National Library of Energy BETA

Sample records for battery charger energy

  1. Battery Chargers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery Chargers Battery Chargers The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Battery Chargers -- v1.0 (94 KB) More Documents & Publications Illuminated Exit Signs

  2. Energy Conservation Standards for Battery Chargers and External...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery Chargers and External Power Supplies; Proposed Rule Making - Ex Parte Communication Energy Conservation Standards for Battery Chargers and External Power Supplies; Proposed ...

  3. Battery Charger Efficiency

    Energy Savers

    Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC Testing assumes all variables are known - battery chemistry, battery size. ...

  4. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery Charger Efficiency Issues with Marine and Recreational Vehicle Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC Testing assumes all variables are known - battery chemistry, battery size. This is not the case in Marine and RV applications. * The battery charger manufacturer has no influence on the selection of batteries. * The battery charger could be used to charge a single battery, single battery bank, multiple batteries or multiple

  5. ISSUANCE 2015-07-30: Energy Conservation Program: Energy Conservation Standards for Battery Chargers, Supplemental Notice of Proposed Rulemaking

    Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Battery Chargers, Supplemental Notice of Proposed Rulemaking

  6. Ex Parte Meeting with DOE and Navigant Consulting on Battery Charger Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy and Navigant Consulting on Battery Charger Energy Ex Parte Meeting with DOE and Navigant Consulting on Battery Charger Energy Ex parte guidance for Association of Home Appliance Manufacturers on battery charger energy efficiency standards Microsoft Word - AHAM Letter Exparte 122310.doc (26.97 KB) More Documents & Publications DOE - BCS TSD comments ISSUANCE 2016-05-06: Energy Conservation Program: Energy Conservation Standards for Battery Chargers, Final Rule

  7. Memorandum to DOE re Battery Chargers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Memorandum to DOE re Battery Chargers Memorandum to DOE re Battery Chargers We are following up on our meeting with DOE on August 7, 2014. During the meeting, several topics were identified as warranting further investigation as related to battery chargers, including test procedures and standards. This document provides additional information relating to these topics. We request that this document be placed in the record of this proceeding. Memorandum to DOE re Battery Chargers (229 KB) More

  8. Meeting on Battery Chargers and External Power Supplies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy on Battery Chargers and External Power Supplies Meeting on Battery Chargers and External Power Supplies On Monday, June 11, 2012, representatives of several States and representatives of several non-profit energy efficiency organizations met with representatives of the Department of Energy to discuss the Notice of Proposed Rulemaking for Energy Conservation Standards for Battery Chargers and External Power Supplies, Batteries_and_External_Power_Supplies.pdf (57.12 KB) More Documents

  9. Energy Conservation Standards for Battery Chargers and External Power Supplies; Proposed Rule Making- Ex Parte Communication

    Energy.gov [DOE]

    Apple Inc. met with DOE to discuss the notice of proposed rule making the Department sent out regarding battery chargers and external power supplies.  Below is a list of topics that Apple discussed...

  10. Savings Potential of ENERGY STAR(R) External Power Adapters andBattery Chargers

    SciTech Connect (OSTI)

    Webber, Carrie; Korn, David; Sanchez, Marla

    2007-02-28

    External power adapters may lose 10 to 70 percent of theenergy they consume, dissipated as heat rather than converted into usefulenergy. Battery charging systems have more avenues for losses: inaddition to power conversion losses, power is consumed by the chargingcircuitry, and additional power may be needed after the battery is fullcharged to balance self-discharge. In 2005, the Environmental ProtectionAgency launched a new ENERGY STAR(R) label for external power supplies(EPSs) that convert line-voltage AC electricity into low-voltage DCelectricity for certain electronic devices. The specification includedpower supplies for products with battery charging functions (e.g. laptopsand cell phones), but excluded others. In January 2006, a separatespecification was issued for battery charging systems contained primarilyin small household appliances and power tools. In addition to the ENERGYSTAR(R) label, the state of California will implement minimum energyperformance standards for EPSs in 2007, and similar standards for EPSsand battery chargers are in development at the national level.Many of theproducts covered by these policies use relatively little power and havemodest per-unit savings potential compared to conventional energyefficiency targets. But with an estimated 1.5 billion adapters and 230million battery charging systems in use in the United States, theaggregate savings potential is quite high. This paper presents estimatesof the savings potential for external power adapters and battery chargingsystems through 2025.

  11. Compact, Interactive Electric Vehicle Charger: Gallium-Nitride Switch Technology for Bi-directional Battery-to-Grid Charger Applications

    SciTech Connect (OSTI)

    2010-10-01

    ADEPT Project: HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with an innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.

  12. HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies...

  13. HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers...

    Office of Environmental Management (EM)

    HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies ...

  14. HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers...

    Energy.gov (indexed) [DOE]

    to comment on the new DOE rulemaking for Battery Chargers and External Power Supplies. ... HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies ...

  15. Performance of the Lester battery charger in electric vehicles

    SciTech Connect (OSTI)

    Vivian, H.C.; Bryant, J.A.

    1984-04-15

    Tests were performed on an improved battery charger manufactured by Lester Electrical of Nebraska, Inc. This charger was installed in a South Coast Technology Rabbit No. 4, which was equipped with lead-acid batteries produced by ESB Company. The primary purpose of the testing was to develop test methodologies for battery charger evaluation. To this end tests were developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests showed this charger to be a considerable improvement in the state of the art for electric vehicle chargers.

  16. Battery Chargers | Electrical Power Conversion and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from

  17. 2014-05-08 Issuance: Test Procedures for Battery Chargers; Notice of Data

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Availability | Department of Energy Test Procedures for Battery Chargers; Notice of Data Availability 2014-05-08 Issuance: Test Procedures for Battery Chargers; Notice of Data Availability This document is a pre-publication Federal Register notice of data availability regarding test procedures for battery chargers, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 8, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted

  18. HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Supplies | Department of Energy HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies Hewlett-Packard Company (HP) appreciates the opportunity to comment on the new DOE rulemaking for Battery Chargers and External Power Supplies. Thank you for taking the time to speak with us. HP believes that existing voluntary Market Access Requirements, such as EPEAT and ENERGY

  19. Request for Information on Evaluating New Products for the Battery Chargers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and External Power Supply Rulemaking - Ex Parte Communication | Department of Energy Evaluating New Products for the Battery Chargers and External Power Supply Rulemaking - Ex Parte Communication Request for Information on Evaluating New Products for the Battery Chargers and External Power Supply Rulemaking - Ex Parte Communication List of topics that Apple Inc. discussed with DOE RFI_Evaluating New Products_Battery Chargers & External Power Supply Rulemaking.pdf (12.69 KB) More

  20. Battery charger and state of charge indicator. Final report

    SciTech Connect (OSTI)

    Latos, T.S.

    1984-04-15

    The battery charger has a full-wave rectifier in series with a transformer isolated 20 kHz dc-dc converter with high frequency switches which are programmed to actively shape the input ac line current to be a mirror image of the ac line voltage. The power circuit is capable of operating at 2 kW peak and 1 kW average power. The BC/SCI has two major subsystems: (1) the battery charger power electronics with its controls; and (2) a microcomputer subsystem which is used to acquire battery terminal data and exercise the state-of-charge software programs. The state-of-charge definition employed is the energy remaining in the battery when extracted at a 10 kW rate divided by the energy capacity of a fully charged new battery. The battery charger circuit is an isolated boost converter operating at an internal frequency of 20 kHz. The switches selected for the battery charger are the single most important item in determining its efficiency. The combination of voltage and current requirements dictated the use of high power NPN Darlington switching transistors. The power circuit topology developed is a three switch design utilizing a power FET on the center tap of the isolation transformer and the power Darlingtons on each of the two ends. An analog control system is employed to accomplish active input current waveshaping as well as the necessary regulation.

  1. 2014-05-08 Issuance: Test Procedures for Battery Chargers; Notice...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Test Procedures for Battery Chargers; Notice of Data Availability 2014-05-08 Issuance: Test Procedures for Battery Chargers; Notice of Data Availability This document is a ...

  2. Will Your Battery Survive a World With Fast Chargers?

    SciTech Connect (OSTI)

    Neubauer, J. S.; Wood, E.

    2015-05-04

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.

  3. Webinar: Test Procedure for Battery Chargers; Notice of Data Availability

    Energy.gov [DOE]

    DOE is conducting a public meeting and webinar for the notice of data availability regarding test procedures for battery chargers. 79 FR 27774  (May 15, 2014). For more information, please visit...

  4. Evaluation of lithium-ion synergetic battery pack as battery charger

    SciTech Connect (OSTI)

    Davis, A.; Salameh, Z.M.; Eaves, S.S.

    1999-09-01

    A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and a battery charger. In this paper, the authors compare the performance of the Synergetic Battery Pack as a battery charger with several simple conventional battery charging circuits via computer simulation. The factors of comparison were power factor, harmonic distortion, and circuit efficiency. The simulations showed that the SBP is superior to the conventional charging circuits since the power factor is unity and harmonic distortion is negligible.

  5. Microsoft Word - WRFMAIN-#13788450-v4-Memorandum_to_DOE_re_battery_chargers_(Oct__2014)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    October 20, 2014 MEMORANDUM To: Jeremy Dommu From: Jason Friedrich and Jennifer Sanford Re: Department of Energy, Notice of Data Availability for Energy Conservation Standards and Test Procedure for Battery Chargers, 79 Fed. Reg. 27774 (May 15, 2014), Docket No. EERE-2014-BT-NOA-0012; Additional Information for DOE Consideration Introduction We are following up on our meeting with DOE on August 7, 2014. During the meeting, several topics were identified as warranting further investigation as

  6. Combination field chopper and battery charger

    DOE Patents [OSTI]

    Steigerwald, R.L.; Crouch, K.E.; Wilson, J.W.A.

    1979-08-13

    A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.

  7. Combination field chopper and battery charger

    DOE Patents [OSTI]

    Steigerwald, Robert L.; Crouch, Keith E.; Wilson, James W. A.

    1981-01-01

    A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.

  8. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    SciTech Connect (OSTI)

    1999-09-01

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  9. Understanding and managing the effects of battery charger and inverter aging

    SciTech Connect (OSTI)

    Gunther, W. ); Aggarwal, S. )

    1992-01-01

    An aging assessment of battery chargers and inverters was conducted under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program. The intentions of this program are to resolve issues related to the aging and service wear of equipment and systems at operating reactor facilities and to assess their impact on safety. Inverters and battery chargers are used in nuclear power plants to perform significant functions related to plant safety and availability. The specific impact of a battery charger or inverter failure varies with plant configuration. Operating experience data have demonstrated that reactor trips, safety injection system actuations, and inoperable emergency core cooling systems have resulted from inverter failures; and dc bus degradation leading to diesel generator inoperability or loss of control room annunication and indication have resulted from battery and battery charger failures. For the battery charger and inverter, the aging and service wear of subcomponents have contributed significantly to equipment failures. This paper summarizes the data and then describes methods that can be used to detect battery charger and inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the managing of battery charger and inverter aging is emphasized. 5 refs.

  10. Understanding and managing the effects of battery charger and inverter aging

    SciTech Connect (OSTI)

    Gunther, W.; Aggarwal, S.

    1992-06-01

    An aging assessment of battery chargers and inverters was conducted under the auspices of the NRC`s Nuclear Plant Aging Research (NPAR) Program. The intentions of this program are to resolve issues related to the aging and service wear of equipment and systems at operating reactor facilities and to assess their impact on safety. Inverters and battery chargers are used in nuclear power plants to perform significant functions related to plant safety and availability. The specific impact of a battery charger or inverter failure varies with plant configuration. Operating experience data have demonstrated that reactor trips, safety injection system actuations, and inoperable emergency core cooling systems have resulted from inverter failures; and dc bus degradation leading to diesel generator inoperability or loss of control room annunication and indication have resulted from battery and battery charger failures. For the battery charger and inverter, the aging and service wear of subcomponents have contributed significantly to equipment failures. This paper summarizes the data and then describes methods that can be used to detect battery charger and inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the managing of battery charger and inverter aging is emphasized. 5 refs.

  11. Pulse width modulation inverter with battery charger

    DOE Patents [OSTI]

    Slicker, James M.

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  12. ISSUANCE 2016-05-06: Energy Conservation Program: Energy Conservation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Conservation Standards for Battery Chargers, Final Rule ISSUANCE 2016-05-06: Energy Conservation Program: Energy Conservation Standards for Battery Chargers, Final Rule This ...

  13. Portable battery-free charger for radiation dosimeters

    DOE Patents [OSTI]

    Manning, Frank W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.

  14. Remember the Batteries – and Maybe a Charger?

    Energy.gov [DOE]

    For the holiday gift-giving season take a look at the ENERGY STAR® list of certified rechargeable batteries.

  15. HP Ex Parte Memo on Proposed Rulemaking for Battery Chargers and External Power Supplies

    Energy.gov [DOE]

    Hewlett-Packard Company (HP) appreciates the opportunity to comment on the new DOE rulemaking for Battery Chargers and External Power Supplies. Thank you for taking the time to speak with us. HP...

  16. Meeting regarding DOE Energy Conservations Standards for Battery |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy regarding DOE Energy Conservations Standards for Battery Meeting regarding DOE Energy Conservations Standards for Battery Discussion points presented relating to the U.S. Department of Energy (DOE) Energy Conservation Standards for Battery Chargers. The DOE battery charger efficiency regulations cover only consumer products. Lester_Electrical_Memo.pdf (116.81 KB) More Documents & Publications Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57

  17. ISSUANCE 2016-05-06: Energy Conservation Program: Test Procedure for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery Chargers, Final Rule | Department of Energy Test Procedure for Battery Chargers, Final Rule ISSUANCE 2016-05-06: Energy Conservation Program: Test Procedure for Battery Chargers, Final Rule This document is the Energy Conservation Program: Test Procedure for Battery Chargers, Final Rule. Battery Chargers TP Final Rule.pdf (449.69 KB) More Documents & Publications 2014-05-08 Issuance: Test Procedures for Battery Chargers; Notice of Data Availability ISSUANCE 2015-07-27: Energy

  18. PEPCO turbo-Z battery charger system. Technical progress report, calendar quarter ending March 31, 1998

    SciTech Connect (OSTI)

    Rose, J.

    1998-04-30

    During the First Quarter of 1998, the engineers working on this Grant have dramatically increased the rate of work. They are developing a Flexible Battery Charger Control Board, a Battery Charger Test Stand, and writing software that can be used with both. The status is as follows: (a) Flexible Battery Charger Control Board -- a preliminary electrical design is complete. They are now investigating how the control design might incorporate provisions for an additional Electric Vehicle charging feature. This additional design is based on SAE J2293 -- Recommended Practice for EV Communications. Investigation of J2293 is being considered for controlling a power supply using proprietary Capacitive Charging Coupler, and controlling the power supply with this control board. (b) Battery Test Stand -- the preliminary hardware design is complete. The design includes some very desirable additions to the specifications, including an AC line source for the charger being tested and a battery simulator. Purchasing of the equipment and materials for the test stand is underway. The engineers have been working in the SAE standards setting committees for Electric Vehicles for several years. In particular, they have been working to set the Capacitive Coupler as the standard for connecting an EV to the utility grid system. Substantial test data has been distributed to the committee members on the Conductive and Inductive Charging Systems. It is their opinion that they have a superior coupling mechanism, and they are proceeding to develop this technology.

  19. ISSUANCE 2016-05-06: Energy Conservation Program: Energy Conservation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Standards for Battery Chargers, Final Rule | Department of Energy Energy Conservation Standards for Battery Chargers, Final Rule ISSUANCE 2016-05-06: Energy Conservation Program: Energy Conservation Standards for Battery Chargers, Final Rule This document is the Energy Conservation Program: Energy Conservation Standards for Battery Chargers, Final Rule. Battery Chargers Final Rule.pdf (1.35 MB) More Documents & Publications ISSUANCE 2015-07-30: Energy Conservation Program: Energy

  20. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery Chargers, Notice of Proposed Rulemaking | Department of Energy 27: Energy Conservation Program: Test Procedures for Battery Chargers, Notice of Proposed Rulemaking ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Battery Chargers, Notice of Proposed Rulemaking This document is the Energy Conservation Program: Test Procedures for Battery Chargers, Notice of Proposed Rulemaking. battery_chargers_tp_nopr.pdf (336.62 KB) More Documents & Publications ISSUANCE

  1. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    SciTech Connect (OSTI)

    2010-09-14

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

  2. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures...

    Energy Savers

    27: Energy Conservation Program: Test Procedures for Battery Chargers, Notice of Proposed Rulemaking ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Battery ...

  3. Grid Friendly(tm) Charger Controller - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Startup America Startup America Electricity Transmission Electricity Transmission Find More Like This Return to Search Grid Friendly(tm) Charger Controller Pacific Northwest National Laboratory Contact PNNL About This Technology This graphical representation shows the concept controller box installed in the vehicle and initiating communication with a residential or municipal charging station. This graphical representation shows the concept controller box

  4. ISSUANCE 2015-07-30: Energy Conservation Program: Energy Conservation...

    Energy.gov (indexed) [DOE]

    More Documents & Publications ISSUANCE 2016-05-06: Energy Conservation Program: Energy Conservation Standards for Battery Chargers, Final Rule ISSUANCE 2016-05-06: Energy ...

  5. Aging Management Guideline for commercial nuclear power plants: Battery chargers, inverters and uninterruptible power supplies. Final report

    SciTech Connect (OSTI)

    Berg, R.; Stroinski, M.; Giachetti, R.

    1994-02-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant battery chargers, inverters and uninterruptible power supplies important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already, experienced) and aging management program activities to the more generic results and recommendations presented herein.

  6. ISSUANCE 2016-05-06: Energy Conservation Program: Test Procedure...

    Energy.gov (indexed) [DOE]

    2015-07-27: Energy Conservation Program: Test Procedures for Battery Chargers, Notice of Proposed Rulemaking ISSUANCE 2016-05-06: Energy Conservation Program: Energy ...

  7. Fact #855 January 12, 2015 Electric Vehicle Chargers by Network...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 January 12, 2015 Electric Vehicle Chargers by Network and State Fact 855 January 12, 2015 Electric Vehicle Chargers by Network and State The Department of Energy's Alternative ...

  8. Batteries and energy systems

    SciTech Connect (OSTI)

    Mantell, C.L.

    1982-01-01

    A historical review of the galvanic concept and a brief description of the theory of operation of batteries are followed by chapters on specific types of batteries and energy systems. Chapters contain a section on basic theory, performance and applications. Secondary cells discussed are: SLI batteries, lead-acid storage batteries, lead secondary cells, alkaline secondary cells, nickel and silver-cadmium systems and solid electrolyte systems. Other chapters discuss battery charging, regenerative electrochemical systems, solar cells, fuel cells, electric vehicles and windmills. (KAW)

  9. Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. Batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the

  10. Battery Anodes > Batteries & Fuel Cells > Research > The Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lithium Anode The anode in the battery deserves an equal say in the overall performance of a battery. For an effective development of a high energy density battery, the use of high ...

  11. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C; Bedir, Abdulkadir; Ozpineci, Burak; Tolbert, Leon M

    2012-03-01

    More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term

  12. Tips: Home Office and Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    chargers when the batteries are fully charged or the chargers are not in use. Use rechargeable batteries for products like cordless phones and digital cameras. Studies have shown...

  13. USABC Battery Separator Development | Department of Energy

    Energy.gov (indexed) [DOE]

    USABC Battery Separator Development Overview and Progress of United States Advanced Battery Consortium (USABC) Activity Vehicle Technologies Office: 2010 Energy Storage R&D Annual ...

  14. Category:Batteries | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    9 pages are in this category, out of 9 total. * Definition:Battery B Batteries and Energy Storage Technology BEST L Definition:Lead-acid battery L cont. Definition:DIY...

  15. Batteries and Energy Storage Technology BEST | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Batteries and Energy Storage Technology BEST Jump to: navigation, search Name: Batteries and Energy Storage Technology (BEST) Place: United Kingdom Product: International quarterly...

  16. High Energy Batteries India Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Batteries India Ltd Jump to: navigation, search Name: High Energy Batteries (India) Ltd Place: Chennai, Andhra Pradesh, India Zip: 600096 Product: Manufacturer of...

  17. Battery Life Predictive Model - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Energy Analysis Energy Analysis Find More Like This Return to Search Battery Life Predictive Model National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Batteries are one of the leading cost drivers of any electric vehicle project. Current practices require that batteries be oversized by design in order to meet the battery warrantee's end-of-life (EOL) power and energy requirements.

  18. An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Su, Gui-Jia; Tang, Lixin

    2013-01-01

    Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

  19. California Lithium Battery, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage

  20. Optima Batteries | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: www.optimabatteries.com References: Optima Batteries1 Information About...

  1. Using all energy in a battery

    SciTech Connect (OSTI)

    Dudney, Nancy J.; Li, Juchuan

    2015-01-09

    It is not simple to pull all the energy from a battery. For a battery to discharge, electrons and ions have to reach the same place in the active electrode material at the same moment. To reach the entire volume of the battery and maximize energy use, internal pathways for both electrons and ions must be low-resistance and continuous, connecting all regions of the battery electrode. Traditional batteries consist of a randomly distributed mixture of conductive phases within the active battery material. In these materials, bottlenecks and poor contacts may impede effective access to parts of the battery. On page 149 of this issue, Kirshenbaum et al. (1) explore a different approach, in which silver electronic pathways form on internal surfaces as the battery is discharged. Finally, the electronic pathways are well distributed throughout the electrode, improving battery performance.

  2. Using all energy in a battery

    DOE PAGES-Beta [OSTI]

    Dudney, Nancy J.; Li, Juchuan

    2015-01-09

    It is not simple to pull all the energy from a battery. For a battery to discharge, electrons and ions have to reach the same place in the active electrode material at the same moment. To reach the entire volume of the battery and maximize energy use, internal pathways for both electrons and ions must be low-resistance and continuous, connecting all regions of the battery electrode. Traditional batteries consist of a randomly distributed mixture of conductive phases within the active battery material. In these materials, bottlenecks and poor contacts may impede effective access to parts of the battery. On pagemore » 149 of this issue, Kirshenbaum et al. (1) explore a different approach, in which silver electronic pathways form on internal surfaces as the battery is discharged. Finally, the electronic pathways are well distributed throughout the electrode, improving battery performance.« less

  3. Redox Flow Batteries - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    large quantities of renewable, intermittent generation into the electrical grid. ... battery that can reversibly convert electrical energy into chemical energy which are ...

  4. Leading experts to speak at battery & energy storage technology...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    including: new battery chemistries, battery longevity and performance, energy storage in electric grid applications and the latest developments in fuel cells and flow batteries. ...

  5. Lithium-Ion Batteries - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Energy Analysis Energy Analysis Find More Like This Return to Search Lithium-Ion Batteries Predictive computer models for lithium-ion battery performance under standard and potentially abusive conditions National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Design. Build. Test. Break. Repeat. Developing batteries is an expensive and time-intensive process. Testing costs the

  6. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Testing Reports DC Fast Charge Impacts on Battery Life and Vehicle Performance INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems

  7. A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Su, Gui-Jia; Tang, Lixin

    2014-01-01

    In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmented inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.

  8. GBP Battery | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    GBP Battery Jump to: navigation, search Name: GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications....

  9. Prieto Battery | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Colorado Zip: 80526 Product: Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References: Prieto Battery1 This...

  10. Phylion Battery | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Phylion Battery Jump to: navigation, search Name: Phylion Battery Place: Suzhou, Jiangsu Province, China Zip: 215011 Sector: Vehicles Product: Jiangsu-province-based producer of...

  11. Battery Ventures | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Battery Ventures (Boston) Name: Battery Ventures (Boston) Address: 930 Winter Street, Suite 2500 Place: Waltham, Massachusetts Zip: 02451 Region: Greater Boston Area Product:...

  12. Batteries for Large Scale Energy Storage

    SciTech Connect (OSTI)

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  13. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  14. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Environmental Management (EM)

    Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is ...

  15. Battery storage for supplementing renewable energy systems

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  16. Batteries and Energy Storage | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles,

  17. New York Battery and Energy Storage Technology Consortium NY...

    Open Energy Information (Open El) [EERE & EIA]

    Battery and Energy Storage Technology Consortium NY BEST Jump to: navigation, search Name: New York Battery and Energy Storage Technology Consortium (NY-BEST) Place: Albany, New...

  18. NREL: Energy Storage - NREL's Battery Life Predictive Model Helps...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (EV) manufacturers, solar and wind energy generation companies, and utilities-need to know how to use batteries most effectively. As investment in large-scale battery energy ...

  19. Fraction of Theoretical Specific Energy Achieved at Battery Pack...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Fraction of Theoretical Specific Energy Achieved at Battery Pack Level Is Very Sensitive ... factors in determining the fraction of battery material specific energy captured at pack ...

  20. KAir Battery Wins Southwest Regional Clean Energy Business Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition April 18, 2014 - 12:05pm ...

  1. KAir Battery Wins Southwest Regional Clean Energy Business Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition April 18, 2014 - 12:05pm...

  2. Press Conference on the Batteries and Energy Storage Hub Announcement...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    December 3, 2012, Videos Press Conference on the Batteries and Energy Storage Hub ... over five years to establish a new Batteries and Energy Storage Hub, the Joint Center ...

  3. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    SciTech Connect (OSTI)

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  4. Battery Energy Power Solutions Pty Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Energy Power Solutions Pty Ltd Jump to: navigation, search Name: Battery Energy Power Solutions Pty Ltd Place: Sydney, New South Wales, Australia Zip: 2165 Product: Sydney-based...

  5. LEESS Battery Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LEESS Battery Development LEESS Battery Development 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es139_mcgrath_2012_p.pdf (1.22 MB) More Documents & Publications Development of Advanced Energy Storage Systems for High Power, Lower Energy … Energy Storage System (LEESS) for Power Assist Hybrid Electric Vehicle (PAHEV) Applications FY 2012 Annual Progress Report for Energy Storage R&D USABC LEESS and PHEV

  6. High-energy metal air batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    High-energy metal air batteries Title: High-energy metal air batteries Disclosed herein are embodiments of lithiumair batteries and methods of making and using the same. Certain ...

  7. Vehicle Technologies Office: Batteries | Department of Energy

    Energy Savers

    Plug-in Electric Vehicles & Batteries Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Improving the ...

  8. Fact #855 January 12, 2015 Electric Vehicle Chargers by Network and State

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - Dataset | Department of Energy 5 January 12, 2015 Electric Vehicle Chargers by Network and State - Dataset Fact #855 January 12, 2015 Electric Vehicle Chargers by Network and State - Dataset Excel file with dataset for Electric Vehicle Chargers by Network and State fotw#855_web.xlsx (68.84 KB) More Documents & Publications Fact #919: April 4, 2016 Plug-in Electric Vehicle Charging Options and Times Vary Considerably - Dataset ChargePoint America ChargePoint America

  9. NREL: Energy Storage - Battery Lifespan

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Battery Lifespan Graph of relative capacity (ranging from .75 to 1) of battery in percent over time (ranging from 0 to 15 years) for three different climates (represented by Minneapolis, Houston and Phoenix) compared to a range of temperatures in 5-degree Celsius increments over 15 years. Trend lines from upper left to lower right reflect diminished capacity over time and shorter lifespan in Phoenix. Impact of climate on battery calendar lifetime with no thermal management. Simulation using NREL

  10. Battery and Thermal Energy Storage | Energy Systems Integration | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Battery and Thermal Energy Storage Not long ago, the mantra among electric utilities was that "you can't store electricity"-instantaneous power production had to nearly equal demand. But NREL research is changing this belief, demonstrating the high performance of grid-integrated battery and thermal energy storage technologies. Photo of a battery energy storage system NREL examines how best to integrate these energy storage technologies into the electrical grid and potentially into

  11. Chongqing Wanli Storage Battery Co | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Storage Battery Co. Place: Chongqing Municipality, China Sector: Solar, Vehicles, Wind energy Product: The scope of Wanli's power storage business includes batteries made for...

  12. Electric Storage Partners / GeoBATTERY | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Partners GeoBATTERY Retrieved from "http:en.openei.orgwindex.php?titleElectricStoragePartnersGeoBATTERY&oldid768254" Categories: Organizations Energy Distribution...

  13. Energy Management Strategies for Fast Battery Temperature Rise...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature Rise and ...

  14. Energy Storage - Summary of the FY 2005 Batteries for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review Energy Storage - Summary of the FY 2005 Batteries for Advanced ...

  15. batteries and energy storage | netl.doe.gov

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Batteries and Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' ...

  16. Flexible Thin Film Solid State Lithium Ion Batteries - Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Flexible Thin Film Solid State Lithium Ion Batteries National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Batteries are ...

  17. Iron Edison Battery Company | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced Nickel-iron (Ni-Fe) battery technology. Vastly out-lasting the 7...

  18. Lio Energy Systems Coda Automotive Lishen Battery JV | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Tianjin, Tianjin Municipality, China Zip: 300384 Product: China-based electric car and energy storage battery systems manufacturer. Coordinates: 39.231831, 117.878502 Show...

  19. AGM Batteries Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    navigation, search Name: AGM Batteries Ltd Place: United Kingdom Product: Manufactures lithium-ion cells and batteries for AEA Battery Systems Ltd. References: AGM Batteries Ltd1...

  20. Vehicle Battery Basics | Department of Energy

    Office of Environmental Management (EM)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric ...

  1. Battery Cathodes > Batteries & Fuel Cells > Research > The Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    is pursuing an alternate approach to battery cathodes based on the reaction of lithium ... As a result, organic materials have promise for high-rate battery applications. Achieving ...

  2. DOE - BCS TSD comments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - BCS TSD comments DOE - BCS TSD comments PowerPoint slides presenting AHAM and PTI comments on technical support document. DOE - BCS TSD comments (182.68 KB) More Documents & Publications Ex Parte Meeting with DOE and Navigant Consulting on Battery Charger Energy Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report

  3. Request for Information on Evaluating New Products for the Battery...

    Office of Environmental Management (EM)

    - Ex Parte Communication Request for Information on Evaluating New Products for the Battery Chargers and External Power Supply Rulemaking - Ex Parte Communication List of topics ...

  4. Battery SEAB Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation (1.43 MB) More Documents & Publications Overview of Battery R&D Activities Hybrid Electric Systems Overview of Battery R&D Activities

  5. Fuel Cell and Battery Electric Vehicles Compared | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Battery Electric Vehicles Compared Fuel Cell and Battery Electric Vehicles Compared Presented by Sandy Thomas at the National Hydrogen Assocation Conference and Hydrogen Expo thomas_fcev_vs_battery_evs.pdf (281 KB) More Documents & Publications An Energy Evolution:Alternative Fueled Vehicle Comparisons Fuel Cell and Battery Electric Vehicles Compared INFOGRAPHIC: The Fuel Cell Electric Vehicle Asia/ITS

  6. GP Batteries International Limited | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    International Limited is principally engaged in the development, manufacture and marketing of batteries and battery-related products. References: GP Batteries International...

  7. Laor Batteries Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Laor Batteries Ltd Jump to: navigation, search Name: Laor Batteries Ltd. Place: Upper Nazareth, Israel Zip: 17105 Product: develops and distributes lead-acid batteries for variety...

  8. Aerospatiale Batteries ASB | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

  9. Advanced Battery Factory | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in 1958. References: Advanced Battery Factory1 This...

  10. Ningbo Veken Battery Company | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: Ningbo Veken Battery Company Place: China Product: Ningbo-based maker of Lithium polymer, aluminum-shell and lithium power batteries. References: Ningbo Veken Battery...

  11. PHEV Battery Cost Assessment | Department of Energy

    Energy.gov (indexed) [DOE]

    es02barnett.pdf (615.99 KB) More Documents & Publications PHEV Battery Cost Assessment PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment

  12. RPM Flywheel Battery | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    RPM Flywheel Battery Jump to: navigation, search Name: RPM Flywheel Battery Place: California Product: Start-up planning to develop, produce, and market flywheel batteries for...

  13. Ford Electric Battery Group | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Electric Battery Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL...

  14. Carbon Micro Battery LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Micro Battery LLC Jump to: navigation, search Name: Carbon Micro Battery, LLC Place: California Sector: Carbon Product: Carbon Micro Battery, LLC, technology developer of micro and...

  15. Intellect Battery Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Intellect Battery Co Ltd Jump to: navigation, search Name: Intellect Battery Co Ltd Place: Guangdong Province, China Product: Producer of NiMH rechargeable batteries and...

  16. NRDC Ex Parte Communication | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Communication NRDC Ex Parte Communication On Thursday, September 24, 2015, Benjamin Longstreth, NRDC, and Tim Ballo, Earthjustice, met with Dan Cohen of the Department of Energy to discuss the process of considering standards for (a) battery chargers and external power supplies and (b) computers and battery back-up systems. Meeting on Batteries and computers (35.69 KB) More Documents & Publications Ex Parte Communication Memorandum Ex Parte Memorandum - Natural Resources Defense Council Ex

  17. Category:Battery makers | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Battery makers Jump to: navigation, search Pages in category "Battery makers" The following 5 pages are in this category, out of 5 total. B Battery Ventures F Ford Electric Battery...

  18. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  19. Metal-Air Battery - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Metal-Air Battery Battelle Memorial Institute Contact BMI About This Technology Technology Marketing SummaryThis technology features cathodes for use in open electrochemical cells and devices comprising the cathodes and open electrochemical cells.DescriptionThe open electrochemical cells generally comprise a cathode, an electrolyte, and an anode. One example cathode comprises a catalyst, an electronic conductor and a hydrophobic

  20. Nanocomposite Materials for Lithium-Ion Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nanocomposite Materials for Lithium-Ion Batteries Nanocomposite Materials for Lithium-Ion Batteries nanocomposite_materials_li_ion.pdf (508.08 KB) More Documents & Publications Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report Energy Storage R&D and ARRA

  1. Pistol-shaped dosimeter charger

    DOE Patents [OSTI]

    Maples, Robert A.

    1985-01-01

    A pistol-shaped charger assembly clamps a cylindrical radiation dosimeter against one edge thereof. A triggerlike lever on the handgrip of the assembly is manually pivoted to actuate a piezoelectric current generator held in the handgrip and thereby charge the dosimeter.

  2. Pistol-shaped dosimeter charger

    DOE Patents [OSTI]

    Maples, R.A.

    A pistol-shaped charger assembly clamps a cylindrical radiation dosimeter against one edge thereof. A triggerlike lever on the handgrip of the assembly is manually pivoted to actuate a piezoelectric current generator held in the handgrip and thereby charge the dosimeter.

  3. Nanostructured Anodes for Lithium-Ion Batteries - Energy Innovation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Advanced Materials Find More Like This Return to Search Nanostructured Anodes for Lithium-Ion Batteries New Anodes for Lithium-ion Batteries Increase Energy Density Four-Fold...

  4. Building a Better Battery - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    October 23, 2013, Videos Building a Better Battery Phil Ponce speaks with Director George Crabtree about the Joint Center for Energy Storage's research and initiative to build a better battery.

  5. Development of High Energy Lithium Batteries for Electric Vehicles...

    Energy.gov (indexed) [DOE]

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for Electric Vehicles FY 2011 Annual Progress Report for Energy Storage ...

  6. Leading experts to speak at battery & energy storage technology...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Leading experts to speak at battery & energy storage technology conference Speakers from US Department of Energy, academia and industry to meet November 5th in Buffalo, NY News ...

  7. Battery energy storage market feasibility study

    SciTech Connect (OSTI)

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  8. ITI DOE Ex Parte Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ITI DOE Ex Parte Memo ITI DOE Ex Parte Memo On January 14, 2016, the Information Technology Industry Council (ITI) and member company representatives from ITI's Energy Efficiency Working Group met with DOE staff to discuss outstanding concerns and questions related to the DOE Exempt EPS under the EPS Service Parts Act of 2014 NOPR (EERE-2015-BT-CRT-0013-0001), the DOE Battery Charger SNOPR (EERE-2008-BT-STD-0005-0231), and the DOE Battery Charger Test Procedure NOPR (EERE-2014-BT-TP-0044-0001).

  9. MEMORANDUM TO: US Department of Energy, Office of General Counsel

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MEMORANDUM TO: US Department of Energy, Office of General Counsel (Via Email: expartecommunications@hq.doe.gov) FROM: Joseph Andersen, ITI DATE: January 20, 2016 RE: Ex Parte Communication Regarding the DOE Exempt EPS under the EPS Service Parts Act of 2014 NOPR (EERE-2015-BT-CRT-0013-0001), the DOE Battery Charger SNOPR (EERE-2008-BT-STD- 0005-0231), and the DOE Battery Charger Test Procedure NOPR (EERE-2014-BT-TP-0044-0001). On January 14, 2016, the Information Technology Industry Council

  10. High Energy Batteries for Hybrid Buses

    SciTech Connect (OSTI)

    Bruce Lu

    2010-12-31

    EnerDel technology, and helps DOE to evaluate the merits of underlying technology. The successful completion of this program demonstrated the capability of EnerDel battery packs to satisfactorily supply all power and energy requirements of a real-world HEV-Bus drive profile. This program supports green solutions to metropolitan public transportation problems by demonstrating the effectiveness of EnerDel lithium ion batteries for HEV-Bus applications.

  11. A Scientist Answers Your Battery Questions - Joint Center for Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Storage Research December 13, 2012, Videos A Scientist Answers Your Battery Questions Venkat Srinivasan, JCESR Deputy Director of Integration, answers several of your questions about the future of battery research. Check it out to learn more about research related to electric vehicles, renewable energy, new materials, and careers in battery science.

  12. Energy Efficient Computers, Home Office Equipment, and Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    These vampire loads occur in most appliances that use electricity, such as DVD players, TVs, stereos, computers, and kitchen appliances. Unplug battery chargers when the batteries ...

  13. Tips: Home Office and Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    These vampire loads occur in most appliances that use electricity, such as DVD players, TVs, stereos, computers, and kitchen appliances. Unplug battery chargers when the batteries ...

  14. Energy Overview and A Perspective on Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... faster than changing-out or recharging batteries * Provide constant power without voltage drop * Eliminate need for space for battery storage and chargers * May provide ...

  15. INL Efficiency and Security Testing of EVSE, DC Fast Chargers...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging ...

  16. Fact #855 January 12, 2015 Electric Vehicle Chargers by Network...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 January 12, 2015 Electric Vehicle Chargers by Network and State - Dataset Fact 855 January 12, 2015 Electric Vehicle Chargers by Network and State - Dataset Excel file with ...

  17. SANIK Battery Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    SANIK Battery Co Ltd Jump to: navigation, search Name: SANIK Battery Co., Ltd. Place: China Product: Foshan City-based NiCd and NiMH rechargeable batteries producer for smaller...

  18. JYH Battery Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    JYH Battery Co Ltd Jump to: navigation, search Name: JYH Battery Co, Ltd Place: China Product: China-based maker of NiMH rechargeable batteries, also with some NiCd and Li-ion...

  19. Beijing Tianruichi Battery TRC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Tianruichi Battery TRC Jump to: navigation, search Name: Beijing Tianruichi Battery (TRC) Place: China Product: China-based maker of Li-Poly, Li-Iron and Li-Ion batteries....

  20. ETA-NTP010 Measurement and Evaluation of Electric Vehicle Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 Revision 3 Effective February 1, 2008 Measurement and Evaluation of Electric Vehicle Battery Charger Performance Prepared by Electric Transportation Applications Prepared by: ...

  1. NREL: Energy Storage - Battery Lifetime Analysis and Simulation Tool Suite

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Battery Lifetime Analysis and Simulation Tool Suite Lithium-ion (Li-ion) batteries used in EVs and stationary energy storage applications must be optimized to justify their high upfront costs. Given that batteries degrade with use and storage, strategies for optimization must factor in many years of use with a number of variables, including: Temperature State-of-charge histories Electricity current levels Cycle depth and frequency. These factors can all affect rates of battery degradation,

  2. Zibo Storage Battery Factory | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Storage Battery Factory Jump to: navigation, search Name: Zibo Storage Battery Factory Place: Zibo, Shandong Province, China Zip: 255056 Product: China-based affiliate of CSIC...

  3. Horizon Batteries formerly Electrosource | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Batteries formerly Electrosource Jump to: navigation, search Name: Horizon Batteries (formerly Electrosource) Place: Texas Sector: Vehicles Product: Manufacturer of high-power,...

  4. Kayo Battery Industries Group | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    started by Hong Kong Highpower Technology and Japan Kayo Group, active in producing Lithium and NiMH batteries for various applications including batteries suitable for...

  5. Bullith Batteries AG | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Batteries AG Place: Ismaning, Germany Zip: 85737 Product: Batteries producer using the lithium-polymer technology. Coordinates: 48.22727, 11.676305 Show Map Loading map......

  6. TCL Hyperpower Batteries Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Batteries, Inc Place: China Product: China-based subsidiary of TCL Group, they make Lithium Polymer, NiMH and Primary batteries, primarily for smaller devices. References: TCL...

  7. Advanced Lithium Ion Battery Technologies - Energy Innovation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Find More Like This Return to Search Advanced Lithium Ion Battery Technologies Lawrence ... improved battery life when used in the fabrication of negative silicon electrodes. ...

  8. Electric Fuel Battery Corporation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Fuel Battery Corporation Jump to: navigation, search Name: Electric Fuel Battery Corporation Place: Auburn, Alabama Zip: 36832 Product: Develops and manufactures BA-8180U high...

  9. American Battery Charging Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Battery Charging Inc Jump to: navigation, search Name: American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad...

  10. Ovonic Battery Company Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    search Name: Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery...

  11. Energy Storage - Summary of the FY 2005 Batteries for Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation Technologies (BATT) Research Program Annual Review | Department of Energy Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review Energy Storage - Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced

  12. Energy Department Awards Nearly $7 Million for Research to Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 Million for Research to Reduce Costs of Electric Vehicle Chargers Energy Department Awards Nearly 7 Million for Research to Reduce Costs of Electric Vehicle Chargers December ...

  13. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 25 ...

  14. Creating Better Batteries - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    August 24, 2013, Videos Creating Better Batteries wgn720crabtreefeature Bill Moller speaks with Director George Crabtree about creating energy storage technologies with five times ...

  15. KAir Battery Wins Southwest Regional Clean Energy Business Plan Competition

    Office of Energy Efficiency and Renewable Energy (EERE)

    KAir Battery, a student team from Ohio State University, won the Southwest region of the Energy Department’s National Clean Energy Business Plan Competition for their innovative potassium-air stationary batteries that could be used for renewable energy systems.

  16. Battery Wireless Solutions Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Solutions Inc Jump to: navigation, search Name: Battery & Wireless Solutions Inc Place: New Westminster, British Columbia, Canada Zip: V3M 5V9 Product: Distributor of battery and...

  17. Forever Battery Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Co Ltd Jump to: navigation, search Name: Forever Battery Co, Ltd Place: China Product: China-based producer of NiMH, NiCd and Li-ion batteries and packs primarily for smaller...

  18. Axion Battery Products Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Axion Battery Products Inc Jump to: navigation, search Name: Axion Battery Products Inc Place: Woodbridge, Ontario, Canada Zip: L4L 5Y9 Product: Subsidiary of Axion Power...

  19. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...

    Office of Environmental Management (EM)

    Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) ...

  20. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es111_gallagher_2012_o.pdf (1.1 MB) More Documents & Publications Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide Cathodes PHEV Battery Cost Assessment EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects

  1. High-Power Batteries | Center for Energy Efficient Materials

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Power Batteries Our goal is to develop and apply a new biologically inspired, low cost, low temperature approach to make nanocomposites with exceptionally high power and stability as anodes and cathodes for lithium ion batteries. In addition to the near-term application of the results of these studies for the improvement of batteries and related energy technologies, the broader impact of this research includes a deeper fundamental understanding of the factors governing the control of synthesis,

  2. CUBICON Materials that Outperform Lithium-Ion Batteries - Energy Innovation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Portal Advanced Materials Advanced Materials Find More Like This Return to Search CUBICON Materials that Outperform Lithium-Ion Batteries Brookhaven National Laboratory Contact BNL About This Technology Micrograph of CUBICON material. Micrograph of CUBICON material. Technology Marketing Summary The demand for batteries to meet high-power and high-energy system applications has resulted in substantial research and development activities. Lithium-ion batteries are a chief contender today, but

  3. Specific systems studies of battery energy storage for electric utilities

    SciTech Connect (OSTI)

    Akhil, A.A.; Lachenmeyer, L.; Jabbour, S.J.; Clark, H.K.

    1993-08-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

  4. Batteries from Brine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Batteries from Brine Batteries from Brine March 31, 2014 - 2:59pm Addthis Low-temp geothermal technologies are meeting a growing demand for strategic materials in clean manufacturing. Here, lithium is extracted from geothermal brines in California. Low-temp geothermal technologies are meeting a growing demand for strategic materials in clean manufacturing. Here, lithium is extracted from geothermal brines in California. Consumer uses of lithium batteries have soared over the last decade,

  5. Low-temperature Sodium-Beta Battery - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Low-temperature Sodium-Beta Battery Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary Rechargeable metallic sodium batteries have application in large-scale energy storage applications such as electric power generation and distribution, in motive applications such as electric vehicles, hybrids, and plug-in hybrids, and for aerospace applications such as powering satellites. So

  6. China BAK Battery Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    China Zip: 518119 Product: Guangdong- based manufacturer of standard and customized Lithium Ion rechargeable batteries. Coordinates: 22.546789, 114.112556 Show Map Loading...

  7. Blue Sky Batteries Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries. Coordinates: 41.310808, -105.590324 Show Map Loading map......

  8. Coda Battery Systems | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Connecticut Sector: Vehicles Product: Connecticut-based joint venture producing lithium-ion batteries for electric vehicles. Coordinates: 36.181032, -77.662805 Show Map...

  9. Battery energy storage systems life cycle costs case studies

    SciTech Connect (OSTI)

    Swaminathan, S.; Miller, N.F.; Sen, R.K.

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  10. Battery Jobs Coming to Michigan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Jobs Coming to Michigan Battery Jobs Coming to Michigan March 22, 2010 - 3:01pm Addthis Advanced batteries will enable electricity generated through renewable energy sources to be used in plug-in vehicles. | File photo Advanced batteries will enable electricity generated through renewable energy sources to be used in plug-in vehicles. | File photo Joshua DeLung A123 Systems, of Watertown, Mass., was awarded a $249 million Recovery Act grant from the U.S. Department of Energy in August that will

  11. Vimal Electronics | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Gujarat, India Zip: 382044 Product: Manufactures inverters and PV-powered lights and battery chargers. Coordinates: 22.99514, 72.61741 Show Map Loading map......

  12. Hybrids Plus | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Area Sector: Vehicles Product: Plug in Electric Hybrid Vehicle conversions, chargers, battery systems Website: www.eetrex.com Coordinates: 40.022143, -105.250981 Show Map...

  13. Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

  14. Long-Range Electric Vehicle Batteries: High Energy Density Lithium Batteries

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform todays technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envias batteries exhibit world-record energy densities.

  15. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Burton, E.

    2015-02-01

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  16. Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage Metal-Air Ionic Liquid (MAIL) Batteries

    SciTech Connect (OSTI)

    2009-12-21

    Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the batterys main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASUs new battery system could be both cheaper and safer than todays Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

  17. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    SciTech Connect (OSTI)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Viswanathan, Vilayanur V.; Meinhardt, Kerry D.; Engelhard, Mark H.; Sprenkle, Vincent L.

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can be assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.

  18. Nanotube Arrays for Advanced Lithium-ion Batteries - Energy Innovation...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    IT industries by 2020. The growing market segments are searching for battery technology that can increase the power and energy densities as well as provide a higher cycle count. ...

  19. COLLOQUIUM: Liquid Metal Batteries for Large-scale Energy Storage...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    June 22, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: Liquid Metal Batteries for Large-scale Energy Storage Dr. Hojong Kim Pennsylvania State ...

  20. Special Feature: Reducing Energy Costs with Better Batteries

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Electricvehicles8331019248.jpg Electric vehicles lined up in Cascade Locks. Credit: Oregon Department of Transportation A better battery-one that is cheap and safe, but packs a lot of power-could lead to an electric vehicle that performs better than today's gasoline-powered cars, and costs about the same or less to consumers.

  1. Battery energy storage market feasibility study -- Expanded report

    SciTech Connect (OSTI)

    Kraft, S.; Akhil, A.

    1997-09-01

    Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  2. Technoeconomic Modeling of Battery Energy Storage in SAM

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Technoeconomic Modeling of Battery Energy Storage in SAM Nicholas DiOrio, Aron Dobos, Steven Janzou, Austin Nelson, and Blake Lundstrom National Renewable Energy Laboratory Technical Report NREL/TP-6A20-64641 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  3. Panasonic Corporation Energy Company formerly Matsushita Battery...

    Open Energy Information (Open El) [EERE & EIA]

    Industrial Co) Place: Moriguchi, Osaka, Japan Zip: 570-8511 Product: Producer of lithium-ion and lead-acid batteries. Coordinates: 34.738258, 135.565994 Show Map Loading...

  4. AEA Battery Systems Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    United Kingdom Zip: KW14 7XW Product: Designs, manufactures and supplies specialist lithium-ion high performance cells and batteries. Coordinates: 36.482929, -94.323563 Show...

  5. NREL: Energy Storage - Isothermal Battery Calorimeters

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Isothermal Battery Calorimeters Cutaway image revealing chamber within chamber and conduit connecting inner chamber to exterior of equipment. Cutaway showing battery in the test chamber, heat flux gauges, isothermal fluid surrounding the test chamber, and outside container with insulation holding the bath fluid and the test chamber. Image: Courtesy of NETZSCH R&D 100 2013 NREL's IBCs were recognized with an R&D 100 Award, known as the "Oscars of Innovation." Photo of

  6. Germanium Oxide Nanoparticlesfor Superior Battery Electrodes - Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Germanium Oxide Nanoparticlesfor Superior Battery Electrodes Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary Compared to the graphite found in some batteries, similar elements such as tin, silicon, and germanium have much higher theoretical capacities for lithium ions, making them strong candidates for electrode materials. These new amorphous germanium

  7. Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Installed Under the Recovery Act | Department of Energy More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act May 13, 2011 - 12:00am Addthis LOS ANGELES - As part of the Obama Administration's comprehensive plan to address rising gas prices and reduce oil imports one-third by 2025, U.S. Energy Secretary Steven Chu today announced that to date, more than 1,800 electric

  8. Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers

    Alternative Fuels and Advanced Vehicles Data Center

    Across the State Rhode Island EV Initiative Adds Chargers Across the State to someone by E-mail Share Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers Across the State on Facebook Tweet about Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers Across the State on Twitter Bookmark Alternative Fuels Data Center: Rhode Island EV Initiative Adds Chargers Across the State on Google Bookmark Alternative Fuels Data Center: Rhode Island EV Initiative Adds

  9. Carmanah Technologies Corporation | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Columbia, Canada Zip: V9A 3S2 Sector: Solar Product: Canadian manufacturer of solar balance of systems (mounts, converters, inverters), battery chargers, and distributor of...

  10. Dongmyeong Jeonyeon Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Korea (Republic) Sector: Solar Product: Korea-based manufacturer of mainly rectifiers, battery chargers, and solar inverters. Coordinates: 35.170429, 128.999481 Show Map...

  11. Innergy Power Corporation Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    92154 Sector: Solar Product: US manufacturer of rechargeable sealed-lead batteries and solar charger for off-grid use. References: Innergy Power Corporation Inc1 This article...

  12. Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

  13. Probing Battery Chemistry with Liquid Cell Electron Energy Loss Spectroscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Aguiar, Jeffery A.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren L.

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. The use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. Furthermore, we discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

  14. Press Conference on the Batteries and Energy Storage Hub Announcement:

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    November 30, 2012 - Joint Center for Energy Storage Research December 3, 2012, Videos Press Conference on the Batteries and Energy Storage Hub Announcement: November 30, 2012 UChicago President Robert Zimmer was joined by U.S. Secretary of Energy Steven Chu on November 30, 2012, to announce that a multi-partner team led by Argonne National Laboratory was selected for an award of up to $120 million over five years to establish a new Batteries and Energy Storage Hub, the Joint Center for

  15. Batteries & Fuel Cells > Research > The Energy Materials Center...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Batteries & Fuel Cells Here are the details of what we're doing in the labs to improve battery & fuel cell technology. Battery Anodes Battery Cathodes Depletion Aggregation ...

  16. China Hyper Battery Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Battery Co Ltd Jump to: navigation, search Name: China Hyper Battery Co Ltd Place: Shenzhen, China Zip: 518048 Product: Manufacturer and exporter of batteries and battery packs....

  17. High-energy metal air batteries

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  18. High-energy metal air batteries

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2014-07-01

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  19. Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications

    SciTech Connect (OSTI)

    Lawder, M. T.; Suthar, B.; Northrop, P. W. C.; De, S.; Hoff, C. M.; Leitermann, O.; Crow, M. L.; Santhanagopalan, S.; Subramanian, V. R.

    2014-05-07

    The current electric grid is an inefficient system that wastes significant amounts of the electricity it produces because there is a disconnect between the amount of energy consumers require and the amount of energy produced from generation sources. Power plants typically produce more power than necessary to ensure adequate power quality. By taking advantage of energy storage within the grid, many of these inefficiencies can be removed. Advanced modeling is required when using battery energy storage systems (BESS) for grid storage in order to accurately monitor and control the storage system. Battery management systems (BMS) control how the storage system will be used and a BMS that utilizes advanced physics-based models will offer for much more robust operation of the storage system. The paper outlines the current state of the art for modeling in BMS and the advanced models required to fully utilize BMS for both lithium-ion batteries and vanadium redox-flow batteries. In addition, system architecture and how it can be useful in monitoring and control is discussed. A pathway for advancing BMS to better utilize BESS for grid-scale applications is outlined.

  20. Fact #607: January 25, 2010 Energy and Power by Battery Type | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy 7: January 25, 2010 Energy and Power by Battery Type Fact #607: January 25, 2010 Energy and Power by Battery Type Batteries are made from many different types of materials. The chart below shows the energy to power ratio for different battery types (a range is shown for each battery). An increase in specific energy correlates with a decrease in specific power. Lithium-ion batteries have a clear advantage when optimized for both energy and power density. Most hybrid vehicles sold to

  1. Flywheel Energy Storage -- An Alternative to Batteries for UPS Systems

    SciTech Connect (OSTI)

    Brown, Daryl R.; Chvala, William D.

    2003-11-12

    Direct current (DC) system flywheel energy storage technology can be used as a substitute for batteries for providing backup power to an uninterruptible power supply (UPS) system. Although the initial cost will usually be higher, flywheels offer a much longer life, reduced maintenance, a smaller footprint, and better reliability compared to a battery. The combination of these characteristics will generally result in a lower life-cycle cost for a flywheel compared to a battery. This paper describes the technology, its variations, and installation requirements, as well as provides application advice. One Federal application is highlighted as a “case study,” followed by an illustrative life-cycle cost comparison of batteries and flywheels. A list of manufacturers, with contact information is also provided.

  2. Kinmac Solar formerly Lucky Power Technology Co Ltd | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Taiwan Sector: Solar Product: Taiwan-based manufacturer of solar modules, chargers, inverters, batteries and related products. Coordinates: 24.69389, 121.148064 Show Map...

  3. Fronius International GmbH | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Zip: 4600 Sector: Solar Product: Focused on welding systems, solar inverters and battery chargers. Coordinates: 48.15308, 14.03049 Show Map Loading map......

  4. Bubbles Help Break Energy Storage Record for Lithium Air-Batteries

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Foam-base graphene keeps oxygen flowing in batteries that holds promise for electric vehicles January 25, 2012 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Using a new approach, the team built a graphene membrane for use in lithium-air batteries, which could, one day, replace conventional batteries in electric vehicles. Resembling coral, this porous graphene material

  5. Technoeconomic Modeling of Battery Energy Storage in SAM

    SciTech Connect (OSTI)

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven; Nelson, Austin; Lundstrom, Blake

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  6. Bubbles Help Break Energy Storage Record for Lithium Air-Batteries

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Foam-base graphene keeps oxygen flowing in ...

  7. Linkages of DOE's Energy Storage R&D to Batteries and Ultracapacitors...

    Energy Savers

    of DOE's Energy Storage R&D to Batteries and Ultracapacitors for Hybrid, Plug-In Hybrid, and Electric Vehicles Linkages of DOE's Energy Storage R&D to Batteries and Ultracapacitors ...

  8. Electrolytes for Use in High Energy Lithium-Ion Batteries with...

    Energy.gov (indexed) [DOE]

    Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with ...

  9. Lessons Learned from the Puerto Rico Battery Energy Storage System

    SciTech Connect (OSTI)

    Boyes, John D.; De Anda, Mindi Farber; Torres, Wenceslao

    1999-08-11

    The Puerto Rico Electric Power Authority (PREPA) installed a battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The Puerto Rico facility is presently the largest operating battery storage system in the world and has successfully provided frequency control, voltage regulation, and spinning reseme to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. However, the facility has suffered accelerated cell failures in the past year and PREPA is committed to restoring the plant to full capacity. This represents the first repowering of a large utility battery facility. PREPA and its vendors and contractors learned many valuable lessons during all phases of project development and operation, which are summarized in this paper.

  10. Economic Analysis Case Studies of Battery Energy Storage with SAM

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Economic Analysis Case Studies of Battery Energy Storage with SAM Nicholas DiOrio, Aron Dobos, and Steven Janzou National Renewable Energy Laboratory Technical Report NREL/TP-6A20-64987 November 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  11. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013)

    Energy.gov [DOE]

    East Penn Manufacturing, through its subsidary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery modules integrated in a turnkey battery energy storage system. The UltraBattery technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices.

  12. Comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program

    Energy.gov [DOE]

    This document is a comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program

  13. Lessons Learned from the Puerto Rico Battery Energy Storage System

    SciTech Connect (OSTI)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  14. New INL High Energy Battery Test Facility | Department of Energy

    Energy.gov (indexed) [DOE]

    (486.55 KB) More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Advanced Li-Ion Polymer Battery Cell ...

  15. Contour Energy Systems formerly CFX Battery | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    claims to have developed novel fluorine-based battery chemistries, nano-materials science and manufacturing processes. Coordinates: 34.13361, -117.905879 Show Map Loading...

  16. High energy density battery with cathode composition

    SciTech Connect (OSTI)

    Nalewajek, D.; Eibeck, R. E.; Sukornick, B.

    1985-10-22

    A cell which employs an active metal anode such as lithium and a liquid organic electrolyte that is improved by the use of a cathode comprised of carbon fluoride chloride is described. The cathode comprises a carbon fluoride chloride of the general formula (C /SUB y/ F /SUB x/ Cl /SUB z/ ) /SUB n/ wherein y is 1 to 2, x is greater than 0 to 1.2, z is less than or equal to0.1 and n defines the number of repeating units occurring in the carbon fluoride chloride molecule of high molecular weight. The resulting battery has improved discharge and shelf-life characteristics.

  17. ZAP Advanced Battery Technologies JV | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology....

  18. Guangzhou Fullriver Battery New Technology Co Ltd | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    Fullriver Battery New Technology Co, Ltd Place: China Product: China-based maker of Lithium Polymer and Lithium Iron batteries as well protection circuit modules and battery...

  19. Hunan Copower EV Battery Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Copower EV Battery Co Ltd Jump to: navigation, search Name: Hunan Copower EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and...

  20. CNEEC - Batteries Tutorial by Prof. Cui

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Batteries

  1. High Power Performance Lithium Ion Battery - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search High Power Performance Lithium Ion Battery Lawrence Berkeley National Laboratory Contact LBL About This Technology Hybrid Pulse Power Characterization Test (HPPC) results for 3 coin cells of various AB:PVDF ratios. Hybrid Pulse Power Characterization Test (HPPC) results for 3 coin cells of various AB:PVDF ratios. Technology Marketing SummaryGao Liu and colleagues at Berkeley Lab have

  2. Redox Flow Batteries for Grid-scale Energy Storage - Energy Innovation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Portal Energy Storage Energy Storage Find More Like This Return to Search Redox Flow Batteries for Grid-scale Energy Storage Pacific Northwest National Laboratory Contact PNNL About This Technology A schematic of an upgraded vanadium redox batter shows how using both hydrochloric and sulfuric acids in the electrolyte significantly improves the battery&#39;s performance and could also improve the electric grid&#39;s reliability and help connect more wind turbines and solar panels to

  3. FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries (Management Publication)

    SciTech Connect (OSTI)

    Neubauer, J.; Wood, E.; Burton, E.; Smith, K.; Pesaran, A.

    2014-09-01

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

  4. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  5. Fluoride based cathodes and electrolytes for high energy thermal batteries

    SciTech Connect (OSTI)

    Briscoe, J.D.

    1998-07-01

    A research and development program is being conducted at the Saft Advanced Technologies Division in Hunt Valley, MD to double the energy density of a thermal battery. A study of high voltage cathodes to replace iron disulfide is in progress. Single cells are being studied with a lithium anode and either a copper(II) fluoride, silver(II) fluoride, or iron(III) fluoride cathode. Due to the high reactivity of these cathodes, conventional alkali metal chloride and bromide salt electrolytes must be replaced by alkali metal fluoride electrolytes. Parametric studies using design-of-experiments matrices will be performed so that the best cathode for an improved battery design can be selected. Titanium hardware for the design will provide a higher strength to weight ratio with lower emissivity than conventional stainless steel. The battery will consist of two power sections. The goals are battery activation in less than 0.2 s, 88 Wh/kg, 1,385 W/kg, and 179 Wh/L over an environmental temperature range of {minus}40 C to +70 C.

  6. Energy Storage: Building a Better Battery via Public-Private Partnership |

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Argonne National Laboratory Energy Storage: Building a Better Battery via Public-Private Partnership Share Topic Energy Energy usage Energy storage Programs Chemical sciences & engineering Electrochemical energy storage

  7. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    DOE PAGES-Beta [OSTI]

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren Leslie; Aguiar, Jeffery A.

    2015-09-15

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  8. 'Underground battery' could store renewable energy, sequester CO2 |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) 'Underground battery' could store renewable energy, sequester CO2 Wednesday, January 6, 2016 - 2:40pm NNSA Blog This integrated system would store carbon dioxide in an underground reservoir, with concentric rings of horizontal wells confining the pressurized CO2 beneath the caprock. Stored CO2 displaces brine that flows up wells to the surface where it is heated by thermal plants (e.g., solar farms) and reinjected into the reservoir to store

  9. Overview of the US Department of Energy Utility Battery Storage Systems Program

    SciTech Connect (OSTI)

    Eaton, R.; Akhil, A.; Butler, P.C.; Hurwitch, J.

    1993-08-01

    The US Department of Energy (DOE) is sponsoring the Utility Battery Storage Systems Program at Sandia National Laboratories and its contractors. This program is specifically aimed at developing battery energy storage systems for electric utility applications commencing in the mid to late 1990s. One factory-integrated utility battery system and three battery technologies: sodium/sulfur, zinc/bromine, and lead-acid are being developed under this program. In the last few years the emphasis of this program has focused on battery system development. This emphasis has included greater interactions with utilities to define application requirements. Recent activities have identified specific applications of battery energy storage in certain utility systems and quantified the value of these applications to these utility companies. In part due to these activities, battery energy storage is no longer regarded by utilities as a load-leveling resource only, but as a multifunction, energy management resource.

  10. Paper Battery Co | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Co. is constructing a hybrid ultracapacitorbattery which yeilds high power and energy density. The material used is a nano-porous cellulous. Coordinates: 39.066587, -80.768578...

  11. Electroville: Grid-Scale Batteries: High Amperage Energy Storage DeviceEnergy for the Neighborhood

    SciTech Connect (OSTI)

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by MIT professor Donald Sadoway, the Electroville project team is creating a community-scale electricity storage device using new materials and a battery design inspired by the aluminum production process known as smelting. A conventional battery includes a liquid electrolyte and a solid separator between its 2 solid electrodes. MITs battery contains liquid metal electrodes and a molten salt electrolyte. Because metals and salt dont mix, these 3 liquids of different densities naturally separate into layers, eliminating the need for a solid separator. This efficient design significantly reduces packaging materials, which reduces cost and allows more space for storing energy than conventional batteries offer. MITs battery also uses cheap, earth-abundant, domestically available materials and is more scalable. By using all liquids, the design can also easily be resized according to the changing needs of local communities.

  12. Japan Storage Battery Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Storage Battery Co Ltd Jump to: navigation, search Name: Japan Storage Battery Co Ltd Place: Kyoto-shi, Kyoto, Japan Zip: 601-8520 Product: Japan Storage Battery offers full...

  13. YaoAn Battery Potech | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Name: YaoAn Battery Potech Place: China Product: China-based maker of various types of Lithium rechargeable batteries. References: YaoAn Battery Potech1 This article is a stub....

  14. Zhuhai Hange Battery Tech Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Zhuhai Hange Battery Tech Co, Ltd Place: China Product: ZhuHai City - based maker of Lithium Polymer batteries. References: Zhuhai Hange Battery Tech Co, Ltd1 This article is a...

  15. Shenzhen Better Power Battery Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Power Battery Co Ltd Jump to: navigation, search Name: Shenzhen Better Power Battery Co, Ltd Place: China Product: China-based maker of NiMH batteries. References: Shenzhen Better...

  16. Shida Battery Technology Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Shida Battery Technology Co Ltd Jump to: navigation, search Name: Shida Battery Technology Co, Ltd Place: China Product: Shida is a China-based maker of NiMH and Li-Poly batteries...

  17. Zhejiang KAN Battery Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    KAN Battery Co Ltd Jump to: navigation, search Name: Zhejiang KAN Battery Co Ltd Place: Suichang, Zhejiang Province, China Zip: 323300 &1228 Product: Zhejiang - based NiMH battery...

  18. Katech (Lithium Polymer) 4-Passenger NEV - Range and Battery Testing Report

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2005-07-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) received a Neighborhood Electric Vehicle (NEV) from the Korea Automotive Technology Institute (KATECH) for vehicle and battery characterization testing. The KATECH NEV (called the Invita) was equipped with a lithium polymer battery pack from Kokam Engineering. The Invita was to be baseline performance tested by AVTA’s testing partner, Electric Transportation Applications (ETA), at ETA’s contract testing facilities and test track in Phoenix, Arizona, to AVTA’s NEVAmerica testing specifications and procedures. Before and during initial constant speed range testing, the Invita battery pack experienced cell failures, and the onboard charger failed. A Kokamsupplied off-board charger was used in place of the onboard charger to successfully perform a constant speed range test on the Invita. The Invita traveled a total of 47.9 miles in 1 hour 47 minutes, consuming 91.3 amp-hours and 6.19 kilowatt-hours. The Kokam Engineering lithium polymer battery was also scheduled for battery pack characterization testing, including the C/3 energy capacity, dynamic stress, and peak power tests. Testing was stopped during the initial C/3 energy capacity test, however, because the battery pack failed to withstand cycling without cell failures. After the third discharge/charge sequence was completed, it was discovered that Cell 6 had failed, with a voltage reading of 0.5 volts. Cell 6 was replaced, and the testing sequence was restarted. After the second discharge/charge sequence was complete, it was discovered that Cell 1 had failed, with its voltage reading 0.2 volts. At this point it was decided to stop all battery pack testing. During the discharge cycles, the battery pack supplied 102.21, 94.34, and 96.05 amp-hours consecutively before Cell 6 failed. After replacing Cell 6, the battery pack supplied 98.34 and 98.11 amp-hours before Cell 1 failed. The Idaho National Laboratory managed these

  19. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pacific Northwest National Laboratory Current Li-Ion Battery Improved Li-Ion Battery Novel Synthesis New Electrode Candidates Coin Cell Test Stability and Safety Full Cell Fabrication and Optimization Lithium-ion (Li-ion) batteries offer high energy and power density, making them popular in a variety of mobile applications from cellular telephones to electric vehicles. Li-ion batteries operate by migrating positively charged lithium ions through an electrolyte from one electrode to another,

  20. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect (OSTI)

    Shane, Rodney

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  1. NREL: Energy Storage - Battery Materials Synthesis

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Synthesis Four macro images of electrode materials of varying shapes and textures. NREL uses electron energy loss spectroscopy to study electrode material at the nanometer scale. Macro image of globular-shaped electrode materials. NREL's optimization of mechanical properties of composite silicon- polyacrylonitrilec anodes (pictured) has demonstrated stable performance over hundreds of cycles. Macro images of spherical electrode, with inset showing small version of entire sphere with

  2. Nanofilm Coatings Improve Battery Performance - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Nanofilm Coatings Improve Battery Performance Argonne National Laboratory Contact ANL About This Technology <p> TEM 2.5-nm-thick nano-coated ultrathin film on lithium-ion cathode particle surface; coating is highly uniform, in contrast to films applied through conventional technology (for reference, bar in lower-left corner measures 5 nm)</p> TEM 2.5-nm-thick nano-coated ultrathin

  3. Kung Long Batteries Industrial Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Kung Long Batteries Industrial Co Ltd Jump to: navigation, search Name: Kung Long Batteries Industrial Co Ltd Place: Nantou, Taiwan Product: Manufacturer of more than 200 types of...

  4. Shandong Heter Battery Technology Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Product: Shandong Province - based subsidiary of Heter Electronics Group, they make Lithium Power Batteries, Lithium Primary Batteries and supercapacitors References: Shandong...

  5. Shenzhen Mottcell Battery Technology Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Technology Co, Ltd Place: China Product: China-based manufacturer of cylindrical Lithium Iron Phopshate and Lithium ion batteries. References: Shenzhen Mottcell Battery...

  6. US Advanced Battery Consortium USABC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    US Advanced Battery Consortium USABC Jump to: navigation, search Name: US Advanced Battery Consortium (USABC) Place: Southfield, Michigan Zip: 48075 Sector: Vehicles Product:...

  7. LEXEL Battery Shenzhen Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    LEXEL Battery Shenzhen Co Ltd Jump to: navigation, search Name: LEXEL Battery (Shenzhen) Co., Ltd. Place: China Product: China-based manufacturer, marketer and researcher of...

  8. First National Battery PTY Limited FNB Australia | Open Energy...

    Open Energy Information (Open El) [EERE & EIA]

    PTY Limited FNB Australia Jump to: navigation, search Name: First National Battery (PTY) Limited (FNB Australia) Place: Australia Product: Distributes motive power batteries and...

  9. Advanced Lead Acid Battery Consortium | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Lead Acid Battery Consortium Jump to: navigation, search Name: Advanced Lead-Acid Battery Consortium Place: Durham, North Carolina Zip: 27713 Sector: Vehicles Product: The ALABC is...

  10. Tianjin Lishen Battery Joint stock Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Lishen Battery Joint stock Co Ltd Jump to: navigation, search Name: Tianjin Lishen Battery Joint-stock Co Ltd Place: Tianjin, Tianjin Municipality, China Zip: 300384 Product:...

  11. Electrolytes for Lithium Ion Batteries - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Return to Search Electrolytes for Lithium Ion Batteries DOE Grant Recipients Arizona ... the need for high-output, long-lasting rechargeable batteries has grown tremendously. ...

  12. Cubic Ionic Conductor Ceramics for Alkali Ion Batteries - Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Cubic Ionic Conductor Ceramics for Alkali Ion Batteries Brookhaven National Laboratory ... Better materials for use as electrodes in lithium or sodium ion batteries are still being ...

  13. Nanocomposite Carbon/Tin Anodes for Lithium Ion Batteries - Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nanocomposite CarbonTin Anodes for Lithium Ion Batteries Lawrence Berkeley National ... Applications and Industries Anodes for lithium ion batteries More InformationFOR MORE ...

  14. Longer Life Lithium Ion Batteries with Silicon Anodes - Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Longer Life Lithium Ion Batteries with Silicon Anodes Lawrence Berkeley National ... Researchers have developed a new technology to advance the life of lithium-ion batteries. ...

  15. Fail-Safe Design for Large Capacity Li-Ion Battery Systems - Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Innovation Portal Find More Like This Return to Search Fail-Safe Design for Large Capacity Li-Ion Battery Systems National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Fail Safe Design for Large Capacity Lithium-ion Batteries.pdf (2,324 KB) Technology Marketing Summary Lithium-ion batteries (LIBs) are a promising candidate for energy storage of electric drive vehicles due to their high power and energy density. The total electric

  16. Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries - Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryLithium's high energy density makes it desirable for use in rechargeable batteries, but its tendency to form dendrites has limited its use to primary batteries. This limitation can be addressed by using

  17. Batteries

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  18. Overcharge Protection for PHEV Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overcharge Protection for PHEV Batteries Overcharge Protection for PHEV Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es037_chen_2012_o.pdf (3.62 MB) More Documents & Publications Overcharge Protection for PHEV Batteries Overcharge Protection Overcharge Protection for PHEV Batteries

  19. Lithium-Ion Battery Recycling Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lithium-Ion Battery Recycling Facilities Lithium-Ion Battery Recycling Facilities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt020_es_coy_2012_p.pdf (1.72 MB) More Documents & Publications Lithium-Ion Battery Recycling Facilities Recycling Hybrid and Elecectric Vehicle Batteries EA-1722: Final Environmental Assessment

  20. All-SiC Inductively Coupled Charger with Integrated Plug-in and Boost Functionalities for PEV Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan; Campbell, Steven L; Tolbert, Leon M

    2016-01-01

    So far, vehicular power electronics integration is limited to the integration of on-board battery chargers (OBC) into the traction drive system and sometimes to the accessory dc/dc converters in plug-in electric vehicles (PEV). These integration approaches do not provide isolation from the grid although it is an important feature that is required for user interface systems that have grid connections. This is therefore a major limitation that needs to be addressed along with the integrated functionality. Furthermore, there is no previous study that proposes the integration of wireless charger with the other on-board components. This study features a unique way of combining the wired and wireless charging functionalities with vehicle side boost converter integration and maintaining the isolation to provide the best solution to the plug-in electric vehicle users. The new topology is additionally compared with commercially available OBC systems from manufacturers.

  1. Voller Energy Group Plc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Basingstoke, United Kingdom Zip: RG24 8PZ Product: UK-based manufacturer of portable fuel cell systems for use as power packs, battery re-chargers and mobile generators....

  2. A High-Performance PHEV Battery Pack | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A High-Performance PHEV Battery Pack A High-Performance PHEV Battery Pack 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es002_alamgir_2012_p.pdf (1.57 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack A High-Performance PHEV Battery Pack Vehicle Technologies Office Merit Review 2016: A 12V Start-Stop Li Polymer Battery Pack

  3. GM Li-Ion Battery Pack Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    GM Li-Ion Battery Pack Manufacturing GM Li-Ion Battery Pack Manufacturing 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt005_es_trumm_2012_p.pdf (1.09 MB) More Documents & Publications GM Li-Ion Battery Pack Manufacturing GM Li-Ion Battery Pack Manufacturing GM Li-Ion Battery Pack Manufacturing

  4. Stand-Alone Battery Thermal Management System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Stand-Alone Battery Thermal Management System Stand-Alone Battery Thermal Management System 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es135_brodie_2012_p.pdf (508.75 KB) More Documents & Publications Stand-Alone Battery Thermal Management System Vehicle Technologies Office Merit Review 2014: Stand-Alone Battery Thermal Management System Vehicle Technologies Office Merit Review 2015: Stand-Alone Battery Thermal

  5. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren Leslie; Aguiar, Jeffery A.

    2015-09-15

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  6. Method and apparatus for smart battery charging including a plurality of controllers each monitoring input variables

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.

    2013-10-15

    A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger is connected to a power supply. A plurality of controllers in communication with one and another are provided, each of the controllers monitoring a subset of input variables. A set of charging constraints may then generated for each controller as a function of the subset of input variables. A set of objectives for each controller may also be generated. A preferred charge rate for each controller is generated as a function of either the set of objectives, the charging constraints, or both, using an algorithm that accounts for each of the preferred charge rates for each of the controllers and/or that does not violate any of the charging constraints. A current flow between the battery and the battery charger is then provided at the actual charge rate.

  7. Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011

    Energy.gov [DOE]

    On Friday, October 21, 2011 the Department of Energy will hold a public meeting from 8:00am to 5:00pm at the Bethesda North Marriott Hotel and Conference Center in Bethesda, MD to provide information and receive comments from the public on directions for a potential research effort on batteries and energy storage.

  8. Converter Topologies for Wired and Wireless Battery Chargers

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Converter Topologies for Wired and Wireless Battery Chargers

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  10. Fail-Safe Designs for Large Capacity Battery Systems - Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Return to Search Fail-Safe Designs for Large Capacity Battery Systems United States Patent ... Design for Large Capacity Li-Ion Battery Systems Abstract: Fail-safe systems and ...

  11. Making Better Batteries With Hydrogen | Department of Energy

    Energy Savers

    Making Better Batteries With Hydrogen Making Better Batteries With Hydrogen November 5, 2015 - 3:25pm Addthis These researchers are part of a team studying the use of hydrogen for ...

  12. ZhuHai Coslight Battery Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Co., Ltd. Place: China Product: China-based subsidiary of the Coslight Group making Lithium Ion Polymer Batteries. References: ZhuHai Coslight Battery Co., Ltd.1 This article...

  13. Guangzhou Wintonic Battery Magnet Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Province, China Zip: 510800 Product: Guangzhou City - based producer of NiMH, NiCd and Lithium-Ion rechargeable batteries. References: Guangzhou Wintonic Battery & Magnet Co Ltd1...

  14. PHEV and LEESS Battery Cost Assessment | Department of Energy

    Energy.gov (indexed) [DOE]

    Office Merit Review 2016: SAFT-USABC 12V Start-Stop Phase II PHEV Battery Cost Assessment Vehicle Technologies Office Merit Review 2015: A 12V Start-Stop Li Polymer Battery Pack

  15. Great Power Battery Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Battery Co Ltd Jump to: navigation, search Name: Great Power Battery Co., Ltd Place: China Product: Guangzhou - based maker of Li-Ion, Li-Polymer, LiFePO4, NiCd, and NiMH...

  16. Dongguan Victory Battery Technology Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Battery Technology Co Ltd Jump to: navigation, search Name: Dongguan Victory Battery Technology Co, Ltd Place: China Product: China-based maker of NiMh, Li-Poly and LiFePO4...

  17. Union Suppo Battery Co Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Suppo Battery Co Ltd Jump to: navigation, search Name: Union Suppo Battery Co Ltd Place: Shenyang, China Zip: 110015 Product: Liaoning-based manufacturer of rechargeable NiMH...

  18. Boston Power GP Batteries JV | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Taiwan-based JV that produces Sonata rechargeable Li-ion batteries for laptop computers. References: Boston Power & GP Batteries JV1 This article is a stub. You can help...

  19. Special Feature: Reducing Energy Costs with Better Batteries

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... But researchers hope that a new type of battery, called the lithium-air battery, will one day lead to a cost-effective, long-range electric vehicles that could travel 300 miles or ...

  20. SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es158_goodenough_2012_p.pdf (1.3 MB) More Documents & Publications Solid Electrolyte Batteries Vehicle Technologies Office Merit Review 2016: Overview and Progress of the Advanced Battery Materials Research (BMR) Program Vehicle Technologies Office Merit Review 2016:

  1. Battery Factory Bringing Jobs to Jacksonville | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Factory Bringing Jobs to Jacksonville Battery Factory Bringing Jobs to Jacksonville April 30, 2010 - 2:10pm Addthis A rendering of Saft’s lithium-ion battery factory under construction in Jacksonville, Fla. | Courtesy of Saft A rendering of Saft's lithium-ion battery factory under construction in Jacksonville, Fla. | Courtesy of Saft Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs The Saft lithium-ion battery plant under construction in Jacksonville, Fla., is

  2. Enhanced Security-Constrained OPF With Distributed Battery Energy Storage

    SciTech Connect (OSTI)

    Wen, YF; Guo, CX; Kirschen, DS; Dong, SF

    2015-01-01

    This paper discusses how fast-response distributed battery energy storage could be used to implement post-contingency corrective control actions. Immediately after a contingency, the injections of distributed batteries could be adjusted to alleviate overloads and reduce flows below their short-term emergency rating. This ensures that the post-contingency system remains stable until the operator has redispatched the generation. Implementing this form of corrective control would allow operators to take advantage of the difference between the short-and long-term ratings of the lines and would therefore increase the available transmission capacity. This problem is formulated as a two-stage, enhanced security-constrained OPF problem, in which the first-stage optimizes the pre-contingency generation dispatch, while the second-stage minimizes the corrective actions for each contingency. Case studies based on a six-bus test system and on the RTS 96 demonstrate that the proposed method provides effective corrective actions and can guarantee operational reliability and economy.

  3. Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure

    SciTech Connect (OSTI)

    Dong, Jing; Lin, Zhenhong

    2012-01-01

    This paper studies the role of public charging infrastructure in increasing PHEV s share of driving on electricity and the resulting petroleum use reduction. Using vehicle activity data obtained from the GPS-tracking household travel survey in Austin, Texas, gasoline and electricity consumptions of PHEVs in real world driving context are estimated. Driver s within-day recharging behavior, constrained by travel activities and public charger network, is modeled as a boundedly rational decision and incorporated in the energy use estimation. The key findings from the Austin dataset include: (1) public charging infrastructure makes PHEV a competitive vehicle choice for consumers without a home charger; (2) providing sufficient public charging service is expected to significantly reduce petroleum consumption of PHEVs; and (3) public charging opportunities offer greater benefits for PHEVs with a smaller battery pack, as within-day recharges compensate battery capacity.

  4. Mapping Battery Activity at the Level of a Billionth of a Meter - Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Innovation Portal Mapping Battery Activity at the Level of a Billionth of a Meter Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryAn ORNL method and apparatus offer a new approach to revealing battery behavior at the nanoscale. With this invention, researchers successfully mapped lithium diffusivity and electrochemical activity, showing how the battery works at the level of a billionth of a meter. Future energy technologies will rely heavily on

  5. Membranes > Batteries & Fuel Cells > Research > The Energy Materials Center

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    at Cornell Batteries & Fuel Cells In This Section Battery Anodes Battery Cathodes Depletion Aggregation Membranes Membranes Fig. 1 PEM Fuel Cell Fuel cells are highly efficient devices that convert the chemical energy stored in a fuel directly intoelectricity. Within a fuel cell, the polymer electrolyte membrane (PEM) serves as the conducting interface between the anode and cathode, transporting the ions (Figure 1). As a result, the PEM is a central, and often performance-limiting,

  6. battery electrode percolating network

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    battery electrode percolating network - Sandia Energy Energy Search Icon Sandia Home ... Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ...

  7. Promising future energy storage systems: Nanomaterial based systems, Zn-air and electromechanical batteries

    SciTech Connect (OSTI)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  8. Modeling of battery energy storage in the National Energy Modeling System

    SciTech Connect (OSTI)

    Swaminathan, S.; Flynn, W.T.; Sen, R.K.

    1997-12-01

    The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

  9. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: PolyPlus is developing the worlds first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithiumbased negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the batterys reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  10. EV/PHEV Bidirectional Charger Assessment for V2G Reactive Power Operation

    SciTech Connect (OSTI)

    Kisacikoglu, Mithat C; Ozpineci, Burak; Tolbert, Leon M

    2013-01-01

    This paper presents a summary of the available single-phase ac-dc topologies used for EV/PHEV, level-1 and -2 on-board charging and for providing reactive power support to the utility grid. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac-dc topology are discussed to shed light on their suitability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and increased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor.

  11. Economic Analysis Case Studies of Battery Energy Storage with SAM

    SciTech Connect (OSTI)

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.

  12. A low cost, high energy density and long cycle life potassium-sulfur battery for grid-scale energy storage

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Bowden, Mark E.; Sprenkle, Vincent L.; Liu, Jun

    2015-08-15

    Alkali metal-sulfur batteries are attractive for energy storage applications because of their high energy density. Among the batteries, lithium-sulfur batteries typically use liquid in the battery electrolyte, which causes problems in both performance and safety. Sodium-sulfur batteries can use a solid electrolyte such as beta alumina but this requires a high operating temperature. Here we report a novel potassium-sulfur battery with K+-conducting beta-alumina as the electrolyte. Our studies indicate that liquid potassium exhibits much better wettability on the surface of beta-alumina compared to liquid sodium at lower temperatures. Based on this observation, we develop a potassium-sulfur battery that can operate at as low as 150°C with excellent performance. In particular, the battery shows excellent cycle life with negligible capacity fade in 1000 cycles because of the dense ceramic membrane. This study demonstrates a new battery with a high energy density, long cycle life, low cost and high safety, which is ideal for grid-scale energy storage.

  13. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key partsa positive and negative electrode and an electrolytethat exchange ions to store and release electricity. Using different materials for these components changes a batterys chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  14. Suntrica Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Place: Tampere, Finland Zip: 33100 Product: Finland-based manufacturer of thin-film PV battery chargers. References: Suntrica Ltd1 This article is a stub. You can help OpenEI by...

  15. Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers...

    Energy Savers

    More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act Secretary Chu Highlights More Than 1,800 Electric Vehicle Chargers Installed Under the Recovery Act May ...

  16. Next Generation Battery Technology - Joint Center for Energy Storage

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research April 6, 2015, Videos Next Generation Battery Technology Jeff Chamberlain spoke with Steve LeVine about the development of next generation lithium-ion battery technology, covered live on C-SPAN at the Atlantic Council in Washington D.C. Jeff Chamberlain spoke with Steve LeVine about the development of next generation lithium-ion battery technology, covered live on C-SPAN at the Atlantic Council in Washington D.C

  17. Overcharge Protection Prevents Exploding Lithium Ion Batteries - Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Innovation Portal Overcharge Protection Prevents Exploding Lithium Ion Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab scientists Guoying Chen and Thomas J. Richardson have invented a new type of separator membrane that prevents dangerous overcharge and overdischarge conditions in rechargeable lithium-ion batteries, i.e., exploding lithium ion batteries. This low cost separator, with electroactive polymers

  18. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Conference: Presented at: 31st Annual Battery Seminar, Orlando, FL, United States, Mar 16 - Mar 21, 2014 Research Org: Lawrence ...

  19. Advanced Battery Technologies Inc ABAT | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Product: China-based developer, manufacturer and distributer of rechargeable polymer lithium-ion (PLI) batteries. Coordinates: 45.363708, 126.314621 Show Map Loading map......

  20. Lithium-Ion Battery Recycling Issues | Department of Energy

    Energy.gov (indexed) [DOE]

    International Collaboration With a Case Study in Assessment of Worlds Supply of Lithium Vehicle Technologies Office Merit Review 2015: Lithium-Ion Battery Production and ...

  1. Plug-in Hybrid Battery Development | Department of Energy

    Energy.gov (indexed) [DOE]

    es05ashtiani.pdf (1.06 MB) More Documents & Publications USABC PHEV Battery Development Project USABC HEV and PHEV Programs Vehicle Technologies Office Merit Review 2014: ...

  2. EaglePicher Horizon Batteries LLC | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    LLC Place: Dearborn, Michigan Zip: MI 48126 Product: Joint Venture developing, manufacturing and distributing a breakthrough, high performance sealed lead-acid battery....

  3. An Update on Advanced Battery Manufacturing | Department of Energy

    Energy Savers

    ... From Columbus, Georgia to Batesville, Arkansas to Brownstown, Michigan, our investments in manufacturing advanced batteries and other electric vehicle components are putting ...

  4. Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon - Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of doped mesoporous carbon and elemental sulfur at a temperature inside a stainless steel vessel, which was used in lithiumsulfur batteries that were tested in ...

  5. Impact of Fast Charging on Life of EV Batteries

    SciTech Connect (OSTI)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad A.

    2015-05-03

    Utilization of public charging infrastructure is heavily dependent on user-specific travel behavior. The availability of fast chargers can positively affect the utility of battery electric vehicles, even given infrequent use. Estimated utilization rates do not appear frequent enough to significantly impact battery life. Battery thermal management systems are critical in mitigating dangerous thermal conditions on long distance tours with multiple fast charge events.

  6. Grid regulation services for energy storage devices based on grid frequency

    SciTech Connect (OSTI)

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  7. Grid regulation services for energy storage devices based on grid frequency

    DOE Patents [OSTI]

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  8. Energy and environmental impacts of electric vehicle battery production and recycling

    SciTech Connect (OSTI)

    Gaines, L.; Singh, M.

    1995-12-31

    Electric vehicle batteries use energy and generate environmental residuals when they are produced and recycled. This study estimates, for 4 selected battery types (advanced lead-acid, sodium-sulfur, nickel-cadmium, and nickel-metal hydride), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. For example, although the nickel-cadmium and nickel-metal hydride batteries are similar, energy requirements for production of the cadmium electrodes may be higher than those for the metal hydride electrodes, but the latter may be more difficult to recycle.

  9. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    DOE PAGES-Beta [OSTI]

    Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; Ha, Seungbum; Brushett, Fikile R.

    2014-11-01

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueousmore » electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.« less

  10. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    SciTech Connect (OSTI)

    Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; Ha, Seungbum; Brushett, Fikile R.

    2014-11-01

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueous electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.

  11. High energy density battery based on complex hydrides

    DOE Patents [OSTI]

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  12. The Wide-Area Energy Storage and Management System – Battery Storage Evaluation

    SciTech Connect (OSTI)

    Lu, Ning; Weimar, Mark R.; Makarov, Yuri V.; Ma, Jian; Viswanathan, Vilayanur V.

    2009-07-01

    This report presents the modeling approach, methodologies, and results of the sodium sulfur (NaS) battery evaluation study, which was conducted by Battelle for the California Energy Commission (CEC).

  13. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012)

    Energy.gov [DOE]

    DOE's Energy Storage Program is funding research to develop longer-lifetime, lower-cost Li-ion batteries. Researchers at Pacific Northwest National Laboratory are investigating cost-effective...

  14. Vehicle Technologies Office Merit Review 2015: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Energy.gov [DOE]

    Presentation given by TIAX LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

  15. Vehicle Technologies Office Merit Review 2014: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy high power battery...

  16. Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Envia Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

  17. Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for PHEV Applications

    Energy.gov [DOE]

    Presentation given by Envia at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries for PHEV...

  18. Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications

    Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

  19. Lithium-Ion Battery with Higher Charge Capacity - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Lithium-Ion Battery with Higher Charge Capacity University of Minnesota DOE Grant Recipients Contact GRANT About This Technology Technology Marketing Summary Zirconate Based Cathode Material Lithium-ion batteries (LIBs) typically use a cobalt compound as the cathode material. Cobalt oxides are relatively expensive and scarce. An innovative zirconate-based cathode material developed at the University of Minnesota has the potential

  20. Low Temperature Sodium-Sulfur Grid Storage and EV Battery - Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Innovation Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Low Temperature Sodium-Sulfur Grid Storage and EV Battery Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab researcher Gao Liu has developed an innovative design for a battery, made primarily of sodium and sulfur, that

  1. ICP Solar Technologies Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Zip: H3N 1W5 Sector: Solar Product: Manufactures amorphous silicon solar PV cells, and battery chargers using these cells. Coordinates: 45.512293, -73.554407 Show Map Loading...

  2. Bee Cool Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Solar Product: Producer of polysilicon solar panels and solar trackers, and solar battery chargers. References: Bee Cool Inc1 This article is a stub. You can help OpenEI by...

  3. Accelrate Power Systems | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Systems Place: Vancouver, British Columbia, Canada Zip: V6E 4G1 Product: High Speed Battery Charger Technology. Coordinates: 49.26044, -123.114034 Show Map Loading map......

  4. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  5. Linkages of DOE's Energy Storage R&D to Batteries and Ultracapacitors for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hybrid, Plug-In Hybrid, and Electric Vehicles | Department of Energy of DOE's Energy Storage R&D to Batteries and Ultracapacitors for Hybrid, Plug-In Hybrid, and Electric Vehicles Linkages of DOE's Energy Storage R&D to Batteries and Ultracapacitors for Hybrid, Plug-In Hybrid, and Electric Vehicles This report traces the connections between DOE energy storage research and downstream energy storage systems used in hybrid electric, plug-in hybrid electric, and fully electric vehicles.

  6. Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage

    SciTech Connect (OSTI)

    2010-09-01

    BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

  7. Batteries May Fade, But Research Can Revitalize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Batteries May Fade, But Research Can Revitalize Batteries May Fade, But Research Can Revitalize November 9, 2012 - 4:04pm Addthis The Transmission Electron Microscope (TEM) at the William R. Wiley Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory is used to image metals, ceramics, minerals, nanostructured materials, and biological-related materials and tissues at atomic-bond-length resolution. | Photo of Pacific Northwest National Laboratory The

  8. Battery Life Estimation (BLE) and Data Analysis - Energy Innovation Portal

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Batteries May Fade, But Research Can Revitalize Batteries May Fade, But Research Can Revitalize November 9, 2012 - 4:04pm Addthis The Transmission Electron Microscope (TEM) at the William R. Wiley Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory is used to image metals, ceramics, minerals, nanostructured materials, and biological-related materials and tissues at atomic-bond-length resolution. | Photo of Pacific Northwest National Laboratory The

  9. High Voltage Electrolyte for Lithium Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrolyte for Lithium Batteries High Voltage Electrolyte for Lithium Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es113_zhang_2012_o.pdf (1.74 MB) More Documents & Publications Electrolytes - Advanced Electrolyte and Electrolyte Additives Progress in Electrolyte Component R&D within the ABR Program, 2009 thru 2013 Vehicle Technologies Office Merit Review 2015: Fluorinated Electrolyte for 5-V Li-Ion

  10. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  11. Thin-film lithium batteries highlighted at OSTI | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Thin-film lithium batteries highlighted at OSTI Back to the OSTI News Listing for 2006 Imagine batteries that can be recharged thousands of times; come in any size and shape; and are thin enough to be embedded in skin to assist in heart regulation. The Department of Energy's Oak Ridge National Laboratory (ORNL) has developed just such a high-performance thin-film lithium battery for a variety of technological applications. Teledyne licensed this

  12. The joint center for energy storage research: A new paradigm for battery research and development

    SciTech Connect (OSTI)

    Crabtree, George

    2015-03-30

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

  13. NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.

    SciTech Connect (OSTI)

    Newmiller, Jeff; Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

    2006-03-01

    The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

  14. Team Led by Argonne National Lab Selected as DOE's Batteries and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage Hub | Department of Energy Team Led by Argonne National Lab Selected as DOE's Batteries and Energy Storage Hub Team Led by Argonne National Lab Selected as DOE's Batteries and Energy Storage Hub November 30, 2012 - 12:15pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - U.S. Secretary of Energy Steven Chu was joined today by Senator Dick Durbin, Illinois Governor Pat Quinn, and Chicago Mayor Rahm Emanuel to announce that a multi-partner team led by Argonne National Laboratory

  15. Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

    2010-02-01

    With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

  16. High Energy Density Na-S/NiCl2 Hybrid Battery

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo

    2013-02-15

    High temperature (250-350C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

  17. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement

    SciTech Connect (OSTI)

    Yu, XW; Manthiram, A

    2015-01-01

    Liquid-phase polysulfide catholytes are attracting much attention in lithium-sulfur (Li-S) batteries as they provide a facile dispersion and homogeneous distribution of the sulfur active material in the conductive matrix. However, the organic solvents used in lithium-polysulfide (Li-PS) batteries play an important role and have an impact on the physico-chemical characteristics of polysulfides. For instance, significantly higher voltages (similar to 2.7 V) of the S/S-n(2-) (4 <= n <= 8) redox couple are observed in Li-PS batteries with dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP) solvents. Accordingly, high power Li-PS batteries are presented here with the catholyte prepared with NMP solvent and operated with the highly reversible sulfur/long-chain polysulfide redox couple. On the other hand, a remarkable cyclability enhancement of the Li-PS battery is observed with the long-chain, ether-based tetraglyme (TEGDME) solvent. The voltage enhancement and the cyclability enhancement of the Li-PS batteries are attributed to the solvation effect, viscosity, and volatility of the solvents. Finally, highly concentrated polysulfide catholytes are successfully synthesized, with which high energy density Li-PS batteries are demonstrated by employing a multi-walled carbon nanotube (MWCNT) fabric electrode.

  18. New Materials for High-Energy, Long-Life Rechargeable Batteries | U.S. DOE

    Office of Science (SC) [DOE]

    Office of Science (SC) New Materials for High-Energy, Long-Life Rechargeable Batteries Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 07.01.13

  19. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    DOE PAGES-Beta [OSTI]

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Meinhardt, Kerry D.; Chang, Hee -Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-11

    Here we demonstrate for the first time that planar Na-NiCl2 batteries can be operated at an intermediate temperature of 190°C with ultra-high energy density. A specific energy density of 350 Wh/kg, which is 3 times higher than that of conventional tubular Na-NiCl2 batteries operated at 280°C, was obtained for planar Na-NiCl2 batteries operated at 190°C over a long-term cell test (1000 cycles). The high energy density and superior cycle stability are attributed to the slower particle growth of the cathode materials (NaCl and Ni) at 190°C. The results reported in this work demonstrate that planar Na-NiCl2 batteries operated at anmore » intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.« less

  20. NREL: Energy Storage - NREL Battery Calorimeters Win R&D 100 Award

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NREL Battery Calorimeters Win R&D 100 Award The NREL Energy Storage team Dirk Long, John Ireland, Matthew Keyser, Ahmad Pesaran, and Mark Mihalic of NREL's Energy Storage Team. Photo by Amy Glickson, NREL 27242 August 28, 2013 Isothermal Battery Calorimeters (IBCs) developed by the National Renewable Energy Laboratory (NREL) and NETZSCH North America are among the winners of the 2013 R&D 100 Awards, known in the research and development community as "the Oscars of Innovation."

  1. Consortium for Advanced Battery Simulation

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Battery Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ...

  2. UNITED STATES DEPARTMENT OF ENERGY Washington, D.C.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... For two categories of regulatory interest to DOE in recent years, external power supplies and battery chargers, an exemption for service parts and spare parts has been important to ...

  3. Docket No. EERE-2008-BT-STD-0005. RIN 1904-AB57 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2008-BT-STD-0005. RIN 1904-AB57 Docket No. EERE-2008-BT-STD-0005. RIN 1904-AB57 This memorandum for the record provides a summary of a February 13, 2013 meeting with U.S. Department of Energy staff concerning DOE's proposed rulemaking regarding amended energy conservation standards for Class A external power supplies (EPSs) and new energy conservation standards for non-Class A EPSs and battery chargers. CEA Ex Parte Discussion_02212013.pdf (818.41 KB) More Documents & Publications ISSUANCE

  4. High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage

    SciTech Connect (OSTI)

    2011-11-15

    HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

  5. Aquion Energy Inc Sodium-ion Battery for Grid-level Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Aquion Energy Inc Sodium-ion Battery for Grid-level Applications Project Description Aquion Energy and its partners will demonstrate a low cost, grid-scale, ambient temperature sodium-ion energy storage device. The energy storage chemistry in this device uses an electrochemical couple that combines a high capacity carbon anode with a sodium intercalation cathode capable of thousands of deep discharge cycles over extended periods of time. The proposed aqueous sodium-ion technology includes the

  6. A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Wang, Wei; Vijayakumar, M.; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang; Hu, Jian Z.; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo

    2011-05-01

    Low cost, high performance redox flow batteries are highly demanded for up to multi-megawatt levels of renewable and grid energy storage. Here, we report a new vanadium redox flow battery with a significant improvement over the current technologies. This new battery utilizes a sulfate-chloride mixed solution, which is capable of dissolving more than 2.5 M vanadium or about a 70% increase in the energy storage capacity over the current vanadium sulfate system. More importantly, the new electrolyte remains stable over a wide temperature range of -5 to 60oC, potentially eliminating the need of active heat management. Its high energy density, broad operational temperature window, and excellent electrochemical performance would lead to a significant reduction in the cost of energy storage, thus accelerating its market penetration.

  7. Fluidic: Grid-Scale Batteries for Wind and Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fluidic: Grid-Scale Batteries for Wind and Solar Fluidic: Grid-Scale Batteries for Wind and Solar February 27, 2013 - 5:42pm Addthis Andrew Gumbiner Contractor, Advanced Research Projects Agency-Energy. FLUIDIC: Metal Air Recharged from DOE ARPA-E on Vimeo. Our nation's modern electric grid is limited in its ability to store excess energy for on-demand power. As a result, electricity must be generated on a constant basis to perfectly match demand. Grid-scale storage technologies have the

  8. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  9. Sodium/sulfur battery engineering for stationary energy storage. Final report

    SciTech Connect (OSTI)

    Koenig, A.; Rasmussen, J.

    1996-04-01

    The use of modular systems to distribute power using batteries to store off-peak energy and a state of the art power inverter is envisioned to offer important national benefits. A 4-year, cost- shared contract was performed to design and develop a modular, 300kVA/300-kWh system for utility and customer applications. Called Nas-P{sub AC}, this system uses advanced sodium/sulfur batteries and requires only about 20% of the space of a lead-acid-based system with a smaller energy content. Ten, 300-VDC, 40-kWh sodium/sulfur battery packs are accommodated behind a power conversion system envelope with integrated digital control. The resulting design facilities transportation, site selection, and deployment because the system is quiet and non-polluting, and can be located in proximity to the load. This report contains a detailed description of the design and supporting hardware development performed under this contract.

  10. Ramping Performance Analysis of the Kahuku Wind-Energy Battery Storage System

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Ramping Performance Analysis of the Kahuku Wind-Energy Battery Storage System V. Gevorgian and D. Corbus Management Report NREL/MP-5D00-59003 November 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy

  11. NREL-Led Team Improves and Accelerates Battery Design (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    FS-6A42-60650 * November 2013 NREL prints on paper that contains recycled content. NREL-Led Team Improves and Accelerates Battery Design The National Renewable Energy Laboratory (NREL) is leading some of the best minds from U.S. auto manufacturers, battery developers, and automotive simulation tool developers in a $20 million project to accelerate the development of battery packs and thus the wider adoption of electric-drive vehicles. The Computer-Aided Engineer- ing for Electric Drive Vehicle

  12. Solid-state active switch matrix for high energy, moderate power battery systems

    DOE Patents [OSTI]

    Deal, Larry; Paris, Peter; Ye, Changqing

    2016-06-07

    A battery management system employs electronic switches and capacitors. No traditional cell-balancing resistors are used. The BMS electronically switches individual cells into and out of a module of cells in order to use the maximum amount of energy available in each cell and to completely charge and discharge each cell without overcharging or under-discharging.

  13. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Advancements in high capacity and high density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Key Result Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using ALD and MLD

  14. Optimal capacity of the battery energy storage system in a power system

    SciTech Connect (OSTI)

    Tsungying Lee; Nanming Chen

    1993-12-01

    Due to the cyclical human life, utility loads appear to be cyclical too. During daytime when most factories are in operation, the electricity demand is very high. On the contrary, when most people are sleeping from midnight to daybreak, the electric load is very low, usually only half of the peak load amount. To meet this large gap between peak load and light load, utilities must idle many generation plants during light load period while operating all generation plants during peak load period no matter how expensive they are. This low utilization factor of generation plants and uneconomical operation have sparked utilities to invest in energy storage devices such as pumped storage plants, compressed air energy storage plants, battery energy storage systems (BES) and superconducting magnetic energy storage systems (SMES) etc. Among these, pumped storage is already commercialized and is the most widely used device. However, it suffers the limit of available sites and will be saturated in the future. Other energy storage devices are still under research to reduce the cost. This paper investigates the optimal capacity of the battery energy storage system in a power system. Taiwan Power Company System is used as the example system to test this algorithm. Results show that the maximum economic benefit of the battery energy storage in a power system can be achieved by this algorithm.

  15. LithiumIonBatteries.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information LithiumIonBatteries

  16. KAir Battery

    Energy.gov [DOE]

    KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

  17. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  18. Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005...

    Office of Environmental Management (EM)

    for Energy Conservation Standards for Battery Chargers and External Power Supplies, ... Meeting regarding DOE Energy Conservations Standards for Battery Docket No. EERE- ...

  19. A High-Performance Rechargeable Iron Electrode for Large-Scale Battery-Based Energy Storage

    SciTech Connect (OSTI)

    Manohar, AK; Malkhandi, S; Yang, B; Yang, C; Prakash, GKS; Narayanan, SR

    2012-01-01

    Inexpensive, robust and efficient large-scale electrical energy storage systems are vital to the utilization of electricity generated from solar and wind resources. In this regard, the low cost, robustness, and eco-friendliness of aqueous iron-based rechargeable batteries are particularly attractive and compelling. However, wasteful evolution of hydrogen during charging and the inability to discharge at high rates have limited the deployment of iron-based aqueous batteries. We report here new chemical formulations of the rechargeable iron battery electrode to achieve a ten-fold reduction in the hydrogen evolution rate, an unprecedented charging efficiency of 96%, a high specific capacity of 0.3 Ah/g, and a twenty-fold increase in discharge rate capability. We show that modifying high-purity carbonyl iron by in situ electro-deposition of bismuth leads to substantial inhibition of the kinetics of the hydrogen evolution reaction. The in situ formation of conductive iron sulfides mitigates the passivation by iron hydroxide thereby allowing high discharge rates and high specific capacity to be simultaneously achieved. These major performance improvements are crucial to advancing the prospect of a sustainable large-scale energy storage solution based on aqueous iron-based rechargeable batteries. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.034208jes] All rights reserved.

  20. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Dunn, Jennifer B.; James, Christine; Gaines, Linda; Gallagher, Kevin; Dai, Qiang; Kelly, Jarod C.

    2015-09-01

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  1. Energy Department Awards Nearly $7 Million for Research to Reduce Costs of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electric Vehicle Chargers | Department of Energy 7 Million for Research to Reduce Costs of Electric Vehicle Chargers Energy Department Awards Nearly $7 Million for Research to Reduce Costs of Electric Vehicle Chargers December 21, 2011 - 12:49pm Addthis As part of the Obama Administration's commitment to reduce America's dependence on oil through advanced vehicle technologies, U.S. Energy Secretary Steven Chu today announced awards totaling nearly $7 million in research and development

  2. DC Fast Charger Usage in the Pacific Northwest

    SciTech Connect (OSTI)

    Salisbury, Shawn; Smart, John

    2015-02-01

    This document will describe the use of a number of Direct Current Fast Charging Stations throughout Washington and Oregon as a part of of the West Coast Electric Highway. It will detail the usage frequency and location of the charging stations INL has data from. It will also include aggregated data from hundreds of privately owned vehicles that were enrolled in the EV Project regarding driving distance when using one of the West Coast Electric Highway fast chargers. This document is a white paper that will be published on the INL AVTA website.

  3. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect (OSTI)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  4. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    DOE PAGES-Beta [OSTI]

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge andmore » discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.« less

  5. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    SciTech Connect (OSTI)

    Li, Bin; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L-1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L-1 at the solubility limit of ZnI2 in water (~7 M). We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.

  6. The Paper Battery Company Inc | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    12180 Region: Northeast - NY NJ CT PA Area Sector: Buildings Product: Scalable energy storage sheet Year Founded: 2008 Phone Number: 5182669027 Website: www.paperbatteryco.com...

  7. The Energy Storage Frontier: Lithium-ion Batteries and Beyond...

    Office of Scientific and Technical Information (OSTI)

    Publisher: Materials Research Society Research Org: Argonne National Laboratory (ANL) Sponsoring Org: USDOE Office of Science - Office of Basic Energy Sciences - Joint Center for ...

  8. Fail-safe designs for large capacity battery systems - Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels ...

  9. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect (OSTI)

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  10. Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries

    SciTech Connect (OSTI)

    Tan, Jinwang; Tartakovsky, Alexandre M.; Ferris, Kim F.; Ryan, Emily M.

    2016-01-01

    Dendrite formation on the electrode surface of high energy density lithium (Li) batteries causes safety problems and limits their applications. Suppressing dendrite growth could significantly improve Li battery performance. Dendrite growth and morphology is a function of the mixing in the electrolyte near the anode interface. Most research into dendrites in batteries focuses on dendrite formation in isotropic electrolytes (i.e., electrolytes with isotropic diffusion coefficient). In this work, an anisotropic diffusion reaction model is developed to study the anisotropic mixing effect on dendrite growth in Li batteries. The model uses a Lagrangian particle-based method to model dendrite growth in an anisotropic electrolyte solution. The model is verified by comparing the numerical simulation results with analytical solutions, and its accuracy is shown to be better than previous particle-based anisotropic diffusion models. Several parametric studies of dendrite growth in an anisotropic electrolyte are performed and the results demonstrate the effects of anisotropic transport on dendrite growth and morphology, and show the possible advantages of anisotropic electrolytes for dendrite suppression.

  11. Development of a high-power and high-energy thermal battery

    SciTech Connect (OSTI)

    GUIDOTTI,RONALD A.; SCHARRER,GREGORY L.; REINHARDT,FREDERICK W.

    2000-04-18

    The Li(Si)/FeS{sub 2} and Li(Si)/CoS{sub 2} couples were evaluated with a low-melting LiBr-KBr-LiF eutectic and all-Li LiCl-LiBr-LiF electrolyte for a battery application that required both high energy and high power for short duration. Screening studies were carried out with 1.25 inch-dia. triple cells and with 10-cell batteries. The Li(Si)/LiCl-LiBr-LiF/CoS{sub 2} couple performed the best under the power load and the Li(Si)/LiCl-LiBr-LiF/FeS{sub 2} was better under the energy load. The former system was selected as the best overall performer for the wide range of temperatures for both loads, because of the higher thermal stability of CoS{sub 2}.

  12. Modeling Lithium Ion Battery Safety: Venting of Pouch Cells; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Santhanagopalan, Shriram.; Yang, Chuanbo.; Pesaran, Ahmad

    2013-07-01

    This report documents the successful completion of the NREL July milestone entitled “Modeling Lithium-Ion Battery Safety - Complete Case-Studies on Pouch Cell Venting,” as part of the 2013 Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy (DOE). This work aims to bridge the gap between materials modeling, usually carried out at the sub-continuum scale, and the

  13. Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation

    Office of Scientific and Technical Information (OSTI)

    Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation Neubauer, J. 25 ENERGY STORAGE BATTERY; LITHIUM-ION; STATIONARY ENERGY STORAGE; BLAST; BATTERY DEGRADATION;...

  14. electrochemical battery stress-induced degradation mechanisms

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    electrochemical battery stress-induced degradation mechanisms - Sandia Energy Energy ... Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ...

  15. Rechargeable Heat Battery's Secret Revealed

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture ... Contact: John Hules, JAHules@lbl.gov, +1 510 486 6008 2011-01-11-Heat-Battery.jpg A ...

  16. Beyond Lithium-Ion Batteries - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    7, 2014, Videos Beyond Lithium-Ion Batteries beyond_lithium_ion_batteris_audio JCESR Director George Crabtree and Deputy Director Jeff Chamberlain discuss how JCESR will go beyond lithium ion batteries in this audio podcast

  17. EERE Success Story—Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  18. NREL: Energy Storage - Battery Second Use for Plug-In Electric Vehicles

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Battery Second Use for Plug-In Electric Vehicles This chart illustrates the life cycle of batteries, beginning with original manufacture, then to automotive service, then to a se3cond use, which includes post-automotive battery assessment, repurposing, and a second use application. Finally, the batteries can be recycled, at which point the recaptured materials could go to making new batteries again. Enlarge image PEV battery life cycle with second use B2U Repurposing Cost Calculator For B2U,

  19. Molten-Salt Batteries for Medium and Large-Scale Energy Storage

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Yang, Zhenguo

    2014-12-01

    This chapter discusses two types of molten salt batteries. Both of them are based on a beta-alumina solid electrolyte and molten sodium anode, i.e., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. The chapter first reviews the basic electrochemistries and materials for various battery components. It then describes the performance of state-of-the-art batteries and future direction in material development for these batteries.

  20. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    SciTech Connect (OSTI)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  1. Ramping Performance Analysis of the Kahuku Wind-Energy Battery Storage System

    SciTech Connect (OSTI)

    Gevorgian, V.; Corbus, D.

    2013-11-01

    High penetrations of wind power on the electrical grid can introduce technical challenges caused by resource variability. Such variability can have undesirable effects on the frequency, voltage, and transient stability of the grid. Energy storage devices can be an effective tool in reducing variability impacts on the power grid in the form of power smoothing and ramp control. Integrating anenergy storage system with a wind power plant can help smooth the variable power produced from wind. This paper explores the fast-response, megawatt-scale, wind-energy battery storage systems that were recently deployed throughout the Hawaiian islands to support wind and solar projects.

  2. Next-Generation Batteries: A New Report - Joint Center for Energy...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    February 14, 2015, Videos Next-Generation Batteries: A New Report Next Generation Batteries: A New Report at AAAS Venkat Srinivasan, Lawrence Berkeley National Laboratory; Yi Cui, ...

  3. Comparison of a synergetic battery pack drive system to a pulse width modulated AC induction motor drive for an electric vehicle

    SciTech Connect (OSTI)

    Davis, A.; Salameh, Z.M.; Eaves, S.S.

    1999-06-01

    A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and as a battery charger. In this paper, the performance of a Synergetic Battery Pack during motor drive operation is compared via computer simulation with a conventional motor drive which uses sinusoidal pulse width modulation (SPWM) to determine its effectiveness as a motor drive. The study showed that the drive efficiency was compatible with the conventional system, and offered a significant advantage in the lower frequency operating ranges. The voltage total harmonic distortion (THD) of the SBP was significantly lower than the PWM drive output, but the current THD was slightly higher due to the shape of the harmonic spectrum. In conclusion, the SBP is an effective alternative to a conventional drive, but the real advantage lies in its battery management capabilities and charger operation.

  4. Advanced Vehicle Testing Activity Benchmark Testing of the Chevrolet Volt Onboard Charger

    SciTech Connect (OSTI)

    Richard Carlson

    2012-04-01

    This is a report for public consumption, for the AVTA website, detailing the testing and analysis of the benchmark testing conducted on the Chevrolet Volt on-board charger.

  5. Corrosion, passivity and breakdown of alloys used in high energy density batteries: Final report

    SciTech Connect (OSTI)

    Kruger, J.

    1987-10-01

    The objective of this research is to further the understanding of the passivity of metals and alloys in non-aqueous and mixed solvents. There is a lack of data in this area, despite its importance to applications such as the construction materials for high energy density batteries. There have been a number of corrosion-related problems reported in the construction materials of such batteries. As demands for longevity for these batteries increase, problems associated with corrosion will become increasingly important. This work is concerned with analyzing the nature, mode of formation, and mode of breakdown of passive films that exist on alloys in non-aqueous and mixed solvents. Work during Year I has concentrated upon generating cyclic voltammograms and potentiodynamic curves as baseline data on Au and Armco Fe in water/propylene carbonate mixtures. In addition, Scanning Electron Microscopy has been performed in order to characterize the attack observed and to correlate it to the electrochemical parameters measured. 3 refs., 15 figs.

  6. Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499

    SciTech Connect (OSTI)

    Smith, K.

    2013-10-01

    Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

  7. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    SciTech Connect (OSTI)

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J.

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  8. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    SciTech Connect (OSTI)

    Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew; Sullivan, John L.; Wang, Michael

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  9. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  10. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    SciTech Connect (OSTI)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  11. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    for Linking Ion Solvation and Lithium Battery Electrolyte Properties Henderson, Wesley 25 ENERGY STORAGE battery, electrolyte, solvation, ionic association battery, electrolyte,...

  12. Estimating the system price of redox flow batteries for grid...

    Office of Scientific and Technical Information (OSTI)

    Estimating the system price of redox flow batteries for grid storage Citation Details ... Subject: energy storage; flow battery; grid storage; lithium-ion battery; manufacturing ...

  13. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries

    DOE PAGES-Beta [OSTI]

    Lin, Feng; Xin, Huolin L.; Nordlund, Dennis; Li, Yuyi; Quan, Matthew K.; Cheng, Lei; Weng, Tsu -Chien; Liu, Yijin; Doeff, Marca M.

    2016-01-11

    Controlling surface and interfacial properties of battery materials is key to improving performance in rechargeable Li-ion devices. Surface reconstruction from a layered to a rock salt structure in metal oxide cathode materials is commonly observed and results in poor high-voltage cycling performance, impeding attempts to improve energy density. Hierarchically structured LiNi0.4Mn0.4Co0.2O2 (NMC-442) spherical powders, made by spray pyrolysis, exhibit local elemental distribution gradients that deviate from the global NMC-442 composition; specifically, they are Ni-rich and Mn-poor at particle surfaces. These materials demonstrate improved Coulombic efficiencies, discharge capacities, and high-voltage capacity retention in lithium half-cell configurations. The subject powders show superiormore » resistance against surface reconstruction due to the tailored surface chemistry, compared to conventional NMC-442 materials. This paves the way towards the development of a new generation of robust and stable high-energy NMC cathodes for Li-ion batteries.« less

  14. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect (OSTI)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  15. Overview of Battery R&D Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery R&D Activities Overview of Battery R&D Activities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vtpn07_es_howell_2012_o.pdf (1.38 MB) More Documents & Publications Hybrid Electric Systems Overview of Battery R&D Activities Overview of Battery R&D Activities

  16. High Voltage Electrolytes for Li-ion Batteries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrolytes for Li-ion Batteries High Voltage Electrolytes for Li-ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es024_jow_2012_o.pdf (6.21 MB) More Documents & Publications High Voltage Electrolytes for Li-ion Batteries High Voltage Electrolytes for Li-ion Batteries Progress in Electrolyte Component R&D within the ABR Program, 2009 thru 2013

  17. Are Lithium-Ion Batteries Safe? - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    September 14, 2016, Videos Are Lithium-Ion Batteries Safe? Lithium-ion batteries are used in all kinds of devices. While there are very few safety issues relative to the millions of batteries in use, in light of some recent lithium-ion safety issues, Kris Van Cleave at CBS Evening News took a look at their safety.

  18. US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing

    SciTech Connect (OSTI)

    Donald Karner; J.E. Francfort

    2005-09-01

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

  19. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    SciTech Connect (OSTI)

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-01-01

    Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li{sub 2}S{sub 8}) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li{sub 2}S{sub 2} and Li{sub 2}S, the catholyte is designed to cycle only in the range between sulfur and Li{sub 2}S{sub 4}. Consequently all detrimental effects due to the formation and volume expansion of solid Li{sub 2}S{sub 2}/Li{sub 2}S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg{sup -1} and 190 W h L{sup -1} for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li{sub 2}S{sub 8} catholyte, energy densities of 97 W h kg{sup -1} and 108 W h L{sup -1} can be achieved. As the lithium surface is well passivated by LiNO{sub 3} additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g{sup -1}. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

  20. How to Make a Battery in 7 Steps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Make a Battery in 7 Steps How to Make a Battery in 7 Steps May 24, 2016 - 11:30am Addthis See how batteries are assembled at PNNL's Advanced Battery Facility. | Video by PNNL. Franny White Pacific Northwest National Laboratory From smartphones to electric cars and even the Tesla Powerwall, rechargeable batteries power our modern lives. But have you ever stopped to wonder what's inside these devices that allow us to send emojis, drive around town and so much more? If so, check out the Advanced

  1. Battery Thermal Characterization

    SciTech Connect (OSTI)

    Saxon, Aron; Powell, Mitchell; Shi, Ying

    2015-06-09

    This presentation provides an update of NREL's battery thermal characterization efforts for the 2015 U.S. Department of Energy Annual Merit Reviews.

  2. RADIOACTIVE BATTERY

    DOE Patents [OSTI]

    Birden, J.H.; Jordan, K.C.

    1959-11-17

    A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

  3. Liquid-Metal Electrode to Enable Ultra-Low Temperature Sodium-Beta Alumina Batteries for Renewable Energy Storage

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Mei, Donghai; Lemmon, John P.; Sprenkle, Vincent L.; Liu, Jun

    2014-08-01

    Metal electrodes have a high capacity for energy storage but have found limited applications in batteries because of dendrite formation and other problems. In this paper, we report a new alloying strategy that can significantly reduce the melting temperature and improve wetting with the electrolyte to allow the use of liquid metal as anode in sodium-beta alumina batteries (NBBs) at much lower temperatures (e.g., 95 to 175°C). Commercial NBBs such as sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries typically operate at relatively high temperatures (e.g., 300-350°C) due to poor wettability of sodium on the surface of β"-Al2O3. Our combined experimental and computational studies suggest that Na-Cs alloy can replace pure sodium as the anode material, which provides a significant improvement in wettability, particularly at lower temperatures (i.e., <200°C). Single cells with the Na-Cs alloy anode exhibit excellent cycling life over those with pure sodium anode at 175 and 150°C. The cells can even operate at 95°C, which is below the melting temperature of pure sodium. These results demonstrate that NBB can be operated at ultra lower temperatures with successfully solving the wetting issue. This work also suggests a new strategy to use liquid metal as the electrode materials for advanced batteries that can avoid the intrinsic safety issues associated with dendrite formation on the anode.

  4. EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries

    Energy Savers

    Breakout Session Report | Department of Energy Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. report_out-next-generation_li-ion_b.pdf (136.48 KB) More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion

  5. Rechargeable Nanoelectrofuels for Flow Batteries | Argonne National...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Rechargeable Nanoelectrofuels for Flow Batteries Four-page general brochure describing a groundbreaking energy storage concept that may revolutionize the world of batteries PDF...

  6. Computer-Aided Engineering for Electric-Drive Vehicle Batteries

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Computer-Aided Engineering for Electric-Drive Vehicle Batteries - Sandia Energy Energy ... Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials ...

  7. EnerDel Expanding Battery Manufacturing in Indiana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EnerDel Expanding Battery Manufacturing in Indiana EnerDel Expanding Battery Manufacturing in Indiana October 5, 2010 - 2:00pm Addthis EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel Lindsay Gsell What are the key facts? EnerDel uses $118 in Recovery Act funding to expand

  8. Building a Better Battery for Vehicles and the Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    a Better Battery for Vehicles and the Grid Building a Better Battery for Vehicles and the Grid November 30, 2012 - 12:28pm Addthis Argonne scientists Ira Bloom (front) and Javier Bareño prepare a sample of battery materials for Raman spectroscopy, which is used to gather information regarding the nature of the materials present in the sample. | Photo courtesy of Argonne National Laboratory. Argonne scientists Ira Bloom (front) and Javier Bareño prepare a sample of battery materials for Raman

  9. Vehicle Technologies Office Merit Review 2016: High Energy Anode Material Development for Li-Ion Batteries

    Energy.gov [DOE]

    Presentation given by Sinode Systems at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  10. Vehicle Technologies Office Merit Review 2016: High Energy High Power Battery Exceeding PHEV-40 Requirements

    Energy.gov [DOE]

    Presentation given by TIAX at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  11. Vehicle Technologies Office Merit Review 2016: High Energy Lithium Batteries for PHEV Applications

    Energy.gov [DOE]

    Presentation given by Envia at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  12. Vehicle Technologies Office Merit Review 2016: Construction of High Energy Density Batteries

    Energy.gov [DOE]

    Presentation given by Physical Sciences Inc. at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  13. Vehicle Technologies Office Merit Review 2016: High Energy Lithium Batteries for Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Envia Systems at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  14. Structure Stabilization by Mixed Anions in Oxyfluoride Cathodes for High-Energy Lithium Batteries

    DOE PAGES-Beta [OSTI]

    Kim, Sung-Wook; Pereira, Nathalie; Chernova, Natasha A.; Omenya, Fredrick; Gao, Peng; Whittingham, M. Stanley; Amatucci, Glenn G.; Su, Dong; Wang, Feng

    2015-08-24

    Mixed-anion oxyfluorides (i.e., FeOxF2-x) are an appealing alternative to pure fluorides as high-capacity cathodes in lithium batteries, with enhanced cyclability via oxygen substitution. Yet, it is still unclear how the mixed anions impact the local phase transformation and structural stability of oxyfluorides during cycling due to the complexity of electrochemical reactions, involving both lithium intercalation and conversion. Herein, we investigated the local chemical and structural ordering in FeO0.7F1.3 at length scales spanning from single particles to the bulk electrode, via a combination of electron spectrum-imaging, magnetization, electrochemistry, and synchrotron X-ray measurements. The FeO0.7F1.3 nanoparticles retain a FeF2-like rutile structuremore » but chemically heterogeneous, with an F-rich core covered by thin O-rich shell. Upon lithiation the O-rich rutile phase is transformed into Li—Fe—O(—F) rocksalt that has high lattice coherency with converted metallic Fe, a feature that may facilitate the local electron and ion transport. The O-rich rocksalt is highly stable over lithiation/delithiation and thus advantageous to maintain the integrity of the particle, and due to its predominant distribution on the surface, it is expected to prevent the catalytic interaction of Fe with electrolyte. Our findings of the structural origin of cycling stability in oxyfluorides may provide insights into developing viable high-energy electrodes for lithium batteries.« less

  15. Structure Stabilization by Mixed Anions in Oxyfluoride Cathodes for High-Energy Lithium Batteries

    SciTech Connect (OSTI)

    Kim, Sung-Wook; Pereira, Nathalie; Chernova, Natasha A.; Omenya, Fredrick; Gao, Peng; Whittingham, M. Stanley; Amatucci, Glenn G.; Su, Dong; Wang, Feng

    2015-08-24

    Mixed-anion oxyfluorides (i.e., FeOxF2-x) are an appealing alternative to pure fluorides as high-capacity cathodes in lithium batteries, with enhanced cyclability via oxygen substitution. Yet, it is still unclear how the mixed anions impact the local phase transformation and structural stability of oxyfluorides during cycling due to the complexity of electrochemical reactions, involving both lithium intercalation and conversion. Herein, we investigated the local chemical and structural ordering in FeO0.7F1.3 at length scales spanning from single particles to the bulk electrode, via a combination of electron spectrum-imaging, magnetization, electrochemistry, and synchrotron X-ray measurements. The FeO0.7F1.3 nanoparticles retain a FeF2-like rutile structure but chemically heterogeneous, with an F-rich core covered by thin O-rich shell. Upon lithiation the O-rich rutile phase is transformed into Li—Fe—O(—F) rocksalt that has high lattice coherency with converted metallic Fe, a feature that may facilitate the local electron and ion transport. The O-rich rocksalt is highly stable over lithiation/delithiation and thus advantageous to maintain the integrity of the particle, and due to its predominant distribution on the surface, it is expected to prevent the catalytic interaction of Fe with electrolyte. Our findings of the structural origin of cycling stability in oxyfluorides may provide insights into developing viable high-energy electrodes for lithium batteries.

  16. Testimonials- Partnerships in Battery Technologies- CalBattery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

  17. From: Nicholas Ammann [mailto:nammann@apple.com]

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wednesday, June 20, 2012 8:12 AM To: Exparte Communications Subject: Energy Conservation Standards for Battery Chargers and External Power Supplies; Proposed Rule Making - Ex Parte Communication Apple Inc. met with DOE to discuss the notice of proposed rule making the Department sent out regarding battery chargers and external power supplies. Below is a list of topics that Apple discussed with DOE. - Discussion regarding Battery Charger product Class 8 and that it does not scale with battery

  18. An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples

    SciTech Connect (OSTI)

    Yang, B; Hoober-Burkhardt, L; Wang, F; Prakash, GKS; Narayanan, SR

    2014-05-21

    We introduce a novel Organic Redox Flow Battery (ORBAT), for Meeting the demanding requirements of cost, eco-friendliness, and durability for large-scale energy storage. ORBAT employs two different water-soluble organic redox couples on the positive and negative side of a flow battery. Redox couples such as quinones are particularly attractive for this application. No precious metal catalyst is needed because of the fast proton-coupled electron transfer processes. Furthermore, in acid media, the quinones exhibit good chemical stability. These properties render quinone-based redox couples very attractive for high-efficiency metal-free rechargeable batteries. We demonstrate the rechargeability of ORBAT with anthraquinone-2-sulfonic acid or anthraquinone-2,6-disulfonic acid on the negative side, and 1,2-dihydrobenzoquinone- 3,5-disulfonic acid on the positive side. The ORBAT cell uses a membrane-electrode assembly configuration similar to that used in polymer electrolyte fuel cells. Such a battery can be charged and discharged multiple times at high faradaic efficiency without any noticeable degradation of performance. We show that solubility and mass transport properties of the reactants and products are paramount to achieving high current densities and high efficiency. The ORBAT configuration presents a unique opportunity for developing an inexpensive and sustainable metal-free rechargeable battery for large-scale electrical energy storage. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.orgilicenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.

  19. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid

  20. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  1. Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half

    Energy.gov [DOE]

    Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

  2. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries

    Energy.gov [DOE]

    Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

  3. Vehicle Technologies Office Merit Review 2016: High Energy Density Lithium Battery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Binghamton University-SUNY at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  4. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, M.; Cosimbescu, Lelia; Liu, Tianbiao L.; Sprenkle, Vincent L.; Wang, Wei

    2014-12-03

    We will present a novel design lithium-organic non-aqueous redox flow battery based on a TEMPO catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

  5. OSTIblog Articles in the space battery Topic | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information battery Topic Powering Curiosity; Exploring New Horizons - DOE's MMRTG by Mary Schorn 09 Aug, 2012 in Products and Content 4274 RTG.png Powering Curiosity; Exploring New Horizons - DOE's MMRTG Read more about 4274 DOE's RTG is doing it again. The Department's Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is providing continuous power to the Mars rover Curiosity. This radioactive power source is "essentially a nuclear battery

  6. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  7. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  8. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information...

  9. Integrated Charger with Wireless Charging and Boost Function for PHEV and EV Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan; Onar, Omer C; Campbell, Steven L

    2015-01-01

    Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electric vehicle (EV). The ac-dc efficiency of the proposed system is 85.05% and the specific power and power density of the onboard components is ~455 W/kg and ~302 W/ .

  10. Integrated Charger with Wireless Charging and Boost Function for PHEV and EV Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan; Onar, Omer C; Campbell, Steven L; Tolbert, Leon M

    2015-01-01

    Integrated charger topologies that have been researched so far with dc-dc converters and the charging functionality have no isolation in the system. Isolation is an important feature that is required for user interface systems that have grid connections and therefore is a major limitation that needs to be addressed along with the integrated functionality. The topology proposed in this paper is a unique and a first of its kind topology that integrates a wireless charging system and the boost converter for the traction drive system. The new topology is also compared with an on-board charger system from a commercial electric vehicle (EV). The ac-dc efficiency of the proposed system is 85.1% and the specific power and power density of the onboard components is ~455 W/kg and ~320 W/ .

  11. 43939 EASY ENERGY ACTION PLAN CHECKLIST W PATUA TITLE REVISED...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Use energy-saving light bulbs. Unplug chargers when not in use. Use natural light, heat and cooling. Use "smart" power strips. Talk to your parents about programmable digital ...

  12. Impact of Direct Financial Incentives in the Emerging Battery Electric Vehicle Market: A Preliminary Analysis (Presentation), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Impact of Direct Financial Incentives in the Emerging Battery Electric Vehicle Market: A Preliminary Analysis Bentley Clinton 1,2 , Austin Brown 1 , Carolyn Davidson 1 , Daniel Steinberg 1 1 National Renewable Energy Laboratory 2 Department of Economics, University of Colorado - Boulder February 2015 NREL/PR-6A20-63263 2 Overview Question * How have incentives changed purchasing for battery electric vehicles in the United States? Method * Regression analysis at the state level to isolate

  13. AC Resonant charger with charge rate unrelated to primary power frequency

    DOE Patents [OSTI]

    Watson, Harold

    1982-01-01

    An AC resonant charger for a capacitive load, such as a PFN, is provided with a variable repetition rate unrelated to the frequency of a multi-phase AC power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

  14. Ac resonant charger with charge rate unrelated to preimary power requency

    DOE Patents [OSTI]

    Not Available

    1979-12-07

    An ac resonant charger for a capacitive load, such as a pulse forming network (PFN), is provided with a variable repetition rate unrelated to the frequency of a multi-phase ac power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

  15. Impact of Fast Charging on Life of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad

    2015-05-03

    Installation of fast charging infrastructure is considered by many as one of potential solutions to increase the utility and range of electric vehicles (EVs). This is expected to reduce the range anxiety of drivers of EVs and thus increase their market penetration. Level 1 and 2 charging in homes and workplaces is expected to contribute to the majority of miles driven by EVs. However, a small percentage of urban driving and most of inter-city driving could be only achieved by a fast-charging network. DC fast charging at 50 kW, 100 kW, 120 kW compared to level 1 (3.3 kW) and level 2 (6.6 kW) results in high-current charging that can adversely impact the life of the battery. In the last couple of years, we have investigated the impact of higher current rates in batteries and potential of higher temperatures and thus lower service life. Using mathematical models, we investigated the temperature increase of batteries due to higher heat generation during fast charge and have found that this could lead to higher temperatures. We compared our models with data from other national laboratories both for fine-tuning and calibration. We found that the incremental temperature rise of batteries during 1C to 3C fast charging may reduce the practical life of the batteries by less than 10% over 10 to 15 years of vehicle ownership. We also found that thermal management of batteries is needed for fast charging to prevent high temperature excursions leading to unsafe conditions.

  16. Multi-physics Modeling for Improving Li-Ion Battery Safety; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G.; Santhanagopalan, S.; Yang, C.

    2015-04-21

    Battery performance, cost, and safety must be further improved for larger market share of HEVs/PEVs and penetration into the grid. Significant investment is being made to develop new materials, fine tune existing ones, improve cell and pack designs, and enhance manufacturing processes to increase performance, reduce cost, and make batteries safer. Modeling, simulation, and design tools can play an important role by providing insight on how to address issues, reducing the number of build-test-break prototypes, and accelerating the development cycle of generating products.

  17. U.S. Battery R&D Progress and Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    U.S. Battery R&D Progress and Plans U.S. Battery R&D Progress and Plans 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es000_howell_2013_o.pdf (2.05 MB) More Documents & Publications Innovative Cell Materials and Designs for 300 Mile Range EVs Vehicle Technologies Office Merit Review 2014: Innovative Cell Materials and Design for 300 Mile Range EVs Innovative Cell Materials and Designs for 300 Mile Range E

  18. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Energy.gov (indexed) [DOE]

    Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6 Analysis of Electric Vehicle Battery Performance Targets Building America Whole-House Solutions ...

  19. Piezonuclear battery

    DOE Patents [OSTI]

    Bongianni, Wayne L.

    1992-01-01

    A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

  20. Vehicle Technologies Office: Advanced Battery Development, System Analysis,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Testing | Department of Energy Battery Development, System Analysis, and Testing Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full battery systems. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and Testing activity

  1. Circulating current battery heater

    DOE Patents [OSTI]

    Ashtiani, Cyrus N.; Stuart, Thomas A.

    2001-01-01

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  2. Novel Electrolytes for Lithium Ion Batteries Lucht, Brett L 25...

    Office of Scientific and Technical Information (OSTI)

    Electrolytes for Lithium Ion Batteries Lucht, Brett L 25 ENERGY STORAGE We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have...

  3. Alan MacDiarmid, Conductive Polymers, and Plastic Batteries

    Office of Scientific and Technical Information (OSTI)

    ... Two key measures of a battery's suitability for automotive application are the power ... Energy Systems Based on Polyacetylene: Rechargeable Batteries and Schottky Barrier Solar ...

  4. Battery Pack Requirements and Targets Validation FY 2009 DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overview Start: Oct. 2006 Completion: summer 2009 90% ... electric drive Achieving battery life cycle net benefits, ... It assumes that due to costs of energy storage in batteries, ...

  5. Additional capacities seen in metal oxide lithium-ion battery...

    Office of Scientific and Technical Information (OSTI)

    Additional capacities seen in metal oxide lithium-ion battery electrodes Citation Details ... Language: English Subject: energy storage (including batteries and capacitors), defects, ...

  6. Battery500 Consortium to Spark EV Innovations: Pacific Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery500 Consortium to Spark EV Innovations: Pacific Northwest National Laboratory-led, 5-year 50M effort seeks to almost triple energy stored in electric car batteries ...

  7. Lithium Iron Phosphate Composites for Lithium Batteries | Argonne...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for high-power and high-energy lithium batteries ...

  8. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    SciTech Connect (OSTI)

    Gopal, Anand R; Witt, Maggie; Sheppard, Colin; Harris, Andrew

    2015-07-01

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  9. Michael Thackeray on Lithium-air Batteries | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Michael Thackeray on Lithium-air Batteries Share Description Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. Speakers Michael Thackeray Duration 2:10 Topic Energy Energy usage Energy storage Batteries Lithium-air batteries Programs Chemical sciences & engineering Electrochemical energy storage Video ID

  10. Khalil Amine on Lithium-air Batteries | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Khalil Amine on Lithium-air Batteries Share Description Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. Speakers Khalil Amine Duration 2:34 Topic Energy Energy usage Energy storage Batteries Lithium-air batteries Programs Chemical sciences & engineering Electrochemical energy storage Video ID http://youtu.be/K-rO39scjUs

  11. In Situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    In Situ Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of ...

  12. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    information about thin-film lithium batteries is available in full-text and on the Web. ... Additional Web Pages: Thin Films for Advanced Batteries Thin-Film Rechargeable Lithium, ...

  13. EERE Success Story-Colorado: Isothermal Battery Calorimeter Quantifies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat Flow, Helps Make Safer, Longer-lasting Batteries | Department of Energy Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries EERE Success Story-Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries August 19, 2013 - 11:15am Addthis Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in

  14. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  15. Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure

    SciTech Connect (OSTI)

    Dong, Jing; Lin, Zhenhong

    2012-01-01

    This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

  16. JCESR Scientific Sprints - Better Polymers for Better Batteries...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    research --Building design ---Construction ... & simulation ---Nuclear fuel cycle ---Reactors -Energy usage --Energy storage ---Batteries ----Lithium-ion ...

  17. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Thackeray, Michael (Director, Center for Electrical Energy Storage); CEES Staff

    2016-07-12

    'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

  18. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Thackeray, Michael; CEES Staff

    2011-05-01

    'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

  19. A Functional Impurity for Li-O2 Battery Cathode - Joint Center for Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Storage Research December 2, 2015, Research Highlights A Functional Impurity for Li-O2 Battery Cathode Galvanostatic discharge curves of activated carbon cathodes (a) with different K-impurity levels (i.e. KAC4 to KAC16) at 0.1 mA/cm2 and the corresponding SEM images (b to e) of the discharged cathode. Scientific Achievement Demonstrated that alkali metal can be used as a catalyst Li-O2 cell cathode design and opens the possibility of future optimization of functional K-doping in carbon

  20. Anodes Improve Safety and Performance in Lithium-ion Batteries - Energy

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Anodes Improve Safety and Performance in Lithium-ion Batteries Argonne National Laboratory Contact ANL About This Technology <span style="font-family: &quot;Cambria&quot;,&quot;serif&quot;; font-size: 12pt; mso-fareast-font-family: Calibri; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language:

  1. Energy Department to Launch New Energy Innovation Hub Focused...

    Energy Savers

    to Launch New Energy Innovation Hub Focused on Advanced Batteries and Energy Storage Energy Department to Launch New Energy Innovation Hub Focused on Advanced Batteries and Energy ...

  2. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2016-07-12

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  3. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  4. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2016-07-12

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  5. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  6. Modular Electromechanical Batteries for Storage of Electrical...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Modular Electromechanical Batteries for Storage of Electrical Energy for Land-Based ... of a new technology for the storage of electrical energy in modular "electromechanical ...

  7. Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.

    SciTech Connect (OSTI)

    Johns, William H.

    2013-11-01

    This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

  8. A Comparison of the Performance Capabilities of Radioisotope Energy Conversion Systems, Betavoltaic Cells, and other Nuclear Batteries

    SciTech Connect (OSTI)

    Steinfelds, Eric V; Prelas, Mark A.; Sudarshan, Loyalka K.; Tompson, Robert V.

    2006-07-01

    In this paper we compare the potential performance capabilities of several types of nuclear batteries to the Radioisotope Thermocouple Generators (RTG's) currently in use. There have been theoretical evaluations of, and some experimental testing of, several types of nuclear batteries including Radioisotope Energy Conversion Systems (RECS), Direct Energy Conversion (DEC) systems, and Betavoltaic Power Cells (BPC's). It has been theoretically shown, and to some extent experimentally demonstrated, that RECS, capacitive DEC systems, and possibly BPC's are all potentially capable of efficiencies well above the 9% maximum efficiency demonstrated to date in RTG's customized for deep space probe applications. Even though RTG's have proven their reliability and have respectable power to mass ratios, it is desirable to attain efficiencies of at least 25% in typical applications. High fuel efficiency is needed to minimize the quantities of radioisotopic or nuclear fuels in the systems, to maximize power to mass ratios, and to minimize housing requirements. It has been shown that RECS can attain electric power generation efficiencies greater than 18% for devices which use Sr-90 fuel and where the accompanying material is less than roughly twice the mass of the Sr-90 fuel. Other radioisotopic fuels such as Pu-238 or Kr-85 can also be placed into RECS in order to attain efficiencies over 18%. With the likely exception of one fuel investigated by the authors, all of the promising candidates for RECS fuels can attain electric power to mass ratios greater than 15 W kg{sup -1}. It has been claimed recently [1] that the efficiency of tritium-fueled BPC's can be as high as 25%. While this is impressive and tritium has the benefit of being a 'soft' radioisotopic fuel, the silicon wafer that holds the tritium would have to be considerably more massive than the tritium contained within it and immediately adjacent to the wafer. Considering realistic mass requirements for the presence of

  9. The First Ca-ion Rechargeable Battery - Joint Center for Energy Storage

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    The Federal Energy Administration The Federal Energy Administration The Federal Energy Administration - written by Roger Anders Washington, D.C.: U.S. Department of Energy, November 1980. 15 pp. FEA History.pdf (259.88 KB) More Documents & Publications A History of the Energy Research and Development Administration EIS-0002: Final Environmental Impact Statement A History of the Atomic Energy Commission Research

    November 24, 2015, Research Highlights The First Ca-ion Rechargeable

  10. Development of zinc-bromine batteries for utility energy storage. Interim report, September 1978-August 1979

    SciTech Connect (OSTI)

    Putt, R.A.

    1981-03-01

    The goals in the first year of study were to build and test full-size zinc-bromide cell hardware in the form of three 8-kWh submodules and to provide a cost-design study of an 80-kWh module. Supporting studies were included for developing the basic electrochemistry of the system. The program was based on technology developed during a prior contract in which the system's design simplicity, high efficiency, long cycle life, and ease of scale-up, all of which are requirements of a battery for utility application were demonstrated. The system design which evolved during that program comprised a monopolar cell stack using titanium electrodes and a microporous separator, circulation of electrolyte through both the negative and positive sides of the cell stack, and storage of electrolyte and bromine (the latter in the form of a liquid polybromide complex) externally to the cell stack. Two monopolar, 8-kWh submodules of that design were built during the present program. Despite poor electrochemical efficiencies, one of the submodules achieved over 160 deep discharge cycles in continuous hands-off automatic cycling, indicating the inherent cyclability of the system. A major design improvement was made during the program, which has proved crucial to the successful scale-up of the zinc-bromine battery - conversion from a monopolar to a bipolar cell design. The bipolar design has been shown to be superior with respect to cost, performance, and simplicity. Conversion from the monopolar to bipolar cell design was achieved at the 8-kWh submodule level with a minimal perturbation on the hardware construction and testing schedule; one bipolar submodule was built and under test within the 12-month contract period. The 80-kWh stand-alone module will comprise 10 identical 8-kWh submodules of the bipolar electrode configuration, electrolyte circulation systems (pumps, tanks, and plumbing) for both the negative and positive electrolytes, and a bromine storage system.

  11. Energy Systems Based on Polyacetylene: Rechargeable Batteries and Schottky Barrier Solar Cells. Final Report, March 1, 1981-February 29, 1984

    DOE R&D Accomplishments [OSTI]

    MacDiarmid, A. G.

    1984-02-01

    The chief thrust of the research has been directed towards the evaluation of polyacetylene (CH){sub x}, the prototype conducting polymer as an electrode- active material in novel, rechargeable batteries employing nonaqueous electrolytes. The p-doped material, [(CH{sup +y})A{sub y}{sup -}]{sub x}, (where A{sup -} is an anion) in conjunction with a Li anode, shows excellent discharge characteristics, e.g., very little change in discharge voltage with change in discharge current and a high power density. Its energy density is also good but it shows poor shelf life. When (CH){sub x} is used as a cathode (Li anode), which results in the formation of the n-doped polymer, [Li{sub y} {sup +}(CH/sup -y/)]{sub x}, during discharge, good discharge plateaus and power densities are obtained together with excellent shelf life and good recyclability. The energy density is, however only moderate. Cells employing an [M{sub y}{sup +}(CH/sup -y/)]{sub x} (where M = Li, Na) anode and a TiS{sub 2} cathode show very good discharge and recycling characteristics but their energy density is poor.

  12. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.' -Edited excerpt from Medical Applications of Non-medical ...

  13. Model based control of a coke battery

    SciTech Connect (OSTI)

    Stone, P.M.; Srour, J.M.; Zulli, P.; Cunningham, R.; Hockings, K.

    1997-12-31

    This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

  14. Vehicle Technologies Office Merit Review 2016: Design of Sulfur Cathodes for High Energy Lithium-Sulfur Batteries

    Energy.gov [DOE]

    Presentation given by Stanford University at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  15. Vehicle Technologies Office Merit Review 2016: Low-cost, High Energy Si/Graphene Anodes for Li-Ion Batteries

    Energy.gov [DOE]

    Presentation given by XG Sciences at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  16. Technical and economic assessments of electrochemical energy storage systems: Volume 6, Zinc-Bromide battery plant description, cost estimate credible accident and efficiency assessment: Part 1, Energy Research Corporation battery design: Final report for the period September 1978-May 1985

    SciTech Connect (OSTI)

    Abraham, J.; Binas, G.; Del Monaco, J.L.; Pandya, D.A.; Sharp, T.E.

    1985-06-05

    This document describes the ERC zinc-bromide battery module as the basic unit in the development of a battery load-leveling facility that will accumulate the output of base-load generation during periods of low demand and provide power for periods of high demands. (DLC)

  17. System and Battery Charge Control for PV-Powered AC Lighting Systems

    SciTech Connect (OSTI)

    Kern, G.

    1999-04-01

    This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

  18. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  19. Jeff Chamberlain on Lithium-air batteries

    SciTech Connect (OSTI)

    Chamberlain, Jeff

    2009-01-01

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  20. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  1. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Todays EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  2. Annual progress report on the development of a 2 MW/10 second battery energy storage system for power disturbance protection

    SciTech Connect (OSTI)

    1996-01-29

    Sandia National Laboratories (SNL), acting for the US Department of Energy (DOE), contracts for and administers programs for the purpose of promoting the development and commercialization of large scale, transportable battery energy storage systems. Under DOE Co-Op Agreement No. DE-FC04-94AL99852, SNL has contracted for the development and delivery of an initial prototype 250 kW bridge that becomes an integral subsystem of a 2 MW/10 Second System that can be used by utility customers to protect power sensitive equipment from power disturbances. Development work includes field installation and testing of the prototype unit at a participating utility site for extended product testing with subsequent relocation to an industrial or commercial participating utility customer site for additional evaluation. The program described by the referenced document calls for cost sharing with the successful bidder and eventual title transfer to the participating utility. Prototype delivery is scheduled for January of 1996, with a period of two years allowed for field testing. A final report summarizing the test data with conclusions and recommendations is part of the contract.

  3. Microsoft Word - RelaxedBattery

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Persistent State-of-Charge Heterogeneity in Fully Relaxed Battery Electrode Particles Lithium ion batteries are used ubiquitously for portable energy storage in today's modern electronic devices and have served in that capacity for decades. Recently, budding energy storage markets - such as those of electric vehicles, large-scale renewable energy storage, and grid balancing - have emerged that require storage capabilities that are beyond what today's lithium ion technologies currently provide.

  4. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  5. Applying the Battery Ownership Model in Pursuit of Optimal Battery Use

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Strategies | Department of Energy Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es123_neubauer_2012_o.pdf (709.43 KB) More Documents & Publications Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6 Analysis of

  6. Energy Storage: Building a Better Battery via Public-Private Partnership -

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can

  7. Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage

    SciTech Connect (OSTI)

    Yang, B; Malkhandi, S; Manohar, AK; Prakash, GKS; Narayanan, SR

    2014-07-03

    Rechargeable iron-air and nickel-iron batteries are attractive as sustainable and inexpensive solutions for large-scale electrical energy storage because of the global abundance and eco-friendliness of iron, and the robustness of iron-based batteries to extended cycling. Despite these advantages, the commercial use of iron-based batteries has been limited by their low charging efficiency. This limitation arises from the iron electrodes evolving hydrogen extensively during charging. The total suppression of hydrogen evolution has been a significant challenge. We have found that organo-sulfur compounds with various structural motifs (linear and cyclic thiols, dithiols, thioethers and aromatic thiols) when added in milli-molar concentration to the aqueous alkaline electrolyte, reduce the hydrogen evolution rate by 90%. These organo-sulfur compounds form strongly adsorbed layers on the iron electrode and block the electrochemical process of hydrogen evolution. The charge-transfer resistance and double-layer capacitance of the iron/electrolyte interface confirm that the extent of suppression of hydrogen evolution depends on the degree of surface coverage and the molecular structure of the organo-sulfur compound. An unanticipated electrochemical effect of the adsorption of organo-sulfur molecules is "de-passivation" that allows the iron electrode to be discharged at high current values. The strongly adsorbed organo-sulfur compounds were also found to resist electro-oxidation even at the positive electrode potentials at which oxygen evolution can occur. Through testing on practical rechargeable battery electrodes we have verified the substantial improvements to the efficiency during charging and the increased capability to discharge at high rates. We expect these performance advances to enable the design of efficient, inexpensive and eco-friendly iron-based batteries for large-scale electrical energy storage.

  8. Coupling of Mechanical Behavior of Lithium Ion Cells to Electrochemical-Thermal Models for Battery Crush; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Pesaran, Ahmad; Zhang, Chao; Santhanagopalan, Shriram; Sahraei, Elham; Wierzbiki, Tom

    2015-06-15

    Propagation of failure in lithium-ion batteries during field events or under abuse is a strong function of the mechanical response of the different components in the battery. Whereas thermal and electrochemical models that capture the abuse response of batteries have been developed and matured over the years, the interaction between the mechanical behavior and the thermal response of these batteries is not very well understood. With support from the Department of Energy, NREL has made progress in coupling mechanical, thermal, and electrochemical lithium-ion models to predict the initiation and propagation of short circuits under external crush in a cell. The challenge with a cell crush simulation is to estimate the magnitude and location of the short. To address this, the model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under different crush scenarios. Initial results show reasonable agreement with experiments. In this presentation, the versatility of the approach for use with different design factors, cell formats and chemistries is explored using examples.

  9. Silicon-Nanowire Based Lithium Ion Batteries for Vehicles With Double the Energy Density

    SciTech Connect (OSTI)

    Stefan, Ionel; Cohen, Yehonathan

    2015-03-31

    Amprius researched and developed silicon nanowire anodes. Amprius then built and delivered high-energy lithium-ion cells that met the project’s specific energy goal and exceeded the project’s energy density goal. But Amprius’ cells did not meet the project’s cycle life goal, suggesting additional manufacturing process development is required. With DOE support, Amprius developed a new anode material, silicon, and a new anode structure, nanowire. During the project, Amprius also began to develop a new multi-step manufacturing process that does not involve traditional anode production processes (e.g. mixing, drying and calendaring).

  10. Examination of VRLA cells sampled from a battery energy storage system (BESS) after 30-months of operations

    SciTech Connect (OSTI)

    SZYMBORSKI,JOSEPH; HUNT,GEORGE; TSAGALIS,ANGELO; JUNGST,RUDOLPH G.

    2000-06-08

    Valve-Regulated Lead-Acid (VRLA) batteries continue to be employed in a wide variety of applications for telecommunications and Uninterruptible Power Supply (UPS). With the rapidly growing penetration of internet services, the requirements for standby power systems appear to be changing. For example, at last year's INTELEC, high voltage standby power systems up to 300-vdc were discussed as alternatives to the traditional 48-volt power plant. At the same time, battery reliability and the sensitivity of VRLAS to charging conditions (e.g., in-rush current, float voltage and temperature), continue to be argued extensively. Charge regimes which provide off-line charging or intermittent charge to the battery have been proposed. Some of these techniques go against the widely accepted rules of operation for batteries to achieve optimum lifetime. Experience in the telecom industry with high voltage systems and these charging scenarios is limited. However, GNB has several years of experience in the installation and operation of large VRLA battery systems that embody many of the power management philosophies being proposed. Early results show that positive grid corrosion is not accelerated and battery performance is maintained even when the battery is operated at a partial state-of-charge for long periods of time.

  11. Fact Sheet: Sodium-Beta Batteries (October 2012)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's Energy Storage Program is funding research to further develop a novel planar design for sodium-beta batteries (Na-beta batteries or NBBs) that will improve energy and power densities and...

  12. Vehicle Technologies Office Merit Review 2015: High Energy Anode Material Development for Li-ion Batteries

    Energy.gov [DOE]

    Presentation given by Sinode Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy anode material...

  13. Vehicle Technologies Office Merit Review 2015: High Energy Density Lithium Battery

    Energy.gov [DOE]

    Presentation given by Binghamton U.-SUNY at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy density...

  14. Lithium battery

    SciTech Connect (OSTI)

    Ikeda, H.; Nakaido, S.; Narukara, S.

    1983-08-16

    In a lithium battery having a negative electrode formed with lithium as active material and the positive electrode formed with manganese dioxide, carbon fluoride or the like as the active material, the discharge capacity of the negative electrode is made smaller than the discharge capacity of the positive electrode, whereby a drop in the battery voltage during the final discharge stage is steepened, and prevents a device using such a lithium battery as a power supply from operating in an unstable manner, thereby improving the reliability of such device.

  15. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOE Patents [OSTI]

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  16. A battery-operated, stabilized, high-energy pulsed electron gun for the production of rare gas excimers

    SciTech Connect (OSTI)

    Barcellan, L.; Carugno, G.; Berto, E.; Galet, G.; Galeazzi, G.; Borghesani, A. F.

    2011-09-15

    We report on the design of a new type of hot-filament electron gun delivering fairly high current (a few hundreds of {mu} A) at high voltage (up to 100 kV) in continuous or pulsed mode. Its novel features are that the filament is heated by means of a pack of rechargeable batteries floated atop the high-voltage power supply in order to get rid of bulky isolation transformers, and that the filament current and, hence, the electron gun current, is controlled by a feedback circuit including a superluminescent diode decoupled from the high voltage by means of an optical fiber. This electron gun is intended for general purposes, although we have especially developed it to meet the needs of our experiment on the infrared emission spectroscopy of rare gas excimers. Our experiment requires that the charge injection into the sample is pulsed and constant and stable in time. The new electron gun can deliver several tens of nC per pulse of electrons of energy up to 100 keV into the sample cell. The new design also eliminates ripples in the emission current and ensures up to 12 h of stable performance.

  17. Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    Cho, KT; Albertus, P; Battaglia, V; Kojic, A; Srinivasan, V; Weber, AZ

    2013-10-07

    For storage of grid-scale electrical energy, redox-flow batteries (RFBs) are considered promising technologies. This paper explores the influence of electrolyte composition and ion transport on cell performance by using an integrated approach of experiments and cost modeling. In particular, the impact of the area-specific resistance on system capability is elucidated for the hydrogen/bromine RFB. The experimental data demonstrate very good performance with 1.46 W cm(-2) peak power and 4 A cm(-2) limiting current density at ambient conditions for an optimal cell design and reactant concentrations. The data and cost model results show that higher concentrations of RFB reactants do not necessarily result in lower capital cost as there is a tradeoff between cell performance and storage (tank) requirements. In addition, the discharge time and overall efficiency demonstrate nonlinear effects on system cost, with a 3 to 4 hour minimum discharge time showing a key transition to a plateau in terms of cost for typical RFB systems. The presented results are applicable to many different RFB chemistries and technologies and highlight the importance of ohmic effects and associated area-specific resistance on RFB viability.

  18. Battery Ownership Model - Medium Duty HEV Battery Leasing & Standardization

    SciTech Connect (OSTI)

    Kelly, Ken; Smith, Kandler; Cosgrove, Jon; Prohaska, Robert; Pesaran, Ahmad; Paul, James; Wiseman, Marc

    2015-12-01

    Prepared for the U.S. Department of Energy, this milestone report focuses on the economics of leasing versus owning batteries for medium-duty hybrid electric vehicles as well as various battery standardization scenarios. The work described in this report was performed by members of the Energy Storage Team and the Vehicle Simulation Team in NREL's Transportation and Hydrogen Systems Center along with members of the Vehicles Analysis Team at Ricardo.

  19. Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report

    SciTech Connect (OSTI)

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

  20. EV Everywhere Battery Workshop Introduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Acting Under Secretary of Energy David Sandalow at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.