National Library of Energy BETA

Sample records for biomass power association

  1. Biomass Power Association (BPA) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Summary LAUNCH TOOL Name: Biomass Power Association (BPA) AgencyCompany Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, -...

  2. Biomass: Potato Power

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato

  3. Hebei Jiantou Biomass Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jiantou Biomass Power Jump to: navigation, search Name: Hebei Jiantou Biomass Power Place: Jinzhou, Hebei Province, China Zip: 50000 Sector: Biomass Product: A company engages in...

  4. Sauder Power Plant Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sauder Power Plant Biomass Facility Jump to: navigation, search Name Sauder Power Plant Biomass Facility Facility Sauder Power Plant Sector Biomass Location Fulton County, Ohio...

  5. Bridgewater Power LP Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power LP Biomass Facility Jump to: navigation, search Name Bridgewater Power LP Biomass Facility Facility Bridgewater Power LP Sector Biomass Location Grafton County, New Hampshire...

  6. Archbald Power Station Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Archbald Power Station Biomass Facility Jump to: navigation, search Name Archbald Power Station Biomass Facility Facility Archbald Power Station Sector Biomass Facility Type...

  7. American Canyon Power Plant Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Canyon Power Plant Biomass Facility Jump to: navigation, search Name American Canyon Power Plant Biomass Facility Facility American Canyon Power Plant Sector Biomass Facility Type...

  8. USA Biomass Power Producers Alliance | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Power Producers Alliance Jump to: navigation, search Name: USA Biomass Power Producers Alliance Place: Sacramento, California Sector: Biomass Product: National trade...

  9. Buena Vista Biomass Power LCC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Power LCC Jump to: navigation, search Name: Buena Vista Biomass Power LCC Place: California Sector: Biomass Product: California-based firm developing and operating an 18MW...

  10. Genesee Power Station Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Facility Jump to: navigation, search Name Genesee Power Station Biomass Facility Facility Genesee Power Station Sector Biomass Owner CMSFortistar Location Flint, Michigan...

  11. Jiangsu Guoxin Rudong Biomass Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guoxin Rudong Biomass Power Co Ltd Jump to: navigation, search Name: Jiangsu Guoxin Rudong Biomass Power Co Ltd Place: Rudong, Jiangsu Province, China Sector: Biomass Product: The...

  12. Liuzhou Xinneng Biomass Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Xinneng Biomass Power Co Ltd Jump to: navigation, search Name: Liuzhou Xinneng Biomass Power Co Ltd Place: Guangxi Autonomous Region, China Sector: Biomass Product: China-based...

  13. Sri Balaji Biomass Power Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sri Balaji Biomass Power Pvt Ltd Jump to: navigation, search Name: Sri Balaji Biomass Power Pvt Ltd Place: Secunderabad, Andhra Pradesh, India Zip: 500003 Sector: Biomass Product:...

  14. Sinewave Biomass Power Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sinewave Biomass Power Pvt Ltd Jump to: navigation, search Name: Sinewave Biomass Power Pvt. Ltd. Place: Kolhapur, Maharashtra, India Zip: 416 012 Sector: Biomass Product:...

  15. Fairhaven Power Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleFairhavenPowerBiomassFacility&oldid397454" Feedback Contact needs updating Image needs updating...

  16. Pinetree Power Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titlePinetreePowerBiomassFacility&oldid397941" Feedback Contact needs updating Image needs updating...

  17. Jefferson Power Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    National Map Retrieved from "http:en.openei.orgwindex.php?titleJeffersonPowerBiomassFacility&oldid397620" Feedback Contact needs updating Image needs updating...

  18. Lessons learned from existing biomass power plants

    SciTech Connect

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  19. EMERY BIOMASS GASIFICATION POWER SYSTEM

    SciTech Connect

    Benjamin Phillips; Scott Hassett; Harry Gatley

    2002-11-27

    Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

  20. Adrian Energy Associates LLC Biomass Facility | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Adrian Energy Associates LLC Biomass Facility Jump to: navigation, search Name Adrian Energy Associates LLC Biomass Facility Facility Adrian Energy Associates LLC Sector Biomass...

  1. McNeil Biomass Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    McNeil Biomass Power Jump to: navigation, search Name: McNeil Biomass Power Place: Burlington, VT Website: www.mcneilbiomasspower.com References: McNeil Biomass Power1...

  2. BIOMASS COGASIFICATION AT POLK POWER STATION

    SciTech Connect

    John McDaniel

    2002-05-01

    Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

  3. Penrose Power Station Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Penrose Power Station Biomass Facility Facility Penrose Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  4. Ridgewood Providence Power Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name Ridgewood Providence Power Biomass Facility Facility Ridgewood Providence Power Sector Biomass Facility Type Landfill Gas Location Providence County, Rhode Island...

  5. Toyon Power Station Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Toyon Power Station Biomass Facility Facility Toyon Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  6. KMS Joliet Power Partners LP Biomass Facility | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name KMS Joliet Power Partners LP Biomass Facility Facility KMS Joliet Power Partners LP Sector Biomass Facility Type Landfill Gas Location Will County, Illinois...

  7. Marsh Road Power Plant Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name Marsh Road Power Plant Biomass Facility Facility Marsh Road Power Plant Sector Biomass Facility Type Landfill Gas Location San Mateo County,...

  8. National Bio Energy Gongzhuling Biomass Power Plant | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Gongzhuling Biomass Power Plant Jump to: navigation, search Name: National Bio Energy Gongzhuling Biomass Power Plant Place: China Product: A subsidiary company of National Bio...

  9. DG Fairhaven Power Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name DG Fairhaven Power Biomass Facility Facility DG Fairhaven Power Sector Biomass Owner Marubeni Sustainable Energy Location Eureka, California Coordinates...

  10. Kaisheng Biomass Residue Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kaisheng Biomass Residue Power Co Ltd Jump to: navigation, search Name: Kaisheng Biomass Residue Power Co., Ltd. Place: Nanping City, Fujian Province, China Zip: 365001 Sector:...

  11. Jiangsu Dongsheng Biomass Power Generation Co Ltd | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dongsheng Biomass Power Generation Co Ltd Jump to: navigation, search Name: Jiangsu Dongsheng Biomass Power Generation Co Ltd Place: Dongtai, Jiangsu Province, China Zip: 224212...

  12. Global Biomass Power Generation Market | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    Global Biomass Power Generation Market Home There are currently no posts in this category. Syndicate...

  13. Gas turbine power generation from biomass gasification

    SciTech Connect

    Paisley, M.A.; Litt, R.D.; Overend, R.P.; Bain, R.L.

    1994-12-31

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development of the use of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier.

  14. National Bio Energy Co Ltd formerly Guoneng Biomass Power Ltd...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ltd.) Place: Beijing, Beijing Municipality, China Zip: 100005 Sector: Biomass Product: Invest in, build and run biomass power plants. Coordinates: 39.90601, 116.387909 Show Map...

  15. Power from coal and biomass via CFB

    SciTech Connect

    Giglio, R.; Wehrenberg, J.

    2009-04-15

    Circulating fluidized bed technology enables burning coal and biomass to generate power while reducing emissions at the same time. Flexi-Burn CFB is being developed. It produces a CO{sub 2} rich flue gas, form which CO{sub 2} can be captured.

  16. US Biomass Energy Research Association BERA | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Energy Research Association BERA Jump to: navigation, search Name: US Biomass Energy Research Association (BERA) Place: Washington, Washington, DC Zip: DC 20003 Sector:...

  17. Brazilian Association of Biomass Industries ABIB | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Brazilian Association of Biomass Industries ABIB Jump to: navigation, search Name: Brazilian Association of Biomass Industries (ABIB) Place: Curitiba, Parana, Brazil Sector:...

  18. Fusion Power Associates Awards

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    fpa awards Fusion Power Associates Awards Fusion Power Associates is "a non-profit, tax-exempt research and educational foundation, providing information on the status of fusion ...

  19. FINAL ENVIRONMENTAL ASSESSMENT FOR A COMBINED POWER AND BIOMASS...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    POWER AND BIOMASS HEATING SYSTEM FORT YUKON, ALASKA APPENDIX C DRAFT FORT YUKON WOODY BIOMASS FUEL IMPLEMENTATION PLAN (RBEGR 2011) C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10...

  20. Smith River Rancheria - Wind and Biomass Power Generation Feasibility...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE Tribal Energy Program Program Review Meeting October 17 - 21, 2005 Greg Retzlaff Strategic Energy Solutions, Inc. Wind & Biomass Power Generation Smith River Rancheria 2 Smith ...

  1. Smith River Rancheria - Wind and Biomass Power Generation Facility...

    Energy Saver

    Changed to Wind, Solar, Conservation & Utility Changes DOE Tribal Energy Program Review October 23 - 27, 2006 Greg Retzlaff Strategic Energy Solutions, Inc. Wind & Biomass Power ...

  2. Snowflake White Mountain Power Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Map Retrieved from "http:en.openei.orgwindex.php?titleSnowflakeWhiteMountainPowerBiomassFacility&oldid398118" Feedback Contact needs updating Image needs updating...

  3. Guadalupe Power Plant Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Database Retrieved from "http:en.openei.orgwindex.php?titleGuadalupePowerPlantBiomassFacility&oldid397533" Feedback Contact needs updating Image needs updating...

  4. Nove Power Plant Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleNovePowerPlantBiomassFacility&oldid397862" Feedback Contact needs updating Image needs updating...

  5. Biomass Power: Program overview fiscal years 1993--1994

    SciTech Connect

    1995-03-01

    The Biomass Power Program and industry are developing technologies to expand the use of biomass that include methods of feedstock production and the equipment to convert feedstocks into electric power or process heat. With the help of advanced biomass power technologies and new feedstock supply systems, as much as 50,000 megawatts (MW) of biomass power capacity will be in place by the year 2010. The Biomass Power Program supports the development of three technologies--gasification, pyrolysis, and direct combustion--from the laboratory bench scale to the prototype commercial scale. Gasification equipment produces biogas that is burned in high-efficiency turbine-generators developed for the electric power industry. Pyrolysis processes produce oils from renewable biomass that burn like petroleum to generate electricity. In direct combustion technology, power plants today burn bulk biomass directly to generate electricity. Improving the direct combustion technology of these plants increases efficiency and reduces emissions. In addition to developing these three technologies, the Biomass Power Program supports joint ventures to plan and construct facilities that demonstrate the benefits of biomass power. The Program is supporting joint ventures to conduct 10 case studies of dedicated feedstock supply systems.

  6. WWTP Power Generation Station Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892, -121.7195459 Show Map Loading map......

  7. St. Croix Chippewa Indians of Wisconsin - Biomass Power Development

    Energy Saver

    ... Our Vision * Our expectation is that implementation of renewable energy portfolio standards in Wisconsin will result in a firm market premium for biomass-fired power. This, in ...

  8. Stowe Power Production Plant Biomass Facility | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Stowe Power Production Plant Sector Biomass Facility Type Landfill Gas Location Montgomery County, Pennsylvania Coordinates 40.2290075, -75.3878525 Show Map Loading map......

  9. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  10. Biomass power industry: Assessment of key players and approaches for DOE and industry interaction. Final report

    SciTech Connect

    1993-07-01

    This report reviews the status of the US biomass power industry. The topics of the report include current fuels and the problems associated with procuring, transporting, preparing and burning them, competition from natural gas projects because of the current depressed natural gas prices, need for incentives for biomass fueled projects, economics, market potential and expansion of US firms overseas.

  11. Biomass to Liquid Fuels and Electrical Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    suitable for trade in commodity markets. - Develop process simulation models for biomass gasification and gas conditioning. - Develop models of Fischer-Tropsch synthesis processes. ...

  12. Haryana Biomass Power Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    between Gammon India Ltd's subsidiary Gammon Infrastructure Projects Ltd. and Bermaco Energy to set-up 8 biomass plants in various districts of the Haryana State of India....

  13. Opportunities for Small Biomass Power Systems. Final Technical Report

    SciTech Connect

    Schmidt, D. D.; Pinapati, V. S.

    2000-11-15

    The purpose of this study was to provide information to key stakeholders and the general public about biomass resource potential for power generation. Ten types of biomass were identified and evaluated. The quantities available for power generation were estimated separately for five U.S. regions and Canada. A method entitled ''competitive resource profile'' was used to rank resources based on economics, utilization, and environmental impact. The results of the analysis may be used to set priorities for utilization of biomass in each U.S. region. A review of current biomass conversion technologies was accomplished, linking technologies to resources.

  14. Status of Biomass Power Generation in California, July 31, 2003

    SciTech Connect

    Morris, G.

    2003-12-01

    This report describes the development of the biomass power industry in California over the past quarter century, and examines its future outlook. The development of a state biomass policy, which has been under discussion in California for the better part of the past decade, has never gotten off the ground, but a number of smaller initiatives have helped to keep the biomass power industry afloat and have promoted the use of some targeted types of residues. In this report we analyze the prospects for policy development and the application of new biomass technologies in California.

  15. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  16. Biomass Power Generation Market Capacity is Estimated to Reach...

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Power Generation Market Capacity is Estimated to Reach 122,331.6 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  17. Biomass gasification for gas turbine-based power generation

    SciTech Connect

    Paisley, M.A.; Anson, D.

    1998-04-01

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high-efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.

  18. EPA RE-Powering America's Lands: Kansas City Municipal Farm Site ₋ Biomass Power Analysis

    SciTech Connect

    Hunsberger, R.; Mosey, G.

    2015-01-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing biomass at the Kansas City, Missouri, Municipal Farm site, a group of City-owned properties, is explored. The study that none of the technologies we reviewed--biomass heat, power and CHP--are economically viable options for the Municipal Farms site. However, if the site were to be developed around a future central biomass heating or CHP facility, biomass could be a good option for the site.

  19. EIS-0300: Minnesota Agri-Power Project: Biomass for Rural Development, Granite Falls, Minnesota

    Energy.gov [DOE]

    This EIS analyzes DOE and the Minnesota Environmental Quality Boards' [MEQB, a Minnesota State agency] decision to support a proposal by the Minnesota Valley Alfalfa Producers (MnVAP) to construct and operate a 75–103 megawatt biomass fueled gasifier and electric generating facility, known as the Minnesota Agri-Power Plant (MAPP), and associated transmission lines and alfalfa processing facilities.

  20. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  1. Technical Manual for the SAM Biomass Power Generation Model

    SciTech Connect

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  2. Fuel cell power plants using hydrogen from biomass

    SciTech Connect

    Knight, R.A.; Onischak, M.; Lau, F.S.

    1998-12-31

    This paper discusses a power generation system that offers high energy efficiency, ultra-clean environmental performance, and near-zero greenhouse gas emissions. Biomass from agricultural and forestry wastes or dedicated energy farms can be used efficiently for power generation in integrated biomass gasification-fuel cell (IBGFC) systems. The energy efficiency of these systems has been projected to approach 55% or even higher if cogeneration opportunities can be utilized. Such systems, in addition to being ultra-efficient, can boast very low emissions of SO{sub 2}, NO{sub x}, and particulates, and are essentially CO{sub 2}-neutral. With the mounting concern about greenhouse gas emissions, this approach to renewable energy is very attractive for small distributed generation markets in the US and worldwide. Biomass wastes alone, by current estimates, have the potential to provide as much as 338 GW of electrical power worldwide if utilized in this fashion, and offer the best near- to mid-term market entry opportunities for this technology. Power demand in the US will be driven by the opening of niche markets as a result of deregulation and environmental concerns, and markets in other regions will be driven by economic growth as well. In this paper, the integration of a pressurized fluidized-bed gasifier with a molten carbonate fuel cell and expansion turbine bottoming cycle will be presented. Two cycles are suggested: one using conventional technology for biomass drying, feeding, and gasification, and a second, more advanced cycle using wet feeding direct to the gasifier and in-bed steam reforming to boost cycle efficiency and reduce capital costs. Both cycles use state-of-the-art molten carbonate fuel cells with an expansion turbine bottoming cycle. These options are presented along with recommended technical development activities and targets.

  3. Alaska Power Association Annual Meeting

    Energy.gov [DOE]

    Hosted by Cordova Electric Association, the Alaska Power Association Annual Meeting will cover various sessions and topics as well as feature exhibitors.

  4. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  5. Method and apparatus for automated, modular, biomass power generation

    DOEpatents

    Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

    2013-11-05

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  6. Method and apparatus for automated, modular, biomass power generation

    DOEpatents

    Diebold, James P.; Lilley, Arthur; Browne, Kingsbury III; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

    2011-03-22

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  7. Microsoft PowerPoint - Quinault Indian Nation Biomass Renewable...

    Energy.gov [DOE] (indexed site)

    Biomass Renewable Energy Opportunities and Strategies Presented By: Quinault Indian ... and sizes * Researched fuel supplies and sources to run biomass facility Engineering & ...

  8. The value of the benefits of U.S. biomass power

    SciTech Connect

    Morris, G.

    2000-04-03

    Biomass power has always been used to generate power in the forest products industry, but its widespread use for supplying power to the US grid is a relatively recent phenomenon. Today independent biomass power generators supply 11 billion kWh/yr to the national electricity grid and, in the process, provide an environmentally superior disposal service for 22 million tons/yr of solid waste

  9. Microsoft PowerPoint - Overview of Biomass Energy and Economic...

    Office of Environmental Management (EM)

    Biomass Energy and Economic Development Opportunities Dave Sjoding, Director Northwest CHP ... Executive Order 13624: 40GW of new CHP by 2020 * CHP TAPs are critical components ...

  10. Regional biomass fired power plant siting Wisconsin project

    SciTech Connect

    Smith, M.L.

    1996-12-31

    The use of alternative fuels such as wood chips, wood products industry residues, refuse derived fuel, tire derived fuel and processed manufacturing paper waste fuel pellets has been practiced for a number of years in the state of Wisconsin. At present a relatively small quantity of the non-forestry urban wood waste is reclaimed for a variety of uses such as architectural mulch, animal bedding, nature trails in parks and recreational areas. Most is disposed of by landfills. This wood waste has low bulky density, depletes valuable landfill space, and in the Milwaukee area, currently costs $35-$50 per ton for hauling and disposal. This paper reviews the technical and economic feasibility of processing urban wood wastes using existing scrap processing facilities and transporting and supplying the wood fuel to existing stream and power generating facilities at state of Wisconsin institutions. The paper is based on a recent study funded by The Great Lakes Regional Biomass Energy Program. The capability of a large midwest auto shredding/scrap processing facility, one of 200 such facilities in the US, to serve as a central urban waste fuels processor is reviewed.

  11. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    SciTech Connect

    Baxter, L.L.; Miles, T.R.; Miles, T.R. Jr.; Jenkins, B.M.; Dayton, D.C.; Milne, T.A.; Bryers, R.W.; Oden, L.L.

    1996-03-01

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  12. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy.gov [DOE]

    The U.S. biomass resource can be used several ways that provide domestic, renewable energy to users. Understanding the capacity of the biomass resource, its potential in energy markets, and the most economic utilization of biomass is important in policy development and project selection. This study analyzed the potential for biomass within markets and the competition between them. The study found that biomass has the potential to compete well in the jet fuel and gasoline markets, penetration of biomass in markets is likely to be limited by the size of the resource, and that biomass is most cost effectively used for fuels instead of power in mature markets unless carbon capture and sequestration is available and the cost of carbon is around $80/metric ton CO2e.

  13. Wind Power Associates LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Associates LLC Jump to: navigation, search Name: Wind Power Associates LLC Place: Goldendale, Washington State Sector: Wind energy Product: Wind farm developer and operater....

  14. Biomass power industry: Assessment of key players and approaches for DOE and industry interaction

    SciTech Connect

    Not Available

    1994-01-01

    A review team established by the Department of Energy conducted an assessment of the US biomass power industry. The review team visited with more than 50 organizations representing all sectors of the biomass power industry including utilities, independent power producers, component manufacturers, engineering and construction contractors, agricultural organizations, industrial users, and regulatory organizations. DOE solicited industry input for the development of the Biomass Power Division`s Five Year Plan. DOE believed there was a critical need to obtain industry`s insight and working knowledge to develop the near- and long-term plans of the program. At the heart of this objective was the desire to identify near-term initiatives that the program could pursue to help accelerate the further development of biomass power projects.

  15. Impact study on the use of biomass-derived fuels in gas turbines for power generation

    SciTech Connect

    Moses, C.A.; Bernstein, H.

    1994-01-01

    This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

  16. Advanced technologies for co-processing fossil and biomass resources for transportation fuels and power generation

    SciTech Connect

    Steinberg, M.; Dong, Y.

    2004-07-01

    Over the past few decades, a number of processes have been proposed or are under development for coprocessing fossil fuel and biomass for transportation fuels and power generation. The paper gives a brief description of the following processes: the Hydrocarb system for converting biomass and other carbonaceous fuels to elemental carbon and hydrogen, methane or methanol; the Hynol process where the second step of the Hydrocarb process is replaced with a methane steam reformer to convert methane to CO and H{sub 2}S without deposition of carbon; the Carnol process where CO{sub 2} from coal and the biomass power plants is reacted with hydrogen to produce methanol; and advanced biomass high efficiency power generator cycle where a continuous plasma methane decomposition reactor (PDR) is used with direct carbon fuel cell to produce power and carbon and hydrogen. 13 refs., 5 figs., 2 tabs.

  17. DRAFT ENVIRONMENTAL ASSESSMENT FOR A COMBINED POWER AND BIOMASS...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    C DRAFT FORT YUKON WOODY BIOMASS FUEL IMPLEMENTATION PLAN (RBEGR 2011) C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 C-11 C-12 C-13 C-14 C-15 C-16 C-17 C-18 C-19 C-20 C-21 C-22 C-23...

  18. Biomass

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear ...

  19. North Associated Power Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name: North Associated Power Corporation Place: Huhehaote, Inner Mongolia Autonomous Region, China Zip: 10020 Product: A company generating power for Inner...

  20. The potential impact of externalities considerations on the market for biomass power technologies

    SciTech Connect

    Swezey, B.G.; Porter, K.L.; Feher, J.S.

    1994-02-01

    This study assesses the current status of externalities considerations--nonmarket costs and benefits--in state and utility electricity resource planning processes and determines how externalities considerations might help or hinder the development of biomass power plants. It provides an overview of biomass resources and technologies, including their market status and environmental impacts; reviews the current treatment of externalities in the states; and documents the perspectives of key utility, regulatory, and industry representatives concerning externalities considerations. The authors make the following recommendations to the biomass industry: (1) the wood and agricultural waste industries should work toward having states and utilities recognize that wood and agricultural waste are greenhouse gas neutral resources because of carbon sequestration during growth; (2) the biomass industry should emphasize nonenvironmental benefits such as economic development and job creation; and (3) the biomass industry should pursue and support efforts to establish renewable energy set-asides or ``green`` requests for proposals.

  1. Smith River Rancheria - Wind and Biomass Power Generation Facility...

    Energy Saver

    ... RedCoal, BlueHydropower, PinkNuclear, YellowNatural Gas, GreenBio Mass, WhiteWind Resources Power Supply Options Power Supply Options Given the geographic location of Smith ...

  2. Microsoft PowerPoint - Overview of Biomass Energy and Economic Development Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Energy and Economic Development Opportunities Dave Sjoding, Director Northwest CHP Technical Assistance Partnership Tribal Leader Forum Series Biomass Renewable Energy Opportunities and Strategies July 9, 2014 Bonneville Power Administration, Portland, Oregon 1 President's Executive Order 13624: 40GW of new CHP by 2020 * CHP TAPs are critical components of achieving the goal: - Regional CHP experts - Provide fact-based, un-biased information on CHP * Technologies * Project development *

  3. Small scale biomass fueled gas turbine power plant. Report for February 1992--October 1997

    SciTech Connect

    Purvis, C.R.; Craig, J.D.

    1998-01-01

    The paper discusses a new-generation, small-scale (<20 MWe) biomass-fueled power plant that is being developed based on a gas turbine (Brayton cycle) prime mover. Such power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth material (e.g., straw, grass, rice hulls, animal manure, cotton gin trash, and nut shells) that are not normally considered as fuel for power plants. The paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  4. Development and commercialization of a biomass gasification/power generation system

    SciTech Connect

    Paisley, M.A.; Farris, G.

    1995-11-01

    The US Department of Energy (DOE) has been a leader in the promotion and development of alternative fuel supplies based on renewable energy crops. One promising power generation technology is biomass gasification coupled with either a gas turbine in a combined cycle system or a fuel cell. The gasification of biomass can efficiently and economically produce a renewable source of a clean gaseous fuel suitable for use in these high efficiency power systems or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development and commercialization of the Battelle high-throughput gasification process for gas turbine based power generation systems. Projected process economics for a gas turbine combined cycle plant are presented along with a description of integrated system operation coupling a 200kW gas turbine power generation system to a 10 ton per day gasifier, and current commercialization activities.

  5. Densified biomass as an alternative Army heating and power plant fuel. Final report

    SciTech Connect

    Hathaway, S.A.; Magrino, T.; Lin, J.S.; Duster, K.; Mahon, D.

    1980-03-01

    This investigation evaluated the technical and economic potential of using densified biomass (principally wood pellets) as a coal substitute in Army heating and power plants. The report reviews Department of Defense (DOD) experience with and tests of wood pellets; production of wood pellets (excluding silvicultural aspects); handling, storing, and feeding; combustion; major environental considerations; and economics of use.

  6. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  7. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  8. Biomass fuel from woody crops for electric power generation

    SciTech Connect

    Perlack, R.D.; Wright, L.L.; Huston, M.A.; Schramm, W.E.

    1995-06-22

    This report discusses the biologic, environmental, economic, and operational issues associated with growing wood crops in managed plantations. Information on plantation productivity, environmental issues and impacts, and costs is drawn from DOE`s Biofuels Feedstock Development as well as commercial operations in the US and elsewhere. The particular experiences of three countries--Brazil, the Philippines, and Hawaii (US)--are discussed in considerable detail.

  9. Energy supply and demand: A case for biomass power in a developing country

    SciTech Connect

    Quaye, E.C.

    1997-12-31

    Woodfuel (i.e., fuelwood and charcoal) accounts for about 70% of the total energy consumption in Ghana. Petroleum imports and electricity from two hydropower installations also account for about 20% and 10% respectively. However, Ghana`s energy policy framework and strategic objectives up to 2020 mainly emphasize petroleum and hydropower development. This paper reports on the situational analysis of energy consumption between 1987 and 1994 and recommends the need for a major policy shift to accommodate the development of biomass power to generate electricity. This recommendation is based on the following: (1) the precarious nature of hydropower generation due to its dependency on rainfall, (2) the percentage of total export earnings used to import petroleum, (3) environmental degradation due to unsustainable woodfuel production, and (4) the feasibility of biomass power production in Ghana.

  10. Biomass power for rural development. Quarterly report, September 23, 1996--December 31, 1996

    SciTech Connect

    Cooper, J.T.

    1997-02-01

    Goals for the biomass power for rural development include: expanded feedstock research and demonstration activities to provide soil-specific production costs and yield data, as well as better methods for harvest and transport; four thousand acres of feedstock available for fueling a commercial venture; comparison of the feasibility of gasification and cocombustion; designs for on-site switchgrass handling and feeding system; a detailed assessment of utilizing switchgrass for gasification and cocombustion to generate electricity using turbines and fuel cells.

  11. Biomass power for rural development. Technical progress report, Phase 2, July 1--September 30, 1998

    SciTech Connect

    Neuhauser, E.

    1999-01-01

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase 1 focused on initial development and testing of the technology and forging the necessary agreements to demonstrate commercial willow production. The Phase 1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boiler for 20 MW of biopower capacity; developing fuel supply plans for the project with a goal of establishing 365 ha (900 ac) of willow; obtaining power production commitments from the power companies for Phase 2; obtaining construction and environmental permits; and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase 1 requirements, the Consortium has already successfully demonstrated cofiring at Greenidge Station and has initiated development of the required nursery capacity for acreage scale-up. In Phase 2 every aspect of willow production and power generation from willow biomass will be demonstrated. The ultimate objective of Phase 2 is to transition the work performed under the Biomass Power for Rural Development project into a thriving, self-supported energy crop enterprise.

  12. International and Domestic Market Opportunities for Biomass Power: Volumes I and II

    SciTech Connect

    Not Available

    1998-09-01

    This report examines the domestic and international markets for biopower. Domestic and foreign markets present fundamentally different challenges to private power developers. Volume I focuses on the domestic market for biopower. The domestic challenge lies in finding economically viable opportunities for biopower. Vol. I outlines the current state of the U.S. biomass industry, discusses policies affecting biomass development, describes some demonstration projects currently underway, and discusses the future direction of the industry. Volume II focuses on the international market for biopower. Recent literature states that the electricity investment and policy climate in foreign markets are the key elements in successful private project development. Vol. II discusses the financing issues, policy climate, and business incentives and barriers to biopower development. As India and China are the largest future markets for biopower, they are the focus of this volume. Three other top markets- -Brazil, Indonesia, and the Philippines--are also discussed. Potential financial resources wrap up the discussion.

  13. Biostirling({trademark}): A small biomass power conversion system using an advanced stirling engine

    SciTech Connect

    Johansson, L.; Ziph, B.; McKeough, W.; Houtman, W.

    1996-12-31

    Over the past decade the need for small power conversion systems to serve rural and/or remote needs has increased dramatically. The requirements for systems <100 kW are very similar, whether the need is defined as {open_quotes}rural electrification{close_quotes} in developed countries, or as {open_quotes}village power{close_quotes} in developing countries. The availability of biomass fuel resources to serve such systems is not in doubt, be they agricultural, forestry, animal or urban wastes. The main inhibiting factor has been the absence of a biomass power conversion system characterized by: reliability, cost effectiveness, low pollution, and ease of maintenance. Stirling Thermal Motors of Ann Arbor, Michigan, is recognized as the leader worldwide in the development and application of Stirling engine technology. It is currently demonstrating a {open_quotes}BioStirling({trademark}){close_quotes} Power Conversion System which combines its unique STM4-120 engine rated at 25 kW with a proven commercial gasifier. The BioStirling({trademark}) proof-of-concept demonstration is funded by DOE`s National Renewable Energy Laboratory and is to be completed in late 1996, with field demonstrations in 1997 and commercial availability 1998.

  14. Power sources manufactures association : power technology roadmap workshop - 2006.

    SciTech Connect

    Bowers, John S.

    2006-03-01

    The Power Sources Manufacturers Association (PSMA) is pleased to announce the release of the latest Power Technology Roadmap Workshop Report. This Fifth Edition Workshop Report includes presentations and discussions from the workshop as seen by the participants that included many of the industry's most influential members representing end-users, power supply manufacturers, component suppliers, consultants and academia. This report provides detailed projections for the next three to four years of various technologies in a quantitative form. There was special emphasis on how the increasing use of digital technologies will affect the industry in the next four years. The technology trend analysis and the roadmap is provided for the following specific product families expected to be the areas of largest market growth: (1) Ac-dc front end power supplies--1 kW from a single phase ac source; (2) External ac-dc power supplies; (3) Dc-dc bus converters; and (4) Non-isolated dc-dc converters. Bruce Miller, Chairman of PSMA, stated that 'the Power Technology Roadmap Workshop Report is an extensive document that analyzes and provides projections for most major technical parameters for a specific power supply. It is a unique document as it contains technology/parametric trends in a roadmap fashion from a variety of diverse sources, giving significant depth to its content. No such information is available from any other source'. The Power Technology Roadmap Workshop Report is available at no cost as to PSMA Regular and Associate members and at a reduced price to Affiliate members as a benefit of membership. The report will be offered to non-members at a price of $2490. For further information or to buy a copy of the report, please visit the publications page or the PSMA website or contact the Association Office.

  15. Microsoft PowerPoint - Quinault Indian Nation Biomass Renewable Energy Opportunities and Strategies [Read-Only]

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Renewable Energy Opportunities and Strategies Presented By: Quinault Indian Nation in Partnership with American Community Enrichment, 501c3 Helping Rural Communities Thrive! Quinault Indian Nation 2014 Comprehensive Biomass for Heat Project Strategy Development Project Overview * Identify and confirm Tribal energy needs * Comprehensive review of QIN biomass availability* * Develop a biomass energy vision statement, goals and objectives * Identify and assess viable biomass energy

  16. A supply chain network design model for biomass co-firing in coal-fired power plants

    SciTech Connect

    Md. S. Roni; Sandra D. Eksioglu; Erin Searcy; Krishna Jha

    2014-01-01

    We propose a framework for designing the supply chain network for biomass co-firing in coal-fired power plants. This framework is inspired by existing practices with products with similar physical characteristics to biomass. We present a hub-and-spoke supply chain network design model for long-haul delivery of biomass. This model is a mixed integer linear program solved using benders decomposition algorithm. Numerical analysis indicates that 100 million tons of biomass are located within 75 miles from a coal plant and could be delivered at $8.53/dry-ton; 60 million tons of biomass are located beyond 75 miles and could be delivered at $36/dry-ton.

  17. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  18. Indian Wind Power Association IWPA | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Association IWPA Jump to: navigation, search Name: Indian Wind Power Association (IWPA) Place: Chennai, Tamil Nadu, India Zip: 600 020 Sector: Wind energy Product:...

  19. Kapil Mohan Associates Hydro Power Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kapil Mohan Associates Hydro Power Pvt Ltd Jump to: navigation, search Name: Kapil Mohan & Associates Hydro Power Pvt. Ltd. Place: Chandigarh, Chandigarh, India Sector: Hydro...

  20. PROJECT PROFILE: Solar Electric Power Association (Solar Market...

    Office of Environmental Management (EM)

    Electric Power Association (Solar Market Pathways) PROJECT PROFILE: Solar Electric Power Association (Solar Market Pathways) Title: Community Solar Design Models for Consumer, ...

  1. Biomass power for rural development. Technical progress report, January 1, 1997--March 31, 1997

    SciTech Connect

    Neuhauser, E.

    1997-08-01

    Detailed task progress reports and schedules are provided for the DOE/USDA sponsored Biomass Power for Rural Development project. The focus of the project is on developing commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-II of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is under way. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-III will represent fullscale commercialization of the energy crop and power generation on a sustainable basis.

  2. Biomass power for rural development. Technical progress report, April 1, 1997--June 30, 1997

    SciTech Connect

    Neuhauser, E.

    1997-08-01

    Detailed task progress reports and schedules are provided for the DOE/USDA sponsored Biomass Power for Rural Development project. The focus of the project is on developing commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-H of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is under way. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-III will represent fullscale commercialization of the energy crop and power generation on a sustainable basis.

  3. Biomass power for rural development. Technical progress report, October 1--December 31, 1997

    SciTech Connect

    Neuhauser, E.

    1998-05-01

    The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill Power Station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the fourth quarter of 1997 the Consortium submitted a Phase-2 proposal. A few of the other more important milestones are outlined below. The first quarter of 1998 will be dominated by pre-planting activity in the spring.

  4. Comments of The American Public Power Association | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The American Public Power Association Comments of The American Public Power Association The American Public Power Association responds to the U.S Department of Energy's Request for Information on addressing policy and logistical challenges to the implementation of smart grid technologies. Comments of The American Public Power Association (826.11 KB) More Documents & Publications Comments of the American Public Power Association Re: Comments on NBP RFI: Data Access Comments of the National

  5. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    SciTech Connect

    Kirst, Matias

    2014-04-14

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  6. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    SciTech Connect

    Kirst, Matias

    2015-04-15

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  7. Biomass power for rural development. Quarterly report, January 1, 1997--April 1, 1997

    SciTech Connect

    Cooper, J.T.

    1997-05-01

    The following information summarizes the major areas of project activities accomplished during the last quarter. Activities addressing conversion technology have been geared towards gathering information and drawing comparisons to specific project need. Of major benefit was the trip taken to Denmark by Project Manager, Edward Woolsey. The first section of this report provides an overview of his experiences and findings. As a follow up to this trip, representatives from Iowa State University and from IES Utilities will also visit some of these facilities. Their information will be included in the next report. At the supply development level, the RC&D has been working to identify and organize producers of swithgrass. A major accomplishment has been the formation of the Prairie Lands Bio-Products group. This association will explore different business structures that energy crop producers can use to supply biomass and to effectively market their materials to the energy industry. Thus, the group will begin to interact with IES in the next few months to determine how the supplier and the utility must interact to establish a working relationship and to efficiently provide biomass as a boiler fuel. Other major areas of focus for the group will be the development and implementation of risk management strategies to overcome income loss and allow acreage increases during market development. These strategies include the development of niche markets for swithgrass, the use of CRP lands, and outside sources of cost share for establishment.

  8. Biomass power for rural development. Technical progress report, July 1--September 30, 1997

    SciTech Connect

    Neuhauser, E.

    1998-03-01

    The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC). Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the third quarter of 1997, much of the Consortium`s effort has focused on outreach activities, continued feedstock development, fuel supply planning, and fuel contract development, and preparation for 1998 scale-up activities. The Consortium also submitted a Phase-1 extension proposal during this period. A few of the more important milestones are outlined below. The fourth quarter of 1997 is expected to be dominated by Phase-II proposal efforts and planning for 1998 activities.

  9. Biomass power for rural development. Technical progress report, May 1, 1996--December 31, 1996

    SciTech Connect

    Neuhauser, E.

    1996-02-01

    Developing commercial energy crops for power generation by the year 2000 is the focus of the DOE/USDA sponsored Biomass Power for Rural Development project. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-I, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Facette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG). Phase-II of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. There will be testing of the energy crop as part of the gasification trials expected to occur at BED`s McNeill power station and potentially at one of GPU`s facilities. Phase-III will represent full-scale commercialization of the energy crop and power generation on a sustainable basis. Willow has been selected as the energy crop of choice for many reasons. Willow is well suited to the climate of the Northeastern United States, and initial field trials have demonstrated that the yields required for the success of the project are obtainable. Like other energy crops, willow has rural development benefits and could serve to diversify local crop production, provide new sources of income for participating growers, and create new jobs. Willow could be used to put a large base of idle acreage back into crop production. Additionally, the willow coppicing system integrates well with current farm operations and utilizes agricultural practices that are already familiar to farmers.

  10. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  11. DOE/National Association of State Universities and Land Grant Colleges (NASULGC) Biomass and Solar Energy Workshops; August 3-4, 2004

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    National Association of State Universities and Land Grant Colleges (NASULGC) Biomass and Solar Energy Workshops August 3-4, 2004 Overviews Biomass Welcome Patrick Lana NREL Overview Stanley R. Bull The National Bioenergy Center and Biomass R&D Overview Michael A. Pacheco Solar Energy Technologies: Research, Applications and Opportunities John P. Benner Solar Download All Combined PDF (26 MB) DOE/NASULGC Biomass and Solar Energy Workshop Presentations Solar Biomass Electrical and Optical

  12. Biomass waste gasification - Can be the two stage process suitable for tar reduction and power generation?

    SciTech Connect

    Sulc, Jindrich; Stojdl, Jiri; Richter, Miroslav; Popelka, Jan; Svoboda, Karel; Smetana, Jiri; Vacek, Jiri; Skoblja, Siarhei; Buryan, Petr

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Comparison of one stage (co-current) and two stage gasification of wood pellets. Black-Right-Pointing-Pointer Original arrangement with grate-less reactor and upward moving bed of the pellets. Black-Right-Pointing-Pointer Two stage gasification leads to drastic reduction of tar content in gas. Black-Right-Pointing-Pointer One stage gasification produces gas with higher LHV at lower overall ER. Black-Right-Pointing-Pointer Content of ammonia in gas is lower in two stage moving bed gasification. - Abstract: A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW{sub th}. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 Degree-Sign C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar

  13. Biomass Logistics

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  14. American Public Power Association Statement Quadrennial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... market is a mechanism to provide revenue to a power plant owner to stand ready to supply power when needed, or to customers who agree to curtail their load (i.e., demand response). ...

  15. Plummer Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plummer Biomass Facility Jump to: navigation, search Name Plummer Biomass Facility Facility Plummer Sector Biomass Owner Wood Power Location Plummer, Idaho Coordinates...

  16. Design Concepts for Co-Production of Power, Fuels & Chemicals Via Coal/Biomass Mixtures

    SciTech Connect

    Rao, A. D.; Chen, Q.; Samuelsen, G. S.

    2012-09-30

    The overall goal of the program is to develop design concepts, incorporating advanced technologies in areas such as oxygen production, feed systems, gas cleanup, component separations and gas turbines, for integrated and economically viable coal and biomass fed gasification facilities equipped with carbon capture and storage for the following scenarios: (i) coproduction of power along with hydrogen, (ii) coproduction of power along with fuels, (iii) coproduction of power along with petrochemicals, and (iv) coproduction of power along with agricultural chemicals. To achieve this goal, specifically the following objectives are met in this proposed project: (i) identify advanced technology options and innovative preliminary design concepts that synergistically integrate plant subsections, (ii) develop steady state system simulations to predict plant efficiency and environmental signature, (iii) develop plant cost estimates by capacity factoring major subsystems or by major equipment items where required, and then capital, operating and maintenance cost estimates, and (iv) perform techno- economic analyses for the above described coproduction facilities. Thermal efficiencies for the electricity only cases with 90% carbon capture are 38.26% and 36.76% (HHV basis) with the bituminous and the lignite feedstocks respectively. For the coproduction cases (where 50% of the energy exported is in the form of electricity), the electrical efficiency, as expected, is highest for the hydrogen coproduction cases while lowest for the higher alcohols (ethanol) coproduction cases. The electrical efficiencies for Fischer-Tropsch coproduction cases are slightly higher than those for the methanol coproduction cases but it should be noted that the methanol (as well as the higher alcohol) coproduction cases produce the finished coproduct while the Fischer-Tropsch coproduction cases produce a coproduct that requires further processing in a refinery. The cross comparison of the thermal

  17. Biomass power and conventional fossil systems with and without CO2 sequestration - Comparing the energy balance, greenhouse gas emissions and economics

    SciTech Connect

    Spath, Pamela L.; Mann, Margaret K.

    2004-01-01

    Lifecycle analysis of coal-, natural gas- and biomass-based power generation systems with and without CO2 sequestration. Compares global warming potential and energy balance of these systems.

  18. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  19. San Miguel Power Association- Energy Efficiency Rebate Program

    Energy.gov [DOE]

    San Miguel Power Association (SMPA) offers a variety of rebates to customers for the purchase and installation of energy efficient equipment and appliances. Both residential and commercial...

  20. Comments of the American Public Power Association | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    party use, and privacy as related to the implementation of smart grid technology. Comments of the American Public Power Association (211.62 KB) More Documents & Publications Re: ...

  1. Southern Pine Electric Power Association- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Southern Pine Electric Power Association offers the Comfort Advantage Home Program which provides rebates on heat pumps to new homes which meet certain Comfort Advantage weatherization standards....

  2. Singing River Electric Power Association- Comfort Advantage Home Program

    Energy.gov [DOE]

    Singing River Electric Power Association provides rebates on energy efficiency measures in new homes and heat pumps that meet Comfort Advantage weatherization standards. To qualify for this rebate...

  3. Coast Electric Power Association- Comfort Advantage Home Program

    Energy.gov [DOE]

    Coast Electric Power Association (CEPA) provides rebates on heat pumps for new homes which meet certain weatherization standards. To qualify for this rebate the home must have:

  4. Coast Electric Power Association- Commercial Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Coast Electric Power Association provides incentives for commercial customers to increase the energy efficiency of facilities. Rebates are provided for new or replacement energy efficient heat...

  5. Southeast Colorado Power Association- Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Southeast Colorado Power Association (SECPA) offers a variety of rebates to customers who purchase and install energy efficient appliances, motors and HVAC equipment. This equipment includes water...

  6. QER- Comment of Electric Power Supply Association 2

    Energy.gov [DOE]

    Please find the attached comments of the Electric Power Supply Association on the Department of Energy’s Quadrennial Energy Review due October 10, 2014. Respectfully submitted,

  7. QER- Comment of Electric Power Supply Association 1

    Energy.gov [DOE]

    Please find the attached comments of the Electric Power Supply Association on the Department of Energy’s Quadrennial Energy Review due October 10, 2014. Respectfully submitted,

  8. QER- Comment of Electric Power Supply Association 4

    Energy.gov [DOE]

    Please find the attached comments of the Electric Power Supply Association on the Department of Energy’s Quadrennial Energy Review due October 10, 2014.

  9. QER- Comment of Electric Power Supply Association 3

    Energy.gov [DOE]

    Please find the attached comments of the Electric Power Supply Association on the Department of Energy’s Quadrennial Energy Review due October 10, 2014. Respectfully submitted,

  10. Biomass stakeholder views and concerns: Environmental groups and some trade association

    SciTech Connect

    Peelle, E.

    2000-01-01

    This exploratory study of the views and concerns of 25 environmental organizations found high interest and concern about which biomass feedstocks would be used and how these biomass materials would be converted to energy. While all favored renewable energy over fossil or nuclear energy, opinion diverged over whether energy crops, residues, or both should be the primary source of a biomass/bioenergy fuel cycle. About half of the discussants favored biomass ``in general'' as a renewable energy source, while the others were distributed about equally over five categories, from favor-with-conditions, uncertain, skeptical, opposed, to ``no organizational policy.''

  11. Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project

    SciTech Connect

    Brown, R.C.; Smeenk, J.; Steinfeld, G.

    1998-09-30

    The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

  12. Biomass Program Biopower Factsheet

    SciTech Connect

    2010-03-01

    Generating electricity and thermal energy from biomass has the potential to help meet national goals for renewable energy. The forest products industry has used biomass for power and heat for many decades, yet widespread use of biomass to supply electricity to the U.S. power grid and other applications is relatively recent.

  13. Microsoft PowerPoint - Biomass Resource Assessments and What do you need to know [Compatibility Mode]

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Resource Assessments What do you need to know? Marcus Kauffman, Oregon Dept. of Forestry Tribal Leaders Forum Series July 9, 2014 why do we care? * feedstock and raw materials are central to all biomass projects * feedstock costs can be a significant operational expense * securing reliable sources raw materials key to acquiring financing * most combustion systems are optimized to run on a consistent feedstock * smaller bio-energy systems are less robust * larger systems are more robust but

  14. Florida Biomass Energy Consortium | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Consortium Jump to: navigation, search Name: Florida Biomass Energy Consortium Place: Florida Sector: Biomass Product: Association of biomass energy companies. References: Florida...

  15. Biomass power for rural development. Quarterly report, January 1--April 2, 1998

    SciTech Connect

    Cooper, J.T.

    1998-07-01

    During the period of January 2 to April 2, 1998, efforts revolved around the design of the switchgrass materials handling/feeding system for the co-fire test and permanent system, the development of a revised statement of work and budget for fiscal years 1998--1999 and, the continuation of farmer/land conversion, and public relations efforts. The weather continues to be a major problem with an unprecedented warm winter. Much of Iowa has had little or no frost in the ground. This lack of frost has prevented farmers from getting into their fields and harvesting switchgrass. Farmers are hesitant to drive processing equipment into unfrozen fields due to the large ruts left by the wheels. The producers group has continued to gather information and develop resources necessary to supply the switchgrass to the facility in a competitive manner. Information and contacts are starting to be gathered which will help establish a market for the dedicated biomass generated electricity. The report describes the progress in the following tasks: Switchgrass conversion development including fuel analysis and engineering; Production activities which include: soil studies, carbon studies, switchgrass production economics, and switchgrass yield improvements; Information and education; and Miscellaneous which includes legislation and regulatory activities. Appendices contain the following: Switchgrass sample analysis; Chariton Valley biomass project cooperator agreement; Soil and landscape characterization status report for switchgrass project; Agreement with Center for Global and Regional Environmental Research; A literature review of reed canarygrass utility for biomass; Prairie Lands Bio-Products, Inc. agenda; Feasibility analysis and cooperative structure for value-added switchgrass products; and Information and education efforts.

  16. RESULTS OF THE TECHNICAL AND ECONOMIC FEASIBILITY ANALYSIS FOR A NOVEL BIOMASS GASIFICATION-BASED POWER GENERATION SYSTEM FOR THE FOREST PRODUCTS INDUSTRY

    SciTech Connect

    Bruce Bryan; Joseph Rabovitser; Sunil Ghose; Jim Patel

    2003-11-01

    In 2001, the Gas Technology Institute (GTI) entered into Cooperative Agreement DE-FC26-01NT41108 with the U.S. Department of Energy (DOE) for an Agenda 2020 project to develop an advanced biomass gasification-based power generation system for near-term deployment in the Forest Products Industry (FPI). The advanced power system combines three advanced components, including biomass gasification, 3-stage stoker-fired combustion for biomass conversion, and externally recuperated gas turbines (ERGTs) for power generation. The primary performance goals for the advanced power system are to provide increased self-generated power production for the mill and to increase wastewood utilization while decreasing fossil fuel use. Additional goals are to reduce boiler NOx and CO{sub 2} emissions. The current study was conducted to determine the technical and economic feasibility of an Advanced Power Generation System capable of meeting these goals so that a capital investment decision can be made regarding its implementation at a paper mill demonstration site in DeRidder, LA. Preliminary designs and cost estimates were developed for all major equipment, boiler modifications and balance of plant requirements including all utilities required for the project. A three-step implementation plan was developed to reduce technology risk. The plant design was found to meet the primary objectives of the project for increased bark utilization, decreased fossil fuel use, and increased self-generated power in the mill. Bark utilization for the modified plant is significantly higher (90-130%) than current operation compared to the 50% design goal. For equivalent steam production, the total gas usage for the fully implemented plant is 29% lower than current operation. While the current average steam production from No.2 Boiler is about 213,000 lb/h, the total steam production from the modified plant is 379,000 lb/h. This steam production increase will be accomplished at a grate heat release rate

  17. QER- Comment of American Public Power Association 6

    Office of Energy Efficiency and Renewable Energy (EERE)

    To whom it may concern: Please find attached comments jointly filed by the American Public Power Association, Large Public Power Council, and Transmission Access Policy Study Group, in relation to the issues discussed at the October 6, 2014, QER Public Stakeholder Meeting on Finance (Transmission, Storage and Distribution).

  18. Energy Department and American Public Power Association Sign Agreement to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Accelerate Growth of Electric Vehicle Market | Department of Energy American Public Power Association Sign Agreement to Accelerate Growth of Electric Vehicle Market Energy Department and American Public Power Association Sign Agreement to Accelerate Growth of Electric Vehicle Market July 22, 2016 - 1:47pm Addthis News Media Contact 202-586-8604 DOENews@hq.doe.gov WASHINGTON - Today, Acting Assistant Secretary for the Office of Energy Efficiency and Renewable Energy David Friedman signed a

  19. Biomass | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    technologies that are used for biomass thermal and combined heat and power (CHP) plants are direct combustion and gasification systems. Direct combustion systems are the...

  20. Biomass Feasibility Analysis Report

    SciTech Connect

    Lipscomb, Brian

    2015-03-30

    Feasibility study to determine technical and economic viability of a co-generation biomass fuel power plant for the Confederated Salish and Kootenai Tribes.

  1. Small Modular Biomass Systems

    SciTech Connect

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  2. Combined heat and power systems that consist of biomass fired fluidised bed combustors and modern steam engines

    SciTech Connect

    Joseph, S.D.; Errey, S.; Thomas, M.; Kruger, P.

    1996-12-31

    Biomass energy is widely used in many processing industries in the ASEAN region. The residue produced by agricultural and wood processing plant is either inefficiently combusted in simple furnaces or in the open, or disposed of in land fill sites or in rivers. Many of these industries are paying high prices for electricity in rural areas and/or supply is unreliable. An ASEAN/Australian cooperation program has been under way for the last ten years to introduce clean burning biomass fired heat and/or combined heat and power equipment. It aims to transfer Australian know how in the design and manufacture of fluidised bed CHP technology to the ASEAN region. The main participants involved in the program include SIRIM and UKM in Malaysia, PCIERD, FPRI and Asia Ratan in the Philippines, King Monkutt Institute of Technology (KMITT) in Thailand, LIPI and ITB in Indonesia, and the University of Singapore. In this paper an outline of the program will be given including results of market research and development undertaken into fluidised bed combustion, the proposed plant design and costings, and research and development undertaken into modem steam engine technology. It will be shown that all of the projects to be undertaken are financially viable. In particular the use of simple low cost high efficient steam engines ensures that the smaller CHP plant (50-100 kWe) can be viable.

  3. Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado

    SciTech Connect

    Li, L.; Steefel, C.I.; Williams, K.H.; Wilkins, M.J.; Hubbard, S.S.

    2009-04-20

    Injection of organic carbon into the subsurface as an electron donor for bioremediation of redox-sensitive contaminants like uranium often leads to mineral transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation efficacy. This work combines reactive transport modeling with a column experiment and field measurements to understand the biogeochemical processes and to quantify the biomass and mineral transformation/accumulation during a bioremediation experiment at a uranium contaminated site near Rifle, Colorado. We use the reactive transport model CrunchFlow to explicitly simulate microbial community dynamics of iron and sulfate reducers, and their impacts on reaction rates. The column experiment shows clear evidence of mineral precipitation, primarily in the form of calcite and iron monosulfide. At the field scale, reactive transport simulations suggest that the biogeochemical reactions occur mostly close to the injection wells where acetate concentrations are highest, with mineral precipitate and biomass accumulation reaching as high as 1.5% of the pore space. This work shows that reactive transport modeling coupled with field data can be an effective tool for quantitative estimation of mineral transformation and biomass accumulation, thus improving the design of bioremediation strategies.

  4. Biomass power for rural development: Phase 2. Technical progress report, April 1--June 30, 1998

    SciTech Connect

    Neuhauser, E.

    1998-11-01

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase-1 focused on initial development and testing of the technology and agreements necessary to demonstrate commercial willow production in Phase-2. The Phase-1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boilers, developing fuel supply plans for the project, obtaining power production commitments from the power companies for Phase-2, obtaining construction and environmental permits, and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system. Beyond those Phase-1 requirements the Consortium has already successfully demonstrated cofiring at Greenidge Station and developed the required nursery capacity for acreage scale-up. This past summer 105 acres were prepared in advance for the spring planting in 1998. Having completed the above tasks, the Consortium is well positioned to begin Phase-2. In phase-2 every aspect of willow production and power generation from willow will be demonstrated. The ultimate objective of Phase-2 is to transition the work performed under the Rural Energy for the Future project into a thriving, self-supported energy crop enterprise.

  5. Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass IBR Fact Sheet: Abengoa Bioenergy Biomass IBR Fact Sheet: Abengoa Bioenergy Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat PDF icon ...

  6. Subtask 7.4 - Power River Basin Subbituminous Coal-Biomass Cogasification Testing in a Transport Reactor

    SciTech Connect

    Michael Swanson; Daniel Laudal

    2009-03-01

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the Kellogg Brown and Root transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 3600 hours of operation on 17 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air- and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 90% have also been obtained and are highly dependent on the oxygen

  7. NREL: Biomass Research - What Is a Biorefinery?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    What Is a Biorefinery? A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery...

  8. Biotechnological Routes to Biomass Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biotechnological Routes to Biomass Conversion James D. McMillan National Bioenergy Center National Renewable Energy Laboratory DOE/NASULGC Biomass & Solar Energy Workshops August 3-4, 2004 While the growing need for sustainable electric power can be met by other renewables... The Unique Role of Biomass Biomass is our only renewable source of carbon-based fuels and chemicals Biomass Conversion Technology "Platforms" Fuels, Chemicals, & Materials Thermochemical Platform

  9. Sustainable Biomass: A Systems View

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... is actually higher than rate of co- firing because of avoided landfill emissions Biomass gasification for power production Life cycle assessments conducted by Pamela Spath and ...

  10. QER- Comment of American Public Power Association 1

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached are the American Public Power Association 's (APPA) statement for the April 11 QER public meeting, Duane Highley's statement for the same meeting since we reference it, and Sue Kelly's (APPA President & CEO) testimony from last Thursday's (April 10) Senate Energy and Natural Resources Committee hearing entitled "Keeping the Lights On – Are We Doing Enough to Ensure the Reliability and Security of the US Electric Grid?" since her testimony covers everything in regards to this meeting. Thank you in advance for your consideration of our attached documents for the QER. Please let me know if you have any questions. Best, Seth Seth Voyles Director, Government Relations 1875 Connecticut Ave., NW, Suite 1200, Washington, D.C. 20009-5715 www.publicpower.org

  11. Potential for biomass electricity in four Asian countries

    SciTech Connect

    Kinoshita, C.M.; Turn, S.Q.; Tantlinger, J.; Kaya, M.

    1997-12-31

    Of all forms of renewable energy, biomass offers the best near-term opportunity for supplying a significant portion of the world`s need for electric power. Biomass is especially competitive when fuel supply costs are partially defrayed as production activities associated with the processing of another product, e.g., sugar, rice, or vegetable oil. Not only do such processing situations provide cost savings, they also generate very large supplies of fuel and therefore can contribute significantly to the local energy mix. Access to ample supplies of competitively-priced biomass feedstocks is only one of several factors needed to encourage the use of biomass for power generation; equally important is a healthy market for electricity, i.e., need for large blocks of additional power and sufficient strength in the economy to attract investment in new capacity. Worldwide, the Asia-Pacific region is projected to have the greatest need for new generating capacity in the next decade and shows the highest rate of economic growth, making it an attractive market for biomass power. Also critical to the expansion of bioenergy is the adoption of positive, stable policies on energy production, distribution, and sale, that encourage the generation and use of electricity from biomass. The aforementioned three factors--adequate biomass supplies, increasing demand for electricity, and supportive policies--are examined for four Asian countries, the Philippines, Thailand, Malaysia, and Indonesia. Information presented for each of the four countries include the types and amounts of bioresidues and their associated electric power generation potential; present and future supplies and demand for electricity; and existing or planned government and utility policies that could impact the generation and use of biomass power.

  12. Biomass Support for the China Renewable Energy Law: Feasibility Report -- Agricultural and Forestry Solid Wastes Power Generation Demonstration, December 2005

    SciTech Connect

    Not Available

    2006-10-01

    Subcontractor report on feasibility of using agricultural and forestry wastes for power generation in China

  13. Lignocellulosic Biomass

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Biofuels Publications Lignocellulosic Biomass Microalgae Thermochemical Conversion ... Solid Fuels Conversion Pressurized Combustion and Gasification Particle Ignition and Char ...

  14. Biomass pretreatment

    SciTech Connect

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  15. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect

    Jay R. Gunderson; Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-05-01

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience damaging fouling when switched to higher-volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early with biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the boiler, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides in combination with different flue gas temperatures because of changes in fuel heating value, which can adversely affect ash deposition behavior.

  16. Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006

    SciTech Connect

    Not Available

    2006-10-01

    Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

  17. South Mississippi Electric Power Association (SMEPA) Smart Grid...

    OpenEI (Open Energy Information) [EERE & EIA]

    Network Targeted Benefits Reduced Meter Reading Costs Improved Electric Service Reliability and Power Quality Reduced Costs from Distribution Line Losses and Theft Reduced...

  18. The environmental costs and benefits of biomass energy use in California

    SciTech Connect

    Morris, G.

    1997-05-01

    The California renewable energy industries have worked diligently during the past couple of years to develop public policies conducive to the future of renewable energy production within the context of electric market restructuring and the evolving competitive electric services industry. The state`s biomass power industry has organized itself as the California Biomass Energy Alliance (CBEA), and has participated vigorously in the regulatory and legislative processes. In order to reward biomass power generators for the special services they provide, CBEA has promoted the concept of providing incentives specifically targeted to biomass within the context of any renewables program enacted in the state. This concept has been embraced by the other renewables industry organizations, but resisted by the utilities. This study represents an effort to identify, characterize, ad quantify the environmental costs and benefits of biomass energy use in California, and to elucidate the future role of biomass power production within the context of the evolving deregulation of the California electricity industry. The report begins with a review of the development and growth of the California biomass power industry during the past 15 years. This is followed by an analysis of the biomass fuels market development during the same period. It examines trends in the types and costs of biomass fuels. The environmental performance of the mature California biomass energy industry is analyzed, and takes into account the environmental impacts of the industry, and the impacts that would be associated with disposing of the materials used as fuels if the biomass power industry were not in operation. The analysis is then extended to consider the environmental and economic consequences of the loss of biomass generating capacity since 1993. The report ends with a consideration of the future prospects for the industry in the context of restructuring.

  19. Claren Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Claren Power Place: Arlington, Virginia Sector: Biomass Product: Develops biomass plants in Brazilian sugar and ethanol mills. References: Claren Power1 This article is a...

  20. Forest Biomass

    Energy.gov [DOE]

    Breakout Session 1B: Innovation and Sustainability: Capturing Social and Environmental Benefits As Part of Bioenergy's Value Proposition Forest Biomass Bob Emory, Southern Timberlands Environmental Affairs Manager, Weyerhauser

  1. Feasibility Study of Economics and Performance of Biomass Power Generation at the Former Farmland Industries Site in Lawrence, Kansas. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Tomberlin, G.; Mosey, G.

    2013-03-01

    Under the RE-Powering America's Land initiative, the U.S. Environmental Protection Agency (EPA) provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of biomass renewable energy generation at the former Farmland Industries site in Lawrence, Kansas. Feasibility assessment team members conducted a site assessment to gather information integral to this feasibility study. Information such as biomass resources, transmission availability, on-site uses for heat and power, community acceptance, and ground conditions were considered.

  2. Usher Eco Power Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Usher Eco Power Ltd Jump to: navigation, search Name: Usher Eco Power Ltd Place: Mumbai, Maharashtra, India Zip: 400021 Sector: Biomass Product: Mumbai-based biomass power project...

  3. Reunion Power LLC Vermont | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Reunion Power LLC Vermont Jump to: navigation, search Name: Reunion Power LLC (Vermont) Place: Vermont Sector: Biomass Product: Reunion Power holds a portfolio of biomass projects...

  4. Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

  5. Wabash Valley Power Association (28 Member Cooperatives)- Residential Energy Efficiency Program

    Energy.gov [DOE]

    Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

  6. Biomass Feed and Gasification

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass Feed and Gasification The Biomass Feed and Gasification Key Technology will advance scientific knowledge of the feeding and conversion of biomass and coal-biomass mixtures ...

  7. Imperial Valley Resource Recovery Plant Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    15,000 kW 15,000,000 W 15,000,000,000 mW 0.015 GW References Biomass Power Association (BPA) Web Site1 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TER...

  8. Biomass One Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBiomassOneBiomassFacility&oldid397204" Feedback Contact needs updating Image needs...

  9. AGCO Biomass Solutions: Biomass 2014 Presentation

    Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

  10. WATER POWER SOLAR POWER WIND POWER

    Energy Saver

    coloring book get curren WATER POWER SOLAR POWER WIND POWER Be part of the Clean Energy Generation YOUR HOUSE BIOMASS ENERGY GEOTHERMAL ENERGY Clean energy can come from the sun. ...

  11. Biomass power for rural development. Technical progress report Phase-II. Contractual reporting period October-December 1999

    SciTech Connect

    Neuhauser, Edward; The Salix Consortium

    2000-03-23

    The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase 1 focused on initial development and testing of the technology and forging the necessary agreements to demonstrate commercial willow production. The Phase 1 objectives have been successfully completed: preparing design plans for 2 utility pulverized coal boilers for 20 MW of biopower capacity; developing fuel supply plans for the project with a goal of establishing 365 ha (900 ac) of willow; obtaining power production commitments from the power companies for Phase 2; obtaining construction and environmental permits; and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introduction of the willow energy system.

  12. PROJECT PROFILE: Solar Electric Power Association (Solar Market Pathways) |

    Energy Saver

    Dynamics LLC (T2M2) PROJECT PROFILE: Solar Dynamics LLC (T2M2) Funding Opportunity: Technology to Market 2 SunShot Subprogram: Technology to Market Location: Broomfield, CO SunShot Award Amount: $799,981 Awardee Cost Share: $199,995 This project will develop a new kind of concentrating solar power (CSP) system that can be used in place of peaking natural gas power plants. A new molten-salt tower peaker concept is being developed that can provide the same capacity and ancillary benefits and is

  13. Golden Valley Electric Association- Sustainable Natural Alternative Power (SNAP) Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Golden Valley Electric Association's (GVEA) SNAP program encourages members to install renewable energy generators and connect them to the utility's electrical distribution system by offering an...

  14. Biomass Program Factsheet

    SciTech Connect

    2010-03-01

    The emerging U.S. bioindustry is using a range of biomass resources to provide a secure and growing supply of transportation fuels and electric power. Displacing an increasing portion of our imported oil with renewable, domestic bioenergy will provide clear benefits:Reduced greenhouse gas (GHG) emissions; A cleaner, more secure energy future; Sustainable transportation fuels; Opportunities for economic growth

  15. Northeast Regional Biomass Program

    SciTech Connect

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  16. PowerSlicing to determine fluorescence lifetimes of water-soluble organic matter derived from soils, plant biomass, and animal manures

    SciTech Connect

    Ohno, Tsutomu; Wang, Zheming; Bro, Rasmus

    2008-04-01

    Time-resolved fluorescence spectroscopy was used to characterize water-soluble organic matter (WSOM) which plays an important role in soil ecosystem processes. WSOM was extracted from plant biomass, animal manures, and soils from controlled cropping systems studies with known histories of organic amendments. Lifetime constants were derived using the multi-way PowerSlicing method which provides a non-iterative, multi-exponential fitting of decay profiles. The lifetimes obtained by PowerSlicing were not significantly different from those obtained using the traditional discrete components analysis. The three components attributed to WSOM had lifetimes of 0.38 0.14, 2.110.72, and 7.081.18 ns which are in agreement with previous lifetimes reported for humic substances. This study provides further support for the new paradigm for the structure of soil organic matter where the organic matter is composed of low-molecular-weight components held together by hydrogen bonding and hydrophobic interactions.

  17. Biomass [updated

    SciTech Connect

    Turhollow Jr, Anthony F

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  18. Biomass Feedstocks

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Feedstocks Ralph P. Overend , Mark Davis, Rob Perlack (ORNL), Tom Foust (INEEL) and colleagues NASULGC NREL, CO August 3 - 4. 2004 Outline * Biomass - Bioenergy Cycle * Global Estimates - USA situation * Resource Assessment - Supply Curve 500 Mt 2020 - Definitions - Type and Quality - Biomass supply in context - Is a Gigatonne feasible? * Quality Matters - Influence on product yields - Using advanced rapid analysis to choose and develop feedstocks Bioenergy Cycle Illustration courtesy of ORNL

  19. Methods for pretreating biomass

    DOEpatents

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2015-03-03

    A method of alkaline pretreatment of biomass, in particular, pretreating biomass with gaseous ammonia.

  20. An Affordable Advanced Biomass Cookstove with Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Biomass Cookstove with Thermoelectric Generator (TEG) This presentation ... * Air injection powered by commercial thermoelectric device using waste heat from the ...

  1. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Citation Details In-Document Search Title: Transportation Energy Futures ...

  2. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  3. Map of Biomass Facilities | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ng","group":"","inlineLabel":"","visitedicon":"","text":"AssociatesLLCBiomassFacility" title"Adrian Energy Associates LLC Biomass...

  4. Non-targeted Metabolomics in Diverse Sorghum Breeding Lines Indicates Primary and Secondary Metabolite Profiles Are Associated with Plant Biomass Accumulation and Photosynthesis

    DOE PAGES [OSTI]

    Turner, Marie F.; Heuberger, Adam L.; Kirkwood, Jay S.; Collins, Carl C.; Wolfrum, Edward J.; Broeckling, Corey D.; Prenni, Jessica E.; Jahn, Courtney E.

    2016-07-11

    Metabolomics is an emerging method to improve our understanding of how genetic diversity affects phenotypic variation in plants. Recent studies have demonstrated that genotype has a major influence on biochemical variation in several types of plant tissues, however, the association between metabolic variation and variation in morphological and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been bred for differing phenotypes beneficial for production of grain (food), stem sugar (food, fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end productsmore » of innate metabolic programming which determines how carbon is allocated during plant growth and development. Further, sorghum has been adapted among highly diverse environments. Because of this geographic and phenotypic variation, the sorghum metabolome is expected to be highly divergent; however, metabolite variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse panel of sorghum breeding lines to identify associations between leaf metabolites and morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21 morpho-physiological traits, as well as broader trends in variation by sorghum type (grain vs. biomass types). Variation was also observed for cell wall constituents (glucan, xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of 1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both univariate and multivariate analyses determined relationships between metabolites and morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%, p < 0.05), including many secondary metabolites such as glycosylated flavonoids and chlorogenic acids. The use of metabolomics to explain relationships between two or more morpho

  5. Husk Power Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Systems Jump to: navigation, search Name: Husk Power Systems Place: Patna, Bihar, India Zip: 800023 Sector: Biomass Product: India-based developer of mini biomass plants....

  6. Tilbury Green Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Tilbury Green Power Place: United Kingdom Sector: Biomass Product: UK based Tilbury Green Power is a 100% subsidiary of Express Energy Holdings, developing biomass fired...

  7. Nagarjuna Green Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Green Power Jump to: navigation, search Name: Nagarjuna Green Power Place: Andhra Pradesh, India Sector: Biomass Product: Hyderabad-based biomass project developer. References:...

  8. Prenergy Power Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and energy professionals as developers and operators of biomass power plants and as suppliers and traders of the biomass feedstock. References: Prenergy Power Ltd1 This article...

  9. Trans Tech Green Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Trans Tech Green Power Jump to: navigation, search Name: Trans Tech Green Power Place: India Sector: Biomass Product: Plans to develop biomass projects in Rajasthan. References:...

  10. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect

    Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-09-01

    The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to

  11. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect

    Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2001-10-01

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash

  12. Lyonsdale Biomass LLC Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York...

  13. Biomass One LP Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535,...

  14. Biomass: Biogas Generator

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Middle School (6-8) Small groups (3 to 4) Time: 90 minutes to assemble, days to generate sufficient gas to burn Summary: Students build a simple digester to generate a quantity of gas to burn. This demonstrates the small amount of technology needed to generate a renewable energy source. Biogas has been used in the past and is still used today as an energy

  15. Star Biomass | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Jump to: navigation, search Name: Star Biomass Place: India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article...

  16. Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Abengoa Bioenergy Biomass IBR Fact Sheet: Abengoa Bioenergy Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat ibr_commercial_abengoa.pdf (227.38 KB) More Documents & Publications Abengoa Bioenergy Biomass of Kansas, LLC ABENGOA BIOENERGY 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review

  17. Tracy Biomass Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleTracyBiomassBiomassFacility&oldid398234" Feedback Contact needs updating Image needs...

  18. Biomass shock pretreatment

    DOEpatents

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  19. Biomass Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Feedstocks to Final Products To efficiently convert algae, diverse types of cellulosic biomass, and emerging feedstocks into renewable fuels, the U.S. Department of Energy (DOE) supports research, development, and demonstration of technologies. This research will help ensure that these renewable fuels are compatible with today's vehicles and infrastructure. Advanced biofuels are part of the United States' "all-of-the-above" energy strategy to develop domestic energy resources and win

  20. DOE Selects Projects to Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks

    Energy.gov [DOE]

    Eight projects that will focus on gasification of coal/biomass to produce synthetic gas (syngas) have been selected for further development by the U.S. Department of Energy.

  1. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  2. Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste

    SciTech Connect

    H. Carrasco; H. Sarper

    2006-06-30

    The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through

  3. New Biomass System Helps Menominee Indian Tribe of Wisconsin...

    Office of Environmental Management (EM)

    ... the official opening of its biomass combined heat and power (CHP) district energy plant. ... The new biomass CHP plant represents MTE's largest step yet toward achieving this goal. In ...

  4. Biomass Fueling America’s Growing Clean Energy Economy

    Energy.gov [DOE]

    Biomass is the most abundant biological material on the planet. It is renewable; it grows almost everywhere; and it provides fuel, power, chemicals, and many other products. Find out how biomass is helping grow America's clean energy economy.

  5. Valuation of selected environmental impacts associated with Bonneville Power Administration Resource Program alternatives

    SciTech Connect

    Englin, J E; Gygi, K F

    1992-03-01

    This report documents work undertaken by the Pacific Northwest Laboratory (PNL) and its contractors to assist the Bonneville Power Administration (Bonneville) in assessing the potential environmental consequences of new power resources. A major purpose of this effort is to describe and evaluate the techniques available for economic valuation of environmental costs. Another is to provide estimates of the environmental costs associated with specific power resources called for under Bonneville's Resource Programs. Bonneville's efforts to extend valuation techniques to as many impacts as can be reliably assessed represents a substantial advance in the application of state-of-the-art economic techniques to environmental assessments. This economic analysis evaluates effects on human health, wildlife, crops, and visibility impacts associated with air pollution. This report also discusses river recreation (primarily fishing) which may be affected by fluctuations in water levels. 70 refs.

  6. Transportation Energy Futures Series: Projected Biomass Utilization for

    Office of Scientific and Technical Information (OSTI)

    Fuels and Power in a Mature Market (Technical Report) | SciTech Connect Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Citation Details In-Document Search Title: Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this

  7. Tribal Renewable Energy Curriculum Foundational Course: Biomass |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable energy by clicking on the .swf link below. You can also download the PowerPoint slides and a text version of the audio. See the full list of DOE Office of Indian Energy educational webinars and provide your feedback on the National Training & Education Resource (NTER) website.

  8. Biomass Characterization | Bioenergy | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion processes. woman working with sampling equipment in a lab Capabilities man looking at test tubes containing clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of analytical methods for biomass characterization available for downloading. View the Biomass Compositional Analysis Lab

  9. Biomass torrefaction mill

    DOEpatents

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  10. Saradambika Power Plant Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Andhra Pradesh, India Zip: 500082 Sector: Biomass Product: Hyderabad-based developer of biomass power project. References: Saradambika Power Plant Pvt. Ltd1 This article is a...

  11. Hema Sri Power Projects Ltd HSPPL | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hyderabad, Andhra Pradesh, India Sector: Biomass Product: Setting up biomass and waste-to-energy power projects. References: Hema Sri Power Projects Ltd. (HSPPL)1 This article...

  12. Science Activities in Biomass

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    concern plant growth and the environment, byproducts of biomass, and energy contained in different types of biomass. Provided by the Department of Energy's National Renewable...

  13. NREL: Biomass Research - Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  14. NREL: Biomass Research - Capabilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass...

  15. NREL: Biomass Research - Publications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    biofuels Biomass process and sustainability analyses. ... For information on biomass policy, read congressional ... on the Yield and Product Distribution of Fast ...

  16. Biomass Analytical Library

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

  17. ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP Presentation given by the Biomass Program's Bryce Stokes, CNJV, at the GBEP Regional Biomass Resource Assessment Workshop providing results found in the U.S. Billion-Ton Update. gbep_stokes.pdf (1.55 MB) More Documents & Publications Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs Bioenergy Technologies Office: Association of

  18. Aspen Process Flowsheet Simulation Model of a Battelle Biomass-Based Gasification, Fischer-Tropsch Liquefaction and Combined-Cycle Power Plant

    SciTech Connect

    1998-10-30

    This study was done to support the research and development program of the National Renewable Energy Laboratory (NREL) in the thermochemical conversion of biomass to liquid transportation fuels using current state-of-the-art technology. The Mitretek study investigated the use of two biomass gasifiers; the RENUGAS gasifier being developed by the Institute of Gas Technology, and the indirectly heated gasifier being developed by Battelle Columbus. The Battelle Memorial Institute of Columbus, Ohio indirectly heated biomass gasifier was selected for this model development because the syngas produced by it is better suited for Fischer-Tropsch synthesis with an iron-based catalyst for which a large amount of experimental data are available. Bechtel with Amoco as a subcontractor developed a conceptual baseline design and several alternative designs for indirect coal liquefaction facilities. In addition, ASPEN Plus process flowsheet simulation models were developed for each of designs. These models were used to perform several parametric studies to investigate various alternatives for improving the economics of indirect coal liquefaction.

  19. Power Sources Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sources Inc Jump to: navigation, search Name: Power Sources Inc. Place: Charlotte, North Carolina Sector: Biomass Product: US-based operator and developer of biomass-to-energy...

  20. HL Power Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Biomass Product: A power company located in California, the company main focus of energy is directed to biomass production. Coordinates: 40.293339, -79.687036...

  1. Biomass IBR Fact Sheet: Abengoa Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 * December 2012 Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste Abengoa Bioenergy Biomass of Kansas Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat Abengoa Bioenergy's efforts involve the construction of a 1,200-tons-per- day commercial biorefinery, producing cellulosic ethanol and also power and heat to operate the facility. Project Description The Biorefinery Project site would be located adjacent

  2. Biomass Energy Data Book, 2011, Edition 4

    DOE Data Explorer

    Wright, L.; Boundy, B.; Diegel, S. W.; Davis, S. C.

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

  3. Biomass Energy Data Book: Edition 1

    SciTech Connect

    Wright, Lynn L; Boundy, Robert Gary; Perlack, Robert D; Davis, Stacy Cagle; Saulsbury, Bo

    2006-09-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  4. Biomass Energy Data Book: Edition 2

    SciTech Connect

    Wright, Lynn L; Boundy, Robert Gary; Badger, Philip C; Perlack, Robert D; Davis, Stacy Cagle

    2009-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  5. Biomass Energy Data Book: Edition 3

    SciTech Connect

    Boundy, Robert Gary; Davis, Stacy Cagle

    2010-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  6. Biomass Energy Data Book: Edition 4

    SciTech Connect

    Boundy, Robert Gary; Diegel, Susan W; Wright, Lynn L; Davis, Stacy Cagle

    2011-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  7. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    SciTech Connect

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

    2009-11-09

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  8. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    SciTech Connect

    Farfan, E.

    2009-09-30

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  9. NREL: Biomass Research - NREL Cyanobacteria Ramps Up Photosynthesis...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    passed it to other photosynthetic microbes and green plants. Photosynthesis powers biomass growth in plants and algae, which are potential feedstocks for bioenergy production....

  10. Biomass Program Overview

    SciTech Connect

    2010-01-01

    This document provides an overview of the Biomass Program's mission, strategic goals, and research approach.

  11. Biomass treatment method

    DOEpatents

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  12. Putney Basketville Site Biomass CHP Analysis

    SciTech Connect

    Hunsberger, Randolph; Mosey, Gail

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, including Putney Paper and Landmark College.

  13. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect

    Francis S. Lau

    2003-09-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  14. HCL Agro Power Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Ltd Place: Hyderabad, India Sector: Biomass Product: Hyderabad-based developer of grid-connected biomass power plants. References: HCL Agro Power Ltd1 This article is a...

  15. Sathyam Power Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Pvt Ltd Place: Rajasthan, India Sector: Biomass Product: Plans to set up 27.5MW biomass power plant. References: Sathyam Power Pvt Ltd1 This article is a stub. You can...

  16. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  17. Biomass Feed and Gasification

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass Feed and Gasification The Biomass Feed and Gasification Key Technology will advance scientific knowledge of the feeding and conversion of biomass and coal-biomass mixtures as essential upstream steps for production of liquid transportation fuels with a lower net GHG emissions than conventional oil refining. Activities support research for handling and processing of coal-biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on

  18. Biomass Renewable Energy Opportunities and Strategies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Biomass Renewable Energy Opportunities and Strategies Biomass Renewable Energy Opportunities and Strategies May 30, 2014 - 1:39pm Addthis July 9, 2014 Bonneville Power Administration Building 905 NE 11th Ave Portland, Oregon 97232 The ninth in a series of planned DOE Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum will focus on biomass development opportunities, technology updates, resource assessment, the unique aspects of biomass

  19. Biomass Renewable Energy Opportunities and Strategies Forum | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Biomass Renewable Energy Opportunities and Strategies Forum Biomass Renewable Energy Opportunities and Strategies Forum July 9, 2014 Bonneville Power Administration Building 905 NE 11th Ave Portland, Oregon 97232 The ninth in a series of planned DOE Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum focused on biomass development opportunities, technology updates, resource assessment, the unique aspects of biomass project development, and

  20. Fiscalini Farms Biomass Energy Project

    SciTech Connect

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste

  1. National Academy of Sciences survey on risks associated with nuclear power

    SciTech Connect

    Buchanan, J.R.

    1980-01-01

    A critical review of the literature pertaining to the risks associated with nuclear electric power was sponsored by the Committee on Science and Public Policy of the National Academy of Sciences. Although the full report (consisting of over 25 chapters) has not yet been published, this paper presents highlights from the Summary and Synthesis Chapter, which was released separately. Of the risks whose magnitudes can be estimated with reasonable accuracy, the most serious is the exposure of future generations to /sup 14/C from reactors and reprocessing plants. Prospects are good for reducing this risk considerably, since carbon can be collected and stored as waste.

  2. Organic Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Jump to: navigation, search Name: Organic Power Place: Ireland Sector: Biomass, Hydro, Wind energy Product: Irish project developer active in wind energy, combined heat and...

  3. Mobile Biomass Pelletizing System

    SciTech Connect

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  4. Russell Biomass | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Massachusetts Sector: Biomass Product: Russell Biomass, LLC is developing a 50MW biomass to energy project at the former Westfield Paper Company site in Russell,...

  5. Assessment of Biomass Resources in Liberia

    SciTech Connect

    Milbrandt, A.

    2009-04-01

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  6. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  7. Biomass for Electricity Generation

    Reports and Publications

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  8. Biomass 2014 Draft Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass 2014 Draft Agenda All topics and times are tentative and subject to change. Page | 1 BIOMASS 2014: Growing the Future Bioeconomy July 29-30, 2014, Washington Convention ...

  9. Pretreated densified biomass products

    DOEpatents

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  10. Assessment of Biomass Resources in Afghanistan

    SciTech Connect

    Milbrandt, A.; Overend, R.

    2011-01-01

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

  11. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    SciTech Connect

    Vladimir Zamansky; Chris Lindsey; Vitali Lissianski

    2000-01-28

    This project is designed to develop engineering and modeling tools for a family of NO{sub x} control technologies utilizing biomass as a reburning fuel. During the ninth reporting period (September 27--December 31, 1999), EER prepared a paper Kinetic Model of Biomass Reburning and submitted it for publication and presentation at the 28th Symposium (International) on Combustion, University of Edinburgh, Scotland, July 30--August 4, 2000. Antares Group Inc, under contract to Niagara Mohawk Power Corporation, evaluated the economic feasibility of biomass reburning options for Dunkirk Station. A preliminary report is included in this quarterly report.

  12. Environmental implications of increased biomass energy use

    SciTech Connect

    Miles, T.R. Sr.; Miles, T.R. Jr. , Portland, OR )

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  13. High Level Overview of DOE Biomass Logistics II Project Activities |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Level Overview of DOE Biomass Logistics II Project Activities High Level Overview of DOE Biomass Logistics II Project Activities Breakout Session 1B-Integration of Supply Chains I: Breaking Down Barriers High Level Overview of DOE Biomass Logistics II Project Activities Kevin Comer, Associate Principal, Antares Group Inc. comer_biomass_2014.pdf (1.83 MB) More Documents & Publications 2013 Peer Review Presentations-Feedstock Supply and Logistics Growing America's

  14. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  15. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  16. NREL: Biomass Research - Biomass Characterization Capabilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes...

  17. Electricity from biomass: An environmental review and strategy

    SciTech Connect

    1993-06-01

    This report presents an environmental assessment and strategy for the US Department of Energy Biomass Power Program. The regulatory context and the environmental impact of biomass power technologies are described, and an environmental plan for the program is suggested. The plan suggest a proactive, synergistic approach, involving multiple parties with a stake in the successful commercialization of a biomass power industry. These parties include feedstock growers, state regulators. Forest Service and agricultural agents, utilities and independent power producers, rural electric cooperatives, and environmental activists.

  18. Biomass Support for the China Renewable Energy Law: Final Report, December 2005

    SciTech Connect

    Not Available

    2006-10-01

    Final subcontractor report giving an overview of the biomass power generation technologies used in China. Report covers resources, technologies, foreign technologies and resources for comparison purposes, biomass potential in China, and finally government policies in China that support/hinder development of the using biomass in China for power generation.

  19. GAPS Power Infrastructure Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pvt Ltd Jump to: navigation, search Name: GAPS Power & Infrastructure Pvt Ltd. Place: Mumbai, Maharashtra, India Zip: 400098 Sector: Biomass Product: Mumbai-based biomass project...

  20. Gaia Power | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Product: UK-based firm established to develop, build, own and operate recycled wood biomass generation projects in the UK. References: Gaia Power1 This article is a...

  1. Driftless Area Initiative Biomass Energy Project

    SciTech Connect

    Wright, Angie; Bertjens, Steve; Lieurance, Mike; Berguson, Bill; Buchman, Dan

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  2. Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power

    SciTech Connect

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-07-31

    voiding of automotive manufacturer's battery warranty, and is not feasible for many customers. The second key finding is the change in the required population when PHEV/BEV charging is available at both home and work. Allowing 10% of the vehicle population access to work charging resulted in nearly 80% of the grid benefit. Home-only charging requires, at best, 94% of the current NWPP light duty vehicle fleet to be a PHEV or BEV. With the introduction of full work charging availability, only 8% of the NWPP light duty vehicle fleet is required. Work charging has primarily been associated with mitigating range anxiety in new electric vehicle owners, but these studies indicate they have significant potential for improving grid reliability. The V2GHalf and V2GFull charging strategies of the report utilize grid frequency as an indication of the imbalance requirements. The introduction of public charging stations, as well as the potential for PHEV/BEVs to be used as a resource for renewable generation integration, creates conditions for additional products into the ancillary services market. In the United Kingdom, such a capability would be bid as a frequency product in the ancillary services market. Such a market could create the need for larger, third-party aggregators or services to manage the use of electric vehicles as a grid resource. Ultimately, customer adoption, usage patterns and habits, and feedback from the power and automotive industries will drive the need.

  3. Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Program eere.energy.gov Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biogas and Fuel Cell Workshop NREL June 11,2012 Brian Duff DOE Biomass Program 2 | Biomass Program eere.energy.gov Outline * The Importance of Anaerobic Digestion for Fuels, Products, and Power * Biomass Program Perspective * The Potential for Biogas/Fuel Cell Integration at Biorefineries o Retrofit Applications for 1st-Generation Biofuels Plants o Integration

  4. Complex pendulum biomass sensor

    DOEpatents

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  5. Overview of biomass technologies

    SciTech Connect

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  6. Gasification-based biomass

    SciTech Connect

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  7. Direct-fired biomass

    SciTech Connect

    None, None

    2009-01-18

    The direct-fired biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  8. Biomass Engineering: Transportation & Handling

    Energy.gov [DOE] (indexed site)

    ... sponsored work (feedstock, pyrolysis, gasification, test equipment): - Share data with ... assimilation of BETO program data into Biomass Resource Library Create & follow approved ...

  9. Biomass Energy Basics | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass Energy Basics We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived materials-since people began burning wood to cook food and keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can also be used. These include food crops, grassy and woody plants, residues from agriculture or forestry, oil-rich algae, and the organic component of municipal and industrial wastes. Even the fumes from landfills (which are

  10. NREL: Biomass Research - Webmaster

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to reply. Your name: Your email address: Your message: Send Message Printable Version Biomass Research Home Capabilities Projects Facilities Research Staff Working with Us Data &...

  11. NREL: Biomass Research - Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

  12. Co-firing biomass

    SciTech Connect

    Hunt, T.; Tennant, D.

    2009-11-15

    Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

  13. Biomass: Wood as Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Coordinator USDA Forest Service State & Private Forestry ... habitat and forest health Modern Woody Biomass ... Requires manual fuel delivery & stoking Pellets Meter ...

  14. Process for treating biomass

    DOEpatents

    Campbell, Timothy J.; Teymouri, Farzaneh

    2015-08-11

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  15. Process for treating biomass

    DOEpatents

    Campbell, Timothy J; Teymouri, Farzaneh

    2015-11-04

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  16. Biomass Processing Photolibrary

    DOE Data Explorer

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  17. Green Power Purchase Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    Class I renewable energy resources include solar, wind, new sustainable biomass, landfill gas, fuel cells (using renewable or non-renewable fuels), ocean thermal power, wave or tidal power, low...

  18. Biomass Thermochemical Conversion Program: 1986 annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  19. Wheelabrator Westchester Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Westchester Biomass Facility Jump to: navigation, search Name Wheelabrator Westchester Biomass Facility Facility Wheelabrator Westchester Sector Biomass Facility Type Municipal...

  20. Biomass Research Program

    ScienceCinema

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2016-07-12

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  1. Comparison of large central and small decentralized power generation in India

    SciTech Connect

    1997-05-01

    This reports evaluates two options for providing reliable power to rural areas in India. The benefits and costs are compared for biomass based distributed generation (DG) systems versus a 1200-MW central grid coal-fired power plant. The biomass based DG systems are examined both as alternatives to grid extension and as supplements to central grid power. The benefits are divided into three categories: those associated with providing reliable power from any source, those associated specifically with biomass based DG technology, and benefits of a central grid coal plant. The report compares the estimated delivered costs of electricity from the DG systems to those of the central plant. The analysis includes estimates for a central grid coal plant and four potential DG system technologies: Stirling engines, direct-fired combustion turbines, fuel cells, and biomass integrated gasification combined cycles. The report also discusses issues affecting India`s rural electricity demand, including economic development, power reliability, and environmental concerns. The results of the costs of electricity comparison between the biomass DG systems and the coal-fired central grid station demonstrated that the DG technologies may be able to produce very competitively priced electricity by the start of the next century. The use of DG technology may provide a practical means of addressing many rural electricity issues that India will face in the future. Biomass DG technologies in particular offer unique advantages for the environment and for economic development that will make them especially attractive. 58 refs., 31 figs.

  2. Florida Biomass Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Jump to: navigation, search Name: Florida Biomass Energy, LLC Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: Florida Biomass...

  3. Atlantic Biomass Conversions Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Conversions Inc Jump to: navigation, search Name: Atlantic Biomass Conversions Inc Place: Frederick, Maryland Sector: Biomass Product: Atlantic Biomass Conversions is...

  4. Colusa Biomass Energy Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Energy Corporation Jump to: navigation, search Name: Colusa Biomass Energy Corporation Place: Colusa, California Zip: 95932 Sector: Biomass Product: Colusa Biomass Energy...

  5. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect

    Greg F. Weber; Christopher J. Zygarlicke

    2001-05-01

    In summary, stoker-fired boilers that cofire or switch to biomass fuel may potentially have to deal with ash behavior issues such as production of different concentrations and quantities of fine particulate or aerosols and ash-fouling deposition. Stoker boiler operators that are considering switching to biomass and adding potential infrastructure to accommodate the switch may also at the same time be looking into upgrades that will allow for generating additional power for sale on the grid. This is the case for the feasibility study being done currently for a small (<1-MW) stoker facility at the North Dakota State Penitentiary, which is considering not only the incorporation of a lower-cost biomass fuel but also a refurbishing of the stoker boiler to burn slightly hotter with the ability to generate more power and sell excess energy on the grid. These types of fuel and boiler changes can greatly affect ash behavior issues.

  6. Windblade Power Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Windblade Power Corp Jump to: navigation, search Name: Windblade Power Corp Place: Nevada Sector: Biomass, Hydro, Wind energy Product: Nevada-based project developer; focused on...

  7. Energeticals power plant engineering | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    generation in the field of solid Biomass, deep and shallow geothermal energy and water power. References: energeticals power plant engineering1 This article is a stub....

  8. Hemphill Power Light Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Light Company Jump to: navigation, search Name: Hemphill Power & Light Company Place: Springfield, New Hampshire Sector: Biomass Product: Owner and operator of a 16MW...

  9. Port Graham Community Building Biomass Heating Design Project

    SciTech Connect

    Norman, Patrick; Sink, Charles

    2015-04-30

    accommodate hot water from the proposed wood-burning GARN Boiler, once installed, and rely on the existing fuel oil-fired hot water heating equipment for backup. The boiler would use an estimated 125 bone dry tons, equivalent to 100 cords, woody biomass feedstock obtained from local lands per year. Project would use local labor as described in the Port Graham Biomass Project, report completed by Chena Power, Inc. and Winters and Associates as part of the in-kind support to the U. S. Department of Energy (DOE) project for work on a project for State of Alaska’s Alaska Energy Authority (AEA). NVPG will likely initiate operations of the biomass boiler system even though several operational variations were studied. Obtaining the fuel source could be done by contractors, PGVC employees, or NVPG employees. Feeding the system would likely be done by NVPG employees. A majority of the buildings heated would be owned by NVPG. The PGVC office would be heated as well as the Old Fire Hall used as a workshop and storage area for North Pacific Rim Housing Authority. One methodology studied to charge for cost of utilizing the community building biomass system would use a percentage of use of hot water generated by the biomass hot water system based on past heating oil usage in relation to all buildings heated by biomass hot water. The method is better described in the Port Graham Biomass Project report. Fuel source agreements have been drafted to enter into agreements with area landowners. One Native allotment owner has asked Chugachmiut Forestry to begin a timber sale process to sell timber off her lands, specifically wind thrown timber that was determined to be of sufficient quantity to supply to the proposed biomass heating system for approximately 5-years. On NVPG’s behalf, Chugachmiut has presented to PGVC three different documents, attached, that could lead to a sale of woody biomass fuel for the project for up to 25-years, the expected life of the project. PGVC has signed a letter

  10. NREL: Biomass Research - Projects in Biomass Process and Sustainabilit...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global ...

  11. NREL: Biomass Research - Capabilities in Biomass Process and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four ... A team of NREL researchers uses biomass process and sustainability analyses to bridge the ...

  12. Hydropyrolysis of biomass

    SciTech Connect

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

  13. NREL: Biomass Research Home Page

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo of a technician completing a laboratory procedure Biomass Compositional Analysis Find laboratory analytical procedures for standard biomass analysis. Photo of the Integrated...

  14. NREL: Biomass Research - Research Staff

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Thomas.Foust@nrel.gov Bratis, Adam Management, Biomass Laboratory Program Manager Adam.Bratis@nrel.gov Chum, Helena Management, Biomass Fellow Helena.Chum@nrel.gov Pienkos,...

  15. Investigating and Using Biomass Gases

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Investigating and Using Biomass Gases Grades: 9-12 Topic: Biomass Authors: Eric Benson and Melissa Highfill Owner: National Renewable Energy Laboratory This educational material is...

  16. Suryachakra Global Enviro Power Formerly Lahari Power Steels...

    OpenEI (Open Energy Information) [EERE & EIA]

    project developer that is a subsidiary of SPCL. The company is currently operating a biomass power plant. Coordinates: 17.6726, 77.5971 Show Map Loading map......

  17. National Association of Counties Webinar- Combined Heat and Power: Resiliency Strategies for Critical Facilities

    Energy.gov [DOE]

    Combined heat and power (CHP), also known as cogeneration, is a method whereby energy is produced, and excess heat from the production process can be used for heating and cooling processes....

  18. Fort Yukon Gains Heat and Insight with Biomass Project | Department...

    Office of Environmental Management (EM)

    featuring a combined heat and power (CHP) system to generate electricity and useful ... in what Hughes believes to be the first known off-grid, off-road biomass CHP project. ...

  19. Global repowering opportunities for biomass

    SciTech Connect

    Demeter, C.P.; Gray, E.E.; Lindsey, C.A.

    1996-12-31

    Global demand for electricity is growing during a time of significant structural change in electric markets. Many countries are creating more competitive markets for power production and sales through regulation and ownership structure. Governments are reducing monopolies, enhancing competition and unbundling electricity services. Equipment suppliers, developers, and service providers are expanding into the global market. Meeting future electric energy needs has forced the power community to examine alternatives to Greenfield Development. Repowering existing facilities to gain a competitive advantage is a promising option. Repowering has the potential to offer increased capacity, heat rate reductions, and improved environmental profiles in a manner consistent with an asset and capital deployment rationalization strategy that appears to characterize the future of the power industry. It is also a defensive strategy for extending the life of existing assets. The breadth of repowering options continues to expand as technologies are introduced to increase plant capacities, efficiencies or both. Some options such as feedwater heater repowering appear to offer advantages to repowering with biomass fuels as an alternative to natural gas projects. By repowering solid fueled facilities, developed and developing countries can receive multiple benefits. Most developing countries are largely agrarian with traditional policies that have relied on trickle-down rural development. By turning agricultural and forestry by-products into commodities, farmers and foresters can benefit from a sustainable source of income. As power demand and biomass requirements are expanded to a regional scale, the government can reduce some agricultural subsidies and shift that money to other economically and socially beneficial programs. Furthermore, rural development can minimize rural-to-urban flight and thus lessen the strain on already overburdened urban infrastructure.

  20. NREL: Biomass Research - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. June 3, 2015 NREL Cyanobacteria Ramps Up Photosynthesis-and New...

  1. The ultimate biomass refinery

    SciTech Connect

    Bungay, H.R. )

    1988-01-01

    Bits and pieces of refining schemes and both old and new technology have been integrated into a complete biomass harvesting, processing, waste recycle, and marketing complex. These choices are justified with economic estimates and technology assessments.

  2. Biomass Basics Webinar

    Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting a Biomass Basics Webinar on August 27, 2015, from 4:00-4:40pm EDT. This webinar will provide high school students and teachers with background...

  3. Biomass Basics Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    What is Biomass? Cellulose is the main component of plant cell walls. Made from sugar ... and does not allow the warm rays of the sun to escape the atmosphere at night. 18 | ...

  4. Biomass Energy Production Incentive

    Energy.gov [DOE]

    In 2007 South Carolina enacted the Energy Freedom and Rural Development Act, which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-h...

  5. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  6. Biomass -Feedstock User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WBS 1.2.3.3 Biomass - Feedstock User Facility March 25, 2015 Kevin L. Kenney Idaho National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Feedstock Supply and Logistics 2 | Bioenergy Technologies Office Goal Statement * The goal of this project is to engage industry collaborators in the scale-up and integration of biomass preprocessing systems and technologies that - Advance the achievement of BETO goals and mission AND - Advance

  7. Biomass Feedstock Supply Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6, 2015 Feedstock Supply and Logistics PI: Erin Webb Shahab Sokhansanj Michael Hilliard Craig Brandt Anthony Turhollow Oak Ridge National Laboratory 1.2.3.1 Biomass Feedstock Supply Modeling 2 | Bioenergy Technologies Office Perform experiments to test equipment designs and supply chain configurations Characterize impacts of variability and uncertainty Identify risk-reduction strategies Optimize feedstock supply logistics Goal Statement Build and apply simulations of biomass supply chains

  8. Major Biomass Conference

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference International gathering to focus on business successes, technology updates, facility tours For more information contact: e:mail: Public Affairs Golden, Colo., Aug. 6, 1997 -- Media are invited to cover the conference in Montreal, Canada. What: Scientists, financiers and industry and government leaders from North America, South America and Europe will focus on building a sustainable, profitable biomass business

  9. Chemicals from Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chemicals from biomass: A market assessment of bioproducts with near-term potential Mary J. Biddy, PhD Bioenergy 2016 June 13, 2016 2 Significance and Impact * Focus of report is on products that will have near-term market impact. These are bio-derived chemicals that are currently being produced either at demonstration or commercial scales. * Reviews current projects and planned efforts for bio-derived chemicals. * Identifies major drivers for moving biomass-derived products to market and the

  10. 2007 Biomass Program Overview

    SciTech Connect

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  11. Flash hydrogenation of biomass

    SciTech Connect

    Steinberg, M

    1980-01-01

    It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

  12. Algae Biomass Summit

    Energy.gov [DOE]

    The 9th annual Algae Biomass Summit will be hosted at the Washington Marriot Wardman Park in Washington D.C., September 29 – October 2, 2015. The event will gather leaders in algae biomass from all sectors. U.S. Department of Energy Undersecretary Franklin Orr will give a keynote address at the conference, and Bioenergy Technologies Office (BETO) Director Jonathan, Algae Program Manager Alison Goss Eng, and the BETO Algae Team will be in attendance.

  13. Biomass 2014 Poster Session

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

  14. The economics of biomass production in the United States

    SciTech Connect

    Graham, R.L.; Walsh, M.E.; Lichtenberg, E.; Roningen, V.O.; Shapouri, H.

    1995-12-31

    Biomass crops (e.g. poplar, willow, switchgrass) could become important feedstocks for power, liquid fuel, and chemical production. This paper presents estimates of the potential production of biomass in the US under a range of assumptions. Estimates of potential biomass crop yields and production costs from the Department of Energy`s (DOE) Oak Ridge National Laboratories (ORNL) are combined with measures of land rents from USDA`s Conservation Reserve Program (CRP), to estimate a competitive supply of biomass wood and grass crops. Estimates are made for one potential biomass use--electric power production--where future costs of electricity production from competing fossil fuels set the demand price. The paper outlines the methodology used and limitations of the analysis.

  15. NETL Carbon Capture Technologies to Be Used in CommercialBiomass...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Carbon Capture Technologies to Be Used in Commercial Biomass-to-Biofuel Conversion Process with Power Generation NETL Carbon Capture Technologies to Be Used in Commercial ...

  16. Biomass Feedstock Availability in the United States: 1999 State Level Analysis

    SciTech Connect

    None

    2000-01-01

    Interest in using biomass feedstocks to produce power, liquid fuels, and chemicals in the U.S. is increasing. Central to determining the potential for these industries to develop is an understanding of the location, quantities, and prices of biomass resources. This paper describes the methodology used to estimate biomass quantities and prices for each state in the continental United States.

  17. Biomass 2011 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Conference Agenda Biomass 2011 Conference Agenda Biomass 2011 Conference Agenda bio2011_full_agenda.pdf (620.42 KB) More Documents & Publications Biomass 2009 Conference Agenda Biomass 2010 Conference Agenda Biomass 2012

  18. Biomass cogeneration. A business assessment

    SciTech Connect

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  19. Chapter 4- At the Farmgate: Agricultural Residues and Biomass Energy Crops

    Energy.gov [DOE]

    Breakout Session 1A: Assessing America's Biomass Potential (2016 Billion-Ton Report) Chapter 4 - At the Farmgate: Agricultural Residues and Biomass Energy Crops Maggie Davis, Associate, Climate Change Science Institute, Oak Ridge National Laboratory

  20. Air quality implications associated with the selection of power plants in the Pacific Northwest

    SciTech Connect

    Baechler, M.C.; Glantz, C.S.; Edelmen, P.C.

    1993-11-01

    This assessment models emission inventories and pollutant emission rates for fossil fuel power plants. Ground-level air concentration of nitrogen oxides, sulfur dioxide and TSP are predicted. Pollutant deposition, non-acidic deposition, acidic deposition, ozone impacts, and visibility attenuation are considered. Human health effects, wildlife effects, effects on plants and crops, and residual environmental impacts are estimated from predicted emissions.

  1. Mini-biomass electric generation

    SciTech Connect

    Elliot, G.

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

  2. First biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 3

    SciTech Connect

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  3. EPR Ely Power Limited | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    London, United Kingdom Zip: SW1Y 5AU Sector: Biomass Product: Owns and operates the Ely biomass power plant. Coordinates: 51.506325, -0.127144 Show Map Loading map......

  4. Charlton Compact Power Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    England, United Kingdom Zip: BA11 2RH Sector: Biomass Product: A joint venture between A. J. Charlton & Sons and Compact Power to develop a 3.6MW to 4.5MW biomass plant in...

  5. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  6. Biomass Crop Assistance Program (BCAP) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    United States Department of Agriculture Partner: Farm Service Agency Sector: Energy, Land Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass...

  7. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair

    Office of Energy Efficiency and Renewable Energy (EERE)

    The first day of the event will focus on the job and education fair, time with exhibitors, and the Iowa Wind Energy Association's annual membership meeting. The second day will be a traditional...

  8. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    SciTech Connect

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  9. Processing Cost Analysis for Biomass Feedstocks

    SciTech Connect

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  10. Sustainable Biomass Supply Systems

    SciTech Connect

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  11. Alaska Gateway School District Adopts Combined Heat and Power

    Energy.gov [DOE]

    Tok School's use of a biomass combined heat and power system is helping the school to save on energy costs.

  12. Biomass 2009 Conference Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AGENDA Biomass 2009: Fueling Our Future March 17 and 18, 2009 www.biomass2009.com Gaylord National 201 Waterfront Street National Harbor, Maryland 20745 March 17, 2009 7:30 a.m. - 8:00 a.m. Registration Room: Cherry Blossom Ballroom Foyer Exhibit Hall Opens Room: National Harbor 2 and 3 Refreshments Room: Woodrow Wilson Ballroom Foyer 8:00 a.m. - 8:30 a.m. Welcoming Remarks and Direction of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy - Steven G. Chalk,

  13. Biomass 2010 Conference Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AGENDA Biomass 2010: Exploring Pathways to a Sustainable, Domestic Bioindustry March 30-31, 2010 Hyatt Regency Crystal City 2799 Jefferson Davis Highway Arlington, Virginia 22202 Tuesday, March 30, 2010 7:30 a.m. - 8:00 a.m. Registration Room: Independence Foyer Continental Breakfast Room: Exhibit Hall (Independence Center) 8:00 a.m. - 8:15 a.m. Welcome: Overview of the Conference - John Ferrell, Acting Program Manager, Biomass Program, Office of Energy Efficiency and Renewable Energy, U.S.

  14. Fixed Bed Biomass Gasifier

    SciTech Connect

    Carl Bielenberg

    2006-03-31

    The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

  15. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  16. Method for pretreating lignocellulosic biomass

    DOEpatents

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  17. Fundamentals of thermochemical biomass conversion

    SciTech Connect

    Overend, R.P.; Milne, T.A.; Mudge, L.

    1985-01-01

    The contents of this book are: Wood and biomass ultrastructure; Cellulose, hemicellulose and extractives; Lignin; Pretreatment of biomass for thermochemical biomass conversion; A kinetic isotope effect in the thermal dehydration of cellobiose; Gasification and liquefaction of forest products in supercritical water; Thermochemical fractionation and liquefaction of wood; The pyrolysis and gasification of wood in molten hydroxide eutectics; Influence of alkali carbonates on biomass volatilization; Flash pyrolysis of biomass with reactive and non-reactive gases; Pyrolytic reactions and biomass; Product formation in the pyrolysis of large wood particles; The pyrolysis under vacuum of aspen poplar; Simulation of kraft lignin pyrolysis; and Kinetics of wood gasification by carbon dioxide and steam.

  18. Economic Development Impacts from Wind Power in the Western Governors' Association States (Poster)

    SciTech Connect

    Tegen, S.; Goldberg, M.; Milligan, M.

    2007-06-01

    The Western Governors' Association created the Clean and Diversified Energy Advisory Committee (CDEAC) "to utilize the region's diverse resources to produce affordable, sustainable, and environmentally reponsible energy." This conference poster, prepared for WINDPOWER 2007 in Los Angeles, outlines the economic impact to the Western United States from new wind energy projects.

  19. Biomass Scenario Model

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Scenario Model 24 March 2015 BETO Analysis Platform Peer Review Brian Bush National Renewable Energy Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information 3 Government Policies Analysis Implications Inclusion decisions/scope Marketplace Structure Producer/Consumer exchanges Investment Financial decisions Input Scenarios Feedstock demand Oil prices Learning curves Evolution of Supply Chain for Biofuels Goals and Objectives *

  20. Marine biomass research advances

    SciTech Connect

    Bender, E.

    1980-08-01

    This paper reports on research in California, New York and elsewhere into marine biomass. A manmade marine farm moored four miles off the coast of southern California pumps deep water up a 450 m pipe to fertilize giant kelp. After harvesting and chopping by existing commercial methods, the kelp would be converted, by either anaerobic bacteria or thermal processes, into methane and other products.

  1. Biomass Scenario Model

    SciTech Connect

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  2. Hydrogen Production: Biomass Gasification | Department of Energy

    Office of Environmental Management (EM)

    Biomass Gasification Hydrogen Production: Biomass Gasification Photo of a man standing near a pilot-scale gasification system. Biomass gasification is a mature technology pathway ...

  3. Randolph Electric Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Facility Jump to: navigation, search Name Randolph Electric Biomass Facility Facility Randolph Electric Sector Biomass Facility Type Landfill Gas Location Norfolk County,...

  4. Berlin Gorham Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gorham Biomass Facility Jump to: navigation, search Name Berlin Gorham Biomass Facility Facility Berlin Gorham Sector Biomass Location Coos County, New Hampshire Coordinates...

  5. Westchester Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location...

  6. Shasta 2 Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2 Biomass Facility Jump to: navigation, search Name Shasta 2 Biomass Facility Facility Shasta 2 Sector Biomass Owner Wheelabrator Location Anderson, California Coordinates...

  7. Biodyne Pontiac Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pontiac Biomass Facility Jump to: navigation, search Name Biodyne Pontiac Biomass Facility Facility Biodyne Pontiac Sector Biomass Facility Type Non-Fossil Waste Location...

  8. San Marcos Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Marcos Biomass Facility Jump to: navigation, search Name San Marcos Biomass Facility Facility San Marcos Sector Biomass Facility Type Landfill Gas Location San Diego County,...

  9. Okeelanta 2 Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2 Biomass Facility Jump to: navigation, search Name Okeelanta 2 Biomass Facility Facility Okeelanta 2 Sector Biomass Owner Florida Crystals Location South Bay, Florida Coordinates...

  10. Sunset Farms Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Farms Biomass Facility Jump to: navigation, search Name Sunset Farms Biomass Facility Facility Sunset Farms Sector Biomass Facility Type Landfill Gas Location Travis County, Texas...

  11. East Bridgewater Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bridgewater Biomass Facility Jump to: navigation, search Name East Bridgewater Biomass Facility Facility East Bridgewater Sector Biomass Facility Type Landfill Gas Location...

  12. Biodyne Lyons Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lyons Biomass Facility Jump to: navigation, search Name Biodyne Lyons Biomass Facility Facility Biodyne Lyons Sector Biomass Facility Type Landfill Gas Location Cook County,...

  13. Reliant Conroe Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Conroe Biomass Facility Jump to: navigation, search Name Reliant Conroe Biomass Facility Facility Reliant Conroe Sector Biomass Facility Type Landfill Gas Location Montgomery...

  14. Otay Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Otay Biomass Facility Jump to: navigation, search Name Otay Biomass Facility Facility Otay Sector Biomass Facility Type Landfill Gas Location San Diego County, California...

  15. Florida Biomass Energy Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Group Jump to: navigation, search Name: Florida Biomass Energy Group Place: Gulf Breeze, Florida Zip: 32561 Sector: Biomass Product: Florida Biomass Energy Group is a Florida...

  16. SPI Sonora Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sonora Biomass Facility Jump to: navigation, search Name SPI Sonora Biomass Facility Facility SPI Sonora Sector Biomass Owner Sierra Pacific Industries Location Sonora, California...

  17. Wheelabrator Saugus Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

  18. Biodyne Peoria Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Peoria Biomass Facility Jump to: navigation, search Name Biodyne Peoria Biomass Facility Facility Biodyne Peoria Sector Biomass Facility Type Landfill Gas Location Peoria County,...

  19. Zilkha Biomass Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zilkha Biomass Energy LLC Jump to: navigation, search Logo: Zilkha Biomass Energy LLC Name: Zilkha Biomass Energy LLC Address: 1001 McKinney Place: Houston, Texas Zip: 77002...

  20. Mecca Plant Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

  1. Biodyne Springfield Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Springfield Biomass Facility Jump to: navigation, search Name Biodyne Springfield Biomass Facility Facility Biodyne Springfield Sector Biomass Facility Type Landfill Gas Location...

  2. Biomass Boiler for Food Processing Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Boiler for Food Processing Applications Biomass Boiler for Food Processing Applications Biomass Boiler Uses a Combination of Wood Waste and Tire-Derived Fuel In 2011, the ...

  3. Biomass Feedstock Composition and Property Database () | Data...

    Office of Scientific and Technical Information (OSTI)

    Biomass Feedstock Composition and Property Database Title: Biomass Feedstock Composition and Property Database The Office of Energy Efficiency and Renewable Energy's Biomass ...

  4. Kiefer Landfill Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  5. Biofuels - Biomass Feedstock - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Biofuels - Biomass Feedstock Idaho National Laboratory Contact INL About This Technology Technology ...

  6. Biomass Feedstock National User Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  7. NREL: Learning - Biomass Energy Basics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass Energy Basics Photo of a farmer standing in a field and inspecting corn crops. We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived...

  8. Enzymes for improved biomass conversion

    DOEpatents

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  9. Biomass Feedstocks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Biomass Feedstocks Biomass Feedstocks An alternate text version of this video is available online. A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop

  10. Reburn system with feedlot biomass

    DOEpatents

    Annamalai, Kalyan; Sweeten, John M.

    2005-12-13

    The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

  11. Anyang Lingrui Thermal Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Anyang Lingrui Thermal Power Co Ltd Jump to: navigation, search Name: Anyang Lingrui Thermal Power Co., Ltd Place: Anyang, Henan Province, China Zip: 455000 Sector: Biomass...

  12. Coastal Carolina Clean Power CCCP | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Carolina Clean Power CCCP Jump to: navigation, search Name: Coastal Carolina Clean Power (CCCP) Place: Kenansville, North Carolina Sector: Biomass Product: Kenansville-based...

  13. Western Water and Power Production WWPP | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Water and Power Production WWPP Jump to: navigation, search Name: Western Water and Power Production (WWPP) Place: Albuquerque, New Mexico Zip: 88340 Sector: Biomass Product:...

  14. Chongqing Dianfeng Bioenergy Power Co Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Dianfeng Bioenergy Power Co Ltd Jump to: navigation, search Name: Chongqing Dianfeng Bioenergy Power Co Ltd Place: Chongqing Municipality, China Sector: Biomass Product:...

  15. Velagapudi Power Generation Ltd VPGL | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Velagapudi Power Generation Ltd VPGL Jump to: navigation, search Name: Velagapudi Power Generation Ltd. (VPGL) Place: Vijayawada, Andhra Pradesh, India Zip: 520 007 Sector: Biomass...

  16. Energy Power Resources Ltd EPR | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Power Resources Ltd EPR Jump to: navigation, search Name: Energy Power Resources Ltd (EPR) Place: Suffolk, England, United Kingdom Zip: IP12 1BL Sector: Biomass Product:...

  17. Transtech Green Power P Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Transtech Green Power P Ltd Jump to: navigation, search Name: Transtech Green Power (P) Ltd Place: Jaipur, Rajasthan, India Zip: 302001 Sector: Biomass, Solar Product:...

  18. Orient Green Power Company Ltd OGPL | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Orient Green Power Company Ltd OGPL Jump to: navigation, search Name: Orient Green Power Company Ltd (OGPL) Place: Chennai, Tamil Nadu, India Zip: 600 095 Sector: Biomass, Hydro,...

  19. Indur Green Power Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Indur Green Power Pvt Ltd Jump to: navigation, search Name: Indur Green Power Pvt. Ltd. Place: Hyderabad, Andhra Pradesh, India Zip: 500 029 Sector: Biomass Product:...

  20. Singaraya Hills Green Power Pvt Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Singaraya Hills Green Power Pvt Ltd Jump to: navigation, search Name: Singaraya Hills Green Power Pvt. Ltd. Place: Vijayawada, Andhra Pradesh, India Zip: 520 010 Sector: Biomass...

  1. Estimating externalities of biomass fuel cycles, Report 7

    SciTech Connect

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01

    This report documents the analysis of the biomass fuel cycle, in which biomass is combusted to produce electricity. The major objectives of this study were: (1) to implement the methodological concepts which were developed in the Background Document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles, and by so doing, to demonstrate their application to the biomass fuel cycle; (2) to develop, given the time and resources, a range of estimates of marginal (i.e., the additional or incremental) damages and benefits associated with selected impact-pathways from a new wood-fired power plant, using a representative benchmark technology, at two reference sites in the US; and (3) to assess the state of the information available to support energy decision making and the estimation of externalities, and by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The demonstration of methods, modeling procedures, and use of scientific information was the most important objective of this study. It provides an illustrative example for those who will, in the future, undertake studies of actual energy options and sites. As in most studies, a more comprehensive analysis could have been completed had budget constraints not been as severe. Particularly affected were the air and water transport modeling, estimation of ecological impacts, and economic valuation. However, the most important objective of the study was to demonstrate methods, as a detailed example for future studies. Thus, having severe budget constraints was appropriate from the standpoint that these studies could also face similar constraints. Consequently, an important result of this study is an indication of what can be done in such studies, rather than the specific numerical estimates themselves.

  2. Eccleshall Biomass Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Eccleshall Biomass Ltd Jump to: navigation, search Name: Eccleshall Biomass Ltd Place: Eccleshall, United Kingdom Zip: ST21 6JL Sector: Biomass Product: Developing a 2.2MW biomass...

  3. ESD Biomass Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ESD Biomass Ltd Jump to: navigation, search Name: ESD Biomass Ltd Place: Neston, United Kingdom Zip: SN13 9TZ Sector: Biomass Product: Acts as advisor to firms developing biomass...

  4. Biomass 2009 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    09 Conference Agenda Biomass 2009 Conference Agenda Biomass 2009 Conference Agenda bio2009_full_agenda.pdf (323.99 KB) More Documents & Publications Biomass 2010 Conference Agenda Biomass 2011 Conference Agenda ICAM Workshop

  5. Biomass 2010 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 Conference Agenda Biomass 2010 Conference Agenda Biomass 2010 Conference Agenda bio2010_full_agenda.pdf (299 KB) More Documents & Publications Biomass 2009 Conference Agenda Biomass 2011 Conference Agenda QTR Cornerstone Workshop 2014

  6. Environmental implications of increased biomass energy use. Final report

    SciTech Connect

    Miles, T.R. Sr.; Miles, T.R. Jr.

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  7. NREL Releases BioEnergy Atlas - a Comprehensive Biomass Mapping

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Application - News Releases | NREL NREL Releases BioEnergy Atlas - a Comprehensive Biomass Mapping Application September 28, 2010 BioEnergy Atlas, a Web portal that provides access to two bioenergy analysis and mapping tools, was released today by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The visualization screening tools, BioPower and BioFuels Atlas, allow users to layer related bioenergy data onto a single map to gather information on biomass feedstocks,

  8. Photosynthesis and Biomass Growth (7 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Photosynthesis and Biomass Growth (7 Activities) Photosynthesis and Biomass Growth (7 Activities) Below is information about the student activity/lesson plan from your search. Grades 9-12 Subject Bioenergy Summary Introduce your students to the power of plants! Photosynthesis is arguably the most important form of energy transformation and is a fundamental concept for students of all ages. Projects listed in this section should be used as an exciting starting point for both classroom and science

  9. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    SciTech Connect

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  10. Marine biomass energy project

    SciTech Connect

    Frank, J.R.; Leone, J.E.

    1980-01-01

    Off the coast of southern California, a biomass test farm is successfully cultivating giant kelp (Macrocystis pyrifera) with nutrients supplied continuously via a 1500-ft vertical polyethylene-pipe upwelling system attached to the farm structure. The research program, aimed at maximizing methane production from the anaerobic digestion of the kelp, has already achieved 75% of the maximum theoretical gas-yield levels. One critical parameter to be defined is the amount of kelp harvested as a function of crop density, harvest frequency, and upwelled-water application; more than any other consideration, the biomass yield will affect the product costs. Other important areas to study include the use of the digester effluent as a supplementary nutrient, the production of other fuels or substances, the possibility of feeding the solid effluent to animals, the establishment of a separate high-rate methanogenesis stage within the digestion process, and the prediction of the forces involved in positioning large-scale farm structures.

  11. Clean fractionation of biomass

    SciTech Connect

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

  12. FY12 Biomass Program Congressional Budget Request

    SciTech Connect

    none,

    2011-02-01

    FY12 budget and funding for the Biomass Program biomass and biorefinery systems research development and deployment.

  13. Metro Wastewater Reclamation District Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wastewater Reclamation District Biomass Facility Jump to: navigation, search Name Metro Wastewater Reclamation District Biomass Facility Facility Metro Wastewater Reclamation...

  14. NREL: Biomass Research - Thermochemical Conversion Capabilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and commercialization of biomass gasification is the integration of the gasifier with downstream syngas processing. ... Biomass Characterization Biochemical Conversion Thermochemical ...

  15. Forest Biomass Bioenergy 2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Bioenergy 2016 Bob Emory Environmental Affairs Manager - US South Weyerhaeuser Company Weyerhaeuser Company * 116 years old * Own 13.2 million acres of timberland including 7.3 million acres in the US South * 100% of our timberlands are certified * 14,000 employees * We planted 650 million trees in the last five years Tuesday, August 02, 2016 2 Weyerhaeuser Company Most Admired Companies FORTUNE Magazine, 1988-2014 World's Most Ethical Companies Ethisphere Institute, 2009-2010,

  16. Biomass Feedstocks | Bioenergy | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Feedstocks Our mission is to enable the coordinated development of biomass resources and conversion technologies by understanding the field-to-fuel impact of feedstocks on biochemical and thermochemical processes. A line graph showing the simulated distillation results of upgraded oils, divided into three sections: gasoline fraction, jet fraction, and #2 diesel fraction. The y-axis shows the mass % recovered (from 0 to 100) and the x-axis shows the distillation temperature in degrees Celsius

  17. BIOMASS-TO-ENERGY FEASIBILITY STUDY

    SciTech Connect

    Cecil T. Massie

    2002-09-03

    The purpose of this study was to assess the economic and technical feasibility of producing electricity and thermal energy from biomass by gasification. For an economic model we chose a large barley malting facility operated by Rahr Malting Co. in Shakopee, Minnesota. This plant provides an excellent backdrop for this study because it has both large electrical loads and thermal loads that allowed us to consider a wide range of sizes and technical options. In the end, eleven scenarios were considered ranging from 3.1 megawatts (MWe) to 19.8 MWe. By locating the gasification and generation at an agricultural product processing plant with large electrical and thermal loads, the expectation was that some of the limitations of stand-alone biomass power plants would be overcome. In addition, since the process itself created significant volumes of low value biomass, the hope was that most of the biomass gathering and transport issues would be handled as well. The development of low-BTU gas turbines is expected to fill a niche between the upper limit of multiple spark ignited engine set systems around 5 MWe and the minimum reasonable scale for steam turbine systems around 10 MWe.

  18. Hydrolysis of biomass material

    DOEpatents

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  19. Biomass 2012 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Agenda Biomass 2012 Agenda Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment to Bioenergy. bio2012_final_agenda.pdf (340.96 KB) More Documents & Publications Biomass 2010 Conference Agenda Biomass 2011 Conference Agenda Biomass 2013

  20. Biomass 2013 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Agenda Biomass 2013 Agenda This agenda outlines the sessions and events for Biomass 2013 in Washington, D.C., July 31-August 1. biomass_2013_agenda.pdf (322.3 KB) More Documents & Publications Biomass 2010 Conference Agenda Biomass 2012 Agenda Biomass 2009 Conference

  1. A small scale biomass fueled gas turbine engine

    SciTech Connect

    Craig, J.D.; Purvis, C.R.

    1999-01-01

    A new generation of small scale (less than 20 MWd) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth materials (such as rice hulls, cotton gin trash, nut shells, and various straws, grasses, and animal manures) that are not normally considered as fuel for power plants. This paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  2. Ridgewood Renewable Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and Egypt. Projects developed include hydro, biomass, natural gas and landfill methane gas power plants. Coordinates: 40.700725, -73.895329 Show Map Loading map......

  3. TVA - Green Power Providers | Department of Energy

    Energy.gov [DOE] (indexed site)

    from the following qualifying resources: PV, wind, hydropower, and biomass. The long term Green Power Providers program replaces the Generation Partners* pilot program. The energy...

  4. TVA - Green Power Providers | Department of Energy

    Energy.gov [DOE] (indexed site)

    the following qualifying resources: PV, wind, hydropower, and biomass. The long term Green Power Providers program replaces the Generation Partners* pilot program. The energy...

  5. A review on biomass classification and composition, cofiring issues and pretreatment methods

    SciTech Connect

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2011-08-01

    Presently around the globe there is a significant interest in using biomass for power generation as power generation from coal continues to raise environmental concerns. Biomass alone can be used for generation of power which can bring lot of environmental benefits. However the constraints of using biomass alone can include high investments costs for biomass feed systems and also uncertainty in the security of the feedstock supply due to seasonal variations and in most of the countries biomass is dispersed and the infrastructure for biomass supply is not well established. Alternatively cofiring biomass along with coal offer advantages like (a) reducing the issues related to biomass quality and buffers the system when there is insufficient feedstock quantity and (b) costs of adapting the existing coal power plants will be lower than building new systems dedicated only to biomass. However with the above said advantages there exists some technical constrains including low heating and energy density values, low bulk density, lower grindability index, higher moisture and ash content to successfully cofire biomass with coal. In order to successfully cofire biomass with coal, biomass feedstock specifications need to be established to direct pretreatment options that may include increasing the energy density, bulk density, stability during storage and grindability. Impacts on particle transport systems, flame stability, pollutant formation and boiler tube fouling/corrosion must also be minimized by setting feedstock specifications including composition and blend ratios if necessary. Some of these limitations can be overcome by using pretreatment methods. This paper discusses the impact of feedstock pretreatment methods like sizing, baling, pelletizing, briquetting, washing/leaching, torrefaction, torrefaction and pelletization and steam explosion in attainment of optimum feedstock characteristics to successfully cofire biomass with coal.

  6. FETC/EPRI BIOMASS COFIRING COOPERATIVE AGREEMENT

    SciTech Connect

    D. TILLMAN; E. HUGHES

    1998-08-01

    During April 1 st , 1998 to June 31 st , 1998, significant work was done in preparation for a series of test involving cofiring at power plants. A biomass material handling system was designed for the Seward testing, a gasification system was designed for the Allen Fossil Plant, and a test program plan was developed for testing at NIPSCO�s Bailly Station. Also completed this quarter was a cyclone combustion model that provides a color visual representation of estimated temperatures within a plant. This report summarizes the activities during the second quarter in 1998 of the FETC/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon reporting the results of testing in order to highlight the progress at utilities.

  7. Biomass process handbook

    SciTech Connect

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  8. Hydrothermal Liquefaction of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with

  9. International Biomass Conference and Expo

    Energy.gov [DOE]

    The International Biomass Conference and Expo will be held April 11–14, 2016, in Charlotte, North Carolina, and will gather bioeconomy experts across the supply chain. Bioenergy Technologies Office Technology Manager Elliott Levine will be moderating a panel titled, “The Near-Term Opportunity for Biomass as a Low-Carbon Coal Supplement or Replacement.” The panel will focus on the technological challenges and opportunities in the potential for biomass to replace coal.

  10. Northeast regional biomass program. Retrospective, 1983--1993

    SciTech Connect

    Savitt, S.; Morgan, S.

    1995-01-01

    Ten years ago, when Congress initiated the Regional Biomass Energy Program, biomass fuel use in the Northeast was limited primarily to the forest products industry and residential wood stoves. An enduring form of energy as old as settlement in the region, residential wood-burning now takes its place beside modern biomass combustion systems in schools and other institutions, industrial cogeneration facilities, and utility-scale power plants. Biomass today represents more than 95 percent of all renewable energy consumed in the Northeast: a little more than one-half quadrillion BTUs yearly, or five percent of the region`s total energy demand. Yet given the region`s abundance of overstocked forests, municipal solid waste and processed wood residues, this represents just a fraction of the energy potential the biomass resource has to offer.This report provides an account of the work of the Northeast Regional Biomass Program (NRBP) over it`s first ten years. The NRBP has undertaken projects to promote the use of biomass energy and technologies.

  11. Clean fractionation of biomass

    SciTech Connect

    1995-09-01

    The US DOE Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R&D) that uses green feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. A consortium of five DOE national laboratories has been formed with the objectives of providing industry with a broad range of expertise and helping to lower the risk of new process development through federal cost sharing. The AF program is conducting ongoing research on a clean fractionation process, designed to convert biomass into materials that can be used for chemical processes and products. The focus of the clean fractionation research is to demonstrate to industry that one technology can successfully separate all types of feedstocks into predictable types of chemical intermediates.

  12. Biomass Rapid Analysis Network (BRAN)

    SciTech Connect

    Not Available

    2003-10-01

    Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

  13. Biomass Resources and Technology Options

    Energy Saver

    ... For more information, see Wooley, et. al "Lignocellulosic Biomass to Ethanol Process Design and Economics..." NRELTP-580-2615 July, 1999 Biodiesel Biodiesel Griffin Industries, ...

  14. Quinault Comprehensive Biomass Strategy Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... QIN, ColPac, Grays Harbor Economic Development Council and ... key stakeholders in order to understand the inventory and future trends of biomass quantity and availability Selected ...

  15. System and process for biomass treatment

    SciTech Connect

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  16. Catalytic Tar Reforming for Cleanup and Conditioning of Biomass-derived Syngas

    SciTech Connect

    Dayton, D. C.; Bain, R. L.; Phillips, S. D.; Magrini-Bair, K.; Feik, C. J.

    2006-01-01

    Biomass gasification is being investigated to produce clean syngas from biomass or biorefinery residues as an intermediate that can be used directly as a fuel for integrated heat and power production or further refined and upgraded by various processing technologies. Conditioning of biomass-derived syngas, with an emphasis on tar reforming, to make it a suitable feed for high temperature, pressurized liquid fuels synthesis is the goal of current research efforts.

  17. GASIFICATION BASED BIOMASS CO-FIRING

    SciTech Connect

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter

  18. Biomass Webinar Text Version | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. DOE Office of Indian Energy Foundational Course Webinar on Biomass: Text Version (153.94 KB) More Documents & Publications Biomass Webinar Presentation Slides Assessing Energy Resources Webinar Text Version Transcript: Biomass Clean Cities Webinar - Workforce Development

  19. Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards

    Energy.gov [DOE]

    The Energy Department and the American Public Power Association named Oklahoma Municipal Power Authority and Silicon Valley Power as the winners of the 2014 Public Power Wind Awards.

  20. Process for concentrated biomass saccharification

    DOEpatents

    Hennessey, Susan M.; Seapan, Mayis; Elander, Richard T.; Tucker, Melvin P.

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  1. Port Graham Community Biomass Heat Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Community Biomass Heat Project Energy Efficiency and Renewable Energy DE- EE0005637 Patrick Norman, Port Graham Village Council and Charles Sink, Chugachmiut What is the project Who and where we are Nanwalek Tale of two grants DOE EFRE DE-EE0005637 * Start Date 6/1/2012 * End Date 12/31/2014 * Revision Date 9/10/2012 * Richmond Engineering, Inc./ Charles Nash Forestry Consulting hired 6/13/2014 AEA Grant # 7040061 * Start Date 7/1/2011 * End Date 12/31/2013 * Revision Date 2/1/2013 * ChenaPower,

  2. Environmental control technology for biomass flash pyrolysis

    SciTech Connect

    Harkness, J.B.L.; Doctor, R.D.; Seward, W.H.

    1980-01-01

    The rapid commercialization of biomass gasification and pyrolysis technologies will raise questions concerning the environmental impacts of these systems and the associated costs for appropriate control technologies. This study concentrates on characterizing the effluent emissions and control technologies for a dual fluid-bed pyrolysis unit run by Arizona State University, Tempe, Arizona. The ASU system produces a raw product gas that is passed through a catalytic liquefaction system to produce a fuel comparable to No. 2 fuel oil. Argonne National Laboratory is conducting a program that will survey several biomass systems to standardize the sampling techniques, prioritize standard analyses and develop a data base so that environmental issues later may be addressed before they limit or impede the commercialization of biomass gasification and pyrolysis technologies. Emissions will be related to both the current and anticipated emissions standards to generate material balances and set design parameters for effluent treatment systems. This will permit an estimate to be made of the capital and operating costs associated with these technologies.

  3. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  4. Conditioning biomass for microbial growth

    DOEpatents

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  5. Production of New Biomass/Waste-Containing Solid Fuels

    SciTech Connect

    Glenn A. Shirey; David J. Akers

    2005-09-23

    . In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet

  6. Treatment of biomass to obtain fermentable sugars

    DOEpatents

    Dunson, Jr., James B.; Tucker, Melvin; Elander, Richard; Hennessey, Susan M.

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  7. Biomass Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources that are used directly as a fuel, or converted to another form or energy product that are available on a renewable basis are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, algae, biomass processing residues, municipal waste, and animal waste. Dedicated Energy Crops Dedicated energy crops are non-food

  8. Biomass-Derived Hydrogen from a Thermally Ballasted Gasifier

    SciTech Connect

    2006-09-01

    Gasification offers an efficient approach for producing fuels and products from a wide variety of biomass. The object of this Congressionally-mandated project is to develop an indirectly-heated gasification system (ballasted gasifier) for converting switch grass into a hydrogen-rich gas suitable for powering fuel cells.

  9. WeBiomass Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zip: 05701 Region: Greater Boston Area Sector: Biomass Product: Commercial Biomass Boiler Systems Website: www.webiomass.com Coordinates: 43.58070919775, -72.971301209182...

  10. Huntington Resource Recovery Facility Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  11. Biomass Indirect Liquefaction Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation Biomass Indirect Liquefaction Presentation TRI Technology Update & IDL R&D ... ClearFuels-Rentech Pilot-Scale Biorefinery Biomass Indirect Liquefaction Presentation ...

  12. BSCL Use Plan: Solving Biomass Recalcitrance

    SciTech Connect

    Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

    2005-08-01

    Technical report describing NREL's new Biomass Surface Characterization Laboratory (BSCL). The BSCL was constructed to provide the most modern commercial surface characterization equipment for studying biomass surfaces.

  13. Vanadium catalysts break down biomass for fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the...

  14. Biomass 2013: Welcome | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Welcome Biomass 2013: Welcome Welcome and Introductory Keynotes Valerie Reed, Acting ... September 2014 Monthly News Blast BETO Monthly News Blast, August 2013r Biomass 2012 ...

  15. DOE 2014 Biomass Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE 2014 Biomass Conference Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, ...

  16. Bamboo: An Overlooked Biomass Resource? (Technical Report) |...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; 01 COAL, LIGNITE, AND PEAT; AGRICULTURAL WASTES; ASH CONTENT; BAMBOO; BIOMASS; ENERGY RECOVERY ...

  17. Providing the Resource: Biomass Feedstocks & Logistics

    SciTech Connect

    2010-03-01

    A summary of Biomass Program resource assessment activities, feedstock trials, and harvest, storage, handling, and transport activities to support biomass feedstock development and use.

  18. Bioware Biomass Thermoconversion Technologies | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Bioware Biomass Thermoconversion Technologies Jump to: navigation, search Name: Bioware - Biomass Thermoconversion Technologies Place: Campinas, Brazil Zip: 13084-971 Product: The...

  19. Rocklin Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    References USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleRocklinBiomassFacility&oldid398013" Categories: Energy Generation Facilities Stubs...

  20. California Biomass Collaborative Energy Cost Calculators | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Biomass Collaborative Energy Cost Calculators AgencyCompany...

  1. Prairie City Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titlePrairieCityBiomassFacility&oldid397964" Feedback Contact needs updating Image needs updating...

  2. Chateaugay Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleChateaugayBiomassFacility&oldid397318" Feedback Contact needs updating Image needs updating...

  3. Riddle Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleRiddleBiomassFacility&oldid398000" Feedback Contact needs updating Image needs updating...

  4. Bieber Plant Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBieberPlantBiomassFacility&oldid397188" Feedback Contact needs updating Image needs updating...

  5. Bayport Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBayportBiomassFacility&oldid397176" Feedback Contact needs updating Image needs updating...

  6. Tracy Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Jump to: navigation, search Name Tracy Biomass Facility Facility Tracy Sector Biomass Owner US Renewables Group Location Tracy, California Coordinates 37.7396513,...

  7. St. Paul Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleSt.PaulBiomassFacility&oldid398161" Feedback Contact needs updating Image needs updating...

  8. SPI Anderson Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleSPIAndersonBiomassFacility&oldid398041" Feedback Contact needs updating Image needs updating...

  9. Alexandria Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleAlexandriaBiomassFacility&oldid397132" Feedback Contact needs updating Image needs updating...

  10. Biomass Combustion Systems Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Combustion Systems Inc Retrieved from "http:en.openei.orgwindex.php?titleBiomassCombustionSystemsInc&oldid768602" Feedback Contact needs updating Image...

  11. Mendota Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleMendotaBiomassFacility&oldid397757" Feedback Contact needs updating Image needs updating...

  12. Baton Rogue Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBatonRogueBiomassFacility&oldid397172" Feedback Contact needs updating Image needs updating...

  13. Madera Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleMaderaBiomassFacility&oldid397721" Feedback Contact needs updating Image needs updating...

  14. Okeelanta 1 Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleOkeelanta1BiomassFacility&oldid397873" Feedback Contact needs updating Image needs updating...

  15. New Meadows Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name New Meadows Biomass Facility Facility New Meadows Sector Biomass Owner Tamarack Energy Location New Meadows, Idaho Coordinates 44.9712808,...

  16. Oroville Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleOrovilleBiomassFacility&oldid397894" Feedback Contact needs updating Image needs updating...

  17. Multitrade Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleMultitradeBiomassFacility&oldid397817" Feedback Contact needs updating Image needs updating...

  18. Biomass Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resources Jump to: navigation, search Name: Biomass Energy Resources Place: Dallas, Texas Product: A start up fuel processing technology References: Biomass Energy Resources1...

  19. Ashland Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleAshlandBiomassFacility&oldid397156" Feedback Contact needs updating Image needs updating...

  20. Chowchilla Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleChowchillaBiomassFacility&oldid397324" Feedback Contact needs updating Image needs updating...

  1. Biomass Scenario Model | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    National Renewable Energy Laboratory Partner: Department of Energy (DOE) Office of the Biomass Program Sector: Energy Focus Area: Biomass Phase: Determine Baseline Topics:...

  2. Greenville Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleGreenvilleBiomassFacility&oldid397531" Feedback Contact needs updating Image needs updating...

  3. NREL: Learning - Student Resources on Biomass Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass Energy The following resources can provide you with more information on biomass energy. Alternative Fuels Data Center U.S. Department of Energy's Office of Energy...

  4. Duluth Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleDuluthBiomassFacility&oldid397416" Feedback Contact needs updating Image needs updating...

  5. Delano Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleDelanoBiomassFacility&oldid397390" Feedback Contact needs updating Image needs updating...

  6. Mecca Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca Sector Biomass Owner Colmac Energy Location Mecca, California Coordinates 33.571692,...

  7. Burlington Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBurlingtonBiomassFacility&oldid397249" Feedback Contact needs updating Image needs updating...

  8. Woodland Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Woodland Biomass Facility Facility Woodland Sector Biomass Owner Xcel Energy Location Woodland, California Coordinates 38.6785157,...

  9. Williams Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleWilliamsBiomassFacility&oldid398342" Feedback Contact needs updating Image needs updating...

  10. Shasta 1 Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleShasta1BiomassFacility&oldid398090" Feedback Contact needs updating Image needs updating...

  11. Improved Biomass Cooking Stoves | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    TOOL Name: Improved Biomass Cooking Stoves AgencyCompany Organization: various Sector: Energy Focus Area: Biomass Phase: Determine Baseline, Evaluate Options, Prepare a Plan,...

  12. Bridgewater Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBridgewaterBiomassFacility&oldid397233" Feedback Contact needs updating Image needs updating...

  13. Reliant Energy Renewables Atascosita Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Renewables Atascosita Biomass Facility Jump to: navigation, search Name Reliant Energy Renewables Atascosita Biomass Facility Facility Reliant Energy Renewables Atascosita...

  14. Dinuba Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleDinubaBiomassFacility&oldid397408" Feedback Contact needs updating Image needs updating...

  15. Category:Biomass | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCategory:Biomass&oldid382520" Feedback Contact needs updating Image needs updating Reference...

  16. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  17. Lyonsdale Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Lyonsdale Biomass Facility Facility Lyonsdale Sector Biomass Owner CH Energy Group Location Lyonsdale, New York Coordinates 43.61861,...

  18. Aberdeen Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleAberdeenBiomassFacility&oldid397114" Feedback Contact needs updating Image needs updating...

  19. Jeanerette Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleJeaneretteBiomassFacility&oldid397618" Feedback Contact needs updating Image needs updating...

  20. Fresno Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleFresnoBiomassFacility&oldid397486" Feedback Contact needs updating Image needs updating...

  1. ARM - Biomass Burning Observation Project (BBOP)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

  2. Fuels and Chemicals from Lignocellulosic Biomass: Valorization...

    Office of Scientific and Technical Information (OSTI)

    Fuels and Chemicals from Lignocellulosic Biomass: Valorization of Lignin. Citation Details In-Document Search Title: Fuels and Chemicals from Lignocellulosic Biomass: Valorization ...

  3. Federal Biomass Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf (173.19 KB) More Documents & ...

  4. Fuels and Chemicals from Lignocellulosic Biomass: Valorization...

    Office of Scientific and Technical Information (OSTI)

    Biomass: Valorization of Lignin Mike Kent Deconstruction Division Joint BioEnergy Institute Outline 1. Introduction: -fuels and chemicals from Ngnocellulosic biomass -need ...

  5. Conditioning biomass for microbial growth (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Conditioning biomass for microbial growth Title: Conditioning biomass for microbial growth You are accessing a document from the Department of Energy's (DOE) DOE Patents. This ...

  6. Genetic manipulation of lignocellulosic biomass for bioenergy...

    Office of Scientific and Technical Information (OSTI)

    biomass for bioenergy Citation Details In-Document Search This content will become publicly available on September 7, 2017 Title: Genetic manipulation of lignocellulosic biomass ...

  7. Quinault Indian Nation - Comprehensive Biomass Strategy Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Status Report Quinault Indian Nation Comprehensive Biomass Strategy Project In Partnership ... energy) * Develop a long-term biomass strategy consistent with the long-term goals of ...

  8. Biomass Scenario Model Scenario Library: Definitions, Construction...

    Office of Scientific and Technical Information (OSTI)

    S. 09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; 29 ENERGY PLANNING, POLICY AND ECONOMY BIOMASS; BIOFUEL; BSM; SYSTEM DYNAMICS; BIOFUEL INCENTIVES; SCENARIOS; Bioenergy;...

  9. Biomass for energy: Supply prospects

    SciTech Connect

    Hall, D.O.; Rosillo-Calle, F.; Woods, J.; Williams, R.H.

    1993-12-31

    Biomass for energy can be obtained from residues of ongoing agricultural and forest-product industries, from harvesting forests, and from dedicated plantations. The harvesting of forests for biomass is likely to be limited by environmental concerns. Over the next couple of decades new bioenergy industries will be launched primarily using residues as feedstocks. Subsequently, the industrial base will shift to plantations, the largest potential source of biomass. The most promising sites for plantations are deforested and otherwise degraded lands in developing countries and excess croplands in the industrialized countries. Revenues from the sale of biomass crops grown on plantations established on degraded lands can help finance the restoration of these lands. Establishing plantations on excess croplands can be a new livelihood to farmers who might otherwise abandon their land because of foodcrop overproduction. In either case, biomass plantations can, with careful planning, substantially improve these lands ecologically relative to their present uses. But a substantial and sustained research and development effort is needed to ensure the realization and sustainability of high yields under a wide range of growing conditions. Moreover, the establishment and maintenance of biomass plantations must be carried out in the framework of sustainable economic development in ways that are acceptable and beneficial to the local people. Ultimately, land and water resource constraints will limit the contributions that biomass can make as an energy source in advanced societies. But biomass energy can nevertheless make major contributions to sustainable development before these limits are reached, if biomass is grown productively and sustainably and is efficiently converted to modern energy carriers that are used in energy-efficient end-use technologies. 88 refs., 5 figs., 13 tabs.

  10. Economic development through biomass system integration: Volume 1

    SciTech Connect

    DeLong, M.M.

    1995-10-01

    This report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners. Chapters describe alfalfa basics, production risks, production economics, transportation and storage, processing, products, market analysis, business analysis, environmental impact, and policy issues. 69 figs., 63 tabs.

  11. THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION

    SciTech Connect

    M. G. McKellar; G. L. Hawkes; J. E. O'Brien

    2008-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

  12. Diesel fuel from biomass

    SciTech Connect

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  13. Biothermal gasification of biomass

    SciTech Connect

    Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

    1980-01-01

    The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

  14. Investigating and Using Biomass Gases

    Office of Energy Efficiency and Renewable Energy (EERE)

    Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

  15. Biomass Gasification Research Facility Final Report

    SciTech Connect

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    this low-pressure, low-temperature process and successfully analyzed by these devices. In late 2005, GTI conducted intensive field characterizations of biomass-derived syngas at GTI’s FFTF during a concurrent test of pelletized wood-fueled gasification and catalyst performance investigated under Cooperative Agreement DE-FG36-04GO14314. In 2006 GTI continued its sampling development and verification activities at GTI’s FFTF with a follow-on set of calibration measurements. The combination of the sample conditioning and sample stream transport methods developed under Cooperative Agreement DE-FC36-03GO13175, and the assembly and coordination of gas analyzers and data collection and analyses under Cooperative Agreement DE-FC36-02GO12024, have provided a new, powerful, enabling capability for on-line data characterizations of biomass- and coal-derived syngas from thermochemical conversion process streams.

  16. Fast-wave Power Flow Along SOL Field Lines In NSTX nd The Associated Power Deposition Profile Across The SOL In Front Of The Antenna

    SciTech Connect

    Perkins, Roy

    2013-06-21

    Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface (LCFS) as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. Advanced RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER.

  17. Advanced Biomass to Gasoline Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Temperature ( o C) Reaction Time (Sec) Enzymatic Reactions Exelus Biomass-to-Gasoline (BTG) Gasification Pyrolysis 0.1 Grant EE0002991 Exelus 16 Innovations 0.00001 0.0001 ...

  18. Biomass Basics | Department of Energy

    Energy Saver

    Biomass currently supplies about 3% of total U.S. energy consumption in the form of electricity, process heat, and transportation fuels-all of which help to diversify the nation's ...

  19. 2011 Biomass Program Peer Review

    SciTech Connect

    Rossmeissl, Neil P.

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Peer Review meeting.

  20. Washington State biomass data book

    SciTech Connect

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.