National Library of Energy BETA

Sample records for bay maryland source

  1. Maryland

    Energy Information Administration (EIA) (indexed site)

    Maryland

  2. Maryland Renewable Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2104,1652,1974,1889,1667 "Solar","-","-","-","-","s" "Wind","-","-","-","-",1 "Wood/Wood Waste",218,203,198,175,165 "MSW Biogenic/Landfill Gas",408,400,415,376,407 "Other

  3. Maryland Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32091,33303,29810,26529,27102 " Coal",29408,29699,27218,24162,23668 " Petroleum",581,985,406,330,322 " Natural Gas",1770,2241,1848,1768,2897 " Other Gases",332,378,338,269,215 "Nuclear",13830,14353,14679,14550,13994 "Renewables",2730,2256,2587,2440,2241 "Pumped Storage","-","-","-","-","-"

  4. Existing Whole-House Solutions Case Study: Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland

    SciTech Connect

    2013-10-01

    Under this project, the BA-PIRC research team evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place deep energy retrofit at the Bay Ridge multifamily development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This case study summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete.

  5. Maryland - Compare - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Maryland Maryland

  6. Maryland - Rankings - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Maryland Maryland

  7. Maryland - Search - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Maryland Maryland

  8. Neutron calibration sources in the Daya Bay experiment

    DOE PAGES [OSTI]

    Liu, J.; Carr, R.; Dwyer, D. A.; Gu, W. Q.; Li, G. S.; McKeown, R. D.; Qian, X.; Tsang, R. H. M.; Wu, F. F.; Zhang, C.

    2015-07-09

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. Thus, the design characteristics have been validated in the Daya Bay anti-neutrino detector.

  9. Maryland Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",566,590,590,590,590 "Solar","-","-","-","-",1 "Wind","-","-","-","-",70 "Wood/Wood Waste",2,3,3,3,3 "MSW/Landfill Gas",126,130,132,135,135 "Other

  10. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit: Annapolis, Maryland. Building America Case Study: Whole-House Solutions for Existing Homes (Fact Sheet)

    SciTech Connect

    Not Available

    2013-10-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

  11. Contamination source review for Building E1489, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Billmark, K.A.; Hayes, D.C.; Draugelis, A.K.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E1489 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the U.S. Army-in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed in 1994-1995. Building E1489 located in J-Field on the Gunpowder Peninsula in APG`s Edgewood Area housed a power generator that supplied electricity to a nearby observation tower. Building E1489 and the generator were abandoned in 1974, demolished by APG personnel and removed from real estate records. A physical inspection and photographic documentation of Building E1489 were completed by ANL staff during November 1994. In 1994, ANL staff conducted geophysical surveys in the immediate vicinity of Building E1489 by using several nonintrusive methods. Survey results suggest the presence of some underground objects near Building E1489, but they do not provide conclusive evidence of the source of geophysical anomalies observed during the survey. No air monitoring was conducted at the site, and no information on underground storage tanks associated with Building E1489 was available.

  12. Contamination source review for Building E3180, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Zellmer, S.D.; Smits, M.P.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review of Building E3180 at the Aberdeen Proving Ground (APG) in Maryland. The report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, geophysical investigation, collection of air samples, and review of available records regarding underground storage tanks associated with Building E3180. The field investigations were performed by ANL during 1994. Building,E3180 (current APG designation) is located near the eastern end of Kings Creek Road, north of Kings Creek, and about 0.5 miles east of the airstrip within APG`s Edgewood Area. The building was constructed in 1944 as a facsimile of a Japanese pillbox and used for the development of flame weapons systems until 1957 (EAI Corporation 1989). The building was not used from 1957 until 1965, when it was converted and used as a flame and incendiary laboratory. During the 1970s, the building was converted to a machine (metal) shop and used for that purpose until 1988.

  13. Contamination source review for Building E3163, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Draugelis, A.K.; Muir-Ploense, K.L.; Glennon, M.A.; Zimmerman, R.E.

    1995-09-01

    This report was prepared by Argonne National Laboratory (ANL) to document the results of a contamination source review for Building E3163 at the Aberdeen Proving Ground (APG) in Maryland. This report may be used to assist the US Army in planning for the future use or disposition of this building. The review included a historical records search, physical inspection, photographic documentation, and geophysical investigation. The field investigations were performed by ANL during 1994 and 1995. Building E3163 (APG designation) is part of the Medical Research Laboratories E3160 Complex. This research laboratory complex is located west of Kings Creek, east of the airfield and Ricketts Point Road, and south of Kings Creek Road in the Edgewood Area of APG. The original structures in the E3160 Complex were constructed during World War II. The complex was originally used as a medical research laboratory. Much of the research involved wound assessment. Building E3163, constructed in 1946, was used for toxicological studies on animals until 1965. All agent testing was done using laboratory-scale quantities of agents. All operational data were destroyed; total quantities and types of agents used during the testing are unknown. No experimentation has been conducted in the building since 1965. However, the building was used as overflow office space until the late 1980s. Since that time, the building has been unoccupied.

  14. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bay Ridge Gardens-Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit Annapolis, Maryland PROJECT INFORMATION Construction: Existing Type: Apartment building: Bay Ridge Gardens Annapolis, MD www.bayridgegardens.com Size: 12 apartment units, 713 ft 2 and 909 ft 2 each Year of construction: 1970s Date completed: 2013 Climate Zone: Mixed-humid PERFORMANCE DATA Pre-retrofit annual energy use (normalized): 28.4 kilowatt-hour per square foot (kWh/ft 2 ) Post-retrofit annual energy use

  15. Maryland Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Maryland" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent ...

  16. Highlighting High Performance: The Philip Merrill Environmental Center; Chesapeake Bay Foundation, Annapolis, Maryland. Office of Building Technology, State and Community Programs (BTS) Brochure

    SciTech Connect

    2002-04-01

    Case study on high performance building features of the Chesapeake Bay Foundation’s Philip Merrill Environmental Center.

  17. Contamination source review for Building E7995, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Booher, M.N.; Miller, G.A.; Draugelis, A.K.; Glennon, M.A.; Rueda, J.; Zimmerman, R.E.

    1995-09-01

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition, of the buildings. The source contamination review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, investigation of potential hazardous materials facilities (HMFs), and review of available records regarding underground storage tanks. This report provides the results of the contamination source review for Building E7995. any of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot-scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings, and associated structures or appurtenances, may contribute to environmental concerns at APG.

  18. Maryland Biodiesel | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biodiesel Jump to: navigation, search Name: Maryland Biodiesel Place: Berlin, Maryland Product: Maryland Biodiesel operates the 3.7m liter biodiesel plant in Berlin, Maryland....

  19. Baltimore County, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland Lutherville-Timonium, Maryland Mays Chapel, Maryland Middle River, Maryland Milford Mill, Maryland Overlea, Maryland Owings Mills, Maryland Parkville, Maryland Perry...

  20. Bio Pure Maryland LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bio Pure Maryland LLC Jump to: navigation, search Name: Bio-Pure Maryland LLC Place: Potomac, Maryland Product: Biodiesel plant developer in Maryland. References: Bio-Pure Maryland...

  1. Maryland Efficiency Program Options

    Office of Energy Efficiency and Renewable Energy (EERE)

    Maryland Efficiency Program Options, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  2. Prince George's County, Maryland: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland Camp Springs, Maryland Capitol Heights, Maryland Carmody Hills-Pepper Mill Village, Maryland Cheverly, Maryland Chillum, Maryland Clinton, Maryland College Park,...

  3. Talbot County, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zone Subtype A. Places in Talbot County, Maryland Cordova, Maryland Easton, Maryland Oxford, Maryland Queen Anne, Maryland St. Michaels, Maryland Tilghman Island, Maryland...

  4. Charles County, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bryans Road, Maryland Hughesville, Maryland Indian Head, Maryland La Plata, Maryland Port Tobacco Village, Maryland Potomac Heights, Maryland St. Charles, Maryland Waldorf,...

  5. Dorchester County, Maryland: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    A. Places in Dorchester County, Maryland Algonquin, Maryland Brookview, Maryland Cambridge, Maryland Church Creek, Maryland East New Market, Maryland Eldorado, Maryland...

  6. Washington County, Maryland: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Rohrersville, Maryland San Mar, Maryland Sharpsburg, Maryland Smithsburg, Maryland St. James, Maryland Williamsport, Maryland Wilson-Conococheague, Maryland Retrieved from "http:...

  7. ,"Maryland Natural Gas Summary"

    Energy Information Administration (EIA) (indexed site)

    Prices" "Sourcekey","N3050MD3","N3010MD3","N3020MD3","N3035MD3","N3045MD3" "Date","Natural Gas Citygate Price in Maryland (Dollars per Thousand Cubic Feet)","Maryland Price of ...

  8. Cecil County, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Chesapeake City, Maryland Elkton, Maryland North East, Maryland Perryville, Maryland Port Deposit, Maryland Rising Sun, Maryland Retrieved from "http:en.openei.orgw...

  9. Somerset County, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland Frenchtown-Rumbly, Maryland Mount Vernon, Maryland Princess Anne, Maryland Smith Island, Maryland West Pocomoke, Maryland Retrieved from "http:en.openei.orgw...

  10. St. Mary's County, Maryland: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Zone Subtype A. Places in St. Mary's County, Maryland California, Maryland Charlotte Hall, Maryland Golden Beach, Maryland Leonardtown, Maryland Lexington Park, Maryland...

  11. Kent County, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Betterton, Maryland Chestertown, Maryland Galena, Maryland Millington, Maryland Rock Hall, Maryland Retrieved from "http:en.openei.orgwindex.php?titleKentCounty,Maryland&...

  12. DOE - Office of Legacy Management -- W R Grace Co - Curtis Bay...

    Office of Legacy Management (LM)

    Davison Chemical Division Curtis Bay Plant MD.01-2 MD.01-3 Location: Curtis Bay, Baltimore, Maryland MD.01-2 Historical Operations: Conducted developmental research and thorium ...

  13. Howard County, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland Ellicott City, Maryland Jessup, Maryland North Laurel, Maryland Savage-Guilford, Maryland Retrieved from "http:en.openei.orgwindex.php?titleHowardCounty,Maryl...

  14. University of Maryland | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland Jump to: navigation, search Logo: University of Maryland Name: University of Maryland Address: College Park, MD Zip: 20742 Website: www.umd.edu Coordinates: 38.980666,...

  15. Energy Incentive Programs, Maryland

    Office of Energy Efficiency and Renewable Energy (EERE)

    Maryland utilities budgeted $150 million in 2012 across their various electric and gas programs (including those directed at residential and low-income customers) to promote customer energy efficiency.

  16. Building America Whole-House Solutions for Existing HomesBay Ridge Gardens

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet) | Department of Energy HomesBay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet) Building America Whole-House Solutions for Existing HomesBay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet) Approximately 43% energy savings are achieved in a 1970s multifamily

  17. Maryland Smart Energy Communities Grant

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Maryland Energy Administration (MEA) offers financial incentives for local governments to join its Maryland Smart Energy Communities (MSEC) initiative. The goal of the MSCE program is to have...

  18. Maryland Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10071,10028,10125,10050,10012 " Coal",4958,4958,4944,4876,4886 " Petroleum",3140,2965,2991,2986,2933 " Natural ...

  19. Maryland Offshore Wind Annual Meeting

    Energy.gov [DOE]

    This event will provide updates on regional offshore wind projects and will help attendees understand Maryland's offshore wind project and the team members required. Participants will also learn...

  20. Amendment to Programmatic Agreement for Maryland

    Energy.gov [DOE]

    U.S. Department of Energy (DOE), Maryland Energy Administration (MEA), Maryland State Historic Preservation Office, Section 106 of the National Historic Preservation Act, Maryland Department of Housing and Community Development (DHCD), American Recovery and Reinvestment Act (ARRA)

  1. Direct Energy Services (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Services (Maryland) Jump to: navigation, search Name: Direct Energy Services Place: Maryland Phone Number: 1-855-461-1926 Website: www.directenergy.commaryland Twitter: https:...

  2. Germantown, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. Germantown is a census-designated place in Montgomery County, Maryland.1 Registered Energy Companies in Germantown, Maryland Current...

  3. Maryland Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Maryland Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,516 100.0 Total Net Summer Renewable Capacity 799 6.4 Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 Wood/Wood Waste 3 * MSW/Landfill Gas 135 1.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 43,607 100.0 Total Renewable

  4. Maryland Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Maryland" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",12516,100 "Total Net Summer Renewable Capacity",799,6.4 " Geothermal","-","-" " Hydro Conventional",590,4.7 "

  5. Maryland Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    state, county, city, or district. For more information, please visit the Middle School Coach page. Maryland Region Middle School Regional Maryland Maryland Regional Middle School...

  6. Maryland Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    designated for your school's state, county, city, or district. For more information, please visit the High School Coach page. Maryland Region High School Regional Maryland Maryland...

  7. Carroll County, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    4 Climate Zone Subtype A. Registered Energy Companies in Carroll County, Maryland Freedom Energy Solutions LLC Places in Carroll County, Maryland Eldersburg, Maryland...

  8. Maryland Summary of Reported Data | Department of Energy

    Energy Saver

    Summary of Reported Data Maryland Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Maryland. Maryland Summary of Reported Data ...

  9. Maryland's 1st congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    in Maryland. Registered Energy Companies in Maryland's 1st congressional district Gore Fuel Cell Technologies Maryland Biodiesel Retrieved from "http:en.openei.orgw...

  10. Calvert County, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zone Number 4 Climate Zone Subtype A. Places in Calvert County, Maryland Calvert Beach-Long Beach, Maryland Chesapeake Beach, Maryland Chesapeake Ranch Estates-Drum Point,...

  11. Conectiv (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name: Conectiv Place: Maryland References: Energy Information Administration.1 EIA Form 861 Data Utility Id 5027 This article is a stub. You can help OpenEI...

  12. Baseline point source load inventory, 1985. 1991 reevaluation report No. 2

    SciTech Connect

    Not Available

    1993-02-04

    The report finalizes and documents the Chesapeake Bay Agreement states' 1985 point source nutrient load estimates initially presented in the Baywide Nutrient Reduction Strategy (BNRS). The Bay Agreement states include Maryland, Virginia, Pennsylvania, and the District of Columbia. Each of the states final, annual, discharged, 1985 point source total phosphorus and total nitrogen nutrient load estimates are presented. These estimates are to serve as the point source baseline for the year 2000 40% nutrient reduction goal. Facility by facility flows, nutrient concentrations and nutrient loads for 1985 from above the fall line (AFL) and from below the fall line (BFL) are presented. The report presents the percent change in the 1985 baseline loads for each of the Bay agreement states relative to 1991. Estimates of 1991 nutrient loads are not available for non-agreement states at this time.

  13. Hampstead, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. Hampstead is a town in Baltimore County and Carroll County, Maryland. It falls under Maryland's 6th congressional...

  14. Potomac, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    a stub. You can help OpenEI by expanding it. Potomac is a census-designated place in Montgomery County, Maryland.1 Registered Research Institutions in Potomac, Maryland Knowledge...

  15. Martin's Additions, Maryland: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Martin's Additions is a village in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  16. Poolesville, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Poolesville is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  17. Kensington, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. Kensington is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  18. Somerset, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. Somerset is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  19. Laytonsville, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Laytonsville is a town in Montgomery County, Maryland. It falls under Maryland's 4th congressional district.12...

  20. Rockville, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. Rockville is a city in Montgomery County, Maryland. It falls under Maryland's 4th congressional district and...

  1. Brookeville, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Brookeville is a town in Montgomery County, Maryland. It falls under Maryland's 4th congressional district.12...

  2. Barnesville, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Barnesville is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  3. Gaithersburg, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Gaithersburg is a city in Montgomery County, Maryland. It falls under Maryland's 4th congressional district and...

  4. Daya Bay

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bay Daya Bay Basics The basics of Daya Bay computing at PDSF. Read More » Data Management All Daya Bay raw data is transferred to PDSF. Read More » File Systems Daya Bay has space on 2 elizas: 6TB on /eliza7 and 35TB on /eliza16. Read More » Running on Carver The Daya Bay software is installed on PDSF on /common so is therefore unavailable on Carver. At this point there has been no effort to port the code to /project for use on... Read More » Last edited: 2016-04-29 11:35:01

  5. Energy Incentive Programs, Maryland | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Maryland Energy Incentive Programs, Maryland Updated October 2015 Maryland utilities budgeted over $290 million in 2014 across their various electric and gas programs (including those directed at residential and low-income customers) to promote customer energy efficiency. What public-purpose-funded energy efficiency programs are available in my state? Maryland's electricity restructuring law, signed in 1999, mandated the creation of a Universal Service Fund that provides bill assistance and

  6. Maryland Data Dashboard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Data Dashboard Maryland Data Dashboard The data dashboard for Maryland, a partner in the Better Buildings Neighborhood Program. Maryland Data Dashboard (300.77 KB) More Documents & Publications Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard Phoenix, Arizona Data Dashboard

  7. ,"Maryland Natural Gas Prices"

    Energy Information Administration (EIA) (indexed site)

    Date:","04292016" ,"Excel File Name:","ngprisumdcusmdm.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcusmdm.htm" ,"Source:","Energy ...

  8. Future Mobility in Maryland

    National Nuclear Security Administration (NNSA)

    ... repair costs and increased fuel consumption and tire wear. * In the Las Vegas ... development of environmentally-friendly energy sources (NSTPRSC). * Speed up project ...

  9. Recovery Act State Memos Maryland

    Energy.gov [DOE] (indexed site)

    Maryland For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  10. Categorical Exclusion Determinations: Maryland | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Maryland Categorical Exclusion Determinations: Maryland Location Categorical Exclusion Determinations issued for actions in Maryland. DOCUMENTS AVAILABLE FOR DOWNLOAD September 9, 2016 CX-100748 Categorical Exclusion Determination Advanced Serpentine Heat Exchangers to Minimize the Number of Joints and Leakage in HVAC&R Systems Award Number: DE-EE0007680 CX(s) Applied: A9, B3.6 Building Technologies Office Date: 8/11/2016 Location(s): MD Office(s): Golden Field Office June 12, 2016 CX-100642

  11. Maryland/Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    (Potomac Edison) - Commercial and Industrial Energy Efficiency Rebate Program (Maryland) Utility Rebate Program Yes FirstEnergy (Potomac Edison) - ENERGY STAR New Homes Program...

  12. PEPCO Energy Services (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PEPCO Energy Services Place: Maryland Phone Number: 1-877-737-2662 Website: www.pepco.comconnect-with-us Twitter: https:twitter.comPepcoConnect Facebook: https:...

  13. Maryland Natural Gas Consumption by End Use

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  14. ,"Maryland Natural Gas LNG Storage Additions (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  15. ,"Maryland Natural Gas LNG Storage Withdrawals (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  16. Westminster, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    6th congressional district.12 Registered Energy Companies in Westminster, Maryland Freedom Energy Solutions LLC References US Census Bureau Incorporated place and minor...

  17. Elkton, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    1st congressional district.12 Registered Energy Companies in Elkton, Maryland Gore Fuel Cell Technologies References US Census Bureau Incorporated place and minor...

  18. Maryland/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Maryland Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  19. Annapolis, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    in Annapolis, Maryland EnergyWorks North America International Masonry Institute Jay Hall & Associates, Inc. Synergics UEK Corporation References US Census Bureau...

  20. ,"Maryland Underground Natural Gas Storage - All Operators"

    Energy Information Administration (EIA) (indexed site)

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Maryland Natural Gas in ...

  1. Maryland Efficiency Program Options | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Small Town University Energy Program (STEP). E6a Maryland Efficiency Program Options.pdf (206.31 KB) More Documents & Publications STEP Financial Incentives Summary STEP ...

  2. Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks

    Alternative Fuels and Advanced Vehicles Data Center

    Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves

  3. Blue Star Energy Services (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland) Jump to: navigation, search Name: Blue Star Energy Services Place: Maryland References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data...

  4. Maryland-National Capital Building Industry Association Regulatory...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012) Maryland-National Capital Building Industry Association Regulatory ...

  5. Maryland Recovery Act State Memo | Department of Energy

    Energy.gov [DOE] (indexed site)

    Maryland are supporting a broad range of clean energy projects, from energy efficiency and smart grid to advanced battery manufacturing. Through these investments, Maryland's ...

  6. Frederick County, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Companies in Frederick County, Maryland Atlantic Biomass Conversions Inc BP Solar Emerging Energy Consultants Solarex Places in Frederick County, Maryland Ballenger Creek,...

  7. Noble Americas Energy Solutions LLC (Maryland) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland) Jump to: navigation, search Name: Noble Americas Energy Solutions LLC Place: Maryland Phone Number: 1 877273-6772 Website: www.noblesolutions.com Outage Hotline: 1 877...

  8. National Science Bowl Update: Middle School Teams from Maryland...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Science Bowl Update: Middle School Teams from Maryland and Indiana to Compete for National Championship on Monday National Science Bowl Update: Middle School Teams from Maryland ...

  9. Maryland's 5th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Companies in Maryland's 5th congressional district University Park Community Solar LLC Zymetis Retrieved from "http:en.openei.orgwindex.php?titleMaryland%27s5...

  10. University of Maryland 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Maryland 2016 University of Maryland 2016 Team roster: Andrew Dallas, Aerospace Engineering; Mario Mondal, Aerospace Engineering; Atif Salahudeen, Aerospace Engineering; Matt Shumate, Aerospace Engineering; Emily Love, Mechanical Engineering; Austin Jacobson, Mechanical Engineering; Natalie Tham, Aerospace Engineering; Angelina Bingei, Finance and Marketing; Shriya Gupta, Finance and Information Systems; Jessica Ting, Marketing and Information Systems; Njeri Warrington, Marketing and Supply

  11. Maryland Hybrid Truck Goods Movement Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Maryland Hybrid Truck Goods Movement Initiative Maryland Hybrid Truck Goods Movement Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt063_ti_rice_2012_o.pdf (1.07 MB) More Documents & Publications Maryland Hybrid Truck Goods Movement Initiative Maryland Hybrid Truck Goods Movement Initiative Midwest Region Alternative Fuels Project

  12. Maryland's efforts to develop regulations creating an air emissions offset trading program

    SciTech Connect

    Guy, D.M.; Zaw-Mon, M.

    1999-07-01

    Under the federal Clean Air Act's New Source Review program, many companies located in or planning to locate in areas that do not meet federal air quality standards or in the Northeast Ozone Transport Region (northern Virginia to Maine) must obtain emission reductions (called offsets) of volatile organic compounds and nitrogen oxides that are greater than the new emissions that will be released. This offset requirement allows growth in industry while protecting air quality against deterioration. Despite the federal offset requirement, a formal banking and trading program is not mandated by the Clean Air Act Amendments of 1990. Still, a mechanism is needed to ensure that emission reduction credits (ERCs) are available for sources to use to meet the offset requirement. Currently, Maryland does not have regulations covering the sale or transfer of ERCs from one facility to another. Maryland works with industry on a case-by-case basis to identify potential sources of ERCs and to assist in obtaining them. Then, the offset requirement and the ERCs used to meet the offsets are incorporated into individual permits using various permitting mechanisms. Desiring certainty and stability in the banking and trading process, Maryland's business community has pressed for regulations to formalize Maryland's procedures. Working over several years through a stakeholder process, Maryland has developed concepts for a trading program and a draft regulation. This paper describes Maryland's current case-by-case banking and trading procedure and traces efforts to develop a regulation to formalize the process. The paper discusses complex policy issues related to establishing a banking and trading program, describes the principal elements of Maryland's draft regulation, and summarizes elements of other states' emissions banking and trading programs.

  13. Maryland Heats Up Student Appliance Design Competition | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Maryland Heats Up Student Appliance Design Competition Maryland Heats Up Student Appliance Design Competition September 10, 2013 - 11:43am Addthis Students from the University of Maryland won the Max Tech and Beyond Design Competition for their heat pump clothes dryer prototype, which achieved a 59 percent energy savings compared to standard U.S. electric dryers. | Photo courtesy of the University of Maryland. Students from the University of Maryland won the Max Tech and Beyond Design

  14. GEXA Corp. (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland Phone Number: 866-961-9399 Website: www.gexaenergy.com Twitter: @gexavoice Facebook: https:www.facebook.comGexaEnergy Outage Hotline: 866-961-9399 References: EIA...

  15. Post-2015 Maryland Energy Efficiency Goals

    Energy.gov [DOE]

     In July 2015, the Public Service Commission (PSC) in its Order 87082 established energy efficiency goals for the State. Previous state mandated energy efficiency program- EmPOWER Maryland Act is...

  16. Potential for cogeneration in Maryland. Volume 1

    SciTech Connect

    Not Available

    1993-03-01

    Cogeneration is a name given to energy systems that produce both electric power and useful thermal energy such as steam. While cogeneration markets have flourished in California, Texas, and some states, those in Maryland have not. A primary reason is that the industries that have been targeted in other states--e.g., oil refining, pulp and paper, chemicals, food processing--are not major elements of Maryland's industrial base. The study estimates the potential for future cogeneration in Maryland, both large units and small packaged systems, and assesses the potential impact of cogeneration systems on Maryland's energy needs between now and 2005. The study is presented in three volumes. Because of significant differences between large- and small-scale cogeneration, the analysis of these two systems was performed separately. This volume is a summary document presenting the findings from both studies.

  17. Friendship Village, Maryland: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. Friendship Village is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  18. Fairland, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    stub. You can help OpenEI by expanding it. Fairland is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  19. Hillandale, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. Hillandale is a census-designated place in Montgomery County and Prince George's County, Maryland.1 References US Census Bureau 2005...

  20. Travilah, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    stub. You can help OpenEI by expanding it. Travilah is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  1. Calverton, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    stub. You can help OpenEI by expanding it. Calverton is a census-designated place in Montgomery County and Prince George's County, Maryland.1 References US Census Bureau 2005...

  2. Redland, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    a stub. You can help OpenEI by expanding it. Redland is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  3. Cloverly, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    stub. You can help OpenEI by expanding it. Cloverly is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  4. Burtonsville, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. Burtonsville is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  5. Rossmoor, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    stub. You can help OpenEI by expanding it. Rossmoor is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  6. Clarksburg, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. Clarksburg is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  7. Montgomery Village, Maryland: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery Village is a census-designated place in Montgomery County, Maryland.1 References...

  8. Olney, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    a stub. You can help OpenEI by expanding it. Olney is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  9. Damascus, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    stub. You can help OpenEI by expanding it. Damascus is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  10. Colesville, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. Colesville is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  11. Brookmont, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    stub. You can help OpenEI by expanding it. Brookmont is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  12. Darnestown, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. Darnestown is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  13. Strategic Energy LLC (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    kWh References "EIA Form EIA-861 Final Data File for 2010 - File22010" Retrieved from "http:en.openei.orgwindex.php?titleStrategicEnergyLLC(Maryland)&oldid788103...

  14. Maryland Residential Energy Code Field Study

    Energy.gov [DOE]

    Lead Performer: Maryland Energy Administration – Annapolis, MDPartners:   -  Newport Partners – Davidsonville, MD  -  Edge Energy – Beltsville, MDDOE Total Funding: $610,428Cost Share: $153...

  15. ERSUG: July 11 - 12, 1994 (Rockville, Maryland)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ERSUG: July 11 - 12, 1994 (Rockville, Maryland) Dates July 11 - 12, 1994 Location Holiday Inn, Crowne Plaza Rockville, Maryland Presentations Agenda ERSUG Meeting July 11-12, 1994 Holiday Inn, Crowne Plaza Rockville, MD The Energy Research Supercomputer Users' Group (ERSUG) will meet at the Holiday Inn, Crowne Plaza in Rockville, MD on July 11-12, 1994. In the past, this meeting has combined presentations describing work-in-progress at NERSC with lively user discussions in the areas of the

  16. Consolidated Edison Sol Inc (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Consolidated Edison Sol Inc (Maryland) Jump to: navigation, search Name: Consolidated Edison Sol Inc Place: Maryland Phone Number: 1-888-320-8991 or 1-888-320-8991 or...

  17. Maryland Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Maryland Natural Gas Gross Withdrawals (Million Cubic Feet) Maryland Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 ...

  18. EmPOWER Maryland Low Income Energy Efficiency Program

    Energy.gov [DOE]

    The Maryland Department of Housing and Community Development (DHCD) EmPOWER Maryland Low Income Energy Efficiency Program helps qualifying low-income residents increase the energy efficiency of t...

  19. Owings Mills, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. Owings Mills is a census-designated place in Baltimore County, Maryland.1 Registered Energy Companies in Owings Mills, Maryland...

  20. A & N Electric Coop (Maryland) EIA Revenue and Sales - December...

    OpenEI (Open Energy Information) [EERE & EIA]

    A & N Electric Coop for December 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-12 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date...

  1. A & N Electric Coop (Maryland) EIA Revenue and Sales - February...

    OpenEI (Open Energy Information) [EERE & EIA]

    A & N Electric Coop for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date...

  2. Hess Retail Natural Gas and Elec. Acctg. (Maryland) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Maryland References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form...

  3. First Energy Solutions Corp. (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland) Jump to: navigation, search Name: First Energy Solutions Corp. Place: Maryland Phone Number: 1-888-254-4769 or 1-888-254-6359 Website: www.firstenergycorp.comconten...

  4. American PowerNet (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland) Jump to: navigation, search Name: American PowerNet Place: Maryland Phone Number: (877) 977-2636 or (610) 372-8500 Website: www.americanpowernet.com Outage Hotline:...

  5. Ambit Energy, L.P. (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland) Jump to: navigation, search Name: Ambit Energy, L.P. Place: Maryland Phone Number: (877) 282-6248 Website: ww2.ambitenergy.com Twitter: @AmbitEnergy Facebook: https:...

  6. Allegheny Energy Supply Co LLC (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland) Jump to: navigation, search Name: Allegheny Energy Supply Co LLC Place: Maryland References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data...

  7. College Park, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. College Park is a city in Prince George's County, Maryland. It falls under Maryland's 5th...

  8. University Park, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. University Park is a town in Prince George's County, Maryland. It falls under Maryland's 5th...

  9. Chevy Chase Section Five, Maryland: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    stub. You can help OpenEI by expanding it. Chevy Chase Section Five is a village in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  10. Garrett Park, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Garrett Park is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  11. Chevy Chase View, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Chevy Chase View is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  12. Silver Spring, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. Silver Spring is a census-designated place in Montgomery County, Maryland.1 Registered Energy Companies in Silver Spring, Maryland CPV Wind...

  13. Chevy Chase Section Three, Maryland: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    stub. You can help OpenEI by expanding it. Chevy Chase Section Three is a village in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  14. Washington Grove, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Washington Grove is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  15. Takoma Park, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Takoma Park is a city in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  16. North Chevy Chase, Maryland: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. North Chevy Chase is a village in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  17. Glen Echo, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. Glen Echo is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  18. Chevy Chase Village, Maryland: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Chevy Chase Village is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  19. Chevy Chase, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    article is a stub. You can help OpenEI by expanding it. Chevy Chase is a town in Montgomery County, Maryland. It falls under Maryland's 8th congressional district.12...

  20. Save Energy Now for Maryland Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    The EmPOWER Maryland Energy Efficiency Act of 2008 sets the statewide goal of a 15% reduction in both electricity and peak demand by 2015. This policy initiative was motivated by several factors, which include, but are not limited to, electricity rate increases, a potential capacity shortage, and concerns about CO2 emissions and climate change. The goals set forth by the governor and state legislature correlated closely to DOE’s Better Buildings, Better Plants program goal of reducing energy intensity in the industrial sector 25% in 10 years. For the past several years, Maryland has participated in efforts to reduce energy consumption in the state. As part of these efforts, industrial customers are recognizing more and more the importance of energy efficiency. Maryland was clearly a suitable candidate to take part in activities related to industrial energy efficiency, and the Better Buildings, Better Plants approach is one of the most proven means for delivering results to industry.

  1. Alternative Fuels Data Center: Maryland Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center

    Fuels and Vehicles Maryland Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maryland Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maryland Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Maryland Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  2. Workplace Charging Challenge Partner: University of Maryland Baltimore

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Washington Medical Center | Department of Energy Maryland Baltimore Washington Medical Center Workplace Charging Challenge Partner: University of Maryland Baltimore Washington Medical Center Workplace Charging Challenge Partner: University of Maryland Baltimore Washington Medical Center Joined the Challenge: March 2014 Headquarters: Glen Burnie, MD Charging Location: Glen Burnie, MD Domestic Employees: 2,700 The University of Maryland Baltimore Washington Medical Center (UM BWMC) is an

  3. Maryland Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summary of Reported Data Maryland Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Maryland. Maryland Summary of Reported Data (803.83 KB) More Documents & Publications University Park Summary of Reported Data Energize New York Summary of Reported Data Alabama -- SEP Summary of Reported Data

  4. University of Maryland Final Report: TERPine Industries

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Technical Report UNIVERSITY OF MARYLAND'S COLLEGIATE WIND COMPETITION TEAM Andrew Dallas - Team Lead Atif Salahudeen - Engineering Design Lead Matt Shumate - Aerodynamics Lead Emily Love - Mechanical Lead Austin Jacobsen - Component Analysis Engineering Mario Mondal - Manufacturing Engineering Natalie Tham - Structure Lead Brandon Draper - Deployment Lead Greg Baroni - Deployment Analysis Engineering Shriya Gupta - Finance Lead Njeri Warrington - Marketing Lead Dr. James Baeder -Principle

  5. Hooper Bay Efficiency Feasibility Study

    Office of Environmental Management (EM)

    (OUR PEOPLE) Hooper Bay Energy Efficiency Feasibility ... The name Hooper Bay came into common usage after a post ... BAY IS MARITIME. THE MEAN ANNUAL SNOWFALL IS 75 INCHES ...

  6. Maryland Nuclear Profile - All Fuels

    Energy Information Administration (EIA) (indexed site)

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,705",13.6,"13,994",32.1 "Coal","4,886",39.0,"23,668",54.3 "Hydro and Pumped Storage",590,4.7,"1,667",3.8

  7. Lanham, Maryland Harrisonburg, Virginia Fayetteville, New York

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    www.antaresgroupinc.com Lanham, Maryland Harrisonburg, Virginia Fayetteville, New York Lessons Learned, Progress, and Development Needs for Processing and Handling Herbaceous Biomass Presented By: Kevin Comer, Assoc. Principal kcomer@antaresgroupinc.com Phone: (540)227-8866 Biorefinery Optimization Workshop Chicago, IL; October 4, 2016 www.antaresgroupinc.com antaresgroupinc.com Presentation Overview * Company background (brief) * Background on lessons learned (to date) * Key challenges related

  8. Maryland Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region East Region South Central Region Midwest Region Mountain Region Pacific Region Period: Monthly Annual Download Series History Download

  9. Sustainable Energy Resources for Consumers (SERC) Success Story: Maryland |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Maryland Sustainable Energy Resources for Consumers (SERC) Success Story: Maryland This document contains information on how the Maryland SERC program leverages diverse and bold energy upgrade measures to maximize savings. serc_md_highlight.pdf (555.44 KB) More Documents & Publications Sustainable Energy Resources for Consumers Fact Sheet July 2011 SERC Grant Webinar Building America Webinar: High Performance Space Conditioning Systems, Part I

  10. University Park, Maryland, Plans to STEP Into New Communities | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy University Park, Maryland, Plans to STEP Into New Communities University Park, Maryland, Plans to STEP Into New Communities Photo of three brick buildings with flowering trees around them. Based on its success in University Park, Maryland, the Small Town Energy Program for University Park (STEP-UP) is expanding into surrounding communities to demonstrate that the program is replicable and scalable beyond University Park. In just a few weeks, the rebranded "STEP" program

  11. Sustainable Energy Resources for Consumers (SERC) Success Story: Maryland

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Maryland The Maryland SERC program leverages diverse and bold energy upgrade measures to maximize savings Maryland boosts energy savings for low-income residences with wind turbines; solar photovoltaics (PV); geothermal heat pumps; mini-split ductless heat pumps; hybrid heat pump water heaters; and high-efficiency heating, ventilating, and air-conditioning (HVAC) systems. In 2007, the Energy Independence and Security Act (EISA) included a provision that in any year for which the U.S. Department

  12. ,"Maryland Natural Gas Gross Withdrawals from Shale Gas (Million...

    Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland ...

  13. Savage-Guilford, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Savage-Guilford, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.144487, -76.8317325 Show Map Loading map... "minzoom":false,"mapp...

  14. ,"Maryland Natural Gas Industrial Price (Dollars per Thousand...

    Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  15. Baltimore County, Maryland ASHRAE 169-2006 Climate Zone | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Baltimore County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County...

  16. Maryland's 2nd congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    US Recovery Act Smart Grid Projects in Maryland's 2nd congressional district Baltimore Gas and Electric Company Smart Grid Project Registered Energy Companies in...

  17. Maryland's 7th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    US Recovery Act Smart Grid Projects in Maryland's 7th congressional district Baltimore Gas and Electric Company Smart Grid Project Registered Energy Companies in...

  18. Baltimore City County, Maryland: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Baltimore City County, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2903848, -76.6121893 Show Map Loading map......

  19. DOE - Office of Legacy Management -- Maryland Disposal Site ...

    Office of Legacy Management (LM)

    under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore - Vicinity , Maryland MD.05-1 Evaluation Year: 1989 MD.05-1 Site Operations:...

  20. Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone...

    OpenEI (Open Energy Information) [EERE & EIA]

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search...

  1. A & N Electric Coop (Maryland) EIA Revenue and Sales - August...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sales and Revenue Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleA%26NElectricCoop(Maryland)EIARevenueandSales-August2008&oldid1732...

  2. Maryland's 6th congressional district: Energy Resources | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    in Maryland's 6th congressional district Atlantic Biomass Conversions Inc BP Solar Freedom Energy Solutions LLC Solarex Retrieved from "http:en.openei.orgw...

  3. Jared Hertzberg > Postdoc - Univeristy of Maryland > Center Alumni...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    materials, nanofabrication of MEMSNEMS mechanical resonators, superconducting circuits, and Josephson-junction devices. He has returned to the University of Maryland where...

  4. SSL Demonstration: Wall Washers at the University of Maryland

    SciTech Connect

    2015-07-31

    GATEWAY program report brief summarizing a demonstration of LED wall washers at the Clarice Smith Performing Arts Center at the University of Maryland.

  5. Clover Hill, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hill, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.4562128, -77.4288745 Show Map Loading map... "minzoom":false,"mappingservice...

  6. Town of University Park, Maryland Summary of Reported Data From...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... 30, 2013. Four EECBGs awards were completed in 2013 (i.e., Toledo, Ohio; Connecticut; Omaha, Nebraska; and University Park, Maryland).The remaining agreements were modified to ...

  7. Maryland DC Virginia Solar Energy Industries Association MDV...

    OpenEI (Open Energy Information) [EERE & EIA]

    DC Virginia Solar Energy Industries Association MDV SEIA Jump to: navigation, search Name: Maryland-DC-Virginia Solar Energy Industries Association (MDV-SEIA) Place: Bethesda,...

  8. Frederick County (Maryland) Department of Permits and Inspections (FCDPI)

    Energy.gov [DOE]

    The Frederick County (Maryland) Department of Permits and Inspections (FCDPI) is currently reviewing two proposed amendments to the 2012 International Energy Conservation Code (IECC), copies of...

  9. Union Bridge, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Union Bridge, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5689895, -77.176927 Show Map Loading map... "minzoom":false,"mapping...

  10. Discovery-Spring Garden, Maryland: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Discovery-Spring Garden, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.4614398, -77.358284 Show Map Loading map......

  11. Green Haven, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Haven, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.1395536, -76.5477413 Show Map Loading map... "minzoom":false,"mappingservic...

  12. Green Valley, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3092707, -77.2972065 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  13. University Park, Maryland, Plans to STEP Into New Communities...

    Energy Saver

    Into New Communities Photo of three brick buildings with flowering trees around them. Based on its success in University Park, Maryland, the Small Town Energy Program for ...

  14. Anne Arundel County, Maryland: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC a groSolar company EnergyWorks North America International Masonry Institute Jay Hall & Associates, Inc. Synergics UEK Corporation Places in Anne Arundel County, Maryland...

  15. Save Energy Now for Maryland Industry Project Fact Sheet

    Energy.gov [DOE]

    This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Maryland.

  16. Severna Park, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Severna Park, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.070388, -76.5452409 Show Map Loading map... "minzoom":false,"mapping...

  17. Microsoft Word - DOE-ID-13-084 Maryland EC B3-6.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 SECTION A. Project Title: Enhancement of the Extraction of Uranium from Seawater - University of Maryland SECTION B. Project Description The University of Maryland, in ...

  18. Microsoft Word - DOE-ID-15-027 Maryland EC B3-6.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    7 SECTION A. Project Title: Enhancement of the Extraction of Uranium from Seawater - University of Maryland SECTION B. Project Description The University of Maryland proposes to ...

  19. Environmental geophysics at Beach Point, Aberdeen Proving Ground, Maryland

    SciTech Connect

    McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Miller, S.F.; Mandell, W.A.; Wrobel, J.

    1994-07-01

    Geophysical studies at Beach Point Peninsula, in the Edgewood area of Aberdeen Proving Ground, Maryland, provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies permit construction of the most reasonable scenario linking dense, nonaqueous-phase liquid contaminants introduced at the surface with their pathway through the surficial aquifer. Subsurface geology and contaminant presence were identified by drilling, outcrop mapping, and groundwater sampling and analyses. Suspected sources of near-surface contaminants were defined by magnetic and conductivity measurements. Negative conductivity anomalies may be associated with unlined trenches. Positive magnetic and conductivity anomalies outline suspected tanks and pipes. The anomalies of greatest concern are those spatially associated with a concrete slab that formerly supported a mobile clothing impregnating plant. Resistivity and conductivity profiling and depth soundings were used to identify an electrical anomaly extending through the surficial aquifer to the basal pleistocene unconformity, which was mapped by using seismic reflection methods. The anomaly may be representative of a contaminant plume connected to surficial sources. Major activities in the area included liquid rocket fuel tests, rocket fuel fire suppression tests, pyrotechnic material and smoke generator tests, and the use of solvents at a mobile clothing impregnating plant.

  20. Bay Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Page Edit History Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development...

  1. University of Maryland Wins Max Tech and Beyond Competition for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ultra-Efficient Clothes Dryer | Department of Energy University of Maryland Wins Max Tech and Beyond Competition for Ultra-Efficient Clothes Dryer University of Maryland Wins Max Tech and Beyond Competition for Ultra-Efficient Clothes Dryer September 10, 2013 - 12:00pm Addthis The Energy Department announced today that the University of Maryland won the second annual Max Tech and Beyond design competition for ultra-low energy use appliances and equipment for the second year in a row. The

  2. SOURCE?

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    gov. WHAT IS 0PEN SOURCE? Open source means that the base software code is publically available so that anyone has the ability to access and contribute to the code OPEN SOURCE BENEFITS * Platform is flexible and adaptable * Developers can create proprietary platform add- ons while still maintaining an inter-operable system * A national brand and standard is created * Local jurisdiction officials can have input on the direction and maintanence of the core code * The code base is platform- neutral

  3. Maryland Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 78,138 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  4. Alternative Fuels Data Center: Maryland County Fleet Uses Wide Variety of

    Alternative Fuels and Advanced Vehicles Data Center

    Alternative Fuels Maryland County Fleet Uses Wide Variety of Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Maryland County Fleet Uses Wide Variety of Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Maryland County Fleet Uses Wide Variety of Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Maryland County Fleet Uses Wide Variety of Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Maryland County

  5. The Potomac Edison Co (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    The Potomac Edison Co Place: Maryland Twitter: @PotomacEdison Outage Map: outages.firstenergycorp.commd References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA...

  6. Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ... Natural Gas Gross Withdrawals from Coalbed Wells Maryland Natural Gas Gross Withdrawals ...

  7. Washington Gas Energy Services (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Washington Gas Energy Services Place: Maryland Phone Number: 1-844-427-5945 Website: www.wges.com Outage Hotline: 1-844-427-5945 References: EIA Form EIA-861 Final Data File for...

  8. Maryland Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Maryland Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  9. Energy Plus Holdings LLC (Maryland) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Plus Holdings LLC Place: Maryland Phone Number: 1-877-580-3915 or 1-877-826-9931 Website: www.energypluscompany.comserv Twitter: @EnergyPlusCo Facebook: https:...

  10. Suez Energy Resources North America (Maryland) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Maryland Phone Number: 888.232.6206 Website: www.gdfsuezna.com Twitter: @GDFSUEZNA Facebook: https:twitter.comGDFSUEZNA Outage Hotline: 888.232.6206 References: EIA Form...

  11. A & N Electric Coop (Maryland) EIA Revenue and Sales - October...

    OpenEI (Open Energy Information) [EERE & EIA]

    A & N Electric Coop (Maryland) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for...

  12. A & N Electric Coop (Maryland) EIA Revenue and Sales - January...

    OpenEI (Open Energy Information) [EERE & EIA]

    A & N Electric Coop (Maryland) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for...

  13. A & N Electric Coop (Maryland) EIA Revenue and Sales - November...

    OpenEI (Open Energy Information) [EERE & EIA]

    A & N Electric Coop (Maryland) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for A & N Electric Coop for...

  14. Geothermal System Saves Dollars, Makes Sense for Maryland Family

    Energy.gov [DOE]

    Derwood, Maryland resident Chris Gearon shares how he used a tax credit from the Recovery Act to help upgrade the heating and cooling system in his home to a geothermal one helping him save money and energy.

  15. Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Gas Wells (Million Cubic Feet) Maryland Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 5 ...

  16. Brooklyn Park, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brooklyn Park is a census-designated place in Anne Arundel County, Maryland.1 References US...

  17. South Kensington, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. South Kensington is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  18. North Kensington, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. North Kensington is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  19. Ashton-Sandy Spring, Maryland: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. Ashton-Sandy Spring is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  20. Montgomery County, Maryland: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Maryland. Its FIPS County Code is 031. It is classified as...

  1. Cabin John, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. Cabin John is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  2. Forest Glen, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. Forest Glen is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  3. North Potomac, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. North Potomac is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  4. Kemp Mill, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    stub. You can help OpenEI by expanding it. Kemp Mill is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  5. Wheaton-Glenmont, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    can help OpenEI by expanding it. Wheaton-Glenmont is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  6. North Bethesda, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. North Bethesda is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  7. White Oak, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    stub. You can help OpenEI by expanding it. White Oak is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  8. Aspen Hill, Maryland: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    You can help OpenEI by expanding it. Aspen Hill is a census-designated place in Montgomery County, Maryland.1 References US Census Bureau 2005 Place to 2006 CBSA...

  9. EECBG Success Story: Learning is Now Much 'Cooler' for Maryland...

    Energy.gov [DOE] (indexed site)

    57 percent more energy efficient than the previous roof. | U.S. Department of Energy Learning is Now Much 'Cooler' for Maryland School Students New 26 kW solar energy system to be...

  10. Microsoft Word - Final Rpt for the State of Maryland FORMATTED

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Maryland OAS-RA-13-07 January 2013 Department of Energy Washington, DC 20585 January 17, 2013 MEMORANDUM FOR THE ASSISTANT SECRETARY FOR ENERGY EFFICIENCY AND RENEWABLE ENERGY FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Weatherization Assistance Program Funded under the American Recovery and Reinvestment Act for the State of Maryland" BACKGROUND The Department of

  11. October 19-20, 2016 - Technical Exchange Meeting - Germantown, Maryland |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy October 19-20, 2016 - Technical Exchange Meeting - Germantown, Maryland October 19-20, 2016 - Technical Exchange Meeting - Germantown, Maryland Annual Technical Exchange Meeting, October 19 and 20, 2016, Department of Energy Offices, Germantown, MD. Theme: Risk-Informed Decisions Using Probabilistic Risk Assessments with an Understanding of the Behavior of Certain Key Risk-Driving Radionuclides. Annual Technical Exchange Meeting, October 19 and 20, 2016, Department of

  12. SPECIAL REPORT Selected Recipients of Maryland Weatherization Assistance Program Funds

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Selected Recipients of Maryland Weatherization Assistance Program Funds DOE/IG-0942 July 2015 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 July 30, 2015 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Special Report: "Selected Recipients of Maryland Weatherization Assistance Program Funds" BACKGROUND The Department of Energy's Weatherization Assistance

  13. Chesapeake Bay Test Site | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Chesapeake Bay Test Site Jump to: navigation, search Name Chesapeake Bay Test Site Facility Chesapeake Bay Test Site Sector Wind energy Facility Type Offshore Wind Facility Status...

  14. EIS-0105: Conversion to Coal, Baltimore Gas & Electric Company, Brandon Shores Generating Station Units 1 and 2, Anne Arundel County, Maryland

    Energy.gov [DOE]

    The U.S. Department of Energy’s Economic Regulatory Administration Office of Fuels Program, Coal and Electricity Division prepared this statement to assess the potential environmental and socioeconomic impacts associated with prohibiting the use of petroleum products as a primary energy source for Units 1 and 2 of the Brandon Shores Generating Station, located in Anne Arundel County, Maryland.

  15. Cross-media approach to saving the Chesapeake Bay

    SciTech Connect

    Appleton, E.L.

    1995-12-01

    A project EPA began in August will investigate the possibility of cross-media emissions trading as a new approach to reducing nitrogen loadings to the Chesapeake Bay. Working with the Environmental Defense Fund (EDF), the Agency hopes to device a NO{sub x} trading framework along the lines of existing sulfur dioxide trading plans to control acid rain. The Chesapeake Air Project will examine the feasibility of using emissions trading between and water sources, including trading credits between power plants and mobile sources, to reduce the atmospheric deposition of nitrogen to the bay. The progress of the Bay Program nutrient reduction goals is up for reevaluation in 1997, and Knopes and EDF economist Brian Morton have high hopes that the trading plan, which would place a cap on the mass of emissions and rate of deposition allowed by all sources, will become the atmospheric deposition portion of the Chesapeake Bay Program`s Nutrient Reduction Strategy. 6 refs.

  16. AM, administrative software ease complex Maryland job

    SciTech Connect

    Troch, S.J.; Agnes, D.C.; Catonzaro, J.S.; Oberlechner, L.E.

    1995-06-01

    A gas distribution looping project, in three segments that traversed a complete range of installation and alignment issues, recently was completed by Baltimore Gas and Electric Co. (BG and E) in northern Maryland. The major projects unit in the company`s gas system engineering and design section was responsible for total oversight of the three projects. This included design, engineering, permitting, right-of-way acquisition, construction, testing and restoration, as well as liaison with other company divisions. A specially selected subcontractor team was organized to provide the latest technology. A project management system, comprised mainly of personal computer applications, was implemented to provide: engineering and design coordination; accurate interface among easement, real estate acquisition data, plats, surveys, permitting and design documents; accurate right-of-way identification; data storage and accessibility of all real estate information for use in design and budgeting; an interface of environmental conditions with topography and design; a computer database that is compatible with existing computer libraries and industry-available software, for producing drawings. Controls for projects costs, budget and schedule were provided by the project management system. This was accomplished by interaction of four data systems: real estate, accounting/budget, geographical information system (GIS), global positioning system (GPS). Construction progress was monitored with a scheduling application that ultimately provided justification for contractor progress payments. The amount of pipe laid in any given time span, as documented by field inspector reports, was entered into the scheduling application. The scheduling software calculated the percent completed and provided information for monitoring progress.

  17. A & N Electric Coop (Maryland) EIA Revenue and Sales - June 2008...

    OpenEI (Open Energy Information) [EERE & EIA]

    A & N Electric Coop for June 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-06 Utility Company A & N Electric Coop (Maryland) Place Maryland Start Date...

  18. MARYLAND HELPS RESIDENTS AND BUSINESSES TO BE SMART | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MARYLAND HELPS RESIDENTS AND BUSINESSES TO BE SMART MARYLAND HELPS RESIDENTS AND BUSINESSES TO BE SMART MARYLAND HELPS RESIDENTS AND BUSINESSES TO BE SMART While the historic downtowns of cities throughout Maryland are known for their charming mix of quaint shops and picturesque homes, many of the older buildings are not energy efficient. Spurred by these historic commercial centers to launch a statewide energy efficiency campaign, the state's Department of Housing and Community Development

  19. Module bay with directed flow

    DOEpatents

    Torczynski, John R.

    2001-02-27

    A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

  20. Maryland Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Maryland Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Maryland Natural Gas Summary

  1. ,"Maryland Natural Gas Underground Storage Volume (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ...dnavnghistn5030md2m.htm" ,"Source:","Energy Information Administration" ,"For Help, ...

  2. Maryland team wins Virginia/Maryland Regional Middle School Science Bowl;

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Maryland Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 5 0 0 5 0 0 3 0 0 16 1992 4 4 3 2 2 2 2 3 3 2 2 2 1993 2 2 2 2 1 2 3 3 3 3 3 2 1994 2 2 2 2 2 2 2 3 3 3 2 2 1995 2 2 2 2 2 2 2 2 2 2 2 2 1996 2 15 21 9 11 11 11 6 10 22 6 11 1997 2 13 18 8 10 10 9 5 9 20 5 9 1998 5 4 3 4 5 7 6 6 5 6 5 6 1999 2 1 2 2 1 2 2 2 2 1 1 1 2000 3 2 3 4 3 3 3 3 3 2 2 2 2001 3 2 3 3 3 3 3 3 3 2 2 2 2002 2 1 1 1 1

  3. Evaluation of CALPUFF nitrogen deposition modeling in the Chesapeake Bay Watershed Area using NADP data

    SciTech Connect

    Garrison, M.; Mayes, P.; Sherwell, J.

    1998-12-31

    The CALMET/CALPUFF modeling system has been used to estimate nitrogen deposition in an area surrounding Baltimore and the northern portion of the Chesapeake Bay. Comprehensive NO{sub x} emissions inventories and meteorological data bases have been developed to conduct the modeling. This paper discusses the results of an evaluation of predicted nitrogen wet deposition rates compared to measured rates at two NADP/NTN sites in Maryland, Wye and White Rock. Underprediction of wet deposition rates is investigated through the use of sensitivity and diagnostic evaluations of model performance. A suggested change to the calculation of NO{sub x} transformation rates involving an alternative specification of minimum NO{sub x} concentrations was made to CALPUFF and the performance evaluation was re-done. Results of the new evaluation show significantly improved model performance, and therefore the modification is tentatively proposed for use in further applications of CALPUFF to the assessment of nitrogen deposition in the Chesapeake Bay watershed.

  4. EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Delaware | Department of Energy 5: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware EIS-0465: Mid-Atlantic Power Pathway Transmission Line Project in Maryland and Delaware March 4, 2011 EIS-0465: Notice of Intent to Prepare an Environmental Impact Statement Construction of Phase II of the Mid-Atlantic Power Pathway Transmission Line Project, in Maryland and Delaware February 4, 2011 EIS-0465: Announcement of Public Scoping Meetings Construction of Phase II of

  5. The University of Maryland | OSTI, US Dept of Energy Office of Scientific

    Office of Scientific and Technical Information (OSTI)

    and Technical Information The University of Maryland Spotlights Home DOE Applauds The University of Maryland Science and Technical Programs 2011_SBLee_PhysChemChemPhys_MnO2-TiN.gif Nanostructures for Electrical Energy Storage (NEES) The University of Maryland's NEES is a multi-institutional research center, one of 46 Energy Frontier Research Centers (EFRC) established by the U.S. Department of Energy. The group's focus is developing highly ordered nanostructures that offer a unique testbed

  6. Maryland Regional Middle School Science Bowl | U.S. DOE Office...

    Office of Science (SC)

    to participate. Competition Location Prince George's Community College 301 Largo Road Largo, Maryland 20774 Regional Contact Information Regional Coordinator: Gloria Shivers ...

  7. University of Maryland Solar Decathlon Team Celebrates with a "Shed Raising"

    Energy.gov [DOE]

    The University of Maryland 2011 Solar Decathlon Team is using one element -- water -- as a major component of their home. Here's how.

  8. Microsoft Word - GM Maryland Revised Sup-Pre-final-EA 9-6-2011...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3S FINAL SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland September 2011 ...

  9. University of Maryland's "WaterShed" Wins 2011 Solar Decathlon | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Maryland's "WaterShed" Wins 2011 Solar Decathlon University of Maryland's "WaterShed" Wins 2011 Solar Decathlon October 3, 2011 - 2:02pm Addthis The University of Maryland's “WaterShed” won the 2011 Solar Decathlon. The school from College Park, Maryland competed against 18 other collegiate teams to build an aesthetically pleasing, architecturally innovative and well-engineered energy efficient living space that generates its energy from solar power. |

  10. University of Maryland Wins Architecture Prize, Pulls Into Lead in 2011

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Decathlon | Department of Energy Maryland Wins Architecture Prize, Pulls Into Lead in 2011 Solar Decathlon University of Maryland Wins Architecture Prize, Pulls Into Lead in 2011 Solar Decathlon September 28, 2011 - 6:04pm Addthis The University of Maryland's "WaterShed" house won first prize in the 2011 Solar Decathlon architecture contest. | Photo courtesy of the <a href="http://2011.solarteam.org">University of Maryland team<a/>. The University of

  11. Bay Biodiesel LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biodiesel LLC Jump to: navigation, search Name: Bay Biodiesel LLC Place: Martinez, California Zip: 94553 Product: Biodiesel producers in Martinez, California. References: Bay...

  12. Bay Solar Power Design | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Power Design Jump to: navigation, search Name: Bay Solar Power Design Place: California Product: US-based PV system installer. References: Bay Solar Power Design1 This...

  13. Field's Point Wastewater Treatment Facility (Narragansett Bay...

    OpenEI (Open Energy Information) [EERE & EIA]

    Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

  14. Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Input Supplemental Fuels (Million Cubic Feet) Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 484 498 984 352 332 373 155 136 743 899 1990's 24 72 126 418 987 609 882 178 80 498 2000's 319 186 48 160 124 382 41 245 181 170 2010's 115 89 116 107 809 818 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. Maryland Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Withdrawals (Million Cubic Feet) Maryland Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,851 623 581 394 500 867 616 480 771 760 1990's 377 531 715 610 529 540 691 252 29 221 2000's 1,023 3,687 3,912 2,648 452 499 3,418 881 370 371 2010's 378 352 359 466 563 463 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  16. Maryland Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Maryland Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 2 1 1 2 1 1 1990's 1 0 0 1 1 1 3 3 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Lease Fuel

  17. Maryland Quantity of Production Associated with Reported Wellhead Value

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Maryland Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 60 39 20 44 29 34 1990's 22 29 33 28 26 22 0 118 63 18 2000's 34 32 22 48 34 46 NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Bay Ridge Gardens - Mixed-Humid Affordable Multifamily Housing Deep Energy Retrofit

    SciTech Connect

    Lyons, J.; Moore, M.; Thompson, M.

    2013-08-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a 'base scope' retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a 'DER scope' which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

  19. Small Wind Electric Systems: A Maryland Consumer's Guide (Revised)

    SciTech Connect

    Not Available

    2009-08-01

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  20. Maryland State information handbook: formerly utilized sites remedial action program

    SciTech Connect

    1980-12-31

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Handbook Series Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Maryland. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations.

  1. Maryland Natural Gas Imports Price All Countries (Dollars per Thousand

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Price All Countries (Dollars per Thousand Cubic Feet) Maryland Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -- 2000's -- -- -- 4.69 6.21 8.57 7.51 7.25 9.09 4.05 2010's 5.37 5.30 13.82 15.29 8.34 4.91 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  2. Maryland Natural Gas Imports from All Countries (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    from All Countries (Million Cubic Feet) Maryland Natural Gas Imports from All Countries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 0 66,078 209,294 221,689 116,613 148,231 25,894 72,339 2010's 43,431 13,981 2,790 5,366 11,585 12,091 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring

  3. Maryland Natural Gas LNG Storage Additions (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Additions (Million Cubic Feet) Maryland Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 443 714 676 235 650 786 769 482 764 697 1990's 769 657 804 696 939 1,831 4,881 1,439 813 715 2000's 684 2,926 3,814 4,437 2,157 3,203 296 631 1,002 4,859 2010's 366 394 386 461 604 467 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  4. Maryland Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals (Million Cubic Feet) Maryland Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -2,408 91 95 -159 150 -81 153 2 -7 -62 1990's 392 126 89 85 410 1,291 4,190 1,186 785 494 2000's -339 -761 -98 -1,789 -1,705 -2,703 3,122 -250 632 4,488 2010's -13 42 27 -5 41 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  5. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 78,138 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  6. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 1,169 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  7. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 1,113,342 - = No Data Reported;

  8. Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,124 2,968 3,207 2000's 3,239 2,765 2,511 2,743 2,483 2,173 2,346 2,339 2,454 2,521 2010's 6,332 6,065 7,397 4,125 6,345 7,190 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring

  9. Maryland Natural Gas % of Total Residential Deliveries (Percent)

    Energy Information Administration (EIA) (indexed site)

    % of Total Residential Deliveries (Percent) Maryland Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.55 1.58 1.58 1.63 1.56 1.51 1.58 2000's 1.68 1.48 1.64 1.79 1.77 1.78 1.63 1.77 1.66 1.73 2010's 1.75 1.65 1.70 1.70 1.78 1.80 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  10. Small Wind Electric Systems: A Maryland Consumer's Guide

    SciTech Connect

    Not Available

    2007-01-01

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  11. Maryland Natural Gas Marketed Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 0

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 0

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 0 0 0 0 0

    Cubic Feet)

    Price All Countries (Dollars per Thousand Cubic Feet) Maryland Natural Gas Imports Price All Countries (Dollars per Thousand

  12. Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012)

    Energy.gov [DOE]

    On behalf of the Maryland-National Capital Building Industry Association, I am providing the following comments and information in response to DOE’s request. The Association represents residential...

  13. University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report

    SciTech Connect

    Dorland, William

    2014-11-18

    The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA were the host universities. This final technical report describes the physics results from the UMD CMPD.

  14. EECBG Success Story: Learning is Now Much 'Cooler' for Maryland School Students

    Energy.gov [DOE]

    The Harford County Board of Education in Maryland received $500,000, as part of the Energy Efficiency and Conservation Block Grant (EECBG), to install a new ENERGY STAR-rated roof.Learn more.

  15. The University of Maryland | OSTI, US Dept of Energy Office of...

    Office of Scientific and Technical Information (OSTI)

    DOE Applauds The University of Maryland Science and Technical Programs 2011SBLeePhysChemChemPhysMnO2-TiN.gif Nanostructures for Electrical Energy Storage (NEES) The University ...

  16. Tuscola Bay Wind | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name Tuscola Bay Wind Facility Tuscola Bay Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy...

  17. BayWa Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BayWa Group Jump to: navigation, search Name: BayWa Group Place: Munich, Germany Zip: 81925 Sector: Services, Solar Product: Germany-based company with international operations...

  18. Felton Bay Logistics, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Logistics, LLC1 This article is a stub. You can help OpenEI by expanding it. Felton Bay Logistics, LLC is a company based in San Diego, California. Felton Bay offers training,...

  19. Maryland Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC)

    (SC) Maryland Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Maryland Regional High School

  20. Maryland Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC)

    (SC) Maryland Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Maryland Regional Middle

  1. Better Buildings State of Maryland Summary of Reported Data From July 1, 2010 - September 30, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    State of Maryland Summary of Reported Data From July 1, 2010 - September 30, 2013 Better Buildings Neighborhood Program Report Produced By: U.S. Department of Energy June 2014 STATE OF MARYLAND SUMMARY OF REPORTED DATA Revised June 2014 ii ACKNOWLEDGMENTS This document presents a summary of data reported by an organization awarded federal financial assistance (e.g., grants, cooperative agreements) through the U.S. Department of Energy's (DOE's) Better Buildings Neighborhood Program (BBNP) from

  2. bayesPicture.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information bayesPicture

  3. Energy @ Bay Area Maker Faire

    Energy.gov [DOE]

    Representatives from the Department of Energy’s National Labs, the Office of Energy Efficiency and Renewable Energy (EERE), the Advanced Research Projects Agency (ARPA-E) and the Office of Technology Transitions (OTT) will be on hand at the first-ever Make | ENERGY Pavilion at the Bay Area Maker Faire May 20-22, 2016, at the San Mateo County Event Center.

  4. Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per

    Energy Information Administration (EIA) (indexed site)

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.19 0.19 1970's 0.19 0.22 0.24 0.25 0.27 0.38 0.50 0.69 0.84 1.25 1980's 2.41 2.74 3.08 3.28 3.29 3.17 3.19 2.37 2.27 2.72 1990's 2.15 1.94 1.94 2.08 2.01 1.81 2.48 2.98 2.41 2.30 2000's 3.30 4.75 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  5. Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Wellhead Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.26 0.25 1970's 0.25 0.24 0.21 0.23 0.24 0.27 0.32 0.39 0.61 1.04 1980's 0.46 0.48 0.78 0.55 0.55 0.59 0.65 0.55 0.93 0.85 1990's 1.14 1.55 1.91 2.44 1.37 1.42 2.23 2.60 2.73 2000's 3.75 4.15 5.98 4.50 6.25 7.43 NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not

  6. Maryland Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Maryland Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 4,303 1,142 2,247 2,979 5,536 6,593 8,693 11,353 13,788 15,025 12,900 11,909 1991 8,772 5,481 3,859 4,780 6,264 7,917 9,321 11,555 13,665 14,339 14,626 14,529 1992 9,672 4,736 2,075 1,178 4,484 7,172 8,993 11,380 13,446 14,695 15,205 13,098 1993 9,826 5,478 3,563 3,068 5,261 6,437 7,528 9,247 11,746 14,426 14,826

  7. Nexus EnergyHomes, Frederick, Maryland (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    With this new home - which achieved the highest rating possible under the National Green Building Standard - Nexus EnergyHomes demonstrated that green and affordable can go hand in hand. The mixed-humid climate builder, along with the U.S. Department of Energy Building America team Partnership for Home Innovation, embraced the challenge to create a new duplex home in downtown Frederick, Maryland, that successfully combines affordability with state-of-the-art efficiency and indoor environmental quality. To limit costs, the builder designed a simple rectangular shape and kept interesting architectural features such as porches outside the building's structure. This strategy avoided the common pitfall of creating potential air leakage where architectural features are connected to the structure before the building is sealed against air infiltration. To speed construction and limit costs, the company chose factory-assembled components such as structural insulated panel walls and floor and roof trusses. Factory-built elements were key in achieving continuous insulation around the entire structure. Open-cell spray foam at the rim joist and attic roofline completed the insulation package, and kept the heating, ventilating, and air-conditioning system in conditioned space.

  8. Maryland Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Maryland Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 NA NA NA NA NA NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not

  9. Maryland Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Base Gas) (Million Cubic Feet) Maryland Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1991 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1992 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1993 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677

  10. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit

    SciTech Connect

    Lyons, James; Moore, Mike; Thompson, Margo

    2013-08-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost effectiveness of efficiency upgrade measures for a tenant-in-place deep energy retrofit (DER) at the Bay Ridge multifamily development in Annapolis, Maryland. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

  11. Bay Area | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Bay Area San Francisco Bay Area Aerial Radiation Assessment Survey (SAN JOSE and SAN FRANCISCO, California) - A helicopter may be seen flying at low altitudes over portions of the San Francisco Bay Area from January 29 through February 6, 2016. The purpose of the flyovers is to measure naturally occurring background radiation. Officials from the National Nuclear... NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas A U.S. Department of

  12. Massachusetts Bay Transportation Authority | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Authority Name: Massachusetts Bay Transportation Authority Address: 10 Park Plaza, Suite 3910 Boston, MA 02116 Zip: 02116 Website: www.mbta.com Coordinates:...

  13. Bay Front Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBayFrontBiomassFacility&oldid397174" Feedback Contact needs updating Image needs updating...

  14. Glacier Bay Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Glacier Bay Inc Place: Oakland, California Zip: 94601 Product: US-based, advanced thermal control, sound reduction, and DC power management technologies...

  15. Hooper Bay Wind Farm | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Alaska Village Electric Coop (AVEC) Developer Alaska Village Electric Coop (AVEC) Energy Purchaser Alaska Village Electric Coop (AVEC) Location Hooper Bay AK Coordinates...

  16. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area

    SciTech Connect

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-06-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

  17. Learning is Now Much 'Cooler' for Maryland School Students | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Learning is Now Much 'Cooler' for Maryland School Students Learning is Now Much 'Cooler' for Maryland School Students September 21, 2010 - 4:30pm Addthis Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more energy efficient than the previous roof. | U.S. Department of Energy Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more

  18. Students from Maryland and California Win DOE's 26th National Science

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bowl® | U.S. DOE Office of Science (SC) Students from Maryland and California Win DOE's 26th National Science Bowl® News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 05.03.16 Students from Maryland and

  19. EA-389 Greay Bay Energy VI, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9 Greay Bay Energy VI, LLC EA-389 Greay Bay Energy VI, LLC Order authorizing Great Bay Energy to export electric energy to Canada. EA-389 Great Bay Energy (CN).pdf (1.08 MB) More Documents & Publications Application to Export Electric Energy OE Docket No. EA-389 Great Bay Energy VI, LLC EA-389-A Great Bay Energy VI, LLC EA-342-A Royal Bank of Canada

  20. Tampa Bay Area Ethanol Consortium | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bay Area Ethanol Consortium Jump to: navigation, search Name: Tampa Bay Area Ethanol Consortium Place: Tampa, Florida Sector: Biomass Product: Consortium researching ethanol from...

  1. Bay Resource Management Center Biomass Facility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Resource Management Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass...

  2. Doe Bay Village Resort Pool & Spa Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility...

  3. Pedro Bay Village Council (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pedro Bay Village Council (Utility Company) Jump to: navigation, search Name: Pedro Bay Village Council Place: Alaska Phone Number: (907) 850-2225 Website: www.swamc.orghtml...

  4. Cold Bay Hot Spring Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cold Bay Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cold Bay Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  5. Near Fish Bay Geothermal Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Near Fish Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Near Fish Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  6. San Francisco Bay Conservation and Development Commission | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Conservation and Development Commission Jump to: navigation, search Logo: San Francisco Bay Conservation and Development Commission Name: San Francisco Bay Conservation and...

  7. San Luis Bay Estates Pool & Spa Low Temperature Geothermal Facility...

    OpenEI (Open Energy Information) [EERE & EIA]

    Estates Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name San Luis Bay Estates Pool & Spa Low Temperature Geothermal Facility Facility San Luis Bay...

  8. University of Maryland Nuclear Chemistry annual progress report, [January 1991--January 1992

    SciTech Connect

    Mignerey, A.C.

    1992-01-01

    This report discusses: mass and charge distributions in Cl-induced heavy-ion reactions; comparison of mass and charge distributions to model predictions in deep inelastic reactions; the decay of hot nuclei formed in La-induced reactions at intermediate energies; and the Maryland very forward array.

  9. University of Maryland Nuclear Chemistry annual progress report, (January 1991--January 1992)

    SciTech Connect

    Mignerey, A.C.

    1992-01-01

    This report discusses: mass and charge distributions in Cl-induced heavy-ion reactions; comparison of mass and charge distributions to model predictions in deep inelastic reactions; the decay of hot nuclei formed in La-induced reactions at intermediate energies; and the Maryland very forward array.

  10. The detector system of the Daya Bay reactor neutrino experiment

    DOE PAGES [OSTI]

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 22θ13 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrinomore » mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.« less

  11. The detector system of the Daya Bay reactor neutrino experiment

    SciTech Connect

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 213 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  12. Microbial diversity in restored wetlands of San Francisco Bay

    SciTech Connect

    Theroux, Susanna; Hartman, Wyatt; He, Shaomei; Tringe, Susannah

    2013-12-09

    Wetland ecosystems may serve as either a source or a sink for atmospheric carbon and greenhouse gases. This delicate carbon balance is influenced by the activity of belowground microbial communities that return carbon dioxide and methane to the atmosphere. Wetland restoration efforts in the San Francisco Bay-Delta region may help to reverse land subsidence and possibly increase carbon storage in soils. However, the effects of wetland restoration on microbial communities, which mediate soil metabolic activity and carbon cycling, are poorly studied. In an effort to better understand the underlying factors which shape the balance of carbon flux in wetland soils, we targeted the microbial communities in a suite of restored and historic wetlands in the San Francisco Bay-Delta region. Using DNA and RNA sequencing, coupled with greenhouse gas monitoring, we profiled the diversity and metabolic potential of the wetland soil microbial communities along biogeochemical and wetland age gradients. Our results show relationships among geochemical gradients, availability of electron acceptors, and microbial community composition. Our study provides the first genomic glimpse into microbial populations in natural and restored wetlands of the San Francisco Bay-Delta region and provides a valuable benchmark for future studies.

  13. New and Underutilized Technology: High Bay LED Lighting

    Energy.gov [DOE]

    The following information outlines key deployment considerations for high bay LED lighting within the Federal sector.

  14. Keweenaw Bay Indian Community- 2010 Project

    Energy.gov [DOE]

    The Keweenaw Bay Indian Community (KBIC) is committed to preserving our natural environment and reducing the amount of fossil fuels consumed while developing "green" business manufacturing jobs on tribal lands.

  15. Keweenaw Bay Indian Community- 2010 Wind Project

    Energy.gov [DOE]

    The Keweenaw Bay Indian Community (KBIC) is committed to preserving our natural environment and reducing the amount of fossil fuels consumed while developing "green" business manufacturing jobs on tribal lands.

  16. SCHEDULE: Bay Area Maker Faire 2016

    Energy.gov [DOE]

    Find out where and when to meet some of our top innovators and explore the technologies on display from the Department of Energy at the 11th annual Bay Area Maker Faire.

  17. Keeping comets and asteroids at bay

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Keeping Comets And Asteroids At Bay Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit Keeping comets and asteroids at bay Every two years, experts from around the globe convene at the Planetary Defense Conference. August 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Every two years, experts from around the globe

  18. Gradient Analysis and Classification of Carolina Bay Vegetation: A Framework for Bay Wetlands Conservation and Restoration

    SciTech Connect

    Diane De Steven,Ph.D.; Maureen Tone,PhD.

    1997-10-01

    This report address four project objectives: (1) Gradient model of Carolina bay vegetation on the SRS--The authors use ordination analyses to identify environmental and landscape factors that are correlated with vegetation composition. Significant factors can provide a framework for site-based conservation of existing diversity, and they may also be useful site predictors for potential vegetation in bay restorations. (2) Regional analysis of Carolina bay vegetation diversity--They expand the ordination analyses to assess the degree to which SRS bays encompass the range of vegetation diversity found in the regional landscape of South Carolina's western Upper Coastal Plain. Such comparisons can indicate floristic status relative to regional potentials and identify missing species or community elements that might be re-introduced or restored. (3) Classification of vegetation communities in Upper Coastal Plain bays--They use cluster analysis to identify plant community-types at the regional scale, and explore how this classification may be functional with respect to significant environmental and landscape factors. An environmentally-based classification at the whole-bay level can provide a system of templates for managing bays as individual units and for restoring bays to desired plant communities. (4) Qualitative model for bay vegetation dynamics--They analyze present-day vegetation in relation to historic land uses and disturbances. The distinctive history of SRS bays provides the possibility of assessing pathways of post-disturbance succession. They attempt to develop a coarse-scale model of vegetation shifts in response to changing site factors; such qualitative models can provide a basis for suggesting management interventions that may be needed to maintain desired vegetation in protected or restored bays.

  19. Maryland Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    115 89 116 107 809 818 1967-2015 Synthetic 0 0 0 1980-2015 Propane-Air 115 89 116 107 809 818 1980-2015 Refinery Gas 1980-2005 Other 0 0 0 1980

    43,431 13,981 2,790 5,366 11,585 12,091 1999-2015 Import Price 5.37 5.30 13.82 15.29 8.34 4.91 199

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Net Withdrawals 2,292 -1,721 2,383 -811 556

  20. Research | NEES - EFRC | University of Maryland Energy Frontier Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Center Research NEES Mission NEES EFRC Research Overview NEES EFRC Research Overview To reveal scientific insights and design principles that enable a next-generation electrical energy storage technology based on dense mesoscale architectures of multifunctional nanostructures. The Challenge As demand for electrical energy storage (EES) reaches a critical point with increasing applications in transportation, grid storage and usage of renewable sources, energy research community seeks to

  1. SODAR DATA FROM OYSTER BAY AT WINYAH BAY NATIONAL ESTUARINE RESEARCH RESERVE

    SciTech Connect

    Nichols, R.; Kohn, J.; Rigas, N.; Boessneck, E.; Kress, E.; Gayes, P.

    2013-04-29

    The SecondWind Triton® is a SODAR (SOnic Detection And Ranging) sonic wind profiler (Triton® sodar) system capable of profiling the wind characteristics up to 200m above the instrument. SODAR systems transmit acoustic chirps into the atmosphere and measure the backscattered signal returned to the device. The primary source of acoustic scattering is variations in air temperature, which cause changes in the refractive index of sound. By measuring the Doppler-shifted frequency of these returned signals, the Triton® can calculate the wind’s speed and direction for the volume of air above the instrument, measured at ten fixed heights, known as station heights. The Triton® is specifically designed for the purpose of wind energy resource assessment as it can remotely capture wind data at heights above ground where wind turbine rotors operate. The measurements made include horizontal wind speed and direction, vertical wind speed, and turbulence. Other integrated sensors provide time and location via GPS, barometric pressure, humidity, and the tilt of the instrument. The study area is located east of Georgetown, South Carolina in North Inlet - Winyah Bay National Estuarine Research Reserve. The monitoring period for data in this report begins 5/14/2009 9:30:00 AM EST and ends 8/2/2010 11:40:00 AM EST.

  2. Bay County, Michigan: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Registered Energy Companies in Bay County, Michigan Dow Chemical Co Dow Kokam Places in Bay County,...

  3. Summary of Test Results for Daya Bay Rock Samples (Technical...

    Office of Scientific and Technical Information (OSTI)

    Summary of Test Results for Daya Bay Rock Samples Citation Details In-Document Search Title: Summary of Test Results for Daya Bay Rock Samples You are accessing a document from ...

  4. Summary of Test Results for Daya Bay Rock Samples (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Summary of Test Results for Daya Bay Rock Samples Citation Details In-Document Search Title: Summary of Test Results for Daya Bay Rock Samples A series of ...

  5. Galveston Bay Biodiesel LP GBB | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Galveston Bay Biodiesel LP GBB Jump to: navigation, search Name: Galveston Bay Biodiesel LP (GBB) Place: Houston, Texas Product: Developer of a 75.8m litre per year biodiesel...

  6. Microbial diversity and carbon cycling in San Francisco Bay wetlands

    SciTech Connect

    Theroux, Susanna; Hartman, Wyatt; He, Shaomei; Tringe, Susannah

    2014-03-21

    Wetland restoration efforts in San Francisco Bay aim to rebuild habitat for endangered species and provide an effective carbon storage solution, reversing land subsidence caused by a century of industrial and agricultural development. However, the benefits of carbon sequestration may be negated by increased methane production in newly constructed wetlands, making these wetlands net greenhouse gas (GHG) sources to the atmosphere. We investigated the effects of wetland restoration on below-ground microbial communities responsible for GHG cycling in a suite of historic and restored wetlands in SF Bay. Using DNA and RNA sequencing, coupled with real-time GHG monitoring, we profiled the diversity and metabolic potential of wetland soil microbial communities. The wetland soils harbor diverse communities of bacteria and archaea whose membership varies with sampling location, proximity to plant roots and sampling depth. Our results also highlight the dramatic differences in GHG production between historic and restored wetlands and allow us to link microbial community composition and GHG cycling with key environmental variables including salinity, soil carbon and plant species.

  7. Time series monitoring of water quality and microalgal diversity in a tropical bay under intense anthropogenic interference (SW coast of the Bay of Bengal, India)

    SciTech Connect

    Shaik, Aziz ur Rahman; Biswas, Haimanti; Reddy, N.P.C.; Srinivasa Rao, V.; Bharathi, M.D.; Subbaiah, Ch.V.

    2015-11-15

    In recent decades, material fluxes to coastal waters from various land based anthropogenic activities have significantly been enhanced around the globe which can considerably impact the coastal water quality and ecosystem health. Hence, there is a critical need to understand the links between anthropogenic activities in watersheds and its health. Kakinada Bay is situated at the SW part of the Bay of Bengal, near to the second largest mangrove cover in India with several fertilizer industries along its bank and could be highly vulnerable to different types of pollutants. However, virtually, no data is available so far reporting its physicochemical status and microalgal diversity at this bay. In order to fill this gap, we conducted three time series observations at a fixed station during January, December and June 2012, at this bay measuring more than 15 physical, chemical and biological parameters in every 3 h over a period of 36 h in both surface (0 m) and subsurface (4.5 m) waters. Our results clearly depict a strong seasonality between three sampling months; however, any abnormal values of nutrients, biological oxygen demand or dissolved oxygen level was not observed. A Skeletonema costatum bloom was observed in December which was probably influenced by low saline, high turbid and high Si input through the river discharge. Otherwise, smaller diatoms like Thalassiosira decipiens, Thalassiothrix frauenfeldii, and Thalassionema nitzschioides dominated the bay. It is likely that the material loading can be high at the point sources due to intense anthropogenic activities, however, gets diluted with biological, chemical and physical processes in the offshore waters. - Highlights: • No signature of enormous nutrient loading was observed over the diel cycle • Dissolved oxygen and BOD concentrations did not show any exceptional trend • Diatoms dominated more than 90% of the total phytoplankton communities • A Skeletonema Costatum (a centric diatom) bloom was

  8. Bristol Bay Native Corporation- 2003 Project

    Energy.gov [DOE]

    Bristol Bay Native Corporation (BBNC), through its subsidiary, Bristol Environmental and Engineering Services Corporation, will assess renewable energy opportunities within the BBNC region of southwest Alaska. The goals of this initiative are to encourage tribal self-sufficiency, create jobs, improve environmental quality, and help make our nation more secure through the development of clean, affordable, and reliable renewable energy technologies. The study will identify technologies or systems that could potentially reduce the cost or improve the sustainability of electricity within the Bristol Bay region.

  9. Maryland Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    and Plant Fuel Consumption (Million Cubic Feet) Maryland Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 257 310 381 1970's 319 451 67 474 392 277 415 342 889 2,488 1980's 0 0 1 1 2 1 1 2 1 1 1990's 1 0 0 1 1 1 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  10. Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8 1990's 7 7 9 7 7 7 8 8 8 8 2000's 7 7 5 7 7 7 7 7 7 7 2010's 7 7 7 7 5 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  11. ,"Maryland Natural Gas Gross Withdrawals and Production"

    Energy Information Administration (EIA) (indexed site)

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Gross Withdrawals and Production",10,"Annual",2015,"06/30/1967" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  12. ,"Maryland Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Price All Countries (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016"

  13. ,"Maryland Natural Gas Imports from All Countries (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    from All Countries (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Imports from All Countries (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  14. ,"Maryland Natural Gas Input Supplemental Fuels (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1400_smd_2a.xls"

  15. ,"Maryland Natural Gas LNG Storage Net Withdrawals (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1350_smd_2a.xls"

  16. ,"Maryland Natural Gas Lease Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1840_smd_2a.xls"

  17. ,"Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  18. ,"Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  19. Bay Area national labs team to tackle long-standing automotive hydrogen

    National Nuclear Security Administration (NNSA)

    storage challenge | National Nuclear Security Administration | (NNSA) Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Thursday, October 15, 2015 - 1:34pm Sandia National Laboratories chemist Mark Allendorf Sandia National Laboratories chemist Mark Allendorf, shown here at Berkeley Lab's Advanced Light Source facility, is leading the Hydrogen Materials - Advanced Research Consortium (HyMARC) to advance solid-state materials for onboard hydrogen

  20. Carolina bays of the Savannah River Plant

    SciTech Connect

    Schalles, J.F. ); Sharitz, R.R.; Gibbons, J.W.; Leversee, G.J.; Knox, J.N. )

    1989-01-01

    Much of the research to date on the Carolina bays of the Savannah River Plant and elsewhere has focused on certain species or on environmental features. Different levels of detail exist for different groups of organisms and reflect the diverse interests of previous investigators. This report summarizes aspects of research to date and presents data from numerous studies. 70 refs., 14 figs., 12 tabs.

  1. Responses of upland herpetofauna to the restoration of Carolina Bays and thinning of forested Bay Margins.

    SciTech Connect

    Ledvina, Joseph A.

    2008-05-01

    Research on the effects of wetland restoration on reptiles and amphibians is becoming more common, but almost all of these studies have observed the colonization of recently disturbed habitats that were completely dry at the time of restoration. In a similar manner, investigations herpetofaunal responses to forest management have focused on clearcuts, and less intensive stand manipulations are not as well studied. To evaluate community and population responses of reptiles and amphibians to hydrology restoration and canopy removal in the interior of previously degraded Carolina bays, I monitored herpetofauna in the uplands adjacent to six historically degraded Carolina bays at the Savannah River Site (SRS) in South Carolina for four years after restoration. To evaluate the effects of forest thinning on upland herpetofauna, forests were thinned in the margins of three of these bays. I used repeated measures ANOVA to compare species richness and diversity and the abundance of selected species and guilds between these bays and with those at three reference bays that were not historically drained and three control bays that remained degraded. I also used Non-metric Multidimensional Scaling (NMDS) to look for community-level patterns based treatments.

  2. Reconnaissance survey of eight bays in Puget Sound

    SciTech Connect

    Strand, J.A.; Crecelius, E.A.; Pearson, W.H.; Fellingham, G.W.; Elston, R.E.

    1988-03-01

    From 1983 to 1985, Battelle/Marine Research Laboratory conducted reconnaissance-level field and laboratory studies to better characterize toxic contamination problems occurring in selected urban-industrialized bays (Bellingham Bay, Port Gardner - Everett Harbor, Fourmile Rock - Elliot Bay dump site vicinity, Sinclair Inlet) of Puget Sound. It was envisioned that this goal was best achieved by simultaneously determining levels of contamination in selected baseline or 'reference bays' (Samish Bay, Case Inlet, Dabob Bay, Sequim Bay). Two major tasks composed this effort. The first was conducted in 1983 and consisted of preliminary or screening surveys to collect and analyze sediment samples from 101 stations distributed in the four urban-industrialized bays (Figure 1), and at 80 stations distributed in the four baseline bays (Figure 2). The second task was undertaken in 1984 and involved detailed surveys and analyses of the same bays, but at a limited number of stations (32 in urban embayments, 16 in baseline bays). The stations to be resampled in 1984 were the ''cleanest'' of the clean and the ''dirtiest'' of the dirty as determined by the 1983 sediment chemical analyses, and within restrictions imposed by sediment type.

  3. Legal obstacles and incentives to the development of small scale hydroelectric power in Maryland

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in Maryland are described. The Federal government also exercises extensive regulatory authority in the area. The dual regulatory system is examined with the aim of creating a more orderly understanding of the vagaries of the system, focusing on the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC. In Maryland, by common law rule, title to all navigable waters and to the soil below the high-water mark of those waters is vested in the state as successor to the Lord Proprietary who had received it by grant from the Crown. Rights to non-navigable water, public trust doctrine, and eminent domain are also discussed. Direct and indirect regulations, continuing obligations, loan programs, and regional organizations are described in additional sections.

  4. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    SciTech Connect

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army's Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  5. Ecological survey of M-Field, Edgewood Area Aberdeen Proving Ground, Maryland

    SciTech Connect

    Downs, J.L.; Eberhardt, L.E.; Fitzner, R.E.; Rogers, L.E.

    1991-12-01

    An ecological survey was conducted on M-Field, at the Edgewood Area, Aberdeen Proving Ground, Maryland. M-Field is used routinely to test army smokes and obscurants, including brass flakes, carbon fibers, and fog oils. The field has been used for testing purposes for the past 40 years, but little documented history is available. Under current environmental regulations, the test field must be assessed periodically to document the presence or potential use of the area by threatened and endangered species. The M-Field area is approximately 370 acres and is part of the US Army`s Edgewood Area at Aberdeen Proving Ground in Harford County, Maryland. The grass-covered field is primarily lowlands with elevations from about 1.0 to 8 m above sea level, and several buildings and structures are present on the field. The ecological assessment of M-Field was conducted in three stages, beginning with a preliminary site visit in May to assess sampling requirements. Two field site visits were made June 3--7, and August 12--15, 1991, to identify the biota existing on the site. Data were gathered on vegetation, small mammals, invertebrates, birds, large mammals, amphibians, and reptiles.

  6. Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint

    SciTech Connect

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.

    2012-05-01

    This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.

  7. Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community

    SciTech Connect

    Kushman, Chris

    2014-02-03

    In 2011 the Inter-Tribal Council of Michigan, Inc. was awarded an Energy Efficiency Development and Deployment in Indian Country grant from the U.S. Department of Energy’s Tribal Energy Program. This grant aimed to study select Bay Mills Indian Community community/government buildings to determine what is required to reduce each building’s energy consumption by 30%. The Bay Mills Indian Community (BMIC) buildings with the largest expected energy use were selected for this study and included the Bay Mills Ellen Marshall Health Center building, Bay Mills Indian Community Administration Building, Bay Mills Community College main campus, Bay Mills Charter School and the Waishkey Community Center buildings. These five sites are the largest energy consuming Community buildings and comprised the study area of this project titled “Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community”. The end objective of this study, plan and the Tribe is to reduce the energy consumption at the Community’s most energy intensive buildings that will, in turn, reduce emissions at the source of energy production, reduce energy expenditures, create long lasting energy conscious practices and positively affect the quality of the natural environment. This project’s feasibility study and resulting plan is intended to act as a guide to the Community’s first step towards planned energy management within its buildings/facilities. It aims to reduce energy consumption by 30% or greater within the subject facilities with an emphasis on energy conservation and efficiency. The energy audits and related power consumption analyses conducted for this study revealed numerous significant energy conservation and efficiency opportunities for all of the subject sites/buildings. In addition, many of the energy conservation measures require no cost and serve to help balance other measures requiring capital investment. Reoccurring deficiencies relating to heating

  8. Horizontal drilling techniques at Prudhoe Bay, Alaska

    SciTech Connect

    Wilkirson, J.P.; Smith, J.H.; Stagg, T.O.; Walters, D.A.

    1986-01-01

    Three extended departure horizontal wells have been drilled and completed at Prudhoe Bay, Alaska by Standard Alaska Production Company. Horizontal slotted liner completions of 1575 feet (480 m), 1637 feet (499 m), and 1163 feet (354 m) were accomplished at an average vertical depth of 9000 feet (2743 m). Improvements in technology and operating procedures have resulted in a cost per foot reduction of 40% over the three well program. When compared to conventional completions, initial production data indicates rate benefits of 300% and a major increase in ultimate recovery. This paper discusses the development of the techniques used to drill horizontal wells at Prudhoe Bay and reviews the drilling operations for each well.

  9. Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.57 3.76 3.06 3.82 3.58 3.09 3.05 2000's 5.58 5.40 4.20 6.53 8.67 8.65 12.83 11.40 14.66 11.20 2010's 5.99 5.09 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  10. Maryland Natural Gas Delivered to Commercial Consumers for the Account of

    Energy Information Administration (EIA) (indexed site)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Maryland Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262 800 1,010 1990's 1,052 1,308 1,692 1,497 1,291 1,469 3,734 16,394 36,375 38,722 2000's 33,880 40,313 44,577 48,105 47,747 46,440 43,744 50,220 49,545 48,717 2010's 48,000 49,053 48,271 52,494

  11. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -862 -85 724 658 416 -1,091 -1,477 -807 2,724 -222 -1,505 5,333 1991 4,470 4,339 1,613 1,801 727 1,324 628 202 -123 -686 1,727 2,620 1992 900 -745 -1,784 -3,603 -1,779 -745 -328 -176 -219 356 579 -1,431 1993 153 742 1,488 1,891 777 -736 -1,464 -2,133

  12. HUD consumer market profile for the states of Florida, Delaware and Maryland

    SciTech Connect

    Jack, M.C.; Denny, W.M.

    1981-01-01

    Data obtained on persons who purchased solar water heaters with HUD grants from 1977 to 1979 in the states of Florida, Delaware and Maryland are compiled. A total of more than 2600 consumers are profiled. The following variables are included in the consumer profile: type of present hot water system, site location by county, family composition and type of installation. This study represents the largest marketing profile of solar hot water system purchasers to date. It has significance both to private industry and the government for it details what type of person participated in the HUD grant program. It is found that the largest number of solar installations cluster around large metropolitan areas in neighborhoods that are predominantly white, upper-class, and less than five persons in the household.

  13. Covered Product Category: Industrial Luminaires (High/Low Bay) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Industrial Luminaires (High/Low Bay) Covered Product Category: Industrial Luminaires (High/Low Bay) The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for Industrial Luminaires (High/Low Bay). Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency Requirements for Industrial

  14. Bristol Bay Borough, Alaska: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    as an ASHRAE 169-2006 Climate Zone Number 7. Places in Bristol Bay Borough, Alaska King Salmon, Alaska Naknek, Alaska South Naknek, Alaska Retrieved from "http:...

  15. The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron...

    Office of Science (SC)

    The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos Nuclear Physics (NP) NP Home About Research Facilities Science Highlights ...

  16. MHK Projects/Kachemak Bay Tidal Energy Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Kachemak Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  17. McKay Bay Facility Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  18. Ecological Forecasting in Chesapeake Bay: Using a Mechanistic...

    Office of Scientific and Technical Information (OSTI)

    oxygen, and the likelihood of encountering several noxious species, including harmful algal blooms and water-borne pathogens, for the purpose of monitoring the Bay's ecosystem. ...

  19. Kawela Bay, Hawaii: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Kawela Bay, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.7033333, -158.01 Show Map Loading map... "minzoom":false,"mappingservice...

  20. Promising Technology: High Bay Light-Emitting Diodes

    Energy.gov [DOE]

    High bay LEDs offer several advantages over conventional high intensity discharge (HID) luminaires including longer lifetimes, reduced maintenance costs, and lower energy consumption.

  1. EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project...

    Energy.gov [DOE] (indexed site)

    gas from existing pipeline systems to the LNG terminal facilities. EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project Public Comment Opportunities No public ...

  2. Zero Emission Cargo Transport II: San Pedro Bay Ports Hybrid...

    Energy Saver

    Zero Emission Cargo Transport II San Pedro Bay Ports Hybrid & Fuel Cell Electric Vehicle Project Principle Investigator: Joseph Impullitti South Coast Air Quality Management ...

  3. Bay Harbor Islands, Florida: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Bay Harbor Islands is a town in Miami-Dade County, Florida. It falls under Florida's 20th congressional district.12 References US Census Bureau Incorporated place and...

  4. 9 Cool Technologies at the Bay Area Maker Faire

    Energy.gov [DOE]

    Get a glimpse of some of the technologies from our National Labs in the Make | ENERGY Pavilion at the Bay Area Maker Faire. You can look AND touch.

  5. Keweenaw Bay Indian Community: 'First Steps' Toward Tribal Weatherizat...

    Energy.gov [DOE] (indexed site)

    Keweenaw Bay Indian Community 'First Steps' Toward Tribal Weatherization Human Capacity Building Denver, CO - October 29 th , 2010 Debra L. Picciano . CAP Administrator Federally ...

  6. Deep porosity preservation in the Norphlet Formation, Mobil Bay, Alabama

    SciTech Connect

    Ajdukiewicz, J.M.; Paxton, S.T.; Szabvo, J.O. )

    1991-03-01

    Compaction and pressure solution have commonly been assumed to destroy primary intergranular porosity in deeply buried sandstones. However, primary porosities of up to 20% are preserved at depths greater than 20,000 feet in the Norphlet Formation of Mobile Bay. Previous workers have called upon a number of mechanisms to preserve these high porosities in the Norphlet, specifically chlorite rim cements, gas emplacement, overpressuring, and decementation. In contrast, our study of data from 23 Norphlet wells, including 450 thin sections, indicates that these suggested mechanisms are not the primary cause of porosity preservation in the Norphlet. The authors propose an alternative interpretation: that in the Norphlet, as in other well-sorted, ductile-grain-poor sandstones, porosity loss from compaction did not go to completion under reservoir (premetamorphic) conditions, but stabilized at depths of about 5,000-8,000 feet and porosity values of about 26%. Porosity loss below these values is due to cementation. For cementation to occur, both an adequate source of cement and geochemical conditions favoring cement precipitation must be present. Computer simulations of Norphlet burial history, including post-depositional fluid-flow patterns, suggest that conditions favorable to quartz cementation never occurred in the bulk of the Norphlet because of the formation's stratigraphic position and isolation from a basinward source of silica-saturated fluids.

  7. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment...

  8. Regulatory effectiveness study for the Christmas Bay Coastal Preserve

    SciTech Connect

    Mitchell, G.; Windsor, D.

    1991-12-01

    The report contains a description and evaluation of essential regulatory activities governing Armand Bayou and its watershed. The report will be used in management planning for the preserve, and will also contribute to the baseline regulatory data for developing the Galveston Bay Comprehensive Conservation and Management Plan. A companion report was prepared for the Christmas Bay Coastal Preserve.

  9. Low-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center

    2010-12-31

    This software requires inputs of simple low-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Low-wattage T8 lighting retrofit, T12 to T8 lighting retrofit, LED Exit signs retrofit, Occupancy sensors, Screw-in lighting retrofit, and central lighting controls. This tool calculates energy savings, demand reduction, cooling load reduction, heating load increases, cost savings, building life cycle costs including: Simple payback, discounted payback,more » net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  10. A review of the new ISC-PRIME model and implications for power plant licensing in Maryland

    SciTech Connect

    Gill, S.; Garrison, M.; Sherwell, J.

    1999-07-01

    The Maryland Department of Natural Resources (DNR) Power Plant Research Program (PPRP) manages the consolidated review of environmental, engineering, socioeconomic, cost, and need issues that new and modified power plants in Maryland must address as part of the power plant licensing process. Power plant licensing cases in Maryland have included the addition or replacement of small diesel or combustion turbine electrical generation units, or the addition of new, larger simple-cycle combustion turbine units. Air quality modeling, including an assessment of the effects of building downwash, is often a part of the licensing process. The Electric Power Research Institute (EPRI) has sponsored the development of an improved building downwash model through its PRIME (Plume Rise Model Enhancements) project, involving the design and development of algorithms intended to address deficiencies in the widely used ISCST3. EPA recently provided a version of ISC that incorporates the PRIME model (ISC-PRIME) for review and comment by the public prior to deciding on the suitability and regulatory status of ISC-PRIME. The present paper focuses on a systematic evaluation of ISC-PRIME as it relates to short stacks with exhaust characteristics similar to diesel generators and combustion turbines, using both routine hourly meteorology and synthesized meteorological data covering a wide variety of stability and wind speed combinations. The goals of the paper are two-fold: first, to understand and explain the implications of this new model for power plant licensing decisions in the State of Maryland; and second, to broaden the experience base of the potential ISC-PRIME user community with information on model performance details that are not otherwise readily available.

  11. Environmental geophysics at the Southern Bush River Peninsula, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Davies, B.E.; Miller, S.F.; McGinnis, L.D.

    1995-05-01

    Geophysical studies have been conducted at five sites in the southern Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland. The goals of the studies were to identify areas containing buried metallic objects and to provide diagnostic signatures of the hydrogeologic framework of the site. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low sea level resulted in a complex pattern of channel-fill deposits. Paleochannels of various sizes and orientations have been mapped throughout the study area by means of ground-penetrating radar and EM-31 techniques. The EM-31 paleochannel signatures are represented onshore either by conductivity highs or lows, depending on the depths and facies of the fill sequences. A companion study shows the features as conductivity highs where they extend offshore. This erosional and depositional system is environmentally significant because of the role it plays in the shallow groundwater flow regime beneath the site. Magnetic and electromagnetic anomalies outline surficial and buried debris throughout the areas surveyed. On the basis of geophysical measurements, large-scale (i.e., tens of feet) landfilling has not been found in the southern Bush River Peninsula, though smaller-scale dumping of metallic debris and/or munitions cannot be ruled out.

  12. Maryland Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Base Gas) (Million Cubic Feet) Maryland Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1991 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1992 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 1993 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677 46,677

  13. Maryland Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Percent) Percent) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 103.9 379.8 71.8 60.5 13.1 20.1 7.2 1.8 -0.9 -4.6 13.4 22.0 1992 10.3 -13.6 -46.2 -75.4 -28.4 -9.4 -3.5 -1.5 -1.6 2.5 4.0 -9.9 1993 1.6 15.7 71.7 160.6 17.3 -10.3 -16.3 -18.7 -12.6 -1.8 -2.5 -8.9 1994 -45.2 -46.8 -3.2 53.1 28.2 27.5 36.9 27.2 13.4 4.6 -3.5 10.5 1995 103.8 130.7 91.8

  14. New Whole-House Solutions Case Study: Nexus EnergyHomes, Frederick, Maryland

    SciTech Connect

    2014-02-01

    With this new home—which achieved the highest rating possible under the National Green Building Standard—Nexus EnergyHomes demonstrated that green and affordable can go hand in hand. The mixed-humid climate builder, along with the U.S. Department of Energy Building America team Partnership for Home Innovation, embraced the challenge to create a new duplex home in downtown Frederick, Maryland, that successfully combines affordability with state-of-the-art efficiency and indoor environmental quality. To limit costs, the builder designed a simple rectangular shape and kept interesting architectural features such as porches outside the building’s structure. This strategy avoided the common pitfall of creating potential air leakage where architectural features are connected to the structure before the building is sealed against air infiltration. To speed construction and limit costs, the company chose factory-assembled components such as structural insulated panel walls and floor and roof trusses. Factory-built elements were key in achieving continuous insulation around the entire structure. Open-cell spray foam at the rim joist and attic roofline completed the insulation package, and kept the heating, ventilating, and air-conditioning system in conditioned space.

  15. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    SciTech Connect

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  16. San Francisco BayREN: Integrated Commercial Retrofits

    Energy.gov [DOE]

    Lead Performer: Association of Bay Area Governments – Oakland, CA Partners: -- Bay Area Regional Energy Network – San Francisco, CA -- Business Council on Climate Change – San Francisco. CA -- City of Berkeley – Berkeley, CA -- City of Oakland – Oakland, CA -- City and County of San Francisco – San Francisco, CA -- East Bay Energy Watch – San Francisco, CA -- Emerald Cities – Washington, DC -- Joule Assets Inc. – Bedford Hills, NY -- Lawrence Berkeley National Laboratory (LBNL) – Berkeley, CA -- National Resource Ecology Laboratory (NREL) – Golden, CO -- Open Energy Efficiency – Sausalito, CA -- Prospect Silicon Valley – San Jose, CA -- Renew Financial – Oakland, CA -- San Francisco Energy Watch – San Francisco, CA

  17. Muon Simulation at the Daya Bay SIte

    SciTech Connect

    Mengyun, Guan; Jun, Cao; Changgen, Yang; Yaxuan, Sun; Luk, Kam-Biu

    2006-05-23

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rock to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.

  18. Bay integrated power system control and diagnostics

    SciTech Connect

    Beierl, O.

    1996-03-01

    The paper presents new concepts for control and diagnostic systems for high voltage switchgear (123-kV and above). Air insulated and gas insulated (SF6) switchgear is considered. The new aspect is the integration of monitoring and diagnostic concepts in digital control and protection systems. Communication concepts for sensors and actuators with digital process busses at bay level are discussed. The paper covers integration concepts for circuit breaker monitoring (AIS, GIS) and for GIS the integration of on-line partial discharge measurement, on-line arc detection and on-line monitoring of the gas conditions. Finally, the advantages, disadvantages and the applicability of integrated diagnostic and control concepts are discussed by means of technical and commercial aspects.

  19. High-bay Lighting Energy Conservation Measures

    Energy Science and Technology Software Center

    2010-12-31

    This software requires inputs of simple high-bay lighting system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: 1000 Watt to 750 Watt High-pressure Sodium lighting retrofit, 400 Watt to 360 Watt High Pressure Sodium lighting retrofit, High Intensity Discharge to T5 lighting retrofit, High Intensity Discharge to T8 lighting retrofit, and Daylighting. This tool calculates energy savings, demand reduction, cost savings, building lifemore » cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  20. BayWa Sunways JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    JV that specialises in developing, planning and realizing medium-sized to large photovoltaic systems and solar plants. References: BayWa & Sunways JV1 This article is a stub....

  1. City of Larsen Bay, Alaska (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    City of Larsen Bay Place: Alaska Phone Number: (907)847-2211 Website: www.swamc.orghtmlsouthwest-a Outage Hotline: (907)847-2211 References: EIA Form EIA-861 Final Data File...

  2. Huntington Bay, New York: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Huntington Bay is a village in Suffolk County, New York. It falls under New York's 2nd...

  3. Searching for θ13 at Daya Bay

    SciTech Connect

    Giedt, Joel; Napolitano, James

    2015-06-08

    An experiment has been carried out by the Daya Bay Collaboration to measure the neutrino mixing angle θ13. In addition, the grant has supported research into lattice field theory beyond the standard model.

  4. Nassau Bay, Texas: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    This article is a stub. You can help OpenEI by expanding it. Nassau Bay is a city in Harris County, Texas. It falls under Texas's 22nd congressional district.12 References...

  5. Covered Product Category: Industrial Luminaires (High/Low Bay...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2' x 4' 85 1' x 8' 88 High Bay, Non-Linear, Metal Halide Distribution Pattern Input ... ballasts, which should be considered in the comparison of the two system types. ...

  6. Project Reports for Keweenaw Bay Indian Community- 2010 Project

    Energy.gov [DOE]

    The Keweenaw Bay Indian Community (KBIC) is committed to preserving our natural environment and reducing the amount of fossil fuels consumed while developing "green" business manufacturing jobs on tribal lands.

  7. Project Reports for Keweenaw Bay Indian Community- 2010 Project

    Energy.gov [DOE]

    The goal of the project is to build the staff capacity to enable the Keweenaw Bay Indian Community (KBIC) to establish a tribal weatherization program that promotes energy sufficiency throughout the tribal community.

  8. Keweenaw Bay Indian Community- 2010 Energy Efficiency Project

    Energy.gov [DOE]

    The goal of the project is to build the staff capacity to enable the Keweenaw Bay Indian Community (KBIC) to establish a tribal weatherization program that promotes energy sufficiency throughout the tribal community.

  9. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    Gasoline and Diesel Fuel Update

    BOE Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area BOE Reserve Class No 2004 Reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1...

  10. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    Energy Information Administration (EIA) (indexed site)

    Gas Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area Gas Reserve Class No 2004 Gas Reserves 0.1 - 10 MMCF 10.1 - 100 MMCF...

  11. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    Gasoline and Diesel Fuel Update

    Liquids Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area Liquids Reserve Class No 2004 Liquids Reserves 0.1 - 10 Mbbl 10.1...

  12. West Bay Shore, New York: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Bay Shore is a census-designated place in Suffolk County, New York.1 References ...

  13. The ecology of Tampa Bay, Florida: An estuarine profile

    SciTech Connect

    Lewis, R.R. III; Estevez, E.D.

    1988-09-01

    Tampa Bay is Florida's largest open-water estuary and one of the most highly urbanized. This report summarizes and synthesizes many years of scientific investigation into Tampa Bay's geology, hydrology and hydrography, water chemistry, and biotic components. The estuary is a phytoplankton-based system, with mangroves being the second most important primary producer. Benthic organisms are abundant and diverse, although in parts of the bay the benthos consists of a relatively few opportunistic and pollution indicator species. The estuary provides habitat for the juveniles and adults of a number of commercial and recreational fishery species. Significant changes occurring as a result of urbanization and industrialization include significant declines in intertidal wetlands and seagrass meadows, changes in circulation and flushing, and degradation of water quality. Important management issues include dredge and fill operations, restoration of fisheries, increasing freshwater flow to the bay, and eutrophication. 257 refs., 85 figs., 27 tabs.

  14. North Bay Village, Florida: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    it. North Bay Village is a city in Miami-Dade County, Florida. It falls under Florida's 20th congressional district.12 References US Census Bureau Incorporated place and...

  15. Morro Bay, California: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Morro Bay is a city in San Luis Obispo County, California. It falls under California's 23rd congressional...

  16. San Francisco Bay Area Aerial Radiation Assessment Survey | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) San Francisco Bay Area Aerial Radiation Assessment Survey January 27, 2016 (SAN JOSE and SAN FRANCISCO, California) - A helicopter may be seen flying at low altitudes over portions of the San Francisco Bay Area from January 29 through February 6, 2016. The purpose of the flyovers is to measure naturally occurring background radiation. Officials from the National Nuclear Security Administration (NNSA) announced that the radiation assessment will cover

  17. Application to Export Electric Energy OE Docket No. EA-389 Great Bay Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VI, LLC | Department of Energy 89 Great Bay Energy VI, LLC Application to Export Electric Energy OE Docket No. EA-389 Great Bay Energy VI, LLC Application from Great Bay Energy to export electric energy to Canada. EA-389 Great Bay Energy VI, (CN).pdf (579.86 KB) More Documents & Publications EA-389 Greay Bay Energy VI, LLC EA-389-A Great Bay Energy VI, LLC Application to Export Electric Energy OE Docket No. EA-327-A DC Energy,

  18. Radiological survey of San Diego Bay

    SciTech Connect

    Semler, M.O.; Blanchard, R.L.

    1989-06-01

    A radiological survey of three sites in San Diego Bay provided the basis for the following conclusions: 1. Small quantities of Co-60 (0.02-0.05 pCi/g) are present in the bottom sediments in some areas of the harbor at the Submarine Base. Most, if not all, of the Co-60 contamination present probably originated prior to the earlier 1967 survey that reported Co-60 levels as much as 300 times larger than those observed in this study. The highest Co-60 concentration measured is now less than one percent of the normal background radioactivity in harbor sediment samples. 2. No tritium or gamma-ray emitters, other than trace amounts of those occurring naturally, were detected in surface water from the dock areas or in nearby drinking water supplies. 3. Only radionuclides of natural origin and trace amounts of Cs-137 from fallout of previous nuclear weapons tests were detected in samples of kelp, algae, and fish taken from the harbor at the Submarine Base. 4. Gamma-ray surveys of the harbors near the docking areas and along shorelines and beaches near the shipyards failed to detect any exposure rates above background. 3 refs., 4 figs., 3 tabs.

  19. Cathodic Protection of the Yaquina Bay Bridge

    SciTech Connect

    Bullard, Sophie J.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Laylor, H.M.; Cryer, C.B.

    2001-02-01

    The Yaquina Bay Bridge in Newport, Oregon, was designed by Conde B. McCullough and built in 1936. The 3,223-foot (982 m) structure is a combination of concrete arch approach spans and a steel through arch over the shipping channel. Cathodic protection is used to prevent corrosion damage to the concrete arches. The Oregon Department of Transportation (Oregon DOT) installed a carbon anode coating (DAC-85) on two of the north approach spans in 1985. This anode was operated at a current density of 6.6 mA/m2(0.6 mA/ft2). No failure of the conductive anode was observed in 1990, five years after application, or in 2000, 15 years after application. Thermal-sprayed zinc anodes 20 mils (0.5 mm) thick were applied to half the south approach spans beginning in 1990. Thermal-sprayed zinc anodes 15 mils (0.4 mm) thick were applied to the remaining spans in 1996. These anodes were operated at a current density of 2.2 mA/m2(0.2 mA/ft2). In 1999, four zones on the approach spans were included in a two-year field trial of humectants to improve zinc anode performance. The humectants LiNO3 and LiBr were applied to two zones; the two adjacent zones were left untreated as controls. The humectants substantially reduced circuit resistance compared to the controls.

  20. Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study

    SciTech Connect

    Vaught, Douglas J.

    2007-03-31

    The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNCs technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clarks Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clarks Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

  1. Light Source

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    a Light Source Data and Analysis Framework at NERSC Jack Deslippe, Shane Canon, Eli Dart, Abdelilah Essiari, Alexander Hexemer, Dula Parkinson, Simon Patton, Craig Tull + Many More The ALS Data Needs September 21, 2010 - NIST (MD) Light source data volumes are growing many times faster than Moore's law. ● Light source luminosity ● Detector resolution & rep-rates ● Sample automation BES user facilities serve 10,000 scientists and engineers every year. Mostly composed of many small

  2. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  3. Replacement of tritiated water from irradiated fuel storage bay

    SciTech Connect

    Castillo, I.; Boniface, H.; Suppiah, S.; Kennedy, B.; Minichilli, A.; Mitchell, T.

    2015-03-15

    Recently, AECL developed a novel method to reduce tritium emissions (to groundwater) and personnel doses at the NRU (National Research Universal) reactor irradiated fuel storage bay (also known as rod or spent fuel bay) through a water swap process. The light water in the fuel bay had built up tritium that had been transferred from the heavy water moderator through normal fuel transfers. The major advantage of the thermal stratification method was that a very effective tritium reduction could be achieved by swapping a minimal volume of bay water and warm tritiated water would be skimmed off the bay surface. A demonstration of the method was done that involved Computational Fluid Dynamics (CFD) modeling of the swap process and a test program that showed excellent agreement with model prediction for the effective removal of almost all the tritium with a minimal water volume. Building on the successful demonstration, AECL fabricated, installed, commissioned and operated a full-scale system to perform a water swap. This full-scale water swap operation achieved a tritium removal efficiency of about 96%.

  4. EA-389-A Great Bay Energy VI, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Rescission of export authorization to export electric energy to Canada. EA-389-A Great Bay ... Energy OE Docket No. EA-389 Great Bay Energy VI, LLC EA-342-A Royal Bank of Canada

  5. A fuel-based motor vehicle emission inventory for the San Francisco Bay area

    SciTech Connect

    Black, D.R.; Singer, B.C.; Harley, R.A.; Martien, P.T.; Fanai, A.K.

    1997-12-31

    Traditionally, regional motor vehicle emission inventories (MVEI) have been estimated by combining travel demand model and emission factor model predictions. The accuracy of traditional MVEIs is frequently challenged, and development of independent methods for estimating vehicle emissions has been identified as a high priority for air quality research. In this study, an alternative fuel-based MVEI was developed for the San Francisco Bay Area using data from 1990--1992. To estimate CO emissions from motor vehicles in the Bay Area, estimates of gasoline sales were combined with infrared remote sensing measurements of CO and CO{sub 2} exhaust concentrations from over 10,000 light-duty vehicles in summer 1991. Once absolute estimates of CO emissions have been computed, it is possible to use ambient NO{sub x}/CO and NMOC/CO ratios from high traffic areas to estimate emissions for NO{sub x} and NMOC (excluding some resting loss and diurnal evaporative emissions). Ambient ratios were generated from special-study measurements of NMOC and CO in 1990 and 1992, and from routine sampling of NO{sub x} and CO in 1991. All pollutant concentrations were measured on summer mornings at Bay Area monitoring sites in areas with high levels of vehicle traffic and no other significant sources nearby. Stabilized CO emissions calculated by the fuel-based method for cars and light-duty trucks were 1720{+-}420 tons/day. This value is close to California`s MVEI 7G model estimates. Total on-road vehicle emissions of CO in the Bay Area were estimated to be 2900{+-}800 tons/day. Emissions of NMOC were estimated to be 570{+-}200 tons/day, which is 1.6{+-}0.6 times the value predicted by MVEI 7G. In the present study, emissions of NO{sub x} from on-road vehicles were estimated to be 250{+-}90 tons/day, which is 0.6{+-}0.2 times the value predicted by MVEI 7G.

  6. Load test of the 272W Building high bay roof deck and support structure

    SciTech Connect

    McCoy, R.M.

    1994-09-28

    This reports the results of the Load Test of the 272W Building High Bay Roof Deck and Support Structure.

  7. U.S. Naval Station, Guantanamo Bay, Cuba | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Naval Station, Guantanamo Bay, Cuba U.S. Naval Station, Guantanamo Bay, Cuba Fact sheet describes the Energy Savings Performance Contract (ESPC) success story on environmental stewardship and cost savings at the U.S. Naval Station at Guantanamo Bay, Cuba. Download the U.S. Naval Station at Guantanamo Bay, Cuba fact sheet. (316.37 KB) More Documents & Publications Idaho Operations AMWTP Fact Sheet Heating Ventilation and Air Conditioning Efficiency Greenpower Trap Mufflerl System

  8. Tampa Bay Designated as the Newest Clean Cities Coalition | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Tampa Bay Designated as the Newest Clean Cities Coalition Tampa Bay Designated as the Newest Clean Cities Coalition November 21, 2014 - 1:36pm Addthis Dr. Judy Genshaft, the University of South Florida's president, welcomes attendees to the Tampa Bay Clean Cities Ceremony. | Photo courtesy of the Clean Cities Coalition. Dr. Judy Genshaft, the University of South Florida's president, welcomes attendees to the Tampa Bay Clean Cities Ceremony. | Photo courtesy of the Clean Cities

  9. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  10. Bay State announces growth strategies to cope with changes

    SciTech Connect

    1996-07-01

    A top executive for New England`s biggest independent gas distributor says deregulation of the utility industry offers unprecedented opportunities for growth, but getting there will radically change the way it does business. To achieve dramatic growth, Bay State Gas Co. needs to base their strategies on anticipating the changes in the industry and aggressively positioning themselves to capture the new opportunities that the new business environment is creating. This includes: accelerating the unbundling of transportation service all the way to the residential customer level; forging strategic relationships with retail energy product and service companies as a means of increasing throughput on Bay State`s system; implementing performance-based rates that provide financial incentives for lowering costs and improving customer service; accelerating the implementation of sophisticated information systems to streamline key business processes; and aggressively expanding Bay State`s nonregulated Energy Products and Services business. These steps are discussed.

  11. Project Reports for Bristol Bay Native Corporation- 2003 Project

    Energy.gov [DOE]

    Bristol Bay Native Corporation (BBNC), through its subsidiary, Bristol Environmental and Engineering Services Corporation, will assess renewable energy opportunities within the BBNC region of southwest Alaska. The goals of this initiative are to encourage tribal self-sufficiency, create jobs, improve environmental quality, and help make our nation more secure through the development of clean, affordable, and reliable renewable energy technologies. The study will identify technologies or systems that could potentially reduce the cost or improve the sustainability of electricity within the Bristol Bay region.

  12. NEUTRON SOURCES

    DOEpatents

    Richmond, J.L.; Wells, C.E.

    1963-01-15

    A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

  13. Summary of Information Presented at an NRC-Sponsored Low-Power Shutdown Public Workshop, April 27, 1999, Rockville, Maryland

    SciTech Connect

    Wheeler, Timothy A.; Whitehead, Donnie W.; Lois, Erasmia

    1999-07-01

    This report summarizes a public workshop that was held on April 27, 1999, in Rockville, Maryland. The workshop was conducted as part of the US Nuclear Regulatory Commission's (NRC) efforts to further develop its understanding of the risks associated with low power and shutdown operations at US nuclear power plants. A sufficient understanding of such risks is required to support decision-making for risk-informed regulation, in particular Regulatory Guide 1.174, and the development of a consensus standard. During the workshop the NRC staff discussed and requested feedback from the public (including representatives of the nuclear industry, state governments, consultants, private industry, and the media) on the risk associated with low-power and shutdown operations.

  14. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Field Sampling Plan

    SciTech Connect

    Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland (Figure 1. 1). Since World War II activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA) (predecessor to the US Army Environmental Center [AEC]). As part of a subsequent USATHAMA -environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-002-1355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in data were collected to model, groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today.

  15. OSTIblog Articles in the Thomas Bayes Topic | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Bayes Topic The Reverend Thomas Bayes by Kathy Chambers 06 Nov, 2013 in Products and Content 13432 bayesPicture.jpg The Reverend Thomas Bayes Read more about 13432 During the 1700's, the Reverend Thomas Bayes was a nonconformist minister at the Mount Sion Chapel in Tunbridge Wells, UK, about 40 miles southeast of central London. Having studied both theology and logic at the University of Edinburgh, he was also a mathematician and developed a

  16. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    Energy Information Administration (EIA) (indexed site)

    BOE Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area BOE Reserve Class No 2004 Reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE

  17. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    Energy Information Administration (EIA) (indexed site)

    Gas Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area Gas Reserve Class No 2004 Gas Reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000 - 10,000 MMCF 10,000 - 100,000 MMCF > 100,000 MMCF

  18. LISBURNE LISBURNE KUPARUK RIVER PRUDHOE BAY MILNE POINT ALPINE

    Energy Information Administration (EIA) (indexed site)

    Liquids Reserve Class Prudhoe Bay Area Barrow Area Index Map Northern Alaska Oil and Gas Fields 2004 Onshore Area Liquids Reserve Class No 2004 Liquids Reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl > 10,000 Mbbl

  19. Covered Product Category: Industrial Luminaires (High/Low Bay)

    Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for Industrial Luminaires (High/Low Bay). Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  20. Risk assessment for produced water discharges to Louisiana Open Bays

    SciTech Connect

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1995-06-23

    Data were collected prior to termination of discharge at three sites (including two open bay sites at Delacroix Island and Bay De Chene) for the risk assessments. The Delacroix Island Oil and Gas Field has been in production since the first well drilling in 1940; the Bay De Chene Field, since 1942. Concentrations of 226Ra, 228Ra, 210Po, and 228Th were measured in discharges. Radium conc. were measured in fish and shellfish tissues. Sediment PAH and metal conc. were also available. Benthos sampling was conducted. A survey of fishermen was conducted. The tiered risk assessment showed that human health risks from radium in produced water appear to be small; ecological risk from radium and other radionuclides in produced water also appear small. Many of the chemical contaminants discharged to open Louisiana bays appear to present little human health or ecological risk. A conservative screening analysis suggested potential risks to human health from Hg and Pb and a potential risk to ecological receptors from total effluent, Sb, Cd, Cu, Pb, Ni, Ag, Zn, and phenol in the water column and PAHs in sediment; quantitiative risk assessments are being done for these contaminants.

  1. EA-1995: Trestle Bay Ecosystem Restoration Project, Clatsop County, Oregon

    Energy.gov [DOE]

    The U.S. Army Corps of Engineers prepared, with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, an EA that evaluates the potential environmental impacts of a proposal to improve estuary habitat in Trestle Bay. BPA’s proposed action is to partially fund the proposal.

  2. ION SOURCE

    DOEpatents

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  3. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  4. NEUTRON SOURCE

    DOEpatents

    Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

    1959-01-13

    A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

  5. Focused feasibility study for surface soil at the main pits and pushout area, J-field toxic burning pits area, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Patton, T.; Benioff, P.; Biang, C.; Butler, J.

    1996-06-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). J-Field is located within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning/open detonation. Portions of J-Field continue to be used for the detonation and disposal of unexploded ordnance (UXO) by open burning/open detonation under authority of the Resource Conservation and Recovery Act.

  6. ION SOURCE

    DOEpatents

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  7. ION SOURCE

    DOEpatents

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  8. Nexus EnergyHomes, Frederick, Maryland (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nexus EnergyHomes Frederick, Maryland PROJECT INFORMATION Construction: New home Type: Duplex, affordable Builder: Nexus EnergyHomes www.nexusenergyhomes.com Size: 1,830 ft 2 above grade; 2,550 ft 2 conditioned area Price Range: High $200,000s Date completed: June 2011 Climate Zone: Mixed-humid PERFORMANCE DATA HERS index: * With renewables = 28 * Without renewables = 51 Projected annual energy cost savings: * 36% (62% with photovoltaics) * $810 ($1,441 with photovoltaics) Incremental cost of

  9. Health and Productivity of the U.S. Department of Energy (FINAL REPORT) - Prepared by the University of Maryland with the Integrated Benefits Institute

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Health and Productivity of the U.S. Department of Energy FINAL REPORT Prepared by the University of Maryland with the Integrated Benefits Institute 2012 FINAL REPORT 2 Executive Summary The U.S. Department of Energy (DOE) has been concerned about employees' health and well-being for several years, especially as they relate to workplace productivity and safety. Additionally, the DOE's reliance on an aging workforce makes it even more critical for the Department to ensure that its programs and

  10. Top-down methane emissions estimates for the San Francisco Bay Area from 1990 to 2012

    SciTech Connect

    Fairley, David; Fischer, Marc L.

    2015-01-30

    Methane is a potent greenhouse gas (GHG) that is now included in both California State and San Francisco Bay Area (SFBA) bottom-up emission inventories as part of California's effort to reduce anthropogenic GHG emissions. Here we provide a top-down estimate of methane (CH4) emissions from the SFBA by combining atmospheric measurements with the comparatively better estimated emission inventory for carbon monoxide (CO). Local enhancements of CH4 and CO are estimated using measurements from 14 air quality sites in the SFBA combined together with global background measurements. Mean annual CH4 emissions are estimated from the product of Bay Area Air Quality Management District (BAAQMD) emission inventory CO and the slope of ambient local CH4 to CO. The resulting top-down estimates of CH4 emissions are found to decrease slightly from 1990 to 2012, with a mean value of 240 ± 60 GgCH4 yr⁻¹ (at 95% confidence) in the most recent (2009–2012) period, and correspond to reasonably a constant factor of 1.5–2.0 (at 95% confidence) times larger than the BAAQMD CH4 emission inventory. However, we note that uncertainty in these emission estimates is dominated by the variation in CH4:CO enhancement ratios across the observing sites and we expect the estimates could represent a lower-limit on CH4 emissions because BAAQMD monitoring sites focus on urban air quality and may be biased toward CO rather than CH4 sources.

  11. Top-down methane emissions estimates for the San Francisco Bay Area from 1990 to 2012

    DOE PAGES [OSTI]

    Fairley, David; Fischer, Marc L.

    2015-01-30

    Methane is a potent greenhouse gas (GHG) that is now included in both California State and San Francisco Bay Area (SFBA) bottom-up emission inventories as part of California's effort to reduce anthropogenic GHG emissions. Here we provide a top-down estimate of methane (CH4) emissions from the SFBA by combining atmospheric measurements with the comparatively better estimated emission inventory for carbon monoxide (CO). Local enhancements of CH4 and CO are estimated using measurements from 14 air quality sites in the SFBA combined together with global background measurements. Mean annual CH4 emissions are estimated from the product of Bay Area Air Qualitymore » Management District (BAAQMD) emission inventory CO and the slope of ambient local CH4 to CO. The resulting top-down estimates of CH4 emissions are found to decrease slightly from 1990 to 2012, with a mean value of 240 ± 60 GgCH4 yr⁻¹ (at 95% confidence) in the most recent (2009–2012) period, and correspond to reasonably a constant factor of 1.5–2.0 (at 95% confidence) times larger than the BAAQMD CH4 emission inventory. However, we note that uncertainty in these emission estimates is dominated by the variation in CH4:CO enhancement ratios across the observing sites and we expect the estimates could represent a lower-limit on CH4 emissions because BAAQMD monitoring sites focus on urban air quality and may be biased toward CO rather than CH4 sources.« less

  12. ,"Maryland Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ngm_epg0_fgs_smd_mmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgs_smd_mmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"10/28/2016

  13. Wind and Hydroelectric Feasibility Study - Bristol Bay Native Corporation Anchorage, Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bristol Bristol Bay Bay Native Native Corporation Corporation Wind and Wind and Hydroelectric Hydroelectric Feasibility Feasibility Study Study Tiel Smith Tiel Smith - - BBNC BBNC Doug Vaught, PE Doug Vaught, PE - - Consultant Consultant A Landscape of Promise Bristol Bay Native Corporation Invested in the Region * Southwest Alaska - 29 communities - 7,800 residents - 10,000 brown bears - 55,000,000 salmon * 40,000 square miles- about size of Ohio * 68% Native - Yup'ik Eskimo - Athabascan -

  14. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Assessment and Recommendations | Department of Energy Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the

  15. Computing Sciences Staff Help East Bay High Schoolers Upgrade their Summer

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Computing Sciences Staff Help East Bay High Schoolers Upgrade their Summer Computing Sciences Staff Help East Bay High Schoolers Upgrade their Summer August 6, 2015 Jon Bashor, jbashor@lbl.gov, +1 510 486 5849 To help prepare students from underrepresented groups learn about careers in a variety of IT fields, the Laney College Computer Information Systems Department offered its Upgrade: Computer Science Program. Thirty-eight students from 10 East Bay high schools registered for the eight-week

  16. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a

  17. MHK Projects/San Francisco Bay Tidal Energy Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Francisco Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3",...

  18. Bay-Area National Labs Team to Tackle Long-Standing Automotive...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bay-Area National Labs Team to Tackle Long-Standing Automotive Hydrogen-Storage Challenge ... Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials ...

  19. Design of a basinwide monitoring program for the Tampa Bay estuary. Final technical pub

    SciTech Connect

    Hochberg, R.J.; Weisberg, S.B.; Frithsen, J.B.

    1992-10-30

    The Tampa Bay National Estuary Program (TBNEP) is developing a Comprehensive Conservation and Management Plan (CCMP) to recommend management actions for protecting the Tampa Bay estuary. The purpose of the document is to facilitate development of the monitoring program by assisting the TBNEP to define the objectives of a monitoring program for Tampa Bay identifying indicators and a sampling design that are appropriate to those objectives, and identifying how existing Tampa Bay monitoring programs can be incorporated and modified (if necessary) to meet the monitoring objectives.

  20. Inter-Tribal Council of Michigan, Inc. - Bay Mills Indian Community...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Environmental Services Division Bay Mills Indian Community Energy Reduc

  1. Building America Whole-House Solutions for Existing HomesBay...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HomesBay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, ... Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, ...

  2. Old Harbor Scammon Bay Hydro Feasibility

    SciTech Connect

    Brent Petrie

    2007-06-27

    The grantee, Alaska Village Electric Cooperative (AVEC), is a non-profit member owned rural electric generation and distribution cooperative. The proposed Project is located near the community of Old Harbor, Alaska. Old Harbor is on the southeastern coast of Kodiak Island, approximately 70 miles southwest of the City of Kodiak and 320 miles southwest of Anchorage. In 1998 sufficient information had been developed to apply for a license to construct the project and the cost was estimated to be $2,445,000 for a 500 KW project on Lagoon Creek. Major features of the project included an eight-foot high diversion dam on Mountain Creek, a desander box, a 9,800-foot long penstock to the powerhouse on Lagoon Creek, and a 5,500-foot long access road. It was also anticipated that the project could provide an additional source of water to Old Harbor. The report details the history and lessons learned in designing and permiting the proposed hydroelectric facility.

  3. ,"Maryland Dry Natural Gas Production (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1160_smd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1160_smd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"10/28/2016 10:26:55 PM" "Back to

  4. ,"Maryland Dry Natural Gas Production (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Monthly","12/2015" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1160_smd_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1160_smd_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"10/28/2016 10:26:55 PM"

  5. ,"Maryland Natural Gas Underground Storage Withdrawals (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5060md2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5060md2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"10/28/2016 9:37:34 PM" "Back

  6. ,"Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n3035md3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035md3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"10/28/2016 9:35:15 PM" "Back to

  7. ,"Maryland Natural Gas Underground Storage Capacity (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5290md2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290md2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"10/28/2016 9:37:54 PM" "Back to

  8. ,"Maryland Natural Gas Underground Storage Capacity (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5290md2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290md2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"10/28/2016 9:37:54 PM" "Back

  9. ,"Maryland Natural Gas Underground Storage Net Withdrawals (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","n5070md2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070md2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"10/28/2016 9:37:45 PM" "Back to

  10. ,"Maryland Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1570_smd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_smd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"10/28/2016 9:45:35 PM" "Back to

  11. ,"Maryland Natural Gas Vehicle Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Monthly","8/2016" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1570_smd_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_smd_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"10/28/2016 9:45:35 PM"

  12. Chedabucto Bay 1992 shoreline oil conditions survey: Long-term fate of bunker C oil from the arrow spill in Chedabucto Bay, Nova Scotia

    SciTech Connect

    Owens, E.H.; McGuire, B.E.; Humphrey, B.

    1994-03-01

    The report presents a description of the activities related to and a summary of the information generated by a field survey carried out in Chedabucto Bay, Nova Scotia, for Environment Canada from June to September 1992. The objective of the survey was to locate and document any residual oil on the shores of Chedabucto Bay. The grounding of the tanker Arrow in February 1970 resulted in the release of more than 11 million liters of Bunker C fuel oil. This oil was stranded over an estimated 305 km of shoreline in the Chedabucto Bay area.

  13. Radiation source

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

  14. Major sources to waivers - lessons learned and $ saved at two U.S. Navy facilities

    SciTech Connect

    Klitsch, M.

    1997-12-31

    Naval Surface Warfare Center Carderock Division (NSWCCD) manages 17 US Navy research and development (R and D) facilities across the country. These include two facilities in Maryland -- one in Annapolis and the other in West Bethesda which is better known as Carderock. NO{sub x} is the only air emission which exceeds a threshold limit at both properties. The potential to emit NO{sub x} is 72 tpy for Annapolis and 51 tpy for Carderock. The facilities are in different counties but each county has a trigger limit for NO{sub x} of 25 tpy making both facilities major sources. In preparation for the Title V permit applications to the state of Maryland, Carderock budgeted $150,000 in fiscal year 1996 to have a contractor conduct air emission inventories and prepare the Title V permits for both Carderock and Annapolis. However, the Carderock Air Program Manager did not pursue a contractor to perform the work but personally conducted the air emission inventory for both Annapolis and Carderock. Noticing a large difference between the potential-to-emit and the actual emissions of NO{sub x}, the Air Program Manager began negotiations with the Maryland Department of the Environment (MDE) to waive the requirement for the Title V permit application. MDE responded in December 1996 that if the facility`s actual emissions would not exceed 50% of any of the threshold limits during any 12 month period, then a letter of understanding stating such should be submitted to MDE. This letter of understanding would be recognized by the US EPA and MDE and would act as a waiver to the Title V permit applicability up to July 31, 1998. Carderock and Annapolis meet this requirement and letters of understanding were drafted and sent to MDE in January 1997.

  15. Mitigation options for fish and wildlife resources affected by port and other water-dependent developments in Tampa Bay, Florida

    SciTech Connect

    Dial, R.S.; Deis, D.R.

    1986-06-01

    Ten past restoration projects in Tampa Bay were evaluated. Habitats included Spartina marsh, mangrove forests, Juncus marsh, and subtidal habitat. Success was difficult to determine because goals for each project had not been defined. In-kind losses of habitat occurred in all but one project. Permanent losses occurred in at least three projects. Restoration of Spartina and Juncus marshes was recommended. Mangroves will recruit into Spartina marshes, provided a seed source is available; planting of mangroves alone is not recommended. Seagrass restoration is not recommended at this time. Twelve sites, most less than 50 ha, were identified as potential restoration sites to give 344 ha of subtidal habitat to be made shallower and 176 ha of uplands to be scraped down. The current management program's legal and policy needs for improving environmental management, the role of mitigation, and the information needed to develop mitigation plans are discussed. This report will be useful to decisionmakers concerned with wetland habitat loss and restoration in Tampa Bay, Florida, and other areas with similar habitats.

  16. Key Neutrino behavior observed at Daya Bay (The College of William and

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mary) | Jefferson Lab Key Neutrino behavior observed at Daya Bay (The College of William and Mary) External Link: http://www.wm.edu/news/stories/2012/key-neutrino-behavior-observed-at-daya-bay-1... By jlab_admin on Thu, 2012-03-08

  17. ESnet, Orange Silicon Valley, and Bay Microsystems Demonstrate the

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    World's First Long Distance 40Gbps RDMA Data Transfer ESnet, Orange Silicon Valley, and Bay Microsystems Demonstrate the World's First Long Distance 40Gbps RDMA Data Transfer News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Media Jon Bashor, jbashor@lbl.gov, +1 510 486 5849 or Media@es.net Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607

  18. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE PAGES [OSTI]

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; Chasman, C.; Dale, E.; Diwan, M. V.; Gill, R.; Hans, S.; Isvan, Z.; Jaffe, D. E.; et al

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  19. Contaminant Sources are Known

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sources are Known Historical contaminant sources from liquid discharges and solid waste management units are known. August 1, 2013 Contaminant source map LANL contaminant...

  20. New measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    DOE PAGES [OSTI]

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; et al

    2015-09-11

    We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×105 GWth ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241Am- 13C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors.more » Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of 2sin2θ13 and |Δm2ee| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave 2sin2θ13=0.084±0.005 and |Δm2ee|=(2.42±0.11)×10–3 eV2 in the three-neutrino framework.« less

  1. New measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    SciTech Connect

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Butorov, I.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Draeger, E.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, X. H.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Kang, L.; Kettell, S. H.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lei, R. T.; Leitner, R.; Leung, K. Y.; Leung, J. K. C.; Lewis, C. A.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S. C.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. K.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S. S.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Monari Kebwaro, J.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevski, A.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Shao, B. B.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Themann, H.; Tsang, K. V.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, W. W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xia, X.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zang, S. L.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.

    2015-09-11

    We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9105 GWth ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241Am- 13C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of 2sin2?13 and |?m2ee| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave 2sin2?13=0.0840.005 and |?m2ee|=(2.420.11)103 eV2 in the three-neutrino framework.

  2. Factors Influencing Spatial and Annual Variability in Eelgrass (Zostera marina L.) Meadows in Willapa Bay, Washington, and Coos Bay, Oregon, Estuaries

    SciTech Connect

    Thom, Ronald M.; Borde, Amy B.; Rumrill, Steven; Woodruff, Dana L.; Williams, Greg D.; Southard, John A.; Sargeant, Susan L.

    2003-08-01

    Environmental factors that influence annual variability and spatial differences in eelgrass meadows (Zostera marina L.) were examined within Willapa Bay, WA, and Coos Bay, OR, over a period of 4 years (1998-2001). A suite of eelgrass metrics were recorded annually at field sites that spanned the estuarine gradient from the marine-dominated to mesohaline regions. Growth of eelgrass plants was also monitored on a monthly basis within Sequim Bay, WA. Both the spatial cover and density of Z. marina were positively correlated with estuarine salinity and inversely correlated with temperature of the tideflat sediment. Experimental evidence verified that optimal eelgrass growth occurred at highest salinities and relatively low temperatures. Eelgrass density, biomass, and the incident of flowering plants all increased substantially in Willapa Bay, and less so in Coos Bay, over the duration of the study. Warmer winters and cooler summers associated with the transition from El Ni?o to La Ni?a ocean conditions during the study period were correlated with the increase in eelgrass abundance and flowering. Anthropogenic factors (e.g., disturbance and erosion by vessel wakes and recreational shellfishing activities) may have contributed to spatial variability. Our findings indicate that large-scale changes in climate and nearshore ocean conditions can exert a strong regional influence on eelgrass abundance, which can vary annually by as much as 700% in Willapa Bay. Lower levels of variability observed in Coos Bay may be due to the stronger and more direct influence of the nearshore Pacific Ocean. We conclude that climate variation may have profound effects on the abundance and distribution of eelgrass meadows throughout the Pacific Northwest, and we anticipate that ocean conditions will emerge as a primary driving force for living estuarine resources and ecological processes that are associated with Z. marina beds within the landscape of these estuarine tidal basins.

  3. Make Energy at The Bay Area Maker Faire | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Make Energy at The Bay Area Maker Faire Make Energy at The Bay Area Maker Faire Addthis Representatives from the Department of Energy's National Labs, the Office of Energy Efficiency and Renewable Energy (EERE), the Advanced Research Projects Agency (ARPA-E) and the Office of Technology Transitions (OTT) were on hand at the first-ever Make | ENERGY Pavilion at the Bay Area Maker Faire May 20-22, 2016, at the San Mateo County Event Center. Watch this video to learn more.

  4. Heed Work Safety Signs, Cones, Stanchions in the Test Lab High Bay |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Jefferson Lab Heed Work Safety Signs, Cones, Stanchions in the Test Lab High Bay Heed Work Safety Signs, Cones, Stanchions in the Test Lab High Bay To meet the needs of work underway in the Test Lab High Bay, the area has become very dynamic and congested. The walking paths and boundaries of radiologically controlled areas (RCAs)/radioactive material areas (RMA) may shift or change dramatically from day-to-day or even from morning-to-afternoon. Crane operations (to move equipment across the

  5. Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration

    SciTech Connect

    Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

    2010-04-22

    In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of

  6. Little Traverse Bay Bands of Odawa Indians- 2005 Project

    Energy.gov [DOE]

    The Little Traverse Bay Bands of Odawa Indians is located in the northern part of lower Michigan on approximately 590 acres of land. The tribe originally had no consistent vision or strategic plan concerning its energy use. This project had three objectives. The first objective was to produce a comprehensive energy plan for the tribe. The second objective was to create an energy organization and tribal energy code. The third objective was to increase the capacity of the tribe for better understanding (through active tribal participation), capability, knowledge and awareness of energy issues through bimonthly articles in the tribal newsletter and two energy workshops. The vision, strategic plan, and code will provide the focus, direction and guidelines as the tribe seeks to develop renewable energy and energy efficiency.

  7. Diagnosing production problems with downhole video surveying at Prudhoe Bay

    SciTech Connect

    Ward, S.L.; Allen, T.T.; Chavers, R.D.; Robertson, T.N. ); Schultz, P.K.

    1994-11-01

    This paper describes a real-time, fiber-optic downhole video (DHV) system and its use as a diagnostic tool in solving production problems in Prudhoe Bay wells. Recent developments in lens preparation technology and advancements in the application of electro-fiber-optic cable have proved the viability of DHV surveying in oilfield applications. This paper presents case histories of the first field applications in which the fiber-optic DHV system was used to perform downhole visual inspections of tubulars and casing. These operations determined fluid entry under flowing conditions, verified tubing and casing integrity, and facilitated wireline fishing operations. The fiber-optic system provided more comprehensible identification capabilities and other operational advantages than obtainable with alternative methods of downhole diagnostic techniques or the DHV coaxial-cable systems. This paper also overviews the enhancements made since the first applications of fiber-optic cable.

  8. Modeling magnetic fields from a DC power cable buried beneath San Francisco Bay based on empirical measurements

    DOE PAGES [OSTI]

    Kavet, Robert; Wyman, Megan T.; Klimley, A. Peter; Carretero, Luis

    2016-02-25

    Here, the Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable’s path; these included the Sanmore » Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia- Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence of the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable’s contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured

  9. Empower Maryland Efficiency Act

    Office of Energy Efficiency and Renewable Energy (EERE)

    NOTE: In July 2015, the Public Service Commission (PSC) Order 87082 set post-2015 electric energy efficiency goal of 2% of annual retail sales beginning from 2018. The order initiates proceedings...

  10. ,"Maryland Natural Gas Summary"

    Energy Information Administration (EIA) (indexed site)

    ,"Data 4","Underground Storage",4,"Annual",2015,"06301967" ,"Data 5","Liquefied Natural Gas Storage",3,"Annual",2015,"06301980" ,"Data 6","Consumption",10,"Annual",2015,"06...

  11. Maryland Natural Gas Summary

    Energy Information Administration (EIA) (indexed site)

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  12. Maryland Natural Gas Prices

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Citygate Price 4.34 3.89 4.57 7.14 8.80 NA 1989-2016 Residential Price 11.02 NA 12.63 16.04 20.13 21.29 1989-2016 Percentage of Total Residential Deliveries included in Prices 72.5 NA 71.6 72.3 71.5 71.7 2002-2016 Commercial Price 8.82 NA NA 9.79 11.50 11.65 1989-2016 Percentage of Total Commercial Deliveries included in Prices 28.4 NA NA 20.0 16.0 18.4 1989-2016 Industrial Price 8.62 7.63 7.42 NA NA NA 2001-2016 Percentage of Total

  13. Maryland Natural Gas Prices

    Energy Information Administration (EIA) (indexed site)

    Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.49 6.26 5.67 5.37 6.36 4.99 1984-2015 Residential Price 12.44 12.10 12.17 11.67 12.21 12.05 1967-2015 Percentage of ...

  14. Maryland Natural Gas Summary

    Annual Energy Outlook

    Commercial 9.87 10.29 10.00 10.06 10.52 9.80 1967-2015 Industrial 9.05 8.61 8.01 8.47 9.94 9.70 1997-2015 Vehicle Fuel 5.99 5.09 -- 1993-2012 Electric Power 5.77 5.44 W 5.06 5.35 ...

  15. Make Energy at the Bay Area Maker Faire | Department of Energy

    Energy.gov [DOE] (indexed site)

    Make Energy at the Bay Area Maker Faire Video from the Department of Energy, published ... Here's a short video that captures some of their experiences at the Faire. For more ...

  16. FEMP ESPC Success Story - U.S. Naval Station, Guantanamo Bay...

    Energy.gov [DOE] (indexed site)

    and Cost Savings These photographs chronicle the installation of the wind turbines at John Paul Jones Hill, Guantanamo Bay. The four wind turbine towers are about 185 feet high. ...

  17. MHK Projects/OpenHydro Bay of Fundy Nova Scotia CA | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Phase Phase 1 Project Details OpenHydro is working with Canadian utility Nova Scotia Power to create a tidal demonstration project in the Bay of Fundy. Following successful...

  18. Airborne gamma-ray spectrometer and magnetometer survey: Coos Bay quadrangle, Oregon. Final report

    SciTech Connect

    Not Available

    1981-04-01

    Volume II contains the fight path, radiometric multi-parameter stacked profiles, magnetic and ancillary parameter stacked profiles, histograms, and anomaly maps for the Coos Bay Quadrangle in Oregon.

  19. Contaminant Sources are Known

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contaminant Sources are Known Contaminant Sources are Known Historical contaminant sources from liquid discharges and solid waste management units are known. August 1, 2013 Contaminant source map LANL contaminant source map RELATED IMAGES http://farm4.staticflickr.com/3789/9631743884_4caeb970f9_t.jpg Enlarge

  20. Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Union Address, Commitment to Clean Energy | Department of Energy Bay Area to Highlight State of the Union Address, Commitment to Clean Energy Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the Union Address, Commitment to Clean Energy January 31, 2012 - 7:38pm Addthis Washington, D.C. - As part of the Energy Department's ongoing efforts to highlight President Obama's State of the Union address and discuss the Obama Administration's commitment to American energy

  1. Comprehensive characterization report on Winter Quarters Bay, McMurdo Station, Antarctica

    SciTech Connect

    Crockett, A.B.; White, G.J.

    1997-01-01

    Winter Quarters Bay is a small embayment located adjacent to the United States largest base in Antarctica, McMurdo Station. McMurdo Station, which is managed by the National Science Foundation`s Office of Polar Programs, was constructed in 1955, has been in constant use since that time, and has a population of about 1,000 persons during the summer and about 250 people for the winter. The bay offers shelter for ships and an ice dock is used during January and February to off load fuel and cargo. During earlier times, trash from the McMurdo Station was piled on the steep shoreline of the bay, doused with several thousand gallons of fuel and ignited. That practice has ceased and the site has been regraded to cover the waste. The bottom of the bay is littered with drums, equipment, tanks, tires, all sorts of metal objects, cables, etc., especially the southeastern side where dumping took place. The sediments are gravel in some places yet fine and fluid at other sites with coarse particles intermixed. The original benthic community is not well recorded but significant ecological changes have occurred. Sediments are contaminated with PCBs, metals, and hydrocarbon fuels. This report summarizes available information on Winter Quarters Bay and was originally intended to be used by workshop participants to become familiar with the bay prior to becoming updated with unpublished data by various Antarctic investigators. The proposed workshop was to assist the National Science Foundation in determining whether and how the bay should be remediated and to develop an integrated research plan if additional data were needed. However, plans changed, the workshop was never conducted, but the briefing report was prepared. Most of this report reviews and summarizes other published data. The only new data are those from the Idaho National Engineering and Environmental Laboratory`s investigation into the distribution of organic contaminants in the bay and sediment toxicity testing.

  2. BayeSED: A GENERAL APPROACH TO FITTING THE SPECTRAL ENERGY DISTRIBUTION OF GALAXIES

    SciTech Connect

    Han, Yunkun; Han, Zhanwen E-mail: zhanwenhan@ynao.ac.cn

    2014-11-01

    We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large K{sub s} -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has been performed for the first time. We found that the 2003 model by Bruzual and Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the K{sub s} -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.

  3. Importance of Carolina Bays to the Avifauna of Pinelands in the Southeastern United States.

    SciTech Connect

    Czapka, Stephen, J.; Kilgo, John, C.

    2011-07-01

    Abstract - Past anthropogenic activity has led to the destruction or alteration of Carolina bay wetlands throughout the southeastern United States. Presently, urban development, combined with a 2001 ruling by the US Supreme Court relaxing protection of isolated wetlands, poses an increasing threat to these and other isolated wetland systems; however, little information exists on the importance of these wetland systems to birds. We compared breeding and wintering bird communities of upland pine (Pinus spp.) forests with and without Carolina bays. Estimated species richness was greater in pine forests with Carolina bays than without during the winter (31.7 ± 1.3 [mean ± SE] vs. 26.9 ± 1.2; P = 0.027), but not in the breeding season (27.9 ± 2.2 vs. 26.3 ± 2.2; P = 0.644). Total relative abundance did not differ between pine forests with Carolina bays and those without in either the breeding (148.0 ± 16.0 vs. 129.4 ± 10.4 birds/40 ha; P = 0.675) or winter (253.0 ± 36.4 vs. 148.8 ± 15.1 birds/40 ha; P = 0.100) seasons. However, 23 species, 43% of which were wetland-dependent, were observed only in pine forests with bays during the breeding season, and 20 species, 30% of which were wetland-dependent, were observed only in such sites during winter. In contrast, only 6 and 1 species were observed only in pine forests without bays during the breeding and winter seasons, respectively, indicating that few species were negatively affected by the presence of bays. Thus, Carolina bays appear to enrich the avifauna of pine forests in the southeastern United States.

  4. Evaluation of 1991-1992 Brood Overwinter-Reared Coho Released from Net Pens in Youngs Bay, Oregon : Final Completion Report Youngs Bay Terminal Fishery Project.

    SciTech Connect

    Hirose, Paul S.

    1997-01-01

    Funding from Bonneville Power Administration was provided to the Oregon Department of Fish and Wildlife and the Clatsop County Economic Development Council`s Fisheries Project to identify and develop terminal fishing opportunities. The 1991 and 1992 brood fingerling coho from Oregon Department of Fish and Wildlife hatcheries were successfully reared during the winter period to smolt stage in Youngs Bay utilizing floating net pens. Based on coded-wire-tag recoveries during 1991--93 from 2-week net-pen acclimation releases, total accountability of coho adults averaged 40,540 fish, with the Youngs Bay commercial harvest accounting for 39%. With reduced ocean harvest impacts during 1994 and 1995, 92% of 51,640 coho in 1994 and 68% of 23,599 coho in 1995 (based on coded-wire-tag recoveries) were accounted for in the Youngs Bay commercial fishery for combined 2-week and overwinter acclimation net-pen releases. Overwinter net-pen acclimation coho accounted for 35,063 and 15,775 coho adults in 1994 and 1995 with 93% and 68% accountable in the Youngs Bay commercial harvest. Based on coded-wire-tag recoveries, less than 1% of the adults resulting from releases at Youngs Bay net pens strayed to hatcheries, while none were recovered on spawning ground surveys during 1991--95. The highest survival rates were observed for 1991 and 1992 brood overwinter coho released in early May. Time of release, not rearing strategy, appears to be the determining factor affecting survival in Youngs Bay.

  5. Hardwood re-sprout control in hydrologically restored Carolina Bay depression wetlands.

    SciTech Connect

    Moser, Lee, Justin

    2009-06-01

    Carolina bays are isolated depression wetlands located in the upper coastal plain region of the eastern Unites States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches as a result of agricultural conversion. Restoration of bays is of interest because they are important habitats for rare flora and fauna species. Previous bay restoration projects have identified woody competitors in the seedbank and re-sprouting as impediments to the establishment of herbaceous wetland vegetation communities. Three bays were hydrologically restored on the Savannah River Site, SC, by plugging drainage ditches. Residual pine/hardwood stands within the bays were harvested and the vegetative response of the seedbank to the hydrologic change was monitored. A foliar herbicide approved for use in wetlands (Habitat® (Isopropylamine salt of Imazapyr)) was applied on one-half of each bay to control red maple (Acer rubrum L.), sweet gum (Liquidambar styraciflua L.), and water oak (Quercus nigra L.) sprouting. The effectiveness of the foliar herbicide was tested across a hydrologic gradient in an effort to better understand the relationship between depth and duration of flooding, the intensity of hardwood re-sprout pressure, and the need for hardwood management practices such as herbicide application.

  6. Electrolytes for power sources

    DOEpatents

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

  7. Electrolytes for power sources

    DOEpatents

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  8. Opportunities in African power generation: A business briefing for industry and investment executives. Held in Baltimore, Maryland, June 21-22, 1995. Export trade information

    SciTech Connect

    1995-06-21

    The report, prepared by the Institute of International Education, was funded by the U.S. Trade and Development Agency. The information contained in the report was compiled in part for a power generation conference held in Baltimore, Maryland. The focus of the report is the market created by electric power projects financed by multilateral development banks. The study contains country information and project profiles related to the energy sector for eleven countries: Benin, Botswana, Cote D`Ivoire, Ethiopia, Ghana, Malawi, Morocoo, Senegal, Tanzania, Zambia, and Zimbabwe. The report also outlines the range of service opportunities in the region such as consulting, engineering, construction and project management, and equipment procurement. It is divided into the following sections: (1) Agenda/Program; (2) African Energy Sector Overview; (3) Project Profiles; (4) Country Information; and (5) Attendees.

  9. Transactions of the twenty-third water reactor safety information meeting to be held at Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995

    SciTech Connect

    Monteleone, S.

    1995-09-01

    This report contains summaries of papers on reactor safety research to be presented at the 23rd Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23--25, 1995. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory, Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.

  10. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update

    East Region Connecticut, Delaware, District of Columbia, Florida, Georgia, Iowa, Illinois, Indiana, Kentucky, Massachusetts, Maryland, Maine, Michigan, Missouri, North Carolina, Nebraska, New Hampshire, New Jersey, New York, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Vermont, Virginia, Wisconsin, and West Virginia. Natural Gas A gaseous mixture of hydrocarbon compounds, the primary one being methane. Producing Region Alabama, Arkansas, Kansas, Louisiana, Mississippi, New

  11. EA-1992: Principle Power, Inc., WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon. The EA has been cancelled.

  12. Capital Sources and Providers

    Energy.gov [DOE]

    The most important elements of a clean energy lending program are the capital source and the capital provider. The capital source provides the funding to pay for clean energy projects, and the capital provider manages those funding sources. For example, a bank might use its customers' deposits as a capital source, but as the capital provider, the bank manages the investment of that capital.

  13. HOOPER BAY HOUSING ANALYSIS AND ENERGY FEASIBILITY REPORT

    SciTech Connect

    SEA LION CORPORATION; COLD CLIMATE HOUSING RESEARCH CENTER; SOLUTIONS FOR HEALTHY BREATHING; WHITNEY CONSTRUCTION

    2012-12-30

    Sea Lion applied for and received a grant from the Department of Energy (DOE) towards this end titled Energy Efficiency Development and Deployment in Indian Country. The initial objectives of the Hooper Bay Energy Efficiency Feasibility Study were to demonstrate a 30% reduction in residential/commercial energy usage and identify the economic benefits of implementing energy efficiency measures to the Tribe through: (1) partnering with Whitney Construction and Solutions for Healthy Breathing in the training and hire of 2 local energy assessors to conduct energy audits of 9 representative housing models and 2 commercial units in the community. These homes are representative of 52 homes constructed across different eras. (2) partnering with Cold Climate Housing Research Center to document current electrical and heating energy consumption and analyze data for a final feasibility report (3) assessing the economics of electricity & heating fuel usage; (4) projecting energy savings or fossil fuel reduction by modeling of improvement scenarios and cost feasibility The following two objectives will be completed after the publication of this report: (5) the development of materials lists for energy efficiency improvements (6) identifying financing options for the follow-up energy efficiency implementation phase.

  14. Multilevel cascade voltage source inverter with seperate DC sources...

    Office of Scientific and Technical Information (OSTI)

    Multilevel cascade voltage source inverter with seperate DC sources Citation Details In-Document Search Title: Multilevel cascade voltage source inverter with seperate DC sources ...

  15. Multilevel cascade voltage source inverter with seperate DC sources...

    Office of Scientific and Technical Information (OSTI)

    Multilevel cascade voltage source inverter with seperate DC sources Citation Details In-Document Search Title: Multilevel cascade voltage source inverter with seperate DC sources A ...

  16. A Simple Radionuclide-Driven Single-Ion Source (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    M. ; SLAC ; Burenkov, A. ; Moscow, ITEP ; Cook, S. ; Colorado State U. ; Daniels, T. ; Massachusetts U., Amherst Laurentian U. Bern U., LHEP Carleton U. Maryland ...

  17. Understanding the Flushing Capability of Bellingham Bay and Its Implication on Bottom Water Hypoxia

    SciTech Connect

    Wang, Taiping; Yang, Zhaoqing

    2015-05-05

    In this study, an unstructured-grid finite-volume coastal ocean model (FVCOM) was used to simulate hydrodynamic circulation and assess the flushing capability in Bellingham Bay, Washington, USA. The model was reasonably calibrated against field observations for water level, velocity and salinity, and was further used to calculate residence time distributions in the study site. The model results suggest that, despite the large tidal ranges (~4 m during spring tide), tidal currents are relatively weak in Bellingham Bay with surface currents generally below 0.5 m/s. The local residence time in Bellingham Bay varies from to near zero to as long as 15 days, depending on the location and river flow condition. In general, Bellingham Bay is a well-flushed coastal embayment affected by freshwater discharge, tides, wind, and density-driven circulation. The basin-wide global residence time ranges from 5-7 days. The model results also provide useful information on possible causes of the emerging summertime hypoxia problem in the north central region of Bellingham Bay. It was concluded that the formation of the bottom hypoxic water should result from the increased consumption rate of oxygen in the bottom oceanic inflow with low dissolved oxygen by organic matters accumulated at the regions characterized with relatively long residence time in summer months.

  18. Liverpool Bay Development - oil spill response strategy and its realisation

    SciTech Connect

    Gilliver, R.E.; Methven, J.O.; Nicholls, M.R.

    1996-12-31

    Robust contingency oil spill response arrangements are a prerequisite of nearshore oilfield developments. The Liverpool Bay Development (LBD) represents the greatest UK challenge to date in this regard. This paper describes the development of BHP Petroleum E/R/A/ME Region`s LBD oil spill response strategy and how it was possible to implement this strategy in a very cost effective way. The strategy was based initially on the field Environmental Impact Assessments, which had identified oil spill hazards and risks based on industry data. Additional studies and tests defined credible oil spill events, specific oil properties and coastal impacts. The types, levels and location of response requirements offshore and onshore were then evaluated - we had our strategy. A series of in-house brain storm sessions reviewed all possible means of achieving the strategy. LBD was unique: a 4 field nearshore development with offshore crude storage and offloading. Novel solutions should be possible, resulting in a more cost effective implementation of the response strategy. Using multi-function vessels was a recurring theme - oil spill response arrangements should not be considered in isolation but together with other marine support services. A crucial step was to realize accepted practices were based on single well or single field scenarios. The company successfully opened a debate within the industry and government agencies on existing UK Regulations governing oil spill recovery, resulting in drafted, more practical Regulations and Guidelines. A shortlist of possible vessel scenarios was then prepared. These were costed and tested against the response strategy by risk analysis, checking double jeopardy cover for all marine support services. Government Agencies were consulted closely. This was particularly important because of the novel nature of the proposals. Their considered and positive responses enabled us to go forward with the most cost effective acceptable solution.

  19. EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

    Energy.gov [DOE]

    Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

  20. Cobalt Source Calibration

    SciTech Connect

    Barnes, M.

    1999-10-25

    The data obtained from these tests determine the dose rate of the two cobalt sources in SRTC. This testing used chemical dosimetry to measure the dose rate of a radioactive source.

  1. SOURCE SELECTION INFORMATION -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SOURCE SELECTION INFORMATION - SEE FEDERAL ACQUISITION REGULATION (FAR) 2.101 AND 3.104 ... SOURCE SELECTION INFORMATION - SEE FEDERAL ACQUISITION REGULATION (FAR) 2.101 AND 3.104 ...

  2. Plasma Sources Sci. Technol.

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    We have spectroscopically investigated the Sterling Scientific miniature electrostatic plasma source-a plasma gun. This gun is a clean source of high-density (10 19 -10 20 m -3 ), ...

  3. Development and application of a contaminant transport, dispersion and impact model for San Diego Bay

    SciTech Connect

    Richter, K.E.; Sutton, D.

    1994-12-31

    The authors are collaborating with colleagues from the US Geological Survey and Army Corps of Engineers in developing and validating hydrodynamic, sediment transport, contaminant partitioning and food chain models for San Diego Bay. The models will be integrated, graphical, and designed as an adjunct to risk assessment field studies. While initially focusing on PAH release (primarily creosote) from the San Diego Naval Station, the authors hope to develop models applicable to a variety of contaminants introduced into the bay. Sensitive communities the authors hope to address include eel grass beds in the south bay and kelp forests at the mouth. The structure of the model, its rationale, current validation efforts, and other cooperating agencies/universities will be presented.

  4. Locations and areas of ponds and Carolina Bays at the Savannah River Plant

    SciTech Connect

    Shields, J.D.; Woody, N.D.; Dicks, A.S.; Hollod, G.J.; Schalles, J.; Leversee, G.J.

    1982-05-01

    The Savannah River Plant has 28 ponds and 190 Carolina Bays on its 192,000-acreite. Excluding the Par Pond system, the mean pond area is 17.6 acre, with a range of 0.4 to 202.8 acres. Par Pond is the largest pond, with an area of 2500 acres. The mean Carolina Bay area is 6.6 acres, with a range of less than 0.3 to 124.0 acres. The geographical location of each pond and bay has been digitized and can be graphically displayed by computer. This capability will facilitate identification of wetland areas as required by Executive Order 11990 (Protection of Wetlands, May 24, 1977).

  5. Research in theoretical physics. [Henry A. Rowland Dept. of Physics and Astronomy, The Johns Hopkins Univ. , Baltimore, Maryland

    SciTech Connect

    Domokos, G.; Kovesi-Domokos, S.

    1992-12-01

    Progress made in the following areas is summarized: simulation of extensive air showers induced by interactions existing beyond the currently accepted Standard Model'' of elementary particle interactions; search for physics beyond the Standard Model'' in gluonic inclusive decays of heavy quarks; obtaining limits on the applicability of the special theory of relativity; an improved method of obtaining upper limits on the masses of primaries of extensive air showers associated with point sources in the sky. 8 figs., 1 tab., 73 refs.

  6. 9 Cool Technologies at the Bay Area Maker Faire | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9 Cool Technologies at the Bay Area Maker Faire 9 Cool Technologies at the Bay Area Maker Faire May 12, 2016 - 10:14am Addthis PARTS FROM THE WORLD’S LARGEST LASER 1 of 9 PARTS FROM THE WORLD'S LARGEST LASER You're looking at the inside of the world's largest and most powerful laser. It focuses the intense energy of 192 giant laser beams on a BB-sized target in experiments to create nuclear fusion. Examples of the optics that focus the lasers and targets at which they're aimed will be on

  7. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations

    SciTech Connect

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

    2011-11-01

    DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

  8. DC source assemblies

    DOEpatents

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  9. Sites Pending Transfer to LM | Department of Energy

    Office of Legacy Management (LM)

    Site Iowa Middletown Site Kentucky Paducah Site Massachusetts Attleboro Site Maryland Curtis Bay Site Missouri Berkeley Site Berkeley Site Vicinity Properties Hazelwood Site St....

  10. Microwave ion source

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  11. Dynamic radioactive particle source

    DOEpatents

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  12. Open Source Software

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Open Source Software Open Source Software All open source software available through the Laboratory is listed below. Contact thumbnail of Kathleen McDonald Head of Intellectual Property, Business Development Executive Kathleen McDonald Richard P. Feynman Center for Innovation (505) 667-5844 Email For more information regarding how to access software from Los Alamos, contact the Software Team. brulilo, Version 0.x brulilo is a Python package for building and evolving thermonuclear reaction

  13. Systems Performance Analyses of Alaska Wind-Diesel Projects; Toksook Bay, Alaska (Fact Sheet)

    SciTech Connect

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Toksook Bay, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, estimated fuel savings, and wind system availability.

  14. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EIS analyzes BPA's proposed action to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  15. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Energy.gov [DOE]

    Bonneville Power Administration proposes to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  16. Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois

    Gasoline and Diesel Fuel Update

    C e n t r a l A p p a l a c h i a n B a s i n Michigan Basin Greater Green River Basin ... Coalbed Methane Fields, Lower 48 States 0 200 400 100 300 Miles Source: Energy ...

  17. SOURCE SELECTION INFORMATION -

    Energy.gov [DOE] (indexed site)

    SOURCE SELECTION INFORMATION - SEE FEDERAL ACQUISITION REGULATION (FAR) 2.101 AND 3.104 Department of Energy Washington, DC 20585 (enter date here, centered revised template...

  18. Beamlines | Advanced Photon Source

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Beamlines Beamlines Home Beamlines Directory Research Techniques Sectors Directory Status and Schedule Safety and Training Beamlines The Advanced Photon Source consists of 34...

  19. Light-Source Facilities

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Facilities, Denmark ISI-800 - Institute of Metal Physics, Ukraine Kharkov Institute of Physics and Technology, Ukraine KSRS - Kurchatov Synchrotron Radiation Source, Russian ...

  20. Overview | Advanced Photon Source

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    APS Overview: Introduction APS Systems Map LINAC Booster Synchrotron Storage Ring Insertion Devices Experiment Hall LOMs & Beamlines Overview of the APS The Advanced Photon Source...