National Library of Energy BETA

Sample records for biomass conversion technology

  1. Suite of Cellulase Enzyme Technologies for Biomass Conversion...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Suite of Cellulase Enzyme Technologies for Biomass Conversion National Renewable Energy Laboratory...

  2. Integrating and Piloting Lignocellulose Biomass Conversion Technology (Presentation)

    SciTech Connect

    Schell, D. J.

    2009-06-15

    Presentation on NREL's integrated biomass conversion capabilities. Presented at the 2009 Advanced Biofuels Workshop in Denver, CO, Cellulosic Ethanol session.

  3. Biomass Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Feedstocks to Final Products To efficiently convert algae, diverse types of cellulosic biomass, and emerging feedstocks into renewable fuels, the U.S. Department of Energy (DOE) supports research, development, and demonstration of technologies. This research will help ensure that these renewable fuels are compatible with today's vehicles and infrastructure. Advanced biofuels are part of the United States' "all-of-the-above" energy strategy to develop domestic energy resources and win

  4. Biotechnological Routes to Biomass Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biotechnological Routes to Biomass Conversion James D. McMillan National Bioenergy Center National Renewable Energy Laboratory DOE/NASULGC Biomass & Solar Energy Workshops August 3-4, 2004 While the growing need for sustainable electric power can be met by other renewables... The Unique Role of Biomass Biomass is our only renewable source of carbon-based fuels and chemicals Biomass Conversion Technology "Platforms" Fuels, Chemicals, & Materials Thermochemical Platform

  5. A summary of the status of biomass conversion technologies and opportunities for their use in developing countries

    SciTech Connect

    Waddle, D.B.; Perlack, R.D. ); Wimberly, J. )

    1990-01-01

    Biomass plays a significant role in energy use in developing countries: however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in several developing countries, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. This paper reviews the technological status of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries. Market opportunities, constraints, and technology developments are also discussed. 25 refs., 1 fig., 1 tab.

  6. Atlantic Biomass Conversions Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Conversions Inc Jump to: navigation, search Name: Atlantic Biomass Conversions Inc Place: Frederick, Maryland Sector: Biomass Product: Atlantic Biomass Conversions is...

  7. Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report

    SciTech Connect

    1997-07-01

    The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

  8. Biomass thermochemical conversion program. 1985 annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  9. Biomass thermochemical conversion program: 1987 annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  10. Enzymes for improved biomass conversion

    DOEpatents

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  11. Biomass Thermochemical Conversion Program: 1986 annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  12. High-Yield Feedstock and Biomass Conversion Technology for Renewable Energy and Economic Development

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Andrew Hashimoto University of Hawaii This presentation does not contain any proprietary, confidential, or otherwise restricted information Develop sustainable, renewable energy systems for Hawaii and the tropics through: * Biomass feedstocks that grow year-round. * Feedstock characteristics that impact conversion processes. * Renewable energy projects that reduce dependence on fossil fuels. * Impact of renewable energy projects on rural communities. This project addresses the BETO goal to

  13. Fundamentals of thermochemical biomass conversion

    SciTech Connect

    Overend, R.P.; Milne, T.A.; Mudge, L.

    1985-01-01

    The contents of this book are: Wood and biomass ultrastructure; Cellulose, hemicellulose and extractives; Lignin; Pretreatment of biomass for thermochemical biomass conversion; A kinetic isotope effect in the thermal dehydration of cellobiose; Gasification and liquefaction of forest products in supercritical water; Thermochemical fractionation and liquefaction of wood; The pyrolysis and gasification of wood in molten hydroxide eutectics; Influence of alkali carbonates on biomass volatilization; Flash pyrolysis of biomass with reactive and non-reactive gases; Pyrolytic reactions and biomass; Product formation in the pyrolysis of large wood particles; The pyrolysis under vacuum of aspen poplar; Simulation of kraft lignin pyrolysis; and Kinetics of wood gasification by carbon dioxide and steam.

  14. NREL: Biomass Research - Thermochemical Conversion Capabilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and commercialization of biomass gasification is the integration of the gasifier with downstream syngas processing. ... Biomass Characterization Biochemical Conversion Thermochemical ...

  15. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  16. Conversion Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion Technologies Conversion Technologies The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts and biopower. The diversity of the biomass resource requires the development of multiple conversion technologies that can efficiently deal with the broad range of feedstock materials, as well as their physical and chemical characteristics. The Office

  17. Biomass Program 2007 Accomplishments - Thermochemical Conversion Platform

    SciTech Connect

    none,

    2009-10-27

    This document details the accomplishments of the Biomass Program Thermochemical Conversion Platform in 2007.

  18. Biomass Program 2007 Accomplishments - Biochemical Conversion Platform

    SciTech Connect

    none,

    2009-10-27

    This document details accomplishments of the Biomass Program Biochemical Conversion Platform accomplishments in 2007.

  19. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    SciTech Connect

    Hashimoto, Andrew G.; Crow, Susan; DeBeryshe, Barbara; Ha, Richard; Jakeway, Lee; Khanal, Samir; Nakahata, Mae; Ogoshi, Richard; Shimizu, Erik; Stern, Ivette; Turano, Brian; Turn, Scott; Yanagida, John

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  20. Biomass Thermochemical Conversion Program. 1984 annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  1. New process speeds conversion of biomass to fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    conditions. The journal Catalysis Science & Technology published the research. Trash to Treasure "Efficient conversion of non-food biomass into fuels and chemical...

  2. New process speeds conversion of biomass to fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    & Technology published the research. Trash to Treasure "Efficient conversion of non-food biomass into fuels and chemical feedstocks could reduce society's dependence on...

  3. Biomass conversion processes for energy and fuels

    SciTech Connect

    Sofer, S.S.; Zaborsky, O.R.

    1981-01-01

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  4. Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: A system dynamics perspective

    SciTech Connect

    Vimmerstedt, Laura J.; Bush, Brian W.; Hsu, Dave D.; Inman, Daniel; Peterson, Steven O.

    2014-08-12

    The Biomass Scenario Model (BSM) is a system-dynamics simulation model intended to explore the potential for rapid expansion of the biofuels industry. The model is not predictive — it uses scenario assumptions based on various types of data to simulate industry development, emphasizing how incentives and technological learning-by-doing might accelerate industry growth. The BSM simulates major sectors of the biofuels industry, including feedstock production and logistics, conversion, distribution, and end uses, as well as interactions among sectors. The model represents conversion of biomass to biofuels as a set of technology pathways, each of which has allowable feedstocks, capital and operating costs, allowable products, and other defined characteristics. This study and the BSM address bioenergy modeling analytic needs that were identified in recent literature reviews. Simulations indicate that investments are most effective at expanding biofuels production through learning-by-doing when they are coordinated with respect to timing, pathway, and target sector within the biofuels industry. Effectiveness metrics include timing and magnitude of increased production, incentive cost and cost effectiveness, and avoidance of windfall profits. Investment costs and optimal investment targets have inherent risks and uncertainties, such as the relative value of investment in more-mature versus less mature pathways. These can be explored through scenarios, but cannot be precisely predicted. Dynamic competition, including competition for cellulosic feedstocks and ethanol market shares, intensifies during times of rapid growth. Ethanol production increases rapidly, even up to Renewable Fuel Standards-targeted volumes of biofuel, in simulations that allow higher blending proportions of ethanol in gasoline-fueled vehicles. Published 2014. This document is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts, Biorefining published by John Wiley

  5. Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: A system dynamics perspective

    DOE PAGES [OSTI]

    Vimmerstedt, Laura J.; Bush, Brian W.; Hsu, Dave D.; Inman, Daniel; Peterson, Steven O.

    2014-08-12

    The Biomass Scenario Model (BSM) is a system-dynamics simulation model intended to explore the potential for rapid expansion of the biofuels industry. The model is not predictive — it uses scenario assumptions based on various types of data to simulate industry development, emphasizing how incentives and technological learning-by-doing might accelerate industry growth. The BSM simulates major sectors of the biofuels industry, including feedstock production and logistics, conversion, distribution, and end uses, as well as interactions among sectors. The model represents conversion of biomass to biofuels as a set of technology pathways, each of which has allowable feedstocks, capital and operatingmore » costs, allowable products, and other defined characteristics. This study and the BSM address bioenergy modeling analytic needs that were identified in recent literature reviews. Simulations indicate that investments are most effective at expanding biofuels production through learning-by-doing when they are coordinated with respect to timing, pathway, and target sector within the biofuels industry. Effectiveness metrics include timing and magnitude of increased production, incentive cost and cost effectiveness, and avoidance of windfall profits. Investment costs and optimal investment targets have inherent risks and uncertainties, such as the relative value of investment in more-mature versus less mature pathways. These can be explored through scenarios, but cannot be precisely predicted. Dynamic competition, including competition for cellulosic feedstocks and ethanol market shares, intensifies during times of rapid growth. Ethanol production increases rapidly, even up to Renewable Fuel Standards-targeted volumes of biofuel, in simulations that allow higher blending proportions of ethanol in gasoline-fueled vehicles. Published 2014. This document is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts, Biorefining published by John

  6. Conversion of Biomass Sugars via Fermentation - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conversion Technologies Conversion Technologies The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts and biopower. The diversity of the biomass resource requires the development of multiple conversion technologies that can efficiently deal with the broad range of feedstock materials, as well as their physical and chemical characteristics. The Office

  7. Pretreatment Methods for Biomass Conversion into Biofuels and Biopolymers -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Pretreatment Methods for Biomass Conversion into Biofuels and Biopolymers National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing SummaryHydrolysis of lignocellulosic biomass using an acid catalyst to produce sugars has been known for decades but can be costly and requires special equipment. The hydrolyzed sugars themselves are somewhat labile to the

  8. Biological Conversion of Sugars to Hydrocarbons Technology Pathway...

    Office of Scientific and Technical Information (OSTI)

    This technology pathway case investigates the biological conversion of biomass-derived ... Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Biomass Program ...

  9. Overview of biomass technologies

    SciTech Connect

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  10. Biomass thermal conversion research at SERI

    SciTech Connect

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  11. 2011 Biomass Program Platform Peer Review: Thermochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical ... experts at the U.S. Department of Energy Biomass Programs Thermochemical Conversion ...

  12. Better Biomass Conversion with Recyclable GVL Solvent - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal Better Biomass Conversion with Recyclable GVL Solvent Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary To recover useful carbohydrates locked in biomass, molecular bonds must be broken while avoiding further reaction of the resulting glucose and xylose sugars. This is a challenge because glucose can degrade quicker than it is produced. Fast, hot reactions try to minimize such degradation, but are impractical. Expensive catalysts

  13. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae...

    Office of Environmental Management (EM)

    Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D ... chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. ...

  14. A Single Multi-Functional Enzyme for Efficient Biomass Conversion - Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search A Single Multi-Functional Enzyme for Efficient Biomass Conversion National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Lignocellulosic biomass is an abundant source of fermentable sugars, and biofuels derived from these renewable sources represent one of the best alternatives to petroleum-based fuels. Efficient conversion of lignocellulosic biomass,

  15. Biomass conversion to mixed alcohols

    SciTech Connect

    Holtzapple, M.T.; Loescher, M.; Ross, M.

    1996-10-01

    This paper discusses the MixAlco Process which converts a wide variety of biomass materials (e.g. municipal solid waste, sewage sludge, agricultural residues) to mixed alcohols. First, the biomass is treated with lime to enhance its digestibility. Then, a mixed culture of acid-forming microorganisms converts the lime-treated biomass to volatile fatty acids (VFA) such as acetic, propionic, and butyric acids. To maintain fermentor pH, a neutralizing agent (e.g. calcium carbonate or lime) is added, so the fermentation actually produces VFA salts such as calcium acetate, propionate, and butyrate. The VFA salts are recovered and thermally converted to ketones (e.g. acetone, methylethyl ketone, diethyl ketone) which are subsequently hydrogenated to mixed alcohols (e.g. isopropanol, isobutanol, isopentanol). Processing costs are estimated at $0.72/gallon of mixed alcohols making it potentially attractive for transportation fuels.

  16. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  17. Catalytic Conversion of Biomass-derived Feedstock (HMF) into Value Added

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Chemicals and Biofuels - Energy Innovation Portal Industrial Technologies Industrial Technologies Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Catalytic Conversion of Biomass-derived Feedstock (HMF) into Value Added Chemicals and Biofuels Colorado State University Contact CSU About This Technology Technology Marketing Summary A catalytic reaction system by which the biomass-derived feedstock chemical HMF can be upgraded into a higher carbon content

  18. Microbial conversion of biomass to methane

    SciTech Connect

    Chynoweth, D.P.

    1981-01-01

    Laboratory studies have investigated the anaerobic digestion of a variety of feedstocks including sea kelp, water hyacinth, terrestrial herbaceous and woody plants, sewage sludge, municipal solid waste, and biomass-organic waste blends. The results of these and other studies are used to illustrate key factors which influence methane production rates and yields, including feed organic composition, nutrients, inoculum, temperature, retention time, feed concentration, particle size, and mixing. A new process recently developed which combines biological and thermal operations for conversion of biomass to substitute natural gas is described.

  19. 2011 Biomass Program Platform Peer Review: Biochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent ...

  20. Direct Conversion Technology

    SciTech Connect

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  1. Direct conversion technology

    SciTech Connect

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  2. NETL Carbon Capture Technologies to Be Used in Commercial Biomass-to-Biofuel Conversion Process with Power Generation

    Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL) has granted a license for two patented sorbent technologies that capture carbon dioxide (CO2) from streams of mixed gases and enable cleaner, more-efficient energy production from renewable fuels.

  3. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  4. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy.gov [DOE] (indexed site)

    Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates ...

  5. Hydrogen Production: Microbial Biomass Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Microbial Biomass Conversion Hydrogen Production: Microbial Biomass Conversion Photo of a fermentation reactor Microbial biomass conversion processes take advantage of the ability of microorganisms to consume and digest biomass and release hydrogen. Depending on the pathway, this research could result in commercial-scale systems in the mid- to long-term timeframe that could be suitable for distributed, semi-central, or central hydrogen production scales, depending on the feedstock used. How

  6. Conversion of Lignocellulosic Biomass to Ethanol Butyl Acrylate

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate March 25, 2015 Principal Investigator Thomas P. Binder ARCHER DANIELS MIDLAND COMPANY 2 Where does ADM fit with the IBR? * Ensuring a supply of technology for future growth is a priority for ADM Research * Corn stover utilization may enable continued growth in starch supply while starting a new industry around a currently underutilized material James R Randall Research Center Decatur, IL ARCHER DANIELS MIDLAND COMPANY 3 Quad

  7. New process speeds conversion of biomass to fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nancy Ambrosiano Communications Office (505) 667-0471 Email Efficient conversion of non-food biomass into fuels and chemical feedstocks could reduce society's dependence on...

  8. Integrated Biorefinery for conversion of Biomass to Ethanol,...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biorefinery for conversion of Biomass to Ethanol, Synthesis Gas, and Heat March 25, 2015 ... Louis MO Subsidiary of Abengoa SA, Spain Ethanol facilities in Nebraska, Kansas, New ...

  9. Biomass Feed and Gasification

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass Feed and Gasification The Biomass Feed and Gasification Key Technology will advance scientific knowledge of the feeding and conversion of biomass and coal-biomass mixtures ...

  10. Bioware Biomass Thermoconversion Technologies | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Bioware Biomass Thermoconversion Technologies Jump to: navigation, search Name: Bioware - Biomass Thermoconversion Technologies Place: Campinas, Brazil Zip: 13084-971 Product: The...

  11. NETL Carbon Capture Technologies to Be Used in CommercialBiomass...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Carbon Capture Technologies to Be Used in Commercial Biomass-to-Biofuel Conversion Process with Power Generation NETL Carbon Capture Technologies to Be Used in Commercial ...

  12. Cellulase Enzymes for the Conversion of Biomass to Biofuels and Chemicals -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Cellulase Enzymes for the Conversion of Biomass to Biofuels and Chemicals Improvements to Saccharification Enzymes allow for a faster, more stable and more economical process for cellulose breakdown. National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing SummaryAll plant matter on earth consists of long insoluable chains of covalently bonded glucose

  13. Cellulase Enzymes for the Conversion of Biomass to Biofuels and Chemicals -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Cellulase Enzymes for the Conversion of Biomass to Biofuels and Chemicals Superactive Cellulase Formulation Using Cellobiohydrolase-1 From Penicillium Funiculosum National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Cellulose is the most abundant renewable fuel resource on Earth, accounting for about half of the organic material in the biosphere, and is the major polysaccharide found in plant biomass. Cellulosic biomass

  14. New process speeds conversion of biomass to fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into fuels. February 7, 2013 Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the production of energy-dense fuels, so these linear chains can then be converted

  15. New process speeds conversion of biomass to fuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into fuels. February 7, 2013 Artist's conception of the process: Researchers open up a component of the biofuel molecule, called a furan ring, to make it easier to chemically alter. Opening these rings into linear chains is a necessary step in the production of energy-dense fuels, so these linear chains can then be converted

  16. 2011 Biomass Program Platform Peer Review: Biochemical Conversion |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program's Biochemical Platform Review meeting, held on February 14-16, 2011, at the Crowne Plaza Hotel in Downtown Denver, Colorado. 2011_biochem_review.pdf (2.31 MB) More Documents & Publications 2011 Biomass Program Peer

  17. Biomass energy conversion and utilization in the developing countries

    SciTech Connect

    Bush, M.

    1985-05-01

    Information on the conversion and use of biomass energy is summarized and pictorially illustrated in this manual. Section I presents the basic principles of anaerobic digestion and shows how to design and construct biogas plants. Topics covered include: the digestion process; carbon-nitrogen ratio; temperature dependency; Indian- and Chinese-type and horizontal digesters; alternative designs; manure production; gas production and use; cooking; lighting; refrigeration; shaft power; power generation; waste heat recovery; sludge use. Health, economic/financial, policy, and socio-economic aspects are also noted, and the construction details, design, and cost of a 4-cubic-meter Chinese-type digester are included. Subsequent sections treat biomass gasification (covering gasifier types, systems, fuels, sizing; uses in stationary engines, process heat, electrical power, and vehicle propulsion; economic and deforestation issues) and the production of fuel alcohol (raw materials, production technology, stillage digestion, ethanol fuel, costs).

  18. Biomass Program 2007 Accomplishments - Other Technologies

    SciTech Connect

    none,

    2009-10-28

    This document details the accomplishments of the Biomass Program Biodiesel and Other Technologies Platform in 2007.

  19. 2011 Biomass Program Platform Peer Review: Thermochemical Conversion |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Thermochemical Conversion Platform Review meeting, held on February 16...18, 2011, at the Crowne Plaza Hotel in Downtown Denver, Colorado." 2011_thermochem_review.pdf (2.58 MB) More Documents &

  20. Rapid Solar-Thermal Conversion of Biomass to Syngas - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contact CU About This Technology Technology Marketing Summary The invention provides processes that perform biomass gasification or pyrolysis for production of hydrogen, synthesis ...

  1. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol

    SciTech Connect

    2011-05-02

    The U.S. Department of Energy (DOE) promotes the production of ethanol and other liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in the program, the National Renewable Energy Laboratory (NREL) investigates the production economics of these fuels.

  2. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons

    SciTech Connect

    Davis, R.; Tao, L.; Scarlata, C.; Tan, E. C. D.; Ross, J.; Lukas, J.; Sexton, D.

    2015-03-01

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  3. Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop

    SciTech Connect

    Hartley, J.; Tokarevsky, V.

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

  4. NREL: Biomass Research - Biochemical Conversion Capabilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL researchers are working to improve the efficiency and economics of the biochemical ... that can coferment all the sugars in biomass to improve ethanol production economics. ...

  5. NREL: Biomass Research - Biochemical Conversion Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL's projects in biochemical conversion involve three ... yeast and bacteria) Processing the fermentation product ... Bioprocess Integration Researchers are refining a ...

  6. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    SciTech Connect

    Grabowski, Paul E.

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.

  7. Enzymes for improved biomass conversion (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Enzymes for improved biomass conversion Citation Details In-Document Search Title: ... DOE Contract Number: AC36-08GO28308 Resource Type: Patent Resource Relation: Patent File ...

  8. 2011 Biomass Program Platform Peer Review: Biochemical Conversion

    SciTech Connect

    Pezzullo, Leslie

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Biochemical Conversion Platform Review meeting.

  9. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Advanced Conversion Roadmap Workshop Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels

  10. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E. C. D.; Laurens, L. M. L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  11. Biological Conversion of Sugars to Hydrocarbons Technology Pathway |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy to Hydrocarbons Technology Pathway Biological Conversion of Sugars to Hydrocarbons Technology Pathway This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with

  12. Conversion Technologies for Advanced Biofuels … Bio-Oil Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and research experience in biomass thermochemical conversion R&D involving biomass combustion, gasification, and pyrolysis. Manage projects related to synthesis gas conversion, ...

  13. Biomass Energy Technology Module | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biomass Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus Area:...

  14. Fractional Multistage Hydrothermal Liquefaction of Biomass and Catalytic Conversion into Hydrocarbons Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    March, 2015 Technology Area Review: Thermochemical Conversion Randy Cortright PhD Virent, Inc WBS: 2.5.5.401 Fractional Multistage Hydrothermal Liquefaction of Biomass and Catalytic Conversion into Hydrocarbons © Virent 2015 Slide 2 Goal Statement Project Goal - Develop a novel Multistage Hydrothermal Liquefaction (HTL) of biomass and integrate with Virent's Catalytic BioForming® Process to efficiently produce cost effective "drop-in" fuels from woody biomass and corn stover, with

  15. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bryna Berendzen Office of the Biomass Program U.S. Department of Energy Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Report-Out Webinar February 9, 2012 Energy Efficiency & Renewable Energy eere.energy.gov 2 Breaking the Barriers to Cellulosic EtOH OBP and SC publish technology roadmap in 2006  Report concludes biomass recalcitrance is the core barrier to processing lignocellulosic material to ethanol  The roadmap centers on two critical goals: 

  16. Biomass Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Renewable Energy » Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. Humans have used biomass for thousands of years. Biomass is any organic material that has stored sunlight in the form of chemical energy. Wood is a well-known example of biomass: it can be burned for heat or shaped into building materials. There are many additional types of biomass that can be used to derive

  17. Conversion Technologies for Advanced Biofuels - Carbohydrates Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production. ctab_webinar_carbohydrates_production.pdf (519.37 KB) More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  18. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    SciTech Connect

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  19. Co-conversion of Biomass, Shale-natural gas, and process-derived...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Co-conversion of Biomass, Shale-natural gas, and process-derived CO2 into Fuels and Chemicals Co-conversion of Biomass, Shale-natural gas, and process-derived CO2 into Fuels and ...

  20. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  1. Biomass Resources and Technology Options

    Energy Saver

    ... For more information, see Wooley, et. al "Lignocellulosic Biomass to Ethanol Process Design and Economics..." NRELTP-580-2615 July, 1999 Biodiesel Biodiesel Griffin Industries, ...

  2. White Pine Co. Public School System Biomass Conversion Heating Project

    SciTech Connect

    Paul Johnson

    2005-11-01

    The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

  3. Biomass Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  4. Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctab_webinar_carbohydrates_upgrading.pdf (583.49 KB) More Documents & Publications Advanced Conversion Roadmap Workshop Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels

  5. Advanced Biomass to Gasoline Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Temperature ( o C) Reaction Time (Sec) Enzymatic Reactions Exelus Biomass-to-Gasoline (BTG) Gasification Pyrolysis 0.1 Grant EE0002991 Exelus 16 Innovations 0.00001 0.0001 ...

  6. Upgrading liquid products: Notes from the workshop at the international conference research in thermochemical biomass conversion

    SciTech Connect

    Elliott, D.C.

    1988-07-01

    A workshop was held at the International Energy Agency conference, Research in Thermochemical Biomass Conversion, on the subject of upgrading liquid products. The workshop discussion focused on the two prominent methods of liquids upgrading, catalytic hydroprocessing and catalytic cracking. Catalytic hydroprocessing as applied to biomass liquids relies heavily on petroleum developed technology; similar catalysts and operating conditions are used, although lower space velocities are typical. The need for stabilization of the pyrolytic products prior to hydroprocessing was also discussed. Catalytic cracking of biomass liquids also relies heavily on petroleum processing technology. Zeolite catalyst development has focused on the ZSM-5 of Mobil and its application to pyrolysis products. Significant olefinic gas yields are obtained in the zeolitic processing of biomass pyrolyzates and the conversion of these to liquid fuels is a primary research goal. Aromatic gasoline is the primary product in both catalytic processes. A general conclusion of the workshop participants was that the cost of liquid fuels for internal combustion engines would be higher in the foreseeable future. Due to the high cost of initial biomass liquefaction plants (including upgrading) a more likely near-term product would be aromatic chemicals produced under constrained economic circumstances. 16 refs.

  7. Report on Biomass Drying Technology

    SciTech Connect

    Amos, W. A.

    1999-01-12

    Using dry fuel provides significant benefits to combustion boilers, mainly increased boiler efficiency, lower air emissions, and improved boiler operation. The three main choices for drying biomass are rotary dryers, flash dryers, and superheated steam dryers. Which dryer is chosen for a particular application depends very much on the material characteristics of the biomass, the opportunities for integrating the process and dryer, and the environmental controls needed or already available.

  8. Microturbine Power Conversion Technology Review

    SciTech Connect

    Staunton, R.H.

    2003-07-21

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to

  9. State Grid and Shenzhen Energy Group Biomass Engineering Technology...

    OpenEI (Open Energy Information) [EERE & EIA]

    and Shenzhen Energy Group Biomass Engineering Technology Research Centre Jump to: navigation, search Name: State Grid and Shenzhen Energy Group Biomass Engineering Technology...

  10. State Grid Biomass Fuel and Combustion Technology Laboratory...

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Fuel and Combustion Technology Laboratory Jump to: navigation, search Name: State Grid Biomass Fuel and Combustion Technology Laboratory Place: Beijing Municipality, China...

  11. Low-Emissions Burner Technology using Biomass-Derived Liquid...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels This factsheet describes a project that ...

  12. Advanced Biomass Gasification Technologies Inc ABGT | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Gasification Technologies Inc ABGT Jump to: navigation, search Name: Advanced Biomass Gasification Technologies Inc. (ABGT) Place: New York, New York Zip: 10036 Product:...

  13. Biomass Econ 101: Measuring the Technological Improvements on...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Econ 101: Measuring the Technological Improvements on Feedstocks Costs Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs Breakout Session 1A: Biomass ...

  14. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    SciTech Connect

    Binder, Thomas; Erpelding, Michael; Schmid, Josef; Chin, Andrew; Sammons, Rhea; Rockafellow, Erin

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  15. The Southern California Conversion Technology Demonstration Project...

    OpenEI (Open Energy Information) [EERE & EIA]

    Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website...

  16. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    SciTech Connect

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all

  17. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    SciTech Connect

    Cheng, Yu-Ting; Huber, George W.

    2011-06-03

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysismass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO?, aromatics, and olefins at temperatures from 400 to 600 C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C??{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO?, allene, C?C? olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450600 C). At low temperatures (450 C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include DielsAlder condensation (e.g., two furans form benzofuran and water), decarbonylation (e

  18. Advanced Conversion Roadmap Workshop

    Energy.gov [DOE] (indexed site)

    Conversion Technologies for Advanced Biofuels - Biomass Program Introduction ... has renewed the urgency for developing sustainable biofuels, bioproducts, and biopower. ...

  19. MULTISCALE MATHEMATICS FOR BIOMASS CONVERSION TO RENEWABLE HYDROGEN

    SciTech Connect

    Vlachos, Dionisios; Plechac, Petr; Katsoulakis, Markos

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomass transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.

  20. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    SciTech Connect

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  1. Survey of biomass gasification. Volume III. Current technology and research

    SciTech Connect

    1980-04-01

    This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

  2. Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006

    SciTech Connect

    Not Available

    2006-10-01

    Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

  3. Environmental control technology for biomass flash pyrolysis

    SciTech Connect

    Harkness, J.B.L.; Doctor, R.D.; Seward, W.H.

    1980-01-01

    The rapid commercialization of biomass gasification and pyrolysis technologies will raise questions concerning the environmental impacts of these systems and the associated costs for appropriate control technologies. This study concentrates on characterizing the effluent emissions and control technologies for a dual fluid-bed pyrolysis unit run by Arizona State University, Tempe, Arizona. The ASU system produces a raw product gas that is passed through a catalytic liquefaction system to produce a fuel comparable to No. 2 fuel oil. Argonne National Laboratory is conducting a program that will survey several biomass systems to standardize the sampling techniques, prioritize standard analyses and develop a data base so that environmental issues later may be addressed before they limit or impede the commercialization of biomass gasification and pyrolysis technologies. Emissions will be related to both the current and anticipated emissions standards to generate material balances and set design parameters for effluent treatment systems. This will permit an estimate to be made of the capital and operating costs associated with these technologies.

  4. Process Design and Economics for the Conversion of Lignocellulosic Biomass to High Octane Gasoline: Thermochemical Research Pathway with Indirect Gasification and Methanol Intermediate

    SciTech Connect

    Tan, Eric; Talmadge, M.; Dutta, Abhijit; Hensley, Jesse; Schaidle, Josh; Biddy, Mary J.; Humbird, David; Snowden-Swan, Lesley J.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve the conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.

  5. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    SciTech Connect

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical

  6. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review ...

  7. Biostirling({trademark}): A small biomass power conversion system using an advanced stirling engine

    SciTech Connect

    Johansson, L.; Ziph, B.; McKeough, W.; Houtman, W.

    1996-12-31

    Over the past decade the need for small power conversion systems to serve rural and/or remote needs has increased dramatically. The requirements for systems <100 kW are very similar, whether the need is defined as {open_quotes}rural electrification{close_quotes} in developed countries, or as {open_quotes}village power{close_quotes} in developing countries. The availability of biomass fuel resources to serve such systems is not in doubt, be they agricultural, forestry, animal or urban wastes. The main inhibiting factor has been the absence of a biomass power conversion system characterized by: reliability, cost effectiveness, low pollution, and ease of maintenance. Stirling Thermal Motors of Ann Arbor, Michigan, is recognized as the leader worldwide in the development and application of Stirling engine technology. It is currently demonstrating a {open_quotes}BioStirling({trademark}){close_quotes} Power Conversion System which combines its unique STM4-120 engine rated at 25 kW with a proven commercial gasifier. The BioStirling({trademark}) proof-of-concept demonstration is funded by DOE`s National Renewable Energy Laboratory and is to be completed in late 1996, with field demonstrations in 1997 and commercial availability 1998.

  8. Biomass and Biofuels: Technology and Economic Overview (Presentation)

    SciTech Connect

    Aden, A

    2007-05-23

    Presentation on biomass and biofuels technology and economics presented at Pacific Northwest National Laboratory, May 23, 2007.

  9. One- and Two-Phase Conversion of Biomass to Furfural - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center Contact GLBRC About This Technology Technology Marketing SummaryExploiting the energy potential of biomass high in cellulose and lignin-including grasses, shrubs, husks,...

  10. Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrocarbon Fuels | Department of Energy Syngas Upgrading to Hydrocarbon Fuels Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels Syngas upgrading to hydrocarbon fuels is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18. Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels

  11. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrothermal Liquefaction | Department of Energy Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal

  12. Co-conversion of Biomass, Shale-natural gas, and process-derived CO2 into

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuels and Chemicals | Department of Energy Co-conversion of Biomass, Shale-natural gas, and process-derived CO2 into Fuels and Chemicals Co-conversion of Biomass, Shale-natural gas, and process-derived CO2 into Fuels and Chemicals Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Suresh Babu, Senior Program Manager, Biomass Program Development, Brookhaven National Laboratory b13_babu_1-d.pdf (1.12 MB) More Documents & Publications GBTL

  13. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting Technologies for ...

  14. Biomass Program 2007 Program Peer Review - Thermochemical Conversion Platform Summary

    SciTech Connect

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biomass Program Peer Review for the Thermochemical Platform, held on July 9th and 10th in Golden, Colorado.

  15. Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process

    SciTech Connect

    Jones, Susanne B.; Zhu, Yunhua

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

  16. Flow-through biological conversion of lignocellulosic biomass

    DOEpatents

    Herring, Christopher D.; Liu, Chaogang; Bardsley, John

    2014-07-01

    The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.

  17. Bioenergy Technologies Office Conversion R&D Pathway: Syngas...

    Energy.gov [DOE] (indexed site)

    chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. ... to Hydrocarbon Fuels Technology Pathway 2013 Peer Review Presentations-Gasification

  18. Biomass Econ 101: Measuring the Technological Improvements on Feedstocks

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Costs | Department of Energy Econ 101: Measuring the Technological Improvements on Feedstocks Costs Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs Breakout Session 1A: Biomass Feedstocks for the Bioeconomy Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs Laurence Eaton, Research Economist, Oak Ridge National Laboratory/U.S. Department of Energy's Bioenergy Technologies Office eaton_bioenergy_2015.pdf (2.31 MB) More Documents &

  19. MHK Technologies/Mobil Stabilized Energy Conversion Platform...

    OpenEI (Open Energy Information) [EERE & EIA]

    Mobil Stabilized Energy Conversion Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Mobil Stabilized Energy Conversion Platform.jpg...

  20. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Energy.gov [DOE] (indexed site)

    (361.56 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels 2013 Peer ...

  1. 2011 Biomass Program Platform Peer Review: Thermochemical Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... This project aimed to demonstrate the ability of a cold plasma reformer to destroy tars and oils in syngas produced by biomass gasification. Project end date is 83012. 3.3.2.12 ...

  2. Biomass Gasification Technology Assessment: Consolidated Report

    SciTech Connect

    Worley, M.; Yale, J.

    2012-11-01

    Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

  3. Biomass Program 2007 Accomplishments - Infrastructure Technology Area

    SciTech Connect

    Glickman, Joan

    2007-09-01

    This document details the accomplishments of the Biomass Program Infrastructure Technoloy Area in 2007.

  4. Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production

    SciTech Connect

    Hemme, Christopher; Mouttaki, Housna; Lee, Yong-Jin; Goodwin, Lynne A.; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Glavina Del Rio, Tijana; Tice, Hope; Saunders, Elizabeth H; Detter, J. Chris; Han, Cliff; Pitluck, Sam; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Mikhailova, Natalia; He, Zhili; Wu, Liyou; Van Nostrand, Joy; Henrissat, Bernard; HE, Qiang; Lawson, Paul A.; Tanner, Ralph S.; Lynd, Lee R; Wiegel, Juergen; Fields, Dr. Matthew Wayne; Arkin, Adam; Schadt, Christopher Warren; Stevenson, Bradley S.; McInerney, Michael J.; Yang, Yunfeng; Dong, Hailiang; Xing, Defeng; Ren, Nanqi; Wang, Aijie; Ding, Shi-You; Himmel, Michael E; Taghavi, Safiyh; Rubin, Edward M.; Zhou, Jizhong

    2010-01-01

    Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.

  5. Review of Biojet Fuel Conversion Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Review of Biojet Fuel Conversion Technologies Wei-Cheng Wang, Ling Tao, Jennifer Markham, Yanan Zhang, Eric Tan, Liaw Batan, Ethan Warner, and Mary Biddy National Renewable Energy Laboratory Technical Report NREL/TP-5100-66291 July 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  6. DOE Announces Webinars on Natural Gas for Biomass Technologies...

    Energy.gov [DOE] (indexed site)

    You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars February 6: Live Webinar on Natural Gas for Biomass Technologies ...

  7. Market Assessment of Biomass Gasification and Combustion Technology...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6190 July 2009 Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications David Peterson and Scott Haase National Renewable Energy ...

  8. Addressing Biomass Supply Chain Challenges With AFEX™ Technology

    Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel Addressing Biomass Supply Chain Challenges With AFEX™ Technology Allen Julian, Chief Business Officer, MBI

  9. Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Plenary IV: Advances in Bioenergy Feedstocks-From Field to Fuel Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Allen Julian, Chief Business Officer, MBI ...

  10. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    SciTech Connect

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  11. New Enzyme Speeds Up Biomass-to-Sugar Conversion

    Energy.gov [DOE]

    Scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) developed an enzyme—called CelA—that can convert biomass such as trees, grasses, and agricultural residue to sugars up to 14 times faster and much more cheaply than competing catalysts used in biofuel production.

  12. Conversion Technologies for Advanced Biofuels - Bio-Oil Production |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil Production. ctab_webinar_bio_oils_production.pdf (772.25 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review Presentations-Bio-oil Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils

  13. Materials challenges in advanced coal conversion technologies

    SciTech Connect

    Powem, C.A.; Morreale, B.D.

    2008-04-15

    Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

  14. MHK Technologies/Wave Energy Conversion Activator WECA | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Conversion Activator WECA.jpg Technology Profile Primary Organization Daedalus...

  15. Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) |

    Office of Science (SC)

    U.S. DOE Office of Science (SC) Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) Print Text Size: A A A FeedbackShare Page C3Bio Header Director Maureen McCann Lead Institution Purdue University Year Established 2009 Mission To

  16. Process Design and Economics for the Conversion of Algal Biomass...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... A. S., et al. "Production of Engine Fuels from Inedible Vegetable Oils and Fats." ... A Realistic Technology and Engineering Assessment of Algae Biofuel Production. Energy ...

  17. thermo-electric power conversion technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal ... carbon dioxide (sCO2)Brayton-cycle power conversion as ... By ...

  18. Techno-economic Analysis for the Thermochemical Conversion of Lignocellulosic Biomass to Ethanol via Acetic Acid Synthesis

    SciTech Connect

    Zhu, Yunhua; Jones, Susanne B.

    2009-04-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). This study performs a techno-economic analysis of the thermo chemical conversion of biomass to ethanol, through methanol and acetic acid, followed by hydrogenation of acetic acid to ethanol. The conversion of syngas to methanol and methanol to acetic acid are well-proven technologies with high conversions and yields. This study was undertaken to determine if this highly selective route to ethanol could provide an already established economically attractive route to ethanol. The feedstock was assumed to be wood chips at 2000 metric ton/day (dry basis). Two types of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. Process models were developed and a cost analysis was performed. The carbon monoxide used for acetic acid synthesis from methanol and the hydrogen used for hydrogenation were assumed to be purchased and not derived from the gasifier. Analysis results show that ethanol selling prices are estimated to be $2.79/gallon and $2.81/gallon for the indirectly-heated gasifier and the directly-heated gasifier systems, respectively (1stQ 2008$, 10% ROI). These costs are above the ethanol market price for during the same time period ($1.50 - $2.50/gal). The co-production of acetic acid greatly improves the process economics as shown in the figure below. Here, 20% of the acetic acid is diverted from ethanol production and assumed to be sold as a co-product at the prevailing market prices ($0.40 - $0.60/lb acetic acid), resulting in competitive ethanol production costs.

  19. Environmental impacts of thermochemical biomass conversion. Final report

    SciTech Connect

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W.

    1995-06-01

    Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given.

  20. Microturbine Power Conversion Technology Review, April 2003 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Microturbine Power Conversion Technology Review, April 2003 Microturbine Power Conversion Technology Review, April 2003 Oak Ridge National Laboratory (ORNL) performed a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how

  1. Technology assessment of wind energy conversion systems

    SciTech Connect

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  2. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Carbohydrates Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates DOE report-out presentation at the CTAB webinar on carbohydrates. ctab_webinar_carbohydrates_intro.pdf (720.5 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels

  3. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. ctab_webinar_bio_oils_intro.pdf (635.81 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review Presentations-Plenaries

  4. Low-temperature thermochemical conversion of high-moisture biomass feedstocks

    SciTech Connect

    Butner, R.S.; Sealock, L.J. Jr.; Elliott, D.C.

    1985-11-01

    Pacific Northwest Laboratory is carrying out a research project to investigate the thermochemical conversion of high-moisture biomass feedstocks to methane, hydrogen, and liquids. Experimental results obtained in FY 1985 indicate that good yields of methane-rich gas (exceeding 40% methane) can be produced. The reaction system utilizes low tempreatures (400 to 450/sup 0/C), high pressures, and a nickel/alkali carbonate catalyst mixture to effect the gasification of biomass slurries containing up to 95% water. Carbon conversions after 15 minutes have exceeded 90%. Methane yields in excess of 6 scf/dry ash-free pound of biomass have been obtained. Most of the feedstocks selected for investigation are not conventionally used in thermochemical conversion. Feedstocks which have been used to data include napier grass, sorghum stover, sunflower stalks, water hyacinths, and macrocystis kelp. Waste biomass from the food and beverage industries has also been used, as has the unconverted residue from an anaerobic digestor. In addition to gasification performance data obtained for each of these feedstocks, elemental analyses, ash contents, and moisture contents of the raw feedstocks were determined. 5 refs., 8 figs., 2 tabs.

  5. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Energy.gov [DOE] (indexed site)

    for Advanced Biofuels - Bio-Oil Production. ctabwebinarbiooilsproduction.pdf (772.25 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil ...

  6. Current Research on Thermochemical Conversion of Biomass at the National Renewable Energy Laboratory

    SciTech Connect

    Baldwin, R. M.; Magrini-Bair, K. A.; Nimlos, M. R.; Pepiot, P.; Donohoe, B. S.; Hensley, J. E.; Phillips, S. D.

    2012-04-05

    The thermochemical research platform at the National Bioenergy Center, National Renewable Energy Laboratory (NREL) is primarily focused on conversion of biomass to transportation fuels using non-biological techniques. Research is conducted in three general areas relating to fuels synthesis via thermochemical conversion by gasification: (1) Biomass gasification fundamentals, chemistry and mechanisms of tar formation; (2) Catalytic tar reforming and syngas cleaning; and (3) Syngas conversion to mixed alcohols. In addition, the platform supports activities in both technoeconomic analysis (TEA) and life cycle assessment (LCA) of thermochemical conversion processes. Results from the TEA and LCA are used to inform and guide laboratory research for alternative biomass-to-fuels strategies. Detailed process models are developed using the best available material and energy balance information and unit operations models created at NREL and elsewhere. These models are used to identify cost drivers which then form the basis for research programs aimed at reducing costs and improving process efficiency while maintaining sustainability and an overall net reduction in greenhouse gases.

  7. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    DOEpatents

    Peters, William A.; Howard, Jack B.; Modestino, Anthony J.; Vogel, Fredreric; Steffin, Carsten R.

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  8. Impact of Feed Injection Strategies on Fluidization Dynamics for Biomass Thermochemical Conversion

    SciTech Connect

    Malhotra, K. N.; Pepiot, P.; Capecelatro, J. S.; Desjardins, O.; Grout, R.; Nimlos, M. R.

    2012-01-01

    To better understand some of the key parameters that control biomass conversion processes in dense granular beds, an efficient computational framework for large-scale simulations of dense, reactive particulate flows using a Lagrange-Euler approach has been developed. This framework is applied here to the investigation of feed injection in a hot fluidized bed reactor, and how it may impact the biomass conversion dynamics. A simple, pseudo-two dimensional configuration is adopted to facilitate the parametric study. Chemical processes are modeled using global kinetics that accurately reproduce particle mass loss and gas release. A posteriori analysis of particle heating rate, mixing and segregation, along with products distribution and residence time inside the reactor is performed for different injection strategies, and compared to non-reactive cases. Results highlight some non-trivial coupling between chemistry and flow dynamics.

  9. Techno-Economics for Conversion of Lignocellulosic Biomass to Ethanol by Indirect Gasification and Mixed Alcohol Synthesis

    SciTech Connect

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groenendijk, P.; Ferrari, D.; Stears, B.; Searcy, E.; Wright, C.; Hess, J. R.

    2012-07-01

    This techno-economic study investigates the production of ethanol and a higher alcohols coproduct by conversion of lignocelluosic biomass to syngas via indirect gasification followed by gas-to-liquids synthesis over a precommercial heterogeneous catalyst. The design specifies a processing capacity of 2,205 dry U.S. tons (2,000 dry metric tonnes) of woody biomass per day and incorporates 2012 research targets from NREL and other sources for technologies that will facilitate the future commercial production of cost-competitive ethanol. Major processes include indirect steam gasification, syngas cleanup, and catalytic synthesis of mixed alcohols, and ancillary processes include feed handling and drying, alcohol separation, steam and power generation, cooling water, and other operations support utilities. The design and analysis is based on research at NREL, other national laboratories, and The Dow Chemical Company, and it incorporates commercial technologies, process modeling using Aspen Plus software, equipment cost estimation, and discounted cash flow analysis. The design considers the economics of ethanol production assuming successful achievement of internal research targets and nth-plant costs and financing. The design yields 83.8 gallons of ethanol and 10.1 gallons of higher-molecular-weight alcohols per U.S. ton of biomass feedstock. A rigorous sensitivity analysis captures uncertainties in costs and plant performance.

  10. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. ctab_webinar_bio_oils_upgrading.pdf (361.56 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels 2013 Peer Review Presentations-Bio-oil

  11. Direct Conversion of Plant Biomass to Ethanol by Engineered Caldicellulosiruptor bescii

    SciTech Connect

    Chung, Daehwan; Cha, Minseok; Guss, Adam M; Westpheling, Janet

    2014-01-01

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.

  12. NREL: Energy Analysis - Biomass Technology Analysis

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    products, including electricity, biodiesel, and ethanol, is important for ... Biofuels Production Technologies: Ethanol from corn stover Comparison of biodiesel and ...

  13. Biomass IBR Fact Sheet: Gas Technology Institute

    Office of Energy Efficiency and Renewable Energy (EERE)

    Gas Technology Institute will conduct research and development on hydropyrolysis and hydroconversion processes to make gasoline and diesel.

  14. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  15. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates

    SciTech Connect

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit; Hensley, Jesse; Schaidle, Josh; Biddy, Mary; Humbird, David; Snowden-Swan, Lesley J.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics of conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to

  16. Biomass Feed and Gasification

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass Feed and Gasification The Biomass Feed and Gasification Key Technology will advance scientific knowledge of the feeding and conversion of biomass and coal-biomass mixtures as essential upstream steps for production of liquid transportation fuels with a lower net GHG emissions than conventional oil refining. Activities support research for handling and processing of coal-biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on

  17. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    SciTech Connect

    Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard

    2014-09-16

    Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords: algae

  18. Novel Biomass Conversion Process Results in Commercial Joint Venture; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect

    Not Available

    2010-06-01

    Fact sheet describing DuPont/NREL cooperative research and development agreement that resulted in biomass-to-ethanol conversion process used as a basis for DuPont Danisco Cellulosic Ethanol, LLC and cellulosic ethanol demonstration plant.

  19. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Biomass Feedstocks and Logistics Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Feedstocks and Logistics Chapter 7: Technology Assessments Introduction The sustainable supply of quality, cost-effective feedstocks to future biorefineries is fundamental to growing the bioenergy industry. The Department of Energy (DOE) has made significant contributions to ensuring a sustainably supply of biomass. However, the inherently dispersed, highly-variable, aerobically unstable nature of biomass, among other characteristics, are still a challenge. Technologies need to be

  20. Lignocellulosic Biomass

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Biofuels Publications Lignocellulosic Biomass Microalgae Thermochemical Conversion ... Solid Fuels Conversion Pressurized Combustion and Gasification Particle Ignition and Char ...

  1. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway

    SciTech Connect

    Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  2. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway

    SciTech Connect

    Jones, S.; Meyer, P.; Snowden-Swan, L.; Padmaperuma, A.; Tan, E.; Dutta, A.; Jacobson, J.; Cafferty, K.

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  3. A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels

    SciTech Connect

    Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.; Dai, Ziyu; Ramasamy, Karthikeyan K.; Zhu, Yunhua

    2010-09-01

    Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can be produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.

  4. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    SciTech Connect

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  5. Department of Energy Recovery Act Investment in Biomass Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  6. Department of Energy Recovery Act Investment in Biomass Technologies

    SciTech Connect

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  7. Biomass drying technologies. Final report, September 1997--May 1998

    SciTech Connect

    Salomaa, E.

    1998-07-01

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the drying medium are discussed more closely, with comparison to the methods of drying using air or flue gas as the drying medium. Available types of steam dryers are described with reference to operating conditions, energy requirements, and types of biomass dried. Energy aspects are considered, as well as possibilities of steam utilization to recover the latent heat of vaporization. Thermal energy required for drying of biomass is calculated using tabulated values of steam properties. The amount of steam to provide the thermal energy needed for biomass drying, at different pressures and temperatures applicable in steam dryers, is calculated for both indirectly and directly heated steam dryers. The calculated heat requirement values of steam dryers have been compared with those reported in the literature. Further, anticipated emissions from flue gas and steam drying processes have been summarized.

  8. Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988

    SciTech Connect

    Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

    1988-10-01

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

  9. Biological research survey for the efficient conversion of biomass to biofuels.

    SciTech Connect

    Kent, Michael Stuart; Andrews, Katherine M.

    2007-01-01

    The purpose of this four-week late start LDRD was to assess the current status of science and technology with regard to the production of biofuels. The main focus was on production of biodiesel from nonpetroleum sources, mainly vegetable oils and algae, and production of bioethanol from lignocellulosic biomass. One goal was to assess the major technological hurdles for economic production of biofuels for these two approaches. Another goal was to compare the challenges and potential benefits of the two approaches. A third goal was to determine areas of research where Sandia's unique technical capabilities can have a particularly strong impact in these technologies.

  10. High-Yield Feedstock and Biomass Conversion Technology for Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    assessments * Renewable energy options: * Micro-hydro ... * Wood chips for coal * Solar powered irrigation * Simple ... processing of feedstock has pros and cons: + Nutrients, min. ...

  11. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    SciTech Connect

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  12. NREL SBV Pilot Bioenergy Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    conversion technologies, biomass process and sustainability analysis, and feedstock logistics. Capabilities The NREL National Bioenergy Center develops, refines, and validates...

  13. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  14. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons

    SciTech Connect

    Davis, R.; Tao, L.; Tan, E. C. D.; Biddy, M. J.; Beckham, G. T.; Scarlata, C.; Jacobson, J.; Cafferty, K.; Ross, J.; Lukas, J.; Knorr, D.; Schoen, P.

    2013-10-01

    This report describes one potential conversion process to hydrocarbon products by way of biological conversion of lingnocellulosic-dervied sugars. The process design converts biomass to a hydrocarbon intermediate, a free fatty acid, using dilute-acid pretreatement, enzymatic saccharification, and bioconversion. Ancillary areas--feed handling, hydrolysate conditioning, product recovery and upgrading (hydrotreating) to a final blendstock material, wastewater treatment, lignin combusion, and utilities--are also included in the design.

  15. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons

    Energy.gov [DOE]

    This report describes one potential conversion process to hydrocarbon products by way of biological conversion of lingnocellulosic-dervied sugars. The process design converts biomass to a hydrocarbon intermediate, a free fatty acid, using dilute-acid pretreatement, enzymatic saccharification, and bioconversion. Ancillary areas--feed handling, hydrolysate conditioning, product recovery and upgrading (hydrotreating) to a final blendstock material, wastewater treatment, lignin combusion, and utilities--are also included in the design.

  16. Biomass and Solar Technologies Lauded - News Releases | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass and Solar Technologies Lauded July 12, 2004 Golden, Colo. - Two technologies developed by the U.S. Department of Energy's National Renewable Energy Laboratory are among this year's most significant innovations, as judged by Research & Development (R&D) Magazine. The Laboratory's two R&D 100 Awards for 2004 are for an innovative, lower-cost method for transforming plant material into the sugars that can be used to make fuels and chemicals, and a thin-film solar cell that

  17. Technician's Perspective on an Ever-Changing Research Environment: Catalytic Conversion of Biomass to Fuels

    SciTech Connect

    Thibodeaux, J.; Hensley, J.

    2013-01-01

    The biomass thermochemical conversion platform at the National Renewable Energy Laboratory (NREL) develops and demonstrates processes for the conversion of biomass to fuels and chemicals including gasification, pyrolysis, syngas clean-up, and catalytic synthesis of alcohol and hydrocarbon fuels. In this talk, I will discuss the challenges of being a technician in this type of research environment, including handling and working with catalytic materials and hazardous chemicals, building systems without being given all of the necessary specifications, pushing the limits of the systems through ever-changing experiments, and achieving two-way communication with engineers and supervisors. I will do this by way of two examples from recent research. First, I will describe a unique operate-to-failure experiment in the gasification of chicken litter that resulted in the formation of a solid plug in the gasifier, requiring several technicians to chisel the material out. Second, I will compare and contrast bench scale and pilot scale catalyst research, including instances where both are conducted simultaneously from common upstream equipment. By way of example, I hope to illustrate the importance of researchers 1) understanding the technicians' perspective on tasks, 2) openly communicating among all team members, and 3) knowing when to voice opinions. I believe the examples in this talk will highlight the crucial role of a technical staff: skills attained by years of experience to build and operate research and production systems. The talk will also showcase the responsibilities of NREL technicians and highlight some interesting behind-the-scenes work that makes data generation from NREL's thermochemical process development unit possible.

  18. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    SciTech Connect

    Dutta, Abhijit; Sahir, Asad; Tan, Eric; Humbird, David; Snowden-Swan, Lesley J.; Meyer, Pimphan; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John Lukas

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.

  19. Biomass [updated

    SciTech Connect

    Turhollow Jr, Anthony F

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  20. NWTC Researchers Develop Wave Energy Conversion Technology | Water | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NWTC Researchers Develop Wave Energy Conversion Technology April 1, 2016 Robert Thresher may be considered the wizard of wind at the National Renewable Energy Laboratory (NREL), having worked in the field since 1973. At the laboratory since 1984, Thresher's credited with the buildup of what is now the National Wind Technology Center and the startup of the Energy Department's Water Energy Program. His longtime efforts at turning wind and water into renewable energy has now yielded a record of

  1. BETO Conversion Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BETO Conversion Program BETO Conversion Program Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing BETO Conversion Program Bryna Berendzen, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy berendzen_biomass_2014.pdf (1010.99 KB) More Documents & Publications Opportunities for Biomass-Based Fuels and Products in a Refinery 2013 Peer Review Presentations-Bio-oil 2013 Peer Review

  2. Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments

    SciTech Connect

    Yeh, B.

    2011-03-01

    This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

  3. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    SciTech Connect

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  4. Thermochemical Conversion Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion » Thermochemical Conversion Related Links Thermochemical Conversion Related Links Further reading about current Bioenergy Technologies Office R&D in the Thermochemical Platform can be found in this website's Information Resources section. Some key publications are: Biomass Conversion: From Feedstocks to Final Products (July 2016) Thermochemical Conversion 2009 Peer Review Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and

  5. Direct conversion technology: Annual summary report CY 1988

    SciTech Connect

    Massier, P.F.; Bankston, C.P.; Fabris, G.; Kirol, L.D.

    1988-12-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.

  6. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...

    Energy.gov [DOE] (indexed site)

    Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Enabling Small-Scale Biomass Gasification ...

  7. Biomass

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear ...

  8. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    SciTech Connect

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  9. Roadmap for Biomass Technologies in the United States (2007)

    SciTech Connect

    2007-10-01

    Biomass resources are a sustainable and environmentally friendly feedstock that can contribute significantly to a diverse energy portfolio.

  10. Technology Innovations to Improve Biomass Cookstoves to Meet Tier 4 Standards

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Innovations to Improve Biomass Cookstoves to Meet Tier 4 Standards March 26, 2015 Dean Still Aprovecho Research Center (ARC) Beijing University of Chemical Technology (BUCT) This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement * The goal is to create biomass cookstoves that meet the IWA/ISO Tier 4 standards designed to use the least fuel, protect human health, and address climate change. The biomass industry is

  11. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-06-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

  12. DOE Technical Targets for Hydrogen Production from Microbial Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion | Department of Energy Microbial Biomass Conversion DOE Technical Targets for Hydrogen Production from Microbial Biomass Conversion This table lists the U.S. Department of Energy (DOE) technical targets for hydrogen production from microbial biomass conversion. More information about targets can be found in the Hydrogen Production section of the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan. Technical Targets: Dark Fermentative Hydrogen

  13. Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Hazen, Sam [University of Massachusetts

    2013-03-01

    Sam Hazen of the University of Massachusetts on "Genetic Regulation of Grass Biomass Accumulation and Biological Conversion Quality" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  14. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-04-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

  15. Biochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development » Conversion Technologies » Biochemical Conversion » Biochemical Conversion - Biorefinery Integration Biochemical Conversion - Biorefinery Integration One of the essential elements in the economical and efficient production of cellulosic biofuels is the development of biorefineries. Similar in concept to traditional petroleum refineries, biorefineries convert various types of biomass feedstock into marketable chemicals, fuels, and products. By taking advantage of

  16. Addressing Biomass Supply Chain Challenges With AFEX’ Technology

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Drying Pelletizing Treated biomass AFEX pellets AFEX Pilot Reactor Operations Corn stover ... of Cellulosic Ethanol From AFEX Pellets * 20-25% solids loading of AFEX pellets * ...

  17. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels This factsheet describes a project that developed fuel-flexible, low-emissions burner technology capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. low-emissions_burner_technology_factsheet.pdf (1.18 MB) More Documents & Publications Fuel-Flexible, Low-Emissions Catalytic

  18. Stage Gate Review Guide for the Biomass Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Program Stage Gate Review Guide for the Biomass Program Stage Gate Management in the Biomass Program (now the Bioenergy Technologies Office), a document from February 2005. Stage Gate Review Guide (282.61 KB) More Documents & Publications Stage Gate Review Guide for the Industrial Technologies Program 2009 Biochemical Conversion Platform Review Report 2009 Thermochemical Conversion Platform Review Report

  19. Webinar on the Potential for Natural Gas to Enhance Biomass Technologies

    Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) will present a live webinar titled "The Potential for Natural Gas to Enhance Biomass Technologies" on Thursday, February 6, 2013, from 1:00 p.m. to 2:00 p.m. Eastern Time. During the webinar, Mr. Zia Haq and Mr. Prasad Gupte, of BETO, and Mr. Timothy Skone, of the U.S. Department of Energy's Office of Fossil Energy, will present an overview of Natural Gas-Biomass to Liquids technology, advantages of using natural gas, and some key themes that were established at the September Natural Gas-Biomass to Liquids Workshop.

  20. DOE Thermochemical Users Facility A Proving Ground for Biomass Technology

    SciTech Connect

    None

    2003-11-01

    The National Bioenergy Center at the National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products.

  1. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy eere.energy.gov Gasification - successes resulting from last roadmap What we've done Minimized Ash and moisture of feedstock More cost effective biomass gasification ...

  2. Conversion Technologies for Advanced Biofuels … Bio-Oil Upgrading

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and bio-oil upgrading. Manage projects related to biomass fast pyrolysis, hydrothermal liquefaction and gasification and catalytic upgrading of bio-oils. Focus on ...

  3. Biological Conversion of Sugars to Hydrocarbons Technology Pathway...

    Office of Scientific and Technical Information (OSTI)

    demonstrations at NREL. Technical barriers and key research needs have been ... Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; 59 ...

  4. Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    * Biochemical: o PRINCE - Process Integration and Carbon Efficiencies - June 11-12, 2014 * Thermochemical: o GBTL - Natural Gas Biomass to Liquids - September 3, 2013 o Bio-oil ...

  5. Dual bed reactor for the study of catalytic biomass tars conversion

    SciTech Connect

    Ammendola, P.; Piriou, B.; Lisi, L.; Ruoppolo, G.; Chirone, R.; Russo, G.

    2010-04-15

    A dual fixed bed laboratory scale set up has been used to compare the activity of a novel Rh/LaCoO{sub 3}/Al{sub 2}O{sub 3} catalyst to that of dolomite, olivine and Ni/Al{sub 2}O{sub 3}, typical catalysts used in fluidized bed biomass gasification, to convert tars produced during biomass devolatilization stage. The experimental apparatus allows the catalyst to be operated under controlled conditions of temperature and with a real gas mixture obtained by the pyrolysis of the biomass carried out in a separate fixed bed reactor operated under a selected and controlled heating up rate. The proposed catalyst exhibits much better performances than conventional catalysts tested. It is able to completely convert tars and also to strongly decrease coke formation due to its good redox properties. (author)

  6. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    SciTech Connect

    Dutta, Abhijit; Sahir, A. H.; Tan, Eric; Humbird, David; Snowden-Swan, Lesley J.; Meyer, Pimphan A.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis. Both the in situ and ex situ conceptual designs, using the underlying assumptions, project MFSPs of approximately $3.5/gallon gasoline equivalent (GGE). The performance assumptions for the ex situ process were more aggressive with higher distillate (diesel-range) products. This was based on an assumption that more favorable reaction chemistry (such as coupling) can be made possible in a separate reactor where, unlike in an in situ upgrading reactor, one does not have to deal with catalyst mixing with biomass char and ash, which pose challenges to catalyst performance and maintenance. Natural gas was used for hydrogen production, but only when off gases from the process was not sufficient to meet the needs; natural gas consumption is insignificant in both the in situ and ex situ base cases. Heat produced from the burning of char, coke, and off-gases allows for the production of surplus electricity which is sold to the grid allowing a reduction of approximately 5¢/GGE in the MFSP.

  7. Biological Conversion of Sugars to Hydrocarbons Technology Pathway...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    biofuels, utilizing data from recent literature ... barriers and key research needs have been ... 2013 Peer Review Presentations-Biochemical Conversion

  8. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... to leverage experience in biochemical processing, specifically cellulose and ... in downstream biological conversion and improving overall process integration. ...

  9. Designing New Alloys to be Used in New Energy Conversion Technologies

    ScienceCinema

    Dr. Omer Dogan

    2010-09-01

    Dr. Omer Dogan of NETL Albany discusses using computer simulation and modeling to design new alloys to be used in new energy conversion technologies.

  10. Thermochemical Conversion of Woody Biomass to Fuels and Chemicals Final Report

    SciTech Connect

    Pendse, Hemant P.

    2015-09-30

    Maine and its industries identified more efficient utilization of biomass as a critical economic development issue. In Phase I of this implementation project, a research team was assembled, research equipment was implemented and expertise was demonstrated in pyrolysis, hydrodeoxygenation of pyrolysis oils, catalyst synthesis and characterization, and reaction engineering. Phase II built upon the infrastructure to innovate reaction pathways and process engineering, and integrate new approaches for fuels and chemical production within pulp and paper and other industries within the state. This research cluster brought together chemists, engineers, physicists and students from the University of Maine, Bates College, and Bowdoin College. The project developed collaborations with Oak Ridge National Laboratory and Brookhaven National Laboratory. The specific research projects within this proposal were of critical interest to the DoE - in particular the biomass program within EERE and the catalysis/chemical transformations program within BES. Scientific and Technical Merit highlights of this project included: (1) synthesis and physical characterization of novel size-selective catalyst/supports using engineered mesoporous (1-10 nm diameter pores) materials, (2) advances in fundamental knowledge of novel support/ metal catalyst systems tailored for pyrolysis oil upgrading, (3) a microcalorimetric sensing technique, (4) improved methods for pyrolysis oil characterization, (5) production and characterization of woody biomass-derived pyrolysis oils, (6) development of two new patented bio oil pathways: thermal deoxygenation (TDO) and formate assisted pyrolysis (FASP), and (7) technoeconomics of pyrolysis of Maine forest biomass. This research cluster has provided fundamental knowledge to enable and assess pathways to thermally convert biomass to hydrocarbon fuels and chemicals.

  11. Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335

    SciTech Connect

    Netter, J.

    2013-08-01

    The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

  12. Thermochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion Thermochemical Conversion The Bioenergy Technologies Office conducts research on heat-, pressure-, and catalyst-based conversion of various biomass feedstocks to biofuels, chemicals, and power. These conversion processes, most notably fast pyrolysis (as well as other forms of direct liquefaction) and gasification, are described in detail in the links on the left. The Thermochemical Platform aims to efficiently produce biobased fuels and co-products via liquefaction and pyrolysis,

  13. Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: Effects of pretreatment and enzyme composition

    SciTech Connect

    Shih, Chien-Ju

    2010-01-01

    This dissertation focuses on the development of facile and rapid quantitative Raman spectroscopy measurements for the determination of conversion products in producing bioethanol from corn stover. Raman spectroscopy was chosen to determine glucose, xylose and ethanol in complex hydrolysis and fermentation matrices. Chapter 1 describes the motives and main goals of this work, and includes an introduction to biomass, commonly used pretreatment methods, hydrolysis and fermentation reactions. The principles of Raman spectroscopy, its advantages and applications related to biomass analysis are also illustrated. Chapter 2 and 3 comprise two published or submitted manuscripts, and the thesis concludes with an appendix. In Chapter 2, a Raman spectroscopic protocol is described to study the efficiency of enzymatic hydrolysis of cellulose by measuring the main product in hydrolysate, glucose. Two commonly utilized pretreatment methods were investigated in order to understand their effect on glucose measurements by Raman spectroscopy. Second, a similar method was set up to determine the concentration of ethanol in fermentation broth. Both of these measurements are challenged by the presence of complex matrices. In Chapter 3, a quantitative comparison of pretreatment protocols and the effect of enzyme composition are studied using systematic methods. A multipeak fitting algorithm was developed to analyze spectra of hydrolysate containing two analytes: glucose and xylose. Chapter 4 concludes with a future perspective of this research area. An appendix describes a convenient, rapid spectrophotometric method developed to measure cadmium in water. This method requires relatively low cost instrumentation and can be used in microgravity, such as space shuttles or the International Space Station. This work was performed under the supervision of Professor Marc Porter while at Iowa State University. Research related to producing biofuel from bio-renewable resources, especially

  14. Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification

    SciTech Connect

    Dutta. A.; Cheah, S.; Bain, R.; Feik, C.; Magrini-Bair, K.; Phillips, S.

    2012-06-20

    Sulfur present in biomass often causes catalyst deactivation during downstream operations after gasification. Early removal of sulfur from the syngas stream post-gasification is possible via process rearrangements and can be beneficial for maintaining a low-sulfur environment for all downstream operations. High-temperature sulfur sorbents have superior performance and capacity under drier syngas conditions. The reconfigured process discussed in this paper is comprised of indirect biomass gasification using dry recycled gas from downstream operations, which produces a drier syngas stream and, consequently, more-efficient sulfur removal at high temperatures using regenerable sorbents. A combination of experimental results from NREL's fluidizable Ni-based reforming catalyst, fluidizable Mn-based sulfur sorbent, and process modeling information show that using a coupled process of dry gasification with high-temperature sulfur removal can improve the performance of Ni-based reforming catalysts significantly.

  15. Biomass

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy Safety Technologies Facilities Battery Abuse Testing Laboratory Cylindrical Boiling Facility ...

  16. Products R&D in the Office of the Biomass Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    OBPGONBC Gene Petersen Golden Field Office Presented to NASULGC August 3-4, 2004 Biomass Conversion Technology "Platforms" Thermochemical Platform (Gasification, Pyrolysis) Sugar ...

  17. DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology

    SciTech Connect

    Not Available

    2003-10-01

    The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

  18. Biomass Indirect Liquefaction Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Indirect Liquefaction Workshop Biomass Indirect Liquefaction Workshop To support research and development (R&D) planning efforts within the Thermochemical Conversion Program, the Bioenergy Technologies Office hosted the Biomass Indirect Liquefaction (IDL) Workshop. This workshop discussed and detailed the R&D needs for biomass IDL. Discussions focused on pathways that convert biomass-based syngas (or any carbon monoxide, hydrogen gaseous stream) to liquid intermediates (alcohols or

  19. State Biomass Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » State & Regional Resources » State Biomass Contacts State Biomass Contacts Most state governments have designated contacts for biomass conversion programs. The following contacts used by the Bioenergy Technologies Office may also be good contacts for you to find out about biomass programs or projects in your state. Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas

  20. Department of Energy Recovery Act Investment in Biomass Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PDF icon arrasummaryfactsheetweb.pdf More Documents & Publications Algae Biofuels Technology Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014 ...

  1. The potential impact of externalities considerations on the market for biomass power technologies

    SciTech Connect

    Swezey, B.G.; Porter, K.L.; Feher, J.S.

    1994-02-01

    This study assesses the current status of externalities considerations--nonmarket costs and benefits--in state and utility electricity resource planning processes and determines how externalities considerations might help or hinder the development of biomass power plants. It provides an overview of biomass resources and technologies, including their market status and environmental impacts; reviews the current treatment of externalities in the states; and documents the perspectives of key utility, regulatory, and industry representatives concerning externalities considerations. The authors make the following recommendations to the biomass industry: (1) the wood and agricultural waste industries should work toward having states and utilities recognize that wood and agricultural waste are greenhouse gas neutral resources because of carbon sequestration during growth; (2) the biomass industry should emphasize nonenvironmental benefits such as economic development and job creation; and (3) the biomass industry should pursue and support efforts to establish renewable energy set-asides or ``green`` requests for proposals.

  2. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis

    SciTech Connect

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

    2011-05-01

    This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

  3. Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management

    SciTech Connect

    Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B.

    1996-12-31

    The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

  4. Demonstration of Pressurizing Coal/Biomass Mixtures Using Posimetric Solids Pump Technology

    SciTech Connect

    Westendorf, Tiffany; Acharya, Harish; Cui, Zhe; Furman, Anthony; Giammattei, Mark; Rader, Jeff; Vazquez, Arturo

    2012-12-31

    This document is the Final Technical Report for a project supported by U.S. DOE NETL (Contract No. DE-FE0000507), GE Global Research, GE Energy, and Idaho National Laboratory (INL). This report discusses key project accomplishments for the period beginning August 7, 2009 and ending December 31, 2012. In this project, pressurized delivery of coal/biomass mixtures using GE Posimetric* solids pump technology was achieved in pilot scale experiments. Coal/biomass mixtures containing 10-50 wt% biomass were fed against pressures of 65-450 psi. Pressure capability increased with decreasing biomass content for a given pump design, and was linked to the interaction of highly compressible coal/biomass mixtures with the pump outlet design. Biomass pretreatment specifications for particle size and moisture content were defined based on bench-scale flowability, compressibility, friction, and permeability experiments that mimic the behavior of the Posimetric pump. A preliminary economic assessment of biomass pretreatment and pump operation for coal/biomass mixtures (CBMs) was conducted.

  5. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  6. Genome-Enabled Advancement of Biomass to Biofuel Technology

    SciTech Connect

    Patrick O'Mullan, PhD

    2010-11-11

    Unlike Saccharomyces and even E. coli, the fundamental microbiology and biochemistry of Clostridium phytofermentans was largely unknown. The genus Clostridia is quite diverse and general methods to manipulate and characterize them often need to be developed. As anaerobes, they often don’t behave the way more classically studied microbes will in fermentation processes. The results from these studies have allowed: 1) A fundamental understanding of the fermentation cycle in C. phytofermentans 2) Requirements to maximize ethanol yield in a fermentation process 3) An understanding of the critical growth and nutritional parameters required to ferment biomass to ethanol 4) Identification of key targets or genes to modify in order increase or improve any of the key traits of C. phytofermentans 5) The development of a genetic system to transform and manipulate the microbe Without these achievements, an industrially significant process for biomass fermentation to ethanol would not be economically possible. The development of a fermentation process with economic return on investment can be successfully developed with the technical learning achieved

  7. Biomass and Biofuels Technologies Available for Licensing - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels ...

  8. Biomass Analytical Library

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

  9. Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies- Advanced Conversion

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    SciTech Connect

    Sharp, William

    2011-12-01

    This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, and creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through

  11. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Santosh Gangwal, Director-Business Development, Energy Technologies, Southern Research Institute gangwal_biomass_2014.pdf (1.36 MB) More

  12. Energy Department Announces $2.5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves

    Energy.gov [DOE]

    The Energy Department announced up to $2.5 million available this year for applied research to advance clean biomass cookstove technologies for use in developing countries.

  13. Conversion of Biomass-Derived Small Oxygenates over HZSM-5 and its Deactivation Mechanism

    SciTech Connect

    Ramasamy, Karthikeyan K.; Gerber, Mark A.; Flake, Matthew D.; Zhang, He; Wang, Yong

    2014-02-28

    HZSM-5 catalyst deactivation was studied using aqueous feed mixtures containing ethanol, ethanol+ acetic acid, ethanol+ethyl acetate, or ethanol+acetaldehyde in a fixed bed reactor at 360°C and 300psig. Compared to ethanol alone experiment, addition of other oxygenates reduced catalyst life in the order of: ethyl acetateconversion to the desired products. Therefore, it is necessary to pre-treat the mixture of oxygenates to produce a feed stream containing the same or similar functional group compounds before converting the feed stream to hydrocarbon compounds over HZSM-5 catalyst.

  14. Biomass Econ 101: Measuring the Technological Improvements on...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... by TennEra High-tonnage Logistics Project validated by ORNL 1.2.3.1 Supply Chain Analysis Project 12 | Bioenergy Technologies Office Scenario Average Cost of Production Cost ...

  15. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  16. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    SciTech Connect

    Schuetzle, Dennis; Tamblyn, Greg; Caldwell, Matt; Hanbury, Orion; Schuetzle, Robert; Rodriguez, Ramer; Johnson, Alex; Deichert, Fred; Jorgensen, Roger; Struble, Doug

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  17. Biochemical Conversion: Using Enzymes, Microbes, and Catalysis to Make Fuels and Chemicals

    SciTech Connect

    2013-07-26

    This fact sheet describes the Bioenergy Technologies Office's biochemical conversion work and processes. BETO conducts collaborative research, development, and demonstration projects to improve several processing routes for the conversion of cellulosic biomass.

  18. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Final report

    SciTech Connect

    Benemann, J.R.; Oswald, W.J.

    1996-03-21

    There is growing evidence that global warming could become a major global environmental threat during the 21st century. The precautionary principle commands preventive action, at both national and international levels, to minimize this potential threat. Many near-term, relatively inexpensive, mitigation options are available. In addition, long-term research is required to evaluate and develop advanced, possibly more expensive, countermeasures, in the eventuality that they may be required. The utilization of power plant CO{sub 2} and its recycling into fossil fuel substitutes by microalgae cultures could be one such long-term technology. Microalgae production is an expanding industry in the U.S., with three commercial systems (of approximately 10 hectare each) producing nutriceuticals, specifically beta-carotene, extracted from Dunaliella, and Spirulina biomass. Microalgae are also used in wastewater treatment. Currently production costs are high, about $10,000/ton of algal biomass, almost two orders of magnitude higher than acceptable for greenhouse gas mitigation. This report reviews the current state-of-the-art, including algal cultivation and harvesting-processing, and outlines a technique for achieving very high productivities. Costs of CO{sub 2} mitigation with microalgae production of oils ({open_quotes}biodiesel{close_quotes}) are estimated and future R&D needs outlined.

  19. Biomass Program 2007 Accomplishments - Report Introduction

    SciTech Connect

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides the introduction to the 2007 Program Accomplishments Report.

  20. Biomass Program 2007 Accomplishments - Full Report

    SciTech Connect

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides Program accomplishments for 2007.

  1. Biomass Program 2007 Program Peer Review - Biodiesel and Other Technologies Summary

    SciTech Connect

    none,

    2009-10-28

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biodiesel and Other Technologies, held on August 14th and 15th in Golden, Colorado.

  2. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  3. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  4. Architectured Nanomembranes for In-Situ Energy Conversion Technologies

    SciTech Connect

    2009-04-01

    This fact sheet describes a study whose objective is to explore engineering concepts and analyze the technological and economic impacts of a novel type of architecture in nanocomposite membranes.

  5. Algal Biomass Conversion

    Energy.gov [DOE] (indexed site)

    ... is primarily n-paraffin * Oxygen removal is primarily through decarbonxylation ... The very dilute nature of the sugar and amino acid hydrolysates make fermentation and fuel ...

  6. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  7. Biomass Characterization | Bioenergy | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion processes. woman working with sampling equipment in a lab Capabilities man looking at test tubes containing clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of analytical methods for biomass characterization available for downloading. View the Biomass Compositional Analysis Lab

  8. Biomass Feedstock Composition and Property Database

    DOE Data Explorer

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.

  9. Biomass Feedstock Composition and Property Database

    DOE Data Explorer

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.)

  10. Cellulosic Biomass Sugars to Advantage Jet Fuel: Catalytic Conversion of Corn Stover to Energy Dense, Low Freeze Point Paraffins and Naphthenes: Cooperative Research and Development Final Report, CRADA Number CRD-12-462

    SciTech Connect

    Elander, Rick

    2015-08-04

    NREL will provide scientific and engineering support to Virent Energy Systems in three technical areas: Process Development/Biomass Deconstruction; Catalyst Fundamentals; and Technoeconomic Analysis. The overarching objective of this project is to develop the first fully integrated process that can convert a lignocellulosic feedstock (e.g., corn stover) efficiently and cost effectively to a mix of hydrocarbons ideally suited for blending into jet fuel. The proposed project will investigate the integration of Virent Energy System’s novel aqueous phase reforming (APR) catalytic conversion technology (BioForming®) with deconstruction technologies being investigated by NREL at the 1-500L scale. Corn stover was chosen as a representative large volume, sustainable feedstock.

  11. Reactive Dehydration technology for Production of Fuels and Chemicals from Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dr. James R. Kittrell, KSE, Inc. Dr. Carl R. Dupre, KSE, Inc. Dr. Michael F. Malone (Subcontractor) U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Project Objective Commercialize a novel reactive distillation technology using the iCARD platform (Intensified Catalytic and Reactive Distillation) for compact, inexpensive production of biomass-based

  12. Basic mechanisms of photosynthesis and applications to improved production and conversion of biomass to fuels and chemical products

    SciTech Connect

    El-Sayed, M.; Greenbaum, E.; Wasielewski, M.

    1996-09-01

    Natural photosynthesis, the result of 3.5 billion years of evolutionary experimentation, is the best proven, functional solar energy conversion technology. It is responsible for filling the vast majority of humanity`s energy, nutritional, and materials needs. Understanding the basic physical chemical principles underlying photosynthesis as a working model system is vital to further exploitation of this natural technology. These principles can be used to improve or modify natural photosynthesis so that it is more efficient or so that it can produce unusual products such as hydrogen, methane, methanol, ethanol, diesel fuel substitutes, biodegradable materials, or other high value chemical products. Principles garnered from the natural process can also be used to design artificial photosynthetic devices that employ analogs of natural antenna and reaction center function, self-assembly and repair concepts, photoinduced charge transfer processes, photoprotection, and dark reactions that facilitate catalytic action to convert light into, useful chemical or electrical energy. The present broad understanding of many structural and functional aspects of photosynthesis has resulted from rapid recent research progress. X-ray structures of several key photosynthetic reaction centers and antenna systems are available, and the overall principles controlling photoinduced energy and electron transfer are being established.

  13. DOE Selects 16 Transformational Carbon Capture Technologies Projects...

    Office of Environmental Management (EM)

    ... CO2 capture with conversion of the resulting algal biomass to fuels and bioplastics. ... Capture Technologies for Coal-Based Gasification Plants DOE Selects Projects To Enhance ...

  14. Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992

    SciTech Connect

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  15. Biomass energy systems program summary

    SciTech Connect

    1980-07-01

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  16. Advanced technologies for decontamination and conversion of scrap metal

    SciTech Connect

    MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

    1996-12-31

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products.

  17. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Direct Thermal Energy Conversion Materials, Devices, and Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  18. Biomass Feedstocks | Bioenergy | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Feedstocks Our mission is to enable the coordinated development of biomass resources and conversion technologies by understanding the field-to-fuel impact of feedstocks on biochemical and thermochemical processes. A line graph showing the simulated distillation results of upgraded oils, divided into three sections: gasoline fraction, jet fraction, and #2 diesel fraction. The y-axis shows the mass % recovered (from 0 to 100) and the x-axis shows the distillation temperature in degrees Celsius

  19. Biomass Indirect Liquefaction Strategy Workshop: Summary Report |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Strategy Workshop: Summary Report Biomass Indirect Liquefaction Strategy Workshop: Summary Report This report is based on the proceedings of the U.S. DOE's Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop. idl_workshop_summary_report_july_2014 (1.04 MB) More Documents & Publications 2013 Peer Review Presentations-Gasification Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels ITP Chemicals:

  20. Thermochemical Conversion: Using Heat and Catalysts to Make Biofuels and Bioproducts

    SciTech Connect

    2013-07-29

    This fact sheet discusses the Bioenergy Technologies Office's thermochemical conversion critical technology goal. And, how through the application of heat, robust thermochemical processes can efficiently convert a broad range of biomass.

  1. Direct conversion technology. Annual summary report CY 1991, January 1, 1991--December 31, 1991

    SciTech Connect

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  2. Process for the conversion of and aqueous biomass hydrolyzate into fuels or chemicals by the selective removal of fermentation inhibitors

    DOEpatents

    Hames, Bonnie R.; Sluiter, Amie D.; Hayward, Tammy K.; Nagle, Nicholas J.

    2004-05-18

    A process of making a fuel or chemical from a biomass hydrolyzate is provided which comprises the steps of providing a biomass hydrolyzate, adjusting the pH of the hydrolyzate, contacting a metal oxide having an affinity for guaiacyl or syringyl functional groups, or both and the hydrolyzate for a time sufficient to form an adsorption complex; removing the complex wherein a sugar fraction is provided, and converting the sugar fraction to fuels or chemicals using a microorganism.

  3. Outlook for Biomass Ethanol Production and Demand

    Reports and Publications

    2000-01-01

    This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

  4. Analysis of the Effects of Compositional and Configurational Assumptions on Product Costs for the Thermochemical Conversion of Lignocellulosic Biomass to Mixed Alcohols -- FY 2007 Progress Report

    SciTech Connect

    Zhu, Yunhua; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-05

    The purpose of this study was to examine alternative biomass-to-ethanol conversion process assumptions and configuration options to determine their relative effects on overall process economics. A process-flow-sheet computer model was used to determine the heat and material balance for each configuration that was studied. The heat and material balance was then fed to a costing spreadsheet to determine the impact on the ethanol selling price. By examining a number of operational and configuration alternatives and comparing the results to the base flow sheet, alternatives having the greatest impact the performance and cost of the overall system were identified and used to make decisions on research priorities.

  5. EERC Center for Biomass Utilization 2006

    SciTech Connect

    Zygarlicke, Christopher J.; Hurley, John P.; Aulich, Ted R.; Folkedahl, Bruce C.; Strege, Joshua R.; Patel, Nikhil; Shockey, Richard E.

    2009-05-27

    The Center for Biomass Utilization® 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.

  6. Biomass energy: State of the technology present obstacles and future potential

    SciTech Connect

    Dobson, L.

    1993-06-23

    The prevailing image of wood and waste burning as dirty and environmentally harmful is no longer valid. The use of biomass combustion for energy can solve many of our nation`s problems. Wood and other biomass residues that are now causing expensive disposal problems can be burned as cleanly and efficiently as natural gas, and at a fraction of the cost. New breakthroughs in integrated waste-to-energy systems, from fuel handling, combustion technology and control systems to heat transfer and power generation, have dramatically improved system costs, efficiencies, cleanliness of emissions, maintenance-free operation, and end-use applications. Increasing costs for fossil fuels and for waste disposal strict environmental regulations and changing political priorities have changed the economics and rules of the energy game. This report will describe the new rules, new playing fields and key players, in the hope that those who make our nation`s energy policy and those who play in the energy field will take biomass seriously and promote its use.

  7. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    SciTech Connect

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  8. Biomass Research and Development Act of 2000

    Energy.gov [DOE]

    Conversion of biomass into biobased industrial products offers outstanding potential for benefit to the national interest.

  9. High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio-Mass Analysis -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal High-Speed Biomass Recalcitrance Pipeline Speeds Up Bio-Mass Analysis Robotic pipeline allows for rapid analysis of optimal substrate/enzyme combination for efficient bio-fuel production. National Renewable Energy Laboratory Ames Laboratory Contact NREL About This Technology Technology Marketing SummaryPipeline analysis speeds up the process for the selection of plant species with the lowest natural recalcitrance (resistance to sugar conversion) as well as the

  10. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    SciTech Connect

    Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

    2014-03-20

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  11. 2013 DOE Bioenergy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioenergy Technologies Office (BETO) Project Peer Review Catalytic Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels (2 3 1 12) Technology Area Review: Biochemical Conversion 1 | Bioenergy Technologies Office eere.energy.gov Hydrocarbon Fuels (2.3.1.12) May 22, 2013 Mike Lilga This presentation does not contain any proprietary, confidential, or otherwise restricted information Conversion Organization: PNNL Goal Statement Goals: * There is a need to make a balanced f el composition

  12. Biomass Logistics

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  13. Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons

    SciTech Connect

    Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; Geiger, Robert A.; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V.; Davison, Brian H.

    2015-11-03

    Here, direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10–15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.

  14. Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons

    DOE PAGES [OSTI]

    Narula, Chaitanya K.; Li, Zhenglong; Casbeer, Erik M.; Geiger, Robert A.; Moses-Debusk, Melanie; Keller, Martin; Buchanan, Michelle V.; Davison, Brian H.

    2015-11-03

    Here, direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10–15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbonmore » pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.« less

  15. Biofuels - Biomass Feedstock - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Biofuels - Biomass Feedstock Idaho National Laboratory Contact INL About This Technology Technology ...

  16. Building biomass into the utility fuel mix at NYSEG: System conversion and testing results for Greenidge Station

    SciTech Connect

    Benjamin, W.

    1996-12-31

    NYSEG is in the second phase of developing resources and systems for cofiring biomass with coal. In the first phase, stoker boilers were fired with biomass (typically wood waste products). Encouraged by positive results at the older stokers, NYSEG decided to develop the process for its pulverized coal boilers beginning with Greenidge Station, a 108-MW pulverized coal (PC) unit with a General Electric turbine generator and a 665,000-lb Combustion Engineering, tangentially fired boiler. Greenidge Station is in the center of New York, surrounded by farms, forests, vineyards, and orchards. The test bums at Greenidge Station demonstrated that a parallel fuel feed system can effectively provide wood products to a PC unit. Emission results were promising but inconclusive. Additional testing, for longer durations, at varied loads and with different woods needs to be conducted to clarify and establish relationships between the percent wood fired at varying moisture contents. Loads need to be varied to develop continuous emission monitor emission data that can be compared to coal-only data. Economic analysis indicates that it will be beneficial to further refine the equipment and systems. Refinements may include chipping and drying equipment, plus installation of fuel storage and feed systems with permanent boiler penetration. NYSEG will attempt to identify the problems associated with cofiring by direct injection, compared to cofiring a biomass/coal mixture through the existing fuel handling system. Specifically, an examination will be made of fuel size criteria and the system modifications necessary for minimal impacts on coal-fired operation.

  17. Chapter 7: New Insights into Microbial Strategies for Biomass...

    Office of Scientific and Technical Information (OSTI)

    Conversion of Biomass to Advanced Biofuels Publisher: Amsterdam, Netherlands: ... PHYSICAL, AND ANAYLYTICAL CHEMISTRY biofuels; biomass; cellulases; natural paradigms; ...

  18. NREL: Biomass Research - Chemical and Catalyst Science Capabilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    conversion performance, measure mass transport, and develop links between biomass ... Biorefinery Processes Microalgal Biofuels Biomass Process & Sustainability ...

  19. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    SciTech Connect

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  20. Opportunities for Small Biomass Power Systems. Final Technical Report

    SciTech Connect

    Schmidt, D. D.; Pinapati, V. S.

    2000-11-15

    The purpose of this study was to provide information to key stakeholders and the general public about biomass resource potential for power generation. Ten types of biomass were identified and evaluated. The quantities available for power generation were estimated separately for five U.S. regions and Canada. A method entitled ''competitive resource profile'' was used to rank resources based on economics, utilization, and environmental impact. The results of the analysis may be used to set priorities for utilization of biomass in each U.S. region. A review of current biomass conversion technologies was accomplished, linking technologies to resources.

  1. Systems analysis research for energy conversion and utilization technologies (ECUT). FY 1985 annual report

    SciTech Connect

    Eberhardt, J.J.; Gunn, M.E.; Levinson, T.M.

    1985-11-01

    This Annual Report highlights ECUT accomplishments in the Systems Analysis Project for FY 1985. The Systems Analysis Project was established in 1980 along with the ECUT Division. The Systems Analysis mission is to identify, analyze, and assess R and D needs and research program strategies for advanced conservation technologies. The PNL Systems Analysis staff conducts topical research, provides technical studies, and plans program activities in three areas related to energy conversion and utilization technologies: (1) technology assessment, (2) engineering analysis, and (3) project evaluation and review. This report summarizes the technical results and accomplishments of the FY 1985 projects. They relate mostly to tribology, improved ctalysts, regenerative heat exchangers, robotics and electronics industries, and bioprocessing.

  2. Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass IBR Fact Sheet: Abengoa Bioenergy Biomass IBR Fact Sheet: Abengoa Bioenergy Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat PDF icon ...

  3. BSCL use plan: Solving biomass recalcitrance

    SciTech Connect

    Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

    2005-08-01

    Saccharification of lignocellulosic biomass has long been recognized as a potential low-cost source of mixed sugars for fermentation to fuel ethanol or chemicals. Several technologies have been developed over the years that allow this conversion process to occur, yet the significant challenge remaining is to make the process cost competitive.

  4. The Status of Thermophotovoltaic Energy Conversion Technology at Lockheed Martin Corp.

    SciTech Connect

    E.J. Brown; P.F. Baldasaro; S.R. Burger; L.R. Danielson; D.M. DePoy; G.J. Nichols; W.F. Topper; T.D. Rahmlow

    2003-01-31

    In a thermophotovoltaic (TPV) energy conversion system, a heated surface radiates in the mid-infrared range onto photodiodes which are sensitive at these energies. Part of the absorbed energy is converted into electric output. Conversion efficiency is maximized by reducing the absorption of non-convertible energy with some form of spectral control. In a TPV system, many technology options exist. The development efforts have concentrated on flat-plate geometries with greybody radiators, low bandgap quaternary diodes, front surface tandem filters and a multi-chip module (MCM) approach that allows selective fabrication processes to match diode performance. Recently, the authors achieved conversion efficiencies of about 20% (radiator 950 C, diodes 22 C) for a module in a prototypic cavity test environment. These tests employed InGaAsSb diodes with 0.52 eV bandgap and front surface filters for spectral control. This paper provides details of the individual system components and describes the measurement technique used to record these efficiencies.

  5. Neutronic Analyses for HEU to LEU fuel conversion of the Massachusetts Institute of Technology.

    SciTech Connect

    Wilson, E. H.; Newton, T. H.; Bergeron, A.; Horelik, N.; Stevens, J. G

    2011-03-02

    The Massachusetts Institute of Technology (MIT) reactor (MITR-II), based in Cambridge, Massachusetts, is a research reactor designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on a mixture of uranium and molybdenum (UMo) is expected to allow the conversion of compact high performance reactors like the MITR-II. This report presents the results of steady state neutronic safety analyses for conversion of MITR-II from the use of HEU fuel to the use of U-Mo LEU fuel. The objective of this work was to demonstrate that the safety analyses meet current requirements for an LEU core replacement of MITR-II.

  6. Process Design and Economics for the Conversion of Lignocellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion ...

  7. High-Yielding Method for Converting Biomass to Fermentable Sugars for

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biofuel Production - Energy Innovation Portal High-Yielding Method for Converting Biomass to Fermentable Sugars for Biofuel Production Inventors: Ronald Raines, Joseph Binder Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Lignocellulosic biomass is a very desirable feedstock for biofuel production. If the fermentation process for lignocellulose could be optimized, conversion of this biomass could yield 25 to 50 billion gallons of

  8. The Status of Thermophotovoltaic Energy Conversion Technology at Lockheed Martin Corporation

    SciTech Connect

    EJ Brown; PF Baldasaro; SR Burger; LR Danielson; DM DePoy; JM Dolatowski; PM Fourspring; GJ Nichols; WF Topper; TD Rahmlow

    2004-07-29

    In a thermophotovoltaic (TPV) energy conversion system, a heated surface radiates in the mid-infrared range onto photocells which are sensitive at these energies. Part of the absorbed energy is converted into electric output. Conversion efficiency is maximized by reducing the absorption of non-convertible energy with some form of spectral control. In a TPV system, many technology options exist. Our development efforts have concentrated on flat-plate geometries with greybody radiators, front surface tandem filters and a multi-chip module (MCM) approach that allows selective fabrication processes to match cell performance. Recently, we discontinued development of GaInAsSb quaternary cell semiconductor material in favor of ternary GaInAs material. In our last publication (Ref. 1), the authors reported conversion efficiencies of about 20% (radiator 950 C, cells 22 C) for small modules (1-4 cm{sup 2}) tested in a prototypic cavity test environment. Recently, we have achieved measured conversion efficiencies of about 12.5% in larger ({approx}100 cm{sup 2}) test arrays. The efficiency reduction in the larger arrays was probably due to quality and variation of the cells as well as non-uniform illumination from the hot radiator to the cold plate. Modules in these tests used GaInAsSb cells with 0.52 eV bandgap and front surface filters for spectral control. This paper provides details of the individual system components and the rationale for our technical decisions. It also describes the measurement techniques used to record these efficiencies.

  9. NREL: Biomass Research - What Is a Biorefinery?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    What Is a Biorefinery? A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery...

  10. tcbiomass2015: Technology for the Bioeconomy

    Energy.gov [DOE]

    The tcbiomass2015: Technology for the Bioeconomy Conference will be held from November 2–5, 2015 in Chicago, Illinois, and will be a global forum for experts in the science of thermochemical conversion of biomass to fuels, chemicals, and energy products. Bioenergy Technologies Office Conversion Program Manager Kevin Craig and Technology Manager Liz Moore will be in attendance.

  11. Biofuel Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived

  12. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect

    Not Available

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  13. Integration of Leading Biomass Pretreatment Technologies with Enzymatic Digestion and Hydrolyzate Fermentation

    SciTech Connect

    2006-04-01

    The goal of this project is to develop comprehensive performance information on a common basis on integrated biomass pretreatment, enzymatic hydrolysis, and fermentation systems.

  14. Catalytic Conversion of Bioethanol to Hydrocarbons - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal Vehicles and Fuels Vehicles and Fuels Startup America Startup America Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Catalytic Conversion of Bioethanol to Hydrocarbons Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00219_ID2414.pdf (629 KB) Technology Marketing SummaryA method for catalytically converting an alcohol to a hydrocarbon without requiring

  15. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    SciTech Connect

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  16. Energy Department Announces $10 Million for Technologies to Produce Advanced Biofuel Products from Biomass

    Energy.gov [DOE]

    The Energy Department today announced up to $10 million in funding to advance the production of advanced biofuels, substitutes for petroleum-based feedstocks, and bioproducts made from renewable, non-food-based biomass, such as agricultural residues and woody biomass.

  17. Hydrogen Production: Biomass Gasification | Department of Energy

    Office of Environmental Management (EM)

    Biomass Gasification Hydrogen Production: Biomass Gasification Photo of a man standing near a pilot-scale gasification system. Biomass gasification is a mature technology pathway ...

  18. Bioenergy `96: Partnerships to develop and apply biomass technologies. Volume I and II

    SciTech Connect

    1996-12-31

    The conference proceedings consist of two volumes of papers detailing numerous issues related to biomass energy production and use. An author and keyword index are provided in the proceedings. A total of 143 papers were selected for the database. Papers were selected from the following areas from Volume 1: feedstock production, harvest, storage, and delivery; the DOE biomass power program; technical, economic, and policy barriers and incentives; new developments in biomass combustion; advancements in biomass gasification; liquid fuels production and use; and case studies of bioenergy projects. From Volume 2, subtopics selected included: bioenergy systems for distributed generation; assessment and use of biomass wastes; non-technical barriers to bioenergy implementation; improving commercial viability through integrated systems; and anaerobic digestion.

  19. Optical materials technology for energy efficiency and solar energy conversion XIV

    SciTech Connect

    Lampert, C.M.; Deb, S.K.; Grandqvist, C.G.

    1995-12-31

    This volume gives the reader an update on the progress in the field of optical materials research for energy efficiency and solar energy conversion applications. The field covers a wide range of technology for the control, modification, and conversion of radiant energy. Currently, there is very strong activity in the development of materials for the modification of energy-propagating through glazings. These ``smart windows`` are presently given increased interest by industry, while the basic understanding of materials and devices is improving. The technology of device fabrication is gaining maturity as better thin film layers are developed. Thermotropic glazing appears to be gaining commercial interest again with new hydrogel formulations. Thermotropic glazing changes strongly from transparent to opaque with temperature. Other developments are in nanocrystalline materials where dye-modified TiO{sub 2} films have been shown to be electrochromic. Other work in this volume includes results on photovoltaic work on fullerenes, C{sub 60}. This material is of keen interest for a variety of optical applications. Other photovoltaic progress is reported for nanocrystalline, porous silicon, and thin film Cu(In, Ga)Se devices. Further advances are reported on solar absorber lifetime testing. Testing procedures are presented covering several years of study by a group of European institutes. Also continuing progress on wavelength-selective paints is presented. This coating represents a high-performance/low-cost solution to expensive selective absorbers for low and medium temperature collectors. Finally, interesting results are given on angle selective low-emittance coatings. By modification of microstructure, an angle, dependency can be produced. Separate abstracts were prepared for most papers.

  20. NREL: Biomass Research - Jonathan J. Stickel

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of the fluid mechanics, mass transfer, and reaction kinetics of biomass undergoing biochemical conversion in order to improve overall conversion yields and process economics. ...

  1. Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking

    SciTech Connect

    Jones, S. B.; Valkenburg, C.; Walkton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S.

    2010-02-01

    The Biomass Program develops design cases to understand the current state of conversion technologies and to determine where improvements need to take place in the future. This design case is the first to establish detailed cost targest for the production of diesel and gasoline blendstock from biomass via a fast pyrolysis process.

  2. Analysis of the Effects of Compositional and Configurational Assumptions on Product Costs for the Thermochemical Conversion of Lignocellulosic Biomass to Mixed Alcohols – FY 2007 Progress Report

    SciTech Connect

    Zhu, Yunhua; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2009-02-01

    The purpose of this study was to examine alternative biomass-to-ethanol conversion process assumptions and configuration options to determine their relative effects on overall process economics. A process-flow-sheet computer model was used to determine the heat and material balance for each configuration that was studied. The heat and material balance was then fed to a costing spreadsheet to determine the impact on the ethanol selling price. By examining a number of operational and configuration alternatives and comparing the results to the base flow sheet, alternatives having the greatest impact the performance and cost of the overall system were identified and used to make decisions on research priorities. This report, which was originally published in December 2008, has been revised primarily to correct information presented in Appendix B -- Base Case Flow Sheets and Model Results. The corrections to Appendix B include replacement of several pages in Table B.1 that duplicated previous pages of the table. Other changes were made in Appendix B to correct inconsistencies between stream labels presented in the tables and the stream labels in the figures.

  3. Cellulosic Biomass Sugars to Advantaged Jet Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 May, 2013 Technology Area Review: Biochemical Conversion Randy Cortright PhD Virent, Inc WBS: 2.3.1.8 Goal Statement Project Goal - Integrate Virent's BioForming® Process with NREL's biomass deconstruction technology to efficiently produce cost effective "drop-in" fuels from corn stover with particular focus in maximizing jet fuel yields.  Improve pretreatment strategies for deconstruction of cellulose and hemicellulose while significantly reducing or eliminating costly enzymes

  4. BIOMASS TO BIO-OIL BY LIQUEFACTION

    SciTech Connect

    Wang, Huamin; Wang, Yong

    2013-01-10

    Significant efforts have been devoted to develop processes for the conversion of biomass, an abundant and sustainable source of energy, to liquid fuels and chemicals, in order to replace diminishing fossil fuels and mitigate global warming. Thermochemical and biochemical methods have attracted the most attention. Among the thermochemical processes, pyrolysis and liquefaction are the two major technologies for the direct conversion of biomass to produce a liquid product, often called bio-oil. This chapter focuses on the liquefaction, a medium-temperature and high-pressure thermochemical process for the conversion of biomass to bio-oil. Water has been most commonly used as a solvent and the process is known as hydrothermal liquefaction (HTL). Fundamentals of HTL process, key factors determining HTL behavior, role of catalyst in HTL, properties of produced bio-oil, and the current status of the technology are summarized. The liquefaction of biomass by using organic solvents, a process called solvolysis, is also discussed. A wide range of biomass feedstocks have been tested for liquefaction including wood, crop residues, algae, food processing waste, and animal manure.

  5. Advanced technologies for co-processing fossil and biomass resources for transportation fuels and power generation

    SciTech Connect

    Steinberg, M.; Dong, Y.

    2004-07-01

    Over the past few decades, a number of processes have been proposed or are under development for coprocessing fossil fuel and biomass for transportation fuels and power generation. The paper gives a brief description of the following processes: the Hydrocarb system for converting biomass and other carbonaceous fuels to elemental carbon and hydrogen, methane or methanol; the Hynol process where the second step of the Hydrocarb process is replaced with a methane steam reformer to convert methane to CO and H{sub 2}S without deposition of carbon; the Carnol process where CO{sub 2} from coal and the biomass power plants is reacted with hydrogen to produce methanol; and advanced biomass high efficiency power generator cycle where a continuous plasma methane decomposition reactor (PDR) is used with direct carbon fuel cell to produce power and carbon and hydrogen. 13 refs., 5 figs., 2 tabs.

  6. DOE Offers $12 Million for Carbon Fiber-from-Biomass Technologies

    Energy.gov [DOE]

    The Energy Department announced up to $12 million in funding to advance the production of cost-competitive, high-performance carbon fiber material from renewable non-food-based biomass feedstocks.

  7. Energy Department Announces $12 Million for Technologies to Produce Renewable Carbon Fiber from Biomass

    Energy.gov [DOE]

    The Energy Department today announced up to $12 million in funding to advance the production of cost-competitive, high-performance carbon fiber material from renewable non-food-based feedstocks such as agricultural residues and woody biomass.

  8. Biochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion Biochemical Conversion This area focuses on the research, development and demonstration of biological processes that convert biomass to biofuels, chemicals, and power. Biochemical processes also complement thermochemical conversion by providing residual materials for further processing. Biochemical conversion will advance in the future by enhancing fuel yields in integrated biorefineries which combine conversion types with heat and power efficiencies to produce fuel and products.

  9. (DOE Energy Conversion and Utilization Technology Program: NBS Measurement Technology Project): Quarterly progress report, January-March 1982

    SciTech Connect

    Semerjian, H.G.

    1982-01-01

    Proper understanding of sooting processes will aid in assessing the impact of alternative fuels on hardware durability, combustion and heat transfer efficiency, and the environment. These efforts are in direct support of ECUT projects dealing with open cycle/engine combustion technology, direct heating and conversion, physical processes, and chemical processes. Soot formation entails a number of complex processes that occur within and about the combustion zone. These include hydrocarbon cracking, nucleation, growth, agglomeration and burnout. The importance of free radical processes, the involvement of aromatic and acetylenic intermediates, and the effect of inorganic components on the soot formation processes will be investigated. The effect of physical properties (such as boiling point and viscosity) on the droplet formation, evaporation, combustion and subsequent soot formation processes will also be examined. The effect of flow field parameters on the chemical, as well as physical processes will be studied. Initial studies toward investigation of chemical effects on soot formation are being carried out in laboratory-scale diffusion flames of various configurations. Investigations of physical effects on soot formation are carried out in the NBS experimental furnace. A combination of optical diagnostic techniques are used. 8 refs.

  10. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  11. Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    preprocessed into two-inch chips and dried to about 10 percent weight (wt%) moisture content to produce an accept- able biomass gasifcation feedstock. * Indirect gasifcation of biomass in a fuidized bed reactor (the fuidizing media is usually an olivine or sand-like in nature) through rapid heating typically above around 750ºC produces a syngas, which needs to be conditioned for further utilization. * Syngas conditioning (tar cracking to produce additional syngas, quenching to remove

  12. Environmental implications of increased biomass energy use

    SciTech Connect

    Miles, T.R. Sr.; Miles, T.R. Jr. , Portland, OR )

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  13. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, Februray 1, 1980-April 30, 1980

    SciTech Connect

    Ahn, Y.K.; Chen, Y.C.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields, K.J.

    1980-01-01

    The project will result in two distinct products: (1) a biomass allocation model which will serve as a tool for the energy planner. (2) the experimental data is being generated to help compare and contrast the behavior of a large number of biomass material in thermochemical environments. Based on information in the literature, values have been developed for regional biomass costs and availabilities and for fuel costs and demands. This data is now stored in data banks and may be updated as better data become available. Seventeen biomass materials have been run on the small TGA and the results partially analyzed. Ash analysis has been performed on 60 biomass materials. The Effluent Gas Analyzer with its associated gas chromatographs has been made operational and some runs have been carried out. Using a computerized program for developing product costs, parametric studies on all but 1 of the 14 process configurations being considered have been performed. Background economic data for all the configuration have been developed. Models to simulate biomass gasifications in an entrained and fixed bed have been developed using models previously used for coal gasification. Runs have been carried out in the fluidized and fixed bed reactor modes using a variety of biomass materials in atmospheres of steam, O/sub 2/ and air. Check aout of the system continues using fabricated manufacturing cost and efficiency data. A users manual has been written.

  14. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect

    Christopher J. Zygarlicke

    2004-11-01

    cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass

  15. ORNL Bioenergy technologies

    ScienceCinema

    Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

    2014-07-15

    ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

  16. ORNL Bioenergy technologies

    SciTech Connect

    Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

    2014-07-02

    ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

  17. Using Fermentation and Catalysis to Make Fuels and Products: Biochemical Conversion

    SciTech Connect

    2010-09-01

    Information about the Biomass Program's collaborative projects to improve processing routes for biochemical conversion, which entails breaking down biomass to make the carbohydrates available for conversion into sugars.

  18. Biomass IBR Fact Sheet: ICM, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ICM, Inc. Biomass IBR Fact Sheet: ICM, Inc. ICM, Inc. has modified its existing pilot plant and begun operations to use its biochemical conversion technology to produce fuelgrade ethanol from corn fiber, switchgrass, and energy sorghum. ibr_arra_icm.pdf (270.3 KB) More Documents & Publications ICM, Incorporated ICM, Incorporated ICM, Incorporated

  19. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Microalgal biomass grown via autotrophic pathways is dewatered to 20% solids concentration. * The slurry of whole algae reacts in a pressure vessel (2000-3000 pounds per square inch and 300°C-350°C) to predominately form liquids with some gas and solids. * The oil phase spontaneously separates from the water phase. * AHTL makes use of all algal lipids and biomass-provid- ing high oil yields even from low triacylglyceride (TAG) lipid content algae; polar lipids are not hexane extractable.

  20. Biomass Program Monthly News Blast: August

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lab Opens the Advanced Biofuels Process Demonstration Unit On August 18, 2011, Biomass Program Manager Paul Bryan and Biochemical Conversion Technology Manager Leslie Pezzullo traveled to Emeryville, California, for a ribbon-cutting event of the Advanced Biofuels Process Demonstration Unit, located at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory. Built and operated with DOE annual and American Recovery and Reinvestment Act funds, the 15,000 square-foot facility

  1. Gasification-based biomass

    SciTech Connect

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  2. Direct-fired biomass

    SciTech Connect

    None, None

    2009-01-18

    The direct-fired biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  3. Biomass | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    technologies that are used for biomass thermal and combined heat and power (CHP) plants are direct combustion and gasification systems. Direct combustion systems are the...

  4. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioproducts | Department of Energy Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy Technologies Office works with industry to develop pathways that use heat, pressure, and catalysis to convert domestic, non-food biomass into gasoline, jet fuel, and other products. thermochemical_four_pager.pdf (4.64 MB) More Documents & Publications 2013 Peer Review

  5. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    SciTech Connect

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  6. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  7. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  8. 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review BIOMASS ENERGY GENERATION PROJECT

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Peer Review BIOMASS ENERGY GENERATION PROJECT 5/23/2013 Heat and Power Ed Olthoff Cedar Falls Utilities STREETER STATION Unit #6 - 1963 Stoker 16.5 MW Coal/Natural Gas Unit #7 - 1973 Pulverized 35.0 MW Coal/Natural Gas Goal Statement & Project Overview 3 * Densification process to mimic stoker coal - ¾" to 1 ¼" chunks of coal - Suitable for corn stover and other energy crops - Compatible with the existing fuel handling equipment and boiler - Validity determined by test burns *

  9. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993

    SciTech Connect

    Benemann, J.R.; Oswald, W.J.

    1994-01-15

    This report provides an economic analysis and feasibility study for the utilization by microalgal systems of carbon dioxide generated from coal-fired power plants. The resulting biomass could be a fuel substitute for fossil fuels.

  10. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The United States Department of Agriculture (USDA) and the United States Department of Energy (DOE) both place high importance on developing resources and conversion technologies for producing fuels, chemicals and power from biomass. The two departments are working together on several aspects of bioenergy. This report is the third to be produced from joint collaboration. This and other reports can be found at: http://www.eere.energy.gov/biomass/publications.html. The website for biomass

  11. CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"

    SciTech Connect

    Norris, Rober; Paulauskas, Felix; Naskar, Amit; Kaufman, Michael; Yarborough, Ken; Derstine, Chris

    2013-10-01

    The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

  12. Bio-based photosynthetic conversion of CO2 and water to replace petroleum

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    feedstock on an industrial scale - Energy Innovation Portal Early Stage R&D Early Stage R&D Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Bio-based photosynthetic conversion of CO2 and water to replace petroleum feedstock on an industrial scale National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Alpha-ketoglutarate (AKG) is widely used as an organic synthesis intermediate, a medical and biochemical

  13. Conversion Factsheet

    Office of Energy Efficiency and Renewable Energy (EERE)

    To efficiently convert algae, diverse types of cellulosic biomass, and emerging feedstocks into renewable fuels, the U.S. Department of Energy (DOE) supports research, development, and demonstration of technologies. This research will help ensure that these renewable fuels are compatible with today’s vehicles and infrastructure.

  14. Kelp biomass production: yield, genetics, and planting technology. Annual report, January 1983-August 1984. Technical report

    SciTech Connect

    Neushul, M.; Harger, B.W.W.

    1985-01-01

    Progress was made toward the long-term goal of growing macroalgae in the sea as a future source of substitute natural gas. The annual report discusses progress made to: (1) measure macroalgal yield, (2) enhance yield by row planting and selective harvesting, (3) genetically breed high-producing plants, (4) devise methods for planting kelps and (5) maintain and extend collaborative research efforts and communication with scientists working on macroalgal biomass production in Japan, China and elsewhere. The report discusses kelp biology and macroalgal mariculture in general terms, the theories that have been proposed and the existing data base in the scientific literature. Particular attention is given to new techniques used to make in-the-sea hydrodynamic and light-climate measurements and microspectrophotometric measurements of DNA levels in kelp sporophytes and gametophytes.

  15. Chapter 4: Advancing Clean Electric Power Technologies | Advanced Plant Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Plant Technologies Chapter 4: Technology Assessments Overview of Advanced Plant Technologies for Solid Fuels Integral to management of carbon emissions from fossil and biomass power generation are efforts to improve base plant costs and efficiencies. The advanced plant technologies are combined with carbon capture and storage (CCS) technologies to minimize both emissions and costs. The non-capture components of a power plant offer opportunity for improving fuel conversion efficiencies,

  16. DOE Announces Webinars on Natural Gas for Biomass Technologies, Additive Manufacturing for Fuel Cells, and More

    Office of Energy Efficiency and Renewable Energy (EERE)

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required.

  17. The ultimate biomass refinery

    SciTech Connect

    Bungay, H.R. )

    1988-01-01

    Bits and pieces of refining schemes and both old and new technology have been integrated into a complete biomass harvesting, processing, waste recycle, and marketing complex. These choices are justified with economic estimates and technology assessments.

  18. Hydropyrolysis of biomass

    SciTech Connect

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

  19. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect

    Francis S. Lau

    2003-09-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  20. Biomass Compositional Analysis Laboratory Procedures | Bioenergy | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass Compositional Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for standard biomass analysis. These procedures help scientists and analysts understand more about the chemical composition of raw biomass feedstocks and process intermediates for conversion to biofuels. View Publications Subscribe to email updates about revisions and additions to biomass analysis procedures, FAQs, calculation spreadsheets, and publications. Email: Subscribe Unsubscribe

  1. Biomass Indirect Liquefaction Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation Biomass Indirect Liquefaction Presentation TRI Technology Update & IDL R&D ... ClearFuels-Rentech Pilot-Scale Biorefinery Biomass Indirect Liquefaction Presentation ...

  2. DOE 2014 Biomass Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DOE 2014 Biomass Conference Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, ...

  3. Biomass Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Resources Jump to: navigation, search Name: Biomass Energy Resources Place: Dallas, Texas Product: A start up fuel processing technology References: Biomass Energy Resources1...

  4. New Pilot Plant Demonstrates the Potential to Co-Process Biomass Streams with Petroleum

    Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL), together with leading petroleum refining technologies supplier W.R. Grace, and leading pilot plant designer Zeton Inc., built a unique pilot-scale facility that can produce biomass-derived fuel intermediates with existing petroleum refinery infrastructure. This pilot plant, constructed in part with funding from the Bioenergy Technologies Office, combines biomass pyrolysis together with fluid catalytic cracking—one of the most important conversion processes used in petroleum refineries—to demonstrate the potential to co-process biomass-derived streams with petroleum, at an industrially-relevant pilot scale.

  5. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    SciTech Connect

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0

  6. Feedstock Supply and Logistics:Biomass as a Commodity

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    impacts on conversion performance. * Logistics: Systems for harvesting, collecting, ... to improve biomass quality, reduce costs, and increase productivity. 2 BIOENERGY ...

  7. Lignin conversion to fuels, chemicals and materials - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal Lignin conversion to fuels, chemicals and materials National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary There has been vast research in developing cost effective processes to convert the polysaccharide components of plants, mainly cellulose and hemicellulose, into fuels and chemicals. However, the lignin component of biomass, which is an energy-dense polymer and the second most abundant biopolymer on Earth, is vastly underutilized in

  8. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2014-07-01

    At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes.

  9. Flash hydrogenation of biomass

    SciTech Connect

    Steinberg, M

    1980-01-01

    It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

  10. Study concerning the utilization of the ocean spreading center environment for the conversion of biomass to a liquid fuel. (Includes Appendix A: hydrothermal petroleum genesis). [Supercritical water

    SciTech Connect

    Steverson, M.; Stormberg, G.

    1985-01-01

    This document contains a report on the feasibility of utilizing energy obtained from ocean spreading centers as process heat for the conversion of municipal solid wastes to liquid fuels. The appendix contains a paper describing hydrothermal petroleum genesis. Both have been indexed separately for inclusion in the Energy Data Base. (DMC)

  11. Catalytic Upgrading of Thermochemical Intermediates to Hydrocarbons: Conversion of Lignocellulosic Feedstocks to Aromatic Fuels and High Value Chemicals

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 May, 2013 Technology Area Review: Thermochemical Conversion Randy Cortright PhD Virent, Inc WBS: 3.3.1.10 This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Project Goal -Develop and demonstrate integration of Virent's lignocellulosic biomass solvolysis technology with Virent's BioForming® process to generate aromatic-rich hydrocarbon products for use in either fuels or chemicals applications.  Liquefaction of Biomass and

  12. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    SciTech Connect

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  13. Upgrading through Preprocessing Technologies

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    enhance biomass reactivity during conversion processes. Formulation - Developing the Recipe Formulation is the blending and mixing of biomass ingredients to develop customized...

  14. Catalytic gasification of wet biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Matsumura, Yukihiko; Xu, Xiaodong

    1995-12-31

    Wet biomass (water hyacinth, banana trees, cattails, green algae, kelp, etc.) grows rapidly and abundantly around the world. As a biomass crop, aquatic species are particularly attractive because their cultivation does not compete with land-based agricultural activities designed to produce food for consumption or export. However, wet biomass is not regarded as a promising feed for conventional thermochemical conversion processes because the cost associated with drying it is too high. This research seeks to address this problem by employing water as the gasification medium. Prior work has shown that low concentrations of glucose (a model compound for whole biomass) can be completely gasified in supercritical water at 600{degrees}C and 34.5 Wa after a 30 s reaction time. Higher concentrations of glucose (up to 22% by weight in water) resulted in incomplete conversion under these conditions. The gas contained hydrogen, carbon dioxide, carbon monoxide, methane, ethane, propane, and traces of other hydrocarbons. The carbon monoxide and hydrocarbons are easily converted to hydrogen by commercial technology available in most refineries. This prior work utilized capillary tube reactors with no catalyst. A larger reactor system was fabricated and the heterogeneous catalytic gasification of glucose and wet biomass slurry of higher concentration was studied to attain higher conversions.

  15. Development of Hydrothermal Liquefaction and Upgrading Technologies for Lipid-Extracted Algae Conversion to Liquid Fuels

    SciTech Connect

    Zhu, Yunhua; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Jones, Susanne B.

    2013-10-01

    Bench-scale tests were performed for lipid-extracted microalgae (LEA) conversion to liquid fuels via hydrotreating liquefaction (HTL) and upgrading processes. Process simulation and economic analysis for a large-scale LEA HTL and upgrading system were developed based on the best available test results. The system assumes an LEA feed rate of 608 dry metric ton/day and that the feedstock is converted to a crude HTL bio-oil and further upgraded via hydrotreating and hydrocracking to produce liquid hydrocarbon fuels, mainly alkanes. Performance and cost results demonstrate that HTL would be an effective option to convert LEA to liquid fuel. The liquid fuels annual yield was estimated to be 26.9 million gallon gasoline-equivalent and the overall energy efficiency at higher heating value basis was estimated to be 69.5%. The minimum fuel selling price (MFSP) was estimated to be $0.75/L with LEA feedstock price at $33.1 metric ton at dry basis and 10% internal rate of return. A sensitivity analysis indicated that the largest effects to production cost would come from the final products yields and the upgrading equipments cost. The impact of plant scale on MFSP was also investigated.

  16. Environmental implications of increased biomass energy use. Final report

    SciTech Connect

    Miles, T.R. Sr.; Miles, T.R. Jr.

    1992-03-01

    This study reviews the environmental implications of continued and increased use of biomass for energy to determine what concerns have been and need to be addressed and to establish some guidelines for developing future resources and technologies. Although renewable biomass energy is perceived as environmentally desirable compared with fossil fuels, the environmental impact of increased biomass use needs to be identified and recognized. Industries and utilities evaluating the potential to convert biomass to heat, electricity, and transportation fuels must consider whether the resource is reliable and abundant, and whether biomass production and conversion is environmentally preferred. A broad range of studies and events in the United States were reviewed to assess the inventory of forest, agricultural, and urban biomass fuels; characterize biomass fuel types, their occurrence, and their suitability; describe regulatory and environmental effects on the availability and use of biomass for energy; and identify areas for further study. The following sections address resource, environmental, and policy needs. Several specific actions are recommended for utilities, nonutility power generators, and public agencies.

  17. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a

  18. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Glenn Cada FeATURe: James Ahlgrimm Michael Bahleda BIOeNGINeeRING Tom Bigford Stefanie Damiani Stavrakas The views expressed in this article do not necessarily represent those of the authors' organizations. Douglas Hall Mention of a technology, company, or website link Russell Moursund does not imply endorsement. Michael Sale Cada is a research staff member in the Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee. He can be contacted at cadagf@ornl.gov.

  19. Biochemical Conversion Techno-Economic Analysis | Bioenergy | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Conversion Techno-Economic Analysis NREL's biochemical conversion analysis team focuses on techno-economic analysis (TEA) for the biochemical conversion of biomass to fuels and products via sugars and other components derived from lignocellulosic biomass. Process flow diagram with simple icon illustrations of the biochemical conversion process and facility. Biomass is pictured in the upper left as a simple black-and-white truck illustration that begins this process in the conversion facility:

  20. Development of an extruder-feeder biomass direct liquefaction process

    SciTech Connect

    White, D.H.; Wolf, D. . Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  1. Development of an extruder-feeder biomass direct liquefaction process

    SciTech Connect

    White, D.H.; Wolf, D. . Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt % wood flour in wood oil derived vacuum bottoms at pressures up to 3,000 psi. By comparison, conventional pumping systems are capable of pumping slurries containing only 10--20 wt % wood flour in wood oil under similar conditions. The extruder-feeder has been integrated with a unique reactor to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a 3,000 psi pressure reactor in the biomass liquefaction process. An experimental facility was constructed during 1983--84. Following shakedown operations, wood crude oil was produced by mid-1985. During the period January 1985 through July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3,000 psi and temperatures from 350{degrees}C to 430{degrees}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt % residual oxygen were produced. 43 refs., 81 figs., 52 tabs.

  2. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    SciTech Connect

    Nexant, Inc., San Francisco, California

    2011-05-01

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  3. Advanced Conversion Roadmap Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review ...

  4. Proceedings of the 25th intersociety energy conversion engineering conference

    SciTech Connect

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

  5. Biomass Basics Webinar

    Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting a Biomass Basics Webinar on August 27, 2015, from 4:00-4:40pm EDT. This webinar will provide high school students and teachers with background...

  6. Production of Renewable Fuels from Biomass by FCC Co-processing

    Energy.gov [DOE]

    Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Production of Renewable Fuels from Biomass by FCC Co-processing Raymond Wissinger, Manager, Renewable Energy & Chemicals, Research & Development, UOP

  7. Processing and Conversion

    Office of Energy Efficiency and Renewable Energy (EERE)

    The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts...

  8. International Biomass Conference and Expo

    Energy.gov [DOE]

    The International Biomass Conference and Expo will be held April 11–14, 2016, in Charlotte, North Carolina, and will gather bioeconomy experts across the supply chain. Bioenergy Technologies Office Technology Manager Elliott Levine will be moderating a panel titled, “The Near-Term Opportunity for Biomass as a Low-Carbon Coal Supplement or Replacement.” The panel will focus on the technological challenges and opportunities in the potential for biomass to replace coal.

  9. Biomass -Feedstock User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    WBS 1.2.3.3 Biomass - Feedstock User Facility March 25, 2015 Kevin L. Kenney Idaho National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Feedstock Supply and Logistics 2 | Bioenergy Technologies Office Goal Statement * The goal of this project is to engage industry collaborators in the scale-up and integration of biomass preprocessing systems and technologies that - Advance the achievement of BETO goals and mission AND - Advance

  10. 2007 Biomass Program Overview

    SciTech Connect

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  11. 6th International Conference on Algal Biomass, Biofuels and Bioproducts

    Energy.gov [DOE]

    The 6th International Conference on Algal Biomass, Biofuels and Bioproducts will be held June 26–29, 2016, in San Diego, California. The meeting will gather scientific and technical leaders in the algal research field. Emphasis will be placed on the latest technical and scientific advances. The conference will cover all areas of emerging technologies in the algal biomass field—from biology, biomass production, cultivation, harvesting, and extraction to feedstock conversion into fuels and bioproducts, as well as econometrics and sustainability analyses. The U.S. Department of Energy’s Bioenergy Technologies Office Advanced Algal Systems Team will be in attendance, and Program Manager Alison Goss Eng will be giving a plenary presentation.

  12. Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion

    SciTech Connect

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

    2013-01-02

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  13. White Earth Nation Biomass Fasibility Study

    Office of Environmental Management (EM)

    ... Key Findings: * Optimized technology is conventional biomass combustion system * Considered: * Anaerobic digestion * Gasification * Primary feedstock is a blend of sawmill ...

  14. White Earth Nation Biomass Feasibility Study

    Office of Environmental Management (EM)

    ... Key Findings: * Optimized technology is conventional biomass combustion system * Considered: * Anaerobic digestion * Gasification * Primary feedstock is a blend of sawmill ...

  15. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology...

    Office of Scientific and Technical Information (OSTI)

    MICROALGAE; ALGAL BIOMASS; HYDROCARBON BIOFUELS; BIOMASS TECHNOLOGIES OFFICE; NATIONAL RENEWABLE ENERGY LABORATORY; PACIFIC NORTHWEST NATIONAL LABORATORY; Bioenergy BIOMASS...

  16. (Assessment of the potential of Yunnan Province, China to grow and convert biomass to electricity)

    SciTech Connect

    Perlack, R.D.

    1990-10-15

    The purpose of the trip was to conduct a preliminary evaluation of biomass energy development in Yunnan Province, China. The evaluation included an assessment of the potential to grow and convert biomass to electricity, and an evaluation of the institutional relationships, which would be critical to the establishment of a collaborative biomass energy development project. This site visit was undertaken to evaluate the potential of an integrated biomass energy project, including the growing and handling of biomass feedstocks and its conversion to electricity. Based on this site visit, it was concluded that biomass production risks are real and further research on species screening and experiments is necessary before proceeding to the conversion phase of this project. The location of potential sites inspected and the logistics required for handling and transporting biomass may also be a concern. The commitment of support (labor and land) and leadership to this project by the Chinese is overwhelming exceeding all pre-site visit expectations. In sum, there is a definite opportunity in Yunnan for an integrated biomass energy project and a potential market for US technology.

  17. Hydrothermal Liquefaction of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with

  18. Overview of the Biomass Scenario Model

    SciTech Connect

    Peterson, Steve

    2015-09-01

    This report describes the structure of the October 2012 version of the Biomass Scenario Model (BSM) in considerable detail, oriented towards readers with a background or interest in the underlying modeling structures. Readers seeking a less-detailed summary of the BSM may refer to Peterson (2013). BSM aims to provide a framework for exploring the potential contribution of biofuel technologies to the transportation energy supply for the United States over the next several decades. The model has evolved significantly from the prototype developed as part of the Role of Biomass in America" tm s Energy Future (RBAEF) project. BSM represents the supply chain surrounding conversion pathways for multiple fuel products, including ethanol, butanol, and infrastructure-compatible biofuels such as diesel, jet fuel, and gasoline.

  19. Technologies for Production of Heat and Electricity

    SciTech Connect

    Jacob J. Jacobson; Kara G. Cafferty

    2014-04-01

    Biomass is a desirable source of energy because it is renewable, sustainable, widely available throughout the world, and amenable to conversion. Biomass is composed of cellulose, hemicellulose, and lignin components. Cellulose is generally the dominant fraction, representing about 40 to 50% of the material by weight, with hemicellulose representing 20 to 50% of the material, and lignin making up the remaining portion [4,5,6]. Although the outward appearance of the various forms of cellulosic biomass, such as wood, grass, municipal solid waste (MSW), or agricultural residues, is different, all of these materials have a similar cellulosic composition. Elementally, however, biomass varies considerably, thereby presenting technical challenges at virtually every phase of its conversion to useful energy forms and products. Despite the variances among cellulosic sources, there are a variety of technologies for converting biomass into energy. These technologies are generally divided into two groups: biochemical (biological-based) and thermochemical (heat-based) conversion processes. This chapter reviews the specific technologies that can be used to convert biomass to energy. Each technology review includes the description of the process, and the positive and negative aspects.

  20. Biomass Rapid Analysis Network (BRAN)

    SciTech Connect

    Not Available

    2003-10-01

    Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

  1. Using Heat and Chemistry to Make Products, Fuels, and Power: Thermochemical Conversion

    SciTech Connect

    2010-09-01

    Information about the Biomass Program's collaborative projects exploring thermochemical conversion processes that use heat and chemistry to convert biomass into a liquid or gaseous intermediate.

  2. Technology Development Plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes: Final subcontract report

    SciTech Connect

    Valent, P.J.; Riggins, M.

    1989-04-01

    This report provides an overview of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high-quality sediment samples for laboratory dynamic testing, and to perform deep-penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor-resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35/degree/ and in water depths to 1300 m. 74 refs., 19 figs., 6 tabs.

  3. 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Long Term Processing using Integrated Hydropyrolysis plus Hydroconversion (IH 2 ) for Production of Gasoline and Diesel from Biomass May 23, 2012 Bio-Oil Technology Area Review Terry Marker GTI This presentation does not contain any proprietary, confidential, or otherwise restricted information Big Picture Goals and Objectives * Demonstrate a new game changing technology, IH 2 , in a continuous pilot plant which - Solves the current technical and economic issues for biomass conversion to

  4. Site Specific Coal Conversion | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Site Specific Coal Conversion The Site Specific Coal Conversion Key Technology will include less mature R&D and case-specific engineering and construction and balance of plant R&D to most effectively deploy advanced C&CBTL systems in a certain location, with a certain feed, infrastructure, and environment for fuels production. Essentially, work in this area will be a bridge between a systems or process design for a particular application of coal-biomass to liquids, and a specific

  5. Biomass pretreatment

    SciTech Connect

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  6. Technology assessment of solar energy systems: availability and impacts of woody biomass utilization in the Pacific Northwest

    SciTech Connect

    Hopp, W.J.; Chockie, A.D.; Allwine, K.J.

    1981-09-01

    The estimates of the biomass resource base in the Northwest are reviewed for comparison with scenarios used and a preliminary analysis of the issues involved in the collection and use of forest residues as an energy resource is presented. Four issues are reviewed that may serve to constrain the total amount of wood residues available for use as fuel. (MHR)

  7. Biomass Feedstock Supply Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6, 2015 Feedstock Supply and Logistics PI: Erin Webb Shahab Sokhansanj Michael Hilliard Craig Brandt Anthony Turhollow Oak Ridge National Laboratory 1.2.3.1 Biomass Feedstock Supply Modeling 2 | Bioenergy Technologies Office Perform experiments to test equipment designs and supply chain configurations Characterize impacts of variability and uncertainty Identify risk-reduction strategies Optimize feedstock supply logistics Goal Statement Build and apply simulations of biomass supply chains

  8. Major Biomass Conference

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference International gathering to focus on business successes, technology updates, facility tours For more information contact: e:mail: Public Affairs Golden, Colo., Aug. 6, 1997 -- Media are invited to cover the conference in Montreal, Canada. What: Scientists, financiers and industry and government leaders from North America, South America and Europe will focus on building a sustainable, profitable biomass business

  9. Algae Biomass Summit

    Energy.gov [DOE]

    The 9th annual Algae Biomass Summit will be hosted at the Washington Marriot Wardman Park in Washington D.C., September 29 – October 2, 2015. The event will gather leaders in algae biomass from all sectors. U.S. Department of Energy Undersecretary Franklin Orr will give a keynote address at the conference, and Bioenergy Technologies Office (BETO) Director Jonathan, Algae Program Manager Alison Goss Eng, and the BETO Algae Team will be in attendance.

  10. Biomass 2014 Poster Session

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

  11. Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Abengoa Bioenergy Biomass IBR Fact Sheet: Abengoa Bioenergy Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat ibr_commercial_abengoa.pdf (227.38 KB) More Documents & Publications Abengoa Bioenergy Biomass of Kansas, LLC ABENGOA BIOENERGY 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review

  12. 6th International Conference on Algal Biomass, Biofuels and Bioproduct...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The conference will cover all areas of emerging technologies in the algal biomass field-from biology, biomass production, cultivation, harvesting, and extraction to feedstock ...

  13. Forest Biomass

    Energy.gov [DOE]

    Breakout Session 1B: Innovation and Sustainability: Capturing Social and Environmental Benefits As Part of Bioenergy's Value Proposition Forest Biomass Bob Emory, Southern Timberlands Environmental Affairs Manager, Weyerhauser

  14. Fixed Bed Biomass Gasifier

    SciTech Connect

    Carl Bielenberg

    2006-03-31

    The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

  15. Site Specific Coal Conversion | netl.doe.gov

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of successful development. The other key technologies within Coal and Coal-Biomass to Liquids: Biomass Feed and Gasification Reactor Engineering Design Advanced Fuels Synthesis

  16. Design Case Summary: Production of Gasoline and Diesel from Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermochemical Conversion: Gasification * Biomass is fed into a reactor at a high temperature and turned into a gas. * This synthesis gas (syngas) is primarily carbon monoxide and ...

  17. Biomass - Energy Explained, Your Guide To Understanding Energy...

    Energy Information Administration (EIA) (indexed site)

    Biomass Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) ...

  18. NREL: Biomass Research - Thermochemical Pilot and Users Facility

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    catalysts or reactor conditions for comparative fuel synthesis studies. Bench-Scale Biomass Conversion System This 2-inch-diameter fluidized bed reactor system can be used for...

  19. An Introduction to Biomass Thermochemical Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    turbines supplying process steam and electricity ... * Pyrolysis Oil * CH 1.4 O 0.5 * Chemical composition: water (20-30%), ... Hot Gas Cleanup High Pressure Gasification Oxygen ...

  20. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect

    Lynch, J F; Young, J C

    1980-09-01

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  1. Process Design and Economics for Biochemical Conversion of Lignocellulosic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover | Department of Energy Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover This report describes one potential biochemical ethanol conversion process, conceptually based upon

  2. Biomass One Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBiomassOneBiomassFacility&oldid397204" Feedback Contact needs updating Image needs...

  3. AGCO Biomass Solutions: Biomass 2014 Presentation

    Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

  4. Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Breakout Session 2: Frontiers and ...

  5. Northeast Regional Biomass Program first and second quarter reports, October 1, 1994--March 31, 1995

    SciTech Connect

    1995-07-01

    The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential commercial, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional biomass Program (NRBP) is designed to help the eleven Northeastern states overcome these obstacles and achieve their biomass energy potentials. The objective of this program in the current and future years is to increase the role of biomass fuels in the region`s energy mix by providing the impetus for states and the private sector to develop a viable Northeast biomass fuels market. This paper contains a management report, state program summaries, technical project status report, and technology transfer activities.

  6. Thermochemical Conversion Pilot Plant (Fact Sheet), NREL (National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis." 187 pp.; NREL Report No. ...

  7. Process Design and Economics for Biochemical Conversion of Lignocellul...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: ...

  8. Optical materials technology for energy efficiency and solar energy conversion X; Proceedings of the Meeting, San Diego, CA, July 25, 26, 1991

    SciTech Connect

    Lampert, C.M.; Granqvist, C.G.

    1991-01-01

    The present conference on optical materials technology for energy efficiency and solar energy conversion encompasses chromogenics, solar and architectural materials, photovoltaic and photoelectrochemical materials, and applications for the modification, concentration, and conversion of radiant energy including its use as a fuel and as a detoxifying agent for wastes. Specific issues addressed include transparent storage layers for H(+) and Li(+) ions prepared by the sol-gel technique, electrochromism in cobalt oxyhydroxide thin films, the optical performance of angle-dependent light-control glass, and UV reflector materials for solar detoxification of hazardous wastes. Also addressed are the luminescence and chemical potential of solar cells, the design and fabrication of holographic dispersive solar concentrator for terrestrial applications, and the photoelectrochemical characteristics of slurry-coated Cd-Se-Te films.

  9. Biomass Scenario Model

    SciTech Connect

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  10. Northeast Regional Biomass Program

    SciTech Connect

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  11. Hydrogen from biomass: state of the art and research challenges

    SciTech Connect

    Milne, Thomas A; Elam, Carolyn C; Evans, Robert J

    2002-02-01

    The report was prepared for the International Energy Agency (IEA) Agreement on the Production and Utilization of Hydrogen, Task 16, Hydrogen from Carbon-Containing Materials. Hydrogen's share in the energy market is increasing with the implementation of fuel cell systems and the growing demand for zero-emission fuels. Hydrogen production will need to keep pace with this growing market. In the near term, increased production will likely be met by conventional technologies, such as natural gas reforming. In these processes, the carbon is converted to CO2 and released to the atmosphere. However, with the growing concern about global climate change, alternatives to the atmospheric release of CO2 are being investigated. Sequestration of the CO2 is an option that could provide a viable near-term solution. Reducing the demand on fossil resources remains a significant concern for many nations. Renewable-based processes like solar- or wind-driven electrolysis and photobiological water splitting hold great promise for clean hydrogen production; however, advances must still be made before these technologies can be economically competitive. For the near-and mid-term, generating hydrogen from biomass may be the more practical and viable, renewable and potentially carbon-neutral (or even carbon-negative in conjunction with sequestration) option. Recently, the IEA Hydrogen Agreement launched a new task to bring together international experts to investigate some of these near- and mid-term options for producing hydrogen with reduced environmental impacts. This review of the state of the art of hydrogen production from biomass was prepared to facilitate in the planning of work that should be done to achieve the goal of near-term hydrogen energy systems. The relevant technologies that convert biomass to hydrogen, with emphasis on thermochemical routes are described. In evaluating the viability of the conversion routes, each must be put in the context of the availability of

  12. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on ...

  13. First-of-its-Kind Carbon Capture and Conversion Demonstration...

    Office of Environmental Management (EM)

    First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas ...

  14. Thermochemical Conversion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Thermochemical fuels research expertise includes biomass pre-treatment, fast-pyrolysis, char gasification, reactor design and systems engineering. Sandia's program is focused in ...

  15. Biomass energies: resources, links, constraints

    SciTech Connect

    Smil, V.

    1983-01-01

    This book presents information on the following topics: radiation and photosynthesis; primary production and biomass; resources; wood for energy; silviculture; requirements and effects; crop residues; residues for energy conversion; sugar crops and grain; cassava; fuel crops; aquatic plants; freshwater plants; ocean algae; animal wastes; Chinese biogas generation; and ecodisasters.

  16. Biothermal gasification of biomass

    SciTech Connect

    Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

    1980-01-01

    The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

  17. Biomass Feedstocks

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Feedstocks Ralph P. Overend , Mark Davis, Rob Perlack (ORNL), Tom Foust (INEEL) and colleagues NASULGC NREL, CO August 3 - 4. 2004 Outline * Biomass - Bioenergy Cycle * Global Estimates - USA situation * Resource Assessment - Supply Curve 500 Mt 2020 - Definitions - Type and Quality - Biomass supply in context - Is a Gigatonne feasible? * Quality Matters - Influence on product yields - Using advanced rapid analysis to choose and develop feedstocks Bioenergy Cycle Illustration courtesy of ORNL

  18. Methods for pretreating biomass

    DOEpatents

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2015-03-03

    A method of alkaline pretreatment of biomass, in particular, pretreating biomass with gaseous ammonia.

  19. Vehicle Technologies Office Merit Review 2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by GMZ Energy Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanostructured high...

  20. Renewable Hydrogen Production from Biomass Pyrolysis Aqueous Phase Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7, 2015 Thermochem Conversion Review PI: Abhijeet P. Borole, Ph.D. Oak Ridge National Laboratory Co:PI's & Collaborators: S. Pavlostathis, C. Tsouris, S. Yiacoumi, Georgia Tech; P. Ye, N. Labbe, University of Tennessee, Knoxville, R. Bhave, ORNL DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Renewable Hydrogen Production from Biomass Pyrolysis Aqueous Phase 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Goal Statement * Carbon, Hydrogen and

  1. Hydrothermal Processing of Biomass Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrothermal Processing of Biomass March 26, 2015 Thermochemical Conversion Doug Elliott, Rich Hallen, and Andy Schmidt Pacific Northwest National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Advance HTL technology towards 2020 goal of $3/gge at 50% reduced GHG. Improve overall process performance and economics Determine the value and best pathway to market for the product Demonstrate high process and carbon

  2. YAVAPAI APACHE NATION BIOMASS FEASIBILITY STUDY

    Energy Saver

    DOE FEMP Pre-feasibility Study indicated biomass could be economic Project Rationale Project Rationale * Pyrolytic Steam Reforming Gasification Gasifier Gasifier Technology ...

  3. Biomass Program Monthly News Blast - May 2012

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The conference will cover all areas of emerging technologies in algal biology, biomass production, cultivation, harvesting, extraction, bioproducts, and econometrics. The event ...

  4. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  5. Biomass Gas Clean-Up Using a Therminator

    SciTech Connect

    2006-04-01

    Clean-up and conditioning of syngas is a key technical barrier to the commercialization of biomass gasification systems. Current technologies do not meet the necessary performance, cost, and environmental criteria to achieve commercialization of biomass gasification technologies.

  6. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  7. Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals. ibr_arra_amyris.pdf (253.28 KB) More Documents & Publications Biomass IBR Fact Sheet: Amyris, Inc. CX-100755 Categorical Exclusion Determination Growing the Future Bioeconomy

  8. 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biochemical Feedstock Supply Interface Garold Gresham, INL Nick Nagle, NREL May 20, 2013 2 | Bioenergy Technologies Office eere.energy.gov Goals: Support Biochemical Conversion Pathway: "reducing the cost of converting lignocellulosic biomass to sugars and other fuels intermediates." 1 - Facilitate establishment of pathway(s) toward optimization and cost-reduction; 2 - Develop tools & models to evaluate feedstock costs & quality for BC conversion process (biological, chemical,

  9. The Current State of Technology for Cellulosic Ethanol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy The Current State of Technology for Cellulosic Ethanol The Current State of Technology for Cellulosic Ethanol At the February 12, 2009 joint Web conference of DOE's Biomass and Clean Cities programs, Andy Aden (National Renewable Energy Laboratory) discussed the current state of technology for cellulosic ethanol - How close are we? aden_20090212.pdf (1.83 MB) More Documents & Publications Integrated Biorefinery Process Process Design and Economics for Biochemical Conversion of

  10. ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP Presentation given by the Biomass Program's Bryce Stokes, CNJV, at the GBEP Regional Biomass Resource Assessment Workshop providing results found in the U.S. Billion-Ton Update. gbep_stokes.pdf (1.55 MB) More Documents & Publications Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs Bioenergy Technologies Office: Association of

  11. Marine biomass program. Annual report 1 Jan-31 Dec 79

    SciTech Connect

    Tompkins, A.N.

    1980-10-17

    The Marine Biomass Program is a Research and Development Program which has as its overall objective the development of integrated processes for production and harvesting of seaweed in the ocean and conversion of that seaweed to methane at costs competitive, on a commercial scale, with other alternate energy production systems. The General Electric Company has been the prime contractor in the conduct of this RandD Program for the Gas Research Institute since December 1976. The United States Department of Energy has also sponsored research on this program by funding to the California Institute of Technology, and has provided additional support to the program through a cooperative grant made to General Electric in 1978. Experimental data has shown that controlled cultivation of macroalgae is feasible, and that fuels can be derived from marine biomass feedstocks. Extensive work with Macrocystis has indicated that it can be grown in the open ocean when fertilized by artificially upwelled deep ocean waters. Kelp thus derived has been shown to be favorably suited to methane production by the process of anaerobic conversion. This report expands upon this data base with emphasis on the technical and economic requirements of the critical parameters associated with biomass yield and overall energy balance.

  12. Lyonsdale Biomass LLC Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York...

  13. Biomass One LP Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535,...

  14. Basic research needs in seven energy-related technologies, conservation, conversion, transmission and storage, environmental fission, fossil, geothermal, and solar

    SciTech Connect

    Not Available

    1980-07-01

    This volume comprises seven studies performed by seven groups at seven national laboratories. The laboratories were selected because of their assigned lead roles in research pertaining to the respective technologies. Researches were requested to solicit views of other workers in the fields.

  15. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2011 State of Technology and Projections to 2017

    SciTech Connect

    Jones, Susanne B.; Male, Jonathan L.

    2012-02-01

    Review of the the status of DOE funded research for converting biomass to liquid transportation fuels via fast pyrolysis and hydrotreating for fiscal year 2011.

  16. Star Biomass | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Jump to: navigation, search Name: Star Biomass Place: India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article...

  17. Biomass: Biogas Generator

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Middle School (6-8) Small groups (3 to 4) Time: 90 minutes to assemble, days to generate sufficient gas to burn Summary: Students build a simple digester to generate a quantity of gas to burn. This demonstrates the small amount of technology needed to generate a renewable energy source. Biogas has been used in the past and is still used today as an energy

  18. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Product Upgrading & Recovery BIOFUELS Biomass Conversion RD&D Biomass BIOFUELS Feed Processing Gasification Liquefaction Syngas Cleanup & Conditioning Bio-oil Stabilization ...

  19. Tracy Biomass Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleTracyBiomassBiomassFacility&oldid398234" Feedback Contact needs updating Image needs...

  20. Development of water-slurry gasification systems for high-moisture biomass. [Spent grain, potato waste, kelp, water hyacinth, napier grass, sorghum

    SciTech Connect

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.

    1985-01-01

    The development of a new biomass gasification system by Pacific Northwest Laboratory promises to allow the use of high-moisture biomass feedstocks. The reactor uses high pressure to allow the gasification of water-biomass slurries containing up to 95% moisture. Because the gasification takes place in an aqueous system, there is no need to dry or dewater the feedstocks prior to their use. Feedstocks under study include water hyacinths, kelp, napier grass, spent brewer's grain, and a waste stream obtained from the potato processing industry. Gasification products include hydrogen, CO/sub 2/ and methane. The effects of processing conditions including temperature, pressure, and catalyst are being studied in order to maximize both the rate of conversion and the yield of higher value products. The new reactor concept represents a significant opportunity for expanding the biomass resource base to include aquatic plants and other high-moisture feedstocks. Many of these feedstocks are uneconomical in conventional thermochemical and biological conversion schemes. By eliminating the need for energy intensive drying steps, the aqueous conversion route may also increase net energy yields from more conventional feedstocks. The work is being sponsored by the USDOE's Biomass Energy Technology Division, Thermochemical Conversion Program. 13 references, 4 figures, 4 tables.

  1. Development of an extruder-feeder biomass direct liquefaction process. Volume 2, Parts 4--8: Final report

    SciTech Connect

    White, D.H.; Wolf, D.

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE`s Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  2. Biomass shock pretreatment

    DOEpatents

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  3. Refinery Upgrading of Hydropyrolysis Oil From Biomass

    SciTech Connect

    Roberts, Michael; Marker, Terry; Ortiz-Toral, Pedro; Linck, Martin; Felix, Larry; Wangerow, Jim; Swanson, Dan; McLeod, Celeste; Del Paggio, Alan; Urade, Vikrant; Rao, Madhusudhan; Narasimhan, Laxmi; Gephart, John; Starr, Jack; Hahn, John; Stover, Daniel; Parrish, Martin; Maxey, Carl; Shonnard, David; Handler, Robert; Fan, Jiquig

    2015-08-31

    Cellulosic and woody biomass can be converted to bio-oils containing less than 10% oxygen by a hydropyrolysis process. Hydropyrolysis is the first step in Gas Technology Institute’s (GTI) integrated Hydropyrolysis and Hydroconversion IH2®. These intermediate bio-oils can then be converted to drop-in hydrocarbon fuels using existing refinery hydrotreating equipment to make hydrocarbon blending components, which are fully compatible with existing fuels. Alternatively, cellulosic or woody biomass can directly be converted into drop-in hydrocarbon fuels containing less than 0.4% oxygen using the IH2 process located adjacent to a refinery or ethanol production facility. Many US oil refineries are actually located near biomass resources and are a logical location for a biomass to transportation fuel conversion process. The goal of this project was to work directly with an oil refinery partner, to determine the most attractive route and location for conversion of biorenewables to drop in fuels in their refinery and ethanol production network. Valero Energy Company, through its subsidiaries, has 12 US oil refineries and 11 ethanol production facilities, making them an ideal partner for this analysis. Valero is also part of a 50- 50 joint venture with Darling Ingredients called Diamond Green Diesel. Diamond Green Diesel’s production capacity is approximately 11,000 barrels per day of renewable diesel. The plant is located adjacent to Valero’s St Charles, Louisiana Refinery and converts recycled animal fats, used cooking oil, and waste corn oil into renewable diesel. This is the largest renewable diesel plant in the U.S. and has successfully operated for over 2 years For this project, 25 liters of hydropyrolysis oil from wood and 25 liters of hydropyrolysis oils from corn stover were produced. The hydropyrolysis oil produced had 4-10% oxygen. Metallurgical testing of hydropyrolysis liquids was completed by Oak Ridge National Laboratories (Oak Ridge) and showed the

  4. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  5. Biomass Energy Data Book, 2011, Edition 4

    DOE Data Explorer

    Wright, L.; Boundy, B.; Diegel, S. W.; Davis, S. C.

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability.

  6. Biomass Energy Data Book: Edition 1

    SciTech Connect

    Wright, Lynn L; Boundy, Robert Gary; Perlack, Robert D; Davis, Stacy Cagle; Saulsbury, Bo

    2006-09-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of the Biomass Program and the Office of Planning, Budget and Analysis in the Department of Energy's Energy Efficiency and Renewable Energy (EERE) program. Designed for use as a desk-top reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use. This is the first edition of the Biomass Energy Data Book and is currently only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass is a section on biofuels which covers ethanol, biodiesel and BioOil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is about the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also three appendices which include measures of conversions, biomass characteristics and assumptions for selected tables and figures. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  7. Biomass Energy Data Book: Edition 2

    SciTech Connect

    Wright, Lynn L; Boundy, Robert Gary; Badger, Philip C; Perlack, Robert D; Davis, Stacy Cagle

    2009-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  8. Biomass Energy Data Book: Edition 3

    SciTech Connect

    Boundy, Robert Gary; Davis, Stacy Cagle

    2010-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the third edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  9. Biomass Energy Data Book: Edition 4

    SciTech Connect

    Boundy, Robert Gary; Diegel, Susan W; Wright, Lynn L; Davis, Stacy Cagle

    2011-12-01

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  10. Section One, Bioenergy Technologies Office Multi-Year Program...

    Energy.gov [DOE] (indexed site)

    ... Technologies Office (FCTO): The production of hydrogen from biomass is pursued through two main pathways-distributed reforming of biomass-derived liquids and biomass gasification. ...

  11. Evaluation of wastewater treatment requirements for thermochemical biomass liquefaction

    SciTech Connect

    Elliott, D.C. )

    1992-04-01

    Biomass can provide a substantial energy source. Liquids are preferred for use as transportation fuels because of their high energy density and handling ease and safety. Liquid fuel production from biomass can be accomplished by any of several different processes including hydrolysis and fermentation of the carbohydrates to alcohol fuels, thermal gasification and synthesis of alcohol or hydrocarbon fuels, direct extraction of biologically produced hydrocarbons such as seed oils or algae lipids, or direct thermochemical conversion of the biomass to liquids and catalytic upgrading to hydrocarbon fuels. This report discusses direct thermochemical conversion to achieve biomass liquefaction and the requirements for wastewater treatment inherent in such processing. 21 refs.

  12. Biomass Compositional Analysis Laboratory (Fact Sheet), National Bioenergy Center, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and validate analytical methods to determine the chemical composition of biomass samples before, during, and after conversion processing. These high-quality compositional analysis data are used to determine feedstock compositions as well as mass balances and product yields from conversion processes. Compositional Analysis

  13. Light-Material Interactions in Energy Conversion - Energy Frontier...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New approaches to full spectrum solar energy conversion California Institute of Technology ... offer this free public webinar on New Approaches to Full Spectrum Solar Energy Conversion. ...

  14. Biomass IBR Fact Sheet: Abengoa Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 * December 2012 Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste Abengoa Bioenergy Biomass of Kansas Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat Abengoa Bioenergy's efforts involve the construction of a 1,200-tons-per- day commercial biorefinery, producing cellulosic ethanol and also power and heat to operate the facility. Project Description The Biorefinery Project site would be located adjacent

  15. DOE Selects Projects to Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks

    Energy.gov [DOE]

    Eight projects that will focus on gasification of coal/biomass to produce synthetic gas (syngas) have been selected for further development by the U.S. Department of Energy.

  16. 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6.5.2.2 U.S.-China collaboration- Thermochemical Conversion of Biomass May 21 th , 2013 Technology Area Review: Bio-oil Principal Investigators: Jonathan Male, Huamin Wang Organization: PNNL This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 | Bioenergy Technologies Office eere.energy.gov Goal Statement * GOAL: Combine and leverage U.S. and Chinese expertise to evaluate, develop, and enable commercially viable processes in thermochemical

  17. 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Applied Membrane Technology for Processing of Ethanol from Biomass Date: May 20-23, 2013 Technology Area Review: Biochemical Conversion Principal Investigator: Stuart Nemser, PhD Organization: Compact Membrane Systems Goal Statement * Enhance the low-cost production of bioethanol * Develop membrane system * Demonstrate drying ethanol to fuel grade * Demonstrate long term resistance 2 Quad Chart Overview Timeline * Project start date: 6/29/2006 * Project end date: 3/31/2013 * Percent complete:

  18. 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3, 2013 Technology Area Review: Biochemical Conversion Principal Investigator: Steven W. Peretti, peretti@ncsu.edu Presenter: Sunkyu Park, sunkyu_park@ncsu.edu Organization: North Carolina State University 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review This presentation does not contain any proprietary, confidential, or otherwise restricted information * Biomass Pretreatment and Reactivity of the Resulting Sugars - How does residual lignin effect enzymatic hydrolysis? - How

  19. USDA, DOE to Invest up to $18.4 million for Biomass Research...

    Office of Environmental Management (EM)

    ... GE Global Research (NY) - up to 820,035 Grant Purpose: To integrate biomass gasification with catalytic partial oxidation for tar conversion. DEMONSTRATION PROJECTS: Texas ...

  20. Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass

    SciTech Connect

    Phillips, S.; Aden, A.; Jechura, J.; Dayton, D.; Eggeman, T.

    2007-04-01

    This process design and technoeconomic evaluation addresses the conversion of biomass to ethanol via thermochemical pathways that are expected to be demonstrated at the pilot level by 2012.

  1. Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass

    SciTech Connect

    Phillips, S.; Aden, A.; Jechura, J.; Dayton, D.; Eggeman, T.

    2007-04-01

    This process design and technoeconomic evaluation addresses the conversion of biomass to ethanol via thermochemical pathways that are expected to be demonstrated at the pilot level by 2012.

  2. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect

    Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

  3. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, James L.; Chen, Guang Jiong

    1998-01-01

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  4. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, J.L.; Chen, G.J.

    1998-10-13

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  5. Biomass for energy: Supply prospects

    SciTech Connect

    Hall, D.O.; Rosillo-Calle, F.; Woods, J.; Williams, R.H.

    1993-12-31

    Biomass for energy can be obtained from residues of ongoing agricultural and forest-product industries, from harvesting forests, and from dedicated plantations. The harvesting of forests for biomass is likely to be limited by environmental concerns. Over the next couple of decades new bioenergy industries will be launched primarily using residues as feedstocks. Subsequently, the industrial base will shift to plantations, the largest potential source of biomass. The most promising sites for plantations are deforested and otherwise degraded lands in developing countries and excess croplands in the industrialized countries. Revenues from the sale of biomass crops grown on plantations established on degraded lands can help finance the restoration of these lands. Establishing plantations on excess croplands can be a new livelihood to farmers who might otherwise abandon their land because of foodcrop overproduction. In either case, biomass plantations can, with careful planning, substantially improve these lands ecologically relative to their present uses. But a substantial and sustained research and development effort is needed to ensure the realization and sustainability of high yields under a wide range of growing conditions. Moreover, the establishment and maintenance of biomass plantations must be carried out in the framework of sustainable economic development in ways that are acceptable and beneficial to the local people. Ultimately, land and water resource constraints will limit the contributions that biomass can make as an energy source in advanced societies. But biomass energy can nevertheless make major contributions to sustainable development before these limits are reached, if biomass is grown productively and sustainably and is efficiently converted to modern energy carriers that are used in energy-efficient end-use technologies. 88 refs., 5 figs., 13 tabs.

  6. Biomass process handbook

    SciTech Connect

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  7. Biomass torrefaction mill

    DOEpatents

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  8. California's biomass and its energy potential

    SciTech Connect

    Lucarelli, F.B. Jr.

    1980-04-01

    The potentials for using California's biomass for energy have been assessed. The study relies on the recent work of Amory Lovins and Lawrence Berkeley Laboratory's (LBL) Distributed Energy System's Project to specify an energy future for Californians. These works identify transportation fuels as the most valuable energy conversion for biomass. Within this context, the extent of five categories of terrestial biomass is estimated, in addition to the environmental impacts and monetary cost of collecting and transporting each biomass category. Estimates of the costs of transforming biomass into different fuels as well as a survey of government's role in a biomass energy program are presented. The major findings are summarized below. (1) California's existing biomass resources are sufficient to provide only 20 percent of its future liquid fuel requirements. (2) Meeting the full transportation demand with biomass derived fuels will require the development of exotic biomass sources such as kelp farms and significant reductions in automobile travel in the State. (3) Under assumptions of moderate increases in gasoline prices and without major new government incentives, the cost of transforming biomass into transport fuels will be competitive with the price of gasoline on a Btu basis by the year 1990. (4) The environmental impacts of collecting most forms of biomass are beneficial and should reduce air pollution from agricultural burning and water pollution from feedlot and dairy farm runoff. Moreover, the collection of logging residues should improve timber stand productivity and the harvest of chaparral should reduce the risk of wildfire in the State. (5) The institutional context for implementing biomass energy projects is complex and fragmented.

  9. Quantification of acidic compounds in complex biomass-derived streams

    SciTech Connect

    Karp, Eric M.; Nimlos, Claire T.; Deutch, Steve; Salvachúa, Davinia; Cywar, Robin M.; Beckham, Gregg T.

    2016-01-01

    Biomass-derived streams that contain acidic compounds from the degradation of lignin and polysaccharides (e.g. black liquor, pyrolysis oil, pyrolytic lignin, etc.) are chemically complex solutions prone to instability and degradation during analysis, making quantification of compounds within them challenging. Here we present a robust analytical method to quantify acidic compounds in complex biomass-derived mixtures using ion exchange, sample reconstitution in pyridine and derivatization with BSTFA. The procedure is based on an earlier method originally reported for kraft black liquors and, in this work, is applied to identify and quantify a large slate of acidic compounds in corn stover derived alkaline pretreatment liquor (APL) as a function of pretreatment severity. Analysis of the samples is conducted with GCxGC-TOFMS to achieve good resolution of the components within the complex mixture. The results reveal the dominant low molecular weight components and their concentrations as a function of pretreatment severity. Application of this method is also demonstrated in the context of lignin conversion technologies by applying it to track the microbial conversion of an APL substrate. Here too excellent results are achieved, and the appearance and disappearance of compounds is observed in agreement with the known metabolic pathways of two bacteria, indicating the sample integrity was maintained throughout analysis. Finally, it is shown that this method applies more generally to lignin-rich materials by demonstrating its usefulness in analysis of pyrolysis oil and pyrolytic lignin.

  10. Processes for pretreating lignocellulosic biomass: A review

    SciTech Connect

    McMillan, J.D.

    1992-11-01

    This paper reviews existing and proposed pretreatment processes for biomass. The focus is on the mechanisms by which the various pretreatments act and the influence of biomass structure and composition on the efficacy of particular pretreatment techniques. This analysis is used to identify pretreatment technologies and issues that warrant further research.

  11. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  12. Science Activities in Biomass

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    concern plant growth and the environment, byproducts of biomass, and energy contained in different types of biomass. Provided by the Department of Energy's National Renewable...

  13. NREL: Biomass Research - Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  14. NREL: Biomass Research - Capabilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass...

  15. NREL: Biomass Research - Publications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    biofuels Biomass process and sustainability analyses. ... For information on biomass policy, read congressional ... on the Yield and Product Distribution of Fast ...

  16. Biomass Program Partners Fact Sheet

    SciTech Connect

    2009-10-27

    Meeting ambitious national targets for biofuels requires a radically accelerated level of technology research and infrastructure development. To expedite progress, the U.S. Department of Energy’s Biomass Program is forging collaborative partnerships with industry, academia, state governments, and diverse stakeholder groups.

  17. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  18. 2009 Biochemical Conversion Platform Review Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    09 Biochemical Conversion Platform Review Report 2009 Biochemical Conversion Platform Review Report This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program's Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado. obp_biochem_conversion_platform_review_2009.pdf (4.32 MB) More Documents & Publications 2009

  19. 2009 Thermochemical Conversion Platform Review Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy 09 Thermochemical Conversion Platform Review Report 2009 Thermochemical Conversion Platform Review Report This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado. obp_thermochem_conversion_platform_review_2009.pdf (3.76 MB) More Documents &

  20. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    SciTech Connect

    Perlack, R.D.

    2005-12-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the

  1. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  2. Coal and Coal-Biomass to Liquids

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Coal-Biomass to Liquids Turning coal into liquid fuels like gasoline, diesel and jet fuel, with biomass to reduce carbon dioxide emissions, is the main goal of the Coal and Coal-Biomass to Liquids program. The program also aims to reduce the cost of these low-emission fuels, and will take advantage of carbon capture and sequestration technologies to further reduce greenhouse gas emissions. Other Coal and Coal-Biomass to Liquids (C&CBTL) Program Activities: The C&CBTL Program

  3. Biochemical Conversion Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion 2009 Peer Review Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model For more publications, see the Bioenergy Publication Library

  4. Biomass Derivatives Competitive with Heating Oil Costs. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Derivatives Competitive with Heating Oil Costs. Biomass Derivatives Competitive with Heating Oil Costs. Presentation at the May 9, 2012, Pyrolysis Oil Workship on biomass derivatives competitive with heating oil costs. pyrolysis_levine.pdf (733.32 KB) More Documents & Publications Challenge # 1. Feedstock & Production Thermochemical Conversion Proceeses to Aviation Fuels A Review of DOE Biofuels Program

  5. NO reduction in decoupling combustion of biomass and biomass-coal blend

    SciTech Connect

    Li Dong; Shiqiu Gao; Wenli Song; Jinghai Li; Guangwen Xu

    2009-01-15

    Biomass is a form of energy that is CO{sub 2}-neutral. However, NOx emissions in biomass combustion are often more than that of coal on equal heating-value basis. In this study, a technology called decoupling combustion was investigated to demonstrate how it reduces NO emissions in biomass and biomass-coal blend combustion. The decoupling combustion refers to a two-step combustion method, in which fuel pyrolysis and the burning of char and pyrolysis gas are separated and the gas burns out during its passage through the burning-char bed. Tests in a quartz dual-bed reactor demonstrated that, in decoupling combustion, NO emissions from biomass and biomass-coal blends were both less than those in traditional combustion and that NO emission from combustion of blends of biomass and coal decreased with increasing biomass percentage in the blend. Co-firing rice husk and coal in a 10 kW stove manufactured according to the decoupling combustion technology further confirmed that the decoupling combustion technology allows for truly low NO emission as well as high efficiency for burning biomass and biomass-coal blends, even in small-scale stoves and boilers. 22 refs., 6 figs., 1 tab.

  6. Tracking Dynamics of Plant Biomass Composting by Changes in Substrate Structure, Microbial Community, and Enzyme Activity

    SciTech Connect

    Wei, H.; Tucker, M. P.; Baker, J. O.; Harris, M.; Luo, Y. H.; Xu, Q.; Himmel, M. E.; Ding, S. Y.

    2012-04-01

    Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  7. Performance of a direct combustion biomass furnace

    SciTech Connect

    Kranzler, G.A.; Stone, M.L.

    1982-12-01

    A prototype concentric vortex biomass furnace and ram bale feeder were designed and tested. A clear stack was maintained over a turndown ratio of 2:1 and excess air range of 50 to 250%. Stack temperatures ranged up to 700/sup 0/C. Average conversion efficiency was 64%. Maximum heat release was 0.4 MJ/hr.

  8. Performance of a direct combustion biomass furnace

    SciTech Connect

    Kranzler, G.A.; Stone, M.L.

    1982-12-01

    A prototype concentric vortex biomass furnace and ram bale feeder were designed and tested. A clear stack was maintained over a turndown ratio of 2:1 and excess air range of 50 to 250%. Stack temperature ranged up to 700 degrees C. Average conversion efficiency was 64%. Maximum heat release was 0.4 MJ/hr.

  9. How to convert biomass to SNG

    SciTech Connect

    Frank, J.R.

    1980-04-01

    The conversion of biomass to methane by thermal gasification and by anaerobic digestion is described. The problems common to most digester designs such as long start-up times and rates of formation of organic acids are mentioned and current research on kelp digestion is reviewed.

  10. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    SciTech Connect

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  11. Thermochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Biorefinery Integration Thermochemical Conversion - Biorefinery Integration Fuels Synthesis Fuels can be produced from bio-oils using processes similar to those found in a petroleum refinery, including hydrotreating and hydrocracking to create green gasoline, an alternative to alcohol-based ethanol fuels. Some types of bio-oils can even be fully integrated into petroleum refining stream and infrastructure. The conversion of biomass derived syngas to products is typically an exothermic process,

  12. Opportunities for Farmers in Biomass Feedstock Production

    Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy Feedstocks—From Field to Fuel Opportunities for Farmers in Biomass Feedstock Production J. Richard Hess, Idaho National Lab, Director of Energy Systems & Technology Division

  13. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  14. VICA Technologies LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technologies LLC Jump to: navigation, search Name: VICA Technologies LLC Place: Philadelphia, Pennsylvania Zip: 19104 Sector: Biomass, Renewable Energy Product:...

  15. IECEC '91; Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, MA, Aug. 4-9, 1991. Vol. 5 - Renewable resource systems, Stirling engines and applications, systems and cycles

    SciTech Connect

    Not Available

    1991-01-01

    Various papers on energy conversion engineering are presented. The general topics considered are: developments in nuclear power, energy from waste and biomass, system performance and materials in photovoltaics, solar thermal energy, wind energy systems, Stirling cycle analysis, Stirling cycle power, Stirling component technology, Stirling cooler/heat pump developments, Stirling engine concepts, Stirling engine design and optimization, Stirling engine dynamics and response, Stirling engine solar terrestrial, advanced cogeneration, AMTC, fossil fuel systems and technologies, marine energy.

  16. Biomass Program Overview

    SciTech Connect

    2010-01-01

    This document provides an overview of the Biomass Program's mission, strategic goals, and research approach.

  17. Biomass treatment method

    DOEpatents

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  18. Liquid Transportation Fuels from Coal and Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Liquid Tr anspor tation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Impacts Panel on Alter native Liquid Tr anspor tation Fuels DOE LDV Wor kshop 7-26-10 Mike Ramage and J im Katzer CHARGE TO THE ALTF PANEL * Evaluate technologies for converting biomass and coal to liquid fuels that are deployable by 2020. * Current and projected costs, and CO 2 emissions. * Key R&D and demonstration needs. * Technically feasible supply of liquid fuels * Estimate the potential

  19. April 2012 Biomass Program News Blast

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    April 2012 Energy Department Announces $2.5 Million to Advance Technologies for Clean-Burning, Efficient Biomass Cookstoves The Energy Department announced up to $2.5 million available this year for applied research to advance clean biomass cookstove technologies for use in developing countries. The funding will support the development of innovative cookstove designs that allow users to burn wood or crop residues more efficiently and with less smoke than open fires and traditional third world

  20. Commercial Application of Biomass Energy Laurentian Energy Authority

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Application of Biomass Energy Laurentian Energy Authority Date: May 20, 2013 Technology Area Review: Feedstock Supply & Logistics Principal Investigators: Bill Hafdahl, Laurentian Energy Authority Bill Berguson, University of Minnesota, Duluth Organizations: Laurentian Energy Authority - prime contractor University of Minnesota, Duluth - subcontract for biomass source research Commercial Application of Biomass Energy Laurentian Energy Authority, Virginia, MN CHP systems - Virginia and