National Library of Energy BETA

Sample records for biomass scenario model

  1. Biomass Scenario Model Scenario Library: Definitions, Construction...

    Office of Scientific and Technical Information (OSTI)

    Definitions, Construction, and Description Citation Details In-Document Search Title: Biomass Scenario Model Scenario Library: Definitions, Construction, and Description ...

  2. Biomass Scenario Model

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Scenario Model 24 March 2015 BETO Analysis Platform Peer Review Brian Bush National Renewable Energy Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information 3 Government Policies Analysis Implications Inclusion decisions/scope Marketplace Structure Producer/Consumer exchanges Investment Financial decisions Input Scenarios Feedstock demand Oil prices Learning curves Evolution of Supply Chain for Biofuels Goals and Objectives *

  3. Biomass Scenario Model

    SciTech Connect (OSTI)

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  4. Biomass Scenario Model Scenario Library: Definitions, Construction...

    Office of Scientific and Technical Information (OSTI)

    S. 09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; 29 ENERGY PLANNING, POLICY AND ECONOMY BIOMASS; BIOFUEL; BSM; SYSTEM DYNAMICS; BIOFUEL INCENTIVES; SCENARIOS; Bioenergy;...

  5. Biomass Scenario Model Scenario Library: Definitions, Construction, and

    Office of Scientific and Technical Information (OSTI)

    Description (Technical Report) | SciTech Connect Biomass Scenario Model Scenario Library: Definitions, Construction, and Description Citation Details In-Document Search Title: Biomass Scenario Model Scenario Library: Definitions, Construction, and Description Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to

  6. NREL: Energy Analysis - BSM: Biomass Scenario Model

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    BSM - Biomass Scenario Model Energy Analysis The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art, dynamic model of the domestic biofuels supply chain. BSM explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. BSM uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain. The model

  7. Biomass Scenario Model Scenario Library: Definitions, Construction, and Description

    SciTech Connect (OSTI)

    Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.

    2014-04-01

    Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses. The purpose of this report is to describe the scenarios that comprise the BSM scenario library. At present, we have the following policy-focused scenarios in our library: minimal policies, ethanol-focused policies, equal access to policies, output-focused policies, technological diversity focused, and the point-of-production- focused. This report describes each scenario, its policy settings, and general insights gained through use of the scenarios in analytic studies.

  8. Biomass Scenario Model Documentation: Data and References Lin...

    Office of Scientific and Technical Information (OSTI)

    Documentation: Data and References Lin, Y.; Newes, E.; Bush, B.; Peterson, S.; Stright, D. 09 BIOMASS FUELS BIOMASS SCENARIO MODEL; BSM; BIOMASS; BIOFUEL; MODEL; DATA; REFERENCES;...

  9. Overview of the Biomass Scenario Model

    SciTech Connect (OSTI)

    Peterson, Steve

    2015-09-01

    This report describes the structure of the October 2012 version of the Biomass Scenario Model (BSM) in considerable detail, oriented towards readers with a background or interest in the underlying modeling structures. Readers seeking a less-detailed summary of the BSM may refer to Peterson (2013). BSM aims to provide a framework for exploring the potential contribution of biofuel technologies to the transportation energy supply for the United States over the next several decades. The model has evolved significantly from the prototype developed as part of the Role of Biomass in America" tm s Energy Future (RBAEF) project. BSM represents the supply chain surrounding conversion pathways for multiple fuel products, including ethanol, butanol, and infrastructure-compatible biofuels such as diesel, jet fuel, and gasoline.

  10. Biomass Scenario Model Documentation: Data and References

    SciTech Connect (OSTI)

    Lin, Y.; Newes, E.; Bush, B.; Peterson, S.; Stright, D.

    2013-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for initialization and calibration are well-characterized. It has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values. Most of the main data sources that feed into the model are recognized as baseline values by the industry. This report documents data sources and references in Version 2 of the BSM (BSM2), which only contains the ethanol pathway, although subsequent versions of the BSM contain multiple conversion pathways. The BSM2 contains over 12,000 total input values, with 506 distinct variables. Many of the variables are opportunities for the user to define scenarios, while others are simply used to initialize a stock, such as the initial number of biorefineries. However, around 35% of the distinct variables are defined by external sources, such as models or reports. The focus of this report is to provide insight into which sources are most influential in each area of the supply chain.

  11. Biomass Scenario Model Documentation: Data and References (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: Biomass Scenario Model Documentation: Data and References Citation Details In-Document Search Title: Biomass Scenario Model Documentation: Data and References The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for

  12. Biomass Scenario Model | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    National Renewable Energy Laboratory Partner: Department of Energy (DOE) Office of the Biomass Program Sector: Energy Focus Area: Biomass Phase: Determine Baseline Topics:...

  13. Overview of the Biomass Scenario Model

    SciTech Connect (OSTI)

    Peterson, S.; Peck, C.; Stright, D.; Newes, E.; Inman, D.; Vimmerstedt, L.; Hsu, S.; Bush, B.

    2015-02-01

    Biofuels are promoted in the United States through legislation, as one part of an overall strategy to lessen dependence on imported energy as well as to reduce the emissions of greenhouse gases (Office of the Biomass Program and Energy Efficiency and Renewable Energy, 2008). For example, the Energy Independence and Security Act of 2007 (EISA) mandates 36 billion gallons of renewable liquid transportation fuel in the U.S. marketplace by the year 2022 (U.S. Government, 2007). Meeting the volumetric targets has prompted an unprecedented increase in funding for biofuels research, much of it focused on producing ethanol and other fuel types from cellulosic feedstocks as well as additional biomass sources (such as oil seeds and algae feedstock). In order to help propel the biofuels industry, the U.S. government has enacted a variety of incentive programs (including subsidies, fixed capital investment grants, loan guarantees, vehicle choice credits, and corporate average fuel economy standards) -- the short-and long-term ramifications of which are not well understood. Efforts to better understand the impacts of incentive strategies can help policy makers to develop a policy suite which will foster industry development while reducing the financial risk associated with government support of the nascent biofuels industry.

  14. Biomass Scenario Model (Fact Sheet), NREL (National Renewable...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain that explicitly focuses on policy issues, their feasibility, and their...

  15. Biomass Scenario Model: BETO Analysis Platform Peer Review; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Bush, B.

    2015-03-23

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art fourth-generation model of the domestic bioenergy supply chain which explicitly focuses on policy issues and their potential side effects. It integrates resource availability, behavior, policy, and physical, technological, and economic constraints. The BSM uses system-dynamics simulation to model dynamic interactions across the supply chain; it tracks the deployment of biofuels given technological development and the reaction of the investment community to those technologies in the context of land availability, the competing oil market, consumer demand for biofuels, and government policies over time. It places a strong emphasis on the behavior and decision-making of various economic agents. The model treats the major infrastructure-compatible fuels. Scenario analysis based on the BSM shows that the biofuels industry tends not to rapidly thrive without significant external actions in the early years of its evolution. An initial focus for jumpstarting the industry typically has strongest results in the BSM in areas where effects of intervention have been identified to be multiplicative. In general, we find that policies which are coordinated across the whole supply chain have significant impact in fostering the growth of the biofuels industry and that the production of tens of billions of gallons of biofuels may occur under sufficiently favorable conditions.

  16. Biomass Scenario Model Scenario Library: Definitions, Construction...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  17. Biomass-to-Bioenergy Supply-Chain Scenario Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass-to-Bioenergy Supply- Chain Scenario Analysis 21 May 2013 BETO Analysis Platform Peer Review Brian Bush National Renewable Energy Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information 3 Government Policies Analysis Implications Inclusion decisions/scope Marketplace Structure Producer/Consumer exchanges Investment Financial decisions Input Scenarios Feedstock demand Oil prices Learning curves Evolution of Supply Chain for Biofuels

  18. Biomass Feedstock Supply Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6, 2015 Feedstock Supply and Logistics PI: Erin Webb Shahab Sokhansanj Michael Hilliard Craig Brandt Anthony Turhollow Oak Ridge National Laboratory 1.2.3.1 Biomass Feedstock Supply Modeling 2 | Bioenergy Technologies Office Perform experiments to test equipment designs and supply chain configurations Characterize impacts of variability and uncertainty Identify risk-reduction strategies Optimize feedstock supply logistics Goal Statement Build and apply simulations of biomass supply chains

  19. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  20. Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results This presentation by ...

  1. Integrated Market Modeling of Hydrogen Transition Scenarios with...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans Presentation by Paul Leiby of Oak ...

  2. Hydrogen Delivery Scenario Analysis Model (HDSAM)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Scenario Analysis Model (HDSAM) (Argonne National Laboratory) Objectives Provide platform for comparing the cost of alternative hydrogen delivery and refueling options. Identify cost drivers of current hydrogen delivery and refueling technologies for various market penetrations of fuel cell electric vehicles (FCEVs). Key Attributes & Strengths The tool is highly flexible, allowing end users the ability to change many detailed input assumptions and to perform sensitivity analyses. HDSAM

  3. Category:Biomass | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCategory:Biomass&oldid382520" Feedback Contact needs updating Image needs updating Reference...

  4. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect (OSTI)

    Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

    2000-01-28

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

  5. H2A Delivery Scenario Model and Analyses

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    H2A Delivery Scenario Model and Analyses Marianne Mintz and Jerry Gillette DOE Hydrogen Delivery Analysis and High Pressure Tanks R&D Project Review Meeting February 8, 2005 2 Pioneering Science and Technology Office of Science U.S. Department of Energy Topics * Delivery Scenarios - Current status - Future scenarios * Delivery Scenarios model - Approach - Structure - Current status - Results * Pipeline modeling - Approach - Key assumptions - Results * Next Steps 3 Pioneering Science and

  6. Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Results | Department of Energy Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results This presentation by Amgad Elgowainy of Argonne National Laboratory was given at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007. deliv_analysis_elgowainy.pdf (449.02 KB) More Documents & Publications Hydrogen Delivery Analysis Models H2A Delivery Scenario Model and Analyses

  7. Predictive RANS simulations via Bayesian Model-Scenario Averaging

    SciTech Connect (OSTI)

    Edeling, W.N.; Cinnella, P.; Dwight, R.P.

    2014-10-15

    The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier–Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.

  8. Biomass Scenario Model Documentation: Data and References (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  9. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent

  10. Scenario Evaluation and Regionalization Analysis (SERA) Model

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Evaluation and Regionalization Analysis (SERA) Model (National Renewable Energy Laboratory) Objectives Determine optimal regional infrastructure development patterns for hydrogen and other transportation fuels, given resource availability and technology cost estimates. Geospatially and temporally resolve the expansion of production, transmission, and distribution infrastructure components. Identify and characterize niche markets and synergies related to refueling station placement and early fuel

  11. Methods for Developing Emissions Scenarios for Integrated Assessment Models

    SciTech Connect (OSTI)

    Prinn, Ronald; Webster, Mort

    2007-08-20

    The overall objective of this research was to contribute data and methods to support the future development of new emissions scenarios for integrated assessment of climate change. Specifically, this research had two main objectives: 1. Use historical data on economic growth and energy efficiency changes, and develop probability density functions (PDFs) for the appropriate parameters for two or three commonly used integrated assessment models. 2. Using the parameter distributions developed through the first task and previous work, we will develop methods of designing multi-gas emission scenarios that usefully span the joint uncertainty space in a small number of scenarios. Results on the autonomous energy efficiency improvement (AEEI) parameter are summarized, an uncertainty analysis of elasticities of substitution is described, and the probabilistic emissions scenario approach is presented.

  12. A Multi-Objective, Hub-and-Spoke Supply Chain Design Model for Densified Biomass

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Md. S. Roni; Kara G. Cafferty; Sandra D. Eksioglu

    2014-06-01

    In this paper we propose a model to design the supply chain for densified biomass. Rail is typically used for longhaul, high-volume shipment of densified biomass. This is the reason why a hub-and-spoke network structure is used to model this supply chain. The model is formulated as a multi-objective, mixed-integer programing problem under economic, environmental, and social criteria. The goal is to identify the feasibility of meeting the Renewable Fuel Standard (RFS) by using biomass for production of cellulosic ethanol. The focus is not just on the costs associated with meeting these standards, but also exploring the social and environmental benefits that biomass production and processing offers by creating new jobs and reducing greenhouse gas (GHG) emissions. We develop an augmented ?-constraint method to find the exact Pareto solution to this optimization problem. We develop a case study using data from the Mid-West. The model identifies the number, capacity and location of biorefineries needed to make use of the biomass available in the region. The model estimates the delivery cost of cellulosic ethanol under different scenario, the number new jobs created and the GHG emission reductions in the supply chain.

  13. A Multi-Objective, Hub-and-Spoke Supply Chain Design Model For Densified Biomass

    SciTech Connect (OSTI)

    Md S. Roni; Sandra Eksioglu; Kara G. Cafferty

    2014-06-01

    In this paper we propose a model to design the supply chain for densified biomass. Rail is typically used for long-haul, high-volume shipment of densified biomass. This is the reason why a hub-and-spoke network structure is used to model this supply chain. The model is formulated as a multi-objective, mixed-integer programing problem under economic, environmental, and social criteria. The goal is to identify the feasibility of meeting the Renewable Fuel Standard (RFS) by using biomass for production of cellulosic ethanol. The focus in not just on the costs associated with meeting these standards, but also exploring the social and environmental benefits that biomass production and processing offers by creating new jobs and reducing greenhouse gas (GHG) emissions. We develop an augmented ?-constraint method to find the exact Pareto solution to this optimization problem. We develop a case study using data from the Mid-West. The model identifies the number, capacity and location of biorefineries needed to make use of the biomass available in the region. The model estimates the delivery cost of cellulosic ethanol under different scenario, the number new jobs created and the GHG emission reductions in the supply chain.

  14. Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Improvements to Hydrogen Delivery Scenario Analysis Model (HDSAM) and Results May 8, 2007 Amgad Elgowainy Argonne National Laboratory Comparison of Delivery Pathways- V1.0 vs. V2.0 2 1 3 i delivery by a Loading, the plant Version 1.0 character zed components for 3 pathways with single mode. conditioning and storage are at or adjacent to Liquid Hydrogen (LH) Truck H2 Production 100 or 1500 kg/d Compressed H2 (CH) Truck H2 Production 3 or 7 kpsi 100 or 1500 kg/d H2 Production Gaseous H2 Pipeline

  15. Methodology Using MELCOR Code to Model Proposed Hazard Scenario

    SciTech Connect (OSTI)

    Gavin Hawkley

    2010-07-01

    This study demonstrates a methodology for using the MELCOR code to model a proposed hazard scenario within a building containing radioactive powder, and the subsequent evaluation of a leak path factor (LPF) (or the amount of respirable material which that escapes a facility into the outside environment), implicit in the scenario. This LPF evaluation will analyzes the basis and applicability of an assumed standard multiplication of 0.5 × 0.5 (in which 0.5 represents the amount of material assumed to leave one area and enter another), for calculating an LPF value. The outside release is dependsent upon the ventilation/filtration system, both filtered and un-filtered, and from other pathways from the building, such as doorways (, both open and closed). This study is presents ed to show how the multiple leak path factorsLPFs from the interior building can be evaluated in a combinatory process in which a total leak path factorLPF is calculated, thus addressing the assumed multiplication, and allowing for the designation and assessment of a respirable source term (ST) for later consequence analysis, in which: the propagation of material released into the environmental atmosphere can be modeled and the dose received by a receptor placed downwind can be estimated and the distance adjusted to maintains such exposures as low as reasonably achievableALARA.. Also, this study will briefly addresses particle characteristics thatwhich affect atmospheric particle dispersion, and compares this dispersion with leak path factorLPF methodology.

  16. Integrated Market Modeling of Hydrogen Transition Scenarios with...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Production Delivery Forecourt Centralized SMR Coal Gasification Biomass, etc. Forecourt SMR Forecourt Electrolysis Many ...

  17. Scenario Jedi

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document summarizes an overview of the Scenario Solar PV Jobs and Economic Development Impact (JEDI) Model work.

  18. Technical Manual for the SAM Biomass Power Generation Model

    SciTech Connect (OSTI)

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  19. H2A Delivery Scenario Model and Analyses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Scenario Model and Analyses H2A Delivery Scenario Model and Analyses Presentation on H2A Delivery Scenario Model and Analysis for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory 06_mintz_gillette_h2a.pdf (2.89 MB) More Documents & Publications H2A Delivery Models and Results H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report Hydrogen

  20. Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans Integrated Market Modeling of Hydrogen Transition Scenarios with HyTrans Presentation by Paul Leiby of Oak Ridge National Laboratory at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 deliv_analysis_leiby.pdf (740.06 KB) More Documents & Publications DOE Hydrogen Transition Analysis Workshop Hydrogen Policy and Analyzing the Transition Hydrogen Transition Study

  1. Process Design Report for Wood Feedstock: Lignocellulosic Biomass to Ethanol Process Desing and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios

    SciTech Connect (OSTI)

    Wooley, Robert; Ruth, Mark; Sheehan, John; Ibsen, Kelly; Majdeski, Henry; Galves, Adrian

    1999-07-01

    The National Renewable Energy Laboratory (NREL) has undertaken a complete review and update of the process design and economic model for the biomass-to-ethanol process based on co-current dilute acid prehydrolysis, along with simultaneous saccharification (enzymatic) and co-fermentation. The process design includes the core technologies being researched by the U.S. Department of Energy (DOE): prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production.

  2. Future climate change under RCP emission scenarios with GISS ModelE2

    DOE PAGES-Beta [OSTI]

    Nazarenko, L.; Schmidt, G. A.; Miller, R. L.; Tausnev, N.; Kelley, M.; Ruedy, R.; Russell, G. L.; Aleinov, I.; Bauer, M.; Bauer, S.; et al

    2015-02-24

    We examine the anthropogenically forced climate response for the 21st century representative concentration pathway (RCP) emission scenarios and their extensions for the period 2101–2500. The experiments were performed with ModelE2, a new version of the NASA Goddard Institute for Space Sciences (GISS) coupled general circulation model that includes three different versions for the atmospheric composition components: a noninteractive version (NINT) with prescribed composition and a tuned aerosol indirect effect (AIE), the TCAD version with fully interactive aerosols, whole-atmosphere chemistry, and the tuned AIE, and the TCADI version which further includes a parameterized first indirect aerosol effect on clouds. Each atmosphericmore » version is coupled to two different ocean general circulation models: the Russell ocean model (GISS-E2-R) and HYCOM (GISS-E2-H). By 2100, global mean warming in the RCP scenarios ranges from 1.0 to 4.5° C relative to 1850–1860 mean temperature in the historical simulations. In the RCP2.6 scenario, the surface warming in all simulations stays below a 2 °C threshold at the end of the 21st century. For RCP8.5, the range is 3.5–4.5° C at 2100. Decadally averaged sea ice area changes are highly correlated to global mean surface air temperature anomalies and show steep declines in both hemispheres, with a larger sensitivity during winter months. By the year 2500, there are complete recoveries of the globally averaged surface air temperature for all versions of the GISS climate model in the low-forcing scenario RCP2.6. TCADI simulations show enhanced warming due to greater sensitivity to CO₂, aerosol effects, and greater methane feedbacks, and recovery is much slower in RCP2.6 than with the NINT and TCAD versions. All coupled models have decreases in the Atlantic overturning stream function by 2100. In RCP2.6, there is a complete recovery of the Atlantic overturning stream function by the year 2500 while with scenario RCP8.5, the

  3. Future climate change under RCP emission scenarios with GISS ModelE2

    SciTech Connect (OSTI)

    Nazarenko, L.; Schmidt, G. A.; Miller, R. L.; Tausnev, N.; Kelley, M.; Ruedy, R.; Russell, G. L.; Aleinov, I.; Bauer, M.; Bauer, S.; Bleck, R.; Canuto, V.; Cheng, Y.; Clune, T. L.; Del Genio, A. D.; Faluvegi, G.; Hansen, J. E.; Healy, R. J.; Kiang, N. Y.; Koch, D.; Lacis, A. A.; LeGrande, A. N.; Lerner, J.; Lo, K. K.; Menon, S.; Oinas, V.; Perlwitz, J.; Puma, M. J.; Rind, D.; Romanou, A.; Sato, M.; Shindell, D. T.; Sun, S.; Tsigaridis, K.; Unger, N.; Voulgarakis, A.; Yao, M. -S.; Zhang, Jinlun

    2015-02-24

    We examine the anthropogenically forced climate response for the 21st century representative concentration pathway (RCP) emission scenarios and their extensions for the period 2101–2500. The experiments were performed with ModelE2, a new version of the NASA Goddard Institute for Space Sciences (GISS) coupled general circulation model that includes three different versions for the atmospheric composition components: a noninteractive version (NINT) with prescribed composition and a tuned aerosol indirect effect (AIE), the TCAD version with fully interactive aerosols, whole-atmosphere chemistry, and the tuned AIE, and the TCADI version which further includes a parameterized first indirect aerosol effect on clouds. Each atmospheric version is coupled to two different ocean general circulation models: the Russell ocean model (GISS-E2-R) and HYCOM (GISS-E2-H). By 2100, global mean warming in the RCP scenarios ranges from 1.0 to 4.5° C relative to 1850–1860 mean temperature in the historical simulations. In the RCP2.6 scenario, the surface warming in all simulations stays below a 2 °C threshold at the end of the 21st century. For RCP8.5, the range is 3.5–4.5° C at 2100. Decadally averaged sea ice area changes are highly correlated to global mean surface air temperature anomalies and show steep declines in both hemispheres, with a larger sensitivity during winter months. By the year 2500, there are complete recoveries of the globally averaged surface air temperature for all versions of the GISS climate model in the low-forcing scenario RCP2.6. TCADI simulations show enhanced warming due to greater sensitivity to CO₂, aerosol effects, and greater methane feedbacks, and recovery is much slower in RCP2.6 than with the NINT and TCAD versions. All coupled models have decreases in the Atlantic overturning stream function by 2100. In RCP2.6, there is a complete recovery of the Atlantic overturning stream function by the year 2500 while with scenario RCP8.5, the E2-R

  4. New NIR Calibration Models Speed Biomass Composition and Reactivity Characterization

    SciTech Connect (OSTI)

    2015-09-01

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. This highlight describes NREL's work to use near-infrared (NIR) spectroscopy and partial least squares multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  5. LWR codes capability to address SFR BDBA scenarios: Modeling of the ABCOVE tests

    SciTech Connect (OSTI)

    Herranz, L. E.; Garcia, M.; Morandi, S.

    2012-07-01

    The sound background built-up in LWR source term analysis in case of a severe accident, make it worth to check the capability of LWR safety analysis codes to model accident SFR scenarios, at least in some areas. This paper gives a snapshot of such predictability in the area of aerosol behavior in containment. To do so, the AB-5 test of the ABCOVE program has been modeled with 3 LWR codes: ASTEC, ECART and MELCOR. Through the search of a best estimate scenario and its comparison to data, it is concluded that even in the specific case of in-containment aerosol behavior, some enhancements would be needed in the LWR codes and/or their application, particularly with respect to consideration of particle shape. Nonetheless, much of the modeling presently embodied in LWR codes might be applicable to SFR scenarios. These conclusions should be seen as preliminary as long as comparisons are not extended to more experimental scenarios. (authors)

  6. Fuel dispersal modeling for aircraft-runway impact scenarios

    SciTech Connect (OSTI)

    Tieszen, S.R.

    1995-11-01

    A fuel dispersal model for C-141 transport accidents was developed for the Defense Nuclear Agency`s Fuel Fire Technology Base Program to support Weapon System Safety Assessments. The spectrum of accidents resulting from aircraft impact on a runway was divided into three fuel dispersal regimes: low, intermediate, and high-velocity impact. Sufficient data existed in the accident, crash test, and fuel-filled bomb literature to support development of a qualitative framework for dispersal models, but not quantitative models for all regimes. Therefore, a test series at intermediate scale was conducted to generate data on which to base the model for the high-velocity regime. Tests were conducted over an impact velocity range from 12 m/s to 91 m/s and angles of impact from 22.5{degrees} to 67.5{degrees}. Dependent variables were area covered by dispersed fuel, amount of mass in that area, and location of the area relative to the impact line. Test results showed that no liquid pooling occurred for impact velocities greater than 61 m/s, independent of the angle of impact. Some pooling did occur at lower velocities, but in no test was the liquid-layer thickness greater than 5.25 mm.

  7. Initial VHTR accident scenario classification: models and data.

    SciTech Connect (OSTI)

    Vilim, R. B.; Feldman, E. E.; Pointer, W. D.; Wei, T. Y. C.; Nuclear Engineering Division

    2005-09-30

    Nuclear systems codes are being prepared for use as computational tools for conducting performance/safety analyses of the Very High Temperature Reactor. The thermal-hydraulic codes are RELAP5/ATHENA for one-dimensional systems modeling and FLUENT and/or Star-CD for three-dimensional modeling. We describe a formal qualification framework, the development of Phenomena Identification and Ranking Tables (PIRTs), the initial filtering of the experiment databases, and a preliminary screening of these codes for use in the performance/safety analyses. In the second year of this project we focused on development of PIRTS. Two events that result in maximum fuel and vessel temperatures, the Pressurized Conduction Cooldown (PCC) event and the Depressurized Conduction Cooldown (DCC) event, were selected for PIRT generation. A third event that may result in significant thermal stresses, the Load Change event, is also selected for PIRT generation. Gas reactor design experience and engineering judgment were used to identify the important phenomena in the primary system for these events. Sensitivity calculations performed with the RELAP5 code were used as an aid to rank the phenomena in order of importance with respect to the approach of plant response to safety limits. The overall code qualification methodology was illustrated by focusing on the Reactor Cavity Cooling System (RCCS). The mixed convection mode of heat transfer and pressure drop is identified as an important phenomenon for Reactor Cavity Cooling System (RCCS) operation. Scaling studies showed that the mixed convection mode is likely to occur in the RCCS air duct during normal operation and during conduction cooldown events. The RELAP5/ATHENA code was found to not adequately treat the mixed convection regime. Readying the code will require adding models for the turbulent mixed convection regime while possibly performing new experiments for the laminar mixed convection regime. Candidate correlations for the turbulent

  8. Modeling Sensitivities to the 20% Wind Scenario Report with the WinDS Model

    SciTech Connect (OSTI)

    Blair, N.; Hand, M.; Short, W.; Sullivan, P.

    2008-06-01

    In May 2008, DOE published '20% Wind Energy by 2030', a report which describes the costs and benefits of producing 20% of the nation's projected electricity demand in 2030 from wind technology. The total electricity system cost resulting from this scenario was modestly higher than a scenario in which no additional wind was installed after 2006. NREL's Wind Deployment System (WinDS) model was used to support this analysis. With its 358 regions, explicit treatment of transmission expansion, onshore siting considerations, shallow- and deep-water wind resources, 2030 outlook, explicit financing assumptions, endogenous learning, and stochastic treatment of wind resource variability, WinDS is unique in the level of detail it can bring to this analysis. For the 20% Wind Energy by 2030 analysis, the group chose various model structures (such as the ability to wheel power within an interconnect), and the wind industry agreed on a variety of model inputs (such as the cost of transmission or new wind turbines). For this paper, the analysis examined the sensitivity of the results to variations in those input values and model structure choices. These included wind cost and performance improvements over time, seasonal/diurnal wind resource variations, transmission access and costs, siting costs, conventional fuel cost trajectories, and conventional capital costs.

  9. Inflationary scenarios in Starobinsky model with higher order corrections

    SciTech Connect (OSTI)

    Artymowski, Michał; Lalak, Zygmunt; Lewicki, Marek

    2015-06-17

    We consider the Starobinsky inflation with a set of higher order corrections parametrised by two real coefficients λ{sub 1} ,λ{sub 2}. In the Einstein frame we have found a potential with the Starobinsky plateau, steep slope and possibly with an additional minimum, local maximum or a saddle point. We have identified three types of inflationary behaviour that may be generated in this model: i) inflation on the plateau, ii) at the local maximum (topological inflation), iii) at the saddle point. We have found limits on parameters λ{sub i} and initial conditions at the Planck scale which enable successful inflation and disable eternal inflation at the plateau. We have checked that the local minimum away from the GR vacuum is stable and that the field cannot leave it neither via quantum tunnelling nor via thermal corrections.

  10. New NIR Calibration Models Speed Biomass Composition and Reactivity...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    these valuable characteristics by using multivariate statistics to correlate laboratory data on biomass composition and reactivity to NIR spectra of a population of mixed...

  11. Hydrogen Scenarios

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OnLocation, Inc., Energy Systems Consulting 1 Hydrogen Scenarios Presentation to the Hydrogen Delivery Analysis Meeting by Frances Wood OnLocation, Inc. Energy Systems Consulting May 9, 2007 OnLocation, Inc., Energy Systems Consulting 2 Outline * Brief summary of NEMS-H2 model * Representation of Hydrogen Delivery * Hydrogen Demand Sensitivities * Integration and Energy System Impacts - A Carbon Policy Scenario Example OnLocation, Inc., Energy Systems Consulting 3 NEMS-H2 Overview OnLocation,

  12. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  13. The Importance of High Temporal Resolution in Modeling Renewable Energy Penetration Scenarios

    SciTech Connect (OSTI)

    Nicolosi, Marco; Mills, Andrew D; Wiser, Ryan H

    2010-10-08

    Traditionally, modeling investment and dispatch problems in electricity economics has been limited by computation power. Due to this limitation, simplifications are applied. One common practice, for example, is to reduce the temporal resolution of the dispatch by clustering similar load levels. The increase of intermittent electricity from renewable energy sources (RES-E) changes the validity of this assumption. RES-E already cover a certain amount of the total demand. This leaves an increasingly volatile residual demand to be matched by the conventional power market. This paper quantifies differences in investment decisions by applying three different time-resolution residual load patterns in an investment and dispatch power system model. The model optimizes investment decisions in five year steps between today and 2030 with residual load levels for 8760, 288 and 16 time slices per year. The market under consideration is the four zone ERCOT market in Texas. The results show that investment decisions significantly differ across the three scenarios. In particular, investments into base-load technologies are substantially reduced in the high resolution scenario (8760 residual load levels) relative to the scenarios with lower temporal resolution. Additionally, the amount of RES-E curtailment and the market value of RES-E exhibit noteworthy differences.

  14. A Screening Model to Predict Microalgae Biomass Growth in Photobioreactors and Raceway Ponds

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Van Wagenen, Jonathan M.; Miller, Tyler W.; Chavis, Aaron R.; Hobbs, Watts B.; Crowe, Braden J.

    2013-06-01

    A microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in photobioreactors or outdoor ponds. Growth is modeled by first estimating the light attenuation by biomass according to Beer-Lamberts law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires only two physical and two species-specific biological input parameters, all of which are relatively easy to determine: incident light intensity, culture depth, as well as the biomass light absorption coefficient and the specific growth rate as a function of light intensity. Roux bottle culture experiments were performed with Nannochloropsis salina at constant temperature (23 C) at six different incident light intensities (5, 10, 25, 50, 100, 250, and 850 ?mol/m2? sec) to determine both the specific growth rate under non-shading conditions and the biomass light absorption coefficient as a function of light intensity. The model was successful in predicting the biomass growth rate in these Roux bottle cultures during the light-limited linear phase at different incident light intensities. Model predictions were moderately sensitive to minor variations in the values of input parameters. The model was also successful in predicting the growth performance of Chlorella sp. cultured in LED-lighted 800 L raceway ponds operated at constant temperature (30 C) and constant light intensity (1650 ?mol/m2? sec). Measurements of oxygen concentrations as a function of time demonstrated that following exposure to darkness, it takes at least 5 seconds for cells to initiate dark respiration. As a result, biomass loss due to dark respiration in the aphotic zone of a culture is unlikely to occur in highly mixed small-scale photobioreactors where cells move rapidly in and out of the light. By contrast, as supported also by

  15. A Technical Review on Biomass Processing: Densification, Preprocessing, Modeling and Optimization

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright

    2010-06-01

    It is now a well-acclaimed fact that burning fossil fuels and deforestation are major contributors to climate change. Biomass from plants can serve as an alternative renewable and carbon-neutral raw material for the production of bioenergy. Low densities of 40–60 kg/m3 for lignocellulosic and 200–400 kg/m3 for woody biomass limits their application for energy purposes. Prior to use in energy applications these materials need to be densified. The densified biomass can have bulk densities over 10 times the raw material helping to significantly reduce technical limitations associated with storage, loading and transportation. Pelleting, briquetting, or extrusion processing are commonly used methods for densification. The aim of the present research is to develop a comprehensive review of biomass processing that includes densification, preprocessing, modeling and optimization. The specific objective include carrying out a technical review on (a) mechanisms of particle bonding during densification; (b) methods of densification including extrusion, briquetting, pelleting, and agglomeration; (c) effects of process and feedstock variables and biomass biochemical composition on the densification (d) effects of preprocessing such as grinding, preheating, steam explosion, and torrefaction on biomass quality and binding characteristics; (e) models for understanding the compression characteristics; and (f) procedures for response surface modeling and optimization.

  16. Low-order modeling of internal heat transfer in biomass particle pyrolysis

    DOE PAGES-Beta [OSTI]

    Wiggins, Gavin M.; Daw, C. Stuart; Ciesielski, Peter N.

    2016-05-11

    We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. Here, we conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulatemore » biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less

  17. Biomass particle models with realistic morphology and resolved microstructure for simulations of intraparticle transport phenomena

    SciTech Connect (OSTI)

    Ciesielski, Peter N.; Crowley, Michael F.; Nimlos, Mark R.; Sanders, Aric W.; Wiggins, Gavin M.; Robichaud, David; Donohoe, Bryon S.; Foust, Thomas D.

    2014-12-09

    Biomass exhibits a complex microstructure of directional pores that impact how heat and mass are transferred within biomass particles during conversion processes. However, models of biomass particles used in simulations of conversion processes typically employ oversimplified geometries such as spheres and cylinders and neglect intraparticle microstructure. In this study, we develop 3D models of biomass particles with size, morphology, and microstructure based on parameters obtained from quantitative image analysis. We obtain measurements of particle size and morphology by analyzing large ensembles of particles that result from typical size reduction methods, and we delineate several representative size classes. Microstructural parameters, including cell wall thickness and cell lumen dimensions, are measured directly from micrographs of sectioned biomass. A general constructive solid geometry algorithm is presented that produces models of biomass particles based on these measurements. Next, we employ the parameters obtained from image analysis to construct models of three different particle size classes from two different feedstocks representing a hardwood poplar species (Populus tremuloides, quaking aspen) and a softwood pine (Pinus taeda, loblolly pine). Finally, we demonstrate the utility of the models and the effects explicit microstructure by performing finite-element simulations of intraparticle heat and mass transfer, and the results are compared to similar simulations using traditional simplified geometries. In conclusion, we show how the behavior of particle models with more realistic morphology and explicit microstructure departs from that of spherical models in simulations of transport phenomena and that species-dependent differences in microstructure impact simulation results in some cases.

  18. Biomass particle models with realistic morphology and resolved microstructure for simulations of intraparticle transport phenomena

    DOE PAGES-Beta [OSTI]

    Ciesielski, Peter N.; Crowley, Michael F.; Nimlos, Mark R.; Sanders, Aric W.; Wiggins, Gavin M.; Robichaud, David; Donohoe, Bryon S.; Foust, Thomas D.

    2014-12-09

    Biomass exhibits a complex microstructure of directional pores that impact how heat and mass are transferred within biomass particles during conversion processes. However, models of biomass particles used in simulations of conversion processes typically employ oversimplified geometries such as spheres and cylinders and neglect intraparticle microstructure. In this study, we develop 3D models of biomass particles with size, morphology, and microstructure based on parameters obtained from quantitative image analysis. We obtain measurements of particle size and morphology by analyzing large ensembles of particles that result from typical size reduction methods, and we delineate several representative size classes. Microstructural parameters, includingmore » cell wall thickness and cell lumen dimensions, are measured directly from micrographs of sectioned biomass. A general constructive solid geometry algorithm is presented that produces models of biomass particles based on these measurements. Next, we employ the parameters obtained from image analysis to construct models of three different particle size classes from two different feedstocks representing a hardwood poplar species (Populus tremuloides, quaking aspen) and a softwood pine (Pinus taeda, loblolly pine). Finally, we demonstrate the utility of the models and the effects explicit microstructure by performing finite-element simulations of intraparticle heat and mass transfer, and the results are compared to similar simulations using traditional simplified geometries. In conclusion, we show how the behavior of particle models with more realistic morphology and explicit microstructure departs from that of spherical models in simulations of transport phenomena and that species-dependent differences in microstructure impact simulation results in some cases.« less

  19. SERA Scenarios of Early Market Fuel Cell Electric Vehicle Introductions: Modeling Framework, Regional Markets, and Station Clustering; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, M.

    2015-03-23

    This presentation provides an overview of the Scenario Evaluation and Regionalization Analysis (SERA) model, describes the methodology for developing scenarios for hydrogen infrastructure development, outlines an example "Hydrogen Success" scenario, and discusses detailed scenario metrics for a particular case study region, the Northeast Corridor.

  20. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  1. Evaluating Potential for Large Releases from CO2 StorageReservoirs: Analogs, Scenarios, and Modeling Needs

    SciTech Connect (OSTI)

    Birkholzer, Jens; Pruess, Karsten; Lewicki, Jennifer; Tsang,Chin-Fu; Karimjee, Anhar

    2005-09-19

    While the purpose of geologic storage of CO{sub 2} in deep saline formations is to trap greenhouse gases underground, the potential exists for CO{sub 2} to escape from the target reservoir, migrate upward along permeable pathways, and discharge at the land surface. Such discharge is not necessarily a serious concern, as CO{sub 2} is a naturally abundant and relatively benign gas in low concentrations. However, there is a potential risk to health, safety and environment (HSE) in the event that large localized fluxes of CO{sub 2} were to occur at the land surface, especially where CO{sub 2} could accumulate. In this paper, we develop possible scenarios for large CO{sub 2} fluxes based on the analysis of natural analogues, where large releases of gas have been observed. We are particularly interested in scenarios which could generate sudden, possibly self-enhancing, or even eruptive release events. The probability for such events may be low, but the circumstances under which they might occur and potential consequences need to be evaluated in order to design appropriate site selection and risk management strategies. Numerical modeling of hypothetical test cases is needed to determine critical conditions for such events, to evaluate whether such conditions may be possible at designated storage sites, and, if applicable, to evaluate the potential HSE impacts of such events and design appropriate mitigation strategies.

  2. Implications of Model Structure and Detail for Utility Planning. Scenario Case Studies using the Resource Planning Model

    SciTech Connect (OSTI)

    Mai, Trieu; Barrows, Clayton; Lopez, Anthony; Hale, Elaine; Dyson, Mark; Eurek, Kelly

    2015-04-23

    We examine how model investment decisions change under different model configurations and assumptions related to renewable capacity credit, the inclusion or exclusion of operating reserves, dispatch period sampling, transmission power flow modeling, renewable spur line costs, and the ability of a planning region to import and export power. For all modeled scenarios, we find that under market conditions where new renewable deployment is predominantly driven by renewable portfolio standards, model representations of wind and solar capacity credit and interactions between balancing areas are most influential in avoiding model investments in excess thermal capacity. We also compare computation time between configurations to evaluate tradeoffs between computational burden and model accuracy. From this analysis, we find that certain advanced dispatch representations (e.g., DC optimal power flow) can have dramatic adverse effects on computation time but can be largely inconsequential to model investment outcomes, at least at the renewable penetration levels modeled. Finally, we find that certain underappreciated aspects of new capacity investment decisions and model representations thereof, such as spur lines for new renewable capacity, can influence model outcomes particularly in the renewable technology and location chosen by the model. Though this analysis is not comprehensive and results are specific to the model region, input assumptions, and optimization-modeling framework employed, the findings are intended to provide a guide for model improvement opportunities.

  3. Scenario driven data modelling: a method for integrating diverse sources of data and data streams

    SciTech Connect (OSTI)

    Brettin, Thomas S.; Cottingham, Robert W.; Griffith, Shelton D.; Quest, Daniel J.

    2015-09-08

    A system and method of integrating diverse sources of data and data streams is presented. The method can include selecting a scenario based on a topic, creating a multi-relational directed graph based on the scenario, identifying and converting resources in accordance with the scenario and updating the multi-directed graph based on the resources, identifying data feeds in accordance with the scenario and updating the multi-directed graph based on the data feeds, identifying analytical routines in accordance with the scenario and updating the multi-directed graph using the analytical routines and identifying data outputs in accordance with the scenario and defining queries to produce the data outputs from the multi-directed graph.

  4. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    SciTech Connect (OSTI)

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; Baddour, Frederick G.; Sahir, Asad

    2015-10-06

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design report led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this

  5. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    DOE PAGES-Beta [OSTI]

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; Baddour, Frederick G.; Sahir, Asad

    2015-10-06

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition

  6. Mixing behavior of a model cellulosic biomass slurry during settling and resuspension

    DOE PAGES-Beta [OSTI]

    Crawford, Nathan C.; Sprague, Michael A.; Stickel, Jonathan J.

    2016-01-29

    Thorough mixing during biochemical deconstruction of biomass is crucial for achieving maximum process yields and economic success. However, due to the complex morphology and surface chemistry of biomass particles, biomass mixing is challenging and currently it is not well understood. This study investigates the bulk rheology of negatively buoyant, non-Brownian α-cellulose particles during settling and resuspension. The torque signal of a vane mixer across two distinct experimental setups (vane-in-cup and vane-in-beaker) was used to understand how mixing conditions affect the distribution of biomass particles. During experimentation, a bifurcated torque response as a function of vane speed was observed, indicating thatmore » the slurry transitions from a “settling-dominant” regime to a “suspension-dominant” regime. The torque response of well-characterized fluids (i.e., DI water) were then used to empirically identify when sufficient mixing turbulence was established in each experimental setup. The predicted critical mixing speeds were in agreement with measured values, suggesting that secondary flows are required in order to keep the cellulose particles fully suspended. In addition, a simple scaling relationship was developed to model the entire torque signal of the slurry throughout settling and resuspension. Furthermore, qualitative and semi-quantitative agreement between the model and experimental results was observed.« less

  7. Genome-scale model reveals metabolic basis of biomass partitioning in a model diatom

    DOE PAGES-Beta [OSTI]

    Levering, Jennifer; Broddrick, Jared; Dupont, Christopher L.; Peers, Graham; Beeri, Karen; Mayers, Joshua; Gallina, Alessandra A.; Allen, Andrew E.; Palsson, Bernhard O.; Zengler, Karsten; et al

    2016-05-06

    Diatoms are eukaryotic microalgae that contain genes from various sources, including bacteria and the secondary endosymbiotic host. Due to this unique combination of genes, diatoms are taxonomically and functionally distinct from other algae and vascular plants and confer novel metabolic capabilities. Based on the genome annotation, we performed a genome-scale metabolic network reconstruction for the marine diatom Phaeodactylum tricornutum. Due to their endosymbiotic origin, diatoms possess a complex chloroplast structure which complicates the prediction of subcellular protein localization. Based on previous work we implemented a pipeline that exploits a series of bioinformatics tools to predict protein localization. The manually curatedmore » reconstructed metabolic network iLB1027_lipid accounts for 1,027 genes associated with 4,456 reactions and 2,172 metabolites distributed across six compartments. To constrain the genome-scale model, we determined the organism specific biomass composition in terms of lipids, carbohydrates, and proteins using Fourier transform infrared spectrometry. Our simulations indicate the presence of a yet unknown glutamine-ornithine shunt that could be used to transfer reducing equivalents generated by photosynthesis to the mitochondria. Furthermore, the model reflects the known biochemical composition of P. tricornutum in defined culture conditions and enables metabolic engineering strategies to improve the use of P. tricornutum for biotechnological applications.« less

  8. Status of Advanced Tokamak Scenario Modeling with Off-Axis Electron Cyclotron Current Drive in DIII-D

    SciTech Connect (OSTI)

    M. Murakami; H.E. St.John; T.A. Casper; M.S. Chu; J.C. DeBoo; C.M. Greenfield; J.E. Kinsey; L.L. Lao; R.J. La Haye; Y.R. Lin-Liu; T.C. Luce; P.A. Politzer; B.W. Rice; G.M. Staebler; T.S. Taylor; M.R. Wade

    1999-12-01

    The status of modeling work focused on developing the advanced tokamak scenarios in DIII-D is discussed. The objectives of the work are two-fold: (1) to develop AT scenarios with ECCD using time-dependent transport simulations, coupled with heating and current drive models, consistent with MHD equilibrium and stability; and (2) to use time-dependent simulations to help plan experiments and to understand the key physics involved. Time-dependent simulations based on transport coefficients derived from experimentally achieved target discharges are used to perform AT scenario modeling. The modeling indicates off-axis ECCD with approximately 3 MW absorbed power can maintain high-performance discharges with q{sub min} > 1 for 5 to 10 s. The resultant equilibria are calculated to be stable to n = 1 pressure driven modes. The plasma is well into the second stability regime for high-n ballooning modes over a large part of the plasma volume. The role of continuous localized ECCD is studied for stabilizing m/n = 2/1 tearing modes. The progress towards validating current drive and transport models, consistent with experimental results, and developing self-consistent, integrated high performance AT scenarios is discussed.

  9. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  10. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  11. A supply chain network design model for biomass co-firing in coal-fired power plants

    SciTech Connect (OSTI)

    Md. S. Roni; Sandra D. Eksioglu; Erin Searcy; Krishna Jha

    2014-01-01

    We propose a framework for designing the supply chain network for biomass co-firing in coal-fired power plants. This framework is inspired by existing practices with products with similar physical characteristics to biomass. We present a hub-and-spoke supply chain network design model for long-haul delivery of biomass. This model is a mixed integer linear program solved using benders decomposition algorithm. Numerical analysis indicates that 100 million tons of biomass are located within 75 miles from a coal plant and could be delivered at $8.53/dry-ton; 60 million tons of biomass are located beyond 75 miles and could be delivered at $36/dry-ton.

  12. Biomass for Electricity Generation

    Reports and Publications

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  13. Validation of the thermal transport model used for ITER startup scenario predictions with DIII-D experimental data

    DOE PAGES-Beta [OSTI]

    Casper, T. A.; Meyer, W. H.; Jackson, G. L.; Luce, T. C.; Hyatt, A. W.; Humphreys, D. A.; Turco, F.

    2010-12-08

    We are exploring characteristics of ITER startup scenarios in similarity experiments conducted on the DIII-D Tokamak. In these experiments, we have validated scenarios for the ITER current ramp up to full current and developed methods to control the plasma parameters to achieve stability. Predictive simulations of ITER startup using 2D free-boundary equilibrium and 1D transport codes rely on accurate estimates of the electron and ion temperature profiles that determine the electrical conductivity and pressure profiles during the current rise. Here we present results of validation studies that apply the transport model used by the ITER team to DIII-D discharge evolutionmore » and comparisons with data from our similarity experiments.« less

  14. Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area

    SciTech Connect (OSTI)

    Meyer, Philip D.; Ye, Ming; Rockhold, Mark L.; Neuman, Shlomo P.; Cantrell, Kirk J.

    2007-07-30

    This report to the Nuclear Regulatory Commission (NRC) describes the development and application of a methodology to systematically and quantitatively assess predictive uncertainty in groundwater flow and transport modeling that considers the combined impact of hydrogeologic uncertainties associated with the conceptual-mathematical basis of a model, model parameters, and the scenario to which the model is applied. The methodology is based on a n extension of a Maximum Likelihood implementation of Bayesian Model Averaging. Model uncertainty is represented by postulating a discrete set of alternative conceptual models for a site with associated prior model probabilities that reflect a belief about the relative plausibility of each model based on its apparent consistency with available knowledge and data. Posterior model probabilities are computed and parameter uncertainty is estimated by calibrating each model to observed system behavior; prior parameter estimates are optionally included. Scenario uncertainty is represented as a discrete set of alternative future conditions affecting boundary conditions, source/sink terms, or other aspects of the models, with associated prior scenario probabilities. A joint assessment of uncertainty results from combining model predictions computed under each scenario using as weight the posterior model and prior scenario probabilities. The uncertainty methodology was applied to modeling of groundwater flow and uranium transport at the Hanford Site 300 Area. Eight alternative models representing uncertainty in the hydrogeologic and geochemical properties as well as the temporal variability were considered. Two scenarios represent alternative future behavior of the Columbia River adjacent to the site were considered. The scenario alternatives were implemented in the models through the boundary conditions. Results demonstrate the feasibility of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow

  15. Deconstruction of Lignin Model Compounds and Biomass-Derived Lignin using Layered Double Hydroxide Catalysts

    SciTech Connect (OSTI)

    Chmely, S. C.; McKinney, K. A.; Lawrence, K. R.; Sturgeon, M.; Katahira, R.; Beckham, G. T.

    2013-01-01

    Lignin is an underutilized value stream in current biomass conversion technologies because there exist no economic and technically feasible routes for lignin depolymerization and upgrading. Base-catalyzed deconstruction (BCD) has been applied for lignin depolymerization (e.g., the Kraft process) in the pulp and paper industry for more than a century using aqueous-phase media. However, these efforts require treatment to neutralize the resulting streams, which adds significantly to the cost of lignin deconstruction. To circumvent the need for downstream treatment, here we report recent advances in the synthesis of layered double hydroxide and metal oxide catalysts to be applied to the BCD of lignin. These catalysts may prove more cost-effective than liquid-phase, non-recyclable base, and their use obviates downstream processing steps such as neutralization. Synthetic procedures for various transition-metal containing catalysts, detailed kinetics measurements using lignin model compounds, and results of the application of these catalysts to biomass-derived lignin will be presented.

  16. Why Do Global Long-term Scenarios for Agriculture Differ? An overview of the AgMIP Global Economic Model Intercomparison

    SciTech Connect (OSTI)

    von Lampe, Martin; Willenbockel, Dirk; Ahammad, Helal; Blanc, Elodie; Cai, Yongxia; Calvin, Katherine V.; Fujimori, Shinichiro; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Lotze-Campen, Hermann; Mason d'Croz, Daniel; Nelson, Gerald; Sands, Ronald; Schmitz, Christoph; Tabeau, Andrzej; Valin, Hugo; van der Mensbrugghe, Dominique; van Meijl, Hans

    2013-12-02

    Recent studies assessing plausible futures for agricultural markets and global food security have had contradictory outcomes. Ten global economic models that produce long-term scenarios were asked to compare a reference scenario with alternate socio-economic, climate change and bioenergy scenarios using a common set of key drivers. Results suggest that, once general assumptions are harmonized, the variability in general trends across models declines, and that several common conclusions are possible. Nonetheless, differences in basic model parameters, sometimes hidden in the way market behavior is modeled, result in significant differences in the details. This holds for both the common reference scenario and for the various shocks applied. We conclude that agro-economic modelers aiming to inform the agricultural and development policy debate require better data and analysis on both economic behavior and biophysical drivers. More interdisciplinary modeling efforts are required to cross-fertilize analyses at different scales.

  17. Implications of Model Configurations on Capacity Planning Decisions: Scenario Case Studies of the Western Interconnection and Colorado Region using the Resource Planning Model

    Energy.gov [DOE]

    In this report, we analyze the impacts of model configuration and detail in capacity expansion models, computational tools used by utility planners looking to find the least cost option for planning the system and by researchers or policy makers attempting to understand the effects of various policy implementations. The present analysis focuses on the importance of model configurations—particularly those related to capacity credit, dispatch modeling, and transmission modeling—to the construction of scenario futures. Our analysis is primarily directed toward advanced tools used for utility planning and is focused on those impacts that are most relevant to decisions with respect to future renewable capacity deployment. To serve this purpose, we develop and employ the NREL Resource Planning Model to conduct a case study analysis that explores 12 separate capacity expansion scenarios of the Western Interconnection through 2030.

  18. LONG-TERM GLOBAL WATER USE PROJECTIONS USING SIX SOCIOECONOMIC SCENARIOS IN AN INTEGRATED ASSESSMENT MODELING FRAMEWORK

    SciTech Connect (OSTI)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.; Moss, Richard H.; Kim, Son H.

    2014-01-19

    In this paper, we assess future water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors, by incorporating water demands into a technologically-detailed global integrated assessment model of energy, agriculture, and climate change the Global Change Assessment Model (GCAM). Base-year water demandsboth gross withdrawals and net consumptive useare assigned to specific modeled activities in a way that maximizes consistency between bottom-up estimates of water demand intensities of specific technologies and practices, and top-down regional and sectoral estimates of water use. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. We assess future water demands representing six socioeconomic scenarios, with no constraints imposed by future water supplies. The scenarios observe increases in global water withdrawals from 3,578 km3 year-1 in 2005 to 5,987 8,374 km3 year-1 in 2050, and to 4,719 12,290 km3 year-1 in 2095. Comparing the projected total regional water withdrawals to the historical supply of renewable freshwater, the Middle East exhibits the highest levels of water scarcity throughout the century, followed by India; water scarcity increases over time in both of these regions. In contrast, water scarcity improves in some regions with large base-year electric sector withdrawals, such as the USA and Canada, due to capital stock turnover and the almost complete phase-out of once-through flow cooling systems. The scenarios indicate that: 1) water is likely a limiting factor in climate change mitigation policies, 2) many regions can be expected to increase reliance on non-renewable groundwater, water reuse, and desalinated water, but they also highlight an

  19. MODELING OF 2LIBH4 PLUS MGH2 HYDROGEN STORAGE SYSTEM ACCIDENT SCENARIOS USING EMPIRICAL AND THEORETICAL THERMODYNAMICS

    SciTech Connect (OSTI)

    James, C; David Tamburello, D; Joshua Gray, J; Kyle Brinkman, K; Bruce Hardy, B; Donald Anton, D

    2009-04-01

    It is important to understand and quantify the potential risk resulting from accidental environmental exposure of condensed phase hydrogen storage materials under differing environmental exposure scenarios. This paper describes a modeling and experimental study with the aim of predicting consequences of the accidental release of 2LiBH{sub 4}+MgH{sub 2} from hydrogen storage systems. The methodology and results developed in this work are directly applicable to any solid hydride material and/or accident scenario using appropriate boundary conditions and empirical data. The ability to predict hydride behavior for hypothesized accident scenarios facilitates an assessment of the of risk associated with the utilization of a particular hydride. To this end, an idealized finite volume model was developed to represent the behavior of dispersed hydride from a breached system. Semiempirical thermodynamic calculations and substantiating calorimetric experiments were performed in order to quantify the energy released, energy release rates and to quantify the reaction products resulting from water and air exposure of a lithium borohydride and magnesium hydride combination. The hydrides, LiBH{sub 4} and MgH{sub 2}, were studied individually in the as-received form and in the 2:1 'destabilized' mixture. Liquid water hydrolysis reactions were performed in a Calvet calorimeter equipped with a mixing cell using neutral water. Water vapor and oxygen gas phase reactivity measurements were performed at varying relative humidities and temperatures by modifying the calorimeter and utilizing a gas circulating flow cell apparatus. The results of these calorimetric measurements were compared with standardized United Nations (UN) based test results for air and water reactivity and used to develop quantitative kinetic expressions for hydrolysis and air oxidation in these systems. Thermodynamic parameters obtained from these tests were then inputted into a computational fluid dynamics model to

  20. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, Februray 1, 1980-April 30, 1980

    SciTech Connect (OSTI)

    Ahn, Y.K.; Chen, Y.C.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields, K.J.

    1980-01-01

    The project will result in two distinct products: (1) a biomass allocation model which will serve as a tool for the energy planner. (2) the experimental data is being generated to help compare and contrast the behavior of a large number of biomass material in thermochemical environments. Based on information in the literature, values have been developed for regional biomass costs and availabilities and for fuel costs and demands. This data is now stored in data banks and may be updated as better data become available. Seventeen biomass materials have been run on the small TGA and the results partially analyzed. Ash analysis has been performed on 60 biomass materials. The Effluent Gas Analyzer with its associated gas chromatographs has been made operational and some runs have been carried out. Using a computerized program for developing product costs, parametric studies on all but 1 of the 14 process configurations being considered have been performed. Background economic data for all the configuration have been developed. Models to simulate biomass gasifications in an entrained and fixed bed have been developed using models previously used for coal gasification. Runs have been carried out in the fluidized and fixed bed reactor modes using a variety of biomass materials in atmospheres of steam, O/sub 2/ and air. Check aout of the system continues using fabricated manufacturing cost and efficiency data. A users manual has been written.

  1. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    SciTech Connect (OSTI)

    Cheng, Yu-Ting; Huber, George W.

    2011-06-03

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysismass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO?, aromatics, and olefins at temperatures from 400 to 600 C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C??{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO?, allene, C?C? olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450600 C). At low temperatures (450 C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include DielsAlder condensation (e.g., two furans form benzofuran and water), decarbonylation (e

  2. Agriculture and Climate Change in Global Scenarios: Why Don't the Models Agree

    SciTech Connect (OSTI)

    Nelson, Gerald; van der Mensbrugghe, Dominique; Ahammad, Helal; Blanc, Elodie; Calvin, Katherine V.; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Lotze-Campen, Hermann; von Lampe, Martin; Mason d'Croz, Daniel; van Meijl, Hans; Mueller, C.; Reilly, J. M.; Robertson, Richard; Sands, Ronald; Schmitz, Christoph; Tabeau, Andrzej; Takahashi, Kiyoshi; Valin, Hugo; Willenbockel, Dirk

    2014-01-01

    Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs makes direct use of weather inputs. Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes of key variables such as prices, production, and trade. These divergent outcomes arise from differences in model inputs and model specification. The goal of this paper is to review climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By providing common productivity drivers that include climate change effects, differences in model outcomes are reduced. All models show higher prices in 2050 because of negative productivity shocks from climate change. The magnitude of the price increases, and the adaptation responses, differ significantly across the various models. Substantial differences exist in the structural parameters affecting demand, area, and yield, and should be a topic for future research.

  3. Modeling of biomass to hydrogen via the supercritical water pyrolysis process

    SciTech Connect (OSTI)

    Divilio, R.J.

    1998-08-01

    A heat transfer model has been developed to predict the temperature profile inside the University of Hawaii`s Supercritical Water Reactor. A series of heat transfer tests were conducted on the University of Hawaii`s apparatus to calibrate the model. Results of the model simulations are shown for several of the heat transfer tests. Tests with corn starch and wood pastes indicated that there are substantial differences between the thermal properties of the paste compared to pure water, particularly near the pseudo critical temperature. The assumption of constant thermal diffusivity in the temperature range of 250 to 450 C gave a reasonable prediction of the reactor temperatures when paste is being fed. A literature review is presented for pyrolysis of biomass in water at elevated temperatures up to the supercritical range. Based on this review, a global reaction mechanism is proposed. Equilibrium calculations were performed on the test results from the University of Hawaii`s Supercritical Water Reactor when corn starch and corn starch and wood pastes were being fed. The calculations indicate that the data from the reactor falls both below and above the equilibrium hydrogen concentrations depending on test conditions. The data also indicates that faster heating rates may be beneficial to the hydrogen yield. Equilibrium calculations were also performed to examine the impact of wood concentration on the gas mixtures produced. This calculation showed that increasing wood concentrations favors the formation of methane at the expense of hydrogen.

  4. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    SciTech Connect (OSTI)

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C.; Meeussen, Hans; Van der Sloot, Hans

    2013-07-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  5. Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models

    SciTech Connect (OSTI)

    McNeil, Michael A.; de la Rue du Can, Stephane; McMahon, James E.

    2009-05-29

    This paper presents efforts to date and prospective goals towards development of a modelling and analysis framework which is comprehensive enough to address the global climate crisis, and detailed enough to provide policymakers with concrete targets and achievable outcomes. In terms of energy efficiency policy, this requires coverage of the entire world, with emphasis on countries and regions with large and/or rapidly growing energy-related emissions, and analysis at the 'technology' level-building end use, transport mode or industrial process. These elements have not been fully addressed by existing modelling efforts, which usually take either a top-down approach, or concentrate on a few fully industrialized countries where energy demand is well-understood. Inclusion of details such as appliance ownership rates, use patterns and efficiency levels throughout the world allows for a deeper understanding of the demand for energy today and, more importantly, over the coming decades. This is a necessary next step for energy analysts and policy makers in assessment of mitigation potentials. The modelling system developed at LBNL over the past 3 years takes advantage of experience in end use demand and in forecasting markets for energy-consuming equipment, in combination with known technology-based efficiency opportunities and policy types. A particular emphasis has been placed on modelling energy growth in developing countries. Experiences to date include analyses covering individual countries (China and India), end uses (refrigerators and air conditioners) and policy types (standards and labelling). Each of these studies required a particular effort in data collection and model refinement--they share, however, a consistent approach and framework which allows comparison, and forms the foundation of a comprehensive analysis system leading to a roadmap to address the greenhouse gas mitigation targetslikely to be set in the coming years.

  6. 2015 Standard Scenarios Annual Report...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Authors Preface This report is one of several products ... and (2) assessing these scenarios in NREL's market models ... energy prices, and carbon dioxide (CO 2 ) emissions. ...

  7. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density

    DOE PAGES-Beta [OSTI]

    Medeiros, Stephen; Hagen, Scott; Weishampel, John; Angelo, James

    2015-03-25

    Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer tomore » true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.« less

  8. Adjusting lidar-derived digital terrain models in coastal marshes based on estimated aboveground biomass density

    SciTech Connect (OSTI)

    Medeiros, Stephen; Hagen, Scott; Weishampel, John; Angelo, James

    2015-03-25

    Digital elevation models (DEMs) derived from airborne lidar are traditionally unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense grasses and reach the underlying soil. To that end, we present a novel processing methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital surface model, and lidar-derived canopy height to classify biomass density using both a three-class scheme (high, medium and low) and a two-class scheme (high and low). Elevation adjustments associated with these classes using both median and quartile approaches were applied to adjust lidar-derived elevation values closer to true bare earth elevation. The performance of the method was tested on 229 elevation points in the lower Apalachicola River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%.

  9. Wood Energy Scenarios and Southern Markets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wood Energy Scenarios and Southern Markets Wood Energy Scenarios and Southern Markets Breakout Session 1A: Assessing America's Biomass Potential (2016 Billion-Ton Report) Wood Energy Scenarios and Southern Markets Prakash Nepal, Research Assistant Professor, U.S. Department of Agriculture and North Carolina State University nepal_bioenergy_2016.pdf (1.96 MB) More Documents & Publications Bioenergy Demand in a Market Driven Forest Economy (U.S. South) U.S. Billion-Ton Update: Biomass Supply

  10. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus

    SciTech Connect (OSTI)

    Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.; Kyle, G. Page; Davies, Evan; Zhou, Yuyu; Clarke, Leon E.; Edmonds, James A.

    2015-05-01

    Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal

  11. ETI Energy Scenario Tool User Guide About the ETI Energy Scenario Tool

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ETI Energy Scenario Tool User Guide About the ETI Energy Scenario Tool The ETI Energy Scenario Tool is an Excel-based scenario model that calculates the cost of electricity for custom generation profiles. This tool is intended to model scenarios in Hawaii and other islands. Data Entry Screens Scenario Details The Scenario Details screen serves as the main menu for the Scenario Tool and the starting point for using the tool. On this screen, users can create a new scenario, copy and modify an

  12. Lignocellulosic Biomass

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Biofuels Publications Lignocellulosic Biomass Microalgae Thermochemical Conversion ... Solid Fuels Conversion Pressurized Combustion and Gasification Particle Ignition and Char ...

  13. Biomass pretreatment

    SciTech Connect (OSTI)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  14. Biomass Logistics

    SciTech Connect (OSTI)

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  15. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    SciTech Connect (OSTI)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25-1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  16. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    SciTech Connect (OSTI)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300°C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200–230ºC and 270–280ºC. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25–1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  17. Scenario Analysis Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Scenario Analysis Meeting Scenario Analysis Meeting Presentation by Sigmund Gronich at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007. scenario_analysis_gronich1_07.pdf (655.92 KB) More Documents & Publications HyPro: Modeling the Hydrogen Transition Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements Hydrogen and FCV Implementation Scenarios, 2010 - 2025

  18. Hydrogen Scenarios | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Scenarios Hydrogen Scenarios Presentation by Frances Wood of OnLocation Inc. at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 deliv_analysis_wood.pdf (190.7 KB) More Documents & Publications DOE Hydrogen Transition Analysis Workshop Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007, Discussion Session Highlights, Comments, and Action Items

  19. Forest Biomass

    Energy.gov [DOE]

    Breakout Session 1B: Innovation and Sustainability: Capturing Social and Environmental Benefits As Part of Bioenergy's Value Proposition Forest Biomass Bob Emory, Southern Timberlands Environmental Affairs Manager, Weyerhauser

  20. BIOMASS-TO-ENERGY FEASIBILITY STUDY

    SciTech Connect (OSTI)

    Cecil T. Massie

    2002-09-03

    The purpose of this study was to assess the economic and technical feasibility of producing electricity and thermal energy from biomass by gasification. For an economic model we chose a large barley malting facility operated by Rahr Malting Co. in Shakopee, Minnesota. This plant provides an excellent backdrop for this study because it has both large electrical loads and thermal loads that allowed us to consider a wide range of sizes and technical options. In the end, eleven scenarios were considered ranging from 3.1 megawatts (MWe) to 19.8 MWe. By locating the gasification and generation at an agricultural product processing plant with large electrical and thermal loads, the expectation was that some of the limitations of stand-alone biomass power plants would be overcome. In addition, since the process itself created significant volumes of low value biomass, the hope was that most of the biomass gathering and transport issues would be handled as well. The development of low-BTU gas turbines is expected to fill a niche between the upper limit of multiple spark ignited engine set systems around 5 MWe and the minimum reasonable scale for steam turbine systems around 10 MWe.

  1. Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint

    SciTech Connect (OSTI)

    Riley, C.; Sandor, D.; Simpkins, P.

    2006-11-01

    This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

  2. Biomass Feed and Gasification

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Biomass Feed and Gasification The Biomass Feed and Gasification Key Technology will advance scientific knowledge of the feeding and conversion of biomass and coal-biomass mixtures ...

  3. Rooftop Photovoltaics Market Penetration Scenarios

    SciTech Connect (OSTI)

    Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

    2008-02-01

    The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

  4. Biomass One Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBiomassOneBiomassFacility&oldid397204" Feedback Contact needs updating Image needs...

  5. AGCO Biomass Solutions: Biomass 2014 Presentation

    Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

  6. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China

    SciTech Connect (OSTI)

    Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen

    2006-08-01

    A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

  7. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    SciTech Connect (OSTI)

    Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Adams, Michael W. W.; Senger, Ryan S.; Zhang, Y. -H. Percival

    2015-04-06

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2∙L₋1∙h₋1. The productivity was further enhanced to 54 mmol H2∙L₋1∙h₋1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.

  8. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    DOE PAGES-Beta [OSTI]

    Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Adams, Michael W. W.; et al

    2015-04-06

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was usedmore » to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2∙L₋1∙h₋1. The productivity was further enhanced to 54 mmol H2∙L₋1∙h₋1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.« less

  9. Biomass [updated

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  10. Biomass Feedstocks

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Feedstocks Ralph P. Overend , Mark Davis, Rob Perlack (ORNL), Tom Foust (INEEL) and colleagues NASULGC NREL, CO August 3 - 4. 2004 Outline * Biomass - Bioenergy Cycle * Global Estimates - USA situation * Resource Assessment - Supply Curve 500 Mt 2020 - Definitions - Type and Quality - Biomass supply in context - Is a Gigatonne feasible? * Quality Matters - Influence on product yields - Using advanced rapid analysis to choose and develop feedstocks Bioenergy Cycle Illustration courtesy of ORNL

  11. Methods for pretreating biomass

    DOE Patents [OSTI]

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2015-03-03

    A method of alkaline pretreatment of biomass, in particular, pretreating biomass with gaseous ammonia.

  12. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    SciTech Connect (OSTI)

    Mohammad S. Roni; Kara G. Cafferty; Christopher T Wright; Lantian Ren

    2015-06-01

    China has abundant biomass resources, which can be used as a potential source of bioenergy. However, China faces challenges implementing biomass as an energy source, because China has not developed the highly networked, high-volume biomass logistics systems and infrastructure. This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to the U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum under different scenarios in China. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study shows that the logistics cost of corn stover and sweet sorghum stalk will be $52.95/dry metric ton and $52.64/ dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk will be down to $36.01/ dry metric ton and $35.76/dry metric ton, respectively. The study also performed a sensitivity analysis to find the cost factors that cause logistics cost variation. A sensitivity analysis shows that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, causing a variation of $6 to $12/metric ton.

  13. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    SciTech Connect (OSTI)

    Blair, N.; Jenkin, T.; Milford, J.; Short, W.; Sullivan, P.; Evans, D.; Lieberman, E.; Goldstein, G.; Wright, E.; Jayaraman, K.; Venkatech, B.; Kleiman, G.; Namovicz, C.; Smith, B.; Palmer, K.; Wiser, R.; Wood, F.

    2009-09-30

    /or different answers in response to a set of focused energy-related questions. The focus was on understanding reasons for model differences, not on policy implications, even though a policy of high renewable penetration was used for the analysis. A group process was used to identify the potential question (or questions) to be addressed through the project. In late 2006, increasing renewable energy penetration in the electricity sector was chosen from among several options as the general policy to model. From this framework, the analysts chose a renewable portfolio standard (RPS) as the way to implement the required renewable energy market penetration in the models. An RPS was chosen because it was (i) of interest and represented the group's consensus choice, and (ii) tractable and not too burdensome for the modelers. Because the modelers and analysts were largely using their own resources, it was important to consider the degree of effort required. In fact, several of the modelers who started this process had to discontinue participation because of other demands on their time. Federal and state RPS policy is an area of active political interest and debate. Recognizing this, participants used this exercise to gain insight into energy model structure and performance. The results are not intended to provide any particular insight into policy design or be used for policy advocacy, and participants are not expected to form a policy stance based on the outcomes of the modeling. The goals of this REMAP project - in terms of the main topic of renewable penetration - were to: (1) Compare models and understand why they may give different results to the same question, (2) Improve the rigor and consistency of assumptions used across models, and (3) Evaluate the ability of models to measure the impacts of high renewable-penetration scenarios.

  14. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    SciTech Connect (OSTI)

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; Daw, C. Stuart; Xu, Fei

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in the mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.

  15. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    DOE PAGES-Beta [OSTI]

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; Daw, C. Stuart; Xu, Fei

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less

  16. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  17. Future climate change under RCP emission scenarios with GISS...

    Office of Scientific and Technical Information (OSTI)

    Future climate change under RCP emission scenarios with GISS ModelE2 Citation Details In-Document Search Title: Future climate change under RCP emission scenarios with GISS ModelE2 ...

  18. Scenario Evaluation, Regionalization & Analysis (SERA) | Open...

    Open Energy Information (Open El) [EERE & EIA]

    analysis model that determines the optimal production and delivery scenarios for hydrogen, given resource availability and technology cost. Given annual H2 demands on a...

  19. Lyonsdale Biomass LLC Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    LLC Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York...

  20. Biomass One LP Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535,...

  1. Model Developments for Development of Improved Emissions Scenarios: Developing Purchasing-Power Parity Models, Analyzing Uncertainty, and Developing Data Sets for Gridded Integrated Assessment Models

    SciTech Connect (OSTI)

    Yang, Zili; Nordhaus, William

    2009-03-19

    In the duration of this project, we finished the main tasks set up in the initial proposal. These tasks include: setting up the basic platform in GAMS language for the new RICE 2007 model; testing various model structure of RICE 2007; incorporating PPP data set in the new RICE model; developing gridded data set for IA modeling.

  2. Star Biomass | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass Jump to: navigation, search Name: Star Biomass Place: India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article...

  3. Tracy Biomass Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleTracyBiomassBiomassFacility&oldid398234" Feedback Contact needs updating Image needs...

  4. Energy Transition Initiative Energy Scenario Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Transition Initiative Energy Scenario Tool Energy Transition Initiative Energy Scenario Tool The ETI Energy Scenario Tool helps communities analyze different pathways to meet a given energy transition goal by modeling the levelized cost of electricity for custom, user-defined scenarios of supply and demand. Download the tool and user guide below. For step-by-step instructions on how to use the tool, watch the video. ETI Energy Scenario Tool (4.95 MB) ETI Energy Scenario Tool User Guide

  5. Biomass shock pretreatment

    DOE Patents [OSTI]

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  6. Biomass Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Feedstocks to Final Products To efficiently convert algae, diverse types of cellulosic biomass, and emerging feedstocks into renewable fuels, the U.S. Department of Energy (DOE) supports research, development, and demonstration of technologies. This research will help ensure that these renewable fuels are compatible with today's vehicles and infrastructure. Advanced biofuels are part of the United States' "all-of-the-above" energy strategy to develop domestic energy resources and win

  7. Biomass to Liquid Fuels and Electrical Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    suitable for trade in commodity markets. - Develop process simulation models for biomass gasification and gas conditioning. - Develop models of Fischer-Tropsch synthesis processes. ...

  8. REF Scenario Viewer

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Futures Study Scenario Viewer National Renewable Energy Laboratory Loading Data and Visualizations NREL is a national laboratory of the U.S. Department of Energy, Office of Energy ...

  9. Brazil's biofuels scenario

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DO ETANOL Brazil's biofuels scenario: What are the main drivers which will shape investments in the long term? Artur Yabe Milanez Manager BNDES Biofuels Department LIVRO VERDE ...

  10. Proof-of-Concept Demonstrations for Computation-Based Human Reliability Analysis. Modeling Operator Performance During Flooding Scenarios

    SciTech Connect (OSTI)

    Joe, Jeffrey Clark; Boring, Ronald Laurids; Herberger, Sarah Elizabeth Marie; Mandelli, Diego; Smith, Curtis Lee

    2015-09-01

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program has the overall objective to help sustain the existing commercial nuclear power plants (NPPs). To accomplish this program objective, there are multiple LWRS “pathways,” or research and development (R&D) focus areas. One LWRS focus area is called the Risk-Informed Safety Margin and Characterization (RISMC) pathway. Initial efforts under this pathway to combine probabilistic and plant multi-physics models to quantify safety margins and support business decisions also included HRA, but in a somewhat simplified manner. HRA experts at Idaho National Laboratory (INL) have been collaborating with other experts to develop a computational HRA approach, called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), for inclusion into the RISMC framework. The basic premise of this research is to leverage applicable computational techniques, namely simulation and modeling, to develop and then, using RAVEN as a controller, seamlessly integrate virtual operator models (HUNTER) with 1) the dynamic computational MOOSE runtime environment that includes a full-scope plant model, and 2) the RISMC framework PRA models already in use. The HUNTER computational HRA approach is a hybrid approach that leverages past work from cognitive psychology, human performance modeling, and HRA, but it is also a significant departure from existing static and even dynamic HRA methods. This report is divided into five chapters that cover the development of an external flooding event test case and associated statistical modeling considerations.

  11. An Integrated Modeling and Data Management Strategy for Cellulosic Biomass Production Decisions

    SciTech Connect (OSTI)

    David J. Muth Jr.; K. Mark Bryden; Joshua B. Koch

    2012-07-01

    Emerging cellulosic bioenergy markets can provide land managers with additional options for crop production decisions. Integrating dedicated bioenergy crops such as perennial grasses and short rotation woody species within the agricultural landscape can have positive impacts on several environmental processes including increased soil organic matter in degraded soils, reduced sediment loading in watersheds, lower green house gas (GHG) fluxes, and reduced nutrient loading in watersheds. Implementing this type of diverse bioenergy production system in a way that maximizes potential environmental benefits requires a dynamic integrated modeling and data management strategy. This paper presents a strategy for designing diverse bioenergy cropping systems within the existing row crop production landscape in the midwestern United States. The integrated model developed quantifies a wide range environmental processes including soil erosion from wind and water, soil organic matter changes, and soil GHG fluxes within a geospatial data management framework. This framework assembles and formats information from multiple spatial and temporal scales. The data assembled includes yield and productivity data from harvesting equipment at the 1m scale, surface topography data from LiDAR mapping at the less than 1m scale, soil data from US soil survey databases at the 10m to 100m scale, and climate data at the county scale. These models and data tools are assembled into an integrated computational environment that is used to determine sustainable removal rates for agricultural residues for bioenergy production at the sub-field scale under a wide range of land management practices. Using this integrated model, innovative management practices including cover cropping are then introduced and evaluated for their impact on bioenergy production and important environmental processes. The impacts of introducing dedicated energy crops onto high-risk landscape positions currently being manage in

  12. Mars base buildup scenarios

    SciTech Connect (OSTI)

    Blacic, J.D.

    1985-01-01

    Two surface base build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second scenario, early development of an infrastructure to exploite the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first, but once begun develops rapidly aided by the presence of a permanently manned orbital station.

  13. Biomass Characterization | Bioenergy | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion processes. woman working with sampling equipment in a lab Capabilities man looking at test tubes containing clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of analytical methods for biomass characterization available for downloading. View the Biomass Compositional Analysis Lab

  14. Aspen Process Flowsheet Simulation Model of a Battelle Biomass-Based Gasification, Fischer-Tropsch Liquefaction and Combined-Cycle Power Plant

    SciTech Connect (OSTI)

    1998-10-30

    This study was done to support the research and development program of the National Renewable Energy Laboratory (NREL) in the thermochemical conversion of biomass to liquid transportation fuels using current state-of-the-art technology. The Mitretek study investigated the use of two biomass gasifiers; the RENUGAS gasifier being developed by the Institute of Gas Technology, and the indirectly heated gasifier being developed by Battelle Columbus. The Battelle Memorial Institute of Columbus, Ohio indirectly heated biomass gasifier was selected for this model development because the syngas produced by it is better suited for Fischer-Tropsch synthesis with an iron-based catalyst for which a large amount of experimental data are available. Bechtel with Amoco as a subcontractor developed a conceptual baseline design and several alternative designs for indirect coal liquefaction facilities. In addition, ASPEN Plus process flowsheet simulation models were developed for each of designs. These models were used to perform several parametric studies to investigate various alternatives for improving the economics of indirect coal liquefaction.

  15. Scenario Analysis Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Analysis Meeting Dr. Sigmund Gronich Transition Strategy Manager January 31, 2007 Purposes of Studies * Assess the costs associated with different scenarios to achieve the market transformation of hydrogen fuel cell vehicles * No recommendations will be made as to which scenario is to be adopted * The report will be provided to the National Academy of Sciences and the Hydrogen Technical Advisory Committee in March, 2007 for their utilization Natural Gas Distributed Reforming R&D * H2Gen

  16. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and

  17. Biomass torrefaction mill

    DOE Patents [OSTI]

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  18. Science Activities in Biomass

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    concern plant growth and the environment, byproducts of biomass, and energy contained in different types of biomass. Provided by the Department of Energy's National Renewable...

  19. NREL: Biomass Research - Facilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  20. NREL: Biomass Research - Capabilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass...

  1. NREL: Biomass Research - Publications

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    biofuels Biomass process and sustainability analyses. ... For information on biomass policy, read congressional ... on the Yield and Product Distribution of Fast ...

  2. Biomass Analytical Library

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

  3. Current generation by helicons and LH waves in modern tokamaks and reactors FNSF-AT, ITER and DEMO. Scenarios, modeling and antennae

    SciTech Connect (OSTI)

    Vdovin, V.

    2014-02-12

    The Innovative concept and 3D full wave code modeling Off-axis current drive by RF waves in large scale tokamaks, reactors FNSF-AT, ITER and DEMO for steady state operation with high efficiency was proposed [1] to overcome problems well known for LH method [2]. The scheme uses the helicons radiation (fast magnetosonic waves at high (20–40) IC frequency harmonics) at frequencies of 500–1000 MHz, propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by Helicons will help to have regimes with negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure β{sub N} > 3 (the so-called Advanced scenarios) of interest for FNSF and the commercial reactor. Modeling with full wave three-dimensional codes PSTELION and STELEC2 showed flexible control of the current profile in the reactor plasmas of ITER, FNSF-AT and DEMO [2,3], using multiple frequencies, the positions of the antennae and toroidal waves slow down. Also presented are the results of simulations of current generation by helicons in tokamaks DIII-D, T-15MD and JT-60SA [3]. In DEMO and Power Plant antenna is strongly simplified, being some analoge of mirrors based ECRF launcher, as will be shown. For spherical tokamaks the Helicons excitation scheme does not provide efficient Off-axis CD profile flexibility due to strong coupling of helicons with O-mode, also through the boundary conditions in low aspect machines, and intrinsic large amount of trapped electrons, as is shown by STELION modeling for the NSTX tokamak. Brief history of Helicons experimental and modeling exploration in straight plasmas, tokamaks and tokamak based fusion Reactors projects is given, including planned joint DIII-D – Kurchatov Institute experiment on helicons CD [1].

  4. Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP): An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    SciTech Connect (OSTI)

    Blair, Nate; Jenkin, Thomas; Milford, James; Short, Walter; Sullivan, Patrick; Evans, David; Lieberman, Elliot; Goldstein, Gary; Wright, Evelyn; Jayaraman, Kamala R.; Venkatesh, Boddu; Kleiman, Gary; Namovicz, Christopher; Smith, Bob; Palmer, Karen; Wiser, Ryan; Wood, Frances

    2009-09-01

    Energy system modeling can be intentionally or unintentionally misused by decision-makers. This report describes how both can be minimized through careful use of models and thorough understanding of their underlying approaches and assumptions. The analysis summarized here assesses the impact that model and data choices have on forecasting energy systems by comparing seven different electric-sector models. This analysis was coordinated by the Renewable Energy and Efficiency Modeling Analysis Partnership (REMAP), a collaboration among governmental, academic, and nongovernmental participants.

  5. Sustainable Transport Illustrative Scenarios Tool | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Scenarios Tool has been developed as a high-level calculator (not an in-depth model) to help provide indicative estimates of the possible impacts of policy on transport...

  6. Biomass Program Overview

    SciTech Connect (OSTI)

    2010-01-01

    This document provides an overview of the Biomass Program's mission, strategic goals, and research approach.

  7. Biomass treatment method

    DOE Patents [OSTI]

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  8. Process Modeling Results of Bio-Syntrolysis: Converting Biomass to Liquid Fuel with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    G. L. Hawkes; M. G. McKellar; R. Wood; M. M. Plum

    2010-06-01

    A new process called Bio-Syntrolysis is being researched at the Idaho National Laboratory (INL) investigating syngas production from renewable biomass that is assisted with high temperature steam electrolysis (HTSE). The INL is the world leader in researching HTSE and has recently produced hydrogen from high temperature solid oxide cells running in the electrolysis mode setting several world records along the way. A high temperature (~800°C) heat source is necessary to heat the steam as it goes into the electrolytic cells. Biomass provides the heat source and the carbon source for this process. Syngas, a mixture of hydrogen and carbon monoxide, can be used for the production of synthetic liquid fuels via Fischer-Tropsch processes. This concept, coupled with fossil-free electricity, provides a possible path to reduced greenhouse gas emissions and increased energy independence, without the major infrastructure shift that would be required for a purely hydrogen-based transportation system. Furthermore, since the carbon source is obtained from recyclable biomass, the entire concept is carbon-neutral

  9. Biomass Feed and Gasification

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Biomass Feed and Gasification The Biomass Feed and Gasification Key Technology will advance scientific knowledge of the feeding and conversion of biomass and coal-biomass mixtures as essential upstream steps for production of liquid transportation fuels with a lower net GHG emissions than conventional oil refining. Activities support research for handling and processing of coal-biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on

  10. NREL: Renewable Resource Data Center - Biomass Resource Information

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Biomass Resource Information Photo of corn stover biomass resource Corn stover The Renewable Resource Data Center (RReDC) offers a collection of data and tools to assist with biomass resource research. Learn more about RReDC's biomass resource: Data Models and tools Publications Related links Biomass Resource Assessment is available for the United States by county and includes the following feedstock categories: crop residues, forest residues, primary and secondary mill residues, urban wood

  11. Description of GPRA08 scenarios

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Background information for the FY 2007 GPRA methodology review providing a description of GPRA08 scenarios.

  12. Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels

    SciTech Connect (OSTI)

    Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D.

    2010-11-01

    This study develops techno-economic models for assessment of the conversion of biomass to valuable fuel products via fast pyrolysis and bio-oil upgrading. The upgrading process produces a mixture of naphtha-range (gasoline blend stock) and diesel-range (diesel blend stock) products. This study analyzes the economics of two scenarios: onsite hydrogen production by reforming bio-oil, and hydrogen purchase from an outside source. The study results for an nth plant indicate that petroleum fractions in the naphtha distillation range and in the diesel distillation range are produced from corn stover at a product value of $3.09/gal ($0.82/liter) with onsite hydrogen production or $2.11/gal ($0.56/liter) with hydrogen purchase. These values correspond to a $0.83/gal ($0.21/liter) cost to produce the bio-oil. Based on these nth plant numbers, product value for a pioneer hydrogen-producing plant is about $6.55/gal ($1.73/liter) and for a pioneer hydrogen-purchasing plant is about $3.41/gal ($0.92/liter). Sensitivity analysis identifies fuel yield as a key variable for the hydrogen-production scenario. Biomass cost is important for both scenarios. Changing feedstock cost from $50-$100 per short ton changes the price of fuel in the hydrogen production scenario from $2.57-$3.62/gal ($0.68-$0.96/liter).

  13. Standard Scenarios Annual Report

    Energy.gov [DOE]

    The National Renewable Energy Laboratory is conducting a study sponsored by the U.S. Department of Energy DOE, Office of Energy Efficiency and Renewable Energy (EERE), that aims to document and implement an annual process designed to identify a realistic and timely set of input assumptions (e.g., technology cost and performance, fuel costs), and a diverse set of potential futures (standard scenarios), initially for electric sector analysis.

  14. Sensitivity of North American agriculture to ENSO-based climate scenarios and their socio-economic consequences: Modeling in an integrated assessment framework

    SciTech Connect (OSTI)

    Rosenberg, N.J.; Izaurralde, R.C.; Brown, R.A.; Sands, R.D.; Legler, D.; Srinivasan, R.; Tiscareno-Lopez, M.

    1997-09-01

    A group of Canadian, US and Mexican natural resource specialists, organized by the Pacific Northwest National Laboratory (PNNL) under its North American Energy, Environment and Economy (NA3E) Program, has applied a simulation modeling approach to estimating the impact of ENSO-driven climatic variations on the productivity of major crops grown in the three countries. Methodological development is described and results of the simulations presented in this report. EPIC (the Erosion Productivity Impact Calculator) was the agro-ecosystem model selected-for this study. EPIC uses a daily time step to simulate crop growth and yield, water use, runoff and soil erosion among other variables. The model was applied to a set of so-called representative farms parameterized through a specially-assembled Geographic Information System (GIS) to reflect the soils, topography, crop management and weather typical of the regions represented. Fifty one representative farms were developed for Canada, 66 for the US and 23 for Mexico. El Nino-Southern Oscillation (ENSO) scenarios for the EPIC simulations were created using the historic record of sea-surface temperature (SST) prevailing in the eastern tropical Pacific for the period October 1--September 30. Each year between 1960 and 1989 was thus assigned to an ENSO category or state. The ENSO states were defined as El Nino (EN, SST warmer than the long-term mean), Strong El Nino (SEN, much warmer), El Viejo (EV, cooler) and Neutral (within {+-}0.5 C of the long-term mean). Monthly means of temperature and precipitation were then calculated at each farm for the period 1960--1989 and the differences (or anomalies) between the means in Neutral years and EN, SEN and EV years determined. The average monthly anomalies for each ENSO state were then used to create new monthly statistics for each farm and ENSO-state combination. The adjusted monthly statistics characteristic of each ENSO state were then used to drive a stochastic-weather simulator

  15. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Biomass Scenario Model Documentation Data and References Lin Y Newes E Bush B Peterson S Stright D BIOMASS FUELS BIOMASS SCENARIO MODEL BSM BIOMASS BIOFUEL MODEL DATA REFERENCES...

  16. Russell Biomass | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Place: Massachusetts Sector: Biomass Product: Russell Biomass, LLC is developing a 50MW biomass to energy project at the former Westfield Paper Company site in Russell,...

  17. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  18. A method for the assessment of site-specific economic impacts of commercial and industrial biomass energy facilities. A handbook and computer model

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    A handbook on ``A Method for the Assessment of Site-specific Econoomic Impacts of Industrial and Commercial Biomass Energy Facilities`` has been prepared by Resource Systems Group Inc. under contract to the Southeastern Regional Biomass Energy Program (SERBEP). The handbook includes a user-friendly Lotus 123 spreadsheet which calculates the economic impacts of biomass energy facilities. The analysis uses a hybrid approach, combining direct site-specific data provided by the user, with indirect impact multipliers from the US Forest Service IMPLAN input/output model for each state. Direct economic impacts are determined primarily from site-specific data and indirect impacts are determined from the IMPLAN multipliers. The economic impacts are given in terms of income, employment, and state and federal taxes generated directly by the specific facility and by the indirect economic activity associated with each project. A worksheet is provided which guides the user in identifying and entering the appropriate financial data on the plant to be evaluated. The WLAN multipliers for each state are included in a database within the program. The multipliers are applied automatically after the user has entered the site-specific data and the state in which the facility is located. Output from the analysis includes a summary of direct and indirect income, employment and taxes. Case studies of large and small wood energy facilities and an ethanol plant are provided as examples to demonstrate the method. Although the handbook and program are intended for use by those with no previous experience in economic impact analysis, suggestions are given for the more experienced user who may wish to modify the analysis techniques.

  19. Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics

    SciTech Connect (OSTI)

    Vimmerstedt, L. J.; Bush, B.; Peterson, S.

    2012-05-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and

  20. Biomass 2014 Draft Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass 2014 Draft Agenda All topics and times are tentative and subject to change. Page | 1 BIOMASS 2014: Growing the Future Bioeconomy July 29-30, 2014, Washington Convention ...

  1. Pretreated densified biomass products

    DOE Patents [OSTI]

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  2. The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments

    SciTech Connect (OSTI)

    Eranki, Pragnya L.; Manowitz, David H.; Bals, Bryan D.; Izaurralde, Roberto C.; Kim, Seungdo; Dale, Bruce E.

    2013-07-23

    An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefi neries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) model estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts.

  3. Biomass Program Biopower Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    Generating electricity and thermal energy from biomass has the potential to help meet national goals for renewable energy. The forest products industry has used biomass for power and heat for many decades, yet widespread use of biomass to supply electricity to the U.S. power grid and other applications is relatively recent.

  4. Small Modular Biomass Systems

    SciTech Connect (OSTI)

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  5. Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2

    SciTech Connect (OSTI)

    Pruess, K.

    2011-05-15

    Storage of CO{sub 2} in saline aquifers is intended to be at supercritical pressure and temperature conditions, but CO{sub 2} leaking from a geologic storage reservoir and migrating toward the land surface (through faults, fractures, or improperly abandoned wells) would reach subcritical conditions at depths shallower than 500-750 m. At these and shallower depths, subcritical CO{sub 2} can form two-phase mixtures of liquid and gaseous CO{sub 2}, with significant latent heat effects during boiling and condensation. Additional strongly non-isothermal effects can arise from decompression of gas-like subcritical CO{sub 2}, the so-called Joule-Thomson effect. Integrated modeling of CO{sub 2} storage and leakage requires the ability to model non-isothermal flows of brine and CO{sub 2} at conditions that range from supercritical to subcritical, including three-phase flow of aqueous phase, and both liquid and gaseous CO{sub 2}. In this paper, we describe and demonstrate comprehensive simulation capabilities that can cope with all possible phase conditions in brine-CO{sub 2} systems. Our model formulation includes: (1) an accurate description of thermophysical properties of aqueous and CO{sub 2}-rich phases as functions of temperature, pressure, salinity and CO{sub 2} content, including the mutual dissolution of CO{sub 2} and H{sub 2}O; (2) transitions between super- and subcritical conditions, including phase change between liquid and gaseous CO{sub 2}; (3) one-, two-, and three-phase flow of brine-CO{sub 2} mixtures, including heat flow; (4) non-isothermal effects associated with phase change, mutual dissolution of CO{sub 2} and water, and (de-) compression effects; and (5) the effects of dissolved NaCl, and the possibility of precipitating solid halite, with associated porosity and permeability change. Applications to specific leakage scenarios demonstrate that the peculiar thermophysical properties of CO{sub 2} provide a potential for positive as well as negative

  6. Flooding Capability for River-based Scenarios

    SciTech Connect (OSTI)

    Smith, Curtis L.; Prescott, Steven; Ryan, Emerald; Calhoun, Donna; Sampath, Ramprasad; Anderson, S. Danielle; Casteneda, Cody

    2015-10-01

    This report describes the initial investigation into modeling and simulation tools for application of riverine flooding representation as part of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluations. The report provides examples of different flooding conditions and scenarios that could impact river and watershed systems. Both 2D and 3D modeling approaches are described.

  7. Mobile Biomass Pelletizing System

    SciTech Connect (OSTI)

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  8. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios

    SciTech Connect (OSTI)

    Clarke, Leon E.; Wise, Marshall A.; Placet, Marylynn; Izaurralde, R Cesar; Lurz, Joshua P.; Kim, Son H.; Smith, Steven J.; Thomson, Allison M.

    2006-09-18

    This report documents a scenario analysis that explores three advanced technology pathways toward climate stabilization using the MiniCAM model.

  9. SERA Scenarios of Early Market Fuel Cell Electric Vehicle Introduction...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    SERA Scenarios of Early Market Fuel Cell Electric Vehicle Introductions: Modeling Framework, Regional Markets, and Station Clustering ICEPAG Conference University of California, ...

  10. Effects of harvest management practices on forest biomass and soil carbon in eucalypt forests in New South Wales, Australia: Simulations with the forest succession model LINKAGES

    SciTech Connect (OSTI)

    Ranatunga, Kemachandra; Keenan, Rodney J.; Wullschleger, Stan D; Post, Wilfred M; Tharp, M Lynn

    2008-01-01

    Understanding long-term changes in forest ecosystem carbon stocks under forest management practices such as timber harvesting is important for assessing the contribution of forests to the global carbon cycle. Harvesting effects are complicated by the amount, type, and condition of residue left on-site, the decomposition rate of this residue, the incorporation of residue into soil organic matter and the rate of new detritus input to the forest floor from regrowing vegetation. In an attempt to address these complexities, the forest succession model LINKAGES was used to assess the production of aboveground biomass, detritus, and soil carbon stocks in native Eucalyptus forests as influenced by five harvest management practices in New South Wales, Australia. The original decomposition sub-routines of LINKAGES were modified by adding components of the Rothamsted (RothC) soil organic matter turnover model. Simulation results using the new model were compared to data from long-term forest inventory plots. Good agreement was observed between simulated and measured above-ground biomass, but mixed results were obtained for basal area. Harvesting operations examined included removing trees for quota sawlogs (QSL, DBH >80 cm), integrated sawlogs (ISL, DBH >20 cm) and whole-tree harvesting in integrated sawlogs (WTH). We also examined the impact of different cutting cycles (20, 50 or 80 years) and intensities (removing 20, 50 or 80 m{sup 3}). Generally medium and high intensities of shorter cutting cycles in sawlog harvesting systems produced considerably higher soil carbon values compared to no harvesting. On average, soil carbon was 2-9% lower in whole-tree harvest simulations whereas in sawlog harvest simulations soil carbon was 5-17% higher than in no harvesting.

  11. Radiation Detection Computational Benchmark Scenarios

    SciTech Connect (OSTI)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for

  12. NREL: Biomass Research - Biomass Characterization Capabilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes...

  13. Agriculture, land use, and commercial biomass energy

    SciTech Connect (OSTI)

    Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

    1996-06-01

    In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

  14. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    SciTech Connect (OSTI)

    Ren, Lantian; Cafferty, Kara; Roni, Mohammad; Jacobson, Jacob; Xie, Guanghui; Ovard, Leslie; Wright, Christopher

    2015-06-11

    This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum in China under different scenarios. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study estimates that the logistics cost of corn stover and sweet sorghum stalk to be $52.95/dry metric ton and $52.64/dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk decreases to $36.01/dry metric ton and $35.76/dry metric ton, respectively. The study also includes a sensitivity analysis to identify the cost factors that cause logistics cost variation. Results of the sensitivity analysis show that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, with a variation of $6 to $12/dry metric ton.

  15. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    DOE PAGES-Beta [OSTI]

    Ren, Lantian; Cafferty, Kara; Roni, Mohammad; Jacobson, Jacob; Xie, Guanghui; Ovard, Leslie; Wright, Christopher

    2015-06-11

    This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum in China under different scenarios. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study estimates that the logistics cost of corn stover and sweet sorghum stalk to be $52.95/dry metric ton and $52.64/dry metric ton, respectively,more » for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk decreases to $36.01/dry metric ton and $35.76/dry metric ton, respectively. The study also includes a sensitivity analysis to identify the cost factors that cause logistics cost variation. Results of the sensitivity analysis show that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, with a variation of $6 to $12/dry metric ton.« less

  16. The role of renewable energy in climate stabilization: results from the EMF 27 scenarios

    SciTech Connect (OSTI)

    Luderer, Gunnar; Krey, Volker; Calvin, Katherine V.; Merrick, James; Mima, Silvana; Pietzcker, Robert; Van Vliet, Jasper; Wada, Kenichi

    2013-10-15

    This paper uses the EMF27 scenarios to explore the role of renewable energy (RE) in climate change mitigation. Currently RE supplies almost 20 % of global electricity demand. Almost all EMF27 mitigation scenarios show a strong increase in renewable power production, with a substantial ramp-up of wind and solar power deployment. In many scenarios, renewables are the most important long-term mitigation option for power supply. Wind energy is competitive even without climate policy, whereas the prospects of solar photovoltaics (PV) are highly contingent on the ambitiousness of climate policy. Bioenergy is an important and versatile energy carrier; howeverwith the exception of low temperature heatthere is less scope for renewables other than biomass for non-electric energy supply. Despite the important role of wind and solar power in climate change mitigation scenarios with full technology availability, limiting their deployment has a relatively small effect on mitigation costs, if nuclear and carbon capture and storage (CCS)which can serve as substitutes in low-carbon power supplyare available. Limited bioenergy availability in combination with limited wind and solar power by contrast, results in a more substantial increase in mitigation costs. While a number of robust insights emerge, the results on renewable energy deployment levels vary considerably across the models. An in-depth analysis of a subset of EMF27 reveals substantial differences in modeling approaches and parameter assumptions. To a certain degree, differences in model results can be attributed to different assumptions about technology costs, resource potentials and systems integration.

  17. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Santosh Gangwal, Director-Business Development, Energy Technologies, Southern Research Institute gangwal_biomass_2014.pdf (1.36 MB) More

  18. Complex pendulum biomass sensor

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  19. Energy Transition Initiative Energy Scenario Tool | Department...

    Energy Savers

    Energy Transition Initiative Energy Scenario Tool Energy Transition Initiative Energy Scenario Tool The ETI Energy Scenario Tool helps communities analyze different pathways to ...

  20. Overview of biomass technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  1. Gasification-based biomass

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  2. Direct-fired biomass

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The direct-fired biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  3. Biomass Engineering: Transportation & Handling

    Energy.gov (indexed) [DOE]

    ... sponsored work (feedstock, pyrolysis, gasification, test equipment): - Share data with ... assimilation of BETO program data into Biomass Resource Library Create & follow approved ...

  4. Biomass | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    technologies that are used for biomass thermal and combined heat and power (CHP) plants are direct combustion and gasification systems. Direct combustion systems are the...

  5. Biomass Energy Basics | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Biomass Energy Basics We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived materials-since people began burning wood to cook food and keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can also be used. These include food crops, grassy and woody plants, residues from agriculture or forestry, oil-rich algae, and the organic component of municipal and industrial wastes. Even the fumes from landfills (which are

  6. NREL: Biomass Research - Webmaster

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    to reply. Your name: Your email address: Your message: Send Message Printable Version Biomass Research Home Capabilities Projects Facilities Research Staff Working with Us Data &...

  7. NREL: Biomass Research - Projects

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

  8. Co-firing biomass

    SciTech Connect (OSTI)

    Hunt, T.; Tennant, D.

    2009-11-15

    Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

  9. Biomass: Wood as Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coordinator USDA Forest Service State & Private Forestry ... habitat and forest health Modern Woody Biomass ... Requires manual fuel delivery & stoking Pellets Meter ...

  10. Process for treating biomass

    DOE Patents [OSTI]

    Campbell, Timothy J.; Teymouri, Farzaneh

    2015-08-11

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  11. Process for treating biomass

    DOE Patents [OSTI]

    Campbell, Timothy J; Teymouri, Farzaneh

    2015-11-04

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  12. Biomass Processing Photolibrary

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  13. Biomass Feasibility Analysis Report

    SciTech Connect (OSTI)

    Lipscomb, Brian

    2015-03-30

    Feasibility study to determine technical and economic viability of a co-generation biomass fuel power plant for the Confederated Salish and Kootenai Tribes.

  14. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU

  15. Technology and Greenhouse Gas Emissions: An IntegratedScenario Analysis

    SciTech Connect (OSTI)

    Koomey, J.G.; Latiner, S.; Markel, R.J.; Marnay, C.; Richey, R.C.

    1998-09-01

    This report describes an analysis of possible technology-based scenarios for the U.S. energy system that would result in both carbon savings and net economic benefits. We use a modified version of the Energy Information Administration's National Energy Modeling System (LBNL-NEMS) to assess the potential energy, carbon, and bill savings from a portfolio of carbon saving options. This analysis is based on technology resource potentials estimated in previous bottom-up studies, but it uses the integrated LBNL-NEMS framework to assess interactions and synergies among these options. The analysis in this paper builds on previous estimates of possible "technology paths" to investigate four major components of an aggressive greenhouse gas reduction strategy: (1) the large scale implementation of demand-side efficiency, comparable in scale to that presented in two recent policy studies on this topic; (2) a variety of "alternative" electricity supply-side options, including biomass cofiring, extension of the renewable production tax credit for wind, increased industrial cogeneration, and hydropower refurbishment. (3) the economic retirement of older and less efficient existing fossil-find power plants; and (4) a permit charge of $23 per metric ton of carbon (1996 $/t),l assuming that carbon trading is implemented in the US, and that the carbon permit charge equilibrates at this level. This level of carbon permit charge, as discussed later in the report, is in the likely range for the Clinton Administration's position on this topic.

  16. NREL: Energy Analysis - Models and Tools

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Printable Version Models and Tools Use models and tools developed or supported by NREL to assess, analyze, and optimize renewable energy and energy efficiency technologies for your project. Many of these tools can be applied on a global, regional, local, or project basis. NREL models and tools include several designed for the consumer or energy professional. Technology and Performance Analysis Biomass Scenario Model (BSM) Determine which supply chain changes would have the greatest potential to

  17. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Francis S. Lau

    2003-09-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  18. Wheelabrator Westchester Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Westchester Biomass Facility Jump to: navigation, search Name Wheelabrator Westchester Biomass Facility Facility Wheelabrator Westchester Sector Biomass Facility Type Municipal...

  19. Biomass Research Program

    ScienceCinema (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2016-07-12

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  20. Florida Biomass Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    LLC Jump to: navigation, search Name: Florida Biomass Energy, LLC Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: Florida Biomass...

  1. Atlantic Biomass Conversions Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass Conversions Inc Jump to: navigation, search Name: Atlantic Biomass Conversions Inc Place: Frederick, Maryland Sector: Biomass Product: Atlantic Biomass Conversions is...

  2. Biomass Power Association (BPA) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Summary LAUNCH TOOL Name: Biomass Power Association (BPA) AgencyCompany Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, -...

  3. Colusa Biomass Energy Corporation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass Energy Corporation Jump to: navigation, search Name: Colusa Biomass Energy Corporation Place: Colusa, California Zip: 95932 Sector: Biomass Product: Colusa Biomass Energy...

  4. NREL: Biomass Research - Projects in Biomass Process and Sustainabilit...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global ...

  5. NREL: Biomass Research - Capabilities in Biomass Process and...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four ... A team of NREL researchers uses biomass process and sustainability analyses to bridge the ...

  6. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...

    Energy.gov (indexed) [DOE]

    Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Enabling Small-Scale Biomass Gasification ...

  7. Hydropyrolysis of biomass

    SciTech Connect (OSTI)

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

  8. NREL: Biomass Research Home Page

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Photo of a technician completing a laboratory procedure Biomass Compositional Analysis Find laboratory analytical procedures for standard biomass analysis. Photo of the Integrated...

  9. NREL: Biomass Research - Research Staff

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Thomas.Foust@nrel.gov Bratis, Adam Management, Biomass Laboratory Program Manager Adam.Bratis@nrel.gov Chum, Helena Management, Biomass Fellow Helena.Chum@nrel.gov Pienkos,...

  10. Investigating and Using Biomass Gases

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Investigating and Using Biomass Gases Grades: 9-12 Topic: Biomass Authors: Eric Benson and Melissa Highfill Owner: National Renewable Energy Laboratory This educational material is...

  11. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    SciTech Connect (OSTI)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  12. A Method for Evaluating Fire After Earthquake Scenarios for Single

    Office of Environmental Management (EM)

    Buildings | Department of Energy Authors: Elizabeth J. Kelly and Raymond N. Tell A Method for Evaluating Fire After Earthquake Scenarios for Single Buildings (119.29 KB) More Documents & Publications Natural Phenomena Hazards (NPH) Workshop A Method for Evaluating Fire After Earthquake Scenarios for Single Buildings Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data

  13. Scenarios, targets, gaps, and costs

    SciTech Connect (OSTI)

    Edmonds, James A.; Joos, Fortunat; Nakicenovic, Nebojsa; Richels, Richard G.; Sarmiento, Jorge L.

    2005-03-30

    This paper explores the connection between human activities and the concentration of carbon dioxide in the atmosphere. t explores the implication of the wide range of emissions scenarios developed by the IPCC in the Special Report on Emissions Scenarios and concludes that a robust finding is that major changes will be required in the global energy system if the concentration of carbon dioxide is eventually to be stabilized.

  14. The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

    1992-04-01

    This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region`s net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region`s energy and greenhouse gas mitigation strategies.

  15. NREL: Biomass Research - News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. June 3, 2015 NREL Cyanobacteria Ramps Up Photosynthesis-and New...

  16. The ultimate biomass refinery

    SciTech Connect (OSTI)

    Bungay, H.R. )

    1988-01-01

    Bits and pieces of refining schemes and both old and new technology have been integrated into a complete biomass harvesting, processing, waste recycle, and marketing complex. These choices are justified with economic estimates and technology assessments.

  17. Biomass Basics Webinar

    Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting a Biomass Basics Webinar on August 27, 2015, from 4:00-4:40pm EDT. This webinar will provide high school students and teachers with background...

  18. Biomass Basics Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    What is Biomass? Cellulose is the main component of plant cell walls. Made from sugar ... and does not allow the warm rays of the sun to escape the atmosphere at night. 18 | ...

  19. Biomass Energy Production Incentive

    Energy.gov [DOE]

    In 2007 South Carolina enacted the Energy Freedom and Rural Development Act, which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-h...

  20. Biomass -Feedstock User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WBS 1.2.3.3 Biomass - Feedstock User Facility March 25, 2015 Kevin L. Kenney Idaho National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Feedstock Supply and Logistics 2 | Bioenergy Technologies Office Goal Statement * The goal of this project is to engage industry collaborators in the scale-up and integration of biomass preprocessing systems and technologies that - Advance the achievement of BETO goals and mission AND - Advance

  1. Major Biomass Conference

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference International gathering to focus on business successes, technology updates, facility tours For more information contact: e:mail: Public Affairs Golden, Colo., Aug. 6, 1997 -- Media are invited to cover the conference in Montreal, Canada. What: Scientists, financiers and industry and government leaders from North America, South America and Europe will focus on building a sustainable, profitable biomass business

  2. Chemicals from Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chemicals from biomass: A market assessment of bioproducts with near-term potential Mary J. Biddy, PhD Bioenergy 2016 June 13, 2016 2 Significance and Impact * Focus of report is on products that will have near-term market impact. These are bio-derived chemicals that are currently being produced either at demonstration or commercial scales. * Reviews current projects and planned efforts for bio-derived chemicals. * Identifies major drivers for moving biomass-derived products to market and the

  3. 2007 Biomass Program Overview

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  4. Flash hydrogenation of biomass

    SciTech Connect (OSTI)

    Steinberg, M

    1980-01-01

    It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

  5. Algae Biomass Summit

    Energy.gov [DOE]

    The 9th annual Algae Biomass Summit will be hosted at the Washington Marriot Wardman Park in Washington D.C., September 29 – October 2, 2015. The event will gather leaders in algae biomass from all sectors. U.S. Department of Energy Undersecretary Franklin Orr will give a keynote address at the conference, and Bioenergy Technologies Office (BETO) Director Jonathan, Algae Program Manager Alison Goss Eng, and the BETO Algae Team will be in attendance.

  6. Biomass 2014 Poster Session

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

  7. Biomass: Potato Power

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato

  8. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  9. Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America using the Switch Electric Power Sector Planning Model: California's Carbon Challenge Phase II, Volume II

    SciTech Connect (OSTI)

    Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey

    2014-01-01

    This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was

  10. Global and regional potential for bioenergy from agricultural and forestry residue biomass

    SciTech Connect (OSTI)

    Gregg, Jay S.; Smith, Steven J.

    2010-02-11

    As co-products, agricultural and forestry residues represent a potential low cost, low carbon, source for bioenergy. A method is developed method for estimating the maximum sustainable amount of energy potentially available from agricultural and forestry residues by converting crop production statistics into associated residue, while allocating some of this resource to remain on the field to mitigate erosion and maintain soil nutrients. Currently, we estimate that the world produces residue biomass that could be sustainably harvested and converted into over 50 EJ yr-1 of energy. The top three countries where this resource is estimated to be most abundant are currently net energy importers: China, the United States (US), and India. The global potential from residue biomass is estimated to increase to approximately 80-95 EJ yr-1 by mid- to late- century, depending on physical assumptions such as of future crop yields and the amount of residue sustainably harvestable. The future market for biomass residues was simulated using the Object-Oriented Energy, Climate, and Technology Systems Mini Climate Assessment Model (ObjECTS MiniCAM). Utilization of residue biomass as an energy source is projected for the next century under different climate policy scenarios. Total global use of residue biomass is estimated to increase to 70-100 EJ yr-1 by mid- to late- century in a central case, depending on the presence of a climate policy and the economics of harvesting, aggregating, and transporting residue. Much of this potential is in developing regions of the world, including China, Latin America, Southeast Asia, and India.

  11. Biomass 2011 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Conference Agenda Biomass 2011 Conference Agenda Biomass 2011 Conference Agenda bio2011_full_agenda.pdf (620.42 KB) More Documents & Publications Biomass 2009 Conference Agenda Biomass 2010 Conference Agenda Biomass 2012

  12. CP violation in heavy MSSM Higgs scenarios

    DOE PAGES-Beta [OSTI]

    Carena, M.; Ellis, J.; Lee, J. S.; Pilaftsis, A.; Wagner, C. E. M.

    2016-02-18

    We introduce and explore new heavy Higgs scenarios in the Minimal Supersymmetric Standard Model (MSSM) with explicit CP violation, which have important phenomenological implications that may be testable at the LHC. For soft supersymmetry-breaking scales MS above a few TeV and a charged Higgs boson mass MH+ above a few hundred GeV, new physics effects including those from explicit CP violation decouple from the light Higgs boson sector. However, such effects can significantly alter the phenomenology of the heavy Higgs bosons while still being consistent with constraints from low-energy observables, for instance electric dipole moments. To consider scenarios with amore » charged Higgs boson much heavier than the Standard Model (SM) particles but much lighter than the supersymmetric particles, we revisit previous calculations of the MSSM Higgs sector. We compute the Higgs boson masses in the presence of CP violating phases, implementing improved matching and renormalization-group (RG) effects, as well as two-loop RG effects from the effective two-Higgs Doublet Model (2HDM) scale MH± to the scale MS. Here, we illustrate the possibility of non-decoupling CP-violating effects in the heavy Higgs sector using new benchmark scenarios named.« less

  13. Biomass cogeneration. A business assessment

    SciTech Connect (OSTI)

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  14. Uncertainty in Integrated Assessment Scenarios

    SciTech Connect (OSTI)

    Mort Webster

    2005-10-17

    trends from a model for uncertainty projections. The probability distributions of these critical model drivers, and the resulting uncertainty in projections from a range of models, can provide the basis of future emission scenario set designs.

  15. Biotechnological Routes to Biomass Conversion

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Biotechnological Routes to Biomass Conversion James D. McMillan National Bioenergy Center National Renewable Energy Laboratory DOE/NASULGC Biomass & Solar Energy Workshops August 3-4, 2004 While the growing need for sustainable electric power can be met by other renewables... The Unique Role of Biomass Biomass is our only renewable source of carbon-based fuels and chemicals Biomass Conversion Technology "Platforms" Fuels, Chemicals, & Materials Thermochemical Platform

  16. Alternative Geothermal Power Production Scenarios

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  17. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  18. 2015 Standard Scenarios Annual Report: U.S. Electric Sector Scenario Exploration

    SciTech Connect (OSTI)

    Sullivan, Patrick; Cole, Wesley; Blair, Nate; Lantz, Eric; Krishnan, Venkat; Mai, Trieu; Mulcahy, David; Porro, Gian

    2015-07-16

    This report is one of several products resulting from an initial effort to provide a consistent set of technology cost and performance data and to define a conceptual and consistent scenario framework that can be used in the National Renewable Energy Laboratory’s (NREL’s) future analyses. The long-term objective of this effort is to identify a range of possible futures of the U.S. electricity sector in which to consider specific energy system issues through (1) defining a set of prospective scenarios that bound ranges of key technology, market, and policy assumptions and (2) assessing these scenarios in NREL’s market models to understand the range of resulting outcomes, including energy technology deployment and production, energy prices, and carbon dioxide (CO2) emissions.

  19. Executive Summary High-Yield Scenario Workshop Series Report

    SciTech Connect (OSTI)

    Leslie Park Ovard; Thomas H. Ulrich; David J. Muth Jr.; J. Richard Hess; Steven Thomas; Bryce Stokes

    2009-12-01

    To get a collective sense of the impact of research and development (R&D) on biomass resource availability, and to determine the feasibility that yields higher than baseline assumptions used for past assessments could be achieved to support U.S. energy independence, an alternate High-Yield Scenario (HYS) concept was presented to industry experts at a series of workshops held in December 2009. The workshops explored future production of corn/agricultural crop residues, herbaceous energy crops (HECs), and woody energy crops (WECs). This executive summary reports the findings of that workshop.

  20. Can WIMP dark matter overcome the nightmare scenario? (Journal...

    Office of Scientific and Technical Information (OSTI)

    Even if new physics beyond the standard model indeed exists, the energy scale of new ... In the nightmare scenario, we introduce a WIMP dark matter singlet under the standard ...

  1. Climate Change Technology Scenarios: Energy, Emissions, and Economic Implications

    SciTech Connect (OSTI)

    Placet, Marylynn; Humphreys, Kenneth K.; Mahasenan, N Maha

    2004-08-15

    This report describes three advanced technology scenarios and various illustrative cases developed by staff of Pacific Northwest National Laboratory (PNNL) for the U.S. Climate Change Technology Program. These scenarios and illustrative cases explore the energy, emissions and economic implications of using advanced energy technologies and other climate change related technologies to reduce future emissions of greenhouse gases (GHGs). The cases were modeled using the Mini Climate Assessment Model (MiniCAM) developed by PNNL. The report describes the scenarios, the specifications for the cases, and the results. The report also provides background information on current emissions of GHGs and issues associated with stabilizing GHG concentrations.

  2. Biomass Crop Assistance Program (BCAP) | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    United States Department of Agriculture Partner: Farm Service Agency Sector: Energy, Land Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass...

  3. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  4. Sustainable Biomass Supply Systems

    SciTech Connect (OSTI)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  5. Biomass 2009 Conference Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AGENDA Biomass 2009: Fueling Our Future March 17 and 18, 2009 www.biomass2009.com Gaylord National 201 Waterfront Street National Harbor, Maryland 20745 March 17, 2009 7:30 a.m. - 8:00 a.m. Registration Room: Cherry Blossom Ballroom Foyer Exhibit Hall Opens Room: National Harbor 2 and 3 Refreshments Room: Woodrow Wilson Ballroom Foyer 8:00 a.m. - 8:30 a.m. Welcoming Remarks and Direction of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy - Steven G. Chalk,

  6. Biomass 2010 Conference Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AGENDA Biomass 2010: Exploring Pathways to a Sustainable, Domestic Bioindustry March 30-31, 2010 Hyatt Regency Crystal City 2799 Jefferson Davis Highway Arlington, Virginia 22202 Tuesday, March 30, 2010 7:30 a.m. - 8:00 a.m. Registration Room: Independence Foyer Continental Breakfast Room: Exhibit Hall (Independence Center) 8:00 a.m. - 8:15 a.m. Welcome: Overview of the Conference - John Ferrell, Acting Program Manager, Biomass Program, Office of Energy Efficiency and Renewable Energy, U.S.

  7. Fixed Bed Biomass Gasifier

    SciTech Connect (OSTI)

    Carl Bielenberg

    2006-03-31

    The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

  8. Minimally refined biomass fuel

    DOE Patents [OSTI]

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  9. Transportation scenarios for risk analysis.

    SciTech Connect (OSTI)

    Weiner, Ruth F.

    2010-09-01

    Transportation risk, like any risk, is defined by the risk triplet: what can happen (the scenario), how likely it is (the probability), and the resulting consequences. This paper evaluates the development of transportation scenarios, the associated probabilities, and the consequences. The most likely radioactive materials transportation scenario is routine, incident-free transportation, which has a probability indistinguishable from unity. Accident scenarios in radioactive materials transportation are of three different types: accidents in which there is no impact on the radioactive cargo, accidents in which some gamma shielding may be lost but there is no release of radioactive material, and accident in which radioactive material may potentially be released. Accident frequencies, obtainable from recorded data validated by the U.S. Department of Transportation, are considered equivalent to accident probabilities in this study. Probabilities of different types of accidents are conditional probabilities, conditional on an accident occurring, and are developed from event trees. Development of all of these probabilities and the associated highway and rail accident event trees are discussed in this paper.

  10. Biomass Compositional Analysis: NIR Rapid Methods (Fact Sheet), National Bioenergy Center, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Scientists at NREL use near-infrared spectroscopy to predict the composition of a variety of biomass types. Photo by Dennis Schroeder, NREL 26528 Biomass Compositional Analysis: NIR Rapid Methods Developing rapid calibration models to predict the composition of biomass NREL biomass analysis scientists use near-infrared (NIR) spectroscopy correlated with compositional data, produced using traditional wet chemical techniques, to develop rapid calibration models. These models dramatically decrease

  11. Method for pretreating lignocellulosic biomass

    DOE Patents [OSTI]

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  12. Fundamentals of thermochemical biomass conversion

    SciTech Connect (OSTI)

    Overend, R.P.; Milne, T.A.; Mudge, L.

    1985-01-01

    The contents of this book are: Wood and biomass ultrastructure; Cellulose, hemicellulose and extractives; Lignin; Pretreatment of biomass for thermochemical biomass conversion; A kinetic isotope effect in the thermal dehydration of cellobiose; Gasification and liquefaction of forest products in supercritical water; Thermochemical fractionation and liquefaction of wood; The pyrolysis and gasification of wood in molten hydroxide eutectics; Influence of alkali carbonates on biomass volatilization; Flash pyrolysis of biomass with reactive and non-reactive gases; Pyrolytic reactions and biomass; Product formation in the pyrolysis of large wood particles; The pyrolysis under vacuum of aspen poplar; Simulation of kraft lignin pyrolysis; and Kinetics of wood gasification by carbon dioxide and steam.

  13. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    SciTech Connect (OSTI)

    Cai, Hao; Canter, Christina E.; Dunn, Jennifer B.; Tan, Eric; Biddy, Mary; Talmadge, Michael; Hartley, Damon S.; Snowden-Swan, Lesley

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  14. Biomass Program Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The emerging U.S. bioindustry is using a range of biomass resources to provide a secure and growing supply of transportation fuels and electric power. Displacing an increasing portion of our imported oil with renewable, domestic bioenergy will provide clear benefits:Reduced greenhouse gas (GHG) emissions; A cleaner, more secure energy future; Sustainable transportation fuels; Opportunities for economic growth

  15. Marine biomass research advances

    SciTech Connect (OSTI)

    Bender, E.

    1980-08-01

    This paper reports on research in California, New York and elsewhere into marine biomass. A manmade marine farm moored four miles off the coast of southern California pumps deep water up a 450 m pipe to fertilize giant kelp. After harvesting and chopping by existing commercial methods, the kelp would be converted, by either anaerobic bacteria or thermal processes, into methane and other products.

  16. Hydrogen Production: Biomass Gasification | Department of Energy

    Office of Environmental Management (EM)

    Biomass Gasification Hydrogen Production: Biomass Gasification Photo of a man standing near a pilot-scale gasification system. Biomass gasification is a mature technology pathway ...

  17. Randolph Electric Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass Facility Jump to: navigation, search Name Randolph Electric Biomass Facility Facility Randolph Electric Sector Biomass Facility Type Landfill Gas Location Norfolk County,...

  18. Berlin Gorham Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Gorham Biomass Facility Jump to: navigation, search Name Berlin Gorham Biomass Facility Facility Berlin Gorham Sector Biomass Location Coos County, New Hampshire Coordinates...

  19. Westchester Landfill Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location...

  20. Shasta 2 Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    2 Biomass Facility Jump to: navigation, search Name Shasta 2 Biomass Facility Facility Shasta 2 Sector Biomass Owner Wheelabrator Location Anderson, California Coordinates...

  1. Biodyne Pontiac Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Pontiac Biomass Facility Jump to: navigation, search Name Biodyne Pontiac Biomass Facility Facility Biodyne Pontiac Sector Biomass Facility Type Non-Fossil Waste Location...

  2. San Marcos Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Marcos Biomass Facility Jump to: navigation, search Name San Marcos Biomass Facility Facility San Marcos Sector Biomass Facility Type Landfill Gas Location San Diego County,...

  3. Hebei Jiantou Biomass Power | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jiantou Biomass Power Jump to: navigation, search Name: Hebei Jiantou Biomass Power Place: Jinzhou, Hebei Province, China Zip: 50000 Sector: Biomass Product: A company engages in...

  4. Okeelanta 2 Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    2 Biomass Facility Jump to: navigation, search Name Okeelanta 2 Biomass Facility Facility Okeelanta 2 Sector Biomass Owner Florida Crystals Location South Bay, Florida Coordinates...

  5. Florida Biomass Energy Consortium | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Consortium Jump to: navigation, search Name: Florida Biomass Energy Consortium Place: Florida Sector: Biomass Product: Association of biomass energy companies. References: Florida...

  6. Sunset Farms Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Farms Biomass Facility Jump to: navigation, search Name Sunset Farms Biomass Facility Facility Sunset Farms Sector Biomass Facility Type Landfill Gas Location Travis County, Texas...

  7. East Bridgewater Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Bridgewater Biomass Facility Jump to: navigation, search Name East Bridgewater Biomass Facility Facility East Bridgewater Sector Biomass Facility Type Landfill Gas Location...

  8. Biodyne Lyons Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Lyons Biomass Facility Jump to: navigation, search Name Biodyne Lyons Biomass Facility Facility Biodyne Lyons Sector Biomass Facility Type Landfill Gas Location Cook County,...

  9. Reliant Conroe Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Conroe Biomass Facility Jump to: navigation, search Name Reliant Conroe Biomass Facility Facility Reliant Conroe Sector Biomass Facility Type Landfill Gas Location Montgomery...

  10. Plummer Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plummer Biomass Facility Jump to: navigation, search Name Plummer Biomass Facility Facility Plummer Sector Biomass Owner Wood Power Location Plummer, Idaho Coordinates...

  11. Otay Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Otay Biomass Facility Jump to: navigation, search Name Otay Biomass Facility Facility Otay Sector Biomass Facility Type Landfill Gas Location San Diego County, California...

  12. Florida Biomass Energy Group | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Group Jump to: navigation, search Name: Florida Biomass Energy Group Place: Gulf Breeze, Florida Zip: 32561 Sector: Biomass Product: Florida Biomass Energy Group is a Florida...

  13. SPI Sonora Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sonora Biomass Facility Jump to: navigation, search Name SPI Sonora Biomass Facility Facility SPI Sonora Sector Biomass Owner Sierra Pacific Industries Location Sonora, California...

  14. Wheelabrator Saugus Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

  15. Biodyne Peoria Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Peoria Biomass Facility Jump to: navigation, search Name Biodyne Peoria Biomass Facility Facility Biodyne Peoria Sector Biomass Facility Type Landfill Gas Location Peoria County,...

  16. Zilkha Biomass Energy LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Zilkha Biomass Energy LLC Jump to: navigation, search Logo: Zilkha Biomass Energy LLC Name: Zilkha Biomass Energy LLC Address: 1001 McKinney Place: Houston, Texas Zip: 77002...

  17. Mecca Plant Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

  18. Biodyne Springfield Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Springfield Biomass Facility Jump to: navigation, search Name Biodyne Springfield Biomass Facility Facility Biodyne Springfield Sector Biomass Facility Type Landfill Gas Location...

  19. Biomass Boiler for Food Processing Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Boiler for Food Processing Applications Biomass Boiler for Food Processing Applications Biomass Boiler Uses a Combination of Wood Waste and Tire-Derived Fuel In 2011, the ...

  20. Biomass Feedstock Composition and Property Database () | Data...

    Office of Scientific and Technical Information (OSTI)

    Biomass Feedstock Composition and Property Database Title: Biomass Feedstock Composition and Property Database The Office of Energy Efficiency and Renewable Energy's Biomass ...

  1. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  2. Biofuels - Biomass Feedstock - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Biofuels - Biomass Feedstock Idaho National Laboratory Contact INL About This Technology Technology ...

  3. Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: A system dynamics perspective

    SciTech Connect (OSTI)

    Vimmerstedt, Laura J.; Bush, Brian W.; Hsu, Dave D.; Inman, Daniel; Peterson, Steven O.

    2014-08-12

    The Biomass Scenario Model (BSM) is a system-dynamics simulation model intended to explore the potential for rapid expansion of the biofuels industry. The model is not predictive — it uses scenario assumptions based on various types of data to simulate industry development, emphasizing how incentives and technological learning-by-doing might accelerate industry growth. The BSM simulates major sectors of the biofuels industry, including feedstock production and logistics, conversion, distribution, and end uses, as well as interactions among sectors. The model represents conversion of biomass to biofuels as a set of technology pathways, each of which has allowable feedstocks, capital and operating costs, allowable products, and other defined characteristics. This study and the BSM address bioenergy modeling analytic needs that were identified in recent literature reviews. Simulations indicate that investments are most effective at expanding biofuels production through learning-by-doing when they are coordinated with respect to timing, pathway, and target sector within the biofuels industry. Effectiveness metrics include timing and magnitude of increased production, incentive cost and cost effectiveness, and avoidance of windfall profits. Investment costs and optimal investment targets have inherent risks and uncertainties, such as the relative value of investment in more-mature versus less mature pathways. These can be explored through scenarios, but cannot be precisely predicted. Dynamic competition, including competition for cellulosic feedstocks and ethanol market shares, intensifies during times of rapid growth. Ethanol production increases rapidly, even up to Renewable Fuel Standards-targeted volumes of biofuel, in simulations that allow higher blending proportions of ethanol in gasoline-fueled vehicles. Published 2014. This document is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts, Biorefining published by John Wiley

  4. Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: A system dynamics perspective

    DOE PAGES-Beta [OSTI]

    Vimmerstedt, Laura J.; Bush, Brian W.; Hsu, Dave D.; Inman, Daniel; Peterson, Steven O.

    2014-08-12

    The Biomass Scenario Model (BSM) is a system-dynamics simulation model intended to explore the potential for rapid expansion of the biofuels industry. The model is not predictive — it uses scenario assumptions based on various types of data to simulate industry development, emphasizing how incentives and technological learning-by-doing might accelerate industry growth. The BSM simulates major sectors of the biofuels industry, including feedstock production and logistics, conversion, distribution, and end uses, as well as interactions among sectors. The model represents conversion of biomass to biofuels as a set of technology pathways, each of which has allowable feedstocks, capital and operatingmore » costs, allowable products, and other defined characteristics. This study and the BSM address bioenergy modeling analytic needs that were identified in recent literature reviews. Simulations indicate that investments are most effective at expanding biofuels production through learning-by-doing when they are coordinated with respect to timing, pathway, and target sector within the biofuels industry. Effectiveness metrics include timing and magnitude of increased production, incentive cost and cost effectiveness, and avoidance of windfall profits. Investment costs and optimal investment targets have inherent risks and uncertainties, such as the relative value of investment in more-mature versus less mature pathways. These can be explored through scenarios, but cannot be precisely predicted. Dynamic competition, including competition for cellulosic feedstocks and ethanol market shares, intensifies during times of rapid growth. Ethanol production increases rapidly, even up to Renewable Fuel Standards-targeted volumes of biofuel, in simulations that allow higher blending proportions of ethanol in gasoline-fueled vehicles. Published 2014. This document is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts, Biorefining published by John

  5. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  6. Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

    SciTech Connect (OSTI)

    Newes, E.; Inman, D.; Bush, B.

    2011-01-01

    The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

  7. Biomass Feedstock National User Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  8. NREL: Learning - Biomass Energy Basics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Biomass Energy Basics Photo of a farmer standing in a field and inspecting corn crops. We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived...

  9. Enzymes for improved biomass conversion

    DOE Patents [OSTI]

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  10. The Impact of Biomass Feedstock Supply Variability on the Delivered Price to a Biorefinery in the Peace River Region of Alberta, Canada

    SciTech Connect (OSTI)

    Stephen, Jamie; Sokhansanj, Shahabaddine; Bi, X.T.; Sowlati, T.; Kloeck, T.; Townley-Smith, Lawrence; Stumborg, Mark

    2010-01-01

    Agricultural residue feedstock availability in a given region can vary significantly over the 20 25 year lifetime of a biorefinery. Since delivered price of biomass feedstock to a biorefinery is related to the distance travelled and equipment optimization, and transportation distance increases as productivity decreases, productivity is a primary determinant of feedstock price. Using the Integrated Biomass Supply Analysis and Logistics (IBSAL) modeling environment and a standard round bale harvest and delivery scenario, harvest and delivery price were modelled for minimum, average, and maximum yields at four potential biorefinery sites in the Peace River region of Alberta, Canada. Biorefinery capacities ranged from 50,000 to 500,000 tonnes per year. Delivery cost is a linear function of transportation distance and can be combined with a polynomial harvest function to create a generalized delivered cost function for agricultural residues. The range in delivered cost is substantial and is an important consideration for the operating costs of a biorefinery.

  11. Biomass Feedstocks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Biomass Feedstocks Biomass Feedstocks An alternate text version of this video is available online. A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop

  12. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  13. Reburn system with feedlot biomass

    DOE Patents [OSTI]

    Annamalai, Kalyan; Sweeten, John M.

    2005-12-13

    The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

  14. Eccleshall Biomass Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Eccleshall Biomass Ltd Jump to: navigation, search Name: Eccleshall Biomass Ltd Place: Eccleshall, United Kingdom Zip: ST21 6JL Sector: Biomass Product: Developing a 2.2MW biomass...

  15. ESD Biomass Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ESD Biomass Ltd Jump to: navigation, search Name: ESD Biomass Ltd Place: Neston, United Kingdom Zip: SN13 9TZ Sector: Biomass Product: Acts as advisor to firms developing biomass...

  16. Biomass 2009 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    09 Conference Agenda Biomass 2009 Conference Agenda Biomass 2009 Conference Agenda bio2009_full_agenda.pdf (323.99 KB) More Documents & Publications Biomass 2010 Conference Agenda Biomass 2011 Conference Agenda ICAM Workshop

  17. Biomass 2010 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 Conference Agenda Biomass 2010 Conference Agenda Biomass 2010 Conference Agenda bio2010_full_agenda.pdf (299 KB) More Documents & Publications Biomass 2009 Conference Agenda Biomass 2011 Conference Agenda QTR Cornerstone Workshop 2014

  18. Outlook for Biomass Ethanol Production and Demand

    Reports and Publications

    2000-01-01

    This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

  19. Marine biomass energy project

    SciTech Connect (OSTI)

    Frank, J.R.; Leone, J.E.

    1980-01-01

    Off the coast of southern California, a biomass test farm is successfully cultivating giant kelp (Macrocystis pyrifera) with nutrients supplied continuously via a 1500-ft vertical polyethylene-pipe upwelling system attached to the farm structure. The research program, aimed at maximizing methane production from the anaerobic digestion of the kelp, has already achieved 75% of the maximum theoretical gas-yield levels. One critical parameter to be defined is the amount of kelp harvested as a function of crop density, harvest frequency, and upwelled-water application; more than any other consideration, the biomass yield will affect the product costs. Other important areas to study include the use of the digester effluent as a supplementary nutrient, the production of other fuels or substances, the possibility of feeding the solid effluent to animals, the establishment of a separate high-rate methanogenesis stage within the digestion process, and the prediction of the forces involved in positioning large-scale farm structures.

  20. Clean fractionation of biomass

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

  1. FY12 Biomass Program Congressional Budget Request

    SciTech Connect (OSTI)

    none,

    2011-02-01

    FY12 budget and funding for the Biomass Program biomass and biorefinery systems research development and deployment.

  2. Metro Wastewater Reclamation District Biomass Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Wastewater Reclamation District Biomass Facility Jump to: navigation, search Name Metro Wastewater Reclamation District Biomass Facility Facility Metro Wastewater Reclamation...

  3. NREL: Biomass Research - Thermochemical Conversion Capabilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and commercialization of biomass gasification is the integration of the gasifier with downstream syngas processing. ... Biomass Characterization Biochemical Conversion Thermochemical ...

  4. Forest Biomass Bioenergy 2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Bioenergy 2016 Bob Emory Environmental Affairs Manager - US South Weyerhaeuser Company Weyerhaeuser Company * 116 years old * Own 13.2 million acres of timberland including 7.3 million acres in the US South * 100% of our timberlands are certified * 14,000 employees * We planted 650 million trees in the last five years Tuesday, August 02, 2016 2 Weyerhaeuser Company Most Admired Companies FORTUNE Magazine, 1988-2014 World's Most Ethical Companies Ethisphere Institute, 2009-2010,

  5. Biomass Feedstocks | Bioenergy | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Feedstocks Our mission is to enable the coordinated development of biomass resources and conversion technologies by understanding the field-to-fuel impact of feedstocks on biochemical and thermochemical processes. A line graph showing the simulated distillation results of upgraded oils, divided into three sections: gasoline fraction, jet fraction, and #2 diesel fraction. The y-axis shows the mass % recovered (from 0 to 100) and the x-axis shows the distillation temperature in degrees Celsius

  6. Biomass: Biogas Generator

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Middle School (6-8) Small groups (3 to 4) Time: 90 minutes to assemble, days to generate sufficient gas to burn Summary: Students build a simple digester to generate a quantity of gas to burn. This demonstrates the small amount of technology needed to generate a renewable energy source. Biogas has been used in the past and is still used today as an energy

  7. Hydrolysis of biomass material

    DOE Patents [OSTI]

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  8. Biomass 2012 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Agenda Biomass 2012 Agenda Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment to Bioenergy. bio2012_final_agenda.pdf (340.96 KB) More Documents & Publications Biomass 2010 Conference Agenda Biomass 2011 Conference Agenda Biomass 2013

  9. Biomass 2013 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Agenda Biomass 2013 Agenda This agenda outlines the sessions and events for Biomass 2013 in Washington, D.C., July 31-August 1. biomass_2013_agenda.pdf (322.3 KB) More Documents & Publications Biomass 2010 Conference Agenda Biomass 2012 Agenda Biomass 2009 Conference

  10. Biomass process handbook

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  11. Hydrothermal Liquefaction of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with

  12. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  13. International Biomass Conference and Expo

    Energy.gov [DOE]

    The International Biomass Conference and Expo will be held April 11–14, 2016, in Charlotte, North Carolina, and will gather bioeconomy experts across the supply chain. Bioenergy Technologies Office Technology Manager Elliott Levine will be moderating a panel titled, “The Near-Term Opportunity for Biomass as a Low-Carbon Coal Supplement or Replacement.” The panel will focus on the technological challenges and opportunities in the potential for biomass to replace coal.

  14. Clean fractionation of biomass

    SciTech Connect (OSTI)

    1995-09-01

    The US DOE Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R&D) that uses green feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. A consortium of five DOE national laboratories has been formed with the objectives of providing industry with a broad range of expertise and helping to lower the risk of new process development through federal cost sharing. The AF program is conducting ongoing research on a clean fractionation process, designed to convert biomass into materials that can be used for chemical processes and products. The focus of the clean fractionation research is to demonstrate to industry that one technology can successfully separate all types of feedstocks into predictable types of chemical intermediates.

  15. Biomass Rapid Analysis Network (BRAN)

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

  16. Biomass Resources and Technology Options

    Energy Savers

    ... For more information, see Wooley, et. al "Lignocellulosic Biomass to Ethanol Process Design and Economics..." NRELTP-580-2615 July, 1999 Biodiesel Biodiesel Griffin Industries, ...

  17. Sustainable Biomass: A Systems View

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... is actually higher than rate of co- firing because of avoided landfill emissions Biomass gasification for power production Life cycle assessments conducted by Pamela Spath and ...

  18. Quinault Comprehensive Biomass Strategy Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... QIN, ColPac, Grays Harbor Economic Development Council and ... key stakeholders in order to understand the inventory and future trends of biomass quantity and availability Selected ...

  19. Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass

    SciTech Connect (OSTI)

    Boardman, Richard D.; Cafferty, Kara G.; Nichol, Corrie; Searcy, Erin M.; Westover, Tyler; Wood, Richard; Bearden, Mark D.; Cabe, James E.; Drennan, Corinne; Jones, Susanne B.; Male, Jonathan L.; Muntean, George G.; Snowden-Swan, Lesley J.; Widder, Sarah H.

    2014-07-22

    This report presents the results of an evaluation of utility-scale biomass cofiring in large pulverized coal power plants. The purpose of this evaluation is to assess the cost and greenhouse gas reduction benefits of substituting relatively high volumes of biomass in coal. Two scenarios for cofiring up to 20% biomass with coal (on a lower heating value basis) are presented; (1) woody biomass in central Alabama where Southern Pine is currently produced for the wood products and paper industries, and (2) purpose-grown switchgrass in the Ohio River Valley. These examples are representative of regions where renewable biomass growth rates are high in correspondence with major U.S. heartland power production. While these scenarios may provide a realistic reference for comparing the relative benefits of using a high volume of biomass for power production, this evaluation is not intended to be an analysis of policies concerning renewable portfolio standards or the optimal use of biomass for energy production in the U.S.

  20. System and process for biomass treatment

    SciTech Connect (OSTI)

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  1. Biomass Webinar Text Version | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy Foundational Course Webinar on Biomass: Text Version (153.94 KB) More Documents & Publications Biomass Webinar Presentation Slides Assessing Energy Resources Webinar Text Version Transcript: Biomass Clean Cities Webinar - Workforce Development

  2. Innovations in science and scenarios for assessment

    SciTech Connect (OSTI)

    Kunkel, Kenneth E.; Moss, Richard; Parris, Adam

    2015-08-29

    Scenarios for the Third National Climate Assessment (NCA3) were produced for physical climate and sea level rise with substantial input from disciplinary and regional experts. These scenarios underwent extensive review and were published as NOAA Technical Reports. For land use/cover and socioeconomic conditions, scenarios already developed by other agencies were specified for use in the NCA3. Efforts to enhance participatory scenario planning as an assessment activity were pursued, but with limited success. Issues and challenges included the timing of availability of scenarios, the need for guidance in use of scenarios, the need for approaches to nest information within multiple scales and sectors, engagement and collaboration of end users in scenario development, and development of integrated scenarios. Future assessments would benefit from an earlier start to scenarios development, the provision of training in addition to guidance documents, new and flexible approaches for nesting information, ongoing engagement and advice from both scientific and end user communities, and the development of consistent and integrated scenarios.

  3. Process for concentrated biomass saccharification

    DOE Patents [OSTI]

    Hennessey, Susan M.; Seapan, Mayis; Elander, Richard T.; Tucker, Melvin P.

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  4. Addressing an Uncertain Future Using Scenario Analysis

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris

    2006-12-15

    nature, such as the Energy Information Administration's (EIA's) National Energy Modeling System (NEMS). NEMS is the source of the influential Annual Energy Outlook whose business-as-usual (BAU) case, the Reference Case, forms the baseline for most of the U.S. energy policy discussion. NEMS is an optimizing model because: 1. it iterates to an equilibrium among modules representing the supply, demand, and energy conversion subsectors; and 2. several subsectoral models are individually solved using linear programs (LP). Consequently, it is deeply rooted in the recent past and any effort to simulate the consequences of a major regime shift as depicted in Figure 1 must come by applying an exogenously specified scenario. And, more generally, simulating futures that lie outside of our recent historic experience, even if they do not include regime switches suggest some form of scenario approach. At the same time, the statistical validity of scenarios that deviate significantly outside the ranges of historic inputs should be questioned.

  5. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  6. Conditioning biomass for microbial growth

    DOE Patents [OSTI]

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  7. GASIFICATION BASED BIOMASS CO-FIRING

    SciTech Connect (OSTI)

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter

  8. Treatment of biomass to obtain fermentable sugars

    DOE Patents [OSTI]

    Dunson, Jr., James B.; Tucker, Melvin; Elander, Richard; Hennessey, Susan M.

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  9. Transport Test Problems for Radiation Detection Scenarios

    SciTech Connect (OSTI)

    Shaver, Mark W.; Miller, Erin A.; Wittman, Richard S.; McDonald, Benjamin S.

    2012-09-30

    This is the final report and deliverable for the project. It is a list of the details of the test cases for radiation detection scenarios.

  10. Energy Transition Initiative Energy Scenario Tool Transcript

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video demonstrates the Island Energy Scenario Tool developed for the Department of Energy’s Office of Energy Efficiency and Renewable Energy's Technology-to-Market program.

  11. DOE and USDA Select Projects for more than $24 Million in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    include: BIOFUELS AND BIOBASED PRODUCTS: USDA Awards * GE Global Research (Irvine, CA) up to 1,597,544: to develop detailed and simplified kinetic models of biomass gasification. ...

  12. Biomass Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources that are used directly as a fuel, or converted to another form or energy product that are available on a renewable basis are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, algae, biomass processing residues, municipal waste, and animal waste. Dedicated Energy Crops Dedicated energy crops are non-food

  13. Biomass fuel use in agriculture under alternative fuel prices

    SciTech Connect (OSTI)

    Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.

    1984-11-01

    A linear programming model is used to analyze cost-competitiveness of biomass fuels in agricultural applications for the projected year 1990. With all else held constant, the prices of conventional fuels are increased and analytically compared to prices for biomass fuel products across a variety of end uses. Potential penetration of biomass fuels is measured as the share of each conventional fuel for which cost savings could be realized by substituting biomass fuels. This study examines the cost competitiveness of biomass fuels produced on farms, relative to conventional fuels (diesel, gasoline, natural gas, LPG, fuel oil, and electricity), as the prices of conventional fuels change. The study is targeted at the year 1990 and considers only fuel use in the agricultural sector. The method of analysis is to project fuel demands for ten farm operations in the year 1990 and to match these with biomass fuel substitutes from ten feedstock and nine process alternatives. In all, 61 feedstock/process combinations are possible. The matching of fuel demands and biomass fuels occurs in a linear programming model that seeks to meet fuel demands at minimum cost. Two types of biomass fuel facilities are considered, assuming a decentralized fuel distribution system. The first includes on-farm production units such as oil presses, low-Btu gasifiers, biogas digestors and direct combustion units. The second type of facility would be run by a farm co-operative. The primary data describing the biomass technologies are cost per unit output, where costs are calculated as first-year capital charges, plus al l allocable operating expenses, less any by-products of value. All costs assume commercial purchase of equipment. Homemade or makeshift installations are not considered. 1 reference.

  14. WeBiomass Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Zip: 05701 Region: Greater Boston Area Sector: Biomass Product: Commercial Biomass Boiler Systems Website: www.webiomass.com Coordinates: 43.58070919775, -72.971301209182...

  15. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  16. Biomass Indirect Liquefaction Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation Biomass Indirect Liquefaction Presentation TRI Technology Update & IDL R&D ... ClearFuels-Rentech Pilot-Scale Biorefinery Biomass Indirect Liquefaction Presentation ...

  17. BSCL Use Plan: Solving Biomass Recalcitrance

    SciTech Connect (OSTI)

    Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

    2005-08-01

    Technical report describing NREL's new Biomass Surface Characterization Laboratory (BSCL). The BSCL was constructed to provide the most modern commercial surface characterization equipment for studying biomass surfaces.

  18. Vanadium catalysts break down biomass for fuels

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the...

  19. Biomass 2013: Welcome | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Welcome Biomass 2013: Welcome Welcome and Introductory Keynotes Valerie Reed, Acting ... September 2014 Monthly News Blast BETO Monthly News Blast, August 2013r Biomass 2012 ...

  20. DOE 2014 Biomass Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE 2014 Biomass Conference Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, ...

  1. Bamboo: An Overlooked Biomass Resource? (Technical Report) |...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; 01 COAL, LIGNITE, AND PEAT; AGRICULTURAL WASTES; ASH CONTENT; BAMBOO; BIOMASS; ENERGY RECOVERY ...

  2. Providing the Resource: Biomass Feedstocks & Logistics

    SciTech Connect (OSTI)

    2010-03-01

    A summary of Biomass Program resource assessment activities, feedstock trials, and harvest, storage, handling, and transport activities to support biomass feedstock development and use.

  3. Bioware Biomass Thermoconversion Technologies | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    Bioware Biomass Thermoconversion Technologies Jump to: navigation, search Name: Bioware - Biomass Thermoconversion Technologies Place: Campinas, Brazil Zip: 13084-971 Product: The...

  4. Rocklin Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    References USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleRocklinBiomassFacility&oldid398013" Categories: Energy Generation Facilities Stubs...

  5. California Biomass Collaborative Energy Cost Calculators | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Biomass Collaborative Energy Cost Calculators AgencyCompany...

  6. Prairie City Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titlePrairieCityBiomassFacility&oldid397964" Feedback Contact needs updating Image needs updating...

  7. Chateaugay Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleChateaugayBiomassFacility&oldid397318" Feedback Contact needs updating Image needs updating...

  8. Riddle Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleRiddleBiomassFacility&oldid398000" Feedback Contact needs updating Image needs updating...

  9. Bieber Plant Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBieberPlantBiomassFacility&oldid397188" Feedback Contact needs updating Image needs updating...

  10. Bayport Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBayportBiomassFacility&oldid397176" Feedback Contact needs updating Image needs updating...

  11. Tracy Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Facility Jump to: navigation, search Name Tracy Biomass Facility Facility Tracy Sector Biomass Owner US Renewables Group Location Tracy, California Coordinates 37.7396513,...

  12. St. Paul Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleSt.PaulBiomassFacility&oldid398161" Feedback Contact needs updating Image needs updating...

  13. SPI Anderson Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleSPIAndersonBiomassFacility&oldid398041" Feedback Contact needs updating Image needs updating...

  14. Alexandria Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleAlexandriaBiomassFacility&oldid397132" Feedback Contact needs updating Image needs updating...

  15. Biomass Combustion Systems Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass Combustion Systems Inc Retrieved from "http:en.openei.orgwindex.php?titleBiomassCombustionSystemsInc&oldid768602" Feedback Contact needs updating Image...

  16. Mendota Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleMendotaBiomassFacility&oldid397757" Feedback Contact needs updating Image needs updating...

  17. Baton Rogue Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBatonRogueBiomassFacility&oldid397172" Feedback Contact needs updating Image needs updating...

  18. Madera Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleMaderaBiomassFacility&oldid397721" Feedback Contact needs updating Image needs updating...

  19. Okeelanta 1 Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleOkeelanta1BiomassFacility&oldid397873" Feedback Contact needs updating Image needs updating...

  20. New Meadows Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name New Meadows Biomass Facility Facility New Meadows Sector Biomass Owner Tamarack Energy Location New Meadows, Idaho Coordinates 44.9712808,...

  1. Oroville Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleOrovilleBiomassFacility&oldid397894" Feedback Contact needs updating Image needs updating...

  2. Multitrade Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleMultitradeBiomassFacility&oldid397817" Feedback Contact needs updating Image needs updating...

  3. Biomass Energy Resources | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Resources Jump to: navigation, search Name: Biomass Energy Resources Place: Dallas, Texas Product: A start up fuel processing technology References: Biomass Energy Resources1...

  4. Ashland Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleAshlandBiomassFacility&oldid397156" Feedback Contact needs updating Image needs updating...

  5. Chowchilla Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleChowchillaBiomassFacility&oldid397324" Feedback Contact needs updating Image needs updating...

  6. Greenville Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleGreenvilleBiomassFacility&oldid397531" Feedback Contact needs updating Image needs updating...

  7. NREL: Learning - Student Resources on Biomass Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Biomass Energy The following resources can provide you with more information on biomass energy. Alternative Fuels Data Center U.S. Department of Energy's Office of Energy...

  8. Duluth Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleDuluthBiomassFacility&oldid397416" Feedback Contact needs updating Image needs updating...

  9. Delano Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleDelanoBiomassFacility&oldid397390" Feedback Contact needs updating Image needs updating...

  10. Mecca Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca Sector Biomass Owner Colmac Energy Location Mecca, California Coordinates 33.571692,...

  11. Burlington Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBurlingtonBiomassFacility&oldid397249" Feedback Contact needs updating Image needs updating...

  12. Woodland Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name Woodland Biomass Facility Facility Woodland Sector Biomass Owner Xcel Energy Location Woodland, California Coordinates 38.6785157,...

  13. Williams Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleWilliamsBiomassFacility&oldid398342" Feedback Contact needs updating Image needs updating...

  14. Shasta 1 Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleShasta1BiomassFacility&oldid398090" Feedback Contact needs updating Image needs updating...

  15. Improved Biomass Cooking Stoves | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    TOOL Name: Improved Biomass Cooking Stoves AgencyCompany Organization: various Sector: Energy Focus Area: Biomass Phase: Determine Baseline, Evaluate Options, Prepare a Plan,...

  16. Bridgewater Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBridgewaterBiomassFacility&oldid397233" Feedback Contact needs updating Image needs updating...

  17. Reliant Energy Renewables Atascosita Biomass Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Energy Renewables Atascosita Biomass Facility Jump to: navigation, search Name Reliant Energy Renewables Atascosita Biomass Facility Facility Reliant Energy Renewables Atascosita...

  18. Dinuba Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleDinubaBiomassFacility&oldid397408" Feedback Contact needs updating Image needs updating...

  19. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Information (Open El) [EERE & EIA]

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  20. Lyonsdale Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Jump to: navigation, search Name Lyonsdale Biomass Facility Facility Lyonsdale Sector Biomass Owner CH Energy Group Location Lyonsdale, New York Coordinates 43.61861,...

  1. Aberdeen Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleAberdeenBiomassFacility&oldid397114" Feedback Contact needs updating Image needs updating...

  2. Jeanerette Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleJeaneretteBiomassFacility&oldid397618" Feedback Contact needs updating Image needs updating...

  3. Fresno Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleFresnoBiomassFacility&oldid397486" Feedback Contact needs updating Image needs updating...

  4. ARM - Biomass Burning Observation Project (BBOP)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

  5. NREL: Biomass Research - What Is a Biorefinery?

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    What Is a Biorefinery? A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery...

  6. Fuels and Chemicals from Lignocellulosic Biomass: Valorization...

    Office of Scientific and Technical Information (OSTI)

    Fuels and Chemicals from Lignocellulosic Biomass: Valorization of Lignin. Citation Details In-Document Search Title: Fuels and Chemicals from Lignocellulosic Biomass: Valorization ...

  7. Federal Biomass Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf (173.19 KB) More Documents & ...

  8. Fuels and Chemicals from Lignocellulosic Biomass: Valorization...

    Office of Scientific and Technical Information (OSTI)

    Biomass: Valorization of Lignin Mike Kent Deconstruction Division Joint BioEnergy Institute Outline 1. Introduction: -fuels and chemicals from Ngnocellulosic biomass -need ...

  9. Conditioning biomass for microbial growth (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Conditioning biomass for microbial growth Title: Conditioning biomass for microbial growth You are accessing a document from the Department of Energy's (DOE) DOE Patents. This ...

  10. Genetic manipulation of lignocellulosic biomass for bioenergy...

    Office of Scientific and Technical Information (OSTI)

    biomass for bioenergy Citation Details In-Document Search This content will become publicly available on September 7, 2017 Title: Genetic manipulation of lignocellulosic biomass ...

  11. Quinault Indian Nation - Comprehensive Biomass Strategy Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Status Report Quinault Indian Nation Comprehensive Biomass Strategy Project In Partnership ... energy) * Develop a long-term biomass strategy consistent with the long-term goals of ...

  12. Biomass for energy: Supply prospects

    SciTech Connect (OSTI)

    Hall, D.O.; Rosillo-Calle, F.; Woods, J.; Williams, R.H.

    1993-12-31

    Biomass for energy can be obtained from residues of ongoing agricultural and forest-product industries, from harvesting forests, and from dedicated plantations. The harvesting of forests for biomass is likely to be limited by environmental concerns. Over the next couple of decades new bioenergy industries will be launched primarily using residues as feedstocks. Subsequently, the industrial base will shift to plantations, the largest potential source of biomass. The most promising sites for plantations are deforested and otherwise degraded lands in developing countries and excess croplands in the industrialized countries. Revenues from the sale of biomass crops grown on plantations established on degraded lands can help finance the restoration of these lands. Establishing plantations on excess croplands can be a new livelihood to farmers who might otherwise abandon their land because of foodcrop overproduction. In either case, biomass plantations can, with careful planning, substantially improve these lands ecologically relative to their present uses. But a substantial and sustained research and development effort is needed to ensure the realization and sustainability of high yields under a wide range of growing conditions. Moreover, the establishment and maintenance of biomass plantations must be carried out in the framework of sustainable economic development in ways that are acceptable and beneficial to the local people. Ultimately, land and water resource constraints will limit the contributions that biomass can make as an energy source in advanced societies. But biomass energy can nevertheless make major contributions to sustainable development before these limits are reached, if biomass is grown productively and sustainably and is efficiently converted to modern energy carriers that are used in energy-efficient end-use technologies. 88 refs., 5 figs., 13 tabs.

  13. Natural gas network resiliency to a "shakeout scenario" earthquake.

    SciTech Connect (OSTI)

    Ellison, James F.; Corbet, Thomas Frank,; Brooks, Robert E.

    2013-06-01

    A natural gas network model was used to assess the likely impact of a scenario San Andreas Fault earthquake on the natural gas network. Two disruption scenarios were examined. The more extensive damage scenario assumes the disruption of all three major corridors bringing gas into southern California. If withdrawals from the Aliso Canyon storage facility are limited to keep the amount of stored gas within historical levels, the disruption reduces Los Angeles Basin gas supplies by 50%. If Aliso Canyon withdrawals are only constrained by the physical capacity of the storage system to withdraw gas, the shortfall is reduced to 25%. This result suggests that it is important for stakeholders to put agreements in place facilitating the withdrawal of Aliso Canyon gas in the event of an emergency.

  14. A Scenario Generation Method for Wind Power Ramp Events Forecasting

    SciTech Connect (OSTI)

    Cui, Ming-Jian; Ke, De-Ping; Sun, Yuan-Zhang; Gan, Di; Zhang, Jie; Hodge, Bri-Mathias

    2015-07-03

    Wind power ramp events (WPREs) have received increasing attention in recent years due to their significant impact on the reliability of power grid operations. In this paper, a novel WPRE forecasting method is proposed which is able to estimate the probability distributions of three important properties of the WPREs. To do so, a neural network (NN) is first proposed to model the wind power generation (WPG) as a stochastic process so that a number of scenarios of the future WPG can be generated (or predicted). Each possible scenario of the future WPG generated in this manner contains the ramping information, and the distributions of the designated WPRE properties can be stochastically derived based on the possible scenarios. Actual data from a wind power plant in the Bonneville Power Administration (BPA) was selected for testing the proposed ramp forecasting method. Results showed that the proposed method effectively forecasted the probability of ramp events.

  15. EMERY BIOMASS GASIFICATION POWER SYSTEM

    SciTech Connect (OSTI)

    Benjamin Phillips; Scott Hassett; Harry Gatley

    2002-11-27

    Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

  16. Diesel fuel from biomass

    SciTech Connect (OSTI)

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  17. Biothermal gasification of biomass

    SciTech Connect (OSTI)

    Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

    1980-01-01

    The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

  18. Investigating and Using Biomass Gases

    Office of Energy Efficiency and Renewable Energy (EERE)

    Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

  19. FETC/EPRI BIOMASS COFIRING COOPERATIVE AGREEMENT

    SciTech Connect (OSTI)

    D. TILLMAN; E. HUGHES

    1998-08-01

    During April 1 st , 1998 to June 31 st , 1998, significant work was done in preparation for a series of test involving cofiring at power plants. A biomass material handling system was designed for the Seward testing, a gasification system was designed for the Allen Fossil Plant, and a test program plan was developed for testing at NIPSCO�s Bailly Station. Also completed this quarter was a cyclone combustion model that provides a color visual representation of estimated temperatures within a plant. This report summarizes the activities during the second quarter in 1998 of the FETC/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon reporting the results of testing in order to highlight the progress at utilities.

  20. Tank waste remediation system operational scenario

    SciTech Connect (OSTI)

    Johnson, M.E.

    1995-05-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  1. Advanced Biomass to Gasoline Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Temperature ( o C) Reaction Time (Sec) Enzymatic Reactions Exelus Biomass-to-Gasoline (BTG) Gasification Pyrolysis 0.1 Grant EE0002991 Exelus 16 Innovations 0.00001 0.0001 ...

  2. Biomass Basics | Department of Energy

    Energy Savers

    Biomass currently supplies about 3% of total U.S. energy consumption in the form of electricity, process heat, and transportation fuels-all of which help to diversify the nation's ...

  3. 2011 Biomass Program Peer Review

    SciTech Connect (OSTI)

    Rossmeissl, Neil P.

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Peer Review meeting.

  4. Washington State biomass data book

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

  5. Report on Biomass Drying Technology

    SciTech Connect (OSTI)

    Amos, W. A.

    1999-01-12

    Using dry fuel provides significant benefits to combustion boilers, mainly increased boiler efficiency, lower air emissions, and improved boiler operation. The three main choices for drying biomass are rotary dryers, flash dryers, and superheated steam dryers. Which dryer is chosen for a particular application depends very much on the material characteristics of the biomass, the opportunities for integrating the process and dryer, and the environmental controls needed or already available.

  6. 161005 DOE Biomass.pptx

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Material Handling Considerations Overview of the Efforts in Feedstock & Materials Handling - Key Technical and Economic Challenges Identified for Different Processes Biorefinery Optimization Workshop October 2016 DOE Carrie Hartford, P.E. Senior Project Engineer chartford@jenike.com www.jenike.com SCIENCE ⏐ ENGINEERING ⏐ DESIGN 2 BIOMASS "FLOWABILITY" Biomass types can vary significantly! „ Particle size, shape, and moisture variation „ Differences affect material

  7. Biomass Burning Observation Project Specifically,

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Department of Energy Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 3:57pm Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of

  8. Energy System and Scenario Analysis Toolkit | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    other technologies. Biomass Biomass Energy Data Book Buildings Buildings Energy Data Book Hydrogen Hydrogen Energy Data Book Marine and Hydrokinetic Technology Marine and...

  9. Biomass Program 2007 Accomplishments - Thermochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details the accomplishments of the Biomass Program Thermochemical Conversion Platform in 2007.

  10. Biomass Webinar Presentation Slides | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation Slides Biomass Webinar Presentation Slides Download presentation slides for the DOE Office of Indian Energy webinar on biomass renewable energy. DOE Office of Indian Energy Foundational Course: Biomass (3.06 MB) More Documents & Publications Solar Webinar Presentation Slides Biomass Webinar Text Version Geothermal Webinar Presentation Slides and Text Version

  11. Biomass Program 2007 Accomplishments - Other Technologies

    SciTech Connect (OSTI)

    none,

    2009-10-28

    This document details the accomplishments of the Biomass Program Biodiesel and Other Technologies Platform in 2007.

  12. Biomass Research and Development Act of 2000

    Energy.gov [DOE]

    Conversion of biomass into biobased industrial products offers outstanding potential for benefit to the national interest.

  13. Biomass Program 2007 Accomplishments - Integrated Biorefinery Platform

    SciTech Connect (OSTI)

    none,

    2008-06-01

    This document details the accomplishments of the Biomass Program Integrated Biorefinery Platform in 2007.

  14. Biomass Program 2007 Accomplishments - Biochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details accomplishments of the Biomass Program Biochemical Conversion Platform accomplishments in 2007.

  15. Biomass Compositional Analysis Laboratory Procedures | Bioenergy | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Biomass Compositional Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for standard biomass analysis. These procedures help scientists and analysts understand more about the chemical composition of raw biomass feedstocks and process intermediates for conversion to biofuels. View Publications Subscribe to email updates about revisions and additions to biomass analysis procedures, FAQs, calculation spreadsheets, and publications. Email: Subscribe Unsubscribe

  16. Biomass Program 2007 Accomplishments - Infrastructure Technology Area

    SciTech Connect (OSTI)

    Glickman, Joan

    2007-09-01

    This document details the accomplishments of the Biomass Program Infrastructure Technoloy Area in 2007.

  17. biomass briquetting machine | OpenEI Community

    Open Energy Information (Open El) [EERE & EIA]

    biomass briquetting machine Home There are currently no posts in this category. Syndicate content...

  18. Biomass Surface Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

  19. Environmental assessment of spatial plan policies through land use scenarios

    SciTech Connect (OSTI)

    Geneletti, Davide

    2012-01-15

    This paper presents a method based on scenario analysis to compare the environmental effects of different spatial plan policies in a range of possible futures. The study aimed at contributing to overcome two limitations encountered in Strategic Environmental Assessment (SEA) for spatial planning: poor exploration of how the future might unfold, and poor consideration of alternative plan policies. Scenarios were developed through what-if functions and spatial modeling in a Geographical Information System (GIS), and consisted in maps that represent future land uses under different assumptions on key driving forces. The use of land use scenarios provided a representation of how the different policies will look like on the ground. This allowed gaining a better understanding of the policies' implications on the environment, which could be measured through a set of indicators. The research undertook a case-study approach by developing and assessing land use scenarios for the future growth of Caia, a strategically-located and fast-developing town in rural Mozambique. The effects of alternative spatial plan policies were assessed against a set of environmental performance indicators, including deforestation, loss of agricultural land, encroachment of flood-prone areas and wetlands and access to water sources. In this way, critical environmental effects related to the implementation of each policy were identified and discussed, suggesting possible strategies to address them. - Graphical abstract: Display Omitted Research Highlights: Black-Right-Pointing-Pointer The method contributes to two critical issues in SEA: exploration of the future and consideration of alternatives. Black-Right-Pointing-Pointer Future scenarios are used to test the environmental performance of different spatial plan policies in uncertainty conditions. Black-Right-Pointing-Pointer Spatially-explicit land use scenarios provide a representation of how different policies will look like on the ground.

  20. Planning substation capacity under the single-contingency scenario

    SciTech Connect (OSTI)

    Leung, L.C.; Khator, S.K.; Schnepp, J.C.

    1995-08-01

    Florida Power and Light (FPL) adopts the single contingency emergency policy for its planning of substation capacity. This paper provides an approach to determine the maximum load which a substation can take on under such a policy. The approach consists of two LP models which determine: (1) the maximum substation load capacity, and (2) the reallocation of load when a substation`s demand cannot be met. Both models are formulated under the single-contingency scenario, an issue which had received little attention in the literature. Not only does the explicit treatment of the scenario provide an exact measure of a substation`s load limit, it also raises several important issues which previous works omit. These two models have been applied to the substation network of the Fort Myers District of the State of Florida.

  1. Biomass conversion processes for energy and fuels

    SciTech Connect (OSTI)

    Sofer, S.S.; Zaborsky, O.R.

    1981-01-01

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  2. Los Alamos scientists advance biomass fuel production

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Los Alamos scientists advance biomass fuel production Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit Los Alamos scientists advance biomass fuel production Adapting biomass waste molecules for energy production May 1, 2013 Lab research can yield energy from non-food biomass Lab research can yield energy from non-food biomass Contact Editor Linda Anderman Email Community Programs Office

  3. Biomass 2010 Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 Conference Biomass 2010 Conference Biomass 2010 logo March 30-31, 2010 Hyatt Regency Crystal City 2799 Jefferson Davis Highway Arlington, VA 22202 Thank you to everyone who made Biomass 2010 a success, including the speakers, moderators, sponsors, and exhibitors! More than 600 attendees were able to discuss some of the most pressing issues in the biomass community as well as recent accomplishments and the challenges that lie ahead. We were able to focus on the role of biomass in our nation's

  4. Security Analysis of Selected AMI Failure Scenarios Using Agent Based Game Theoretic Simulation

    SciTech Connect (OSTI)

    Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T

    2014-01-01

    Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. We concentrated our analysis on the Advanced Metering Infrastructure (AMI) functional domain which the National Electric Sector Cyber security Organization Resource (NESCOR) working group has currently documented 29 failure scenarios. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain. From these five selected scenarios, we characterize them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrates how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.

  5. Hydrogen from biomass: state of the art and research challenges

    SciTech Connect (OSTI)

    Milne, Thomas A; Elam, Carolyn C; Evans, Robert J

    2002-02-01

    appropriate feedstocks and deployment scenarios that match hydrogen to the local markets. Co-production opportunities are of particular interest for near-term deployment since multiple products improve the economics; however, co-product development is not covered in this report. Biomass has the potential to accelerate the realization of hydrogen as a major fuel of the future. Since biomass is renewable and consumes atmospheric CO2 during growth, it can have a small net CO2 impact compared to fossil fuels. However, hydrogen from biomass has major challenges. There are no completed technology demonstrations. The yield of hydrogen is low from biomass since the hydrogen content in biomass is low to being with (approximately 6% versus 25% for methane) and the energy content is low due to the 40% oxygen content of biomass. Since over half of the hydrogen from biomass comes from splitting water in the steam reforming reaction, the energy content of the feedstock is an inherent limitation of the process . The low yield of hydrogen on a weight basis is misleading since the energy conversion efficiency is high. However, the cost for growing, harvesting, and transporting biomass is high. Thus even with reasonable energy efficiencies, it is not presently economically competitive with natural gas steam reforming for stand-alone hydrogen without the advantage of high-value co-products. Additionally, as with all sources of hydrogen, production from biomass will require appropriate hydrogen storage and utilization systems to be developed and deployed. The report also looked at promising areas for further research and development. The major areas for R,D and D are: feedstock preparation and feeding; gasification gas conditioning; system integration; modular systems development; valuable co-product integration; and larger-scale demonstrations. These are in addition to the challenges for any hydrogen process in storage and utilization technologies.

  6. JV 58-Effects of Biomass Combustion on SCR Catalyst

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Christopher J. Zygarlicke; Joshua R. Strege; Donald P. McCollor; Jason D. Laumb; Lingbu Kong

    2006-08-31

    A portable slipstream selective catalytic reduction (SCR) reactor was installed at a biomass cofired utility boiler to examine the rates and mechanisms of catalyst deactivation when exposed to biomass combustion products. The catalyst was found to deactivate at a much faster rate than typically found in a coal-fired boiler, although this may have been the result of high ash loading rather than a general property of biomass combustion. Deactivation was mainly the result of alkali and alkaline-earth sulfate formation and growth in catalyst pores, apparently caused by alkaline-earth ash deposition on or near the pore sites. The high proportion of biomass in the fuel contributed to elevated levels of alkali and alkaline-earth material in the ash when compared to coal ash, and these higher levels provided more opportunity for sulfate formation. Based on laboratory tests, neither catalyst material nor ammonia contributed measurably to ash mass gains via sulfation. A model constructed using both field and laboratory data was able to predict catalyst deactivation of catalysts under subbituminous coal firing but performed poorly at predicting catalyst deactivation under cofiring conditions. Because of the typically higher-than coal levels of alkali and alkaline-earth elements present in biomass fuels that are available for sulfation at typical SCR temperatures, the use of SCR technology and biomass cofiring needs to be carefully evaluated prior to implementation.

  7. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  8. Biomass conversion to mixed alcohols

    SciTech Connect (OSTI)

    Holtzapple, M.T.; Loescher, M.; Ross, M.

    1996-10-01

    This paper discusses the MixAlco Process which converts a wide variety of biomass materials (e.g. municipal solid waste, sewage sludge, agricultural residues) to mixed alcohols. First, the biomass is treated with lime to enhance its digestibility. Then, a mixed culture of acid-forming microorganisms converts the lime-treated biomass to volatile fatty acids (VFA) such as acetic, propionic, and butyric acids. To maintain fermentor pH, a neutralizing agent (e.g. calcium carbonate or lime) is added, so the fermentation actually produces VFA salts such as calcium acetate, propionate, and butyrate. The VFA salts are recovered and thermally converted to ketones (e.g. acetone, methylethyl ketone, diethyl ketone) which are subsequently hydrogenated to mixed alcohols (e.g. isopropanol, isobutanol, isopentanol). Processing costs are estimated at $0.72/gallon of mixed alcohols making it potentially attractive for transportation fuels.

  9. ANTI-GLITCHES WITHIN THE STANDARD SCENARIO OF PULSAR GLITCHES

    SciTech Connect (OSTI)

    Kantor, E. M.; Gusakov, M. E.

    2014-12-10

    Recent observations of a sudden spin down of the magnetar 1E2259+586, occurring on a timescale not exceeding two weeks (an event that has been dubbed an {sup a}nti-glitch{sup )}, still has not received any interpretation in terms of the standard scenario of pulsar glitches. Motivated by this observation, here we present a toy model that allows for anti-glitches in neutron stars under certain conditions within the standard approach.

  10. Hydrogen Financial Analysis Scenario Tool (H2FAST)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    H2FAST National Renewable Energy Laboratory The Hydrogen Financial Analysis Scenario Tool, H2FAST, provides a quick and convenient in-depth financial analysis for hydrogen fueling stations. H2FAST is available in two formats: an interactive online tool and a downloadable Excel spreadsheet. The spreadsheet version of H2FAST offers basic and advanced user interface modes for modeling individual stations or groups of up to 10 stations. It provides users with detailed annual finance projections in

  11. Low carbon and clean energy scenarios for India: Analysis of targets approach

    SciTech Connect (OSTI)

    Shukla, Priyadarshi R.; Chaturvedi, Vaibhav

    2012-12-01

    Low carbon energy technologies are gaining increasing importance in India for reducing emissions as well as diversifying its energy supply mix. The present paper presents and analyses a targeted approach for pushing solar, wind and nuclear technologies in the Indian energy market. Targets for these technologies have been constructed on the basis of Indian government documents, policy announcements and expert opinion. Different targets have been set for the reference scenario and the carbon price scenario. In the reference scenario it is found that in the long run all solar, wind and nuclear will achieve their targets without any subsidy push. In the short run however, nuclear and solar energy require significant subsidy push. Nuclear energy requires a much higher subsidy allocation as compared to solar because the targets assumed are also higher for nuclear energy. Under a carbon price scenario, the carbon price drives the penetration of these technologies significantly. Still subsidy is required especially in the short run when the carbon price is low. It is also found that pushing solar, wind and nuclear technologies might lead to decrease in share of CCS under the price scenario and biomass under both BAU and price scenario, which implies that one set of low carbon technologies is substituted by other set of low carbon technologies. Thus the objective of emission mitigation might not be achieved due to this substitution. Moreover sensitivity on nuclear energy cost was done to represent risk mitigation for this technology and it was found that higher cost can significantly decrease the share of this technology under both the BAU and carbon price scenario.

  12. Scenarios for Benefits Analysis of Energy Research, Development,Demonstration and Deployment

    SciTech Connect (OSTI)

    Gumerman, Etan; Marnay, Chris

    2005-09-07

    For at least the last decade, evaluation of the benefits of research, development, demonstration, and deployment (RD3) by the U.S. Department of Energy has been conducted using deterministic forecasts that unrealistically presume we can precisely foresee our future 10, 25,or even 50 years hence. This effort tries, in a modest way, to begin a process of recognition that the reality of our energy future is rather one rife with uncertainty. The National Energy Modeling System (NEMS) is used by the Department of Energy's Office of Energy Efficiency and Renewable Energy (EE) and Fossil Energy (FE) for their RD3 benefits evaluation. In order to begin scoping out the uncertainty in these deterministic forecasts, EE and FE designed two futures that differ significantly from the basic NEMS forecast. A High Fuel Price Scenario and a Carbon Cap Scenario were envisioned to forecast alternative futures and the associated benefits. Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) implemented these scenarios into its version of NEMS,NEMS-LBNL, in late 2004, and the Energy Information Agency created six scenarios for FE in early 2005. The creation and implementation of the EE-FE scenarios are explained in this report. Both a Carbon Cap Scenario and a High Fuel Price Scenarios were implemented into the NEMS-LBNL. EIA subsequently modeled similar scenarios using NEMS. While the EIA and LBNL implementations were in some ways rather different, their forecasts do not significantly diverge. Compared to the Reference Scenario, the High Fuel Price Scenario reduces energy consumption by 4 percent in 2025, while in the EIA fuel price scenario (known as Scenario 4) reduction from its corresponding reference scenario (known as Scenario 0) in 2025 is marginal. Nonetheless, the 4 percent demand reduction does not lead to other cascading effects that would significantly differentiate the two scenarios. The LBNL and EIA carbon scenarios were mostly identical. The only major difference

  13. An overview of alternative fossil fuel price and carbon regulation scenarios

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2004-10-01

    , (3) externally generated oil price forecasts, and (4) the historical difficulty in accurately forecasting oil prices. Overall, a spread between the FE-EERE High Oil Price and Reference scenarios of well over $8/bbl is supported by the literature. We conclude that a wide range of carbon regulation scenarios are possible, especially within the time frame considered by EERE and FE (through 2050). The Working Group's Carbon Cap-and-Trade Scenario is found to be less aggressive than many Kyoto-style targets that have been analyzed, and similar in magnitude to the proposed Climate Stewardship Act. The proposed scenario is more aggressive than some other scenarios found in the literature, however, and ignores carbon banking and offsets and does not allow nuclear power to expand. We are therefore somewhat concerned that the stringency of the proposed carbon regulation scenario in the 2010 to 2025 period will lead to a particularly high estimated cost of carbon reduction. As described in more detail later, we encourage some flexibility in the Working Group's ultimate implementation of the Carbon Cap-and-Trade Scenario. We conclude by identifying additional scenarios that might be considered in future analyses, describing a concern with the proposed specification of the High Fuel Price Scenario, and highlighting the possible difficulty of implementing extreme scenarios with current energy modeling tools.

  14. Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL...

    Office of Scientific and Technical Information (OSTI)

    Investment on the Growth of the Biofuels Industry Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL; DEMONSTRATION; DEPLOYMENT; LEARNING; POLICY; SYSTEM DYNAMICS;...

  15. Biomass Energy Production in California 2002: Update of the California Biomass Database

    SciTech Connect (OSTI)

    Morris, G.

    2002-12-01

    An updated version of the California Biomass Energy Database, which summarizes California's biomass energy industry using data from 2000 and 2001.

  16. Biomass Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy » Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. Humans have used biomass for thousands of years. Biomass is any organic material that has stored sunlight in the form of chemical energy. Wood is a well-known example of biomass: it can be burned for heat or shaped into building materials. There are many additional types of biomass that can be used to derive

  17. The Future of Scenarios: Issues in Developing New Climate Change Scenarios

    SciTech Connect (OSTI)

    Pitcher, Hugh M.

    2009-06-01

    Research, analysis and commnetary since the release of the Special Report on Emissions Scenarios has suggested a number of areas, e.g. rates of economic growth, downscaling and scenario likelihood, where additional research would make the next set of scenarios of greater use and increased credibility. This essary reviews the work on the areas mentioned above and makes suggestions about possible ways to improve the next set of climate scenarios, to be developed by the research community without a specific IPCC terms of reference to guide the work.

  18. 2015 Standard Scenarios Annual Report: U.S. Electric Sector Scenario...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Report: U.S. Electric Sector Scenario Exploration ... Porro National Renewable Energy Laboratory Technical ... contingency, frequency regulation, and VRRE forecast error ...

  19. Toward Interactive Scenario Analysis and Exploration

    SciTech Connect (OSTI)

    Gayle, Thomas R.; Summers, Kenneth Lee; Jungels, John; Oppel III, Fred J.

    2015-01-01

    As Modeling and Simulation (M&S) tools have matured, their applicability and importance have increased across many national security challenges. In particular, they provide a way to test how something may behave without the need to do real world testing. However, current and future changes across several factors including capabilities, policy, and funding are driving a need for rapid response or evaluation in ways that many M&S tools cannot address. Issues around large data, computational requirements, delivery mechanisms, and analyst involvement already exist and pose significant challenges. Furthermore, rising expectations, rising input complexity, and increasing depth of analysis will only increase the difficulty of these challenges. In this study we examine whether innovations in M&S software coupled with advances in ''cloud'' computing and ''big-data'' methodologies can overcome many of these challenges. In particular, we propose a simple, horizontally-scalable distributed computing environment that could provide the foundation (i.e. ''cloud'') for next-generation M&S-based applications based on the notion of ''parallel multi-simulation''. In our context, the goal of parallel multi- simulation is to consider as many simultaneous paths of execution as possible. Therefore, with sufficient resources, the complexity is dominated by the cost of single scenario runs as opposed to the number of runs required. We show the feasibility of this architecture through a stable prototype implementation coupled with the Umbra Simulation Framework [6]. Finally, we highlight the utility through multiple novel analysis tools and by showing the performance improvement compared to existing tools.

  20. Development of nonproliferation and assessment scenarios.

    SciTech Connect (OSTI)

    Finley, Melissa; Barnett, Natalie Beth

    2005-10-01

    The overall objective of the Nonproliferation and Assessments Scenario Development project is to create and analyze potential and plausible scenarios that would lead to an adversary's ability to acquire and use a biological weapon. The initial three months of funding was intended to be used to develop a scenario to demonstrate the efficacy of this analysis methodology; however, it was determined that a substantial amount of preliminary data collection would be needed before a proof of concept scenario could be developed. We have dedicated substantial effort to determine the acquisition pathways for Foot and Mouth Disease Virus, and similar processes will be applied to all pathogens of interest. We have developed a biosecurity assessments database to capture information on adversary skill locales, available skill sets in specific regions, pathogen sources and regulations involved in pathogen acquisition from legitimate facilities. FY06 funding, once released, will be dedicated to data collection on acquisition, production and dissemination requirements on a pathogen basis. Once pathogen data has been collected, scenarios will be developed and scored.

  1. Hydrothermal liquefaction of biomass: Developments from batch to continuous process

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Biller, Patrick; Ross, Andrew; Schmidt, Andrew J.; Jones, Susanne B.

    2015-02-01

    This review describes the recent results in hydrothermal liquefaction (HTL) of biomass in continuous-flow processing systems. Although much has been published about batch reactor tests of biomass HTL, there is only limited information yet available on continuous-flow tests, which can provide a more reasonable basis for process design and scale-up for commercialization. High-moisture biomass feedstocks are the most likely to be used in HTL. These materials are described and results of their processing are discussed. Engineered systems for HTL are described however they are of limited size and do not yet approach a demonstration scale of operation. With the results available process models have been developed and mass and energy balances determined. From these models process costs have been calculated and provide some optimism as to the commercial likelihood of the technology.

  2. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  3. Biomass Program Partners Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    Meeting ambitious national targets for biofuels requires a radically accelerated level of technology research and infrastructure development. To expedite progress, the U.S. Department of Energy’s Biomass Program is forging collaborative partnerships with industry, academia, state governments, and diverse stakeholder groups.

  4. Biomass energy systems program summary

    SciTech Connect (OSTI)

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  5. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste

  6. Biomass energies: resources, links, constraints

    SciTech Connect (OSTI)

    Smil, V.

    1983-01-01

    This book presents information on the following topics: radiation and photosynthesis; primary production and biomass; resources; wood for energy; silviculture; requirements and effects; crop residues; residues for energy conversion; sugar crops and grain; cassava; fuel crops; aquatic plants; freshwater plants; ocean algae; animal wastes; Chinese biogas generation; and ecodisasters.

  7. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  8. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  9. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  10. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  11. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  12. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  13. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  14. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  15. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  16. Sauder Power Plant Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sauder Power Plant Biomass Facility Jump to: navigation, search Name Sauder Power Plant Biomass Facility Facility Sauder Power Plant Sector Biomass Location Fulton County, Ohio...

  17. August 2012 Biomass Program Monthly News Blast | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    August 2012 Biomass Program Monthly News Blast August 2012 Biomass Program Monthly News Blast Monthly newsletter for August 2012 from the Department of Energy's Biomass Program. ...

  18. American Ref-Fuel of Hempstead Biomass Facility | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Hempstead Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Hempstead Biomass Facility Facility American Ref-Fuel of Hempstead Sector Biomass Facility Type...

  19. Bay Resource Management Center Biomass Facility | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Resource Management Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass...

  20. Suite of Cellulase Enzyme Technologies for Biomass Conversion...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Suite of Cellulase Enzyme Technologies for Biomass Conversion National Renewable Energy Laboratory...

  1. Thermal Pretreatment of Wood for Cogasification/cofiring of Biomass...

    Office of Scientific and Technical Information (OSTI)

    ...cofiring of Biomass and Coal Citation Details In-Document Search Title: Thermal Pretreatment of Wood for Cogasificationcofiring of Biomass and Coal Utilization of biomass as a ...

  2. Blue Spruce Farm Ana Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Spruce Farm Ana Biomass Facility Jump to: navigation, search Name Blue Spruce Farm Ana Biomass Facility Facility Blue Spruce Farm Ana Sector Biomass Location Vermont Coordinates...

  3. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  4. Huaian Huapeng Biomass Electricity Co | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Huaian Huapeng Biomass Electricity Co Jump to: navigation, search Name: Huaian Huapeng Biomass Electricity Co. Place: Jiangsu Province, China Sector: Biomass Product: China-based...

  5. Covanta Hennepin Energy Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hennepin Energy Biomass Facility Jump to: navigation, search Name Covanta Hennepin Energy Biomass Facility Facility Covanta Hennepin Energy Sector Biomass Facility Type Municipal...

  6. Dunbarton Energy Partners LP Biomass Facility | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    Dunbarton Energy Partners LP Biomass Facility Jump to: navigation, search Name Dunbarton Energy Partners LP Biomass Facility Facility Dunbarton Energy Partners LP Sector Biomass...

  7. Smithtown Energy Partners LP Biomass Facility | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    Smithtown Energy Partners LP Biomass Facility Jump to: navigation, search Name Smithtown Energy Partners LP Biomass Facility Facility Smithtown Energy Partners LP Sector Biomass...

  8. Covanta Babylon Energy Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Babylon Energy Biomass Facility Jump to: navigation, search Name Covanta Babylon Energy Biomass Facility Facility Covanta Babylon Energy Sector Biomass Facility Type Municipal...

  9. Adrian Energy Associates LLC Biomass Facility | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    Adrian Energy Associates LLC Biomass Facility Jump to: navigation, search Name Adrian Energy Associates LLC Biomass Facility Facility Adrian Energy Associates LLC Sector Biomass...

  10. Boralex Stratton Energy Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Stratton Energy Biomass Facility Jump to: navigation, search Name Boralex Stratton Energy Biomass Facility Facility Boralex Stratton Energy Sector Biomass Location Franklin County,...

  11. USA Biomass Power Producers Alliance | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass Power Producers Alliance Jump to: navigation, search Name: USA Biomass Power Producers Alliance Place: Sacramento, California Sector: Biomass Product: National trade...

  12. Covanta Bristol Energy Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Bristol Energy Biomass Facility Jump to: navigation, search Name Covanta Bristol Energy Biomass Facility Facility Covanta Bristol Energy Sector Biomass Facility Type Municipal...

  13. Covanta Mid-Connecticut Energy Biomass Facility | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Mid-Connecticut Energy Biomass Facility Jump to: navigation, search Name Covanta Mid-Connecticut Energy Biomass Facility Facility Covanta Mid-Connecticut Energy Sector Biomass...

  14. Spadra Landfill Gas to Energy Biomass Facility | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass...

  15. Covanta Fairfax Energy Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Fairfax Energy Biomass Facility Jump to: navigation, search Name Covanta Fairfax Energy Biomass Facility Facility Covanta Fairfax Energy Sector Biomass Facility Type Municipal...

  16. Covanta Stanislaus Energy Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Stanislaus Energy Biomass Facility Jump to: navigation, search Name Covanta Stanislaus Energy Biomass Facility Facility Covanta Stanislaus Energy Sector Biomass Facility Type...

  17. Commerce Refuse To Energy Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Refuse To Energy Biomass Facility Jump to: navigation, search Name Commerce Refuse To Energy Biomass Facility Facility Commerce Refuse To Energy Sector Biomass Facility Type...

  18. Zhulu Huada Biomass Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Zhulu Huada Biomass Co Ltd Jump to: navigation, search Name: Zhulu Huada Biomass Co Ltd Place: Shijiazhuang, Hebei Province, China Sector: Biomass Product: Zhangjiakou-based...

  19. Buena Vista Biomass Power LCC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass Power LCC Jump to: navigation, search Name: Buena Vista Biomass Power LCC Place: California Sector: Biomass Product: California-based firm developing and operating an 18MW...

  20. Avon Energy Partners LLC Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Avon Energy Partners LLC Biomass Facility Jump to: navigation, search Name Avon Energy Partners LLC Biomass Facility Facility Avon Energy Partners LLC Sector Biomass Facility Type...

  1. Brickyard Energy Partners LLC Biomass Facility | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Brickyard Energy Partners LLC Biomass Facility Jump to: navigation, search Name Brickyard Energy Partners LLC Biomass Facility Facility Brickyard Energy Partners LLC Sector Biomass...

  2. Tamarack Energy Partnership Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Partnership Biomass Facility Jump to: navigation, search Name Tamarack Energy Partnership Biomass Facility Facility Tamarack Energy Partnership Sector Biomass Location Adams...

  3. Taylor Biomass Energy LLC TBE | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass Energy LLC TBE Jump to: navigation, search Name: Taylor Biomass Energy, LLC (TBE) Place: Montgomery, New York Zip: 12549-9900 Sector: Biomass Product: Montgomery-based...

  4. Suffolk Energy Partners LP Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Partners LP Biomass Facility Jump to: navigation, search Name Suffolk Energy Partners LP Biomass Facility Facility Suffolk Energy Partners LP Sector Biomass Facility Type...

  5. Hebei Milestone Biomass Energy Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Milestone Biomass Energy Co Ltd Jump to: navigation, search Name: Hebei Milestone Biomass Energy Co Ltd Place: Hebei Province, China Zip: 50051 Sector: Biomass Product: China-based...

  6. Shanxi Milestone Biomass Energy Development Co Ltd | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Milestone Biomass Energy Development Co Ltd Jump to: navigation, search Name: Shanxi Milestone Biomass Energy Development Co Ltd Place: China Sector: Biomass Product: China-based...

  7. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  8. Puente Hills Energy Recovery Biomass Facility | Open Energy Informatio...

    Open Energy Information (Open El) [EERE & EIA]

    Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass...

  9. Webinar: BioenergizeME Office Hours Webinar: Biomass Basics ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Biomass Basics biomasbasicswebinar20150827.pdf (3.05 MB) ...

  10. Bridgewater Power LP Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power LP Biomass Facility Jump to: navigation, search Name Bridgewater Power LP Biomass Facility Facility Bridgewater Power LP Sector Biomass Location Grafton County, New Hampshire...

  11. Archbald Power Station Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Archbald Power Station Biomass Facility Jump to: navigation, search Name Archbald Power Station Biomass Facility Facility Archbald Power Station Sector Biomass Facility Type...

  12. Peoples Generating Station Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Peoples Generating Station Biomass Facility Jump to: navigation, search Name Peoples Generating Station Biomass Facility Facility Peoples Generating Station Sector Biomass Facility...

  13. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  14. Boralex Fort Fairfield Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Fort Fairfield Biomass Facility Jump to: navigation, search Name Boralex Fort Fairfield Biomass Facility Facility Boralex Fort Fairfield Sector Biomass Location Aroostook County,...

  15. Genesee Power Station Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Biomass Facility Jump to: navigation, search Name Genesee Power Station Biomass Facility Facility Genesee Power Station Sector Biomass Owner CMSFortistar Location Flint, Michigan...

  16. Jiangsu Guoxin Rudong Biomass Power Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Guoxin Rudong Biomass Power Co Ltd Jump to: navigation, search Name: Jiangsu Guoxin Rudong Biomass Power Co Ltd Place: Rudong, Jiangsu Province, China Sector: Biomass Product: The...

  17. Liuzhou Xinneng Biomass Power Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Xinneng Biomass Power Co Ltd Jump to: navigation, search Name: Liuzhou Xinneng Biomass Power Co Ltd Place: Guangxi Autonomous Region, China Sector: Biomass Product: China-based...

  18. Pearl Hollow Landfil Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas...

  19. Sri Balaji Biomass Power Pvt Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sri Balaji Biomass Power Pvt Ltd Jump to: navigation, search Name: Sri Balaji Biomass Power Pvt Ltd Place: Secunderabad, Andhra Pradesh, India Zip: 500003 Sector: Biomass Product:...

  20. Rhodia Houston Plant Biomass Facility | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Rhodia Houston Plant Biomass Facility Jump to: navigation, search Name Rhodia Houston Plant Biomass Facility Facility Rhodia Houston Plant Sector Biomass Facility Type Non-Fossil...