 13 70 2 2 15 217 Health Care 6 34 42 2 105 1 8 4 10 36 248 Inpatient 3 25 38 2 76 1 4 2 7 21

  9. Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu )

    U.S. Energy Information Administration (EIA) (indexed site)

    Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products 20 0 41 1 1 3 30 11 -0 107 313 Textile Mills 32 0 65 (s) (s) 2 66 12 -0 178 314 Textile Product Mills 3 0 46 (s) 1 Q 20 (s) -0 72 315 Apparel 0 0 7 (s) (s)

  10. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  11. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  12. Investigation of Fuel Quality Impact on the Combustion and Exhaust Emissions of a Turbo-Charged SI Engine Operated on Low BTU Gases

    Energy.gov [DOE]

    Research results validate an engine simulation model and provide guidelines for the improved control of combustion stability of SI engines operated on low-BTU gaseous fuels.

  13. Combined compressed air storage-low BTU coal gasification power plant

    DOE Patents [OSTI]

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  14. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.934 1.692 2.502 2.475 2.156 2.319 2000's 4.311 4.053 3.366 5.493 6.178 9.014 6.976 7.114 8.899 4.159 2010's 4.382 4.026 2.827 3.731 4.262 2.627

  15. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494 1.557 1.674 1.790 1.961 2.459 1996 2.483 2.458 2.353 2.309 2.283 2.544 2.521 2.049 1.933 2.481 3.023 3.645 1997 3.067 2.065 1.899 2.005 2.253 2.161 2.134 2.462 2.873 3.243 3.092 2.406 1998 2.101 2.263 2.253 2.465 2.160 2.168 2.147 1.855 2.040 2.201 2.321 1.927 1999 1.831 1.761 1.801 2.153 2.272 2.346 2.307 2.802 2.636

  16. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/14 2.231 01/21 2.297 01/28 2.404 1994-Feb 02/04 2.506 02/11 2.369 02/18 2.330 02/25 2.267 1994-Mar 03/04 2.178 03/11 2.146 03/18 2.108 03/25 2.058 1994-Apr 04/01 2.065 04/08 2.092 04/15 2.127 04/22 2.126 04/29 2.097 1994-May 05/06 2.025 05/13 1.959 05/20 1.933 05/27 1.855 1994-Jun 06/03 1.938 06/10 2.052 06/17 2.128 06/24 2.065 1994-Jul 07/01 2.183 07/08 2.087

  17. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Annual Energy Outlook

    Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177...

  18. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    2.29 0516 2.22 0523 2.22 0530 2.28 1997-Jun 0606 2.17 0613 2.16 0620 2.22 0627 2.27 1997-Jul 0704 2.15 0711 2.15 0718 2.24 0725 2.20 1997-Aug 0801 2.22 0808 2.37 ...

  19. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 ... 2.25 2.34 2.33 2.30 1997 May-12 to May-16 2.27 2.18 2.22 2.25 2.19 1997 May-19 to May-23 ...

  20. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.001 1.720 2.433 2.463 2.231 2.376 2000's 4.304 4.105 3.441 5.497 6.417 9.186 7.399 7.359 9.014 4.428 2010's 4.471 4.090 2.926 3.775 4.236 2.684

  1. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836

  2. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/14 2.113 01/21 2.159 01/28 2.233 1994-Feb 02/04 2.303 02/11 2.230 02/18 2.223 02/25 2.197 1994-Mar 03/04 2.144 03/11 2.150 03/18 2.148 03/25 2.095 1994-Apr 04/01 2.076 04/08 2.101 04/15 2.137 04/22 2.171 04/29 2.133 1994-May 05/06 2.056 05/13 2.017 05/20 1.987 05/27 1.938 1994-Jun 06/03 2.023 06/10 2.122 06/17 2.173 06/24 2.118 1994-Jul 07/01 2.182 07/08 2.119

  3. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.039 1.739 2.350 2.418 2.290 2.406 2000's 4.217 4.069 3.499 5.466 6.522 9.307 7.852 7.601 9.141 4.669 2010's 4.564 4.160 3.020 3.822 4.227 2.739

  4. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977

  5. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/21 2.055 01/28 2.133 1994-Feb 02/04 2.189 02/11 2.159 02/18 2.174 02/25 2.163 1994-Mar 03/04 2.127 03/11 2.136 03/18 2.141 03/25 2.103 1994-Apr 04/01 2.085 04/08 2.105 04/15 2.131 04/22 2.175 04/29 2.149 1994-May 05/06 2.076 05/13 2.045 05/20 2.034 05/27 1.994 1994-Jun 06/03 2.078 06/10 2.149 06/17 2.172 06/24 2.142 1994-Jul 07/01 2.187 07/08 2.143 07/15 2.079

  6. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.906 2.054 1.746 2.270 2.363 2.332 2.418 2000's 4.045 4.103 3.539 5.401 6.534 9.185 8.238 7.811 9.254 4.882 2010's 4.658 4.227 3.109 3.854 4.218 2.792

  7. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1993 1.906 1994 2.012 2.140 2.120 2.150 2.081 2.189 2.186 2.168 2.079 1.991 1.843 1.672 1995 1.519 1.541 1.672 1.752 1.810 1.763 1.727 1.826 1.886 1.827 1.770 1.844 1996 1.877 1.985 2.040 2.245 2.275 2.561 2.503 2.293 2.296 2.436 2.317 2.419 1997 2.227 1.999 1.987 2.084 2.249 2.194 2.274 2.689 2.997 2.873 2.532 2.204 1998 2.124 2.324 2.333 2.533 2.289 2.291 2.428 2.419 2.537 2.453 2.294 1.940 1999 1.880 1.850 1.886 2.214 2.331 2.429 2.539

  8. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187

  9. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18

  10. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25

  11. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to

  12. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12...

  13. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 ...

  14. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.49 2.09 2.27 2000's 4.31 3.96 3.38 5.47 5.89 8.69 6.73 6.97 8.86 3.94 2010's 4.37 4.00 2.75 ...

  15. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050

  16. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  17. Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year Square Footage Category Principal Building Activity Census Region 1 All Buildings 1,001 to 10,000 10,001 to 100,000 Over 100,000 Education Food Sales Food Service Health Care Lodging Mercantile and Service Office All Other Northeast Midwest South West Major Sources 2 1979 1,255 2,202 1,508 511 [3] 336 469 278 894 861 1,616 1,217 1,826 1,395 526 4,965 1983 1,242 1,935 1,646 480 [3]

  18. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  19. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect (OSTI)

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  20. COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal

    SciTech Connect (OSTI)

    Smith, V.E.; Merriam, N.W.

    1994-10-01

    Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

  1. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  2. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  3. Low/medium Btu coal gasification assessment of central plant for the city of Philadelphia, Pennsylvania. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The objective of this study is to assess the technical and economic feasibility of producing, distributing, selling, and using fuel gas for industrial applications in Philadelphia. The primary driving force for the assessment is the fact that oil users are encountering rapidly escalating fuel costs, and are uncertain about the future availability of low sulfur fuel oil. The situation is also complicated by legislation aimed at reducing oil consumption and by difficulties in assuring a long term supply of natural gas. Early in the gasifier selection study it was decided that the level of risk associated with the gasification process sould be minimal. It was therefore determined that the process should be selected from those commercially proven. The following processes were considered: Lurgi, KT, Winkler, and Wellman-Galusha. From past experience and a knowledge of the characteristics of each gasifier, a list of advantages and disadvantages of each process was formulated. It was concluded that a medium Btu KT gas can be manufactured and distributed at a lower average price than the conservatively projected average price of No. 6 oil, provided that the plant is operated as a base load producer of gas. The methodology used is described, assumptions are detailed and recommendations are made. (LTN)

  4. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  5. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  6. Table 8.4c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.4a; Billion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.4a; Billion Btu) Year Fossil Fuels Nuclear Electric Power Renewable Energy Other 9 Electricity Net Imports Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 Commercial Sector 10<//td> 1989 9,135 6,901 18,424 1,143 35,603 [–] 685 1,781 9,112 [–] – – 11,578 – –

  7. U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12.91 15.20 8.99 2010's 11.83 15.12 10.98 9.94 9.56 4.97

  8. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"11/16/2016 12:05:10

  9. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"11/16/2016

  10. ,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per ...

  11. Table 8.4b Consumption for Electricity Generation by Energy Source: Electric Power Sector, 1949-2011 (Subset of Table 8.4a; Billion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    b Consumption for Electricity Generation by Energy Source: Electric Power Sector, 1949-2011 (Subset of Table 8.4a; Billion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995,055 414,632 569,375 NA 2,979,062 0 1,349,185 5,803 NA NA NA NA 1,354,988 NA 5,420 4,339,470 1950 2,199,111

  12. Effect of simulated medium-Btu coal gasifier atmospheres on the biaxial stress rupture behavior of four candidate coal gasifier alloys

    SciTech Connect (OSTI)

    Horton, R.M.; Smolik, G.R.

    1982-01-01

    Tests were conducted to determine whether the biaxial stress rupture behavior of four alloys was adversely affected by exposure to four simulated medium-Btu coal gasifier atmospheres. The results of exposures up to approximately 500 h at temperatures between 649 and 982/sup 0/C are presented. Exposure to these atmospheres at temperatures below 900/sup 0/C did not significantly reduce the rupture properties from those measured in air. Only at 982/sup 0/C were the rupture strength and life in the simulated coal gasifier atmospheres lower than those measured in air at atmospheric pressure. Possible reasons for this reduction in strength/life are discussed. The results of detailed examination of specimen ruptures are also presented.

  13. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    SciTech Connect (OSTI)

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  14. BTU LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Small start-up with breakthrough technology seeking funding to prove commercial feasibility Coordinates: 45.425788, -122.765754 Show Map Loading map......

  15. Fresh Way to Cut Combustion, Crop and Air Heating Costs Avoids Million BTU Purchases: Inventions and Innovation Combustion Success Story

    SciTech Connect (OSTI)

    Wogsland, J.

    2001-01-17

    Success story written for the Inventions and Innovation Program about a new space heating method that uses solar energy to heat incoming combustion, crop, and ventilation air.

  16. Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 323,191 95,675 461,905 92,556 973,327 546,354 30,217 576,571 39,041 1,588,939 1990 362,524 127,183 538,063 140,695 1,168,465 650,572 36,433 687,005 40,149 1,895,619 1991 351,834 112,144 546,755 148,216 1,158,949 623,442 36,649

  17. Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 12,768 8,013 66,801 2,243 89,825 19,346 4,550 23,896 679 114,400 1990 20,793 9,029 79,905 3,822 113,549 18,091 6,418 24,509 28 138,086 1991 21,239 5,502 82,279 3,940 112,960 17,166 9,127 26,293 590 139,843 1992 27,545 6,123 101,923

  18. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 – 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 – 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  19. Table 8.4a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu)

    U.S. Energy Information Administration (EIA) (indexed site)

    a Consumption for Electricity Generation by Energy Source: Total (All Sectors), 1949-2011 (Sum of Tables 8.4b and 8.4c; Billion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal 5 Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 1949 1,995,055 414,632 569,375 NA 2,979,062 0 1,424,722 5,803 NA NA NA NA 1,430,525 NA 5,420 4,415,007 1950

  20. C3DIV.xls

    U.S. Energy Information Administration (EIA) (indexed site)

    million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) NEW...

  1. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  2. Released: Dec 2006

    U.S. Energy Information Administration (EIA) (indexed site)

    (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per Square Foot (thousand Btu)","per Worker (million Btu)" "All Buildings* ...",4645...

  3. c25.xls

    U.S. Energy Information Administration (EIA) (indexed site)

    per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All...

  4. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,046 1,045 1,067

  5. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,015 1,025 1,029

  6. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025 ...

  7. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,016 1,038

  8. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021

  9. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012 1,002 1,002

  10. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,030 1,028 1,026

  11. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005 ...

  12. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,047 1,041 1,044

  13. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033 ...

  14. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,002 1,001 1,001 1,001 1,002 1,003 1,003 1,002 1,002 1,001 1,001 1,000 2014 1,002 1,004 1,001 1,002 1,001 1,001 1,001 ...

  15. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029 ...

  16. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,056 1,055 1,057 1,043 983 983 983 983 983 983 983 983 2014 947 946 947 947 947 947 951 978 990 968 974 962 2015 968 954 ...

  17. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043 ...

  18. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,015 1,025 1,037

  19. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,043 1,040 2010's 1,040 1,048 1,046 983 958 981

  20. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,027 1,030 1,033

  1. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038 ...

  2. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053 ...

  3. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031 ...

  4. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,030 1,029...

  5. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) (indexed site)

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  6. POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL

    SciTech Connect (OSTI)

    Booz, Allen, and Hamilton, Inc.,

    1980-04-01

    It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

  7. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor ...

  8. U. S. Btu tax plan revised; industry wary of results

    SciTech Connect (OSTI)

    Crow, P.

    1993-04-12

    The Clinton administration has changed its U.S. energy tax proposal to remove some objection voiced by industry and consumers. The Treasury Department's revised plan will still tax oil products at double the rate of other types of energy except for home heating oil, which now is to be taxed at the lower rate for natural gas. Of major importance to California producers, the revision will not tax natural gas used in enhanced recovery for heavy oil. This paper describes exemptions; effects on natural gas; the credibility gap; inhibition of gas market recovery; tax on NGL; and forecasting the future.

  9. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033 ...

  10. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,033 1,034 1,043

  11. British Thermal Units (Btu) - Energy Explained, Your Guide To...

    U.S. Energy Information Administration (EIA) (indexed site)

    Wood and Wood Waste Waste-to-Energy (MSW) Landfill Gas and Biogas Biomass & the Environment See also: Biofuels Biofuels: Ethanol & Biodiesel Ethanol Use of Ethanol Ethanol & the ...

  12. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,043 1,040 2010's 1,040 1,048 1,046 983 958...

  13. A Requirement for Significant Reduction in the Maximum BTU Input...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Barbecue Association's Comments on DOE's Regulatory Burden RFI Department of Energy Request for Information: Reducing Regulatory Burden (Reply Comments) Re: Regulatory Burden RFI

  14. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021 1,037

  15. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012 1,002 1,002 1,001

  16. c26.xls

    U.S. Energy Information Administration (EIA) (indexed site)

    Btu) per Square Foot (thousand Btu) per Worker (million Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings...

  17. Office Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) (indexed site)

    and Type of Office Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per Million Btu All Office Buildings 1,089 1,475 90.5 16.32...

  18. Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison

    Buildings Energy Data Book

    4 Average Annual Carbon Dioxide Emissions for Various Functions Stock Refrigerator (1) kWh - Electricity Stock Electric Water Heater kWh - Electricity Stock Gas Water Heater million Btu - Natural Gas Stock Oil Water Heater million Btu - Fuel Oil Single-Family Home million Btu Mobile Home million Btu Multi-Family Unit in Large Building million Btu Multi-Family Unit in Small Building million Btu School Building million Btu Office Building million Btu Hospital, In-Patient million Btu Stock Vehicles

  19. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    4: Other Petroleum Products Consumption, Price, and Expenditure Estimates, 2014 State Consumption Prices Expenditures Thousand Barrels Trillion Btu Dollars per Million Btu Million ...

  20. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    F2: Jet fuel consumption, price, and expenditure estimates, 2014 State Jet fuel a Consumption Prices Expenditures Thousand barrels Trillion Btu Dollars per million Btu Million ...

  1. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    F5: Aviation gasoline consumption, price, and expenditure estimates, 2014 State Consumption Prices a Expenditures Thousand barrels Trillion Btu Dollars per million Btu Million ...

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) (indexed site)

    ... "Date","Weekly Natural Gas Futures Contract 1 (Dollars per Million Btu)","Weekly Natural Gas Futures Contract 2 (Dollars per Million Btu)","Weekly Natural Gas ...

  3. Health Care Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) (indexed site)

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  4. c3.pdf

    U.S. Energy Information Administration (EIA) (indexed site)

    Btu) per Square Foot (thousand Btu) per Worker (million Btu) All Buildings ... 4,657 67,338 14.5 5,733 1,231 85.1 70.0 Building...

  5. Appendix G - Conversion factors

    Gasoline and Diesel Fuel Update

    G-1 U.S. Energy Information Administration | Annual Energy Outlook 2016 Table G1. Heat contents Fuel Units Approximate heat content Coal 1 Production .................................................. million Btu per short ton 20.02 Consumption .............................................. million Btu per short ton 19.49 Coke plants ............................................. million Btu per short ton 28.69 Industrial 2 ................................................. million Btu per short

  6. Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003

    U.S. Energy Information Administration (EIA) (indexed site)

    0 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major Sources 2

  7. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) (indexed site)

    3 Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major

  8. Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,038 1,037 1,028 2010's 1,023 1,014 1,014 1,019 1,027 1,029

  9. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,024 1,031 1,034

  10. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,032

  11. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,030

  12. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 NA NA NA NA NA NA NA NA NA NA NA NA 2013 1,026 1,026 1,026 1,026 1,027 1,027 1,027 1,027 1,027 1,027 1,028 1,028 2014 ...

  13. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,038 1,037 2010's 1,034 1,036 1,040 1,048 1,048 1,047

  14. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,047 1,046 1,047 1,047 1,047 1,048 1,051 1,048 1,049 1,049 1,054 1,053 2014 1,052 1,050 1,048 1,046 1,044 1,044 1,046 1,046 1,045 1,044 1,049 1,052 2015 1,053 1,054 1,049 1,049 1,050 1,046 1,044 1,044 1,044 1,045 1,046 1,046 2016 1,048 1,045 1,042 1,042 1,042 1,041 1,040 1,039

  15. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,026 1,022 1,023 2010's 1,017 1,020 1,031 1,032

  16. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,030 1,030 1,032 1,034 1,031 1,032 1,032 1,033 1,034 1,031 1,031 2014 1,031 1,032 1,031 1,030 1,028 1,023 1,029 1,029 1,027 1,030 1,029 1,029 2015 1,029 1,029 1,029 1,029 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 2016 1,032 1,027 1,025 1,034 1,029 1,028

  17. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,034 1,034 2010's 1,026 1,026 1,023 1,020 1,024

  18. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,020 1,021 1,019 1,019 1,017 1,019 1,020 1,020 1,020 1,020 1,020 2014 1,022 1,021 1,022 1,022 1,022 1,023 1,022 1,024 1,028 1,027 1,028 1,029 2015 1,030 1,028 1,028 1,029 1,030 1,030 1,031 1,029 1,031 1,031 1,030 1,030 2016 1,031 1,031 1,029 1,031 1,030 1,029 1,029

  19. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,003 1,003 1,002 2010's 1,005 1,005 1,018 1,031 1,041 1,054

  20. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,028 1,030 1,029 1,028 1,028 1,029 1,031 1,030 1,029 1,031 1,030 1,034 2014 1,034 1,034 1,035 1,036 1,039 1,041 1,039 1,045 1,045 1,049 1,048 1,048 2015 1,048 1,048 1,047 1,051 1,054 1,059 1,062 1,060 1,056 1,053 1,053 1,058 2016 1,060 1,058 1,053 1,052 1,054 1,058 1,060 1,057

  1. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,021 1,023 1,021 2010's 1,016 1,014 1,017 1,021 1,019 1,033

  2. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,019 1,023 1,029 2010's 1,010 1,010 1,019 1,023 1,033 1,040

  3. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,026 1,019 2010's 1,014 1,010 1,012 1,015 1,028 1,030

  4. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,017 1,016 1,011 2010's 1,012 1,016 1,025 1,033 1,025 1,026

  5. Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,011 1,012 2010's 1,004 1,011 1,019 1,036 1,042 1,057

  6. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,034 1,034 1,042

  7. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,035 1,033 1,029 2010's 1,026 1,026 1,029 1,044 1,042 1,045

  8. North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,046 1,042 1,055 2010's 1,055 1,073 1,065 1,069 1,086 1,086

  9. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,037 1,057 1,068

  10. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,016 1,029 1,03

  11. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,014 1,015 1,016 2010's 1,012 1,017 1,015 1,021 1,017 1,020

  12. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,028 1,027 2010's 1,023 1,020 1,022 1,027 1,030 1,036

  13. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,025 1,027 1,027 1,027 1,031 1,028 1,026 1,026 1,025 1,024 1,025 2014 1,025 1,023 1,024 1,028 1,029 1,028 1,028 1,031 1,033 1,034 1,035 1,034 2015 1,034 1,035 1,033 1,034 1,033 1,037 1,037 1,037 1,037 1,035 1,037 1,037 2016 1,038 1,036 1,034 1,035 1,021 1,042 1,035 1,038

  14. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,020 1,019 2010's 1,019 1,032 1,039 1,037 1,047 1,060

  15. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,046 1,041 1,044

  16. Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,001 1,005 1,005 2010's 1,007 1,008 1,012 1,015 1,017 1,025

  17. West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,074 1,073 1,082 2010's 1,076 1,083 1,080 1,076 1,090 1,097

  18. Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) (indexed site)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,014 1,014 1,014 2010's 1,010 1,014 1,019 1,026 1,035 1,042

  19. Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,036 1,031 1,031 2010's 1,031 1,034 1,034 1,042 1,040 1,060

  20. Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    "Opportunity fuels" offer an alternative to natural gas. These unconventional fuels are often derived from agricultural, industrial, and municipal waste streams or from byproducts ...

  1. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,026 1,027 2010's 1,022 1,018 1,015 1,016 1,020 1,027

  2. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,022 1,017 1,030

  3. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,015 1,014 1,013 2010's 1,008 1,011 1,011 1,016 1,023 1,029

  4. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,022 1,013 1,015 2010's 1,012 1,012 1,012 1,015 1,019 1,02

  5. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,029 1,040 1,053

  6. State Energy Price and Expenditure Estimates

    Reports and Publications

    2016-01-01

    Energy price and expenditure estimates in dollars per million Btu and in million dollars, by state, 1970-2014.

  7. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    square feet) Total (million dollars) per Building (thousand dollars) per Square Foot (dollars) per Million Btu (dollars) All Buildings ......

  8. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.1 66.1 144.2 37 17 29.1 10 678 0.31 539 192 Census Region and Division

  9. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.7 66.0 142.2 36 16 28.0 10 708 0.33 558 204 Census Region and Division

  10. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 86.3 67.4 144.3 37 17 28.8 11 808 0.38 632 234 Census Region and Division

  11. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 90.5 70.4 156.8 39 18 30.5 12 875 0.39 680 262 Census Region and Division

  12. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 101.4 83.2 168.8 42 21 35.0 13 1,061 0.52 871 337 Census Region and

  13. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 107.0 85.2 211.2 46 18 36.0 14 1,178 0.48 938 366 Census Region and Division

  14. Energy Demand | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the...

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) (indexed site)

    ...C1","RNGC2","RNGC3","RNGC4" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)","Natural Gas Futures Contract 2 (Dollars per Million Btu)","Natural Gas Futures ...

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) (indexed site)

    to Contents","Data 1: Natural Gas Futures Contract 4 (Dollars per Million Btu)" "Sourcekey","RNGC4" "Date","Natural Gas Futures Contract 4 (Dollars per Million Btu)" 34318,1.906 ...

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) (indexed site)

    to Contents","Data 1: Natural Gas Futures Contract 3 (Dollars per Million Btu)" "Sourcekey","RNGC3" "Date","Natural Gas Futures Contract 3 (Dollars per Million Btu)" 34349,2.116 ...

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) (indexed site)

    to Contents","Data 1: Natural Gas Futures Contract 2 (Dollars per Million Btu)" "Sourcekey","RNGC2" "Date","Natural Gas Futures Contract 2 (Dollars per Million Btu)" 34349,2.188 ...

  19. Test and evaluate the TRI-GAS low-Btu coal gasification process. Quarterly report, January-March 1980

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    New silicon carbide liners were cast for all three reactor vessels. The new liners will facilitate installation of the new reactor heaters and make possible a better seal between the heaters and vessel internals. Globar heating elements were received, cut to length, and installed on the new silicon carbide vessel liners in States 2 and 3. The heater for Stage 1 was reassembled on the new silicon carbide liner and installed in the vessel. Preliminary tests were made following the installation of the silicon carbide liners and heaters. The Stage 2 heater failed open, due to poor contact, after a few hours of testing. This problem was solved by nickel plating the ends of the Globars and using graphite packing to cushion the connector set screws.

  20. "NAICS",,"per Employee","of Value Added","of Shipments" "Code...

    U.S. Energy Information Administration (EIA) (indexed site)

    Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand ...

  1. C4DIV.xls

    U.S. Energy Information Administration (EIA) (indexed site)

    Floorspace per Building (thousand square feet) Total (million dollars) per Building (thousand dollars) per Square Foot (dollars) per Million Btu (dollars) NEW ENGLAND...

  2. C15DIV.xls

    U.S. Energy Information Administration (EIA) (indexed site)

    million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (billion cubic feet) Total (million dollars) NEW ENGLAND ... 45...

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) (indexed site)

    ,"Data 1","Weekly Natural Gas Futures Contract 3 (Dollars per Million ... 1: Weekly Natural Gas Futures Contract 3 (Dollars per Million Btu)" ...

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) (indexed site)

    ,"Data 1","Weekly Natural Gas Futures Contract 4 (Dollars per Million ... 1: Weekly Natural Gas Futures Contract 4 (Dollars per Million Btu)" ...

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) (indexed site)

    ,"Data 1","Weekly Natural Gas Futures Contract 2 (Dollars per Million ... 1: Weekly Natural Gas Futures Contract 2 (Dollars per Million Btu)" ...

  6. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census

  7. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 3 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.4 181.2 43 18 34.0 13 1,061 0.45 840 321 Census Region

  8. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 0 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.4 11.6 29.7 131 51 99.0 36 1,053 0.41 795 287 Census

  9. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 1 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 14.6 11.0 28.9 116 44 87.9 32 1,032 0.39 781 283 Census

  10. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 2 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.5 12.2 30.0 98 40 77.1 27 829 0.34 650 231 Census

  11. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 4 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.5 13.8 32.0 91 39 71.9 27 697 0.30 550 203 Census

  12. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.4 14.0 33.3 87 37 70.3 27 513 0.22 414 156 Census

  13. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 90 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 16.3 13.5 33.2 77 31 63.9 23 609 0.25 506 181 Census

  14. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 3 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.8 11.6 29.8 92 36 77.5 28 604 0.23 506 186 Census

  15. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.2 11.0 23.2 97 46 81.1 31 694 0.33 578 224 Census

  16. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update

    questionnaires Fuel Oil/Kerosene, 2001 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 11.2 9.4 26.0 80 29 67.1 26 723 0.26

  17. Word Pro - A

    U.S. Energy Information Administration (EIA) (indexed site)

    Table A3. Approximate Heat Content of Petroleum Consumption and Fuel Ethanol (Million Btu ... renewable diesel fuel (including biodiesel) blended into distillate fuel oil. d ...

  18. Table 3.4 Consumer Price Estimates for Energy by End-Use Sector...

    U.S. Energy Information Administration (EIA) (indexed site)

    Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars 1 per Million Btu) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity ...

  19. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North...

  20. Word Pro - A

    U.S. Energy Information Administration (EIA) (indexed site)

    ... be 5.359 million Btu per barrel or equal to the thermal conversion factor for Biodiesel. ... Approximate Heat Content of Biofuels Biodiesel. EIA estimated the thermal conversion ...

  1. Annual Energy Outlook 2015 - Appendix A

    U.S. Energy Information Administration (EIA) (indexed site)

    6 Reference case Energy Information Administration Annual Energy Outlook 2015 Table A3. Energy prices by sector and source (2013 dollars per million Btu, unless otherwise noted) ...

  2. DOE Issues ESPC IDIQ Solicitation: Deadline for Response Extended...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    emissions reduction goals by streamlining contract funding for energy management projects. ... Btu per year and thereby avoiding 2.4 million tons in greenhouse gas emissions per year. ...

  3. Table 7. Carbon intensity of the energy supply by State (2000...

    U.S. Energy Information Administration (EIA) (indexed site)

    Carbon intensity of the energy supply by State (2000-2011)" "kilograms of energy-related carbon dioxide per million Btu" ,,,"Change" ,,,"2000 to 2011"...

  4. Slide 1

    U.S. Energy Information Administration (EIA) (indexed site)

    ... * Multi-team effort to forecast NGL prices - ... Price in 2011 million BTU NEMS run 9412 AEO2012 ... BOM most affected - Update fuel costselection factors to ...

  5. Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West North Central","South Atlantic","East South Central","West North...

  6. Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  7. Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West South Central","Moun- tain","Pacific","West South Central","Moun-...

  8. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    6: Geothermal Energy Consumption Estimates, 2014 State Geothermal Energy Electric Power Residential Commercial Industrial Electric Power Total Million Kilowatthours Trillion Btu ...

  9. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  10. Appendix G: Conversion factors

    Annual Energy Outlook

    4 Table G1. Heat contents Fuel Units Approximate heat content Coal 1 Production ... million Btu per short ton 20.142 Consumption...

  11. Carbon Emissions: Paper Industry

    U.S. Energy Information Administration (EIA) (indexed site)

    Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994...

  12. Word Pro - S1

    U.S. Energy Information Administration (EIA) (indexed site)

    Table 1.7 Primary Energy Consumption, Energy Expenditures, and Carbon Dioxide Emissions Indicators Primary Energy Consumption a Energy Expenditures b Carbon Dioxide Emissions c Consump- tion Consump- tion per Capita Consumption per Real Dollar d of GDP e Expendi- tures Expendi- tures per Capita Expenditures as Share of GDP e Expenditures as Share of Gross Output f Emissions Emissions per Capita Emissions per Real Dollar d of GDP e Quadrillion Btu Million Btu Thousand Btu per Chained (2009)

  13. Freescale Semiconductor Successfully Implements an Energy Management...

    Energy Savers

    by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than 2 million each year. ...

  14. Performance summary of the Balcomb solar home

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hedstrom, J.C.; Perry, J.E. Jr.

    1981-01-01

    The heating performance of the Balcomb passive solar home is re-evaluated based on detailed review of 85 channels of data taken during six weeks of 1980. This led to a re-analysis of 176 days of data taken over the winter of 1978-79. Auxiliary heat during this winter was 7.4 million Btu which compares with 66.0 million Btu total heat losses from the house plus 46.4 million Btu losses from the greenhouse. Auxiliary heat predicted using the solar load ratio method is 8.1 million Btu. Solar savings are estimated as 57 million Btu. Good thermal comfort conditions are documented. Energy flows are tabulated for each month. Energy flows are tabulated for each month. Conclusions regarding detailed heat flow and storage in the house are presented.

  15. Natural Gas Processing Plants in the United States: 2010 Update / National

    Gasoline and Diesel Fuel Update

    Overview Btu Content National Overview Btu Content The natural gas received and transported by the major intrastate and interstate mainline transmission systems must be within a specific energy (Btu) content range. Generally, the acceptable Btu content is 1,035 Btu per cubic foot, with an acceptable deviation of +/-50 Btu. However, when natural gas is extracted, its Btu content can be very different from acceptable pipeline specifications. The Btu content of natural gas extracted varies

  16. Table 5.1 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) (indexed site)

    5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  17. Table 5.5 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  18. table5.1_02

    U.S. Energy Information Administration (EIA) (indexed site)

    1 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Row Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total

  19. table5.5_02

    U.S. Energy Information Administration (EIA) (indexed site)

    5 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE Total Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Other(e) Row End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States RSE

  20. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) (indexed site)

    Table 1. Fossil fuel sales of production from federal lands, FY 2003-14 Fiscal Year Crude Oil and Lease Condensate Natural Gas Plant Liquids 2 Natural Gas Coal Fossil Fuels Million Barrels 1 Trillion Btu Percent of U.S. Total Million Barrels 1 Trillion Btu Percent of U.S. Total Billion Cubic Feet 1 Trillion Btu Percent of U.S. Total Million Short Tons 1 Trillion Btu Percent of U.S. Total Trillion Btu Percent of U.S. Total 2003 679 3,939 33.0% 93 347 14.7% 6,798 6,981 35.7% 436 8,960 40.6%

  1. Onondaga County Department of Water Environment Protection: Process Optimization Saves Energy at Metropolitan Syracuse Wastewater Treatment Plant

    SciTech Connect (OSTI)

    Not Available

    2005-12-01

    This DOE Industrial Technologies Program spotlight describes how Onondaga County, New York, is saving nearly 3 million kWh and 270 million Btu annually at a wastewater treatment plant after replacing inefficient motors and upgrading pumps.

  2. Onondaga County Department of Water Environment Protection: Process Optimization Saves Energy at Metropolitan Syracuse Wastewater Treatment Plant

    SciTech Connect (OSTI)

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how Onondaga County, New York, is saving nearly 3 million kWh and 270 million Btu annually at a wastewater treatment plant after replacing inefficient motors and upgrading pumps.

  3. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update

    (million dollars) Sum of Major Fuel Expenditures (dollars) per Million Btu per Square Foot North- east Mid- west South West North- east Mid- west South West North- east Mid- west...

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) (indexed site)

    Table 1.6 State-Level Energy Consumption, Expenditure, and Price Estimates, 2010 Rank Consumption Consumption per Capita Expenditures 1 Expenditures 1 per Capita Prices 1 Trillion Btu Million Btu Million Dollars 2 Dollars 2 Dollars 2 per Million Btu 1 Texas 11,769.9 Wyoming 948.1 Texas 137,532 Alaska 8,807 Hawaii 30.75 2 California 7,825.7 Alaska 898.5 California 117,003 Louisiana 8,661 District of Columbia 26.19 3 Florida 4,381.9 Louisiana 894.4 New York 61,619 Wyoming 7,904 Connecticut 25.63

  5. --No Title--

    U.S. Energy Information Administration (EIA) (indexed site)

    by Source, 2008 (Dollars per Million Btu) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass...

  6. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    at the Henry Hub expired on Wednesday, August 29, at 2.295 per million Btu after dropping a little over 50 cents from the previous Friday price. This final settlement price...

  7. Table 3.3 Consumer Price Estimates for Energy by Source, 1970...

    U.S. Energy Information Administration (EIA) (indexed site)

    Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars 1 per Million Btu) Year Primary Energy 2 Electric Power Sector 11,12 Retail Electricity 13 Total Energy 9,10,14 ...

  8. Natural Gas: Lifting Mileage Higher and Higher | Department of...

    Energy Savers

    Natural Gas: Lifting Mileage Higher and Higher Natural Gas: Lifting Mileage Higher and Higher April 7, 2016 - 12:35pm Addthis Depending on the technology pathway, one million Btu ...

  9. 2.10.11_Final_EIA_Testimony.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... surrounding the forecast, with the ... spot price increasing to an average 4.58 per million Btu. The long-term outlook for oil ... the adoption of fuel economy standards ...

  10. Microsoft Word - Highlights.docx

    Gasoline and Diesel Fuel Update

    ... months with sparse trading in "near-the-money" options contracts dollars per barrel U.S. ... months with sparse trading in "near-the-money" options contracts dollars per million btu ...

  11. Microsoft Word - Highlights.docx

    Gasoline and Diesel Fuel Update

    ... months with sparse trading in "near-the-money" options contracts dollars per barrel U.S. ... months with sparse trading in "near-the-money" options contracts dollars per million Btu ...

  12. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    Ending Tuesday, November 9, 2010) Since Wednesday, November 3, natural gas spot prices rose across the lower 48 States, increasing between 0.25 and 1.12 per million Btu (MMBtu)....

  13. Energy Information Administration - Energy Efficiency-Table 5b...

    Annual Energy Outlook

    b Page Last Modified: June 2010 Table 5b. Consumption of Energy for All Purposes (First Use) per Ton of Steel, 1998, 2002, and 2006 (Million Btu per ton) MECS Survey Years Iron and...

  14. U.S. Energy Information Administration (EIA) - Pub

    Gasoline and Diesel Fuel Update

    Delivered energy consumption by sector Transportation Energy consumption in the transportation sector declines in the AEO2015 Reference case from 27.0 quadrillion Btu (13.8 million ...

  15. Natural Gas Weekly Update

    Annual Energy Outlook

    prices posted modest net gains at most market locations across the lower 48 States. The Henry Hub spot price increased from 3.54 per million Btu (MMBtu) last Wednesday, October...

  16. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    with increases ranging between 49 and 95 cents per million Btu (MMBtu). Prices at the Henry Hub climbed by 75 cents per MMBtu, or about 20 percent, to 4.42 per MMBtu. At the New...

  17. Natural Gas Weekly Update

    Annual Energy Outlook

    in trading yesterday (June 11) in response to moderating temperatures. Prices at the Henry Hub increased 32 cents per million Btu (MMBtu), or about 3 percent, to 12.49 per...

  18. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    demand ebbed during the report week, prices declined across the lower 48 States. The Henry Hub spot price ended trading yesterday, March 24, at 4.02 per million Btu (MMBtu), a...

  19. Natural Gas Weekly Update

    Annual Energy Outlook

    just above the 3.00 mark during the week ended August 10, 2001, as the price at the Henry Hub in Louisiana varied between 3.14 and 2.98 per million Btu. Net injections of...

  20. Natural Gas Weekly Update

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    with the largest decreases generally occurring in the western half of the country. The Henry Hub spot price decreased by 0.34 to 3.02 per million Btu (MMBtu). At the New York...

  1. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    coast and as far south as Florida. During the report week (November 24-December 1), the Henry Hub spot price increased 0.39 to 4.21 per million Btu (MMBtu). At the New York...

  2. Natural Gas Weekly Update

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    natural gas spot prices fell at most market locations in the Lower 48 States, with the Henry Hub spot price falling to 3.56 per million Btu (MMBtu), about a 7 percent decline...

  3. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update

    48 States, increasing between 0.25 and 1.12 per million Btu (MMBtu). Prices at the Henry Hub rose 0.41 per MMBtu since last Wednesday, averaging 3.76 per MMBtu in trading...

  4. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    in trading yesterday (June 11) in response to moderating temperatures. Prices at the Henry Hub increased 32 cents per million Btu (MMBtu), or about 3 percent, to 12.49 per...

  5. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    natural gas spot prices fell at most market locations in the Lower 48 States, with the Henry Hub spot price falling to 3.56 per million Btu (MMBtu), about a 7 percent decline...

  6. Natural Gas Weekly Update

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    prices decreased at most market locations in the Lower 48 States for the week. The Henry Hub spot price averaged 7.04 per million Btu (MMBtu) as of December 5, declining 47...

  7. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook

    at markets in the Rocky Mountains and the Midcontinent. During the report week, the Henry Hub spot price decreased 0.15 to 4.76 per million Btu (MMBtu). At the New York...

  8. Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"New England","Middle Atlantic","East North Central","New England","Middle...

  9. Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  10. Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    (million square feet)",,,,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"Zone 1","Zone 2","Zone 3","Zone 4","Zone 5","Zone 1","Zone 2","Zone 3","Zone...

  11. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update

    prices rose between 15 and 30 cents per million Btu at the Southern California border, PG&E citygates, the Henry Hub, and the New York and Chicago citygates before...

  12. Energy-Related Carbon Dioxide Emissions at the State Level, 2000...

    U.S. Energy Information Administration (EIA) (indexed site)

    8 Table 7. Carbon intensity by state (2000-2013) kilograms of energy-related carbon dioxide per million Btu Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 ...

  13. Federal Energy and Water Management Awards 2014

    Energy Savers

    initiatives saved 18 billion Btu and 39 million gallons of water from the prior year. ... its energy intensity by 52% and water intensity by 24% over their respective baselines. ...

  14. "Table 7b. Natural Gas Price, Electric Power Sector, Actual...

    U.S. Energy Information Administration (EIA) (indexed site)

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,200...

  15. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect (OSTI)

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump

  16. Hydrogen transmission/storage with a metal hydride/organic slurry

    SciTech Connect (OSTI)

    Breault, R.W.; Rolfe, J.; McClaine, A.

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits: it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.

  17. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) (indexed site)

    Approximate Heat Content of Petroleum and Natural Gas Plant Liquids Asphalt. The U.S. Energy Information Administration (EIA) adopted the thermal conversion factor of 6.636 million British thermal units (Btu) per barrel as estimated by the Bureau of Mines and first published in the Petroleum Statement, Annual, 1956. Aviation Gasoline. EIA adopted the thermal conversion factor of 5.048 million Btu per barrel as adopted by the Bureau of Mines from the Texas Eastern Transmission Corporation

  18. Coal surface control for advanced fine coal flotation

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, W.; Zou, Y.; Chen, W. ); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. )

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  19. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F.; Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C.; Hu, W.; Zou, Y.; Chen, W.; Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R.

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  20. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) (indexed site)

    3 Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu 1989 16,510 1,410 16,357

  1. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) (indexed site)

    45 Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, Selected Years, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu

  2. SAS Output

    U.S. Energy Information Administration (EIA) (indexed site)

    4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2004 through 2014 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks Period Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu)

  3. Released: September, 2008

    U.S. Energy Information Administration (EIA) (indexed site)

    E3A. Electricity Consumption (Btu) by End Use for All Buildings, 2003" ,"Total Electricity Consumption (trillion Btu)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  4. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) (indexed site)

    Major Fuel, 1995 Building Characteristics RSE Column Factor: All Buildings Total Energy Consumption (trillion Btu) Primary Electricity (trillion Btu) RSE Row Factor Number of...

  5. Major Fuels","Site Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) (indexed site)

    C1. Total Energy Consumption by Major Fuel, 1999" ,"All Buildings",,"Total Energy Consumption (trillion Btu)",,,,,"Primary Electricity (trillion Btu)" ,"Number of Buildings...

  6. Released: September, 2008

    U.S. Energy Information Administration (EIA) (indexed site)

    . Electricity Consumption (Btu) by End Use for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (trillion Btu)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","32016" ,"Release ...

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) (indexed site)

    Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for ... Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","32016" ,"Release ...

  9. The Green Fuel Project: The Solar / Biodiesel Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    solar energy efficiency energy transference shading Parabolic Trough Laws of Thermodynamics solar gain Entropy BTU, solar mass RESOURCES AND MATERIALS: Resources: BTU or Bust...

  10. --No Title--

    Annual Energy Outlook

    . Fuel Oil Consumption (Btu) and Energy Intensities by End Use for Non-Mall Buildings, 2003 Total Fuel Oil Consumption (trillion Btu) Fuel Oil Energy Intensity (thousand Btusquare...

  11. Table A23. Quantity of Purchased Electricity, Steam, and Natural Gas by Type

    U.S. Energy Information Administration (EIA) (indexed site)

    3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (Million kWh)",," (Billion Btu)",," (Billion cu ft)" ,," -------------------------",," -------------------------",,"

  12. " Census Region, Census Division, Industry Group, and Selected Industries, 1994"

    U.S. Energy Information Administration (EIA) (indexed site)

    Quantity of Purchased Electricity and Steam by Type of Supplier," " Census Region, Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam" ,," (million kWh)",," (billion Btu)" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group

  13. " of Supplier, Census Region, Census Division, and Economic Characteristics"

    U.S. Energy Information Administration (EIA) (indexed site)

    Quantity of Purchased Electricity and Steam by Type" " of Supplier, Census Region, Census Division, and Economic Characteristics" " of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ," Electricity",," Steam" ," (million kWh)",," (billion Btu)" ,,,,,"RSE" " ","Utility","Nonutility","Utility","Nonutility","Row" "Economic

  14. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update

    Table 1.5 Energy Consumption, Expenditures, and Emissions Indicators Estimates, Selected Years, 1949-2011 Year Energy Consumption Energy Consumption per Capita Energy Expenditures 1 Energy Expenditures 1 per Capita Gross Output 3 Energy Expenditures 1 as Share of Gross Output 3 Gross Domestic Product (GDP) Energy Expenditures 1 as Share of GDP Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP Carbon Dioxide Emissions 2 per Real Dollar of GDP Quadrillion Btu Million Btu

  15. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  16. takara-98.pdf

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources RSE NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft)

  17. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book

    3 Commercial Delivered and Primary Energy Consumption Intensities, by Year Percent Delivered Energy Consumption Primary Energy Consumption Floorspace Post-2000 Total Consumption per Total Consumption per (million SF) Floorspace (1) (10^15 Btu) SF (thousand Btu/SF) (10^15 Btu) SF (thousand Btu/SF) 1980 50.9 N.A. 5.99 117.7 10.57 207.7 1990 64.3 N.A. 6.74 104.8 13.30 207.0 2000 (2) 68.5 N.A. 8.20 119.7 17.15 250.3 2010 81.1 26% 8.74 107.7 18.22 224.6 2015 84.1 34% 8.88 105.5 18.19 216.2 2020 89.1

  18. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    8: Coal Price and Expenditure Estimates and Imports and Exports of Coal Coke, 2014 State Coal Coal Coke Prices Expenditures Prices Expenditures Residential Commercial Industrial Electric Power Total Residential Commercial Industrial Electric Power Total Imports Exports Imports Exports Dollars per Million Btu Million Dollars Dollars per Million Btu Million Dollars Alabama - - 4.13 2.69 2.91 - - 360.8 1,316.5 1,677.3 - - - - Alaska - 4.83 4.85 4.91 4.87 - 40.1 0.1 48.5 88.8 - - - - Arizona - -

  19. ENGINEERING DEVELOPMENT OF ADVANCED COAL-FIRED LOW EMISSION BOILER SYSTEMS

    SciTech Connect (OSTI)

    Unknown

    1996-01-01

    As a result technical and cost evaluations in this period, a decision has been made to redirect a portion of the experimental program. The 8/94 Phase II Test Plan included the following experimental tasks: (1) Reburn development at a scale of 15 million Btu/hr, at the University of Utah; (2) large burner testing at 100 million Btu/hr, slag tap firing with reburning, at the DB Riley Research Center; (3) Bench scale copper oxide tests at Tecogen; (4) Copper oxide moving bed reactor testing at 5 million Btu/hr, at the Illinois Coal Development Park (ICDP); and (5) Copper oxide reactor testing on a 30 million Btu/hr (approximately 3 MW{sub e} equivalent) slip stream at the DB Riley Research Center. A design for the 30 million Btu/hr copper oxide slipstream was completed in sufficient detail for cost and schedule quotations on major components. Both cost and construction time estimates were significantly higher than planned, a major factor being foundation and structural requirements specific to the available site. A further technical consideration was the limited, continuous test time available, due to operating restrictions, relative to the solids residence time within the reactor.

  20. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) (indexed site)

    ,"Total U.S.1 (millions)",,,..."Below Poverty Line2" ,,"Less than 20,000","20,000 to ... the number of households below the poverty line, the annual household income and ...

  1. Enclosures Standing Technical Committee Strategic Plan report

    Energy Savers

    ... Consumption Data ...... 2 Figure 2: Total Btu consumption per household (US Census Bureau 2001) ...

  2. [Engineering development of advanced coal-fired low-emission boiler systems]. Technical progress report, October--December 1995

    SciTech Connect (OSTI)

    Wesnor, J.D.; Bakke, E.; Bender, D.J.; Kaminski, R.S.

    1995-12-31

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emisssion boiler systems. The primary objectives are: NO{sub x} emissions, lb/million Btu; SO{sub 2} emissions, lb/million Btu; particulate emissions, lb/million Btu; and net plant efficiency, not less than 42%. The secondary objectives are: improved ash disposability; reduced waste generation; and reduced air toxics emissions. Accomplishments to date are summarized for the following tasks: task 1, project planning and management; task 7, component development and optimization; task 8, preliminary POC test facility design; task 9, subsystem test design and plan; task 10, subsystem test unit construction; and task 11, subsystem test operation and evaluation.

  3. METHANE DE-NOX FOR UTILITY PC BOILERS

    SciTech Connect (OSTI)

    Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

    2001-10-30

    The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NO{sub x} emissions to 0.15 lb/million Btu or less without post-combustion flue gas cleaning. Work during the quarter included completion of the equipment fabrication and installation efforts for the 3-million Btu/h pilot system at BBP's Pilot-Scale Combustion Facility (PSCF) in Worcester, MA. Final selection of the first two test coals and preliminary selection of the final two test coals were also completed.

  4. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    1: Kerosene Consumption, Price, and Expenditure Estimates, 2014 State Consumption Prices Expenditures Residential Commercial Industrial Total Residential Commercial Industrial Total Residential and Commercial Industrial Total Residential Commercial Industrial Total Thousand Barrels Trillion Btu Dollars per Million Btu Million Dollars Alabama 4 3 4 11 (s) (s) (s) 0.1 25.33 20.88 23.77 0.6 0.4 0.4 1.4 Alaska 6 3 (s) 9 (s) (s) (s) 0.1 31.05 25.59 30.88 1.0 0.5 (s) 1.6 Arizona (s) (s) (s) (s) (s)

  5. Microsoft Word - Household Energy Use CA

    U.S. Energy Information Administration (EIA) (indexed site)

    0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site

  6. METHANE DE-NOX FOR UTILITY PC BOILERS

    SciTech Connect (OSTI)

    Joseph Rabovitser; Bruce Bryan; Serguei Nester; Stan Wohadlo

    2002-01-31

    The project seeks to develop and validate a new pulverized coal combustion system to reduce utility PC boiler NO{sub x} emissions to 0.15 lb/million Btu or less without post-combustion flue gas cleaning. Work during the quarter included completion of the equipment fabrication and installation efforts for the 3-million Btu/h pilot system at BBP's Pilot-Scale Combustion Facility (PSCF) in Worcester, MA. Selection and procurement of the first two test coals and preliminary selection of the final two test coals were completed. Shakedown and commissioning activities were finished and PC Preheat pilot scale tests commenced with PRB coal.

  7. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update

    23, 2001 | Release Date: September 24, 2001 Previous Issues Week: 11/21/2016 (View Archive) Overview: Mild temperatures and moderate demand helped prices to decline gradually last week as markets returned to relatively normal operation.(See Temperature Map) (See Deviation from Normal Temperatures Map). At the Henry Hub, the spot market price for natural gas ended the week at $2.04 per million Btu, down 37 cents per million Btu from the previous Friday. On the futures market, the near-month

  8. US ITER Moving Forward Video

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  9. Microsoft Word - How to Search and Apply for DOE Jobs _2_.docx

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site

  10. U.S. Energy Information Administration (EIA) - Pub

    Gasoline and Diesel Fuel Update

    Natural gas Natural gas prices depend on oil prices, technology improvement, and resource recovery rates Across the AEO2016 cases, the average annual Henry Hub spot price for natural gas in 2040 (Figure MT-42) ranges from $2.40-$9.20/million British thermal units (Btu). In the Reference case, average annual U.S. natural gas prices at the Henry Hub remain at about $5.00/million Btu in 2015 dollars through 2040. Crude oil prices affect natural gas prices through changes in consumption and exports,

  11. US ENC IL Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  12. US ENC MI Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  13. US ENC WI Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to

  14. US ESC TN Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    ESC TN Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ESC TN Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US ESC TN Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US ESC TN Expenditures dollars ELECTRICITY ONLY average per household * Tennessee households consume an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33%

  15. US MidAtl NJ Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    MidAtl NJ Site Consumption million Btu $0 $700 $1,400 $2,100 $2,800 $3,500 US MidAtl NJ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NJ Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US MidAtl NJ Expenditures dollars ELECTRICITY ONLY average per household * Average energy consumption (127 million Btu per year) in New Jersey homes and average household energy expenditures ($3,065 per year) are among the

  16. US MidAtl PA Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also

  17. US Mnt(N) CO Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    Mnt(N) CO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(N) CO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US Mnt(N) CO Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US Mnt(N) CO Expenditures dollars ELECTRICITY ONLY average per household * Colorado households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Average household energy costs in

  18. US Mnt(S) AZ Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all

  19. US NE MA Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption

  20. US SoAtl GA Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per

  1. US SoAtl VA Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are

  2. US WNC MO Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less

  3. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) (indexed site)

    Consumer Price Estimates for Energy by End-Use Sector, 2010 By Sector Residential Sector by Major Source Commercial Sector by Major Source Industrial Sector by Major Source 74 U.S. Energy Information Administration / Annual Energy Review 2011 22.40 21.00 20.90 12.04 Residential Transportation Commercial Industrial 0 5 10 15 20 25 Dollars¹ per Million Btu 33.81 23.46 11.13 Retail Petroleum Natural 0 10 20 30 40 Dollars¹ per Million Btu Gas Electricity 19.89 17.58 6.25 3.96 2.74 Retail Petroleum

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) (indexed site)

    1 (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Natural Gas Futures Contract 1 (Dollars per Million Btu)",1,"Weekly","11/11/2016" ,"Release Date:","11/16/2016" ,"Next Release Date:","11/23/2016" ,"Excel File

  6. Buildings Energy Data Book

    0 2005 Residential Delivered Energy Consumption Intensities, by Census Region Per Square Per Household Per Household Percent of Region Foot (thousand Btu) (1) (million Btu) Members (million Btu) Total Consumption Northeast 73.5 122.2 47.7 24% New England 77.0 129.4 55.3 7% Middle Atlantic 72.2 119.7 45.3 17% Midwest 58.9 113.5 46.0 28% East North Central 61.1 117.7 47.3 20% West North Central 54.0 104.1 42.9 8% South 51.5 79.8 31.6 31% South Atlantic 47.4 76.1 30.4 16% East South Central 56.6

  7. Buildings Energy Data Book

    1 2005 Residential Delivered Energy Consumption Intensities, by Housing Type Per Square Per Household Per Household Percent of Type Foot (thousand Btu) (1) (million Btu) Members (million Btu) Total Consumption Single-Family: 55.4 106.6 39.4 80.5% Detached 55.0 108.4 39.8 73.9% Attached 60.5 89.3 36.1 6.6% Multi-Family: 78.3 64.1 29.7 14.9% 2 to 4 units 94.3 85.0 35.2 6.3% 5 or more units 69.8 54.4 26.7 8.6% Mobile Homes 74.6 70.4 28.5 4.6% All Housing Types 58.7 95.0

  8. Buildings Energy Data Book

    2 2005 Residential Delivered Energy Consumption Intensities, by Vintage Per Square Per Household Per Household Percent of Year Built Foot (thousand Btu) (1) (million Btu) Member (million Btu) Total Consumption Prior to 1950 74.5 114.9 46.8 24% 1950 to 1969 66.0 96.6 38.1 23% 1970 to 1979 59.4 83.4 33.5 15% 1980 to 1989 51.9 81.4 32.3 14% 1990 to 1999 48.2 94.4 33.7 16% 2000 to 2005 44.7 94.7 34.3 8% Average 58.7 95.0 40.0

  9. Texas Onshore Natural Gas Processed (Million Cubic Feet) (Million Cubic

    U.S. Energy Information Administration (EIA) (indexed site)

    Feet) (Million Cubic Feet) (Million Cubic Feet) Texas Onshore Natural Gas Processed (Million Cubic Feet) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,019 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed (Summary) Louisiana Natural Gas Summary

  10. MillionSolarStrong_signs-SunShot

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MILLION S LAR STRONG #SunShot #SunShot #MILLION S LAR STRONG I AM #MILLION S LAR STRONG MY HOUSE IS #SunShot #SunShot I #MILLION S LAR STRONG I'M ARE YOU? #SunShot #MILLION S LAR STRONG #SELFIE #SunShot #MILLION S LAR STRONG #MILLION S LAR STRONG WE ARE #SunShot

  11. Coal Markets

    U.S. Energy Information Administration (EIA) (indexed site)

    Coal Markets | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago change Central Appalachia 12,500 Btu, 1.2 SO2 Northern Appalachia 13,000 Btu, < 3.0 SO2 Illinois Basin 11,800 Btu, 5.0 SO2 Powder River Basin 8,800 Btu, 0.8 SO2 Uinta Basin 11,700 Btu, 0.8 SO2 Source: With permission, SNL Energy Note: Coal prices shown reflect those of relatively high-Btu coal selected in each region

  12. Energy and materials flows in the copper industry

    SciTech Connect (OSTI)

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Arizona" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.1,2.07,2.08,1.98,1.8,1.81,1.74,1.59,1.44,1.41,1.3,1.27,1.26,1.25,1.24,1.33,1.33,1.42,1.44,1.39,1.37,1.35,1.37,1.41,1.43 "Average heat value (Btu per

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    California" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.34,3.39,3.35,3.14,3.05,2.87,2.83,2.58,2.02,2,1.88,1.73,1.8," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  15. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Colorado" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.93,1.91,1.84,1.74,1.59,1.6,1.47,1.26,1.28,1.06,0.97,0.97,0.95,0.92,0.93,0.98,0.99,1.01,1.03,1.05,1.06,1.09,1.09,1.09,1.06 "Average heat value (Btu per

  16. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Delaware" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.23,3.2,3.94,4.04,3.55,3.34,3.52,2.86,3.08,2.81,2.2,1.9,1.78,2.17,1.52,1.59,1.56,1.57,1.59,1.62,1.62,1.69,1.73,1.78,1.81 "Average heat value (Btu per

  17. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Florida" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.36,3.47,3.55,3.59,3.47,3.39,2.97,2.56,2.56,2.31,1.92,1.76,1.76,1.72,1.57,1.59,1.65,1.73,1.74,1.79,1.78,1.77,1.82,1.86,1.85 "Average heat value (Btu per

  18. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Georgia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.13,3.2,3.49,3.76,3.9,3.62,3.07,2.61,2.4,2.18,1.8,1.72,1.68,1.66,1.54,1.55,1.55,1.59,1.58,1.67,1.69,1.78,1.8,1.8,1.79 "Average heat value (Btu per

  19. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Hawaii" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.91,3.91,3.78,3.37,2.79,2.97,3.58,3.09,2.81,1.75,1.88,2.96,3.03," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  20. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Illinois" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.99,1.9,1.94,1.76,1.7,1.65,1.58,1.34,1.26,1.19,1.15,1.16,1.19,1.19,1.15,1.44,1.56,1.55,1.63,1.63,1.61,1.7,1.74,1.71,1.75 "Average heat value (Btu per

  1. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Indiana" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.53,2.5,2.56,2.46,2.14,2.02,1.93,1.61,1.52,1.4,1.21,1.2,1.17,1.14,1.08,1.11,1.12,1.16,1.19,1.25,1.27,1.27,1.31,1.34,1.36 "Average heat value (Btu per

  2. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Iowa" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.73,1.77,1.54,1.52,1.42,1.34,1.27,1.08,1.05,0.98,0.93,0.89,0.89,0.81,0.82,0.82,0.88,0.94,0.94,0.99,0.99,1.01,1.1,1.1,1.12 "Average heat value (Btu per

  3. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Kansas" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.79,1.77,1.83,1.75,1.51,1.43,1.41,1.23,1.19,1.12,1.03,1.01,0.98,1.05,0.98,0.95,0.98,1.02,0.99,1.02,1.02,1.02,1.18,1.23,1.24 "Average heat value (Btu per

  4. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Kentucky" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.34,2.36,2.42,2.34,2.26,2.17,2.14,1.75,1.7,1.52,1.37,1.23,1.19,1.1,1.02,1.06,1.06,1.05,1.06,1.11,1.16,1.17,1.16,1.18,1.19 "Average heat value (Btu per

  5. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Louisiana" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.46,2.56,2.49,2.39,2.16,2.04,2.1,1.85,1.66,1.51,1.38,1.34,1.27,1.31,1.32,1.4,1.43,1.48,1.51,1.55,1.54,1.58,1.53,1.65,1.7 "Average heat value (Btu per

  6. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Maine" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",5.41,5.09,7,6.09,6.19,5.06,3.67,3.19,3.27,2.66,2.62,2.37,2.41," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  7. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Michigan" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.62,2.68,2.79,2.68,2.12,2.07,1.97,1.72,1.68,1.58,1.39,1.34,1.32,1.27,1.3,1.31,1.33,1.37,1.4,1.45,1.51,1.53,1.56,1.59,1.6 "Average heat value (Btu per

  8. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Minnesota" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.98,2.03,1.99,1.93,1.74,1.64,1.69,1.5,1.22,1.13,1.07,1.08,1.06,1.02,1.11,1.1,1.07,1.09,1.07,1.14,1.14,1.13,1.19,1.26,1.25 "Average heat value (Btu per

  9. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Mississippi" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.03,3.24,3.52,3.45,2.89,3.01,3.01,2.71,2.31,2.1,1.69,1.54,1.59,1.63,1.52,1.55,1.54,1.55,1.51,1.53,1.57,1.64,1.6,1.67,1.65 "Average heat value (Btu per

  10. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Missouri" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2,1.9,1.85,1.73,1.59,1.53,1.51,1.33,1.11,1.01,0.93,0.92,0.9,0.96,0.92,0.93,0.92,0.93,0.95,0.98,1.1,1.24,1.34,1.34,1.35 "Average heat value (Btu per

  11. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Montana" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.42,1.57,1.38,1.33,1.11,1.07,1.02,0.93,0.85,0.71,0.64,0.62,0.61,0.95,0.92,0.73,0.67,0.68,0.71,0.67,0.69,0.69,0.71,0.67,0.67 "Average heat value (Btu per

  12. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Nebraska" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.4,1.42,1.55,1.51,1.42,1.33,0.9,0.88,0.8,0.71,0.66,0.6,0.58,0.57,0.56,0.55,0.59,0.59,0.72,0.75,0.77,0.75,0.75,0.75,0.75 "Average heat value (Btu per

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Nevada" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.49,2.64,2.57,2.58,2.44,2.22,2.2,1.88,1.73,1.54,1.36,1.42,1.34,1.26,1.26,1.29,1.3,1.39,1.37,1.31,1.43,1.47,1.46,1.41,1.49 "Average heat value (Btu per

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Hampshire" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",4.27,4.21,4.07,3.55,3.8,3.66,3.53,2.9,2.56,2.44,2.02,1.7,1.8,1.67,1.48,1.52,1.61,1.63,1.61,1.59,1.52,1.61,1.69,1.74,1.78 "Average heat value (Btu per

  15. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Jersey" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.95,3.87,4.05,4.18,4.16,4.01,3.33,2.89,2.73,2.18,2.05,1.8,1.87,2.27,1.39,1.45,1.59,1.76,1.75,1.78,1.82,1.77,1.73,1.78,1.8 "Average heat value (Btu per

  16. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Mexico" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.78,2.31,2.18,2.05,2.06,1.9,1.99,1.79,1.56,1.51,1.48,1.43,1.53,1.47,1.38,1.33,1.31,1.34,1.43,1.42,1.41,1.37,1.32,1.38,1.32 "Average heat value (Btu per

  17. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    York" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.09,3.13,3.26,3.32,3.05,2.73,2.57,2.41,2.4,2.13,1.76,1.59,1.55,1.42,1.49,1.45,1.43,1.42,1.43,1.41,1.45,1.5,1.49,1.59,1.61 "Average heat value (Btu per

  18. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Carolina" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.59,3.8,3.77,3.63,3.52,3.59,3.26,2.74,2.69,2.4,2,1.78,1.76,1.59,1.43,1.44,1.44,1.43,1.48,1.63,1.68,1.7,1.73,1.78,1.78 "Average heat value (Btu per

  19. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Dakota" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.53,1.55,1.49,1.34,1.26,1.14,1.1,0.98,0.88,0.82,0.77,0.74,0.74,0.74,0.72,0.73,0.76,0.78,0.74,0.73,0.7,0.71,0.72,0.71,0.69 "Average heat value (Btu per

  20. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Ohio" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.32,2.28,2.48,2.48,2.24,2.39,2.05,1.71,1.7,1.54,1.33,1.21,1.23,1.31,1.46,1.36,1.36,1.32,1.34,1.42,1.44,1.41,1.44,1.48,1.52 "Average heat value (Btu per

  1. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Oklahoma" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.99,2.03,2,1.82,1.72,1.65,1.35,1.19,1.12,1.04,1.04,0.99,0.96,0.91,0.94,0.91,0.91,0.92,0.98,0.99,1.02,1.24,1.23,1.32,1.4 "Average heat value (Btu per

  2. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Oregon" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.49,1.96,1.89,1.79,1.67,1.76,1.45,1.38,1.3,1.28,1.18,1.25,1.33,1.11,1.07,1.08,1.09,1.14,1.07,1.06,1.07,1.12,1.1,1.08,1.08 "Average heat value (Btu per

  3. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Pennsylvania" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.52,2.48,2.43,2.56,2.41,2.3,2.1,1.75,1.72,1.59,1.37,1.22,1.25,1.21,1.15,1.3,1.35,1.36,1.38,1.36,1.43,1.44,1.48,1.55,1.52 "Average heat value (Btu per

  4. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Carolina" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.64,3.76,3.98,3.85,3.71,3.66,2.89,2.34,2.33,2.17,1.91,1.62,1.59,1.57,1.39,1.42,1.45,1.45,1.47,1.51,1.56,1.57,1.53,1.63,1.72 "Average heat value (Btu per

  5. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Dakota" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.09,2,2.19,2.09,1.95,1.76,1.74,1.56,1.51,1.42,1.39,1.34,1.3,1.03,0.99,0.94,0.93,0.92,0.94,1.03,1.08,1.1,1.13,1.13,1.15 "Average heat value (Btu per

  6. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Tennessee" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.53,2.49,2.72,2.88,2.69,2.57,2.28,1.94,1.73,1.57,1.36,1.26,1.22,1.22,1.11,1.13,1.12,1.12,1.15,1.15,1.26,1.26,1.27,1.25,1.34 "Average heat value (Btu per

  7. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Texas" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.99,1.97,1.88,1.87,1.84,1.68,1.62,1.49,1.39,1.29,1.31,1.25,1.26,1.33,1.23,1.2,1.24,1.26,1.29,1.34,1.35,1.44,1.49,1.5,1.45 "Average heat value (Btu per

  8. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Utah" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.11,2.05,1.94,1.78,1.7,1.55,1.39,1.36,1.25,1.14,1.13,1.04,0.98,1.12,1.01,1.03,1.15,1.11,1.07,1.09,1.14,1.19,1.21,1.19,1.17 "Average heat value (Btu per

  9. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Virginia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.37,3.35,3.67,3.52,3.28,3.08,2.77,2.49,2.45,2.33,1.95,1.67,1.69,1.59,1.33,1.34,1.38,1.39,1.42,1.45,1.45,1.47,1.47,1.52,1.55 "Average heat value (Btu per

  10. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    West Virginia" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.4,2.49,2.55,2.47,2.39,2.54,2.22,1.73,1.67,1.53,1.35,1.25,1.21,1.25,1.2,1.18,1.22,1.24,1.25,1.27,1.39,1.42,1.47,1.52,1.47 "Average heat value (Btu per

  11. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Wisconsin" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.35,2.37,2.42,2.56,2.18,2.06,1.98,1.7,1.5,1.29,1.18,1.12,1.12,1.05,1.02,1.02,1.07,1.09,1.06,1.14,1.21,1.21,1.33,1.36,1.36 "Average heat value (Btu per

  12. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Wyoming" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.57,1.51,1.43,1.54,1.32,1.2,1.17,1.05,1,0.95,0.87,0.82,0.79,0.77,0.78,0.76,0.79,0.81,0.82,0.82,0.8,0.8,0.76,0.83,0.84 "Average heat value (Btu per

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    United States" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.37,2.34,2.38,2.39,2.27,2.21,2.07,1.77,1.69,1.54,1.36,1.28,1.25,1.23,1.2,1.22,1.25,1.27,1.29,1.32,1.36,1.39,1.41,1.45,1.45 "Average heat value (Btu per

  14. Word Pro - S1

    U.S. Energy Information Administration (EIA) (indexed site)

    7 Primary Energy Consumption and Energy Expenditures Indicators Energy Consumption per Capita, 1949-2015 Primary Energy Consumption per Real Dollar a of Gross Domestic Product, 1949-2015 Energy Expenditures as Share of Gross Domestic Product and Gross Output, b 1987-2013 16 U.S. Energy Information Administration / Monthly Energy Review October 2016 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 100 200 300 400 Million Btu Thousand Btu per Chained (2009) Dollar a 1950

  15. Table 6. Electric power delivered fuel Prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Alabama" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.69,2.8,3.02,2.89,2.82,2.68,2.71,2.06,2.11,1.79,1.52,1.47,1.42,1.41,1.41,1.48,1.57,1.54,1.54,1.56,1.67,1.76,1.73,1.81,1.84 "Average heat value (Btu per

  16. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, n

    U.S. Energy Information Administration (EIA) (indexed site)

    Arkansas" "Item", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.37,2.35,2.22,1.93,1.73,1.69,1.74,1.6,1.47,1.46,1.23,1.2,0.84,0.87,1.42,1.46,1.47,1.64,1.5,1.61,1.6,1.7,1.65,1.6,1.61 "Average heat value (Btu per

  17. Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual

    U.S. Energy Information Administration (EIA) (indexed site)

    b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  18. Ozone transport commission developments

    SciTech Connect (OSTI)

    Joyce, K.M.

    1995-08-01

    On September 27, 1994, the states of the Ozone Transport Commission (OTC) signed an important memorandum of understanding (MOU) agreeing to develop a regional strategy for controlling stationary sources of nitrogen oxide emissions. Specifically, the states of the Ozone Transport Region, OTR, agreed to propose regulations for the control of NOx emissions from boilers and other indirect heat exchangers with a maximum gross heat input rate of at least 250 million BTU per hour. The Ozone Transport Region was divided into Inner, Outer and Northern Zones. States in the Outer Zone agreed to reduce NOx emissions by 55%. States in the Inner Zone agreed to reduce NOx emissions 65%. Facilities in both zones have the option to emit NOx at a rate no greater than 0.2 pounds per million Btu by May 1, 1999. This option provides fairness for the gas-fired plants which already have relatively low NOx emissions. Additionally, States in the Inner and Outer Zones agreed to reduce their NOx emissions by 75% or to emit NOx at a rate no greater than 0.15 pounds per million BTU by May 1, 2003. The Northern Zone States agree to reduce their rate of NOx emissions by 55% from base year levels by May 1, 2003, or to emit NOx at a rate no greater than 0.2 pounds per million BTU. As part of this MOU, States also agreed to develop a regionwide trading mechanism to provide a cost-effective mechanism for implementing the reductions.

  19. U.S. Heat Content of Natural Gas Deliveries to Other Sectors...

    U.S. Energy Information Administration (EIA) (indexed site)

    Other Sectors Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  20. U.S. Heat Content of Natural Gas Deliveries to Electric Power...

    U.S. Energy Information Administration (EIA) (indexed site)

    Electric Power Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  1. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) (indexed site)

    Ballast: See High-Efficiency Ballast. Btu: British thermal unit. A unit quantity of energy consumed by or delivered to a building. A Btu is defined as the amount of energy...

  2. Word Pro - S3

    Annual Energy Outlook

    ... converted to Btu by multiplying by the biodiesel heat content factor in Table A1; for ... converted to Btu by multiplying by the biodiesel heat content factor in Table A1; for ...

  3. Word Pro - S1

    Gasoline and Diesel Fuel Update

    ... converted to Btu by multiplying by the biodiesel 22 U.S. Energy Information ... converted to Btu by multiplying by the biodiesel heat content factor in Table A1; for ...

  4. Annual Energy Review 2000

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Includes 0.07 quadrillion Btu coal coke net imports and 0.10 electricity net imports from fossil fuels. Includes, in quadrillion Btu, 0.10 electricity net imports from fossil...

  5. Energy Information Administration/Annual Energy Review

    Gasoline and Diesel Fuel Update

    in quadrillion Btu, 0.04 coal coke net imports and 0.05 electricity net imports from fossil fuels. Includes, in quadrillion Btu, -0.09 hydroelectric pumped storage and -0.15...

  6. The Ninth Annual DOE Solid-State Lighting Market Development...

    Energy.gov (indexed) [DOE]

    ... the 188 tBtu it saved in 2013 is just a drop in the bucket compared to the 4,060 tBtu ... that adapt to interchangeable modules, following line and low-voltage control standards. ...

  7. --No Title--

    Gasoline and Diesel Fuel Update

    E3A. Electricity Consumption (Btu) by End Use for All Buildings, 2003 Total Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing...

  8. RSF Workshop Session I: Energy Goals and Features of the RSF

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    +1 Exemplary Performance Credit for EAc1 Baseline 132 kBtuSFyear Design 33 kBtuSFyear ... Power (kW) Time of Day ASHRAE 90.1 Baseline Lighting Power Installed Lighting Power Energy ...

  9. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update

    Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) Note: The Btu conversion factors used for...

  10. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update

    2a. Consumption of Energy (Primary 1 Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) Note: 1. The Btu conversion factors used...

  11. Portable Heaters | Department of Energy

    Energy Savers

    Space heater capacities generally range between 10,000 Btu and 40,000 Btu per hour, and commonly run on electricity, propane, natural gas, and kerosene (see wood and pellet heating ...

  12. Small Space Heater Basics | Department of Energy

    Energy.gov (indexed) [DOE]

    Space heater capacities generally range between 10,000 Btu to 40,000 Btu per hour. Common fuels used for this purpose are electricity, propane, natural gas, and kerosene. Although ...

  13. Portable Heaters | Department of Energy

    Office of Environmental Management (EM)

    range between 10,000 Btu and 40,000 Btu per hour, and commonly run on electricity, propane, natural gas, and kerosene (see wood and pellet heating for information on wood and...

  14. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers

    SciTech Connect (OSTI)

    Hamid Sarv

    2009-02-28

    A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level

  15. ,"Florida Natural Gas Processed (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Florida Natural Gas Processed (Million Cubic ... 2:38:40 PM" "Back to Contents","Data 1: Florida Natural Gas Processed (Million Cubic ...

  16. Florida Natural Gas Processed (Million Cubic Feet)

    Annual Energy Outlook

    Processed (Million Cubic Feet) Florida Natural Gas Processed (Million Cubic Feet) Decade ... Referring Pages: Natural Gas Processed Florida Natural Gas Plant Processing Natural Gas ...

  17. ,"Virginia Natural Gas Repressuring (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Virginia Natural Gas Repressuring (Million Cubic ... 2:51:54 AM" "Back to Contents","Data 1: Virginia Natural Gas Repressuring (Million Cubic ...

  18. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Repressuring (Million Cubic Feet) Oklahoma Natural Gas Repressuring (Million Cubic Feet) ... Referring Pages: Natural Gas Used for Repressuring Oklahoma Natural Gas Gross Withdrawals ...

  19. Kansas Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) Kansas Natural Gas Processed (Million Cubic Feet) Decade ... Referring Pages: Natural Gas Processed Kansas Natural Gas Plant Processing Natural Gas ...

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) (indexed site)

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle ...

  1. Sandia National Laboratories: Fact Sheets

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Fact Sheets Sensors Chemical Microsensors Chemiresistors Electrochemical Chemometrics Micromachined Combustible Gas Detector High Temperature Acoustic Wave Gas Sensors Hot Plate Based Technology and BTU Monitors Microfabricated BTU SAND Report Hydrogen Sensor Minature Ion Mobility Spectrometer Integrated SAWs Using GaAs Microcalibrator Chip Nano Electrode Arrays Nanoparticle Based Detection Microfabricated Btu Monitoring Device SAW Chemical Microsensor Arrays Smart SAND Physical Microsensors

  2. Pyramid Resource Center-Green Energy Center

    SciTech Connect (OSTI)

    Flory, Paul, D.

    2011-09-02

    There are currently over 3,500 USA/Canadian landfills listed by the EPA/EC and like numbers in Europe that are producing methane-rich landfill gas (LFG). This gas is typically made up of 50-percent methane (CH4), 35-percent carbon dioxide (CO2), and 2 to 25% nitrogen and oxygen (N2 & O2), plus dozens of dilute contaminants. LFG is classified as a renewable fuel, because it is generated via biological decay of municipal solid waste, a constant byproduct of human activity. To date, most LFG has been allowed to escape into the atmosphere. On account of its high CH4 content, LFG may contribute to climate change, as CH4 is one of the most harmful greenhouse gases with 21 times the global warming potential of CO2. Of the landfills that collect LFG, most simply flare it. In the past decade, some landfills have begun to use LFG for electricity generation or for direct combustion as low Btu gas. Very few landfills upgrade LFG to high Btu gas. A patented CO2 WashTM process developed by Acrion Technologies Inc., and licensed to Firm Green Inc. shows promise as an economically and environmentally sustainable process to recover energy and prevent pollution from landfills. The CO2 WashTM has already been proven at lab-scale. It upgrades LFG, which consists of 50% methane (CH4) + 35% carbon dioxide (CO2) + 2 to 25% nitrogen + oxygen (N2+O2), 1 to 2% water vapor, and dozens of contaminants (which total a few hundred to a few thousand parts per million). CH4, which by itself has an energy content of 1,012 British thermal units (Btu) per standard cubic foot (SCF), is the only component in LFG that contributes to its energy content, which is therefore about 400-550 Btu/SCF. Accordingly, raw LFG is usually referred to as medium-Btu gas. To be salable, it is necessary to remove essentially all the components besides CH4, while keeping the vast majority of the revenue producing CH4. This is high-Btu gas, yielding 850 to 1,000 Btu/SCF. The CO2 WashTM process upgrades LFG to about 930 Btu

  3. Freescale Semiconductor Successfully Implements an Energy Management System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Freescale Semiconductor Successfully Implements an Energy Management System Freescale Semiconductor Successfully Implements an Energy Management System This case study describes how Freescale Semiconductor implemented projects at its Oak Hill Fab plant in Austin, Texas, that reduced annual plant-wide energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than

  4. Transformational Manufacturing | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and

  5. Building America Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing PROJECT INFORMATION Project Name: Reduced Flow Room Air Mixing Risks Location: Various U.S. areas IBACOS, ibacos.com Application: Retrofit Component: Heating and cooling equipment Year Tested: 2013-2014 Climate Zone: All PERFORMANCE DATA Modeled Load Reduction (Btu/h) Heating Load: Pre-Retrofit: 80,000 Btu/h Post-Retrofit: 25,000 Btu/h Cooling Load: Pre-Retrofit: 30,000 Btu/h Post-Retrofit: 12,000 Btu/h Modeled Airflow Reduction

  6. R A O I A P O N Sne., WNIV. OF CALIF. (15 crs]Hu~r~ ON LOAN

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    5 Table C10. Energy Consumption Estimates by End-Use Sector, Ranked by State, 2014 Rank Residential Sector Commercial Sector Industrial Sector a Transportation Sector Total Consumption a State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,709.5 Texas 1,638.8 Texas 6,288.8 Texas 3,262.4 Texas 12,899.5 2 California 1,397.4 California 1,418.5 Louisiana 3,024.3 California 2,948.3 California 7,620.1 3 Florida 1,199.2 New York 1,134.8 California

  7. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Repressuring (Million Cubic Feet) Oklahoma Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 81,755 ...

  8. Nebraska Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Repressuring (Million Cubic Feet) Nebraska Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,629 ...

  9. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Repressuring (Million Cubic Feet) Pennsylvania Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 375 ...

  10. Pennsylvania Natural Gas Underground Storage Volume (Million...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  11. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Repressuring (Million Cubic Feet) Arizona Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 103 ...

  12. Tennessee Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Repressuring (Million Cubic Feet) Tennessee Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 ...

  13. Ohio Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Repressuring (Million Cubic Feet) Ohio Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 ...

  14. Delaware Natural Gas Underground Storage Withdrawals (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Withdrawals (Million Cubic Feet) Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  15. Connecticut Natural Gas Underground Storage Withdrawals (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Withdrawals (Million Cubic Feet) Connecticut Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  16. Wisconsin Natural Gas Underground Storage Withdrawals (Million...

    Gasoline and Diesel Fuel Update

    Withdrawals (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  17. Georgia Natural Gas Underground Storage Withdrawals (Million...

    U.S. Energy Information Administration (EIA) (indexed site)

    Withdrawals (Million Cubic Feet) Georgia Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  18. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    3: Nuclear Energy Consumption, Price, and Expenditure Estimates, 2014 State Nuclear Electric Power Nuclear Fuel Consumption Prices Expenditures Million Kilowatthours Trillion Btu Dollars per Million Btu Million Dollars Alabama 41,244 431.4 0.80 344.2 Alaska 0 0.0 - - Arizona 32,321 338.0 0.82 276.7 Arkansas 14,478 151.4 0.83 126.1 California 16,986 177.7 0.65 115.2 Colorado 0 0.0 - - Connecticut 15,841 165.7 0.72 120.0 Delaware 0 0.0 - - Dist. of Col. 0 0.0 - - Florida 27,868 291.5 0.74 215.7

  19. Table 5.3 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) (indexed site)

    3 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL

  20. Table 5.7 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18

  1. table5.3_02

    U.S. Energy Information Administration (EIA) (indexed site)

    3 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Net Demand Fuel Oil Coal for Residual and Natural LPG and (excluding Coal RSE NAICS Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Row Code(a) End Use (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) Factors Total United States 311 - 339

  2. table5.7_02.xls

    U.S. Energy Information Administration (EIA) (indexed site)

    End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Net Demand Fuel Oil Coal for Residual and Natural LPG and (excluding Coal RSE Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Row End Use (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) Factors Total United States RSE Column Factors: 0.3 2.4

  3. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) (indexed site)

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  4. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) (indexed site)

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) (indexed site)

    4 Delaware - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) (indexed site)

    4 Massachusetts - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross

  7. Wiring reconfiguration saves millions for Trinity supercomputer

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Wiring reconfiguration saves millions for Trinity supercomputer Wiring reconfiguration saves millions for Trinity supercomputer A moment of inspiration during a wiring diagram review has saved more than $2 million in material and labor costs for the Trinity supercomputer. August 15, 2016 The first row of cabinets for the Trinity supercomputer at Los Alamos National Laboratory. The first row of cabinets for the Trinity supercomputer at Los Alamos National Laboratory. Contact Nancy Ambrosiano

  8. One Million Electric Vehicles By 2015

    SciTech Connect (OSTI)

    none,

    2011-02-01

    February 2011 status report on the steps needed to achieve President Obama's goal of putting one million electric vehicles on the road by 2015.

  9. One million curies of radioactive material recovered

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from...

  10. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) (indexed site)

    Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Space ... ,,"RSEs for UrbanRural Location (as Self-Reported)" ,"RSEs for Housing Units " "Space ...

  11. Million U.S. Housing Units Total...............................

    U.S. Energy Information Administration (EIA) (indexed site)

    Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. ...

  12. REPORTS; IDENTIFIED $774 MILLION IN QUESTIONED COSTS; AND $17

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FY 2016, WE ISSUED 74 REPORTS; IDENTIFIED $774 MILLION IN QUESTIONED COSTS; AND $17 MILLION IN FINES SETTLEMENTS AND RECOVERIES. DURING FY 2016, WE ISSUED 74 REPORTS; IDENTIFIED $774 MILLION IN QUESTIONED COSTS; AND $17 MILLION IN FINES SETTLEMENTS AND RECOVERIES. DURING FY 2016, WE ISSUED 74 REPORTS; IDENTIFIED $774 MILLION IN QUESTIONED COSTS; AND $17 MILLION IN FINES SETTLEMENTS AND RECOVERIES. DURING FY 2016, WE ISSUED 74 REPORTS; IDENTIFIED $774 MILLION IN QUESTIONED COSTS; AND $17 MILLION

  13. Hanford 300 Area steam transition preliminary utility options study

    SciTech Connect (OSTI)

    Olson, N.J.; Weakley, S.A.; Berman, M.J.

    1995-06-01

    The cost of steam in the Hanford 300 Area is approaching $60 per million Btu; the cost in industry is {approx} $10 per million Btu. The cost of steam in the 300 Area is expected to continue to increase because of the age of the central steam system, load decreases, safety requirements, and environmental regulations. The intent of this report is to evaluate options that would more cost-effectively met the future heating needs of the buildings in the 300 Area. In general, the options fall into two categories: central systems and distributed systems. A representative option from each category was analyzed using the life-cycle cost analysis (LCCA) techniques mandated by the federal government. The central plant option chosen for evaluation was the existing central steam plant modified to allow continued operation. The distributed option chosen was a dedicated heating system for each building.

  14. Energy and materials flows in the iron and steel industry

    SciTech Connect (OSTI)

    Sparrow, F.T.

    1983-06-01

    Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

  15. Fuel Tables.indd

    Gasoline and Diesel Fuel Update

    0: Total Energy Consumption, Price, and Expenditure Estimates, 2014 State Consumption Prices Expenditures a Residential b Commercial b Industrial b,c Transportation Total c Residential Commercial Industrial Transportation Total Residential Commercial Industrial d Transportation Total d Trillion Btu Dollars per Million Btu Million Dollars Alabama 378.7 262.4 848.4 468.7 1,958.2 28.34 26.06 8.74 25.94 18.64 4,535.1 2,943.4 5,006.2 11,661.7 24,146.5 Alaska 47.8 63.2 329.0 163.0 603.1 23.25 19.78

  16. US MidAtl NY Site Consumption

    U.S. Energy Information Administration (EIA) (indexed site)

    MidAtl NY Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl NY Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NY Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl NY Expenditures dollars ELECTRICITY ONLY average per household * New York households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) (indexed site)

    6 District of Columbia - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) (indexed site)

    4 Hawaii - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S13. Summary statistics for natural gas - Hawaii, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) (indexed site)

    6 Idaho - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) (indexed site)

    20 Maine - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) (indexed site)

    6 Oregon - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 0 0 0 0 0 Gas Wells R 28 R 24 R 24 R 12 14 Production (million cubic feet) Gross

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) (indexed site)

    6 Tennessee - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 52 75 NA NA NA Gas Wells R 1,027 R 1,027 1,089 NA NA Production (million cubic

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) (indexed site)

    4 Virginia - Natural Gas 2015 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2011-2015 2011 2012 2013 2014 2015 Number of Wells Producing Natural Gas at End of Year Oil Wells 2 1 1 2 2 Gas Wells R 7,781 R 7,874 7,956 R 8,061 8,111 Production (million

  4. Table 7.2 Average Prices of Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; " " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"

  5. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) (indexed site)

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," ","

  6. Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) (indexed site)

    Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," ","

  7. Table A44. Average Prices of Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) (indexed site)

    4. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam" ," (kWh)",," (million Btu)" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic

  8. Table N8.2. Average Prices of Purchased Energy Sources, 1998

    U.S. Energy Information Administration (EIA) (indexed site)

    2. Average Prices of Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural

  9. week0805

    U.S. Energy Information Administration (EIA) (indexed site)

    5,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e m e n t...

  10. week0722

    U.S. Energy Information Administration (EIA) (indexed site)

    2,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e m e n t...

  11. week0729

    U.S. Energy Information Administration (EIA) (indexed site)

    9,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e m e n t...

  12. week0624

    U.S. Energy Information Administration (EIA) (indexed site)

    4,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 5 0 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e...

  13. week0617

    U.S. Energy Information Administration (EIA) (indexed site)

    7,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 5 0 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e...

  14. week0603

    U.S. Energy Information Administration (EIA) (indexed site)

    ,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 0 . 0 0 0 . 5 0 1 . 0 0 1 . 5 0 2 . 0 0 2 . 5 0 3 . 0 0 3 . 5 0 4 . 0 0 Dollars Per Million BTU N Y M...

  15. week0528

    U.S. Energy Information Administration (EIA) (indexed site)

    8,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 0 . 0 0 0 . 5 0 1 . 0 0 1 . 5 0 2 . 0 0 2 . 5 0 3 . 0 0 3 . 5 0 4 . 0 0 Dollars Per Million BTU N Y M...

  16. EIA Energy Information Administration

    U.S. Energy Information Administration (EIA) (indexed site)

    6,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e m e n t...

  17. week0812

    U.S. Energy Information Administration (EIA) (indexed site)

    2,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e m e n t...

  18. week0923

    U.S. Energy Information Administration (EIA) (indexed site)

    3,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 5 0 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e...

  19. week0708

    U.S. Energy Information Administration (EIA) (indexed site)

    8,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 5 0 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e...

  20. Microsoft Word - winter.doc

    U.S. Energy Information Administration (EIA) (indexed site)

    , 1998 http:www.eia.doe.gov N Y M E X F u t u r e P r ic e s v s H e n r y H u b S p o t P r i c e s 1 .2 5 1 .5 0 1 .7 5 2 .0 0 2 .2 5 2 .5 0 2 .7 5 Dollars Per Million BTU N Y...

  1. week0909

    U.S. Energy Information Administration (EIA) (indexed site)

    9,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 5 0 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e...

  2. week0715

    U.S. Energy Information Administration (EIA) (indexed site)

    5,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e m e n t...

  3. week0701

    U.S. Energy Information Administration (EIA) (indexed site)

    ,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 5 0 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e...

  4. week0819

    U.S. Energy Information Administration (EIA) (indexed site)

    9,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e m e n t...

  5. week0930

    U.S. Energy Information Administration (EIA) (indexed site)

    0,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 5 0 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e...

  6. week0916

    U.S. Energy Information Administration (EIA) (indexed site)

    6,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 5 0 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e...

  7. week0903

    U.S. Energy Information Administration (EIA) (indexed site)

    ,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 1 . 5 0 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 2 . 7 5 3 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e...

  8. week0610

    U.S. Energy Information Administration (EIA) (indexed site)

    0,1996 N Y M E X P r i c e F u t u r e s v s H e n r y H u b S p o t P r i c e 0 . 0 0 0 . 5 0 1 . 0 0 1 . 5 0 2 . 0 0 2 . 5 0 3 . 0 0 3 . 5 0 4 . 0 0 Dollars Per Million BTU N Y M...

  9. Released: June 2010

    U.S. Energy Information Administration (EIA) (indexed site)

    5 Average Prices of Selected Purchased Energy Sources, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel

  10. Released: May 2013

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Average Prices of Purchased Energy Sources, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural

  11. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update

    24, 2008 | Release Date: September 25, 2008 Previous Issues Week: 11/21/2016 (View Archive) Released: September 25, 2008 Next Release: October 2, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, September 17, to Wednesday, September 24) Since Wednesday, September 17, natural gas spot prices increased at nearly all markets in the Lower 48 States, with prices rising as much as $2.02 per MMBtu but climbing less than $1 per million Btu (MMBtu)

  12. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update

    5, 2008 | Release Date: November 6, 2008 Previous Issues Week: 11/21/2016 (View Archive) Released: November 6, 2008 Next Release: November 14, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, November 5) Since Wednesday, October 29, natural gas spot prices increased at most markets in the Lower 48 States outside the Midwest, Northeast, and Alabama/Mississippi regions, with gains of up to $1.26 per million Btu (MMBtu) in a

  13. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update

    1, 2009 | Release Date: February 12, 2009 Previous Issues Week: 11/21/2016 (View Archive) Released: February 12, 2009 Next Release: February 19, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 11, 2009) Natural gas prices decreased this week as space-heating demand slackened with a break from the bitter cold of prior weeks. During the report week, the Henry Hub spot price decreased by $0.33 per million Btu

  14. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update

    2, 2009 | Release Date: April 23, 2009 Previous Issues Week: 11/21/2016 (View Archive) Released: April 23, 2009 Next Release: April 30, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 22, 2009) Since Wednesday, April 15, natural gas spot prices fell at most market locations in the Lower 48 States. Prices traded yesterday at or below $4 per million Btu (MMBtu) at all market locations. The Henry Hub spot market price

  15. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update

    2, 2009 | Release Date: July 23, 2009 Previous Issues Week: 11/21/2016 (View Archive) Released: July 23, 2009 Next Release: July 30, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 22, 2009) Natural gas spot prices rose this report week, as prices for energy products generally increased and the economic outlook improved. During the report week, the Henry Hub spot price increased by $0.12 per million Btu (MMBtu) to

  16. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update

    5, 2009 | Release Date: August 6, 2009 Previous Issues Week: 11/21/2016 (View Archive) Released: August 6, 2009 Next Release: August 13, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 5, 2009) Natural gas prices posted increases at both the spot and futures markets since last Wednesday, with price increases at the spot market ranging between 12 and 43 cents per million Btu (MMBtu). During the report week, the

  17. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update

    2, 2010 | Release Date: September 23, 2010 Previous Issues Week: 11/21/2016 (View Archive) Released: September 23, 2010 at 2:00 P.M. Next Release: Thursday, September 30, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 22, 2010) Since Wednesday, September 15, natural gas spot prices fell at most markets across the lower 48 States, with declines of less than 10 cents per million Btu (MMBtu). However, selected

  18. " by Type of Supplier, Census Region, Census Division, Industry Group,"

    U.S. Energy Information Administration (EIA) (indexed site)

    3. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Dollars per Physical Units)" ,," Electricity",," Steam" ,," (kWh)",," (million Btu)" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row"

  19. "Table A40. Average Prices of Selected Purchased Energy Sources by Census"

    U.S. Energy Information Administration (EIA) (indexed site)

    Region, Census Division, Industry Group, and Selected Industries, 1994: Part 2" " (Estimates in Dollars per Million Btu)" ,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate"," "," "," ","Row" "Code(a)","Industry Group and Industry","Electricity","Fuel Oil","Fuel Oil(b)","Natural

  20. "Table A47. Average Prices of Purchased Electricity, Steam, and Natural Gas"

    U.S. Energy Information Administration (EIA) (indexed site)

    7. Average Prices of Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, Industry Group, and Selected Industries," 1991 " (Estimates in Dollars per Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (million kWh)",," (Billion BTU)",," (1000 cu ft)" ,"

  1. "Table A49. Average Prices of Purchased Electricity, Steam, and Natural Gas"

    U.S. Energy Information Administration (EIA) (indexed site)

    9. Average Prices of Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam",," Natural Gas" ," (Million kWh)",," (Billion Btu)",," (1000 cu ft)"

  2. Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Inverted Attic Bulkhead for HVAC Ductwork Roseville, California PROJECT INFORMATION Project Name: Long-Term Monitoring of Occupied Test House Location: Roseville, CA Partners: K. Hovnanian® Homes®, www.khov.com IBACOS www.ibacos.com Building Component: Envelope, structural, HVAC ducts Construction: New Application: New; single and/or multifamily Year Tested: 2012 Applicable Climate Zone(s): Hot-dry climate PERFORMANCE DATA HERS Index: 52 Projected Energy Savings: 11 million Btu/year heating

  3. Microsoft Word - summer.doc

    U.S. Energy Information Administration (EIA) (indexed site)

    2 . 7 5 3 . 0 0 3 . 2 5 3 . 5 0 3 . 7 5 4 . 0 0 Dollars Per Million BTU N Y M E X S e t t l e m e n t P r i c e H e n r y H u b S p o t N o t e : T h e H e n r y H u b s p o t p r...

  4. Microsoft Word - winter.doc

    U.S. Energy Information Administration (EIA) (indexed site)

    1 . 2 5 1 . 5 0 1 . 7 5 2 . 0 0 2 . 2 5 2 . 5 0 Dollars Per Million BTU N Y M E X S e t t l e m e n t P r i c e H e n r y H u b S p o t N o t e : T h e H e n r y H u b s p o t p r...

  5. EIA Energy Information Administration

    U.S. Energy Information Administration (EIA) (indexed site)

    4 . 9 0 5 . 1 0 5 . 3 0 5 . 5 0 5 . 7 0 5 . 9 0 Dollars Per Million BTU N Y M E X S e t t l e m e n t P r i c e H e n r y H u b S p o t W T I i n M M B t u N o t e : T h e H e...

  6. Microsoft Word - winter.doc

    U.S. Energy Information Administration (EIA) (indexed site)

    9, 1998 http:www.eia.doe.gov N Y M E X F u t u r e P r i c e s v s H e n r y H u b S p o t P r ic e s 1 .2 5 1 .5 0 1 .7 5 2 .0 0 2 .2 5 2 .5 0 2 .7 5 Dollars Per Million BTU N Y...

  7. Microsoft Word - winter.doc

    U.S. Energy Information Administration (EIA) (indexed site)

    6, 1998 http:www.eia.doe.gov N Y M E X F u t u r e P r i c e s v s H e n r y H u b S p o t P r ic e s 1 .2 5 1 .5 0 1 .7 5 2 .0 0 2 .2 5 2 .5 0 2 .7 5 Dollars Per Million BTU N Y...

  8. Microsoft Word - winter.doc

    U.S. Energy Information Administration (EIA) (indexed site)

    3, 1998 http:www.eia.doe.gov N Y M E X F u t u r e P r i c e s v s H e n r y H u b S p o t P r i c e s 1 .2 5 1 .5 0 1 .7 5 2 .0 0 2 .2 5 2 .5 0 2 .7 5 Dollars Per Million BTU N...

  9. DOT Awards University Transportation Centers $63 Million

    Energy.gov [DOE]

    The U.S. Department of Transportation's (DOT) announced approximately $63 million in grants to 33 University Transportation Centers to advance research and education programs that address critical transportation challenges.

  10. President Obama Announces $400 Million Conditional Commitment...

    Energy.gov (indexed) [DOE]

    announced the offer of a conditional commitment for a loan guarantee of 400 million to Abound Solar Manufacturing, LLC to manufacture state-of-the-art thin-film solar panels. ...

  11. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Appliances in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes"

  12. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    8 Home Appliances in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Home

  13. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Televisions in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)"

  14. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Water Heating in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes"

  15. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    8 Televisions in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT"

  16. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Computers and Other Electronics in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)"

  17. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Air Conditioning in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Air

  18. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    8 Air Conditioning in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Air

  19. Lab contractor awards LANL Foundation $3 million

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Contractor awards LANL Foundation $3 million Lab contractor awards LANL Foundation $3 million To provide educational enrichment and educational outreach funding for a wide variety of education programs in the seven Northern New Mexico counties. October 29, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  20. Indiana Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) Indiana Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 191 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed

  1. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    SciTech Connect (OSTI)

    Sheldon, R.W.

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  2. DOE Awards $63 Million to Advance Clean Energy Commercialization

    Energy.gov [DOE]

    DOE announced on September 15 its award of more than $63 million to support the commercialization of clean energy technologies, including $57 million for small businesses and $5.3 million for universities.

  3. Monthly energy review, December 1985. 1985 Annual data and summaries

    SciTech Connect (OSTI)

    Not Available

    1986-03-26

    US energy production during 1985 was 64.7 quadrillion British thermal units (Btu), 1.4% below the record level attained in 1984. US consumption of energy totaled 73.8 quadrillion Btu, about the same as in 1984 but well below the 78.9 quadrillion Btu consumed during the peak year of 1979. Net imports of energy fell from 9.0 quadrillion Btu in 1984 to 7.8 quadrillion Btu in 1985, a 12.8% decline that brought net imports to the second lowest level since the 1973-1974 oil embargo. Net imports remained significantly below the all-time high of 18.0 quadrillion Btu reached in 1977.

  4. Tennessee Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) Tennessee Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 1990's 19 26 0 0 0 0 0 0 2010's 6,146 6,200 6,304 5,721 5,000 4,612 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed Tennessee Natural Gas Plant Processing

  5. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Air Conditioning" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Air Conditioning Equipment"

  6. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    1 Space Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT,

  7. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    0 Structural and Geographic Characteristics of Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" "Structural

  8. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    1 Structural and Geographic Characteristics of Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" "Structural and Geographic

  9. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    1 Appliances in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT,

  10. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    0 Televisions in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE, MD,

  11. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    1 Televisions in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT,

  12. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    0 Computers and Other Electronics in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total

  13. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    1 Computers and Other Electronics in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total

  14. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    0 Water Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC,

  15. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    11 Water Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT,

  16. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    0 Appliances in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE, MD,

  17. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    0 Air Conditioning in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE,

  18. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    6 Fuels Used and End Uses in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Fuels Used and End Uses",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Fuels Used for Any Use"

  19. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    2 Structural and Geographic Characteristics of U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Structural and Geographic

  20. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) (indexed site)

    4 Structural and Geographic Characteristics of U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,,,,,"5 or More Members" ,,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Census Region and Division"