National Library of Energy BETA

Sample records for birch creek village

  1. Hunters Creek Village, Texas: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Hunters Creek Village is a city in Harris County, Texas. It falls under Texas's 7th congressional district.12 References ...

  2. Birch Tree Capital | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Birch Tree Capital Jump to: navigation, search Name: Birch Tree Capital Place: Framingham, Massachusetts Zip: 1701 Sector: Renewable Energy Product: Financial advisory service with...

  3. Indian Creek, Florida: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    it. Indian Creek is a village in Miami-Dade County, Florida. It falls under Florida's 20th congressional district.12 References US Census Bureau Incorporated place and...

  4. Palms Village Resort B

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Palms Village Resort B a g o t R o a d D i c k W a r d D r i v e T i g e r B r e n n a n D r i v e M c M i l l a n s R o a d Tr o w e r R o a d Leanyer Recreation Lake R a p i d C r e e k Ludmilla Creek Tipperary Waters Marina Bayview Marina S a d g r o v e s C r e e k Vesteys Lake Lake Alexander Royal Darwin & Darwin Private Hospital Darwin Golf Course Garden Park Golf Links RAAF Golf Course Dripstone Park Darwin Water Garden Marrara Sporting Complex RAAF Base Larrakeyah Army Base

  5. Thayer Creek Hydroelectric Update - 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thayer Creek Hydroelectric Update - 2015 2015 Program Review Meeting DOE Tribal Energy Program Denver, Colorado May 5, 2015 Sharon Love General Manger/President Kootznoowoo, Inc. Harold Frank, Jr., M.S. Land and Environmental Planner Kootznoowoo, Inc. Angoon, Alaska Vicinity Map Angoon, Alaska * City of Angoon - 457 people (2013) * Angoon Community Association (IRA tribe) * Kootznoowoo, Inc. - 1,000(+) shareholders (629 original) - ANCSA village corporation * Angoon area inhabited at least

  6. AVEC's Village Wind Projects

    Office of Environmental Management (EM)

    Village Wind Projects By Meera Kohler Alaska Village Electric Cooperative Tribal Energy Conference Denver, Colorado October 28, 2010 New turbines in Hooper Bay AVEC is a ...

  7. Interior Regional Housing Authority- 2007 Project

    Energy.gov [DOE]

    This project addresses the needs of a consortium of tribes. The tribes include the villages of Hughes (representing the consortium), Birch Creek, Huslia, and Allakaket.

  8. Project Reports for Interior Regional Housing Authority- 2007 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    This project addresses the needs of a consortium of tribes. The tribes include the villages of Hughes (representing the consortium), Birch Creek, Huslia, and Allakaket.

  9. DOE Tour of Zero Floorplans: Birch House by Bundle Design Studio |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Birch House by Bundle Design Studio DOE Tour of Zero Floorplans: Birch House by Bundle Design Studio DOE Tour of Zero Floorplans: Birch House by Bundle Design Studio

  10. Wisdom Way Solar Village

    SciTech Connect

    2009-03-10

    This article gives an overview of Wisdom Way Village, a community of affordable, sustainable solar homes in Greenfield, MA.

  11. Declared Wolf Creek

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    20-Dec 27-Dec 115% Nameplate Declared Wolf Creek UNIT 1 (MW) 52 45 52 52 52 52 52 52 ... -250 -238 -238 -238 -28 -28 -28 -28 -28 Wolf Creek generation limitations 0600-1200 ...

  12. Fermilab | Tritium at Fermilab | Ferry Creek Aerial View

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ferry Creek Aerial View Ferry Creek Aerial View

  13. Fermilab | Tritium at Fermilab | Kress Creek Aerial View

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Kress Creek Aerial View Kress Creek Aerial View

  14. Village Power `97. Proceedings

    SciTech Connect

    Cardinal, J.; Flowers, L.; Taylor, R.; Weingart, J.

    1997-09-01

    It is estimated that two billion people live without electricity and its services. In addition, there is a sizable number of rural villages that have limited electrical service, with either part-day operation by diesel gen-sets or partial electrification (local school or community center and several nearby houses). For many villages connected to the grid, power is often sporadically available and of poor quality. The U.S. National Renewable Energy Laboratory (NREL) in Golden, Colorado, has initiated a program to address these potential electricity opportunities in rural villages through the application of renewable energy (RE) technologies. The objective of this program is to develop and implement applications that demonstrate the technical performance, economic competitiveness, operational viability, and environmental benefits of renewable rural electric solutions, compared to the conventional options of line extension and isolated diesel mini-grids. These four attributes foster sustainability; therefore, the program is entitled Renewables for Sustainable Village Power (RSVP). The RSVP program is a multi-disciplinary, multi-technology, multi-application program composed of six key activities, including village application development, computer model development, systems analysis, pilot project development, technical assistance, and an Internet-based village power project database. The current program emphasizes wind, photovoltaics (PV), and their hybrids with diesel gen-sets. NREL`s RSVP team is currently involved in rural electricity projects in thirteen countries, with U.S., foreign, and internationally based agencies and institutions. This document contains reports presented at the Proceedings of Village Power, 1997. Individual projects have been processed separately for the United States Department of Energy databases.

  15. Village of Cascade | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Village of Cascade Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Village of Cascade Energy Purchaser Village of Cascade Location Cascade WI...

  16. Papalote Creek II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Papalote Creek II Jump to: navigation, search Name Papalote Creek II Facility Papalote Creek II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  17. Blue Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Peruvian villages go solar

    SciTech Connect

    Duffy, J.

    1999-12-01

    Students and faculty from an American University work with indigenous Peruvians to electrify their village and improve their quality of life. The remote village of Malvas in the Andes seems typical of many in Peru. The 500 Inca descendants have no electricity, no running water, one telephone and mud adobe houses. At a 10,000-foot (3,048 m) altitude, residents survive through subsistence farming. And this project might sound like a typical solar system installation--a system is donated, consultants install it, no one owns it and if something goes wrong, no one fixes it. The equipment ultimately helps no one and few learn from the experience. But two aspects of this project make it unique - the unusual level of communal sharing in the town and the design and installation of the solar system by students.

  19. Village power options

    SciTech Connect

    Lilienthal, P.

    1997-12-01

    This paper describes three different computer codes which have been written to model village power applications. The reasons which have driven the development of these codes include: the existance of limited field data; diverse applications can be modeled; models allow cost and performance comparisons; simulations generate insights into cost structures. The models which are discussed are: Hybrid2, a public code which provides detailed engineering simulations to analyze the performance of a particular configuration; HOMER - the hybrid optimization model for electric renewables - which provides economic screening for sensitivity analyses; and VIPOR the village power model - which is a network optimization model for comparing mini-grids to individual systems. Examples of the output of these codes are presented for specific applications.

  20. Village Power Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Assistance » On-Request Technical Assistance » Village Power Technical Assistance Village Power Technical Assistance Village power technical assistance is designed to address the unique needs of remote Alaska Native villages. Below is a list of the various options for this type of technical assistance. To apply for village power technical assistance, complete the online technical assistance request form. Village Power Technical Assistance Options Power Cost Equalization (PCE) support

  1. Living Villages Holdings Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Holdings Ltd Jump to: navigation, search Name: Living Villages Holdings Ltd Place: England, United Kingdom Zip: Shropshire SY9 Product: Living Villages is a residential property...

  2. Alaska Native Villages | Department of Energy

    Office of Environmental Management (EM)

    Alaska Native villages and regional and village corporations can apply to receive up to 40 hours of technical assistance with residential energy efficiency, grantee support, ...

  3. Chickaloon Native Village- 2010 Project

    Energy.gov [DOE]

    Chickaloon Native Village's (CNV's) Uk'e koley Project will conduct a feasibility study to assess the potential of producing green energy to heat and power all tribally owned buildings.

  4. Village of Venetie: Energy Assessment

    Office of Environmental Management (EM)

    Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2014-3571C. Village o f V ene+e: E nergy ...

  5. Meadow Creek | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Meadow Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Ridgeline Energy Developer Ridgeline Energy Energy Purchaser PacifiCorp...

  6. Cherry Creek High School Wins Colorado Science Bowl - News Releases | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cherry Creek High School Wins Colorado Science Bowl Greenwood Village School Heads to Washington D.C. to Challenge for National Title January 28, 2012 Golden, Colo., Jan. 28, 2012 - Students from Cherry Creek High School won the Colorado High School Science Bowl today. The school will go on to the 22nd National Science Bowl in Washington D.C., Apr. 26-30, where they will compete for the national title against more than 450 students from 68 high schools. The U.S. Department of Energy (DOE) began

  7. Hills Creek Powerhouse Turbine and Unit Rehabilitation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hills Creek Powerhouse Turbine and Unit Rehabilitation This project will replace the runners and windings for the two 17.5 MW units at the Hills Creek powerhouse. Hills Creek is a...

  8. Lost Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lost Creek Wind Farm Jump to: navigation, search Name Lost Creek Wind Farm Facility Lost Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  9. Fermilab | Tritium at Fermilab | Kress Creek Results

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Kress Creek Results chart This chart (click chart for larger version) shows the levels of tritium in Kress Creek since January 2006. To date, Fermilab has not detected tritium in Kress Creek. The detection limit is one picocurie per milliliter (see footnote). Increased monitoring began on Kress Creek following detection of low levels of tritium in Indian Creek in November 2005. The levels of tritium measured in the Fermilab cooling ponds and in Indian Creek are well below federal water standards

  10. Wolverine Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Wolverine Creek Wind Farm Facility Wolverine Creek Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  11. Fermilab | Tritium at Fermilab | Indian Creek Results

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    larger version) shows the levels of tritium in Indian Creek since November 2005, when our environmental monitoring program detected low levels of tritium in Indian Creek for the...

  12. Kiowa Creek Switching Station

    SciTech Connect

    Not Available

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  13. Bear Creek Valley Watershed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bear Creek Valley Watershed Bear Creek Valley Watershed This document discusses the Bear Creek Valley Watershed. Topics include: * The area's safety * Any use limitations for the area * History and cleanup background for this area * How DOE's cleanup program addressed the problem Bear Creek Valley Watershed fact sheet (814.29 KB) More Documents & Publications Melton Valley Watershed Upper East Fork Poplar Creek Cleanup Progress Report - 2010

  14. Lower East Fork Poplar Creek

    Office of Environmental Management (EM)

    is safe for limited water-contact recreational uses, such as wading in footwear. Eating fish from the creek is not recommended based upon the level of mercury in the fish. Are...

  15. White Creek Wind Power Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek Wind Power Project Jump to: navigation, search Name White Creek Wind Power Project Facility White Creek Wind Power Project Sector Wind energy Facility Type Commercial Scale...

  16. Ophir Creek Space Heating Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ophir Creek Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ophir Creek Space Heating Low Temperature Geothermal Facility Facility Ophir Creek...

  17. Wolf Creek Nuclear Operating Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wolf Creek Nuclear Operating Corporation Jump to: navigation, search Name: Wolf Creek Nuclear Operating Corporation Place: Burlington, Kansas Zip: 66839-0411 Product: Wolf Creek...

  18. Fourche Creek Wastewater Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fourche Creek Wastewater Biomass Facility Jump to: navigation, search Name Fourche Creek Wastewater Biomass Facility Facility Fourche Creek Wastewater Sector Biomass Facility Type...

  19. Village microgrids: The Chile project

    SciTech Connect

    Baring-Gould, E.I.

    1997-12-01

    This paper describes a village application in Chile. The objective was to demonstrate the technical, economic and institutional viability of renewable energy for rural electrification, as well as to allow local partners to gain experience with hybrid/renewable technology, resource assessment, system siting and operation. A micro-grid system is viewed as a small village system, up to 1200 kWh/day load with a 50 kW peak load. It can consist of components of wind, photovoltaic, batteries, and conventional generators. It is usually associated with a single generator source, and uses batteries to cover light day time loads. This paper looks at the experiences learned from this project with regard to all of the facets of planning and installing this project.

  20. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  1. Prairie Creek Ethanol LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ethanol LLC Jump to: navigation, search Name: Prairie Creek Ethanol LLC Place: Goldfield, Iowa Zip: 50542 Product: Prairie Creek Ethanol, LLC had planned to build a 55m gallon...

  2. Asotin Creek Model Watershed Plan

    SciTech Connect

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  3. Smith Creek Geothermal Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Smith Creek Geothermal Project Project Location Information Coordinates 39.311388888889,...

  4. Edwards Creek Geothermal Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Edwards Creek Geothermal Project Project Location Information Coordinates 39.617222222222,...

  5. DOE Tour of Zero: Birch House by Bundle Design Studio | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Birch House by Bundle Design Studio DOE Tour of Zero: Birch House by Bundle Design Studio 1 of 12 Bundle Design Studio built this 2,065-square-foot home in Bellingham, Washington, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 12 Sliding wooden screens provide shading on south-facing windows, while the planted "green" roof helps control storm water runoff. 3 of 12 Over the 2-by-6 framing, the builder installed a

  6. DOE Tour of Zero: Birch House by Bundle Design Studio | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Birch House by Bundle Design Studio DOE Tour of Zero: Birch House by Bundle Design Studio Addthis 1 of 12 Bundle Design Studio built this 2,065-square-foot home in Bellingham, Washington, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 12 Sliding wooden screens provide shading on south-facing windows, while the planted "green" roof helps control storm water runoff. 3 of 12 Over the 2-by-6 framing, the builder installed

  7. Tucson Solar Village: Project management

    SciTech Connect

    Not Available

    1991-11-01

    The Tucson Solar Village is a Design/Build Project In Sustainable Community Development which responds to a broad spectrum of energy, environmental, and economic challenges. This project is designed for 820 acres of undeveloped State Trust Land within the Tucson city limits; residential population will be five to six thousand persons with internal employment provided for 1200. This is a 15 year project (for complete buildout and sales) with an estimated cost of $500 million. Details of the project are addressed with emphasis on the process and comments on its transferability.

  8. Native Village of Eyak- 2010 Project

    Energy.gov [DOE]

    The Native Village of Eyak will conduct a Wind Energy Resource Assessment on Alaska Native Lands in the Cordova Region of Prince William Sound.

  9. Native Village of Port Graham- 2006 Project

    Energy.gov [DOE]

    In Alaska, Port Graham Village, a community of 140 members primarily of Aluiig descent, will assess construction of a biomass facility to power their cannery.

  10. Alaska Native Village Energy Development Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download a draft agenda for the Alaska Native Village Energy Development Workshop scheduled for October 21-23, 2013, in Fairbanks, Alaska.

  11. Alaska Village Electric Cooperative (AVEC) - Deploying Renewables...

    Energy Saver

    Lower Forty Eight System Information * 48 power plants * 4 wind systems serving 7 villages * 160+ diesel generators * 500+ fuel tanks * 5 million gallons fuel burned * 7,500 ...

  12. Village Hydro Technology Module | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydro Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Village Hydro Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus...

  13. Native Village of Unalakleet- 2011 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Native Village of Unalakleet (NVU) project is a feasibility study for a retrofit of a tribally owned three-story 14-apartment complex, located in Unalakleet, Alaska.

  14. Plainfield Village, Connecticut: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Plainfield Village, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6753587, -71.9253141 Show Map Loading map......

  15. Alaska Native Village Energy Development Workshop: Anchorage...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Download the workshop presentations Addthis Related Articles DOE to Host Alaska Native Village Energy Development Workshop April 29-30 BIA Providers Conference Energy Track 2012 ...

  16. Institutional issues in Village Power

    SciTech Connect

    Orozco, R.

    1997-12-01

    This paper presents a view on renewable energy resource projects from one much closer to recipient of the services. The author argues that such programs aimed at development of village power situations need to keep certain points clearly in focus. These include the fact that electricity is not the goal, technology is not the problem, site selection involves more than just resource potential, the distinction between demonstration and pilot programs, and that such programs demand local involvement for success. The author recommends coordinating such projects with programs seeking competing funds such as health, education, and transportation. The projects must demonstrate a high economic benefit to justify the high economic cost, and one must use the benefits to leverage the program funding.

  17. Impacts of Elevated Atmospheric CO 2 and O 3 on Paper Birch ( Betula papyrifera ): Reproductive Fitness

    DOE PAGES [OSTI]

    Darbah, Joseph N. T.; Kubiske, Mark E.; Nelson, Neil; Oksanen, Elina; Vaapavuori, Elina; Karnosky, David F.

    2007-01-01

    Atmospheric CO 2 and tropospheric O 3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO 3 and O 3 for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment) site in Rhinelander, WI. Elevated CO 2 increased both male and female flower production, while elevated O 3 increased female flower production compared to trees in control rings. Interestingly, very little floweringmore » has yet occurred in combined treatment. Elevated CO 2 had significant positive effect on birch catkin size, weight, and germination success rate (elevated CO 2 increased germination rate of birch by 110% compared to ambient CO 2 concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination), while the opposite was true of elevated O 3 (elevated O 3 decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%). Under elevated CO 2 , plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO 2 , while the reverse was true for seedlings from seeds produced under the elevated O 3 . Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO 2 and O 3 can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.« less

  18. Doe Bay Village Resort Pool & Spa Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility...

  19. Alaska Village Cooperative Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    In Service Owner Alaska Village Elec Coop Developer Kotzebue Electric Association Energy Purchaser Alaska Village Elec Coop Location Toksook Bay AK Coordinates 60.5315,...

  20. Pedro Bay Village Council (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pedro Bay Village Council (Utility Company) Jump to: navigation, search Name: Pedro Bay Village Council Place: Alaska Phone Number: (907) 850-2225 Website: www.swamc.orghtml...

  1. Kokhanok Village Council (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kokhanok Village Council (Utility Company) Jump to: navigation, search Name: Kokhanok Village Council Place: Alaska Phone Number: 907-282-2202 Website: www.swamc.orghtml...

  2. Powering Remote Northern Villages with the Midnight Sun

    Energy Saver

    POWERING REMOTE POWERING REMOTE NORTHERN VILLAGES WITH NORTHERN VILLAGES WITH THE MIDNIGHT SUN THE MIDNIGHT SUN Lance Whitwell, Lance Whitwell, Tribal Energy Manager Tribal Energy ...

  3. Best Practices Case Study: Schneider Homes, Inc. - Village at Miller Creek, Burien, W

    SciTech Connect

    none,

    2010-09-01

    Case study of Schneider Homes, who achieved 50% savings over the 2004 IECC with analysis and recommendations from DOEs Building America including moving ducts and furnace into conditioned space, R-23 blown fiberglass in the walls and R-38 in the attics, and high-performance HVAC, lighting, appliances, and windows.

  4. New Jersey Nuclear Profile - Oyster Creek

    Energy Information Administration (EIA) (indexed site)

    Oyster Creek" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" ...

  5. Kansas Nuclear Profile - Wolf Creek Generating Station

    Energy Information Administration (EIA) (indexed site)

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" ...0","9,556",94.0,"PWR","applicationvnd.ms-excel","applicationvnd.ms-excel" ...

  6. Bull Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Farm Facility Bull Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Eurus Developer Eurus Energy Purchaser Market...

  7. Twin Creeks Technologies | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies Jump to: navigation, search Name: Twin Creeks Technologies Place: San Jose, California Zip: 95134 Product: California-based silicon-based thin-film PV startup in...

  8. Alaska Village Initiatives Rural Business Conference

    Energy.gov [DOE]

    Hosted by the Alaska Village Initiative, the 24th Annual Rural Small Business Conference brings together rural businesses and leaders to provide them with networking opportunities, training, and technical information.

  9. Alaska Native Village Energy Development Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Here you will find the agenda and presentations from a workshop presented April 29–30, 2014, in Anchorage, Alaska, about developing renewable energy and energy efficiency projects in Alaska Native villages.

  10. Native Village of Port Graham- 2012 Project

    Energy.gov [DOE]

    Port Graham Village Council (Port Graham) is the federally recognized tribal government, and along with assistance from our federally recognized tribal consortium Chugachmiut, will conduct preconstruction activities that will result in a construction-ready biomass heating system.

  11. Friendship Village, Maryland: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. Friendship Village is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  12. Montgomery Village, Maryland: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery Village is a census-designated place in Montgomery County, Maryland.1 References...

  13. Lower East Fork Poplar Creek | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    East Fork Poplar Creek Lower East Fork Poplar Creek This document discusses the Lower East Fork Poplar Creek. Topics include: * The area's safety * Any use limitations for the area * History and cleanup background for this area * How DOE's cleanup program addressed the problem Lower East Fork Poplar Creek fact sheet (837.15 KB) More Documents & Publications Upper East Fork Poplar Creek Lower Watts Bar Reservoir Clinch River/Poplar Creek Mercury Treatment Facility overview

  14. Impacts of Elevated Atmospheric CO2and O3on Paper Birch (Betula papyrifera): Reproductive Fitness

    DOE PAGES [OSTI]

    Darbah, Joseph N. T.; Kubiske, Mark E.; Nelson, Neil; Oksanen, Elina; Vaapavuori, Elina; Karnosky, David F.

    2007-01-01

    Atmospheric CO2and tropospheric O3are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO3and O3for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment) site in Rhinelander, WI. Elevated CO2increased both male and female flower production, while elevated O3increased female flower production compared to trees in control rings. Interestingly, very little flowering has yet occurred in combined treatment. Elevated CO2had significant positive effect on birchmorecatkin size, weight, and germination success rate (elevated CO2increased germination rate of birch by 110% compared to ambient CO2concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination), while the opposite was true of elevated O3(elevated O3decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%). Under elevated CO2, plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO2, while the reverse was true for seedlings from seeds produced under the elevated O3. Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO2and O3can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.less

  15. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon Summary Bonneville ...

  16. Big Creek Hot Springs Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Big Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  17. Cedar Creek Wind Farm II (Nordex) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nordex) Jump to: navigation, search Name Cedar Creek Wind Farm II (Nordex) Facility Cedar Creek II (Nordex) Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  18. Oak Creek Energy Systems Wind Farm II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Jump to: navigation, search Name Oak Creek Energy Systems Wind Farm II Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  19. DOE - Office of Legacy Management -- Hoe Creek Underground Coal...

    Office of Legacy Management (LM)

    Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: ...

  20. Kingston Creek Hydro Project Powers 100 Households | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Kingston Creek Hydro Project Powers 100 Households Kingston Creek Hydro Project Powers 100 Households August 21, 2013 - 12:00am Addthis Nevada-based contracting firm Nevada ...

  1. Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility...

  2. Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility...

  3. Smith Creek Valley Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Smith Creek Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Smith Creek Valley Geothermal Area Contents 1 Area Overview 2 History and...

  4. Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek...

  5. Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Cement...

  6. Hot Creek Pool & Spa Low Temperature Geothermal Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Creek Pool & Spa Low Temperature Geothermal Facility Facility Hot Creek Sector Geothermal energy...

  7. Silver Creek Farms Aquaculture Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Silver Creek Farms Aquaculture Low Temperature Geothermal Facility Facility Silver...

  8. Oak Creek Energy Systems Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek Energy Systems Inc Place: California Sector: Wind energy Product: Californian wind project developer and asset manager. References: Oak Creek Energy Systems Inc1 This...

  9. Havasupai Indian Reservation, Supai Village, Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Havasupai Indian Reservation, Supai Village, Arizona Havasupai Indian Reservation, Supai Village, Arizona Photo of Photovoltaic Energy System at Havasupai Indian Reservation Village of Supai, Arizona The Havasupai Indian Reservation village of Supai, Arizona, is located approximately 40 miles northwest of Grand Canyon Village, AZ. It is one of the most remote Native American communities in the nation. Most supplies must be either flown in by helicopter or trekked in on horseback or by mule

  10. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fort Yukon Wood Energy Program: Wood Boiler Deployment Department of Energy Tribal Program Review Golden, Colorado March 26, 2014 Presented by: Kelda Britton CATG Department of Natural Resources Please contact me for a full list of citations. kelda@catg.org CATG is a consortium of 10 Gwich'in and Koyukon Athabascan tribes located throughout the Yukon Flats. Arctic Village, Beaver, Birch Creek, Canyon Village, Chalkyitsik, Circle, Fort Yukon, Rampart, Stevens Village and Venetie are the remote

  11. Upper East Fork Poplar Creek | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Upper East Fork Poplar Creek Upper East Fork Poplar Creek This document discusses the Upper East Fork Poplar Creek. Topics include: * The area's safety * Any use limitations for the area * History and cleanup background for this area * How DOE's cleanup program addressed the problem Upper East Fork Poplar Creek Watershed fact sheet (823.74 KB) More Documents & Publications Lower East Fork Poplar Creek Mercury Treatment Facility overview Recommendation 229: Recommendation on the Preferred

  12. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  13. EIS-0346: Salmon Creek Project, WA

    Energy.gov [DOE]

    This EIS analyzes BPA's proposal to fund activities that would restore sufficient water flows to Salmon Creek and rehabilitate its streambed as necessary to provide adequate passage for summer steelhead (Oncorhynchus mykiss) and possibly spring chinook (O. tshawytscha).

  14. Alaska Native Village CEO Association 2015 Conference

    Energy.gov [DOE]

    The Alaska Native Village Corporation Association is hosting its 7th Annual 2015 Conference in Anchorage, Alaska. The two-day conference includes a State of Alaska update, board election best practices, Alaska's economic future, Alaska Native subsistence co-management, and more.

  15. Native Village of Kongiganak – 2014 Project

    Energy.gov [DOE]

    The Native Village of Kongiganak, governed by the Kongiganak Traditional Council, and its electric utility, Puvurnaq Power Company (PPC) operate a cutting-edge hybrid wind-diesel power plant. Five 95-kilowatt (kW) refurbished Windmatic turbines contribute renewable power to their diesel grid.

  16. Alaska Native Village to Become a Model for Sustainable Northern...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Native Village to Become a Model for Sustainable Northern Communities Alaska Native Village to Become a Model for Sustainable Northern Communities June 30, 2015 - 5:47pm Addthis ...

  17. DOE to Host Alaska Native Village Energy Development Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Host Alaska Native Village Energy Development Workshop April 29-30 DOE to Host Alaska Native Village Energy Development Workshop April 29-30 March 13, 2014 - 12:58pm Addthis The ...

  18. Hoe Creek groundwater restoration, 1989

    SciTech Connect

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  19. FIDDLER CREEK POLYMER AUGMENTATION PROJECT

    SciTech Connect

    Lyle A. Johnson, Jr.

    2001-10-31

    The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1

  20. Perspectives on renewable energy and Village Power

    SciTech Connect

    Hoffman, A.R.

    1997-12-01

    The author provides a brief overview of the role the Department of Energy has been playing in the area of renewable energy sources and their applications at a village level. Energy demand is rising sharply, and shortages are becoming more acute. Developing countries will present a large demand, and market opportunity over the next 40 years. Environmental concerns are a factor in the choice for what sources to promote and develop. The author touches on the features of renewable sources which makes them attractive to DOE for some applications, and what the goals of the department are in supporting this technology. Examples of applications at the level of village power are presented for both the US and abroad.

  1. Koyukuk Native Village – 2014 Project

    Energy.gov [DOE]

    The Koyukuk Native Village (Tribe or Koyukuk) faces very high costs for heat and power. Reducing the cost to heat and power this building, which is what this project proposes, will directly benefit the Tribe, allowing more money to be spent on personnel and/or other programs. The electric costs would be more than doubled if not for the State of Alaska Power Cost Equalization (PCE) program. The PCE program subsidized just under 50% of the cost.

  2. Minto Village Council – 2014 Project

    Energy.gov [DOE]

    Located in interior Alaska where winter temperatures drop below -60°F and electricity is expensive, the Minto Village (Minto) has high heating and electrical costs. The Minto Lodge was built in 1984 and is the heartbeat of the community, housing all tribal offices and a commercial kitchen that serves the Elder and School Lunch Programs and is also a restaurant. The scope of this work includes weatherizing the building’s shell and upgrading the boiler.

  3. Dow Chemical Company-Oyster Creek VIII | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dow Chemical Company-Oyster Creek VIII Jump to: navigation, search Name: Dow Chemical Company-Oyster Creek VIII Place: Texas Phone Number: 1 989-636-1000; 1 800-331-6451 Website:...

  4. Panther Creek II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Panther Creek II Wind Farm Facility Panther Creek II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  5. Cedar Creek Wind Farm II (GE) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GE) Jump to: navigation, search Name Cedar Creek Wind Farm II (GE) Facility Cedar Creek II (GE) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  6. Foote Creek Rim II Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    II Wind Farm Jump to: navigation, search Name Foote Creek Rim II Wind Farm Facility Foote Creek Rim II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  7. Foote Creek Rim Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Edit History Foote Creek Rim Wind Farm Jump to: navigation, search The Foote Creek Rim Wind Farm is in Carbon County, Wyoming. It consists of 133 turbines and has a total...

  8. Fermilab | Tritium at Fermilab | Indian Creek Aerial View

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    lab at its southwest corner. The flow of water in the creek varies with the amount of rain that falls during the year. At present, Indian Creek has very low levels of water. Even...

  9. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Energy.gov [DOE]

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  10. Gwichyaa Zhee Gwich'in Tribal Government: Gwich'in Solar and Energy Efficiency in the Arctic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tribal Government Dept of Energy Tribal Energy Review Golden, CO March 26, 2014 Tony Peters - GZGTG Tribal Council Member, Yukon Flats School District O&M Manager Dave P-M - Tanana Chiefs Conference, Rural Energy Coordinator Gwich'in Solar and Energy Efficiency in the Arctic Yukon Flats Yukon Flats Region: * Arctic Village * $10/gal * $.8/kWh * Venetie * Circle * Beaver * Stevens Village * Chalkyitsik * Birch Creek Gwichyaa Zhee Gwich'in Tribal Government (GZGTG) Gwichyaa Zhee Gwich'in

  11. Native Village of Shishmaref – 2014 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Native Village of Shishmaref (Shishmaref) will complete weatherization retrofits to two community buildings, the Clinic and the Tannery, based on recent energy audits. Located 5 miles from the mainland, 126 miles north of Nome, and 100 miles south of Kotzebue, Shishmaref sits on Sarichef Island in the Chukchi Sea.With heating fuel costs of almost $7/gallon, the goal of this project is to reduce energy costs at the Clinic and the Tannery by at least 30% to 50% through energy efficiency and weatherization measures and through the installation of a residential-size wind turbine to supplement power for the Tannery building.

  12. Microsoft Word - Village voice article.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Article from the Village Voice http://www.villagevoice.com/issues/0222/baker.php Bracing for Yucca Mountain's Nuclear Forever Deep Time, Short Sight by R.C. Baker May 25th, 2002 12:30 AM n 1945, as the first atomic bomb was detonated in the New Mexico desert, one of its creators, physicist J. Robert Oppenheimer, recalled a line from Hindu scripture: "Now I am become Death, the destroyer of worlds." This being America, though, someone smelled a profit behind this almost biblical source

  13. River Turbine Provides Clean Energy to Remote Alaskan Village | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy River Turbine Provides Clean Energy to Remote Alaskan Village River Turbine Provides Clean Energy to Remote Alaskan Village August 18, 2015 - 10:36am Addthis River Turbine Provides Clean Energy to Remote Alaskan Village Alison LaBonte Marine and Hydrokinetic Technology Manager To date, Ocean Renewable Power Company (ORPC) is the only company to have built, operated and delivered power to a utility grid from a hydrokinetic tidal project, and to a local microgrid from a hydrokinetic

  14. Alaska Native Village to Become a Model for Sustainable Northern

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Communities | Department of Energy Native Village to Become a Model for Sustainable Northern Communities Alaska Native Village to Become a Model for Sustainable Northern Communities June 30, 2015 - 5:47pm Addthis Karen Petersen Karen Petersen Communications Strategist with the National Renewable Energy Laboratory's Communications & Public Affairs Office In the tiny Native village of Oscarville, Alaska, state and federal agencies are joining forces to tackle tough challenges that are

  15. North Village Ground Source Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    North Village Ground Source Heat Pumps North Village Ground Source Heat Pumps Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals. gshp_redderson_north_village.pdf (523.05 KB) More Documents & Publications Human Health Science Building Geothermal Heat Pumps City of Eagan …Civic Ice Arena Renovation Validation of Geothermal Tracer Methods in Highly Constrained Field Experiments

  16. Pine Creek Ranch, FY 2001 Annual Report.

    SciTech Connect

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  17. Elk Grove Village, Illinois: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    district.12 Registered Energy Companies in Elk Grove Village, Illinois Lime Energy formerly Electric City Corporation References US Census Bureau Incorporated...

  18. Village of Campbell, Nebraska (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Village of Campbell, Nebraska (Utility Company) Jump to: navigation, search Name: Campbell Municipal Power Place: Nebraska Phone Number: 402.756.8111 Website: www.campbellne.com...

  19. Project Reports for Native Village of Port Graham- 2006 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    In Alaska, Port Graham Village, a community of 140 members primarily of Aluiig descent, will assess construction of a biomass facility to power their cannery.

  20. Project Reports for Native Village of Unalakleet- 2011 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Native Village of Unalakleet (NVU) project is a feasibility study for a retrofit of a tribally owned three-story 14-apartment complex, located in Unalakleet, Alaska.

  1. Village of Westfield, New York (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Facebook: https:www.facebook.compagesVillage-of-Westfield314905891918227?refts&frefts Outage Hotline: 716-326-4961 References: EIA Form EIA-861 Final Data File...

  2. Village of Waunakee, Wisconsin (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Facebook: https:www.facebook.compagesVillage-of-Waunakee-WI282084728476060?refhl Outage Hotline: 608-849-4111 After Hours References: EIA Form EIA-861 Final Data...

  3. Village of Johnson, Vermont (Utility Company) | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Johnson, Vermont (Utility Company) Jump to: navigation, search Name: Johnson Village of Place: Vermont Service Territory: Vermont Phone Number: (802) 635-2611 Website:...

  4. The Village of Indian Hill, Ohio: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Village of Indian Hill, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.180136, -84.347958 Show Map Loading map......

  5. DOE to Host Three Alaska Native Village Renewable Energy Project...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Three Alaska Native Village Renewable Energy Project Development Workshops in March DOE to ... projects with the potential to produce jobs, spur economic development, and ideally ...

  6. Village of Hazel Green, Wisconsin (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Green, Wisconsin (Utility Company) Jump to: navigation, search Name: Village of Hazel Green Place: Wisconsin Phone Number: 608.854.2953 Website: villageofhazelgreen.orgabout...

  7. Whitmore Village, Hawaii: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Whitmore Village, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.5138889, -158.0230556 Show Map Loading map... "minzoom":false,"map...

  8. Ewa Villages, Hawaii: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ewa Villages, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.341009, -158.0373177 Show Map Loading map... "minzoom":false,"mappings...

  9. Village of Jackson Center, Ohio (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Center, Ohio (Utility Company) Jump to: navigation, search Name: Village of Jackson Center Place: Ohio Website: www.jacksoncenter.comutilitie Outage Hotline: 937-596-6353...

  10. Project Reports for Native Village of Eyak- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Native Village of Eyak will conduct a Wind Energy Resource Assessment on Alaska Native Lands in the Cordova Region of Prince William Sound.

  11. Taylor Lake Village, Texas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylorLakeVillage,Texas&oldid...

  12. Cottonwood-Verde Village, Arizona: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Cottonwood-Verde Village, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.6949847, -111.9820582 Show Map Loading map......

  13. Beaux Arts Village, Washington: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Beaux Arts Village, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5837105, -122.1956782 Show Map Loading map......

  14. Essex Village, Connecticut: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Essex Village, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.355949, -72.389488 Show Map Loading map... "minzoom":false,"mapp...

  15. EcoVillage Cleveland at 58th St., Cleveland, Ohio

    SciTech Connect

    2009-01-18

    EcoVillage Cleveland works under the Building America premise that high performance homes must be sustainable both environmentally and economically.

  16. Biogas electricity -- The Pura village case study

    SciTech Connect

    Rajabapaiah, P.; Jayakumar, S.; Reddy, A.K.N.

    1993-12-31

    A potentially useful decentralized source of energy is biogas, which is an approximately 60:40 mixture of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}), produced by the anaerobic fermentation of cellulosic biomass materials such as bovine wastes. Since 1987, the traditional system of obtaining water, illumination, and fertilizer in Pura village in south India has been replaced with a community biogas plant electricity-generation system. The technical, managerial, and economical aspects of this system are the subject manner of the present paper. Various subsystems are described, and the problems of operation and maintenance under field conditions are also discussed. A comparison of Pura`s present community biogas system with its traditional means for obtaining water, illumination, and fertilizer shows that the households are winners on all counts, having obtained such benefits as improved hygiene and convenience at relatively low cost. The Pura community biogas plant is held together and sustained by the convergence of individual and collective interests. Noncooperation with the community biogas plant results in a heavy individual price (access to water and light being cut off by the village), which is too great a personal loss to compensate for the minor advantages of noncooperation and noncontribution to collective interests.

  17. DOE Tour of Zero Floorplans: Hyland Village by Thrive Home Builders |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Hyland Village by Thrive Home Builders DOE Tour of Zero Floorplans: Hyland Village by Thrive Home Builders DOE Tour of Zero Floorplans: Hyland Village by Thrive Home Builders

  18. Lighting: The Killer App of Village Power

    SciTech Connect

    1997-12-01

    This paper looks at lighting systems as the major market for village level power generation. To the consumer it is something which is needed, could come from a much friendlier source, and the issues of affordability, convenience, and reliability are important. To the supplier lighting has an enormous range of potential customers, it opens the opportunity for other services, and even small demand can give big returns. Because the efficiency of the light source is critical to the number of lights which a fixed power supply can drive, it is important to pick the proper type of bulb to use in this system. The paper discusses test results from an array of fluorescent and incadescent lamps, compared with a kerosene lamp. Low wattage fluorescents seem to perform the best.

  19. Microsoft Word - Willow Creek EA - 7-6-2016.docx

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Willow Creek Wind Energy Facility Draft Environmental Assessment U.S. Department of Energy Western Area Power Administration DOE/EA-2016 July 2016 Willow Creek Wind Energy Facility Draft Environmental Assessment Butte County, South Dakota U.S. Department of Energy Western Area Power Administration DOE/EA-2016 July 2016 Willow Creek Wind Energy Facility Draft EA Table of Contents Western Area Power Administration TOC-1 TABLE OF CONTENTS Page No. 1.0 INTRODUCTION

  20. Reynolds Creek Hydroelectric Project, Project Status

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydroelectric Project Project Status November 17, 2009 By : Alvin Edenshaw, President Haida Corporation and Haida Energy, Inc. Mike Stimac, P.E. Vice President, HDR Engineering, Inc. Project Manager November 17, 2009 2 Haida Corporation  Located in Hydaburg on Prince of Wales Island in SE Alaska  Hydaburg population = 350 people (called Kaigani Haida)  Hydaburg is largest Haida Village in Alaska  Subsistence and Commercial Fishing Lifestyle  Substantial Timber Holdings 

  1. Mantle Helium And Carbon Isotopes In Separation Creek Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    cold springs in the Separation Creek area near South Sister volcano carry a strong mantle signal, indicating the presence of fresh basaltic magma in the volcanic plumbing system....

  2. New Jersey Nuclear Profile - PSEG Hope Creek Generating Station

    Energy Information Administration (EIA) (indexed site)

    PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License ...

  3. Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell...

    OpenEI (Open Energy Information) [EERE & EIA]

    Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Ten water samples were collected...

  4. DOE - Office of Legacy Management -- Hoe Creek Underground Coal...

    Office of Legacy Management (LM)

    Designated Name: Not Designated under FUSRAP Alternate Name: None Location: Campbell ... The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell ...

  5. RFC Sand Creek Development LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Colorado Zip: 80014 Product: Subsidiary of Republic Financial Corporation set up to invest in Sand Creek Energy LLC, a planned gas to liquid facility. Coordinates: 39.325162,...

  6. City of Battle Creek, Nebraska (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nebraska (Utility Company) Jump to: navigation, search Name: Battle Creek Municipal Light & Power Place: Nebraska Phone Number: 402.675.2165 Website: battlecreekne.com...

  7. Workplace Charging Challenge Partner: ClipperCreek, Inc. | Department...

    Office of Environmental Management (EM)

    Joined the Challenge: April 2014 Headquarters: Auburn, CA Charging Location: Auburn, CA Domestic Employees: 35 ClipperCreek is a leading manufacturer of Electric Vehicle Supply ...

  8. Queen Creek, Arizona: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Creek, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2486638, -111.6342993 Show Map Loading map... "minzoom":false,"mappingservic...

  9. Exploration Of The Upper Hot Creek Ranch Geothermal Resource...

    OpenEI (Open Energy Information) [EERE & EIA]

    of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples...

  10. Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...

    OpenEI (Open Energy Information) [EERE & EIA]

    of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. References Dick...

  11. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  12. DOE Tour of Zero Floorplans: Pebble Creek by DP Construction | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Pebble Creek by DP Construction DOE Tour of Zero Floorplans: Pebble Creek by DP Construction DOE Tour of Zero Floorplans: Pebble Creek by DP Construction

  13. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  14. Microsoft PowerPoint - Wolf Creek Brief SWPA 6-10-08_File#1 Slides...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Of Engineers Of Engineers Nashville District Nashville District Wolf Wolf Creek Creek Dam Dam Saftey Saftey US Army Corps US Army Corps Of Engineers Of Engineers ...

  15. Kansas Nuclear Profile - Wolf Creek Generating Station

    Energy Information Administration (EIA) (indexed site)

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,160","9,556",94.0,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  16. Village of Wellington, Ohio (Utility Company) | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    (Utility Company) Jump to: navigation, search Name: Village of Wellington Place: Ohio References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility...

  17. Village of Akron, New York (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Village of Akron Place: New York Website: www2.erie.govakronindex.php? Outage Hotline: (716) 858-6000 or (716) 858-8500 References: EIA Form EIA-861 Final...

  18. DOE Alaska Native Village Renewable Energy Workshop Agenda

    Energy.gov [DOE]

    Download the agenda for the DOE Alaska Native Village Renewable Energy Workshop entitled "Renewable Energy and Energy Efficiency for Alaska Native Community Development" being held October 16-17,...

  19. Project Reports for Koyukuk Native Village – 2014 Project

    Energy.gov [DOE]

    The Koyukuk Native Village was awarded Strategic Technical Assistance Response Team (START) assistance from the U.S. Department of Energy Office of Indian Energy Policy and Programs and the Denali...

  20. Prairie Village, Kansas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Prairie Village is a city in Johnson County, Kansas. It falls under Kansas's 3rd congressional district.12 References...

  1. Project Reports for Chickaloon Native Village- 2010 Project

    Energy.gov [DOE]

    Chickaloon Native Village's (CNV's) Uk'e koley Project will conduct a feasibility study to assess the potential of producing green energy to heat and power all tribally owned buildings.

  2. Jersey Village, Texas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Jersey Village is a city in Harris County, Texas. It falls under Texas's 7th congressional district.12 References ...

  3. Hilshire Village, Texas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Hilshire Village is a city in Harris County, Texas. It falls under Texas's 7th congressional district.12 References ...

  4. Bunker Hill Village, Texas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Bunker Hill Village is a city in Harris County, Texas. It falls under Texas's 7th congressional district.12 References ...

  5. Piney Point Village, Texas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Piney Point Village is a city in Harris County, Texas. It falls under Texas's 7th congressional district.12 References ...

  6. Hedwig Village, Texas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Hedwig Village is a city in Harris County, Texas. It falls under Texas's 7th congressional district.12 References ...

  7. Village of Polk, Nebraska (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Village of Polk, Nebraska (Utility Company) Jump to: navigation, search Name: Polk Municipal Power Place: Nebraska Phone Number: 402.765.6471 Website: www.polkcounty.ne.gov Outage...

  8. LM Meets with Native Village of Point Hope, Alaska

    Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Legacy Management (LM) federal and contractor staff traveled to Point Hope, Alaska, on March 3, 2014, to consult with officials from the Native Village of...

  9. Village of Elmore, Ohio (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Village of Elmore Place: Ohio Website: villageofelmoreohio.com Facebook: https:www.facebook.comElmoreOhio References: EIA Form EIA-861 Final Data File for 2010 - File1a1...

  10. Village of Watkins Glen, New York (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Village of Watkins Glen Place: New York Phone Number: 607 535-6873 or 607 535-6870 or 607-535-2736 Website: www.watkinsglen.us Outage Hotline:...

  11. Village of Sherburne, New York (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Village of Sherburne Place: New York Phone Number: (607) 674-2300 Website: www.sherburne.orgelectric.htm Outage Hotline: (607) 674-2300...

  12. Village of Marathon, New York (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Village of Marathon Place: New York Phone Number: (607) 849-3812 Website: www.cortland-co.orgtownsMara Outage Hotline: (607) 849-3812...

  13. Village of Groton, New York (Utility Company) | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Village of Groton Place: New York Phone Number: 607-898-3001 Website: www.grotonny.orgelectric.html Outage Hotline: 607-898-3966...

  14. Village of Greene, New York (Utility Company) | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Village of Greene Place: New York Phone Number: (607) 656-4191 Website: www.nygreene.compublicworks.h Outage Hotline: 877-295-1680 or...

  15. Village of Endicott, New York (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Village of Endicott Place: New York Phone Number: (607) 757-2455 Website: www.endicottny.comlight.html Outage Hotline: (607) 757-2455...

  16. Smith Village, Oklahoma: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Smith Village is a town in Oklahoma County, Oklahoma. It falls under Oklahoma's 5th...

  17. Project Reports for Minto Village Council – 2014 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Minto Village Council was awarded Strategic Technical Assistance Response Team (START) assistance from the U.S. Department of Energy Office of Indian Energy Policy and Programs and the Denali...

  18. Powering Remote Northern Villages with the Midnight Sun

    Office of Environmental Management (EM)

    We face high energy costs: 0.51 per kWh electricity 6.75 per gallon gasoline 5.75 per ... Appendices Appendices YUKON FLATS SCHOOL DIST Billed kWh Percentage of Village Total ...

  19. Project Reports for Native Village of Port Graham- 2012 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Port Graham Village Council (Port Graham) is the federally recognized tribal government, and along with assistance from our federally recognized tribal consortium Chugachmiut, will conduct preconstruction activities that will result in a construction-ready biomass heating system.

  20. North Bay Village, Florida: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    it. North Bay Village is a city in Miami-Dade County, Florida. It falls under Florida's 20th congressional district.12 References US Census Bureau Incorporated place and...

  1. Village of Philadelphia, New York (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    New York (Utility Company) Jump to: navigation, search Name: Philadelphia Village of Place: New York References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861...

  2. Park Forest Village, Pennsylvania: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Park Forest Village is a census-designated place in Centre County, Pennsylvania.1...

  3. Patton Village, Texas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Patton Village is a city in Montgomery County, Texas. It falls under Texas's 8th congressional district.12 References...

  4. Chevy Chase Village, Maryland: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Chevy Chase Village is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  5. Panorama Village, Texas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Panorama Village is a city in Montgomery County, Texas. It falls under Texas's 8th congressional district.12 References...

  6. Village of Gresham, Wisconsin (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wisconsin (Utility Company) Jump to: navigation, search Name: Village of Gresham Place: Wisconsin Phone Number: (715) 787-3244 or 950-555-4321 Website: www.greshamwi.com Outage...

  7. Village of Montpelier, Ohio (Utility Company) | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Village of Place: Ohio Phone Number: 419-485-5543 Website: www.montpelieroh.netutilityo Outage Hotline: 419-485-5543 References: EIA Form EIA-861 Final Data File for 2010 -...

  8. Wood Village, Oregon: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Wood Village is a city in Multnomah County, Oregon. It falls under Oregon's 3rd...

  9. Native Village of Venetie Tribal Government- 2003 Project

    Energy.gov [DOE]

    The villages of Venetie and Arctic, located above the Arctic Circle in northeast Alaska along the Chandalar River and just southeast of the Brooks Range, will study the feasibility of powering the villages using renewable solar energy during the season of the midnight sun. The solar electric (photovoltaic) system will replace diesel generator power for most of the summertime, yielding great economic, environmental, and social benefits.

  10. Village Power Exhibit Featured at NREL's Visitors Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Village Power Exhibit Featured at NREL's Visitors Center "Powering Our Lives, Powering Our World Energy" Expo Slated for February-April For more information contact: Gary Schmitz, 303-275-4050 email: Gary Schmitz Golden, Colo., Feb. 16, 2001 - An exhibit that demonstrates how renewable energy sources can bring needed electricity to developing nations worldwide opens Feb. 20 at the Visitors Center of the U.S. Department of Energy's National Renewable Energy Laboratory. The Village Power

  11. Building Energy Monitoring Software Aids Native Alaskan Villages |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Energy Monitoring Software Aids Native Alaskan Villages Building Energy Monitoring Software Aids Native Alaskan Villages March 9, 2016 - 1:08pm Addthis Energy Department financial support for Alaska is helping remote facilities like the Toksook Bay Well House to identify critical savings opportunities with energy monitoring software. Toksook Bay has a population of about 600. Energy Department financial support for Alaska is helping remote facilities like the Toksook Bay

  12. Hills Creek-Lookout Point Transmission Line Rebuild Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    In c o o per a t io n wi t h t h e U. S . F or es t Ser v ic e Hills Creek-Lookout Point Transmission Line Rebuild Project Draft Environmental Assessment August 2016 DOE/EA-1967 Hills Creek-Lookout Point Transmission Line Rebuild Project Draft Environmental Assessment Bonneville Power Administration In c o o per a t io n wi t h t h e U. S . F or es t Ser v ic e August 2016 Table of Contents Hills Creek-Lookout Point Transmission Line Rebuild Project Draft Environmental Assessment i Table of

  13. Williams Creek, Indiana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Williams Creek is a town in Marion County, Indiana. It falls under Indiana's 5th congressional...

  14. Coal Creek, Colorado: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Coal Creek is a town in Fremont County, Colorado. It falls under Colorado's 5th...

  15. Pike Creek, Delaware: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike Creek is a census-designated place in New Castle County, Delaware. It falls under...

  16. Isotopic Analysis At Separation Creek Area (Van Soest, Et Al...

    OpenEI (Open Energy Information) [EERE & EIA]

    Usefulness useful DOE-funding Unknown References M. C. van Soest, B. M. Kennedy, W. C. Evans, R. H. Mariner (2002) Mantle Helium And Carbon Isotopes In Separation Creek...

  17. EcoVillage: A Net Zero Energy Ready Community

    SciTech Connect

    Arena, L.; Faakye, O.

    2015-02-01

    CARB is working with the EcoVillage co-housing community in Ithaca, New York, on their third neighborhood called the Third Residential EcoVillage Experience (TREE). This community scale project consists of 40 housing units --15 apartments and 25 single family residences. The community is pursuing certifications for DOE Zero Energy Ready Home, U.S. Green Building Council Leadership in Energy and Environmental Design Gold, and ENERGY STAR for the entire project. Additionally, seven of the 25 homes, along with the four-story apartment building and community center, are being constructed to the Passive House (PH) design standard.

  18. NREL: Technology Deployment - Kaupuni Village: The First Net-Zero

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Affordable Housing Community in Hawaii Kaupuni Village: The First Net-Zero Affordable Housing Community in Hawaii Photo of a a family standing in front of solar panels The Young family, shown here, was one of 19 families given the opportunity to purchase a home in Kaupuni Village. Today, they are passionate about net-zero living, growing their own fish and vegetables among many other activities. May 21, 2012 When 85% of the energy is supplied by imported petroleum and the average homeowner's

  19. Research into the pyrolysis of pure cellulose, lignin, and birch wood flour in the China Lake entrained-flow reactor

    SciTech Connect

    Diebold, J.

    1980-06-01

    This experimental program used the China Lake entrained-flow pyrolysis reactor to briefly investigate the pyrolysis of pure cellulose, pure lignin, and birch wood flour. The study determined that the cellulose and wood flour do pyrolyze to produce primarily gaseous products containing significant amounts of ethylene and other useful hydrocarbons. During attempts to pyrolyze powdered lignin, the material melted and bubbled to block the reactor entrance. The pure cellulose and wood flour produced C/sub 2/ + yields of 12% to 14% by weight, which were less than yields from an organic feedstock derived from processed municipal trash. The char yields were 0.1% by weight from cellulose and 1.5% from birch wood flour - one to two orders of magnitude less than were produced from the trash-derived feedstock. In scanning electron microscope photographs, most of the wood flour char had a sintered and agglomerated appearance, although some particles retained the gross cell characteristics of the wood flour. The appearance of the char particles indicated that the material had once been molten and possibly vapor before it formed spheroidal particles about 1 ..mu..m diameter which agglomerated to form larger char particles. The ability to completely melt or vaporize lignocellulosic materials under conditions of high heating rates has now been demonstrated in a continuous flow reactor and promises new techniques for fast pyrolysis. This char was unexpectedly attracted by a magnet, presumably because of iron contamination from the pyrolysis reactor tube wall. The production of water-insoluble tars was negligible compared to the tars produced from trash-derived feedstock. The production of water-soluble organic materials was fairly low and qualitatively appeared to vary inversely with temperature. This study was of a preliminary nature and additional studies are necessary to optimize ethylene production from these feedstocks.

  20. Marin Solar Village: feasibility study and technical analysis. Final report

    SciTech Connect

    Not Available

    1980-08-31

    The energy needs of Hamilton Air Force Base's Solar Village for electricity and heating and cooling of buildings are considered and alternative ways of meeting the Village's requirements for these forms of energy are evaluated. First, Solar Village's energy demand is calculated and compared to a base case representing calculations for typical energy usage for a development of similar size and density that is in conformance with current state and local ordinances. The potential of selected alternative technologies to meet the Solar Village projected demand for electrical power and natural gas is evaluated. Scenarios were developed to reduce demand, particularly in the building sector. Four alternative on-site energy technologies have been evaluated: wind, solar thermal electric, biomass conversion, photovoltaics. Each alternative is analyzed in detail. Of the four alternatives considered, the one with the greatest present potential is biomass conversion. Two technologies have been incorporated into the design. A 3-acre land fill is covered with a mantle of soil. A network of pipes carries off the methane gas which is a natural product of anaerobic decomposition of the materials in the land fill. The second technology involves the planting of rapidly-growing trees on denuded and unused portions of the site; 50 acres devoted to tree production could yield 12% of the back-up energy required for home heating on a sustainable basis.

  1. Overview of village scale, renewable energy powered desalination

    SciTech Connect

    Thomas, K.E.

    1997-04-01

    An overview of desalination technologies is presented, focusing on those technologies appropriate for use in remote villages, and how they can be powered using renewable energy. Technologies are compared on the basis of capital cost, lifecycle cost, operations and maintenance complexity, and energy requirements. Conclusions on the appropriateness of different technologies are drawn, and recommendations for future research are given.

  2. NREL: Technology Deployment - Alaska Native Village Benefits from NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technical Assistance with Strategic Energy Planning Alaska Native Village Benefits from NREL Technical Assistance with Strategic Energy Planning News Rampart Proactively Addresses Expansion Challenges with Strategic Energy Planning DOE Supports Renewable Energy Deployment Projects for Forest County Potawatomi Community Publications Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands Solar Energy Prospecting in Remote Alaska: An Economic Analysis of Solar Photovoltaics

  3. Strategic Planning Opens Doors for Isolated Alaskan Village

    Energy.gov [DOE]

    Through the Office of Indian Energy’s 2012 Strategic Technical Assistance Response Team (START) Program, the Organized Village of Kake in Alaska received assistance with community-based energy planning, energy awareness and training programs, and identification and implementation of renewable energy and energy efficiency opportunities.

  4. Building America Whole-House Solutions for New Homes: EcoVillage...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Whole-House Solutions for New Homes: EcoVillage: A Net Zero Energy Ready Community, Ithaca, New York Building America Whole-House Solutions for New Homes: EcoVillage: A Net Zero...

  5. Remote power systems with advanced storage technologies for Alaskan villages

    SciTech Connect

    Isherwood, W.; Smith, R.; Aceves, S.; Berry, G.; Clark, W.; Johnson, R.; Das, D.; Goering, D.; Seifert, R.

    1997-12-01

    Remote Alaskan communities pay economic and environmental penalties for electricity, because they must import diesel as their primary fuel for electric power production, paying heavy transportation costs and potentially causing environmental damage with empty drums, leakage, and spills. For these reasons, remote villages offer a viable niche market where sustainable energy systems based on renewable resources and advanced energy storage technologies can compete favorably on purely economic grounds, while providing environmental benefits. These villages can also serve as a robust proving ground for systematic analysis, study, improvement, and optimization of sustainable energy systems with advanced technologies. This paper presents an analytical optimization of a remote power system for a hypothetical Alaskan village. The analysis considers the potential of generating renewable energy (e.g., wind and solar), along with the possibility of using energy storage to take full advantage of the intermittent renewable sources available to these villages. Storage in the form of either compressed hydrogen or zinc pellets can then provide electricity from hydrogen or zinc-air fuel cells when renewable sources are unavailable.The analytical results show a great potential to reduce fossil fuel consumption and costs basing renewable energy combined with advanced energy storage devices. The best solution for our hypothetical village appears to be a hybrid energy system, which can reduce consumption of diesel fuel by over 50% with annualized cost savings by over 30% by adding wind turbines to the existing diesel generators. When energy storage devices are added, diesel fuel consumption and costs can be reduced substantially more. With optimized energy storage, use of the diesel generatorss can be reduced to almost zero, with the existing equipment only maintained for added reliability. However about one quarter of the original diesel consumption is still used for heating purposes

  6. DOE Tour of Zero Floorplans: TREE at EcoVillage by AquaZephyr | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy TREE at EcoVillage by AquaZephyr DOE Tour of Zero Floorplans: TREE at EcoVillage by AquaZephyr DOE Tour of Zero Floorplans: TREE at EcoVillage by AquaZephyr

  7. Scotch Creek Wildlife Area 2007-2008 Annual Report.

    SciTech Connect

    Olson, Jim

    2008-11-03

    The Scotch Creek Wildlife Area is a complex of 6 separate management units located in Okanogan County in North-central Washington State. The project is located within the Columbia Cascade Province (Okanogan sub-basin) and partially addresses adverse impacts caused by the construction of Chief Joseph and Grand Coulee hydroelectric dams. With the acquisition of the Eder unit in 2007, the total size of the wildlife area is now 19,860 acres. The Scotch Creek Wildlife Area was approved as a wildlife mitigation project in 1996 and habitat enhancement efforts to meet mitigation objectives have been underway since the spring of 1997 on Scotch Creek. Continuing efforts to monitor the threatened Sharp-tailed grouse population on the Scotch Creek unit are encouraging. The past two spring seasons were unseasonably cold and wet, a dangerous time for the young of the year. This past spring, Scotch Creek had a cold snap with snow on June 10th, a critical period for young chicks just hatched. Still, adult numbers on the leks have remained stable the past two years. Maintenance of BPA funded enhancements is necessary to protect and enhance shrub-steppe and to recover and sustain populations of Sharp-tailed grouse and other obligate species.

  8. Oak Creek Wind Power Phase 2 Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wind Power Phase 2 Wind Farm Jump to: navigation, search Name Oak Creek Wind Power Phase 2 Wind Farm Facility Oak Creek Wind Power Phase 2 Sector Wind energy Facility Type...

  9. OAK GROVE C OAL D EGAS CEDAR COVE COAL D EGAS BLU E CREEK COAL...

    Energy Information Administration (EIA) (indexed site)

    ... MILITARY GROVE HAMILTONMSD BIG CR EEKALD TAYLOR CREEK COAL D EGAS MAT UBBY CREEK ... Authors: Sam Limerick (1), Lucy Luo (1), Gary Long (2), David Morehouse (2), Jack Perrin ...

  10. EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

  11. Geology of the lower Yellow Creek Area, Northwestern Colorado

    SciTech Connect

    Hail, W.J.

    1990-01-01

    The lower Yellow Creek area is located in Rio Blanco and Moffat Counties of northwestern Colorado, about midway between the towns of Rangely and Meeker. The study area is in the northwestern part of the Piceance Creek basin, a very deep structural and sedimentary basin that formed during the Laramide orogeny. Potentially important resources in the area are oil shale and related minerals, oil and gas, coal, and uranium. Topics discussed in the report include: Stratigraphy (Subsurface rocks, Cretaceous rocks, Tertiary rocks, and Quaternary deposits); Structure (Midland anticline, graben at Pinyon Ridge, and Crooked Wash syncline, Folds and faults in the vicinity of the White River, Red Wash syncline and central graben zone, Yellow Creek anticlinal nose); Economic geology (Oil shale and associated minerals, Coal, Oil and gas, Uranium, Gravel).

  12. Fast-growing willow shrub named `Fish Creek`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-08

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

  13. Lower Watts Bar Reservoir Clinch River/Poplar Creek | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Watts Bar Reservoir Clinch River/Poplar Creek Lower Watts Bar Reservoir Clinch River/Poplar Creek This document discusses the Lower Watts Bar Reservoir Clinch River/Poplar Creek. Topics include: * The area's safety * Any use limitations for the area * History and cleanup background for this area * How DOE's cleanup program addressed the problem Lower Watts Bar Reservoir Clinch River/Poplar Creek (982.57 KB) More Documents & Publications EA-1175: Final Environmental Assessment OREM

  14. Honey Creek Middle School Wins U.S. Department of Energy National Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Competition - News Releases | NREL Honey Creek Middle School Wins U.S. Department of Energy National Science Competition June 24, 2006 Photo of students from Honey Creek Middle School standing with their trophy from the National Middle School Science Bowl. Students from Honey Creek Middle School traveled from Terre Haute, Ind., to take first place at the National Middle School Science Bowl in Denver, Colo. Five middle school students from Honey Creek Middle School in Terre Haute, Ind.,

  15. Conference to Focus on Vast Need for 'Village Power'

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to Focus on Vast Need for 'Village Power' Solar, Wind Power Seen as Solutions for Developing World For more information contact: Gary Schmitz, 303-275-4050 email: Gary Schmitz Golden, Colo., Nov. 10, 2000 - It is a stunning paradox of the new millennium: Amid a myriad of technological marvels, more than a third of the Earth's population remains without a reliable source of electricity. A reality, that, in turn, limits access to clean water, healthcare, education and modern communications. More

  16. Native Village of Eyak Wind Energy Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Eyak Wind Energy Feasibility Study Prepared by Heath Kocan & Casey Pape Presented by Casey Pape Alternative Energy Coordinator Native Village of Eyak * Federally Recognized Tribe in Cordova, AK * Governed by a five- member tribal council * Provides health and social services, economic development, job training and environmental and resource management * 525 Tribal members Location of Project Cordova Why Wind Power? *Reduces petroleum use *Reduces carbon footprint *Cost can be competitive

  17. West Village Student Housing Phase I: Apartment Monitoring and Evaluation

    SciTech Connect

    German, A.; Bell, C.; Dakin, B.; Hoeschele, M.

    2014-06-01

    Building America team Alliance for Residential Building Innovation (ARBI) worked with the University of California, Davis (UC Davis) and the developer partner West Village Community Partnership (WVCP) to evaluate performance on 192 student apartments completed in September, 2011 as part of Phase I of the multi-purpose West Village project. West Village, the largest planned zero net energy community in the United States. The campus neighborhood is designed to enable faculty, staff and students to affordably live near campus, take advantage of environmentally friendly transportation options, and participate fully in campus life. The aggressive energy efficiency measures that are incorporated in the design contribute to source energy reductions of 37% over the B10 Benchmark. The energy efficiency measures that are incorporated into these apartments include increased wall & attic insulation, high performance windows, high efficiency heat pumps for heating and cooling, central heat pump water heaters (HPWHs), 100% high efficacy lighting, and ENERGY STAR major appliances. Results discuss how measured energy use compares to modeling estimates over a 10 month monitoring period and includes a cost effective evaluation.

  18. West Village Student Housing Phase I: Apartment Monitoring and Evaluation

    SciTech Connect

    German, A.; Bell, C.; Dakin, B.; Hoeschele, M.

    2014-06-01

    Building America team Alliance for Residential Building Innovation (ARBI) worked with the University of California, Davis and the developer partner West Village Community Partnership (WVCP) to evaluate performance on 192 student apartments completed in September, 2011 as part of Phase I of the multi-purpose West Village project. West Village is the largest planned zero net energy community in the United States. The campus neighborhood is designed to enable faculty, staff, and students to affordably live near campus, take advantage of environmentally friendly transportation options, and participate fully in campus life. The aggressive energy efficiency measures that are incorporated in the design contribute to source energy reductions of 37% over the B10 Benchmark. These measures include increased wall and attic insulation, high performance windows, high efficiency heat pumps for heating and cooling, central heat pump water heaters (HPWHs), 100% high efficacy lighting, and ENERGY STAR major appliances. The report discusses how measured energy use compares to modeling estimates over a 10-month monitoring period and includes a cost effective evaluation.

  19. Construction Support for New Slab Creek Power House Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Construction Support for New Slab Creek Power House Project Construction Support for New Slab Creek Power House Project Construction Support for New Slab Creek Power House Project 69c_pop-poe_percheron_power_spray.ppt (1.1 MB) More Documents & Publications CX-100081: Categorical Exclusion Determination CX-008235: Categorical Exclusion Determination CX-100448 Categorical Exclusion Determination

  20. AmeriFlux US-Los Lost Creek

    DOE Data Explorer

    Desai, Ankur [University of Wisconsin

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Los Lost Creek. Site Description - Shrub wetland site, chosen to be representative of the wetlands within the WLEF tall tower flux footprint. This is a deciduous shrub wetland. Coniferous and grassy stands also exist within the WLEF flux footprint. Solar power. The site has excellent micrometeorological characteristics.

  1. EIS-0415: Deer Creek Station Energy Facility Project, South Dakota

    Energy.gov [DOE]

    This EIS analyzes WAPA's decision to approve the interconnection request made by Basin Electric Power Cooperative (Basin Electric) with the USDA Rural Utilities Service (RUS) proposing to provide financial assistance, for the Deer Creek Station Project, a proposed 300-megawatt (MW) natural gas-fired generation facility.

  2. Gwich'in Solar and Energy Efficiency in the Arctic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tribal Government Dept of Energy Tribal Energy Review Golden, CO May 7 th 2015 Tony Peter - GZGTG Tribal Council Member, Yukon Flats School District O&M Manager Dave P-M - Tanana Chiefs Conference, Rural Energy Coordinator Gwich'in Solar and Energy Efficiency in the Arctic Yukon Flats Yukon Flats Region: * Arctic Village * $10/gal * $.8/kWh * Venetie * Circle * Beaver * Stevens Village * Chalkyitsik * Birch Creek Gwichyaa Zhee Gwich'in Tribal Government (GZGTG) Gwichyaa Zhee Gwich'in Tribal

  3. Private sector village enterprise a new approach to sustainable financing

    SciTech Connect

    Gay, C.F.

    1997-12-01

    This paper presents an enterprise plan for introducing solar power in a rural market, while providing economic development, and hence the ability of the user to pay for the power source. This plan is based on a product called GEEP - a solar sewing machine conversion kit. This kit can be retrofit onto pedal sewing machines and marketed to village tailors in India, as part of a marketing program which includes increased demand for tailored products which will allow the tailors to be able to finance the conversion kits.

  4. TEAM CUMBERLAND Kentucky Dam Village State Resort Park

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Kentucky Dam Village State Resort Park 113 Administration Drive, Gilbertsville, KY 42044 April 6, 2016 On Tuesday, April 5 th , Team Cumberland attendees are invited to gather in the lobby of the lodge at 5:30 PM CDT prior to traveling to a Dutch-treat group dinner at Patti's 1880's Settlement, 1793 JH O'Bryan Avenue, Grand Rivers, KY 42045 Reservations are at 6:00 CDT. The meeting on Wednesday, April 6 th , begins at 8:00 AM CDT and should conclude by 12:30 PM CDT. The meeting will be held in

  5. Uk'e koley - No Footprint: Chickaloon Village Traditional Council

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chickaloon Village Traditional Council Nay'dini'aa Na'  Nay'dini'aa Na' meaning: a log across the river  Our Tribe has long been devoted to being a good steward to the environment, understanding that it is our responsibility to take care of the land that has been loaned to us for the short time we are here.  Historically harvested resources include salmon, moose, caribou, beluga whale, grizzly and black bear, dall sheep, beaver and numerous other animals and plants for food, medicine,

  6. Opportunities for renewable energy technologies in water supply in developing country villages

    SciTech Connect

    Niewoehner, J.; Larson, R.; Azrag, E.; Hailu, T.; Horner, J.; VanArsdale, P.

    1997-03-01

    This report provides the National Renewable Energy Laboratory (NREL) with information on village water supply programs in developing countries. The information is intended to help NREL develop renewable energy technologies for water supply and treatment that can be implemented, operated, and maintained by villagers. The report is also useful to manufacturers and suppliers in the renewable energy community in that it describes a methodology for introducing technologies to rural villages in developing countries.

  7. AVTA: Clipper Creek AC Level 2 Charging System Testing Results

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the ClipperCreek AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory.

  8. EA-1978: Sand Creek Winds, McCone County, Montana

    Energy.gov [DOE]

    Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of the proposed Sand Creek Winds Project, a 75-MW wind farm between the towns of Circle and Wolf Point in McCone County, Montana. The proposed wind farm would interconnect to Western’s existing Wolf Point to Circle 115-kV transmission line approximately 18 miles north of Wolf Point.

  9. Honey Creek Middle School Wins National Science Competition - News Releases

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    | NREL Honey Creek Middle School Wins National Science Competition July 13, 2005 Golden, Colo. - Solar concentrators using highly efficient photovoltaic solar cells will reduce the cost of electricity from sunlight to competitive levels soon, attendees were told at a recent international conference on the subject. Herb Hayden of Arizona Public Service (APS) and Robert McConnell and Martha Symko-Davies of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) organized

  10. Rehabilitate Newsome Creek Watershed, 2007-2008 Annual Report.

    SciTech Connect

    Bransford, Stephanie

    2009-05-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridgetop approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Newsome Creek watershed of the South Fork Clearwater River in 1997. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. Starting in FY 2001 and continuing into the present, a major stream restoration effort on the mainstem of Newsome Creek has been pursued. From completing a watershed assessment to a feasibility study of 4 miles of mainstem rehabilitation to carrying that forward into NEPA and a final design, we will begin the effort of restoring the mainstem channel of Newsome Creek to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed.

  11. DOE Tour of Zero: The Eco-Village Ithaca by AquaZephyr | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Village Ithaca by AquaZephyr DOE Tour of Zero: The Eco-Village Ithaca by AquaZephyr Addthis 1 of 12 AquaZephyr of Ithaca, New York, built this 1,664-square-foot, two-story...

  12. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild Project; Lane

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    County, Oregon | Department of Energy 7: Hills Creek-Lookout Point Transmission Line Rebuild Project; Lane County, Oregon EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild Project; Lane County, Oregon Summary Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115-kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County,

  13. EcoVillage Townhomes at 58th Street

    Building Catalog

    Cleveland, OH The EcoVillage Townhomes are located on an urban infill site within a 5-minute walk of a soon-to-be renovated rail station. Where formerly 10 single-family houses stood in disrepair, there will now be 20 state-of-the-art townhomes. The 3-story units have stepped down, walk-in basements with natural light, thermal envelopes, and layouts ideal for a separate rental unit or extended family living space. The 2-story units are slab-on-grade and designed to be more accessible. Front porches and detached garages along a back alleyway foster a sense of community. 05/22/2015 - 08:07

  14. Biological and Physical Inventory of Clear Creek, Orofino Creek, and the Potlatch River, Tributary Streams of the Clearwater River, Idaho, 1984 Technical Report.

    SciTech Connect

    Johnson, David B.

    1985-05-01

    Clear Creek, Orofino Creek, and Potlatch Creek, three of the largest tributaries of the lower Clearwater River Basin, were inventoried during 1984. The purpose of the inventory was to identify where anadromous salmonid production occurs and to recommend enhancement alternatives to increase anadromous salmonid habitat in these streams. Anadromous and fluvial salmonids were found in all three drainages. The lower reach of Clear Creek supported a low population of rainbow-steelhead, while the middle reach supported a much greater population of rainbow-steelhead. Substantial populations of cutthroat trout were also found in the headwaters of Clear Creek. Rainbow-steelhead and brook trout were found throughout Orofino Creek. A predominant population of brook trout was found in the headwaters while a predominant population of rainbow-steelhead was found in the mainstem and lower tributaries of Orofino Creek. Rainbow-steelhead and brook trout were also found in the Potlatch River. Generally, the greatest anadromous salmonid populations in the Potlatch River were found within the middle reach of this system. Several problems were identified which would limit anadromous salmonid production within each drainage. Problems affecting Clear Creek were extreme flows, high summer water temperature, lack of riparian habitat, and high sediment load. Gradient barriers prevented anadromous salmonid passage into Orofino Creek and they are the main deterrent to salmonid production in this system. Potlatch River has extreme flows, high summer water temperature, a lack of riparian habitat and high sediment loads. Providing passage over Orofino Falls is recommended and should be considered a priority for improving salmonid production in the lower Clearwater River Basin. Augmenting flows in the Potlatch River is also recommended as an enhancement measure for increasing salmonid production in the lower Clearwater River Basin. 18 refs., 5 figs., 85 tabs.

  15. AmeriFlux US-WCr Willow Creek

    SciTech Connect

    Desai, Ankur

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-WCr Willow Creek. Site Description - Upland decduous broadleaf forest. Mainly sugar maple, also basswood. Uniform stand atop a very modest hill. Clearcut approximately 80 years ago. Chosen to be representative of the upland deciduous broadleaf forests within the WLEF tall tower flux footprint. It appears to be more heavily forested and more productive than most of the upland deciduous broadleaf forests in the WLEF flux footprint (see publications for more details). It is also important that SE winds are screened from the flux data (see Cook et al, 2004 for details). Propane generator power.

  16. Kaupuni Village: A closer look at the first net-zero energy affordable

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    housing community in Hawaii | Department of Energy Kaupuni Village: A closer look at the first net-zero energy affordable housing community in Hawaii Kaupuni Village: A closer look at the first net-zero energy affordable housing community in Hawaii Information on the LEED Platinum, net-zero energy, Kaupuni Village in Hawaii, which is comprised of 19 single-family homes and a community center. Not only are the structures built to be net-zero, but the entire community was built as a fully

  17. DOE Tour of Zero: TREE at EcoVillage by AquaZephyr | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TREE at EcoVillage by AquaZephyr DOE Tour of Zero: TREE at EcoVillage by AquaZephyr 1 of 13 AquaZephyr, LLC, built this 22,600-square-foot, 15-unit multifamily building in Ithaca, New York, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. The angular decks and entry area were designed to increase the amount of southern exposure for passive solar gain. 2 of 13 This multifamily structure is part of EcoVillage at Ithaca, a community of

  18. DOE Tour of Zero: TREE at EcoVillage by AquaZephyr | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TREE at EcoVillage by AquaZephyr DOE Tour of Zero: TREE at EcoVillage by AquaZephyr Addthis 1 of 13 AquaZephyr, LLC, built this 22,600-square-foot, 15-unit multifamily building in Ithaca, New York, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. The angular decks and entry area were designed to increase the amount of southern exposure for passive solar gain. 2 of 13 This multifamily structure is part of EcoVillage at Ithaca, a community of

  19. Return Spawning/Rearing Habitat to Anadromous/Resident Fish within the Fishing Creek to Legendary Bear Creek Analysis Area Watersheds; 2002-2003 Final Report.

    SciTech Connect

    Taylor, Jr., Emmit E.

    2004-03-01

    This project is a critical component of currently on-going watershed restoration effort in the Lochsa River Drainage, including the Fishing (Squaw) Creek to Legendary Bear (Papoose) Creek Watersheds Analysis Area. In addition, funding for this project allowed expansion of the project into Pete King Creek and Cabin Creek. The goal of this project is working towards the re-establishment of healthy self-sustaining populations of key fisheries species (spring Chinook salmon, steelhead, bull trout, and westslope cutthroat trout) through returning historic habitat in all life stages (spawning, rearing, migration, and over-wintering). This was accomplished by replacing fish barrier road crossing culverts with structures that pass fish and accommodate site conditions.

  20. Results of the radiological survey at Two Mile Creek, Tonawanda, New York (TNY002)

    SciTech Connect

    Murray, M.E.; Rodriguez, R.E.; Uziel, M.S.

    1997-08-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Two Mile Creek, Tonawanda, New York. The survey was performed in November 1991 and May 1996. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been transported into the creek. The survey included a surface gamma scan in accessible areas near the creek and the collection of soil, sediment, and core samples for radionuclide analyses. Survey results indicate that no significant material originating at the Linde plant is presently in the creek. Three of the 1991 soil sample locations on the creek bank and one near the lake contained slightly elevated concentrations of {sup 238}U with radionuclide distributions similar to that found in materials resulting from former processing activities at the Linde site.

  1. Matching renewable energy systems to village-level energy needs

    SciTech Connect

    Ashworth, J.H.; Neuendorffer, J.W.

    1980-06-01

    This report provides a five step process for matching alternative renewable energy technologies with energy needs in rural villages of developing countries. Analytic tools are given for each of the five steps as well as information that can be expected. Twelve characterization criteria are developed to assist in the matching process. Three of these criteria, called discrimination criteria, are used for preliminary screening of technology possibilities for each need. The other criteria address site-specific temporal, climatic, social, cultural, and environmental characteristics of the energy need, technology, and cost considerations. To illustrate the matching process, seven basic human needs for energy are matched with seven potential renewable energy technologies. The final portion of the paper discusses the advantages of such a matching process and the resources required to initiate such an effort within a development project. Specific recommendations are given for field-testing this process and actions that could be taken immediately in basic research and development, applied research and technology modification, demonstrations, and commercialization to assist in the future diffusion of renewable energy technologies to rural areas of developing countries.

  2. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect

    Not Available

    1992-01-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  3. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect

    Not Available

    1992-10-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  4. Landslide assessment of Newell Creek Canyon, Oregon City, Oregon

    SciTech Connect

    Growney, L.; Burris, L.; Garletts, D.; Walsh, K. . Dept. of Geology)

    1993-04-01

    A study has been conducted in Newell Creek Canyon near Oregon City, Oregon, T3S, T2S, R2E. A landslide inventory has located 53 landslides in the 2.8 km[sup 2] area. The landslides range in area from approximately 15,000m[sup 2] to 10m[sup 2]. Past slides cover an approximate 7% of the canyon area. Landslide processes include: slump, slump-translational, slump-earthflow and earthflow. Hard, impermeable clay-rich layers in the Troutdale Formation form the failure planes for most of the slides. Slopes composed of Troutdale material may seem to be stable, but when cuts and fills are produced, slope failure is common because of the perched water tables and impermeable failure planes. Good examples of cut and fill failures are present on Highway 213 which passes through Newell Creek Canyon. Almost every cut and fill has failed since the road construction began. The latest failure is in the fill located at mile-post 2.1. From data gathered, a slope stability risk map was generated. Stability risk ratings are divided into three groups: high, moderate and low. High risk of slope instability is designated to all landslides mapped in the slide inventory. Moderate risk is designated to slopes in the Troutdale Formation greater than 8[degree]. Low risk is designated to slopes in the Troutdale Formation less than 8[degree].

  5. Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.

    SciTech Connect

    Browne, Dave

    1995-04-01

    The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

  6. Kaupuni Village: A closer look at the first net-zero energy affordable...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information on the LEED Platinum, net-zero energy, Kaupuni Village in Hawaii, which is comprised of 19 single-family homes and a community center. Not only are the structures built ...

  7. DOE to Host Alaska Native Village Energy Development Workshop April 29-30

    Energy.gov [DOE]

    The DOE Office of Indian Energy and the Tribal Energy Program will present a workshop on Alaska Native village energy project development on April 29–30 at the Dena'ina Convention Center in...

  8. Designing Hawaii’s First LEED Platinum Net Zero Community: Kaupuni Village

    Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Community Renewable Energy (CommRE) success stories Kaupuni Village net zero energy community; energy efficiency in buildings; PV and photovoltaics.

  9. ITEP Webinar: Crafting a Remediation and Prevention Plan for Your Tribes or Village

    Energy.gov [DOE]

    Hosted by the Institute for Tribal Environmental Professionals (ITEP), this free, two-part webinar series is aimed toward tribes, Alaska Native Villages, and Pacific Islanders. The second part is...

  10. Building America Whole-House Solutions for New Homes: EcoVillage...

    Energy Saver

    Building America Whole-House Solutions for New Homes: EcoVillage: A Net Zero Energy Ready Community, Ithaca, New York Consortium for Advanced Residential Buildings is working with ...

  11. NREL: News - Energy Secretary Abraham Opens Solar Village on National Mall

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in Washington, DC Opens Solar Village on National Mall in Washington, DC Thursday, September 26, 2002 14 University Teams Competing in DOE's First Solar Decathlon Washington, D.C.-This morning, Energy Secretary Spencer Abraham officially opened the first Solar Decathlon on the National Mall. Standing in front of the nation's Capitol building and a Solar Village, composed of 14 solar-powered, highly energy efficient homes, Abraham congratulated the students for their creative labor and

  12. Energy Department Selects Five Alaska Villages in next round of START

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project to Support Clean Energy Development | Department of Energy Five Alaska Villages in next round of START Project to Support Clean Energy Development Energy Department Selects Five Alaska Villages in next round of START Project to Support Clean Energy Development May 28, 2015 - 6:35pm Addthis NEWS MEDIA CONTACT (202) 586-4940 DOENews@hq.doe.gov WASHINGTON- Today, when visiting the Alaska Native Science and Engineering Program at the University of Alaska-Anchorage, Deputy Energy

  13. Project Reports for Native Village of Venetie Tribal Government- 2003 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The villages of Venetie and Arctic, located above the Arctic Circle in northeast Alaska along the Chandalar River and just southeast of the Brooks Range, will study the feasibility of powering the villages using renewable solar energy during the season of the midnight sun. The solar electric (photovoltaic) system will replace diesel generator power for most of the summertime, yielding great economic, environmental, and social benefits.

  14. Building America Whole-House Solutions for New Homes: Singer Village - A

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cold Climate Zero Energy Ready Home, Derby, Connecticut | Department of Energy Singer Village - A Cold Climate Zero Energy Ready Home, Derby, Connecticut Building America Whole-House Solutions for New Homes: Singer Village - A Cold Climate Zero Energy Ready Home, Derby, Connecticut After progressively incorporating ENERGY STAR for Homes Versions 1, 2, and 3 into its standard practices over the years, builder Brookside Development was seeking to build an even more sustainable product that

  15. Campbell Creek Research Homes FY 2012 Annual Performance Report

    SciTech Connect

    Gehl, Anthony C; Munk, Jeffrey D; Jackson, Roderick K; Boudreaux, Philip R; Khowailed, Gannate A

    2013-01-01

    The Campbell Creek project is funded and managed by the Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery & and Utilization Office. Technical support is provided under contract by the Oak Ridge National Laboratory (ORNL) and the Electric Power Research Institute.The project was designed to determine the relative energy efficiency of typical new home construction, energy efficiency retrofitting of existing homes, and high -performance new homes built from the ground up for energy efficiency. This project will compare three houses that represented the current construction practice as a base case (Builder House CC1); a modified house that could represent a major energy- efficient retrofit (Retrofit House CC2); and a house constructed from the ground up to be a high- performance home (High Performance House CC3). In order tTo enablehave a valid comparison, it was necessary to simulate occupancy in all three houses and heavily monitor the structural components and the energy usage by component. All three houses are two story, slab on grade, framed construction. CC1 and CC2 are approximately 2,400 square feet2. CC3 has a pantry option, that is primarily used as a mechanical equipment room, that adds approximately 100 square feet2. All three houses are all-electric (with the exception of a gas log fireplace that is not used during the testing), and use air-source heat pumps for heating and cooling. The three homes are located in Knoxville in the Campbell Creek Subdivision. CC1 and CC2 are next door to each other and CC3 is across the street and a couple of houses down. The energy data collected will be used to determine the benefits of retrofit packages and high -performance new home packages. There are over 300 channels of continuous energy performance and thermal comfort data collection in the houses (100 for each house). The data will also be used to evaluate the impact of energy -efficient upgrades ton the envelope, mechanical

  16. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.

    SciTech Connect

    Daniel, Mitch; Gebhards, John

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

  17. Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].

    SciTech Connect

    Asotin County Conservation District

    2008-12-10

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

  18. When did movement begin on the Furnace Creek fault zone

    SciTech Connect

    Reheis, M. )

    1993-04-01

    About 50 km of post-Jurassic right-lateral slip has occurred on the northern part of the Furnace Creek fault zone (FCFZ). The sedimentology, stratigraphy, and structure of Tertiary rocks suggest that movement on the fault began no earlier than 12--8 Ma and possibly as late as 5--4 Ma. Large remnants of erosion surfaces occur on both sides of the FCFZ in the southern White Mountains and Fish Lake Valley and are buried by rhyolite and basalt, mostly 12--10 Ma; the ash flows and welded tuffs were likely erupted from sources at least 40 km to the east. Thus, the area probably had gentle topography, suggesting a lengthy period of pre-late Miocene tectonic stability. On the west side of the FCFZ, Cambrian sedimentary rocks are buried by a fanglomerate with an [sup [minus

  19. White Oak Creek Watershed topographic map and related materials

    SciTech Connect

    Farrow, N.D.

    1981-04-01

    On March 22, 1978 a contract was let to Accu-Air Surveys, Inc., of Seymour, Indiana, to produce a topographic map of the White Oak Creek Watershed. Working from photography and ground control surveys, Accu-Air produced a map to ORNL's specifications. The map is in four sections (N.W., N.E., S.W., S.E.) at a scale of 1:2400. Contour intervals are 5 ft (1.5 m) with accented delineations every 25 ft (7.6 m). The scribe method was used for the finished map. Planimetric features, roads, major fence lines, drainage features, and tree lines are included. The ORNL grid is the primary coordinate system which is superimposed on the state plain coordinates.

  20. EERE Success Story-Kingston Creek Hydro Project Powers 100 Households |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Kingston Creek Hydro Project Powers 100 Households EERE Success Story-Kingston Creek Hydro Project Powers 100 Households August 21, 2013 - 12:00am Addthis Nevada-based contracting firm Nevada Controls, LLC used a low-interest loan from the Nevada State Office of Energy's Revolving Loan Fund to help construct a hydropower project in the small Nevada town of Kingston. The Kingston Creek Project-benefitting the Young Brothers Ranch-is a 175-kilowatt hydro generation plant

  1. EA-1988: NFSC (Northwest Fisheries Science Center) Earthen Drainage Channel, Burley Creek Hatchery, Port Orchard, Washington

    Energy.gov [DOE]

    The National Oceanic and Atmospheric Administration (NOAA), with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, prepared an EA that assesses the potential environmental impacts of a NOAA Northwest Fisheries Science Center proposal to construct an earthen drainage channel at its Burley Creek Hatchery in Kitsap County, Washington. The project would facilitate increased discharge of treated effluent from the hatchery facility into the adjacent Burley Creek. BPA’s proposal is to fund the project. The project website is http://efw.bpa.gov/environmental_services/Document_Library/Burley_Creek/.

  2. Effects of Village Power Quality on Fuel Consumption and Operating Expenses

    SciTech Connect

    Richard Wies; Ron Johnson

    2008-12-31

    Alaska's rural village electric utilities are isolated from the Alaska railbelt electrical grid intertie and from each other. Different strategies have been developed for providing power to meet demand in each of these rural communities. Many of these communities rely on diesel electric generators (DEGs) for power. Some villages have also installed renewable power sources and automated generation systems for controlling the DEGs and other sources of power. For example, Lime Village has installed a diesel battery photovoltaic hybrid system, Kotzebue and Wales have wind-diesel hybrid systems, and McGrath has installed a highly automated system for controlling diesel generators. Poor power quality and diesel engine efficiency in village power systems increases the cost of meeting the load. Power quality problems may consist of poor power factor (PF) or waveform disturbances, while diesel engine efficiency depends primarily on loading, the fuel type, the engine temperature, and the use of waste heat for nearby buildings. These costs take the form of increased fuel use, increased generator maintenance, and decreased reliability. With the cost of bulk fuel in some villages approaching $1.32/liter ($5.00/gallon) a modest 5% decrease in fuel use can result in substantial savings with short payback periods depending on the village's load profile and the cost of corrective measures. This project over its five year history has investigated approaches to improving power quality and implementing fuel savings measures through the use of performance assessment software tools developed in MATLAB{reg_sign} Simulink{reg_sign} and the implementation of remote monitoring, automated generation control, and the addition of renewable energy sources in select villages. The results have shown how many of these communities would benefit from the use of automated generation control by implementing a simple economic dispatch scheme and the integration of renewable energy sources such as wind

  3. EA-1978: Sand Creek Winds, McCone County, Montana | Department...

    Energy.gov [DOE] (indexed site)

    analyze the potential environmental impacts of the proposed Sand Creek Winds Project, a 75-MW wind farm between the towns of Circle and Wolf Point in McCone County, Montana. The...

  4. OAK GROVE C OAL D EGAS CEDAR COVE COAL D EGAS BLU E CREEK COAL...

    Gasoline and Diesel Fuel Update

    LITT LE SAND Y CREEK COAL D EGAS FAYETTE SW FAYETTE N WAT TS CR EEKALD YELLOW CR EEKALD RPDOKTIBBEHACNT Y-1 BALLS BRAN CH BU TT AH ATCH IE RIVER NETT LET ON ABERD EEN E ...

  5. Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.

    SciTech Connect

    Runyon, John

    2002-08-01

    The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

  6. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas

  7. DOE Tour of Zero: Hyland Village by Thrive Home Builders | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Hyland Village by Thrive Home Builders DOE Tour of Zero: Hyland Village by Thrive Home Builders 1 of 16 Thrive Home Builders constructed this 3,322-square-foot home in Denver, Colorado, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. 2 of 16 Energy- and water-saving measures incorporated in this home are estimated to save $1,644 per year and $85,569 over a 30-year mortgage. 3 of 16 The drought-tolerant plants were chosen for landscaping and have

  8. DOE Tour of Zero: Hyland Village by Thrive Home Builders | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Hyland Village by Thrive Home Builders DOE Tour of Zero: Hyland Village by Thrive Home Builders Addthis 1 of 16 Thrive Home Builders constructed this 3,322-square-foot home in Denver, Colorado, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. 2 of 16 Energy- and water-saving measures incorporated in this home are estimated to save $1,644 per year and $85,569 over a 30-year mortgage. 3 of 16 The drought-tolerant plants were chosen for landscaping and have

  9. Blue Creek Winter Range : Wildlife Mitigation Project : Final Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

    1994-11-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

  10. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    SciTech Connect

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  11. White Oak Creek Embayment site characterization and contaminant screening analysis

    SciTech Connect

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed [sup 137]Cs concentrations [> 10[sup 6] Bq/kg dry wt (> 10[sup 4] pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of [sup 137]Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h[sup 1] 1 m above the soil surface.

  12. West Foster Creek Expansion Project 2007 HEP Report.

    SciTech Connect

    Ashley, Paul R.

    2008-02-01

    During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

  13. Sampling and analysis plan for treatment water and creek water for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    SciTech Connect

    1996-04-01

    This document provides the Environmental Restoration Program with information about the methodology, organizational structure, quality assurance and health and safety practices to be employed during the water sampling and analysis activities associated with the remediation of the Lower East Fork Poplar Creek Operable Unit during remediation of the National Oceanic and Atmospheric Administration and Bruner sites.

  14. Energy Ambassadors to Provide Front Line Support for Alaska Native Villages

    Energy.gov [DOE]

    In Alaska, many Native villages and regional corporations are pursuing energy efficiency and renewable energy projects as part of their long-term strategies for lowering energy costs and increasing energy security. The DOE Office of Indian Energy is rolling out a pilot Energy Ambassadors Program in Fiscal Year 2015 that will respond directly to that need in Alaska.

  15. Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security

    Energy.gov [DOE]

    During a site visit to the Native Village of Teller in April 2012, the Office of Indian Energy's Strategic Technical Assistance Response Team helped the community successfully transfer 10,000 gallons of fuel to a bulk fuel facility to secure the community's heating supply for the winter.

  16. Simulation of contaminated sediment transport in White Oak Creek basin

    SciTech Connect

    Bao, Y.; Clapp, R.B.; Brenkert, A.L.; Moore, T.D.; Fontaine, T.A.

    1995-12-31

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ({sup 137}Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of {sup 137}Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies.

  17. AmeriFlux US-ICt Imnavait Creek Watershed Tussock Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICt Imnavait Creek Watershed Tussock Tundra. Site Description - The Imnavait Creek Watershed Tussock Tundra (Biocomplexity Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Biocomplexity Station was deployed in 2004, and it has been in operation during the melt seasons ever since.

  18. AmeriFlux US-ICs Imnavait Creek Watershed Wet Sedge Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICs Imnavait Creek Watershed Wet Sedge Tundra. Site Description - The Imnavait Creek Watershed Wet Sedge Tundra (Fen Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Fen Station was deployed at the end of Summer 2007.

  19. AmeriFlux US-ICh Imnavait Creek Watershed Heath Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICh Imnavait Creek Watershed Heath Tundra. Site Description - The Imnavait Creek Watershed Heath Tundra (Ridge Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Ridge Station was deployed at the end of Summer 2007.

  20. Assessment of PM[sub 10] concentrations from domestic biomass fuel combustion in two rural Bolivian highland villages

    SciTech Connect

    Albalak, R.; Haber, M. . Rollins School of Public Health); Keeler, G.J.; Frisancho, A.R. )

    1999-08-01

    PM[sub 10] concentrations were measured in two contrasting rural Bolivian villages that cook with biomass fuels. In one of the villages, cooking was done exclusively indoors, and in the other, it was done primarily outdoors. Concentrations in all potential microenvironments of exposure (i.e., home, kitchen, and outdoors) were measured for a total of 621 samples. Geometric mean kitchen PM[sub 10] concentrations were 1830 and 280 [micro]g/m[sup 3] and geometric mean home concentrations were 280 and 440 [micro]g/m[sup 3] for the indoor and outdoor cooking villages, respectively. An analysis of pollutant concentrations using generalized estimating equation techniques showed significant effects of village location, and interaction of village and location on log-transformed PM[sub 10] concentrations. Pollutant concentrations and activity pattern data were used to estimate total exposure using the indirect method of exposure assessment. Daily exposure for women during the nonwork season was 15 120 and 6240 [micro]g h[sup [minus]1]m[sup [minus]3] for the indoor and outdoor cooking villages, respectively. Differences in exposure to pollution between the villages were not as great as might be expected based on kitchen concentration alone. This study underscores the importance of measuring pollutant concentrations in all microenvironments where people spend time and of shifting the focus of air pollution studies to include rural populations in developing countries.

  1. B I OENV I RONMENTAL FEATURES OF THE OGOTORUK CREEK AREA, CAPE THOMPSON, ALASKA

    Office of Legacy Management (LM)

    B I OENV I RONMENTAL FEATURES OF THE OGOTORUK CREEK AREA, CAPE THOMPSON, ALASKA A First Summary by The Committee on Environmental Studies for Project Chariot . . December 1960 r Division of Biology and Medicine, AEC Washington, D. C. IT U S WEGWS LIBIA3"b This page intentionally left blank NUCLEAR EXPLOSIONS -PEACE UL APPLICATIONS . . BIOLOGY AND MEDICINE BIOENVIRONMENTAL FEATURES OF THE OGOTORUK CREEK AREA . . CAPE THOMPSON, ALASKA A F i r s t Sumnary The C o d t t e e on E n v i r o n m e

  2. DOE Tour of Zero: Pebble Creek by DP Construction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pebble Creek by DP Construction DOE Tour of Zero: Pebble Creek by DP Construction 1 of 18 DP Construction built this 3,021-square-foot home in Prattville, Alabama, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 18 Even without photovoltaics, the energy-efficiency measures built into the house are expected to cut energy costs nearly in half compared to a home built to the 2009 International Energy Conservation Code. 3 of 18 Overhangs and

  3. DOE Tour of Zero: Pebble Creek by DP Construction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pebble Creek by DP Construction DOE Tour of Zero: Pebble Creek by DP Construction Addthis 1 of 18 DP Construction built this 3,021-square-foot home in Prattville, Alabama, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 18 Even without photovoltaics, the energy-efficiency measures built into the house are expected to cut energy costs nearly in half compared to a home built to the 2009 International Energy Conservation Code. 3 of 18

  4. Kids vs. Mercury: Food fight at the creek | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Kids vs. Mercury: Food ... Kids vs. Mercury: Food fight at the creek Posted: May 7, 2014 - 5:26pm | Y-12 Report | Volume 10, Issue 2 | 2014 For years Y-12 has dealt with environmental mercury contamination from historical manufacturing processes. The potential for mercury to seep into nearby streams and harm aquatic life is a continuing issue. To combat the issue, Y-12 recently opened its doors and a local creek to sharp, energetic sixth-grade innovators who have developed a proprietary

  5. Atmospheric mercury near Salmon Falls Creek Reservoir in southern Idaho

    SciTech Connect

    Michael L. Abbott; Jeffrey J. Einerson

    2008-03-01

    Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over 2-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran Hg analyzers. GEM, RGM, and particulate Hg (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize Hg air concentrations in the southern Idaho area for the first time, estimate Hg dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 0.9 ng m-3) and RGM (8.1 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 0.3 ng m-3, 3.2 2.9 pg m-3 for GEM, RGM, respectively). The summer-average HgP concentrations were generally below detection limit (0.6 1 pg m-3). Seasonally averaged deposition velocities calculated using a resistance model were 0.034 0.032, 0.043 0.040, 0.00084 0.0017 and 0.00036 0.0011 cm s-1 for GEM (spring, summer, fall and winter, respectively) and 0.50 0.39, 0.40 0.31, 0.51 0.43 and 0.76 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 3.3 g m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.212 ng m-3) and RGM (50150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicate predominant source directions to the SE (western Utah, northeastern Nevada) and SW (north-central Nevada) with fewer inputs from the NW (southeastern Oregon and southwestern Idaho).

  6. Atmospheric Mercury near Salmon Falls Creek Reservoir in Southern Idaho

    SciTech Connect

    Michael L. Abbott; Jeffrey J. Einerson

    2007-12-01

    Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over two-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran mercury analyzers. GEM, RGM, and particulate mercury (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize mercury air concentrations in the southern Idaho area for the first time, estimate mercury dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 0.9 ng m-3) and RGM (8.1 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 0.3 ng m-3, 3.2 2.9 pg m-3 for GEM, RGM respectively). The summer-average HgP concentrations were generally below detection limit (0.6 1 pg m-3). Seasonally-averaged deposition velocities calculated using a resistance model were 0.034 0.032, 0.043 0.040, 0.00084 0.0017 and 0.00036 0.0011 cm s-1 for GEM (spring, summer, fall, and winter, respectively) and 0.50 0.39, 0.40 0.31, 0.51 0.43 and 0.76 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 3.3 g m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2 12 ng m-3) and RGM (50 - 150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicated predominant source directions from the southeast (western Utah, northeastern Nevada) through the southwest (north-central Nevada) with fewer inputs from the northwest (southeastern Oregon and southwestern Idaho).

  7. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages: Preprint

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages Preprint Travis Simpkins, Dylan Cutler, Brian Hirsch, Dan Olis, and Kate Anderson National Renewable Energy Laboratory Presented at the 2015 IEEE Conference on Technologies for Sustainability - Engineering and the Environment (SusTech) Ogden, Utah July 30 - August 1, 2015 © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

  8. Feasibility for Wood Heat - Collaborative Integrated Wood Energy Program for Yukon Flats Villages

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Wood Heat * Non-Profit Consortium of Ten Tribal Governments within the Yukon Flats. * CATG Administers several Tribal Programs on behalf of the Tribes. * CATG also applies for and administers several other grants. - IHS, Regional Clinic (Fort Yukon), Health Aids in Each Village, drug and alcohol programs, and other health related programs. - Natural Resources, EPA/IGAP, ANA (Traditional Land use Planning and Mapping), GIS, USDA RC&D, Contracts/Compacts with the USF&W (first tribal

  9. Best Practices Case Study: Rural Development, Inc., Wisdom Way Solar Village, Greenfield, MA

    SciTech Connect

    2010-12-01

    Wisdom Way Solar Village is an appropriate moniker for the 20-unit community of energy-efficient duplexes in Greenfield, MA. The homes meet the requirements of the U.S. Department of Energys Builders Challenge, achieving HERS scores of 8 to 18 by packing energy efficiency features into the compact, heavily insulated homes and adding solar water heating and photovoltaics on top, to net home owners energy cost savings of at least $2,500 per year per home.

  10. Wisdom Way Solar Village: Design, Construction, and Analysis of a Low Energy Community

    SciTech Connect

    Aldrich, R.

    2012-08-01

    This report describes work conducted at the Wisdom Way Solar Village (WWSV), a community of 10 high performance duplexes (20 homes) in Greenfield, MA, constructed by Rural Development, Inc. (RDI). Building America's CARB team monitored temperatures and comfort in several homes during the winter of 2009-2010, and tracked utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes.

  11. Market definition study of photovoltaic power for remote villages in developing countries

    SciTech Connect

    Ragsdale, C.; Quashie, P.

    1980-10-01

    The objective of this market definition study is to assess the market potential for the use of photovoltaic power systems for remote villages in developing countries. The approach used was to conduct an in-depth literature search followed by in-country surveys of selected developing countries in Africa, the Middle East, Southeast Asia, and Latin America. The purpose of these surveys was to determine the current energy situation in these countries, the level of rural electrification activity, their knowledge and interest in solar and specifically photovoltaics, their financial resource capability, and the probability of development of a market for photovoltaics based on these and other factors. Findings are presented. The conclusion reached by the survey is that there is a significant market potential for photovoltaics in village power applications in developing countries. Extrapolation of the number of unelectrified villages results in an estimated potential of as much as 20,000 MWp, a potential similar in magnitude to previous UN and World Bank estimates. Recommendations for market stimulation are presented. (WHK)

  12. Conformance to Regulatory Guide 1. 97, Wolf Creek Station, Unit No. 1. Revision 1

    SciTech Connect

    Udy, A.C.

    1985-01-01

    This EG and G Idaho, Inc., report provides a review of the submittals for the Wolf Creek Station, Unit No. 1, and identifies areas of full conformance to Regulatory Guide 1.97, Revision 2. Any exceptions to these guidelines are evaluated and those areas where sufficient basis for acceptability is not provided are identified.

  13. EIS-0134: Charlie Creek-Belfield Transmission Line Project, North Dakota

    Energy.gov [DOE]

    The Western Area Power Administration developed this EIS to assess the environmental impact of constructing a high voltage transmission line between Charlie Creek and Belfield, North Dakota, and a new substation near Belfield to as a means of adding transmission capacity to the area.

  14. EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon

    Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

  15. Restore McComas Meadows; Meadow Creek Watershed, 2005-2006 Annual Report.

    SciTech Connect

    McRoberts, Heidi

    2006-07-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads to reduce sediment input. During this contract period work was completed on two culvert replacement projects; Doe Creek and a tributary to Meadow Creek. Additionally construction was also completed for the ditch restoration project within McComas Meadows. Monitoring for project effectiveness and trends in watershed conditions was also completed. Road decommissioning monitoring, as well as stream temperature, sediment, and discharge were completed.

  16. The seismic response of concrete arch bridges (with focus on the Bixby Creek bridge Carmel, California)

    SciTech Connect

    Hoehler, M; McCallen, D; Noble, C

    1999-06-01

    The analysis, and subsequent retrofit, of concrete arch bridges during recent years has relied heavily on the use of computational simulation. For seismic analysis in particular, computer simulation, typically utilizing linear approximations of structural behavior, has become standard practice. This report presents the results of a comprehensive study of the significance of model sophistication (i.e. linear vs. nonlinear) and pertinent modeling assumptions on the dynamic response of concrete arch bridges. The study uses the Bixby Creek Bridge, located in California, as a case study. In addition to presenting general recommendations for analysis of this class of structures, this report provides an independent evaluation of the proposed seismic retrofit for the Bixby Creek Bridge. Results from the study clearly illustrate a reduction of displacement drifts and redistribution of member forces brought on by the inclusion of material nonlinearity. The analyses demonstrate that accurate modeling of expansion joints, for the Bixby Creek Bridge in particular, is critical to achieve representative modal and transient behavior. The inclusion of near-field displacement pulses in ground motion records was shown to significantly increase demand on the relatively softer, longer period Bixby Creek Bridge arch. Stiffer, shorter period arches, however, are more likely susceptible to variable support motions arising from the canyon topography typical for this class of bridges.

  17. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    SciTech Connect

    Hinzman, R.L.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J.

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.

  18. Effects of outcropping groundwater from the F- and H-Area seepage basins on the distribution of fish in Four Mile Creek

    SciTech Connect

    Paller, M.H.; Storey, C.

    1990-10-01

    Four Mile Creek was electrofished during June 26--July 2, 1990 to assess the impacts of outcropping ground water form the F- and H-Area Seepage Basins on fish abundance and distribution. Number of fish species and total catch were comparable at sample stations upstream from and downstream from the outcropping zone in Four Mile Creek. Species number and composition downstream from the outcropping zone in Four Mile Creek were similar to species number and composition in unimpacted portions of Pen Branch, Steel Creek, and Meyers Branch. These findings indicate that seepage basin outcropping was not adversely affecting the Four Mile Creek fish community. 5 refs., 3 figs., 4 tabs.

  19. Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.

    SciTech Connect

    Bartels, Duane G.

    2003-04-01

    The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment

  20. Tectonics and sedimentology along the Monkey River and Big Creek, southern Belize, Central America: Modern analog of select Morrow sands

    SciTech Connect

    Gries, J.C.; Full, W.E. )

    1991-08-01

    Big Creek is presently a relatively short river draining the flat coastal plain at the southern edge of the North American plate, south-central Belize. The recent sediments in this river consists of very fine-grained silts and clays derived from the local coastal plain. Offshore from the mouth of the Big Creek are shallow sand bars, channels, and eroding islands consisting of well-sorted, coarse sand comprised dominantly of feldspathic minerals. The location and geometry of these sands suggest that Big Creek was the fluvial source for this material. The sedimentology implication is that the nearshore and offshore parts of Big Creek represent a relatively large drowned deltaic complex, a modern analog of some lower Morrow depositional systems. Coarse feldspathic material found in the Cockscomb basin in the Maya Mountains is transported by the Swasey branch of the Monkey River toward the Big Creek drainage to the coast. However, the Swasey branch is abruptly diverted southward to intersect the present-day Monkey River. Drainage analysis suggests that structural features subsidiary to the Chixoy-Polochic fault zone bounding the North American plate may have diverted flow southward, beheading Big Creek. Field observations have not found any major relief changes which would have drainage analysis support tectonic diversion of the head waters of Big Creek into present-day Monkey River. Similar processes are hypothesized to have occurred during Morrow deposition.

  1. Debris flows on Belding Creek, Salmonberry River basin, northern Oregon Coast Range

    SciTech Connect

    Burris, L.M. . Dept. of Geology)

    1993-04-01

    Belding Creek, a tributary of the Salmonberry River, has experienced repeated debris flow episodes. The Salmonberry River flows through Paleocene Tillamook Basalt and is located at longitude 45[degree]43 minutes in the Northern Oregon Coast Range. On January 9, 1990, a debris flow initiated on a first order tributary of Belding Creek during a heavy precipitation event. A month later another debris flow initiated on a different first order stream under similar conditions. Both debris flows traveled for a distance of approximately 2.1 km and poured into the main Belding Creek channel washing out Belding Road which crosses the stream. Numerical data was obtained from the youngest flow deposit. The debris flow material density is 2.5 g/cm[sup 3]. It traveled at an average velocity of 2.9 m/s with a shear strength of 2.5 [times] 10[sup 4] dn/cm[sup 2], a friction angle of 4[degree], and a cohesion value of 1.4 [times] 10[sup 4] dn/cm[sup 3]. Less than 3% of the fine sediments deposited are clay and silt. Deposits from previous, older debris flow events are in and adjacent to the Belding Creek stream channel. Similar processes are evident in other major tributaries of the Salmonberry River, although these other stream channels have not shown recent activity. Each stream in the area that has experienced past debris flows similar to Belding Creek has a landslide feature at the top and follows regional lineation patterns.

  2. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.

    SciTech Connect

    Gass, Carrie; Olson, Jim M.

    2004-11-01

    In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags) was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.

  3. New Whole-House Solutions Case Study: Rural Development Inc., Wisdom Way Solar Village, Greenfield, MA

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    With design assistance and energy analysis from the U.S. Department of Energy's CARB Building America research team, led by Steven Winter Associates, the nonprofit builder Rural Development, Inc., built Wisdom Way Solar Village, a community of 20 energy-efficient solar duplexes in western Massachusetts in 2010. The homes achieve HERS scores of 8 to 18 with a highly insulated enclosure, energy-saving equipment, and solar water heating to give home owners heating savings of nearly $2,200 per year.

  4. Tucson Solar Village: Project management. A project in sustainable community development

    SciTech Connect

    Not Available

    1991-11-01

    The Tucson Solar Village is a Design/Build Project In Sustainable Community Development which responds to a broad spectrum of energy, environmental, and economic challenges. This project is designed for 820 acres of undeveloped State Trust Land within the Tucson city limits; residential population will be five to six thousand persons with internal employment provided for 1200. This is a 15 year project (for complete buildout and sales) with an estimated cost of $500 million. Details of the project are addressed with emphasis on the process and comments on its transferability.

  5. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    SciTech Connect

    Hillson, Todd D.

    2009-06-12

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to

  6. AmeriFlux US-Bn2 Bonanza Creek, 1987 Burn site near Delta Junction

    DOE Data Explorer

    Randerson, James [University of California, Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn2 Bonanza Creek, 1987 Burn site near Delta Junction. Site Description - The Delta Junction 1987 Burn site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. The Granite Creek fire burned ~20,000 ha of black spruce (Picea mariana) during 1987. Approximately half of the dead boles remained upright in 2004, while the other half had fallen over or had become entangled with other boles.

  7. Hindered amine development and operating experience at Quirk Creek Gas Plant

    SciTech Connect

    Smart, P.; Devenny, I. [Imperial Oil Resources Ltd., Calgary, Alberta (Canada); Rendall, A. [Nalco/Exxon Energy Chemicals, Calgary, Alberta (Canada)

    1997-12-31

    The Imperial Oil Resources Limited Quirk Creek gas plant has a significant natural gas treating challenge. The natural gas feed contains H{sub 2}S, CO{sub 2}, carbonyl sulfide, mercaptans and elemental sulfur. The trace sulfur components are difficult to remove with conventional solvents. Over its 26 year history, three different solvents have been used. The latest solvent, a hybrid of a hindered amine and a physical solvent, has been operating for over two years, with better than expected performance. This high capacity solvent has lowered operating costs by over $500,000/yr by reducing solids formation. The development work, including pilot testing at Quirk Creek, and the operating history will be reviewed.

  8. Campbell Creek TVA 2010 First Year Performance Report July 1, 2009 August 31, 2010

    SciTech Connect

    Christian, Jeffrey E; Gehl, Anthony C; Boudreaux, Philip R; New, Joshua Ryan

    2010-10-01

    This research project was initiated by TVA in March 2008 and encompasses three houses that are of similar size, design and located within the same community - Campbell Creek, Farragut TN with simulated occupancy. This report covers the performance period from July 1, 2009 to August 31, 2010. It is the intent of TVA that this Valley Data will inform electric utilities future residential retrofit incentive program.

  9. Supplement Analysis for the Watershed Management Program EIS - Libby Creek (Lower Cleveland) Stabilization Project

    SciTech Connect

    N /A

    2004-07-29

    This project is follow-up to stream stabilization activities on Libby Creek that were initiated on the Upper Cleveland reach of Libby Creek 2 years ago. BPA now proposes to fund FWP to complete channel stabilization activities on the Lower Cleveland reach of Libby Creek, reduce sediment sources, convert overwidened portions of the stream into self-maintaining channel types, use natural stream stabilization techniques, and improve wildlife migratory corridors. This lower reach is about one river mile below the upper Cleveland Reach and the proposed activities are very similar to those conducted before. The current work would be constructed in two additional phases. The first phase of the Lower Cleveland project would be completed in the fall of 2004 (9/1/04--12/31/04), to include the upper 3,100 feet. The second phase will be constructed in the fall of 2005 (9/1/05--12/31/05), to include stabilizing the remaining 6,200 feet of stream. The Cleveland reaches are a spawning and rearing tributary for resident redband trout, and resident and fluvial bull trout migrating from the Kootenai River. The planned work at the two remaining phases calls for shaping cut banks; installing root wads and tree revetments; installing channel grade control structures; planting native vegetation; and installing cross vanes constructed from rock and trees to control channel gradient. In the past, this reach of Libby Creek has been degraded by past management practices, including road building, hydraulic and dredge mining, and riparian logging. This past activity has resulted in accelerated bank erosion along a number of meander bends, resulting in channel degradation and poor fish habitat. Currently the stream channel is over-widened and shallow having limited pool habitat. The current stream channel is over-widened and shallow, having limited pool habitat.

  10. Kootznoowoo Incorporated: 1+ MW Thayer Creek Hydro-electric Development Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation Kootznoowoo Incorporated 1+ MW Thayer Creek Hydro-electric Development Project Peter Naoroz General Manager Kootznoowoo, Inc. Final Design Grant No Construction Previous work done by HDR, Alaska Cost Reduction  Angoon Community Association  City of Angoon  Sealaska Corporation  Central Council of Tlingit and Haida Indian Tribes of Alaska  Inside Passage Electrical Cooperative  Our Neighboring Communities  Our First Nation Brothers and Sisters  DOE, USDA FS,

  11. Expander-gas processing plant converted to boost C3 recovery at Canada's Judy Creek

    SciTech Connect

    Khan, S.A.

    1985-06-03

    This article discusses Esso Resources Canada Ltd's conversion of its Judy Creek cryogenic expander gas plant in Alberta to a process which can boost recovery of propane and heavier hydrocarbons. After conversion, propane recovery at the plant increased from 72% to 95%. At constant plant feed rates, 100% propane recovery has been recorded. The total investment for the conversion, less than $750,000, was paid out in under 6 months.

  12. Water quality in the shingle creek basin, Florida, before and after wastewater diversion

    SciTech Connect

    O`Dell, K.M.

    1994-05-01

    Shingle Creek is a major inflow to Lake Tohopekaliga, Florida. Water quality and the trophic status of Lake Tohopekaliga are affected strongly by the water quality of Shingle Creek. This report documents 10 yr of water quality data in Shingle Creek at the lake outfall; for a pre- (October 1981-December 1986) and a post-wastewater discharge (January 1987-September 1991) removal period. Nutrient budgets for the subbasins were calculated from an intense research program (January 1983-December 1985) to document instream impacts attributable to wastewater, determine the role of the cypress swamp in the middle subbasin, and document relationships between water quality and land uses. Rapid urbanization converted forested uplands and agricultural lands to housing and commercial land use during the study. Stormwater runoff in Florida has been identified as a major pollution source. Treatment of stormwater pollution, through Best Management Practices (BMPs), has been regulated by the State of Florida in this area since 1982. By 1988, 84% of the urban landuse in the upper basin was subject to stormwater treatment prior to being discharged to the creek. Potential increases in urban derived nutrient inputs were offset by stormwater management, and alum treatment and diversion of municipal wastewater. Nitrogen loading and P loads and variance decreased significantly during the 10-yr period, despite rapid urbanization in the northern and central subbasins. Nutrient export from the subbasins was influenced by the dominant land use. The middle subbasin contains a swamp that contributed the greatest P and Cl{sup -} loads because of the increase in discharge to the swamp from sources other than the canal. The northern urban subbasin received the wastewater discharges and served as a net sink for N and P exported from the subbasin. 24 refs., 9 figs., 1 tab.

  13. Habitat Projects Completed within the Asotin Creek Watershed, 1998 Completion Report.

    SciTech Connect

    Johnson, Bradley J.

    1999-11-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed.

  14. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    SciTech Connect

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  15. A fisheries evaluation of the Wapato, Sunnyside, and Toppenish Creek canal fish screening facilities, spring 1988

    SciTech Connect

    Neitzel, D.A.; Abernethy, C.S.; Lusty, E.W.

    1990-03-01

    The Bonneville Power Administration, the United States Bureau of Reclamation, and the Washington State Department of Ecology are funding the construction and evaluation of fish passage and protection facilities at irrigation and hydroelectric diversions in the Yakima River Basin, Washington State. The programs provide offsite enhancement to compensate for fish and wildlife losses caused by hydroelectric development throughout the Columbia River Basin and address natural propagation of salmon to help mitigate the impact of irrigation in the Yakima River Basin. The Wapato, Sunnyside, and Toppenish Creek Screens are three of the facilities in the basin. This report evaluates the effectiveness of the screens in intercepting and returning juvenile salmonids unharmed to the river from which they were diverted. We evaluated the effectiveness of new screening facilities at the Toppenish Creek, Wapato, and Sunnyside canals in southcentral Washington State. Screen integrity tests indicated that fish released in front of the screens were prevented from entering the canal behind the screens. We conducted descaling tests at the Toppenish Creek Screens. We measured the time required for fish to move through the screen facilities. Methods used in 1988 were the same as those used at Sunnyside in 1985 and in subsequent years at Richland. Toppenish/Satus, and Wapato. 11 refs., 11 figs., 14 tabs.

  16. Stratigraphy and petroleum potential of Trout Creek and Twentymile sandstones (Upper Cretaceous), Sand Wash Basin, Colorado

    SciTech Connect

    Siepman, B.R.

    1985-05-01

    The Trout Creek and Twentymile Sandstones (Mesaverde Group) in Moffat and Routt Counties, Colorado, are thick, upward-coarsening sequences that were deposited along the western margin of the Western Interior basin during Campanian time. These units trend northeast-southwest and undergo a facies change to coal-bearing strata on the northwest. Surface data collected along the southeastern rim of the Sand Wash basin were combined with well-log data from approximately 100 drill holes that have penetrated the Trout Creek or Twentymile in the subsurface. The sandstones exhibit distinctive vertical profiles with regard to grain size, sedimentary structures, and biogenic structures. A depositional model that incorporates the key elements of the modern Nile River (northeast Africa) and Nayarit (west-central Mexico) coastal systems is proposed for the Trout Creek and Twentymile sandstones and associated strata. The model depicts a wave-dominated deltaic, strand-plain, and barrier-island system. Depositional cycles are asymmetrical in cross section as they are largely progradational and lack significant transgressive deposits. Source rock-reservoir rock relationships are ideal as marine shales underlie, and coal-bearing strata overlie sheetlike reservoir sandstones. Humic coal, the dominant source of Mesaverde gas, generates major quantities of methane upon reaching thermal maturity. Existing Mesaverde gas fields are largely structural traps, but stratigraphic and combination traps may prove to be equally important. The sparsely drilled deeper part of the basin warrants testing as large, overpressured-gas accumulations in tight-sandstone reservoirs are likely to be found.

  17. West Village Community: Quality Management Processes and Preliminary Heat Pump Water Heater Performance

    SciTech Connect

    Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

    2012-11-01

    West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. The project when complete will provide housing for students, faculty, and staff with a vision to minimize the community's impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

  18. West Village Community. Quality Management Processes and Preliminary Heat Pump Water Heater Performance

    SciTech Connect

    Dakin, B.; Backman, C.; Hoeschele, M.; German, A.

    2012-11-01

    West Village, a multi-use project underway at the University of California Davis, represents a ground-breaking sustainable community incorporating energy efficiency measures and on-site renewable generation to achieve community-level Zero Net Energy (ZNE) goals. When complete, the project will provide housing for students, faculty, and staff with a vision to minimize the community’s impact on energy use by reducing building energy use, providing on-site generation, and encouraging alternative forms of transportation. This focus of this research is on the 192 student apartments that were completed in 2011 under Phase I of the West Village multi-year project. The numerous aggressive energy efficiency measures implemented result in estimated source energy savings of 37% over the B10 Benchmark. There are two primary objectives of this research. The first is to evaluate performance and efficiency of the central heat pump water heaters as a strategy to provide efficient electric water heating for net-zero all-electric buildings and where natural gas is not available on site. In addition, effectiveness of the quality assurance and quality control processes implemented to ensure proper system commissioning and to meet program participation requirements is evaluated. Recommendations for improvements that could improve successful implementation for large-scale, high performance communities are identified.

  19. New Whole-House Solutions Case Study: EcoVillage: A Net Zero Energy Ready Community, Ithaca, New York

    SciTech Connect

    2015-04-01

    The Consortium for Advanced Residential Buildings is working with the EcoVillage co-housing community and builder AquaZephyr in Ithaca, New York, on their third neighborhood called the Third Residential EcoVillage Experience (TREE). This community-scale project consists of 40 housing units—15 apartments, and 25 single family residences that range in size from 1,250 ft2–1,664 ft2 and cost from $80,000 to $235,000. The community is pursing DOE Zero Energy Ready Home (ZERH), US Green Building Council Leadership in Energy and Environmental Design (LEED) Gold, and ENERGY STAR certifications for the entire project.

  20. CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.

    SciTech Connect

    Childs, Allen B.

    2000-08-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy, and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.

  1. Characterization of DOE reference oil shales: Mahogany Zone, Parachute Creek Member, Green River Formation Oil Shale, and Clegg Creek Member, New Albany Shale

    SciTech Connect

    Miknis, F. P.; Robertson, R. E.

    1987-09-01

    Measurements have been made on the chemical and physical properties of two oil shales designated as reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Exxon Colony mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. Kerogen concentrates were prepared from both shales. The measured properties of the reference shales are comparable to results obtained from previous studies on similar shales. The western reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. There was poor agreement between measured and calculated molecular weights for the total shale oil produced from each shale. However, measured and calculated molecular weights agreed reasonably well for true boiling point distillate fractions in the temperature range of 204 to 399/sup 0/C (400 to 750/sup 0/F). Similarly, measured and calculated viscosities of the total shale oils were in disagreement, whereas good agreement was obtained on distillate fractions for a boiling range up to 315/sup 0/C (600/sup 0/F). Thermal and dielectric properties were determined for the shales and shale oils. The dielectric properties of the reference shales and shale oils decreased with increasing frequency of the applied frequency. 42 refs., 34 figs., 24

  2. Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, 2001 Annual Report.

    SciTech Connect

    McLellan, Holly; Scholz, Allan

    2002-03-01

    Lake Roosevelt has been stocked with Lake Whatcom stock kokanee since 1989 with the primary objective of creating a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a stock of kokanee, native to the upper Columbia River, might perform better than the coastal Lake Whatcom strain. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Lake Whatcom and Meadow Creek kokanee were made from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated using three performance measures; (1) the number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to other tributaries and (3) the number of returns to the creel. Kokanee were collected during five passes through the reservoir via electrofishing, which included 87 tributary mouths during the fall of 2000 and 2001. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers when compared to the Whatcom stock in 2000 ({chi}{sup 2} = 736.6; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 156.2; d.f. = 1; P < 0.01). Reservoir wide recoveries of age two kokanee had similar results in 2000 ({chi}{sup 2} = 735.3; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 150.1; d.f. = 1; P < 0.01). Six Lake Whatcom and seven Meadow Creek three year olds were collected in 2001. The sample size of three year olds was too small for statistical analysis. No kokanee were collected during creel surveys in 2000, and two (age three kokanee) were collected in 2001. Neither of the hatchery kokanee collected were coded wire tagged, therefore stock could not be distinguished. After two years of monitoring, neither Meadow Creek or Lake Whatcom kokanee appear to be capable of providing a run of three-year-old spawners to sustain stocking efforts. The small number of

  3. Sediment and radionuclide transport in rivers. Summary report, field sampling program for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect

    Walters, W.H.; Ecker, R.M.; Onishi, Y.

    1982-11-01

    A three-phase field sampling program was conducted on the Buttermilk-Cattaraugus Creek system to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Phase 1 of the sampling program was conducted during November and December 1977; Phase 2 during September 1978; and Phase 3 during April 1979. Bed sediment, suspended sediment, and water samples were collected over a 45-mile reach of the creek system. Bed sediment samples were also collected at the mouth of Cattaraugus Creek in Lake Erie. A fourth sampling trip was conducted during May 1980 to obtain supplementary channel geometry data and flood plain sediment samples. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239,240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, CS-134, Co-60, Pu-238, Pu-239,240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks.

  4. Renewable Energy for Water Pumping Applications In Rural Villages; Period of Performance: April 1, 2001--September 1, 2001

    SciTech Connect

    Argaw, N.; Foster, R.; Ellis, A.

    2003-07-01

    This report introduces conventional and renewable energy sources for water pumping applications in rural villages by reviewing the technologies and illustrating typical applications. As energy sources for water pumping, the report discusses diesel/gasoline/kerosene engines, grid power supplies, traditional windmills, electrical wind turbines, and PV.

  5. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides (/sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, and /sup 3/H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay.

  6. EA-1895: Lolo Creek Permanent Weir Construction near town of Weippe, Clearwater County, Idaho

    Energy.gov [DOE]

    DOE’s Bonneville Power Administration was preparing this EA to evaluate the potential environmental impacts of replacing an existing seasonal fish weir with a permanent weir, which would have been used to monitor federally-listed Snake River steelhead and collect spring Chinook salmon adults to support ongoing supplementation programs in the watershed. The Bureau of Land Management, a cooperating agency, preliminarily determined Lolo Creek to be suitable for Congressional designation into the Wild and Scenic River System. The EA included a Wild and Scenic River Section 7 analysis. This project was canceled.

  7. AmeriFlux US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction

    DOE Data Explorer

    Randerson, James [University of California, Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction. Site Description - The Delta Junction 1920 Control site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. In 2001, total aboveground biomass consisted almost entirely of black spruce (Picea mariana).

  8. Mineral resources of the Home Creek wilderness study area, Harney County, Oregon

    SciTech Connect

    Vander Meulen, D.B.; Griscom, A.; King, H.D.; Vercoutere, T.L.; Moyle, P.R.

    1988-01-01

    This book discusses the Home Creek Wilderness Study Area, on the western slope of Steens Mountain in the northern Basin and Range physiographic province of southeastern Oregon. The area is underlain by Miocene Steens Basalt. Isolated outcrops of the Devine Canyon ash-flow tuff unconformably overlie the Steens Basalt. Pleistocene shoreline deposits and Holocene dunes are exposed in the western part of the study area, moderate potential for sand and gravel resources in lake shoreline deposits, and low potential for geothermal energy throughout the study area.

  9. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    NONE

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08.

  10. Final review of the Campbell Creek demonstrations showcased by Tennessee Valley Authority

    SciTech Connect

    Gehl, Anthony C.; Munk, Jeffrey D.; Jackson, Roderick K.; Boudreaux, Philip R.; Miller, William A.; New, Joshua Ryan; Khowailed, Giannate

    2015-06-01

    The Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery and Utilization Office funded and managed a showcase demonstration located in the suburbs of west Knox county, Tennessee. Work started March 2008 with the goal of documenting best practices for retrofitting existing homes and for building new high-efficiency homes. The Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) provided technical support. An analytical base was developed for helping homeowners, homebuyers, builders, practitioners and the TVA make informed economic decisions for the materials and incentives necessary to build a new high-efficiency home or retrofit an existing home. New approaches to more efficiently control active energy subsystems and information for selecting or upgrading to Energy Star appliances, changing all lights to 100% CFL s and upgrading windows to low-E gas filled glazing yields a 40% energy savings with neutral cash flow for the homeowner. Passive designs were reviewed and recommendations made for envelope construction that is durable and energy efficient. The Campbell Creek project complements the DOE Building Technologies Program strategic goal. Results of the project created technologies and design approaches that will yield affordable energy efficient homes. The 2010 DOE retrofit goals are to find retrofit packages that attain 30% whole house energy savings as documented by pre and post Home Energy rating scores (HERS). Campbell Creek met these goals.

  11. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    SciTech Connect

    Rasmussen, Lynn

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

  12. Structural integrity analysis of the degraded drywell containment at the Oyster Creek Nuclear generating station.

    SciTech Connect

    Petti, Jason P.

    2007-01-01

    This study examines the effects of the degradation experienced in the steel drywell containment at the Oyster Creek Nuclear Generating Station. Specifically, the structural integrity of the containment shell is examined in terms of the stress limits using the ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NE, and examined in terms of buckling (stability) using the ASME B&PV Code Case N-284. Degradation of the steel containment shell (drywell) at Oyster Creek was first observed during an outage in the mid-1980s. Subsequent inspections discovered reductions in the shell thickness due to corrosion throughout the containment. Specifically, significant corrosion occurred in the sandbed region of the lower sphere. Since the presence of the wet sand provided an environment which supported corrosion, a series of analyses were conducted by GE Nuclear Energy in the early 1990s. These analyses examined the effects of the degradation on the structural integrity. The current study adopts many of the same assumptions and data used in the previous GE study. However, the additional computational recourses available today enable the construction of a larger and more sophisticated structural model.

  13. Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed, Technical Report 2003-2006.

    SciTech Connect

    Rasmussen, Lynn

    2007-02-01

    The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.

  14. Assessment of chronic toxicity from stormwater runoff in Lincoln Creek, Milwaukee, WI

    SciTech Connect

    Kleist, J.; Crunkilton, R.

    1995-12-31

    Stormwater runoff is believed to be responsible for a severely degraded biotic community in Lincoln Creek, a stream which drains portions of metropolitan Milwaukee. A previous study using Ceriodaphnia dubia and Pimephales promelas indicated little or no acute toxicity could be attributed to stormwater runoff. The purpose of this study was to assess the potential for chronic toxicity in the stream during periods of stormwater runoff. Reproduction and survival in Daphnia magna, and growth and survival in P. promelas were monitored to assess chronic effects. Seven consecutive 14 day tests were performed between June and September, 1994, in eighteen flow-through aquaria housed within a US Geological Survey gauging station located adjacent to Lincoln Creek. Mortality in D. magna consistently did not occur before day 4 of exposure, but averaged 64% at day 14. Reproduction in D. magna and growth in P. promelas in surviving individuals was not significantly reduced; all effects were manifested as mortality. Results of data analysis after 14 days of exposure contrast markedly with analysis made earlier in the same test. Statistical interpretation of the mortality data at typical endpoints of 48 hours for invertebrates and 96 hours for fish failed to identify adverse impacts of stormwater runoff the authors observed in longer exposures. Short-term toxicity tests appear insensitive to the detection of contaminant related effects. Long-term tests (greater than 7 days) were needed to identify adverse biological impacts that could in part explain the severely degraded biotic community of this urban stream.

  15. Mass and momentum balance in the Brush Creek drainage flow determined from single-profile data

    SciTech Connect

    Dobosy, R.J.; Rao, K.S.; Przybylowicz, J.W.; Eckman, R.M. )

    1989-06-01

    Fluxes and flux-divergences of mass and momentum in Brush Creek Valley, computed from measurements taken by Tethersondes and Doppler sodars in the 1984 ASCOT experiment, are presented. Estimates of mass influx from open sidewalls in Brush Creek, derived from concurrent tower measurements, are also given. Mass and momentum fluxes calculated from single-profile data were within a factor of 1.5 of those obtained by integrating Doppler lidar data. Flux-divergences for budget calculations should be derived from a Doppler lidar or equivalent remote sensor data, because single-profile measurements were found to have sampling errors which are too large for reliable flux divergence estimates. The mass influx from the sidewalls was insufficient to account for the mass flux-divergence in the main valley. This imbalance in the drainage flow mass budget is speculated to be due to the inflow from the small box-canyon tributaries, rather than from subisdence of air above the main valley. {copyright}1989 American Meteorological Society

  16. West Foster Creek 2007 Follow-up Habitat Evaluation Procedures (HEP) Report.

    SciTech Connect

    Ashley, Paul R.

    2008-02-01

    A follow-up habitat evaluation procedures (HEP) analysis was conducted on the West Foster Creek (Smith acquisition) wildlife mitigation site in May 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance and maintain the project site as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The West Foster Creek 2007 follow-up HEP survey generated 2,981.96 habitat units (HU) or 1.51 HUs per acre for a 34% increase (+751.34 HUs) above baseline HU credit (the 1999 baseline HEP survey generated 2,230.62 habitat units or 1.13 HUs per acre). The 2007 follow-up HEP analysis yielded 1,380.26 sharp-tailed grouse (Tympanuchus phasianellus) habitat units, 879.40 mule deer (Odocoileus hemionus) HUs, and 722.29 western meadowlark (Sturnella neglecta) habitat units. Mule deer and sharp-tailed grouse habitat units increased by 346.42 HUs and 470.62 HUs respectively over baseline (1999) survey results due largely to cessation of livestock grazing and subsequent passive restoration. In contrast, the western meadowlark generated slightly fewer habitat units in 2007 (-67.31) than in 1999, because of increased shrub cover, which lowers habitat suitability for that species.

  17. A Step Towards Conservation for Interior Alaska Tribes

    SciTech Connect

    Kimberly Carlo

    2012-07-07

    This project includes a consortium of tribes. The tribes include Hughes (representing the consortium) Birch Creek, Huslia, and Allakaket. The project proposed by Interior Regional Housing Authority (IRHA) on behalf of the villages of Hughes, Birch Creek, Huslia and Allakaket is to develop an energy conservation program relevant to each specific community, educate tribe members and provide the tools to implement the conservation plan. The program seeks to achieve both energy savings and provide optimum energy requirements to support each tribe's mission. The energy management program will be a comprehensive program that considers all avenues for achieving energy savings, from replacing obsolete equipment, to the design and construction of energy conservation measures, the implementation of energy saving operation and maintenance procedures, the utilization of a community-wide building energy management system, and a commitment to educating the tribes on how to decrease energy consumption. With the implementation of this program and the development of an Energy Management Plan, these communities can then work to reduce the high cost of living in rural Alaska.

  18. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages

    SciTech Connect

    Simpkins, Travis; Cutler, Dylan; Hirsch, Brian; Olis, Dan; Anderson, Kate

    2015-08-01

    There are thousands of isolated, diesel-powered microgrids that deliver energy to remote communities around the world at very high energy costs. The Remote Communities Renewable Energy program aims to help these communities reduce their fuel consumption and lower their energy costs through the use of high penetration renewable energy. As part of this program, the REopt modeling platform for energy system integration and optimization was used to analyze cost-optimal pathways toward achieving a combined 75% reduction in diesel fuel and fuel oil consumption in a select Alaskan village. In addition to the existing diesel generator and fuel oil heating technologies, the model was able to select from among wind, battery storage, and dispatchable electric heaters to meet the electrical and thermal loads. The model results indicate that while 75% fuel reduction appears to be technically feasible it may not be economically viable at this time. When the fuel reduction target was relaxed, the results indicate that by installing high-penetration renewable energy, the community could lower their energy costs by 21% while still reducing their fuel consumption by 54%.

  19. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages: Preprint

    SciTech Connect

    Simpkins, Travis; Cutler, Dylan; Hirsch, Brian; Olis, Dan; Anderson, Kate

    2015-10-28

    There are thousands of isolated, diesel-powered microgrids that deliver energy to remote communities around the world at very high energy costs. The Remote Communities Renewable Energy program aims to help these communities reduce their fuel consumption and lower their energy costs through the use of high penetration renewable energy. As part of this program, the REopt modeling platform for energy system integration and optimization was used to analyze cost-optimal pathways toward achieving a combined 75% reduction in diesel fuel and fuel oil consumption in a select Alaskan village. In addition to the existing diesel generator and fuel oil heating technologies, the model was able to select from among wind, battery storage, and dispatchable electric heaters to meet the electrical and thermal loads. The model results indicate that while 75% fuel reduction appears to be technically feasible it may not be economically viable at this time. When the fuel reduction target was relaxed, the results indicate that by installing high-penetration renewable energy, the community could lower their energy costs by 21% while still reducing their fuel consumption by 54%.

  20. Analysis of soil and water at the Four Mile Creek seepline near the F- and H-Areas of SRS

    SciTech Connect

    Haselow, J.S.

    2000-05-24

    Several soil and water samples were collected along the Four Mile Creek (FMC) seepline at the F and H Areas of the Savannah River Site. The samples were analyzed for concentrations of metals, radionuclides, and inorganic constituents. The results of the analyses are summarized for the soil and water samples.

  1. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Johnson, R.O.

    1996-05-01

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  2. Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, Annual Report 2002.

    SciTech Connect

    McLellan, Holly

    2003-03-01

    Lake Whatcom, Washington kokanee have been stocked in Lake Roosevelt since 1987 with the primary objective of creating a self-sustaining fishery. Success has been limited by low recruitment to the fishery, low adult returns to hatcheries, and a skewed sex ratio. It was hypothesized that a stock native to the upper Columbia River might perform better than the coastal Lake Whatcom stock. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Post smolts from each stock were released from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance was evaluated using three measures; (1) number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to 86 tributaries sampled and, (3) the number of returns to the creel. In two repeated experiments, neither Meadow Creek or Lake Whatcom kokanee appeared to be capable of providing a run of three-year old spawners to sustain stocking efforts. Less than 10 three-years olds from either stock were collected during the study period. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek and to other tributaries in significantly higher numbers when compared to the Lake Whatcom stock in both 2000 and 2001. However, preliminary data from the Spokane Tribe of Indians indicated that a large number of both stocks were precocial before they were stocked. The small number of hatchery three-year olds collected indicated that the current hatchery rearing and stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year olds. No kokanee from the study were collected during standard lake wide creel surveys. Supplemental creel data, including fishing derbies, test fisheries, and angler diaries, indicated anglers harvested two-year-old hatchery kokanee a month after release. The majority of the two-year old kokanee harvested

  3. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program; 2002 Annual Report.

    SciTech Connect

    Combs, Mitch

    2003-01-01

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribe form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery and serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native/indigenous stocks where available for propagation into Upper Columbia River Basin Waters. The Lake Roosevelt Fisheries Evaluation Program (LRFEP) is responsible for monitoring and evaluation on the Lake Roosevelt Projects. From 1988 to 1998, the principal sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year

  4. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2003 Annual Report.

    SciTech Connect

    Lovrak, Jon; Combs, Mitch

    2004-01-01

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operation and evaluation. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribes form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery. The LRHCT also serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. Since 1994 the kokanee fingerling program has changed to yearling releases. By utilizing both the hatcheries and additional net pens, up to 1,000,000 kokanee yearlings can be reared and released. The construction and operation of twenty net pens in 2001 enabled the increased production. Another significant change has been to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native tributary stocks where available for propagation into Upper Columbia River Basin waters. The Lake Roosevelt Fisheries Evaluation Program (LRFEP) is responsible for monitoring and evaluation on the Lake Roosevelt Projects. From 1988 to 1998, the principal sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee

  5. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2001 Annual Report.

    SciTech Connect

    Combs, Mitch

    2002-01-01

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribe form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery and serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native/indigenous stocks where available for propagation into Upper Columbia River Basin Waters. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the

  6. Building America Whole-House Solutions for New Homes: EcoVillage: A Net Zero Energy Ready Community, Ithaca, New York

    Office of Energy Efficiency and Renewable Energy (EERE)

    Consortium for Advanced Residential Buildings is working with the EcoVillage co-housing community in Ithaca, New York, on their third neighborhood called the Third Residential EcoVillage Experience (TREE). This community-scale project consists of 40 housing units-15 apartments and 25 single family residences. The community is pursing DOE Zero Energy Ready Home (ZERH), US Green Building Council Leadership in Energy and Environmental Design (LEED) Gold, and ENERGY STAR certifications for the entire project.

  7. Two-dimensional water quality modeling of Town Creek embayment on Guntersville Reservoir

    SciTech Connect

    Bender, M.D.; Shiao, Ming C.; Hauser, G.E. . Engineering Lab.); Butkus, S.R. . Water Quality Dept.)

    1990-09-01

    TVA investigated water quality of Town Creek embayment using a branched two-dimensional model of Guntersville Reservoir. Simulation results were compared in terms of algal biomass, nutrient concentrations, and volume of embayment with depleted dissolved oxygen. Stratification and flushing play a significant role in the embayment water quality. Storms introduce large loadings of organics, nutrients, and suspended solids. Dissolved oxygen depletion is most severe after storms followed by low flow that fails to flush the embayment. Embayment water quality responses to potential animal waste and erosion controls were explored. Modeling indicated animal waste controls were much more cost-effective than erosion controls. Erosion controls will decrease embayment suspended solids and thereby increase algal biomass due to greater light penetration. 29 refs., 16 figs., 4 tabs.

  8. Supplying LNG markets using nitrogen rejection units at Exxon Shute Creek Facility

    SciTech Connect

    Hanus, P.M.; Kimble, E.L.

    1995-11-01

    Interest is growing in the United States for using Liquid Natural Gas (LNG) as an alternative transportation fuel for diesel and as a source of heating fuel. For gas producers, LNG offers a premium price opportunity versus conventional natural gas sales. To supply this developing market, two existing Nitrogen Rejection Units (NRU) at the Exxon Shute Creek Facility in Wyoming were modified allowing LNG extraction and truck loading for transport to customers. The modifications involved adding heat exchanger capacity to the NRUs to compensate for the refrigeration loss when LNG is removed. Besides allowing for LNG extraction, the modifications also debottlenecked the NRUs resulting in higher methane recovery and lower compression costs. With the modifications, the NRUs are capable of producing for sale 60,000 gpd (5 MMscfd gas equivalent) of high purity LNG. Total investment has been $5 million with initial sales of LNG occurring in September 1994.

  9. AmeriFlux US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction

    DOE Data Explorer

    Randerson, James [University of California, Irvine

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bn3 Bonanza Creek, 1999 Burn site near Delta Junction. Site Description - The Delta Junction 1999 Burn site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. The Donnelly Flats fire burned ~7,600 ha of black spruce (Picea mariana) during June 1999. The boles of the black spruce remained standing 3 years after the fire. 70% of the surface was not covered by vascular plants.

  10. Application of a damage model for rock fragmentation to the Straight Creek Mine blast experiments

    SciTech Connect

    Thorne, B.J.

    1991-09-01

    Early attempts at estimation of stress wave damage due to blasting by use of finite element calculations met with limited success due to numerical instabilities that prevented calculations from being carried past the fragmentation limit. More recently, the improved damage model PRONTO has allowed finite element calculations which remain stable and yield good agreement between calculated fragmented regions and excavated crater profiles for blasting experiments in granite. Application of this damage model to blast experiments at the Straight Creek Mine in Bell County, Kentucky were complicated by anisotropic conditions and uncertainties in material properties. It appears that significant modifications to the damage model and extensive material testing may be necessary in order to estimate damage in these anisotropic materials. 18 refs., 18 figs.

  11. Examination of eastern oil shale disposal problems - the Hope Creek field study

    SciTech Connect

    Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

    1985-02-01

    A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

  12. Bear Creek Valley characterization area mixed wastes passive in situ treatment technology demonstration project - status report

    SciTech Connect

    Watson, D.; Leavitt, M.; Moss, D.

    1997-03-01

    Historical waste disposal activities within the Bear Creek Valley (BCV) Characterization Area (CA), at the U.S. Department of Energy (DOE) Oak Ridge Y-12 plant, have contaminated groundwater and surface water above human health risk levels and impacted the ecology of Bear Creek. Contaminates include nitrate, radioisotopes, metals, volatile organic chemicals (VOCS), and common ions. This paper provides a status report on a technology demonstration project that is investigating the feasibility of using passive in situ treatment systems to remove these contaminants. Although this technology may be applicable to many locations at the Oak Ridge Y-12 Plant, the project focuses on collecting the information needed to take CERCLA removal actions in 1998 at the S-3 Disposal Ponds site. Phase 1 has been completed and included site characterization, laboratory screening of treatment media (sorbents; and iron), and limited field testing of biological treatment systems. Batch tests using different Y-12 Plant waters were conducted to evaluate the removal efficiencies of most of the media. Phase 1 results suggest that the most promising treatment media are Dowex 21 k resin, peat moss, zero-valent iron, and iron oxides. Phase 2 will include in-field column testing of these media to assess loading rates, and concerns with clogging, by-products, and long-term treatment efficiency and media stability. Continued testing of wetlands and algal mats (MATs) will be conducted to determine if they can be used for in-stream polishing of surface water. Hydraulic testing of a shallow trench and horizontal well will also be completed during Phase 2. 4 refs., 3 tabs.

  13. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    SciTech Connect

    1996-11-01

    This document contains Appendixes A ``Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed`` and B ``Human Health Risk Assessment for White Oak Creek / Melton Valley Area`` for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites.

  14. RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes

    SciTech Connect

    Robb Aldrich, Steven Winter Associates

    2011-07-01

    In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

  15. Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.

    SciTech Connect

    Rabe, Craig D.; Nelson, Douglas D.

    2008-11-17

    The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there

  16. Campbell Creek Research Homes: FY2013 Annual Performance Report OCT.1, 2012 SEP. 30, 2013

    SciTech Connect

    Jackson, Roderick K; Boudreaux, Philip R; Munk, Jeffrey D; Gehl, Anthony C; Lyne, Christopher T; Odukomaiya, Wale O

    2014-05-01

    1.INTRODUCTION AND PROJECT OVERVIEW The Campbell Creek project is funded and managed by the Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery and Utilization Office. Technical support is provided under contract by the Oak Ridge National Laboratory (ORNL) and the Electric Power Research Institute (EPRI). The project was designed to determine the relative energy efficiency of typical new home construction, of retrofitting of existing homes, and of high-performance new homes built from the ground up for energy efficiency. This project was designed to compare three houses that represent current construction practices: a base case (Builder House CC1); a modified house that could represent a major energy-efficient retrofit (Retrofit House CC2); and a house constructed from the ground up to be a high-performance home (High Performance House CC3). To enable a valid comparison, it was necessary to simulate occupancy in all three houses and extensively monitor the structural components and the energy usage by component. In October 2013, the base case was also modified by replacing the builder-grade heating, ventilation, and air-conditioning (HVAC) system with a high-efficiency variable-speed unit. All three houses are two-story, slab-on-grade, framed construction. CC1 and CC2 are approximately 2,400 ft2. CC3 has a pantry option, used primarily as a mechanical equipment room, that adds approximately 100 ft2. All three houses are all-electric (with the exception of a gas log fireplace that is not used during the testing) and use air-source heat pumps for heating and cooling. The three homes are located in Knoxville in the Campbell Creek Subdivision. CC1 and CC2 are next door to each other with a south-facing orientation; CC3 has a north-facing orientation and is located across the street and a couple of houses down. The energy data collected will be used to determine the benefits of retrofit packages and high-performance new home

  17. Sediment and radionuclide transport in rivers. Phase 2. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect

    Walters, W.H.; Ecker, R.M.; Onishi, Y.

    1982-04-01

    As part of a study on sediment and radionuclide transport in rivers, Pacific Northwest Laboratory (PNL) is investigating the effect of sediment on the transport of radionuclides in Cattaraugus and Buttermilk Creeks, New York. A source of radioactivity in these creeks is the Western New York Nuclear Service Center which consists of a low-level waste disposal site and a nuclear fuel reprocessing plant. Other sources of radioactivity include fallout from worldwide weapons testing and natural background radioactivity. The major objective of the PNL Field Sampling Program is to provide data on sediment and radionuclide characteristics in Cattaraugus and Buttermilk Creeks to verify the use of the Sediment and Radionuclide Transport model, SERATRA, for nontidal rivers. This report covers the results of field data collection conducted during September 1978. Radiological analysis of sand, silt, and clay size fractions of suspended and bed sediment, and water were performed. Results of these analyses indicate that the principal radionuclides occurring in these two water courses, with levels significantly higher than background levels, during the Phase 2 sampling program were Cesium-137 and Strontium-90. These radionuclides had significantly higher activity levels above background in the bed sediment, suspended sediment, and water samples. Other radionuclides that are possibly being released into the surface water environment by the Nuclear Fuel Services facilities are Plutonium-238, 239, and 240, Americium-241, Curium-244, and Tritium. More radionuclides were consistently found in the bed sediment as compared to suspended sediment. The fewest radionuclides were found in the water of Buttermilk and Cattaraugus Creeks. The higher levels were found in the bed sediments for the gamma-emitters and in the suspended sediment for the alpha and beta-emitters (not including Tritium).

  18. Phase 2 confirmatory sampling data report, Lower East Fork Poplar Creek, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1998-01-01

    A Remedial Investigation of East Fork Poplar Creek (EFPC) concluded that mercury is the principal contaminant of concern in the EFPC floodplain. The highest concentrations of mercury were found to be in a visually distinct black layer of soil that typically lies 15 to 30 cm (6 to 12 in.) below the surface. Mercury contamination was found to be situated in distinct areas along the floodplain, and generally at depths > 20 cm (8 in.) below the surface. In accordance with Comprehensive, Environmental Response, Compensation, and Liability Act (CERCLA), a feasibility study was prepared to assess alternatives for remediation, and a proposed plan was issued to the public in which a preferred alternative was identified. In response to public input, the plan was modified and US Department of Energy (DOE) issued a Record of Decision in 1995 committing to excavating all soil in the EFPC floodplain exceeding a concentration of 400 parts per million (ppm) of mercury. The Lower East Fork Poplar Creek (LEFPC) remedial action (RA) focuses on the stretch of EFPC flowing from Lake Reality at the Y-12 Plant, through the city of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation (ORR) and its associated floodplain. Specific areas were identified that required remediation at the National Oceanographic and Atmospheric Administration (NOAA) Site along Illinois Avenue and at the Bruner Site along the Oak Ridge Turnpike. The RA was conducted in two separate phases. Phase 2, conducted from February to October 1997, completed the remediation efforts at the NOAA facility and fully remediated the Bruner Site. During both phases, data were collected to show that the remedial efforts performed at the NOAA and Bruner sites were successful in implementing the Record of Decision and had no adverse impact on the creek water quality or the city of Oak Ridge publicly owned treatment works.

  19. Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    SciTech Connect

    1996-12-01

    This document describes the organization, strategy, and procedures to be used to confirm that mercury concentrations in soils in the remediated areas are statistically less than, or equal to, the cleanup standard of 400 ppm. It focuses on confirming the cleanup of the stretch of the Lower East Fork Popular Creed flowing from Lake Reality at the Y-12 Plant, through the City of Oak Ridge, to Poplar Creek on the Oak Ridge Reservation and its associated flood plain.

  20. Sediment and radionuclide transport in rivers. Phase 3. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect

    Ecker, R.M.; Walters, W.H.; Onishi, Y.

    1982-08-01

    A field sampling program was conducted on Cattaraugus and Buttermilk Creeks, New York during April 1979 to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Bed sediment, suspended sediment and water samples were collected during unsteady flow conditions over a 45 mile reach of stream channel. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239, 240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, Cs-134, Co-60, Pu-238, Pu-239, 240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks. This field sampling effort was the last of a three phase program to collect hydrologic and radiologic data at different flow conditions.

  1. Interpretation of recent seismic data from a frontier hydrocarbon province: western Rough Creek graben, southern Illinois and western Kentucky

    SciTech Connect

    Bertagne, A.J.; Pisasale, E.T.; Leising, T.C.

    1986-05-01

    The northern basement fault of the Rough Creek graben is seismically discernible and has surface expression in the Rough Creek fault zone. The southern basement fault is not clearly defined seismically, but can be inferred from shallow faulting and gravity data. This fault is roughly coincident with the Pennyrile fault zone. Extensional faults that formed the rift boundaries were the sites of late-stage compressional and extensional tectonics. Flower structures observed along the graben boundaries probably indicate post-Pennsylvanian wrench faulting. The basement within the graben plunges north-northwest, with the lowest point occurring south of the Rough Creek fault zone. Pre-Knox sediments thicken to approximately 12,000 in this area. The Knox Megagroup thickens toward the Mississippi Embayment, ranging from 4800 ft (southeastern graben area) to more than 7000 ft (west end of graben). Upper Ordovician to Devonian units also display westward thickening. The top of the Meramecian, New Albany, Maquoketa, and the base of the Knox generate continuous, high-amplitude seismic reflections due to large impedance contrasts between clastic and carbonate units. Shallow oil and gas production (Mississippian and Pennsylvanian) is present in this area. However, deep horizons (Knox, Lower Cambrian) remain relatively untested. Potential hydrocarbon traps in the pre-Knox sequence observed on seismic include fault blocks and updip pinch-outs.

  2. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  3. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  4. Lake Roosevelt Fisheries Evaluation Program : Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt Annual Report 2000-2001.

    SciTech Connect

    McLellan, Holly J.; Scholz, Allan T.

    2001-07-01

    Lake Roosevelt has been stocked with Whatcom stock kokanee since 1989 to mitigate for anadromous salmon losses caused by the construction of Grand Coulee Dam. The primary objective of the hatchery plantings was to create a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a native stock of kokanee might perform better than the coastal Whatcom strain. Therefore, kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Whatcom stock and Meadow Creek kokanee were made from Sherman Creek in late June 2000. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated through three performance measures (1) returns to Sherman Creek, the primary egg collection facility, (2) returns to other tributaries, indicating availability for angler harvest, and (3) returns to the creel. A secondary objective was to evaluate the numbers collected at downstream fish passage facilities. Age 2 kokanee were collected during five passes through the reservoir, which included 89 tributaries between August 17th and November 7th, 2000. Sherman Creek was sampled once a week because it was the primary egg collection location. A total of 2,789 age 2 kokanee were collected, in which 2,658 (95%) were collected at Sherman Creek. Chi-square analysis indicated the Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers compared to the Whatcom stock ({chi}{sup 2} = 734.4; P < 0.01). Reservoir wide recoveries indicated similar results ({chi}{sup 2} = 733.1; P < 0.01). No age 2 kokanee were collected during creel surveys. Age 3 kokanee are expected to recruit to the creel in 2001. No age 2 kokanee were collected at the fish passage facilities due to a 170 mm size restriction at the fish passage centers. Age 3 kokanee are expected to be collected at the fish passage centers during 2001. Stock performance cannot be properly evaluated until 2001, when

  5. Residual-oil-saturation-technology test, Bell Creek Field, Montana. Final report

    SciTech Connect

    Not Available

    1981-06-01

    A field test was conducted of the technology available to measure residual oil saturation following waterflood secondary oil recovery processes. The test was conducted in a new well drilled solely for that purpose, located immediately northwest of the Bell Creek Micellar Polymer Pilot. The area where the test was conducted was originally drilled during 1968, produced by primary until late 1970, and was under line drive waterflood secondary recovery until early 1976, when the area was shut in at waterflood depletion. This report presents the results of tests conducted to determine waterflood residual oil saturation in the Muddy Sandstone reservoir. The engineering techniques used to determine the magnitude and distribution of the remaining oil saturation included both pressure and sidewall cores, conventional well logs (Dual Laterolog - Micro Spherically Focused Log, Dual Induction Log - Spherically Focused Log, Borehole Compensated Sonic Log, Formation Compensated Density-Compensated Neutron Log), Carbon-Oxygen Logs, Dielectric Logs, Nuclear Magnetism Log, Thermal Decay Time Logs, and a Partitioning Tracer Test.

  6. Post construction report for Lower East Fork Poplar Creek Project, Phase 1, Oak Ridge, Tennessee

    SciTech Connect

    1996-11-01

    This Phase 1 Remedial Action (RA) effort was conducted in accordance with the Record of Decision (ROD) for Lower East Fork Poplar Creek (LEFPC) as a Comprehensive Environmental Response, Compensation, and Liability Act action. The LEFPC, Phase 1 RA removed approximately 5,560 yd{sup 3} of mercury-contaminated soils, {ge} 400 ppm, from selected portions of the National Oceanographic and Atmospheric Administration (NOAA) site LEFPC floodplain from July 8, 1996--September 14, 1996. During excavation activities, pockets of elevated radiologically contaminated soils (greater than 35 pCi/g) were located by the continuous monitoring of the excavation areas and contaminated soils with radiological monitoring instruments. Through characterization sampling it has been determined that {approximately} 90 yd{sup 3} are less than 35 pCi/g uranium contaminated and will be transported to the Y-12 Landfill V for disposal and the remaining {approximately}40 yd{sup 3} do not meet the WAC for radiological constituents included in the Special Waste Permit for Landfill V. The radiologically contaminated soil will be placed in 21st Century containers for storage at the K-25 site.

  7. White Oak Creek Embayment site characterization and contaminant screening analysis. Environmental Restoration Program

    SciTech Connect

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed {sup 137}Cs concentrations [> 10{sup 6} Bq/kg dry wt (> 10{sup 4} pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of {sup 137}Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h{sup 1} 1 m above the soil surface.

  8. CX-009790: Categorical Exclusion Determination

    Energy.gov [DOE]

    National Oceanic and Atmospheric Administration (NOAA) Birch Creek Canyon Wind Study CX(s) Applied: B3.1 Date: 12/17/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  9. Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control

    SciTech Connect

    Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y.

    2006-07-01

    The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

  10. Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004

    SciTech Connect

    Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

    2004-09-14

    Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

  11. Baseline and Postremediation Monitoring Program Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee

    SciTech Connect

    1996-04-01

    This report was prepared in accordance with CERCLA requirements to present the plan for baseline and postremediation monitoring as part of the selected remedy. It provides the Environmental Restoration Program with information about the requirements to monitor for soil and terrestrial biota in the Lower East Fork Poplar Creek (LEFPC) floodplain; sediment, surface water, and aquatic biota in LEFPC; wetland restoration in the LEFPC floodplain; and human use of shallow groundwater wells in the LEFPC floodplain for drinking water. This document describes the monitoring program that will ensure that actions taken under Phases I and II of the LEFPC remedial action are protective of human health and the environment.

  12. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.; Stout, J.G.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  13. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project, Annual Report 2001.

    SciTech Connect

    Baxter, James S.; Baxter, Jeremy

    2002-03-01

    This report summarizes the second year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. An enumeration fence and traps were installed on the creek from September 6th to October 12th 2001 to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 273 bull trout were sampled through the enumeration fence. Length and weight were determined for all bull trout captured. In total, 39 fish of undetermined sex, 61 males and 173 females were processed through the fence. An additional 19 bull trout were observed on a snorkel survey prior to the fence being removed on October 12th. Coupled with the fence count, the total bull trout enumerated during this project was 292 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout (Oncorhynchus clarki lewisi), Rocky Mountain whitefish (Prosopium williamsoni), and kokanee (O. nerka). A total of 143 bull trout redds were enumerated on the ground in two different locations (river km 27.5-30.5, and km 24.0-25.5) on October 3rd. The majority of redds (n=132) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past five years. The additional 11 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Buhl Creek, and Skookumchuck Creek at three locations suggested that water temperatures were within the temperature range preferred by bull trout for spawning, egg incubation, and rearing.

  14. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed; Anadromous Fish Habitat Restoration in the Nichols Canyon Subwatershed, 2000 Annual Report.

    SciTech Connect

    Koziol, Deb

    2001-02-01

    Nez Perce Soil & Water Conservation District (NPSWCD) undertook the Nichols Canyon Subwatershed Steelhead Trout Habitat Improvement Project in the spring of 1999 with funding from a grant through the Bonneville Power Administration. The Project's purpose is to install and implement agricultural best management practices (MBPS) and riparian restorations with the goal of improving steelhead trout spawning and rearing habitat in the subwatershed. Improvements to fish habitat in the Big Canyon Creek tributaries enhances natural production of the species in Big Canyon Creek and ultimately the Clearwater River. This report is a summation of the progress made by the NPSWCD in the Project's second year.

  15. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2002 Summary Report.

    SciTech Connect

    Koziol, Deb

    2002-11-01

    quality program that addresses Total Maximum Daily Load (TMDL) concerns for the creek. The area was identified as a NPSWCD priority area through a locally led process that uses public input to prioritize resource concerns within the District. The Nichols Canyon Project also meets goals and objectives outlined in the NPSWCD's Five-Year Resource Conservation Plan.

  16. Porosity development in the Copper Ridge Dolomite and Maynardville Limestone, Bear Creek Valley and Chestnut Ridge, Tennessee

    SciTech Connect

    Goldstrand, P.M.; Menefee, L.S.; Dreier, R.B.

    1995-12-01

    Matrix porosity data from deep core obtained in Bear Creek Valley indicate that porosities in the Maynardville Limestone are lithology and depth dependent. Matrix porosities are greater in the Cooper Ridge Dolomite than in the Maynardville Limestone, yet there is no apparent correlation with depth. Two interrelated diagenetic processes are the major controlling factors on porosity development in the Copper Ridge Dolomite and Maynardville Limestone; dissolution of evaporate minerals and dedolomitization. Both of these diagenetic processes produce matrix porosities between 2.1 and 1.3% in the Copper Ridge Dolomite and upper part of the Maynardville Limestone (Zone 6) to depths of approximately 600 ft bgs. Mean matrix porosities in Zones 5 through 2 of the Maynardville Limestone range from 0.8 to 0.5%. A large number of cavities have been intersected during drilling activities in nearly all zones of the Maynardville Limestone in Bear Creek Valley. Therefore, any maynardville Limestone zone within approximately 200 ft of the ground surface is likely to contain cavities that allow significant and rapid flow of groundwater. Zone 6 could be an important stratigraphic unit in the Maynardville Limestone for groundwater flow and contaminant transport because of the abundance of vuggy and moldic porosities. There are large variations in the thickness and lithology in the lower part of the Maynardville (Zones 2, 3, and 4 in the Burial Grounds region). The direction and velocity of strike-parallel groundwater flow may be altered in this area within the lower Maynardville Limestone.

  17. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1: Main text

    SciTech Connect

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  18. Environmental geophysics of the Pilot Plant on the west branch of Canal Creek, Aberdeen Proving Ground, Maryland

    SciTech Connect

    McGinnis, L.D.; Miller, S.F.; Daudt, C.R.; Thompson, M.D.; Borden, H.; Benson, M.; Wrobel, J.

    1994-05-01

    Plans to demolish and remediate the Pilot Plant complex in the Edgewood Area of Aberdeen Proving Ground have served to initiate a series of nonintrusive, environmental-geophysical studies. The studies are assisting in the location and identification of pipes, tanks, trenches, and liquid waste in the subsurface. Multiple databases have been integrated to provide support for detection of underground utilities and to determine the stratigraphy and lithology of the subsurface. The studies were conducted within the double security fence and exterior to the double fence, down gradient toward the west branch of Canal Creek. To determine if contaminants found in the creek were associated with the Pilot Plant, both the east and west banks were included in the study area. Magnetic, conductivity, inductive emf, and ground-penetrating-radar anomalies outline buried pipes, trenches, and various pieces of hardware associated with building activities. Ground-penetrating-radar imagery also defines a paleovalley cut 30 ft into Potomac Group sediments of Cretaceous age. The paleovalley crosses the site between Building E5654 and the Pilot Plant fence. The valley is environmentally significant because it may control the pathways of contaminants. The Pilot Plant complex was used to manufacture CC2 Impregnite and incapacitating agents; it also served as a production facility for nerve agents.

  19. Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-04-01

    Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G.

  20. Fisheries Enhancement on the Coeur d'Alene Indian Reservation; Hangman Creek, Annual Report 2001-2002.

    SciTech Connect

    Peters, Ronald; Kinkead, Bruce; Stanger, Mark

    2003-07-01

    Historically, Hangman Creek produced Chinook salmon (Oncorhynchus tshawytscha) and Steelhead trout (Oncorhynchus mykiss) for the Upper Columbia Basin Tribes. One weir, located at the mouth of Hangman Creek was reported to catch 1,000 salmon a day for a period of 30 days a year (Scholz et al. 1985). The current town of Tekoa, Washington, near the state border with Idaho, was the location of one of the principle anadromous fisheries for the Coeur d'Alene Tribe (Scholz et al. 1985). The construction, in 1909, of Little Falls Dam, which was not equipped with a fish passage system, blocked anadromous fish access to the Hangman Watershed. The fisheries were further removed with the construction of Chief Joseph and Grand Coulee Dams. As a result, the Coeur d'Alene Indian Tribe was forced to rely more heavily on native fish stocks such as Redband trout (Oncorhynchus mykiss gairdneri), Westslope Cutthroat trout (O. clarki lewisii), Bull trout (Salvelinus confluentus) and other terrestrial wildlife. Historically, Redband and Cutthroat trout comprised a great deal of the Coeur d'Alene Tribe's diet (Power 1997).

  1. Opal Creek Forest Preserve Act of 1994. Introduced in the House of Representatives, One Hundred Third Congress, Second Session, August 8, 1994

    SciTech Connect

    1994-12-31

    The legislative text proposes to provide for the establishment and management of the Opal Creek Forest Reserve in Oregon. The purpose of the Act is to protect and preserve the forests and watersheds in the Reserve. And to promote and conduct research regarding old-growth forests and for educators to provide scientifically credible information to the public.

  2. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2002-2003 Annual Report.

    SciTech Connect

    Connolly, Patrick J.

    2003-12-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the second year of at least a three-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  3. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2001-2002 Annual Report.

    SciTech Connect

    Connolly, Patrick J.

    2003-01-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1914. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for future genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the first year of a three-year study, this report is restricted to describing our work on the first two objectives only.

  4. Analysis of alternative modifications for reducing backwater flooding at the Honey Creek coal strip-mine reclamation site in Henry County, Missouri. Water Resources Investigation

    SciTech Connect

    Alexander, T.W.

    1990-01-01

    Studies to determine the hydrologic conditions in mined and reclaimed mine areas, as well as areas of proposed mining, have become necessary with the enactment of the Surface Mining Control and Reclamation Act of 1977. Honey Creek in Henry County, Missouri, has been re-routed to flow through a series of former strip mining pits which lie within the Honey Creek coal strip mine reclamation site. During intense or long duration rainfalls within the Honey Creek basin, surface runoff has caused flooding on agricultural land near the upstream boundary of the reclamation site. The calculated existing design discharge (3,050 cubic feet per second) water-surface profile is compared to the expected water-surface profiles from three assumed alternative channel modifcations within the Honey Creek study area. The alternative channel modifications used in these analyses include (1) improvement of channel bottom slope, (2) relocation of spoil material, and (3) improved by-pass channel flow conditions. The alternative 1, 2, and 3 design discharge increase will reduce the agricultural field current (1990) frequency of backwater flooding from a 3-year to a 6.5-year event.

  5. Final report from VFL Technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils. LEFPC Appendices, Volume 3, Appendix V-B

    SciTech Connect

    1994-09-01

    This report consists of appendix V-B which contains the final verification run data package. Validation of analytical data is presented for Ecotek LSI. Analytical results are included of both soil and creek bed samples for the following contaminants: metals; metals (TCLP); uranium; gross alpha/beta; and polychlorinated biphenyls.

  6. RADIONUCLIDE INVENTORY AND DISTRIBUTION: FOURMILE BRANCH, PEN BRANCH, AND STEEL CREEK IOUS

    SciTech Connect

    Hiergesell, R.; Phifer, M.

    2014-04-29

    As a condition to the Department of Energy (DOE) Low Level Waste Disposal Federal Facility Review Group (LFRG) review team approving the Savannah River Site (SRS) Composite Analysis (CA), SRS agreed to follow up on a secondary issue, which consisted of the consolidation of several observations that the team concluded, when evaluated collectively, could potentially impact the integration of the CA results. This report addresses secondary issue observations 4 and 21, which identify the need to improve the CA sensitivity and uncertainty analysis specifically by improving the CA inventory and the estimate of its uncertainty. The purpose of the work described herein was to be responsive to these secondary issue observations by re-examining the radionuclide inventories of the Integrator Operable Units (IOUs), as documented in ERD 2001 and Hiergesell, et. al. 2008. The LFRG concern has been partially addressed already for the Lower Three Runs (LTR) IOU (Hiergesell and Phifer, 2012). The work described in this investigation is a continuation of the effort to address the LFRG concerns by re-examining the radionuclide inventories associated with Fourmile Branch (FMB) IOU, Pen Branch (PB) IOU and Steel Creek (SC) IOU. The overall approach to computing radionuclide inventories for each of the IOUs involved the following components: Defining contaminated reaches of sediments along the IOU waterways Identifying separate segments within each IOU waterway to evaluate individually Computing the volume and mass of contaminated soil associated with each segment, or compartment Obtaining the available and appropriate Sediment and Sediment/Soil analytical results associated with each IOU Standardizing all radionuclide activity by decay-correcting all sample analytical results from sample date to the current point in time, Computing representative concentrations for all radionuclides associated with each compartment in each of the IOUs Computing the radionuclide

  7. RADIONUCLIDE INVENTORY AND DISTRIBUTION: FOURMILE BRANCH, PEN BRANCH, AND STEEL CREEK IOUS

    SciTech Connect

    Hiergesell, R.; Phifer, M.

    2014-04-29

    As a condition to the Department of Energy (DOE) Low Level Waste Disposal Federal Facility Review Group (LFRG) review team approving the Savannah River Site (SRS) Composite Analysis (CA), SRS agreed to follow up on a secondary issue, which consisted of the consolidation of several observations that the team concluded, when evaluated collectively, could potentially impact the integration of the CA results. This report addresses secondary issue observations 4 and 21, which identify the need to improve the CA sensitivity and uncertainty analysis specifically by improving the CA inventory and the estimate of its uncertainty. The purpose of the work described herein was to be responsive to these secondary issue observations by re-examining the radionuclide inventories of the Integrator Operable Units (IOUs), as documented in ERD 2001 and Hiergesell, et. al. 2008. The LFRG concern has been partially addressed already for the Lower Three Runs (LTR) IOU (Hiergesell and Phifer, 2012). The work described in this investigation is a continuation of the effort to address the LFRG concerns by re-examining the radionuclide inventories associated with Fourmile Branch (FMB) IOU, Pen Branch (PB) IOU and Steel Creek (SC) IOU. The overall approach to computing radionuclide inventories for each of the IOUs involved the following components: • Defining contaminated reaches of sediments along the IOU waterways • Identifying separate segments within each IOU waterway to evaluate individually • Computing the volume and mass of contaminated soil associated with each segment, or “compartment” • Obtaining the available and appropriate Sediment and Sediment/Soil analytical results associated with each IOU • Standardizing all radionuclide activity by decay-correcting all sample analytical results from sample date to the current point in time, • Computing representative concentrations for all radionuclides associated with each compartment in each of the IOUs • Computing the

  8. Analysis of Dust Samples Collected from an Unused Spent Nuclear Fuel Interim Storage Container at Hope Creek, Delaware.

    SciTech Connect

    Bryan, Charles R.; Enos, David

    2015-03-01

    In July, 2014, the Electric Power Research Institute and industry partners sampled dust on the surface of an unused canister that had been stored in an overpack at the Hope Creek Nuclear Generating Station for approximately one year. The foreign material exclusion (FME) cover that had been on the top of the canister during storage, and a second recently - removed FME cover, were also sampled. This report summarizes the results of analyses of dust samples collected from the unused Hope Creek canister and the FME covers. Both wet and dry samples of the dust/salts were collected, using SaltSmart(TM) sensors and Scotch - Brite(TM) abrasive pads, respectively. The SaltSmart(TM) samples were leached and the leachate analyzed chemically to determine the composition and surface load per unit area of soluble salts present on the canister surface. The dry pad samples were analyzed by X-ray fluorescence and by scanning electron microscopy to determine dust texture and mineralogy; and by leaching and chemical analysis to deter mine soluble salt compositions. The analyses showed that the dominant particles on the canister surface were stainless steel particles, generated during manufacturing of the canister. Sparse environmentally - derived silicates and aluminosilicates were also present. Salt phases were sparse, and consisted of mostly of sulfates with rare nitrates and chlorides. On the FME covers, the dusts were mostly silicates/aluminosilicates; the soluble salts were consistent with those on the canister surface, and were dominantly sulfates. It should be noted that the FME covers were w ashed by rain prior to sampling, which had an unknown effect of the measured salt loads and compositions. Sulfate salts dominated the assemblages on the canister and FME surfaces, and in cluded Ca - SO4 , but also Na - SO4 , K - SO4 , and Na - Al - SO4 . It is likely that these salts were formed by particle - gas conversion reactions, either

  9. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project, Annual Report 2000.

    SciTech Connect

    Baxter, James S.; Baxter, Jeremy

    2001-02-01

    An enumeration fence and traps were installed on Skookumchuck Creek from September 7 th to October 16 th to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 252 bull trout were sampled through the enumeration fence. Length, weight, and sex were determined for all but one of the 252 bull trout captured. In total, one fish of undetermined sex, 63 males and 188 females were processed through the fence. A total of 67 bull trout were observed on a snorkel survey prior to the fence being removed on October 16 th . Coupled with the fence count, the total bull trout count during this project was 319 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout, Rocky Mountain whitefish, kokanee, sucker, and Eastern brook trout. Redds were observed during ground surveys in three different locations (river km 27.5- 28.5, km 29-30, and km 24-25). The largest concentration of redds were noted in the upper two sections which have served as the index sections over the past four years. A total of 197 bull trout redds were enumerated on the ground on October 4 th . The majority of redds (n=189) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past four years. The additional 8 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Skookumchuck Creek at km 39.5, and Skookumchuck Creek at the fence site suggested that water temperatures were within the range preferred by bull trout for spawning, egg incubation, and rearing.

  10. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 4. Appendix F

    SciTech Connect

    1995-09-01

    This section contains ecotoxicological profiles for the COPECs for the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The ecotoxicological information is presented for only those endpoints for which the chemicals are COPECs. The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  11. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 3. Appendix E

    SciTech Connect

    1995-09-01

    This document contains Appendix E: Toxicity Information and Uncertainty Analysis, description of methods, from the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  12. Remedial investigation/feasibility study for the Clinch River/Poplar Creek operable unit. Volume 1. Main text

    SciTech Connect

    1995-09-01

    This is the combined Remedial Investigation/Feasibility Study Report for the Clinch River/Poplar Crack (CR/PC) Operable Unit (OU). The CR/PC OU is located in Anderson and Roane Counties, Tennessee and consists of the Clinch River and several of its embayments in Melton Hill and Watts Bar Reservoirs. These waters have received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act. A remedial investigation has been conducted to determine the current nature and extent of any contamination and to assess the resulting risk to human health and the environment. The feasibility study evaluates remedial action alternatives to identify any that are feasible for implementation and that would effectively reduce risk. Historical studies had indicated that current problems would likely include {sup 137}Cs in sediment of the Clinch River, mercury in sediment and fish of Poplar Creek and PCBs and pesticides in fish from throughout the OU. Peak releases of mercury and {sup 137}Cs occurred over 35 years ago, and current releases are low. Past releases of PCBs from the ORR are poorly quantified, and current releases are difficult to quantify because levels are so low. The site characterization focused on contaminants in surface water, sediment, and biota. Contaminants in surface water were all found to be below Ambient Water Quality Criteria. Other findings included the following: elevated metals including cesium 137 and mercury in McCoy Branch sediments; PCBs and chlordane elevated in several fish species, presenting the only major human health risk, significant ecological risks in Poplar Creek but not in the Clinch River.

  13. Human health risk assessment and remediation activities at White Oak Creek Embayment at Oak Ridge National Laboratory

    SciTech Connect

    Blaylock, B.G.

    1994-12-31

    Cesium-137 concentrations of >10{sup 6} Bq/kg dry wt (10{sup 4} pCi/g dry wt) were found in the surface sediments of White Oak Creek Embayment (WOCE) during 1990. A review of past data indicated Cesium-137, among other contaminants, was released from White Oak dam in the mid 1950s and had accumulated in the sediment of WOCE. The sediments from WOCE were being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and water turbulence. Sampling was conducted to determine the extent of radiological and nonradiological contamination. A contaminant screening analysis was conducted to determine which contaminants pose a problem from a human health standpoint. All noncarcinogens had screening indices of <1.0, indicating that concentrations of noncarcinogens were below the levels of concern for a realistic maximum exposure situation. An illegal intruder or an individual using the embayment for fishing purposes could be exposed to >10{sup 4} risk of excess lifetime cancer incidence from external exposure to Cesium-137 in sediment and from ingestion of polychlorinated biphenyls in fish. As a result of these analyses and the fact that >10{sup 6} Bq/kg dry wt (10{sup 4} pCi/g dry wt) of Cesium-137 could be transported from the Oak Ridge Reservation, a coffer-cell dam was constructed at the mouth of White Oak Creek in 1992 to: (1) reduce sediment erosion and the transport of radioactive sediments from the WOCE into the Clinch River, (2) maintain year-round inundation of the embayment sediments to reduce external radiation exposure, and (3) impede the movement of fish into and out of the embayment. The effectiveness of this remediation is being evaluated.

  14. Building America Case Study: Singer Village: A Cold Climate Zero Energy Ready Home, Derby, Connecticut (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Singer Village: A Cold Climate Zero Energy Ready Home Derby, Connecticut PROJECT INFORMATION Project Name: Singer Village Home Location: Derby, CT Partners: Brookside Development, LLC. brooksidedevelopment.com Consortium for Advanced Residential Buildings, carb-swa.com Size: 4,456 ft 2 including basement Year Completed: 2014 Climate Zone: Cold PERFORMANCE DATA Source energy savings: 29.6% HERS index: 45 Projected annual utility costs: $2,443 Incremental cost of energy efficiency measures: 5.5%

  15. Minthorn Springs Creek Summer Juvenile Release and Adult Collection Facility; 1992 Annual Report.

    SciTech Connect

    Rowan, Gerald D.

    1993-08-01

    we re negative for inclusions. One of 73 summer steelhead sampled for BKD had a high level of antigen, while all others had very low or negative antigen levels. All fall chinook tested had low or negative antigen levels. Regularly-scheduled maintenance of pumps, equipment and facilities was performed in 1992. The progress of outmigration for juvenile releases was monitored at the Westland Canal fish trapping facility by CTUIR and ODFW personnel. Coho and spring chinook yearlings were released in mid-March at Umatilla rivermile (RM) 56 and 60. The peak outmigration period past Westland (RM 27) was mid-April to early May, approximately four to seven weeks after release. Groups of summer steelhead were released from Minthorn (RM 63) and Bonifer (RM 81) in late March and into Meacham Creek near Bonifer in late April. The peak outmigration period past Westland for all groups appeared to be the first two to three weeks in May. Spring chinook yearlings released in mid-April from Bonifer and at Umatilla RM 89, migrated rapidly downriver and the peak outmigration period past Westland appeared to be within a week or two after release. Fall and spring chinook subyearlings released in mid-May at RM 42 and 60, respectively, also migrated rapidly downriver and the peak outmigration period was within days after release. Coded-wire tag recovery information was accessed to determine the contribution of Umatilla River releases to the ocean, Columbia River and Umatilla River fisheries. Total estimated summer steelhead survival have ranged from 0.03 to 0.61% for releases in which recovery information is complete. Coho survival rates have ranged from 0.15 to 4.14%, and spring chinook yearling survival rates from spring releases have ranged from 0.72 to 0.74%. Survival rates of fall chinook yearlings have ranged from 0.08 to 3.01%, while fall chinook subyearling survival rates have ranged from 0.25 to 0.87% for spring released groups.

  16. An Assessment of health risk associated with mercury in soil and sediment from East Fork Poplar Creek, Oak Ridge, Tennessee. Final report

    SciTech Connect

    Revis, N.; Holdsworth, G.; Bingham, G.; King, A.; Elmore, J.

    1989-04-01

    This report presents results from a study conducted to determine the toxicity of Mercury in soils sediments samples. Mice were fed via diet, soils and sediment, from various locations along the East Fork Poplar creek. Tissue distribution of pollutants was determined at various intervals. The tissue level relative to toxicity was used to determine the effect of a complex matrix on the gastrointestinal absorption and tissue distribution of the pollutants (other pollutants included cadmium and selenium).

  17. Kent County, Delaware: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Delaware Kenton, Delaware Leipsic, Delaware Little Creek, Delaware Magnolia, Delaware Milford, Delaware Rising Sun-Lebanon, Delaware Riverview, Delaware Rodney Village, Delaware...

  18. Building America Whole-House Solutions for New Homes: Schneider...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PDF icon Schneider Homes, Inc.: Village at Miller Creek - Burien, WA More Documents & Publications Building America Whole-House Solutions for New Homes: Tom Walsh & Co., Portland, ...

  19. Village WInd Technology Update

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    In traveling, I have observed, that in those parts where the inhabitants can have neither ... Walls 17% Floor 32% Wind Heat for Homes Benefits: * Lower heating costs * Scale * ...

  20. Village power in Thailand

    SciTech Connect

    Bergey, M.

    1997-12-01

    This paper presents an overview of the electric power system in Thailand. 99% of the country is electrified, but much of this is with diesel generators which leaves high costs but a high level of service. The paper discusses renewable energy projects which have been sited in the country, and examples of hybrid systems which have been retrofit into existing diesel generator systems. Photovoltaic and hydroelectric power projects are described. Dedicated systems have been installed for water pumping and battery charging applications.

  1. Kuhn Village Barn

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    turn right at the first stop sign. The barn is the second building on the right. Take Kirk Rd. to Pine St. in Batavia. Turn east onto Pine St. Go past the guardhouse (stopping...

  2. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    SciTech Connect

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  3. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    NONE

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices.

  4. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Bailey, R.D.

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  5. Second report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    SciTech Connect

    Hinzman, R.L.; Adams, S.M.; Black, M.C.

    1993-06-01

    As stipulated in the National Pollutant Discharge Elimination System (NDPES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of BMAP are (1) to demonstrate that the current effluent limitations established for the Y-12 Plant protect the classified uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) and (2) to document the ecological effects resulting from implementation of a Water Pollution Control Program that includes construction of several large wastewater treatment facilities. BMAP consists of four major tasks: (1) ambient toxicity testing; (2) bioaccumulation studies; (3) biological indicator studies; and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic (bottom-dwelling) macroinvertebrates, and fish. This document, the second in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted between July 1986 and July 1988, although additional data collected outside this time period are included, as appropriate.

  6. First report on the Oak Ridge Y-12 Plant Biological Monitoring and Abatement Program for East Fork Poplar Creek

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Boston, H.L.; Huston, M.A.; McCarthy, J.F.; Smith, J.G.; Southworth, G.R.; Stewart, A.J. ); Black, M.C. ); Gatz, A.J. Jr. ); Hinzman, R.L. ); Jimenez, B.D. (Puerto Rico Univ.,

    1992-07-01

    As stipulated in the National Pollutant Discharge Elimination System (NPDES) permit issued to the Oak Ridge Y-12 Plant on May 24, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for the receiving stream, East Fork Poplar Creek (EFPC). The objectives of the BMAP are (1) to demonstrate that the current effluent limitations established for the Oak Ridge Y-12 Plant protect the uses of EFPC (e.g., the growth and propagation of fish and aquatic life), as designated by the Tennessee Department of Environment and Conservation (TDEC) [formerly the Tennessee Department of Health and Environment (TDHE)], and (2) to document the ecological effects resulting from implementation of a water pollution control program that includes construction of several large wastewater treatment facilities. The BMAP consists of four major tasks: (1) ambient toxicity testing, (2) bioaccumulation studies, (3) biological indicator studies, and (4) ecological surveys of stream communities, including periphyton (attached algae), benthic macroinvertebrates, and fish. This document, the first in a series of reports on the results of the Y-12 Plant BMAP, describes studies that were conducted from May 1985 through September 1986.

  7. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4

    SciTech Connect

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared, solely under funds provided by West Texas Utilities (WTU), the Energy Systems Group (ESG) of Rockwell International, and four other support groups. A central-receiver repowering system is one in which a tower, surrounded by a large field of mirrors, is placed adjacent to an existing electric power plant. A receiver, located on top of the tower, absorbs solar energy reflected onto it by the mirrors and converts this solar energy to heat energy. The heat energy is transported by the liquid sodium to a set of sodium-to-steam steam generators. The steam generators produce steam at the same temperature and pressure as that produced by the fossil boiler in the existing plant. When solar energy is available, steam is produced by the solar part of the plant, thus displacing steam from the fossil boiler, and reducing the consumption of fossil fuel while maintaining the original plant output. A means for storing the solar energy is usually provided, so that some energy obtained from the solar source can be used to displace natural gas or oil fuels when the sun is not shining. This volume presents an executive summary of the conceptual design, performance, economics, development plans, and site owner's assessment. (WHK)

  8. Final report for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils

    SciTech Connect

    1994-09-01

    IT Corporation (IT) was contracted by Martin Marietta Energy Systems, Inc. (Energy Systems) to perform a pilot-scale demonstration of the effectiveness of thermal desorption as a remedial technology for removing mercury from the Lower East Fork Poplar Creek (LEFPC) floodplain soil. Previous laboratory studies by Energy Systems suggested that this technology could reduce mercury to very low levels. This pilot-scale demonstration study was initiated to verify on an engineering scale the performance of thermal desorption. This report includes the details of the demonstration study, including descriptions of experimental equipment and procedures, test conditions, sampling and analysis, quality assurance (QA), detailed test results, and an engineering assessment of a conceptual full-scale treatment facility. The specific project tasks addressed in this report were performed between October 1993 and June 1994. These tasks include soil receipt, preparation, and characterization; prepilot (bench-scale) desorption tests; front-end materials handling tests; pilot tests; back-end materials handling tests; residuals treatment; and engineering scale-up assessment.

  9. Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee

    SciTech Connect

    1996-04-01

    On December 21, 1989, the EPA placed the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) on the National Priorities List (NPL). On January 1, 1992, a Federal Facilities Agreement (FFA) between the DOE Field Office in Oak Ridge (DOE-OR), EPA Region IV, and the Tennessee Department of Environment and Conservation (TDEC) went into effect. This FFA establishes the procedural framework and schedule by which DOE-OR will develop, coordinate, implement and monitor environmental restoration activities on the ORR in accordance with applicable federal and state environmental regulations. The DOE-OR Environmental Restoration Program for the ORR addresses the remediation of areas both within and outside the ORR boundaries. This sampling and analysis plan focuses on confirming the cleanup of the stretch of EFPC flowing from Lake Reality at the Y-12 Plant through the City of Oak Ridge, to Poplar Creek on the ORR and its associated floodplain. Both EFPC and its floodplain have been contaminated by releases from the Y-12 Plant since the mid-1950s. Because the EFPC site-designated as an ORR operable unit (OU) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) is included on the NPL, its remediation must follow the specific procedures mandated by CERCLA, as amended by the Superfund Amendments and Reauthorization Act in 1986.

  10. Sources of Mercury to East Fork Poplar Creek Downstream from the Y-12 National Security Complex: Inventories and Export Rates

    SciTech Connect

    Southworth, George R; Greeley Jr, Mark Stephen; Peterson, Mark J; Lowe, Kenneth Alan; Ketelle, Richard H; Floyd, Stephanie B

    2010-02-01

    East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventory of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in

  11. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    SciTech Connect

    1996-03-01

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee.

  12. Second report on the Oak Ridge Y-12 Plant fish kill for Upper East Fork Poplar Creek

    SciTech Connect

    Etnier, E.L.; Opresko, D.M.; Talmage, S.S.

    1994-08-01

    This report summarizes the monitoring of fish kills in upper East Fork Poplar Creek (EFPC) from July 1990 to June 1993. Since the opening of Lake Reality (LR) in 1988, total numbers of fish inhabiting upper EFPC have increased. However, species diversity has remained poor. Water quality data have been collected in upper EFPC during the time period covered in this report. Total residual chlorine (TRC) levels have exceeded federal and state water quality criteria over the years. However, with the installation of two dechlorination systems in late 1992, TRC levels have been substantially lowered in most portions of upper EFPC. By June 1993, concentrations of TRC were 0.04 to 0.06 mg/L at the north-south pipes (NSP) and below detection limits at sampling station AS-8 and were 0 to 0.01 mg/L at the inlet and outlet of LR. The daily chronic fish mortality in upper EFPC has been attributed to background stress resulting from the continuous discharge of chlorine into upper EFPC. Mean daily mortality rates for 22 acute fish kills were three fold or more above background and usually exceeded ten fish per day. Total number of dead fish collected per acute kill event ranged from 30 to over 1,000 fish; predominant species killed were central stonerollers (Campostoma anomalum) and striped shiners (Luxilus chrysocephalus). Spills or elevated releases of toxic chemicals, such as acids, organophosphates, aluminum nitrate, ammonia, or chlorine, were identified as possible causative agents; however, a definitive cause-effect relationship was rarely established for any acute kills. Ambient toxicity testing, in situ chemical monitoring, and streamside experiments were used to examine TRC dynamics and ambient toxicity in EFPC.

  13. Annual hydrologic data summary for the White Oak Creek Watershed: Water Year 1990 (October 1989--September 1990)

    SciTech Connect

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Moore, G.K.; Watts, J.A.; Broders, C.C.; Bednarek, A.T.

    1991-09-01

    This report summarizes, for the Water Year 1990 (October 1989-- September 1990), the dynamic hydrologic data collected on the Whiteoak Creek (WOC) Watershed's surface and subsurface flow systems. These systems affect the quality or quantity of surface water and groundwater. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to 1. characterize the quantity and quality of water in the flow system, 2. plan and assess remedial action activities, and 3. provide long-term availability of data and assure quality. Characterizing the hydrology of the WOC watershed provides a better understanding of the processes which drive contaminant transport in the watershed. Identifying of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. Hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping boundaries and ultimately to the off-site environment. The majority of the data summarized in this report are available from the Remedial Action Programs Data and Information Management System data base. Surface water data available within the WOC flow system include discharge and runoff, surface water quality, radiological and chemical contamination of sediments, and descriptions of the outfalls to the WOC flow system. Climatological data available for the Oak Ridge area include precipitation, temperature, humidity, wind speed, and wind direction. Information on groundwater levels, aquifer characteristics, and groundwater quality are presented. Anomalies in the data and problems with monitoring and accuracy are discussed. 58 refs., 54 figs., 15 tabs.

  14. Closure certification report for the Bear Creek burial grounds B area and walk-in pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1994-06-01

    On July 5, 1993, the revised RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, DOE/OR/01-1100&D3 and Y/ER-53&D3, was approved by the Tennessee Department of Environment and Conservation (TDEC). The closure activities described in that closure plan have been performed. The purpose of this document is to summarize the closure activities for B Area and Walk-In Pits (WIPs), including placement of the Kerr Hollow Quarry debris at the WIPs.

  15. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    Not Available

    1992-02-01

    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  16. Twenty-Five Years of Ecological Recovery of East Fork Poplar Creek: Review of Environmental Problems and Remedial Actions

    SciTech Connect

    Smith, John G; Loar, James M; Stewart, Arthur J

    2011-01-01

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy s Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated oncethrough cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water

  17. RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk- In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-01-01

    In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Subsequently, this plan was modified again and approved as Y/TS-395, Revised RCRA Closure Plan for the Bear Creek Burial Grounds (February 29, 1988). Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. The plan was presented to the state of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. This amended closure plan goes further to include inspection and maintenance criteria along with other details.

  18. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 3. Risk assessment information. Appendixes E, F

    SciTech Connect

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 3 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  19. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report

    SciTech Connect

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.

  20. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 3: Appendixes E and F -- Risk assessment information

    SciTech Connect

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  1. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed; Anadromous Fish Habitat Restoration in the Nichols Canyon Subwatershed, 2001 Annual Report.

    SciTech Connect

    Koziol, Deb

    2002-02-01

    Big Canyon Creek historically provided quality spawning and rearing habitat for A-run wild summer steelhead in the Clearwater River subbasin (Fuller, 1986). However, high stream temperatures, excessive sediment and nutrient loads, low summer stream flows, and little instream cover caused anadromous fish habitat constraints in the creek. The primary sources of these nonpoint source pollution and habitat degradations are attributed to agricultural, livestock, and forestry practices (NPSWCD, 1995). Addressing these problems is made more complex due to the large percentage of privately owned lands in the watershed. Nez Perce Soil and Water Conservation District (NPSWCD) seeks to assist private, tribal, county, and state landowners in implementing Best Management Practices (BMPs) to reduce nonpoint source pollutants, repair poorly functioning riparian zones, and increase water retention in the Nichols Canyon subwatershed. The project funds coordination, planning, technical assistance, BMP design and installation, monitoring, and educational outreach to identify and correct problems associated with agricultural and livestock activities impacting water quality and salmonid survival. The project accelerates implementation of the Idaho agricultural water quality management program within the subwatershed.

  2. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    SciTech Connect

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV.

  3. Pipeline corridors through wetlands -- Impacts on plant communities: Little Timber Creek Crossing, Gloucester County, New Jersey. Topical report, August 1991--January 1993

    SciTech Connect

    Shem, L.M.; Zimmerman, R.E.; Alsum, S.K.; Van Dyke, G.D. |

    1994-12-01

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents results of a survey conducted over the period of August 5--7, 1991, at the Little Timber Creek crossing in Gloucester County, New Jersey, where three pipelines, constructed in 1950, 1960, and 1990, cross the creek and associated wetlands. The old side of the ROW, created by the installation of the 1960 pipeline, was designed to contain a raised peat bed over the 1950 pipeline and an open-water ditch over the 1960 pipeline. The new portion of the ROW, created by installation of the 1990 pipeline, has an open-water ditch over the pipeline (resulting from settling of the backfill) and a raised peat bed (resulting from rebound of compacted peat). Both the old and new ROWs contain dense stands of herbs; the vegetation on the old ROW was more similar to that in the adjacent natural area than was vegetation in the new ROW. The ROW increased species and habitat diversity in the wetlands. It may contribute to the spread of purple loosestrife and affect species sensitive to habitat fragmentation.

  4. Sedimentological, mineralogical and geochemical definition of oil-shale facies in the lower Parachute Creek Member of Green River Formation, Colorado

    SciTech Connect

    Cole, R.D.

    1984-04-01

    Sedimentological, mineralogical and geochemical studies of two drill cores penetrating the lower Saline zone of the Parachute Creek Member (middle L-4 oil-shale zone through upper R-2 zone) of the Green River Formation in north-central Piceance Creek basin, Colorado, indicate the presence of two distinct oil-shale facies. The most abundant facies has laminated stratification and frequently occurs in the L-4, L-3 and L-2 oil-shale zones. The second, and subordinate facies, has ''streaked and blebby'' stratification and is most abundant in the R-4, R-3 and R-2 zones. Laminated oil shale originated by slow, regular sedimentation during meromictic phases of ancient Lake Uinta, whereas streaked and blebby oil shale was deposited by episodic, non-channelized turbidity currents. Laminated oil shale has higher contents of nahcolite, dawsonite, quartz, K-feldspar and calcite, but less dolomite/ankerite and albite than streaked and blebby oil shale. Ca-Mg-Fe carbonate minerals in laminated oil shale have more variable compositions than those in streaked and blebby shales. Streaked and blebby oil shale has more kerogen and a greater diversity of kerogen particles than laminated oil shale. Such variations may produce different pyrolysis reactions when each shale type is retorted.

  5. Falls Creek Hydroelectric Project

    SciTech Connect

    Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

    2007-06-12

    This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

  6. Declared Wolf Creek

    Energy Saver

    Plumbing Manufacturers Institute Regarding the Economic Impacts of the Proposed Definition of "Showerhead," Docket No. EERE-2010-BT-NOA-0016 | Department of Energy Declaration of Charles Wodrich in Support of Supplemental Comments of the Plumbing Manufacturers Institute Regarding the Economic Impacts of the Proposed Definition of "Showerhead," Docket No. EERE-2010-BT-NOA-0016 Declaration of Charles Wodrich in Support of Supplemental Comments of the Plumbing Manufacturers

  7. ch_4

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    40 Affected Environment playas 15 to 20 miles northeast of INTEC, where the water infiltrates. The water in Birch Creek and the Little Lost River is diverted in summer months for irriga- tion prior to reaching INEEL. During periods of unusually high precipitation or rapid snow melt, water from Birch Creek and the Little Lost River may enter INEEL from the northwest and infil- trate the ground, recharging the underlying aquifer. 4.8.1.2 Local Drainage INTEC is located on an alluvial plain

  8. Addendum to the post-closure permit application for the Bear Creek hydrogeologic regime at the Y-12 plant: Walk-in pits

    SciTech Connect

    1995-04-01

    In June 1987, the Resource Conservation and Recovery Act (RCRA) Closure/Post-Closure Plan for the Bear Creek Burial Grounds (BCBG) located at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval.The Closure Plan has been modified and revised several times. This document is an addendum to the Post-Closure Permit Application submitted to TDEC in June, 1994. This addendum contains information on the Walk-In Pits of the BCBG which is meant to supplement the information provided in the Post-Closure Permit Application submitted for the BCBG. This document is not intended to be a stand-alone document.

  9. Feasibility study results for dry sorbent furnace injection for SO sub 2 control Prairie Creek No. 4 Iowa Electric Light and Power Company

    SciTech Connect

    Smith, P.V. ); Rehrauer, H.W. )

    1991-01-01

    As a result of the recent passage of new amendments to the Clean Air Act, many U.S. power plants will be required to reduce sulfur dioxide (SO{sub 2}) emissions. Iowa Electric Light and Power (IELP) was interested in investigating a number of options that will allow Prairie Creek Unit 4 to operate in compliance with these new regulations. One of these options was Dry Sorbent Injection (DSI), a relatively simple and low cost retrofit technique, useful for controlling SO{sub 2} concentrations in coal combustion flue gas. The purpose of the program was to obtain operational data necessary to aid in the identification and assessment of DSI options that have a high potential for successful application. This paper contains a summary and analysis of the data obtained during the test effort. It also contains a discussion of the results of each of the major tasks undertaken to accomplish this feasibility study.

  10. FY94 site characterization and multilevel well installation at a west Bear Creek Valley research site on the Oak Ridge Reservation

    SciTech Connect

    Moline, G.R.; Schreiber, M.E.

    1996-03-01

    The goals of this project are to collect data that will assist in determining what constitutes a representative groundwater sample in fractured shale typical of much of the geology underlying the ORR waste disposal sites, and to determine how monitoring-well construction and sampling methods impact the representativeness of the sample. This report details the FY94 field activities at a research site in west Bear Creek Valley on the Oak Ridge Reservation (ORR). These activities funded by the Energy Systems Groundwater Program Office through the Oak Ridge Reservation Hydrologic and Geologic Studies (ORRHAGS) task, focus on developing appropriate sampling protocols for the type of fractured media that underlies many of the ORR waste disposal sites. Currently accepted protocols were developed for porous media and are likely to result in nonrepresentative samples in fractured systems.

  11. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  12. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1994

    SciTech Connect

    Borders, D.M.; Ziegler, K.S.; Reece, D.K.; Watts, J.A.; Frederick, B.J.; McCalla, W.L.; Pridmore, D.J.

    1995-08-01

    This report summarizes, for the 12-month period January through December 1994, the available dynamic hydrologic data collected on the White Oak Creek (WOC) watershed as well as information collected on surface flow systems in the surrounding vicinity that may affect the quality or quantity of surface water in the watershed. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to characterize the quantity and quality of water in the surface flow system, assist with the planning and assessment of remedial action activities, provide long-term availability of data and quality assurance of these data, and support long-term measures of contaminant fluxes at a spatial scale to provide a comprehensive picture of watershed performance that is commensurate with future remedial actions.

  13. Sampling and analysis plan for Phase II of the Bear Creek Valley Treatability Study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    NONE

    1997-09-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. This project directly supports Alternative 5 of the base action in the BCV Feasibility Study and indirectly supports other alternatives through proof of concept. In that role, the ultimate goal is to install a treatment system that will remove uranium and nitrate from groundwater before it reaches Bear Creek. A secondary goal is the concurrent removal of technetium and several metals that affect ecological risk. This project is intended to produce hydraulic and treatment performance data required to design the treatment system to reach those goals. This project will also generate information that can be applied at other facilities within the Oak Ridge Reservation. This report is the sampling and analysis plan (SAP) for the field work component of Phase II of the BCV Treatability Study. Field work for this phase of the BCV Treatability Study consists of environmental and media testing. The SAP addresses environmental sampling at the S-3 Site at the Oak Ridge Y-12 Plant. Samples will be taken from groundwater, surface water, seeps, effluent from test columns, effluent from an algal mat reactor, and effluent from a pilot-scale wetland. Groundwater, surface water, and seeps will be monitored continuously for field parameters and sampled for analytical parameters during pump tests conducted periodically during the investigation. In-field continuous flow tests will be conducted over an extended time period (5 weeks) to generate data on long-term treatment effects on potential treatment effects on potential treatment media including sorbents and zero valent iron, over 28 weeks for constructed wetlands treatment, and over 24 weeks for algal mats treatment.

  14. Sampling and analysis plan for phase II of the Bear Creek Valley treatability study Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    NONE

    1997-05-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. This project directly supports Alternative 5 of the base action in the BCV Feasibility Study, and indirectly supports other alternatives through proof of concept. In that role, the ultimate goal is to install a treatment system that will remove uranium and nitrate from groundwater before it reaches Bear Creek. A secondary goal is the concurrent removal of technetium and several metals that impact ecological risk. This project is intended to produce hydraulic and treatment performance data required to design the treatment system to reach those goals. This project will also generate information that can be applied at other facilities within the Oak Ridge Reservation. This report is the sampling and analysis plan (SAP) for the field work component of Phase II of the BCV Treatability Study. Field work for this phase of the BCV Treatability Study consists of media testing. In-field continuous flow tests will be conducted over an extended time period (5 weeks) to generate data on long-term treatment effects on potential treatment media including sorbents and zero valent iron, over 28 weeks for constructed wetlands treatment, and over 24 weeks for algal mats treatment. The SAP addresses environmental sampling at the S-3 Site at the Oak Ridge Y-12 Plant. Samples will be taken from groundwater, effluent from test columns, effluent from an algal mat reactor, and effluent from a pilot-scale wetlands. This plan will be implemented as part of the BCV Phase II Treatability Study Best Management Practices Plan and in conjunction with the BCV Phase II Treatability Study Health and Safety Plan and the BCV Phase II Treatability Study Waste Management Plan.

  15. A high-elevation, multi-proxy biotic and environmental record of MIS 64 from the Ziegler Reservoir fossil site, Snowmass Village, Colorado, USA

    SciTech Connect

    Ian M. Miller; Mitchell A. Plummer; Various Others

    2014-10-01

    In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the oceanatmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 20102011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5

  16. Natural Reproductive Success and Demographic Effects of Hatchery-Origin Steelhead in Abernathy Creek, Washington : Annual Report 2008.

    SciTech Connect

    U.S. Fish & Wildlife Service, Abernathy Fish Technology Center

    2008-12-01

    Many hatchery programs for steelhead pose genetic or ecological risks to natural populations because those programs release or outplant fish from non-native stocks. The goal of many steelhead programs has been to simply provide 'fishing opportunities' with little consideration given to conservation concerns. For example, the Washington Department of Fish and Wildlife (WDFW) has widely propagated and outplanted one stock of winter-run steelhead (Chambers Creek stock) and one stock of summer-run steelhead (Skamania stock) throughout western Washington. Biologists and managers now recognize potential negative effects can occur when non-native hatchery fish interact biologically with native populations. Not only do non-native stocks pose genetic and ecological risks to naturally spawning populations, but non-native fish stray as returning adults at a much higher rate than do native fish (Quinn 1993). Biologists and managers also recognize the need to (a) maintain the genetic resources associated with naturally spawning populations and (b) restore or recover natural populations wherever possible. As a consequence, the U.S. Fish & Wildlife Service (USFWS) and the NOAA Fisheries have been recommending a general policy that discourages the use of non-native hatchery stocks and encourages development of native broodstocks. There are two primary motivations for these recommendations: (1) reduce or minimize potential negative biological effects resulting from genetic or ecological interactions between hatchery-origin and native-origin fish and (2) use native broodstocks as genetic repositories to potentially assist with recovery of naturally spawning populations. A major motivation for the captive-rearing work described in this report resulted from NOAA's 1998 Biological Opinion on Artificial Propagation in the Columbia River Basin. In that biological opinion (BO), NOAA concluded that non-native hatchery stocks of steelhead jeopardize the continued existence of U

  17. Birch Run, Michigan: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Run, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.2508585, -83.7941309 Show Map Loading map... "minzoom":false,"mappingservice"...

  18. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4. Final report

    SciTech Connect

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared. The existing Paint Creek Unit 4 is a natural-gas-fired, baseload unit with a dependable net power output of 110 MWe. It is a reheat unit, has a main steam temperature and pressure of 538/sup 0/C (1000/sup 0/F) and 12.41 MPa (1800 psig), respectively, has a reheat temperature of 538/sup 0/C (1000/sup 0/F), and was placed in operation in 1972. On this conceptual design study program, a large number of trade studies and optimizations were carried out, in order to derive the most cost-effective design that had the greatest potential for widespread application and commercialization. As a result of these studies, the optimum power level for the solar part of the plant was determined to be 60 MWe, and provisions were made to store enough solar energy, so that the solar part of the plant would produce, on March 21 (equinox), 60 MWe of electric power for a period of 4 h after sunset. The tower in this system is 154 m (505 ft) high to the midpoint of the receiver, and is surrounded by 7882 heliostats (mirrors), each of which is 6.7 m (22 ft) by 7.3 m (24 ft). The mirror field occupies 1.74 x 10/sup 6/ m/sup 2/ (430 acres), and extends 1040 m (3400 ft) to the north of the tower, 550 m (1800 ft) to the south of the tower, and is bounded on the east and west by Lake Stamford. The receiver, which is of the external type, is 15.4 m (50.5 ft) high by 14 m (45.9 ft) in diameter, and is capable of absorbing a maximum of 226 MW of thermal energy. The set of sodium-to-steam generators consists of an evaporator, a superheater, and a reheater, the power ratings of which are 83.2, 43.7, and 18.1 MWt, respectively. Conceptual design, system characteristics, economic analysis, and development plans are detailed. (WHK)

  19. Addendum to the remedial investigation report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant Oak Ridge, Tennessee. Volume 1: Main text

    SciTech Connect

    1995-04-01

    This addendum to the Remedial Investigation (RI) Report on Bear Creek Valley Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. This addendum is a supplement to a document that was previously issued in January 1995 and that provided the Environmental Restoration Program with information about the results of the 1993 investigation performed at OU 2. The January 1995 D2 version of the RI Report on Bear Creek Valley OU 2 included information on risk assessments that have evaluated impacts to human health and the environment. Information provided in the document formed the basis for the development of the Feasibility Study Report. This addendum includes revisions to four chapters of information that were a part of the document issued in January 1995. Specifically, it includes revisions to Chaps. 2, 3, 4, and 9. Volume 1 of this document is not being reissued in its entirety as a D3 version because only the four chapters just mentioned have been affected by requested changes. Note also that Volume 2 of this RI Report on Bear Creek Valley OU 2 is not being reissued in conjunction with Volume 1 of this document because there have been no changes requested or made to the previously issued version of Volume 2 of this document.

  20. Superfund Record of Decision (EPA Region 8): Silver Bow Creek/Butte Area NPL site, Warm Springs Ponds Operable Unit, Upper Clark Fork River Basin, MT. (First remedial action), September 1990

    SciTech Connect

    Not Available

    1990-09-28

    The Silver Bow Creek site is a mining and processing area in the Upper Clark Fork River Basin, Deer Lodge County, Southwestern Montana. The Record of Decision (ROD) documents the selected interim remedial action for one of eleven operable units for the site, the Warm Springs Ponds operable unit, which covers approximately 2,500 acres just above the beginning of the Clark Fork River. Contamination at the site is the result of over 100 years of mining and process operations in the area. Mining, milling, and smelting waste were dumped directly into Silver Bow Creek and transported downstream to the Clark Fork River with final deposition downstream as far as 130 miles. Principal threats from the site include the possibility of pond berm failure due to flood and earthquake damage that could release millions of cubic yards of tailings and sediment to the river. Furthermore, the creeks are contaminated with dissolved metals, and exposed soil and tailings are contaminated with elevated levels of several metals. The primary contaminants of concern affecting the soil, sediment, ground water, and surface water are metals including arsenic, cadmium, copper, lead, and zinc.

  1. Addendum to the post-closure permit application for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: Walk-in pits. Revision 2

    SciTech Connect

    1995-04-01

    The revised Closure Plan was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits (WIPs) of the Bear Creek Burial Grounds (BCBG). However, a strategy was developed to include the B Area [a solid waste management unit (SWMU)] with the WIPs so that both areas would be closed under one cap. The plan was presented to the State of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. Therefore, in November 1992, the Closure Plan for B Area and the WIPs was prepared separately from that of the other sites associated with the BCBG and was presented in a RCRA Closure Plan. The Closure Plan revision issued April 1993 was intended to reflect the placement of the Kerr Hollow Quarry debris at the WIPs, revise the closure data, and acknowledge that the disposition of a monitoring well within the closure site could not be verified. A Post-Closure Permit Application (PCPA) was to include the WIPs; however, at the time of submittal, closure of the WIPs had not been certified. This addendum contains information on the WIPs to accompany the BCBG PCPA. The purpose of this document is to supplement the information provided in the BCBG PCPA. This document is not intended to be a stand-alone document. Only additional information regarding the WIPs is included in the sections of this document, which correspond to sections of the PCPA submitted in June 1994.

  2. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project Final Report 2000-2002.

    SciTech Connect

    Baxter, Jeremy; Baxter, James S.

    2002-12-01

    This report summarizes the third and final year of a bull trout (Salvelinus confluentus) enumeration project on Skookumchuck Creek in southeastern British Columbia. The fence and traps were operated from September 6th to October 11th 2002 in order to enumerate post-spawning bull trout. During the study period a total of 309 bull trout were captured at the fence. In total, 16 fish of undetermined sex, 114 males and 179 females were processed at the fence. Length and weight data, as well as recapture information, were collected for these fish. An additional 41 bull trout were enumerated upstream of the fence by snorkeling prior to fence removal. Coupled with the fence count, the total bull trout enumerated during the project was 350 individuals. Several fish that were tagged in the lower Bull River were recaptured in 2002, as were repeat and alternate year spawners previously enumerated in past years at the fence. A total of 149 bull trout redds were enumerated on the ground in 2002, of which 143 were in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past six years. The results of the three year project are summarized, and population characteristics are discussed.

  3. Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 2A, Analytical data packages September--October 1991 sampling

    SciTech Connect

    Haselow, L.A.; Rogers, V.A.; Riordan, C.J.; Eidson, G.W.; Herring, M.K.

    1992-08-01

    Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document is compiled solely of experimental data obtained from the sampling procedures.

  4. Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Not Available

    1993-08-01

    Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.

  5. Preliminary Thermal Modeling of Hi-Storm 100S-218 Version B Storage Modules at Hope Creek Nuclear Power Station ISFSI

    SciTech Connect

    Cuta, Judith M.; Adkins, Harold E.

    2013-08-30

    This report fulfills the M3 milestone M3FT-13PN0810022, Report on Inspection 1, under Work Package FT-13PN081002. Thermal analysis is being undertaken at Pacific Northwest National Laboratory (PNNL) in support of inspections of selected storage modules at various locations around the United States, as part of the Used Fuel Disposition Campaign of the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development. This report documents pre-inspection predictions of temperatures for four modules at the Hope Creek Nuclear Generating Station ISFSI that have been identified as candidates for inspection in late summer or early fall/winter of 2013. These are HI-STORM 100S-218 Version B modules storing BWR 8x8 fuel in MPC-68 canisters. The temperature predictions reported in this document were obtained with detailed COBRA-SFS models of these four storage systems, with the following boundary conditions and assumptions.

  6. Preliminary Thermal Modeling of HI-Storm 100S-218 Version B Storage Modules at Hope Creek Cuclear Power Station ISFSI

    SciTech Connect

    Cuta, Judith M.; Adkins, Harold E.

    2013-08-30

    As part of the Used Fuel Disposition Campaign of the U. S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development, a consortium of national laboratories and industry is performing visual inspections and temperature measurements of selected storage modules at various locations around the United States. This report documents thermal analyses in in support of the inspections at the Hope Creek Nuclear Generating Station ISFSI. This site utilizes the HI-STORM100 vertical storage system developed by Holtec International. This is a vertical storage module design, and the thermal models are being developed using COBRA-SFS (Michener, et al., 1987), a code developed by PNNL for thermal-hydraulic analyses of multi assembly spent fuel storage and transportation systems. This report describes the COBRA-SFS model in detail, and presents pre-inspection predictions of component temperatures and temperature distributions. The final report will include evaluation of inspection results, and if required, additional post-test calculations, with appropriate discussion of results.

  7. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    SciTech Connect

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  8. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect

    Not Available

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors.

  9. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee (January--December 1993)

    SciTech Connect

    Borders, D.M.; Frederick, B.J.; Reece, D.K.; McCalla, W.L.; Watts, J.A.; Ziegler, K.S.

    1994-10-01

    This report summarizes, for the 12-month period (January through December 1993), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data, an activity that contributes to the Site Investigations (SI) component of the ERP. This report provides and describes sources of hydrologic data for Environmental Restoration activities that use monitoring data to quantify and assess the impact from releases of contaminants from ORNL WAGs.

  10. Growth faulting and syntectonic casting of the Dawson Creek Graben Complex: A North American craton-marginal trough; Carboniferous-Permian Peace River Embayment, western Canada

    SciTech Connect

    Barclay, J.E.; Utting, J. ); Krause, F.F.; Campbell, R.I. )

    1991-06-01

    The Dawson Creek Graben Complex was a 150 {times} 300 km, craton-perpendicular trough near the western North American craton margin. Sedimentary infill spanned 100 million years, and this tectonically controlled basin provides a comparison with other craton-marginal troughs or aulacogens, such as the Big Snowy, Uinta, Delaware, and Southern Oklahoma. The authors suspect that the graben complex was controlled by outboard, Antler-like orogeny and perhaps some strike-slip control. This syntectonic graben infill model provides a basis for developing new structural-stratigraphic plays in this mature basin. This extensional trough rests on a former basement arch and is centered in the broadly downwarped Peace River embayment. Sediment infill records several graben casting stages beginning with westernmost down-dropping, which then extended eastward and was accompanied by an increase in growth-type block faulting. Subsidence and faulting decay was followed by a retreat to western areas and tectonic stabilization. The complex was an arcuate half-graben, steep to the north, that widened asymmetrically and increased in depth to the west through time. The complex contained a principal half-graben with neighboring satellite grabens; throughout the complex are numerous kilometer-scale horst and graben blocks. The horsts subsided slower than neighboring grabens. This differential subsidence along block-bounding syn- and postdepositional growth-type normal faults controlled formation and bed thickness, as did inter- and intraformational unconformities.

  11. KAUPUNI VILLAGE: A closer look at the first net-zero energy affordable housing community in Hawaii (Brochure), Hawaii Powered, Hawaii Clean Energy Initiative (HCEI)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    KAUPUNI VILLAGE: A closer look at the first net-zero energy affordable housing community in Hawai'i Hawai'i initiative embraces sustainability For more than a thousand years, native Hawai'ians practiced sustainability as a way of life. Deeply rooted in respect for the land, air, and water, these ancient cultural practices made this beautiful Pacific archipelago a bustling, self-sustainable community. Today the Hawai'ian Islands are still bustling but are far from being self-sustainable. In fact,

  12. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1996-08-01

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

  13. Environmental assessment for the natural fluctuation of water level in Par Pond and reduced water flow in Steel Creek below L-Lake at the Savannah River Site

    SciTech Connect

    1995-08-01

    The Savannah River Operations Office Strategic Plan directs Savannah River Site (SRS) to find ways to reduce operating costs, and to determine what site infrastructure must be maintained and what infrastructure is surplus. Because of the mission change, L-Lake, Par Pond, and the river water system are no longer needed to support current missions and therefore provide an opportunity for operating cost reduction. If SRS determines that L-Lake, Par Pond, and the river water system are no longer needed to support future missions and are considered surplus, appropriate NEPA documentation will be prepared. The purpose of the proposed action in this Environmental Assessment is to begin an examination of the need for the Site`s river water system by (1) developing data needed to evaluate the potential environmental impacts of further reducing or eliminating the flow demands from the Site`s river water system and; (2) evaluating the potential of reducing operating costs by allowing the water level in Par Pond to fluctuate naturally through reduced pumping. This action also includes reducing the current flow rates from L-Lake to Steel Creek to natural stream flows while maintaining full pool. The recently approved Par Pond CERCLA Interim Action Proposed Plan (IAPP) committed to evaluate in a NEPA document the environmental consequences of this proposed action. This document evaluated the remediation of human health and ecological risks associated with the three year drawdown of Par Pond. Should any of the parameters sampled in the reservoir and streams (e.g., water quality, biota, etc.) exceed established threshold levels during the implementation of the proposed action, water would again be pumped into the reservoir to minimize any impacts by bringing the water level back to an appropriate level about 58.2 m (195 ft).

  14. Y-12 Groundwater Protection Program Calendar Year 2000 Groundwater Monitoring Data Evaluation Report for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2001-09-01

    This report presents an evaluation of the groundwater and surface water monitoring data obtained during calendar year (CY) 2000 in the Bear Creek Hydrogeologic Regime (Bear Creek Regime). The Bear Creek Regime encompasses many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee (Figure A.1). Prepared by the Y-12 Groundwater Protection Program (GWPP), this report addresses applicable provisions of DOE Order 5400.1 (General Environmental Protection Program) that require: (1) an evaluation of the quantity and quality of groundwater and surface water in areas that are, or could be, affected by Y-12 operations, (2) an evaluation of groundwater and surface water quality in areas where contaminants from Y-12 operations are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) an evaluation of long-term trends in groundwater quality at Y-12. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1 (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). Illustrations (maps and trend graphs) are presented in Appendix A. Brief data summary tables referenced in each section are contained within the sections. Supplemental information and extensive data tables are provided in Appendix B.

  15. 2,"McGuire","Nuclear","Duke Energy Carolinas, LLC",2296.1 3,"Belews Creek","Coal","Duke Energy Carolinas, LLC",2220

    Energy Information Administration (EIA) (indexed site)

    Carolina" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Roxboro","Coal","Duke Energy Progress - (NC)",2439 2,"McGuire","Nuclear","Duke Energy Carolinas, LLC",2296.1 3,"Belews Creek","Coal","Duke Energy Carolinas, LLC",2220 4,"Marshall (NC)","Coal","Duke Energy Carolinas, LLC",2078

  16. Twenty-Plus Years of Environmental Change and Ecological Recovery of East Fork Poplar Creek: Background and Trends in Water Quality

    SciTech Connect

    Smith, John G; Stewart, Arthur J; Loar, James M

    2011-01-01

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water

  17. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 5: Appendix F -- Baseline human health risk assessment report

    SciTech Connect

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix F documents potential risks and provides information necessary for making remediation decisions. A quantitative analysis of the inorganic, organic, and radiological site-related contaminants found in various media is used to characterize the potential risks to human health associated with exposure to these contaminants.

  18. Post-closure permit application for the Upper East Fork Poplar Creek hydrogeologic regime at the Y-12 Plant: New Hope Pond and Eastern S-3 ponds plume. Revision 2

    SciTech Connect

    1995-02-01

    The intent of this Post-Closure, Permit Application (PCPA) is to satisfy the post-closure permitting requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-11. This application is for the entire Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is within the Bear Creek Valley (BCV). This PCPA has been prepared to include the entire East Fork Regime because, although there are numerous contaminant sources within the regime, the contaminant plumes throughout the East Fork Regime have coalesced and can no longer be distinguished as separate plumes. This PCPA focuses on two recognized Resource Conservation and Recovery Act (RCRA) interim status units: New Hope Pond (NHP) and the eastern S-3 Ponds plume. This PCPA presents data from groundwater assessment monitoring throughout the regime, performed since 1986. Using this data, this PCPA demonstrates that NHP is not a statistically discernible source of groundwater contaminants and that sites upgradient of NHP are the likely sources of groundwater contamination seen in the NHP vicinity. As such, this PCPA proposes a detection monitoring program to replace the current assessment monitoring program for NHP.

  19. Arsenic-related skin lesions and glutathione S-transferase P1 A1578G (lle105Val) polymorphism in two ethnic clans exposed to indoor combustion of high arsenic coal in one village

    SciTech Connect

    Lin, G.F.; Du, H.; Chen, J.G.; Lu, H.C.; Guo, W.C.; Meng, H.; Zhang, T.B.; Zhang, X.J.; Lu, D.R.; Golka, K.; Shen, J.H. [Chinese Academy of Sciences, Shanghai (China)

    2006-12-15

    A total of 2402 patients with arsenic-related skin lesions, such as hyperkeratosis, hyperpigmentation or hypopigmentation, or even skin cancer in a few villages in Southwest Guizhou Autonomous Prefecture, China represent a unique case of endemic arsenism related with indoor combustion of high arsenic coal. This study aimed to investigate the cluster of arsenism cases and the possible relevant factors including GSTP1 polymorphism in two clans of different ethnic origin living in one village for generations. Arsenism morbidity in Miao clan P was significantly lower than in the neighbouring Han clan G1 (5.9 vs. 32.7%, odds ratio (OR)=0.13, 95% confidence interval (CI): 0.06-0.27, P < 0.0001). No sex differences were confirmed inside both clans. Analyses of the environmental samples indicated that Miao clan P members were exposed to higher amounts of arsenic via inhalation and food ingestion. Hair and urine samples also proved a higher arsenic body burden in ethnic Miao individuals. No corresponding differences by sex were found. Higher frequencies of combined mutant genotype G/G1578 and A/G1578 (OR=4.72, 95% CI: 2.34-9.54, P < 0.0001) and of mutant allele G1578 (OR=3.22, 95% CI: 2.00-5.18, P < 0.0001) were detected in diagnosed arsenism patients than in non-diseased individuals. The Miao individuals showed a lower percentage of combined mutant genotypes (30.6 vs. 52.7%, OR=0.40, 95% CI: 0.19-0.84, P=0.015) as well as of mutant allele G1578 (OR=0.46, 95% CI: 0.24-0.88, P=0.017) than their Han neighbours. Conclusions Genetic predisposition influences dermal arsenism toxicity. The GSTP1 A1578G (IIe105Val) status might be a susceptibility factor for arsenic-related skin lesions.

  20. Pigeon Creek | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Adams Electric Cooperative Developer Adams Electric Cooperative Energy Purchaser Adams...

  1. Panther Creek | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Construction Owner Affinity WindSuzlon Energy Limited Developer Surity Wind Location Pike County IL Coordinates 39.607275, -90.85556 Show Map Loading map......

  2. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Not Available

    1993-05-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

  3. Proposed modifications to the RCRA post-closure permit for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1997-05-01

    This report presents proposed modifications to the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (permit number TNHW-088, EPA ID No. TN3 89 009 0001). The modifications are proposed to: (1) revise the current text for two of the Permit Conditions included in Permit Section II - General Facility Conditions, and (2) update the PCP with revised versions of the Y-12 Plant Groundwater Protection Program (GWPP) technical field procedures included in several of the Permit Attachments. The updated field procedures and editorial revisions are Class 1 permit modifications, as specified in Title 40, Code of Federal Regulations (CFR) {section}270.42; Appendix I - Classification of Permit Modifications. These modifications are summarized below.

  4. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA; FOR CALENDAR YEAR 2005

    SciTech Connect

    2006-04-01

    Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U. S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites CAS 58-09-02, Mud Pit and 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits 9, an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action. Quarterly post-closure inspections are performed at the CASs that were closed in place at UC-I, UC-3, and UC-4. During calendar year 2005, site inspections were performed on March 15, June 16, September 22, and December 7. The inspections conducted at the UC-1 CMP documented that the site was in good condition and continued to show integrity of the cover unit. No new cracks or fractures were observed until the December inspection. A crack on the west portion of the cover showed evidence of lateral expansion; however, it is not at an actionable level. The crack will be sealed by filling with

  5. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report

    SciTech Connect

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

  6. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    SciTech Connect

    Not Available

    1994-02-01

    This report contains groundwater quality data obtained during the 1993 calendar year (CY) at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the East Fork Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with the Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  7. Animal Farm Powers Village | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Area Agriculture, Energy Efficiency - Central Plant, Economic Development, Renewable Energy, Biomass - Anaerobic Digestion, Biomass, Biomass - Waste To Energy Phase Develop...

  8. Port Graham Village - Biomass Feasibility Study

    Office of Environmental Management (EM)

    ... Fish Oil Options * Biodiesel - Small or transportation applications (must comply with ASTM ... Fish Oil * Considered only straight fish oil because of the economics of biodiesel. * ...

  9. Port Graham Village - Biomass Feasibility Study

    Office of Environmental Management (EM)

    ... 13- 17% on a higher heating value basis Potential technologies and Options- -Biodiesel * Biodiesel - Cannery can be modified to create fish oil biodiesel - Can use either form ...

  10. Alaska Village Initiatives Rural Small Business Conference

    Energy.gov [DOE]

    The Alaska Rural Business Conference brings together rural businesses and leaders to provide them with networking opportunities, trainings, and technical information.

  11. Organized Village of Kasaan- 2011 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The overall goal of this project is to create a Tribal Energy Action Plan that will serve as the tribe's blueprint for creating long-term energy self-sufficiency.

  12. E Village LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Michigan Zip: 49440 Sector: Solar, Wind energy Product: Manufacturer of integrated batterysolarwind products for commercial and residential markets. Coordinates: 43.23424,...

  13. Financing renewable energy for Village Power application

    SciTech Connect

    Santibanez-Yeneza, G.

    1997-12-01

    When one talks of rural development, no doubt, the issue of rural energy is not far behind. As a significant component of any development strategy, rural energy is seen as the engine for growth that can bring about economic upliftment in the countryside. Many approaches to rural energy development have been tried. These approaches differ from country to country. But regardless of structure and approach, the goal remain essentially the same: to provide rural communities access to reliable energy services at affordable prices. In recent years, as global concern for the environment has increased, many governments have turned to renewable energy as a more environment friendly alternative to rural electrification. Technological advances in renewable energy application has helped to encourage this use. System reliability has improved, development costs have, to some extent been brought down and varied application approaches have been tried and tested in many areas. Indeed, there is huge potential for the development of renewable energy in the rural areas of most developing countries. At the rural level, renewable energy resources are almost always abundantly available: woodwaste, agricultural residues, animal waste, small-scale hydro, wind, solar and even sometimes geothermal resources. Since smaller scale systems are usually expected in these areas, renewable energy technologies can very well serve as decentralized energy systems for rural application. And not only for rural applications, new expansion planning paradigms have likewise led to the emergence of decentralized energy systems not only as supply options but also as corrective measures for maintaining end of line voltage levels. On the other hand, where renewable energy resource can provide significant blocks of power, they can be relied upon to provide indigenous power to the grids.

  14. Native Village of Chignik- 1995 Project

    Energy.gov [DOE]

    Chignik Lagoon is located on the south shore of the Alaska Peninsula, 5.5 miles west of Chignik. It lies at approximately 56 degrees 20 minutes north latitude, 158 degrees 29 minutes west longitude.

  15. Alaska Native Villages | Department of Energy

    Office of Environmental Management (EM)

    with resources, technical assistance, skills, and analytical tools needed to develop sustainable energy strategies and implement viable solutions to community energy...

  16. NAKE'MUU: VILLAGE ON THE EDGE

    SciTech Connect

    B. VIERRA; ET AL

    2001-02-01

    Pursuant to federal requirements under the National Environmental Policy Act, in 1996 the Department of Energy (DOE) completed an environmental impact statement, record of decision, and mitigation action plan (MAP) for the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility. DARHT is a new explosives testing facility located at TA-15, Los Alamos National Laboratory (LANL). As part of the implementation of the MAP, the ESH-20 Cultural Resources Team at LANL is conducting a long-term monitoring program at the ancestral pueblo site of Nake'muu (LA 12655). DOE considers the monitoring program to be an appropriate and necessary mitigation for the potential operational impacts associated with the DARHT Facility. This chapter presents the preliminary findings of the monitoring program from 1997 through 2000. The Nake'muu site monitoring program was initiated by ESH-20 and the Mesa Verde Architectural Team, National Park Service (NPS) in 1997. Archaeologists from LANL and NPS have completed the detailed recording of all the walls at Nake'muu and the final site evaluation plan was finished in 1998 (Nordby et al. 1998). The plan describes the methods used for site monitoring, continued site revisits, and updates on wall condition by LANL archaeologists. The primary objective of the monitoring program is to identify and evaluate the long-term effects of the ambient environment and DARHT Facility operations on the architecture at Nake'muu. Is the dynamic-testing program affecting the site, and if so, to what degree? What are the short-term and long-term implications of facility operations?

  17. Latest in Village Scale Clean Energy Technology

    Office of Environmental Management (EM)

    ... * Generally calculated on monthly or annual basis * Total energy savings * Loading on ... Power Wind n Penetratio ous Instantane (kWh) Demand Energy Primary (kWh) Produced ...

  18. Crane Creek Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GEA Development Phase: Coordinates: 44.3064, -116.7447 Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp:...

  19. Reedy Creek Improvement Dist | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  20. Forest Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & RenewablesRGI Energy Purchaser Luminant Location...

  1. Stony Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate and Renewables Developer E.ON Climate and Renewables Location Somerset County PA Coordinates...

  2. Trout Creek Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and Environmental Issues Click "Edit With Form" above to add content Exploration History First Discovery Well Completion Date: Well Name: Location: Depth: Initial Flow...

  3. Eva Creek Wind Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Status In Service Owner Golden Valley Electric Association Developer Golden Valley Electric Association Energy Purchaser Golden Valley Electric Association Location NE...

  4. Bear Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown owns majority Developer CEI Iberdrola Energy Purchaser PPL Corp. Location Near Bear...

  5. Elm Creek II | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Location Jackson and Martin County MN Coordinates 43.756372, -94.956014 Show Map Loading map......

  6. Crane Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EnXco Energy Purchaser Wisconsin P ublic Service Group Location Northeast of Riceville IA Coordinates 43.410108, -92.51652 Show Map Loading map... "minzoom":false,"mappingse...

  7. Cobb Creek Geothermal Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    processes (afday) Daily Operation Water Use (afday) Well Field Water Use (afday) Cooling Tower Water use (annual average) (afday) Cooling Tower Water use (summer average) (af...

  8. Papalote Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Energy Purchaser CPS San Antonio Location San Patricio County TX Coordinates 27.925458,...

  9. Elm Creek Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Great River Energy Location MN Coordinates 43.780285, -94.845586 Show Map Loading map......

  10. Granite Creek Geothermal Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    "address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Red House, CA County Humboldt County, CA Geothermal Area Geothermal Region Geothermal...

  11. Fermilab | Tritium at Fermilab | Ferry Creek Results

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    has been taken and analyzed. For samples in which a level of tritium above the limit of detection has been measured, the uncertainty of the measurement is indicated by an error...

  12. Separation Creek Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  13. Cherry Creek Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    100C373.15 K 212 F 671.67 R 1 USGS Estimated Reservoir Volume: 1 km 1 USGS Mean Capacity: 4.5 MW 1 Click "Edit With Form" above to add content History and...

  14. Clear Creek Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    100C373.15 K 212 F 671.67 R 1 USGS Estimated Reservoir Volume: 2 km 1 USGS Mean Capacity: 5 MW 1 Click "Edit With Form" above to add content History and...

  15. Lava Creek Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    100C373.15 K 212 F 671.67 R 1 USGS Estimated Reservoir Volume: 2 km 1 USGS Mean Capacity: 5 MW 1 Click "Edit With Form" above to add content History and...

  16. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    SciTech Connect

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  17. Interior Regional Housing Authority - A Step Toward Conservation for Interior Alaska Tribes

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    I nterior nterior R R egional egional H H ousing ousing A A uthority uthority Tiffany Simmons 800-478-4742 828 27 th Ave. Fairbanks, AK 99701 "A Step Towards Conservation for Interior Alaska Tribes" Hughes, Huslia, Allakaket and Birch Creek 1 1 IRHA is the Tribally Designated Housing Entity IRHA is the Tribally Designated Housing Entity (TDHE) for 29 of the 34 tribes in the Tanana (TDHE) for 29 of the 34 tribes in the Tanana Chiefs/Doyon Region. Chiefs/Doyon Region. 2 IRHA & Energy

  18. Village of Eldorado, Ohio (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    861 Data Utility Id 5752 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes This article is a...

  19. Village of Greenport, New York (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: New York Phone Number: (631) 477-0248 Website: villageofgreenport.org Twitter: https:twitter.comVOGClerk Outage Hotline: (631) 477-0172 References: EIA Form...

  20. Native Village of Perryville, Alaska (Utility Company) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Phone Number: (907) 853-2203 or (907) 853-2300 or (907) 248-0243 Website: www.swamc.orghtmlsouthwest-a Outage Hotline: (907) 853-2203 or (907) 853-2300 or (907) 248-0243...