National Library of Energy BETA

Sample records for basin montana thrust

  1. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    Energy Information Administration (EIA) (indexed site)

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian ...

  2. Montana

    Energy Information Administration (EIA) (indexed site)

    Montana

  3. Judith Basin County, Montana: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    6 Climate Zone Subtype B. Places in Judith Basin County, Montana Hobson, Montana Stanford, Montana Retrieved from "http:en.openei.orgwindex.php?titleJudithBasinCounty,...

  4. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    Annual Energy Outlook

    Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) ... Eastern OR-WA Eastern Great Basin Appalachian Denver Florida Peninsula Black Warrior W Y T ...

  5. BASIN STRUCTURE FROM TWO-DIMENSIONAL SEISMIC REFLECTION DATA, CRAZY MOUNTAINS BASIN, MONTANA

    SciTech Connect

    David J. Taylor

    2003-08-01

    Some 140 miles of multichannel seismic reflection data, acquired commercially in the 1970's, were reprocessed by the U.S. Geological Survey in late 2000 and early 2001 to interpret the subsurface geology of the Crazy Mountains Basin, an asymmetric Laramide foreland basin located in south-central Montana. The seismic data indicate that the northwestern basin margin is controlled by a thrust fault that places basement rocks over a thick (22,000 feet) sequence of Paleozoic and Mesozoic sedimentary rocks to the south. From the deep basin trough, Paleozoic through Tertiary rocks slope gently upward to the south and southeast. The northern boundary of the basin, which is not imaged well by the seismic data, appears to be folded over a basement ridge rather than being truncated against a fault plane. Seismic data along the basin margin to the south indicate that several fault controlled basement highs may have been created by thin-skinned tectonics where a series of shallow thrust faults cut Precambrian, Paleozoic, and early Mesozoic rocks, whereas, in contrast, Cretaceous and Tertiary strata are folded. The data are further interpreted to indicate that this fault-bounded asymmetric basin contains several structures that possibly could trap hydrocarbons, provided source rocks, reservoirs, and seals are present. In addition, faults in the deep basin trough may have created enough fracturing to enhance porosity, thus developing ''sweet spots'' for hydrocarbons in basin-centered continuous gas accumulations.

  6. The Cordilleran foreland thrust belt in northwestern Montana and northern Idaho from COCORP and industry seismic reflection data

    SciTech Connect

    Yoos, T.R.; Potter, C.J.; Thigpen, J.L.; Brown, L.D. (Cornell Univ., Ithaca, NY (United States))

    1991-06-01

    COCORP and petroleum industry seismic reflection profiles in northwestern Montana reveal the structure of the Cordilleran foreland thrust belt. The Front Ranges consist of thick thrust sheets containing Precambrian Belt Supergroup and Paleozoic miogeoclinal shelf rocks above a thin remnant of Paleozoic rocks and gently westward-dipping North American basement. Interpretation of the seismic data and results from a recent petroleum exploration well suggest that 15-22 km of Precambrian Belt Supergroup sedimentary rocks are present in several thrust plates beneath the eastern Purcell anticlinorium. Previous hypotheses of a large mass of Paleozoic miogeoclinal sedimentary rocks or slices of crystalline basement located beneath the eastern Purcell anticlinorium do not appear to be supported by the data. The easternmost occurrence of allochthonous basement is interpreted to be in the western part of the anticlinorium near the Montana-Idaho border. Comparison of the Cordilleran foreland thrust belt in northwestern Montana and southern Canada suggest that a change in the deep structure of the Purcell anticlinorium occurs along strike. The anticlinorium in southern Canada has been interpreted as a hanging-wall anticline that was thrust over the western edge of thick Proterozoic North American basement, whereas in northwestern Montana the anticlinorium appears to consist of a complex series of thrust sheets above highly attenuated North American basement.

  7. Montana - Compare - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Montana Montana

  8. Montana - Rankings - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Montana Montana

  9. Montana - Search - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Montana Montana

  10. Subsurface cross section of lower Paleozoic rocks, Powder River basin, Wyoming and Montana

    SciTech Connect

    Macke, D.L.

    1988-07-01

    The Powder River basin is one of the most actively explored Rocky Mountain basins for hydrocarbons, yet the lower Paleozoic (Cambrian through Mississippian) rocks of this interval remain little studied. As a part of a program studying the evolution of sedimentary basins, approximately 3200 km of cross section, based on more than 50 combined geophysical and lithologic logs, have been constructed covering an area of about 200,000 km/sup 2/. The present-day basin is a Cenozoic structural feature located between the stable interior of the North American craton and the Cordilleran orogenic belt. At various times during the early Paleozoic, the basin area was not distinguishable from either the stable craton, the Williston basin, the Central Montana trough, or the Cordilleran miogeocline. Both deposition and preservation in the basin have been greatly influenced by the relative uplift of the Transcontinental arch. Shows of oil and dead oil in well cuttings confirm that hydrocarbons have migrated through at least parts of the basin's lower Paleozoic carbonate section. These rocks may have been conduits for long-distance migration of hydrocarbons as early as Late Cretaceous, based on (1) the probable timing of thermal maturation of hydrocarbon-source rocks within the basin area and to the west, (2) the timing of Laramide structural events, (3) the discontinuous nature of the reservoirs in the overlying, highly productive Pennsylvanian-Permian Minnelusa Formation, and (4) the under-pressuring observed in some Minnelusa oil fields. Vertical migration into the overlying reservoirs could have been through deep fractures within the basin, represented by major lineament systems. Moreover, the lower Paleozoic rocks themselves may also be hydrocarbon reservoirs.

  11. Magnetostratigraphic constraints on the development of paired fold-thrust belts/foreland basins in the Argentine Andes

    SciTech Connect

    Reynolds, J.H. ); Damanti, J.F. ); Jordan, T.E. )

    1991-03-01

    Development of a paired fold thrust-thrust belt/foreland basin is correlated to the flattening of the subducting Nazca plate between 28-33{degree}S. Magnetostratigraphic studies in neogene basin-filling continental strata determine local basin subsidence rates and provide relatively precise chronostratigraphic correlation between different depositional environments. The data demonstrate that most existing lithostratigraphic units are diachronous and require new tectonic interpretations. Increases in sediment accumulation rates closely correspond to changes in provenance and indicate that the Frontal Cordillera, on the Chile-Argentina border was a positive topographic province by 18 Ma. The Precordillera evolved from {approx}16 Ma to the present as thrusting migrated from west to east. Published ages from intercalated airfall tuffs constrain some sedimentary sections in the eastern Sierras Pampeanas where the earliest uplift occurred since 10 Ma. The youngest uplifts are on the west side close to continuing thrusting in the Precordillera. Not all fold-thrust belt/foreland basin pairs are associated with flat subduction, suggesting that tectonic controls exceeding the scale of individual plate segments may be important. The hydrocarbon-producing Subandean fold-thrust belt/foreland basin, located in the area of 'steep' subduction that underlies northern Argentina and Bolivia (18-24{degree}S), is also believed to have evolved since middle Miocene time. Recently initiated magnetostratigraphic studies in the Subandean foreland basin will attempt to temporally constrain the Neogene tectonic evolution for comparison with the southern region.

  12. Summary geologic report on the Missoula/Bitterroot Drilling Project, Missoula/Bitterroot Basins, Montana

    SciTech Connect

    Abramiuk, I.N.

    1980-08-01

    The objective of the drilling project was to obtain information to assess the favorability of the Tertiary sedimentary units in the Missoula and Bitterroot Valleys for uranium potential. The group of Montana Tertiary basins, including the Missoula and Bitterroot Basins, has been assigned a speculative uranium potential of 46,557 tons of U/sub 3/O/sub 8/ at $100/lb by the 1980 National Uranium Resource Evaluation report. The seven drill holes, two in the Missoula Valley and five in the Bitterroot Valley, verified observations made during surface studies and provided additional information about the subsurface that was previously unknown. No uranium was found, although of the two localities the Bitterroot Valley is the more favorable. Three stratigraphic units were tentatively identified on the basis of lithology: pre-Renova clastic units, Renova Formation equivalents, and Sixmile Creek Formation equivalents. Of the three, the Renova Formation equivalents in the Bitterroot Valley appear to be the most favorable for possible uranium occurrences and the pre-Renova clastic units the least favorable.

  13. Thrusts - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Thrust Hero Image.JPG Thrusts Research Introduction Thrusts Library Resources Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database JCAP research thrusts THRUST 1: Electrocatalysis Thrust-01-FINAL-COMPOSITE.jpg Thrust-01-FINAL-COMPOSITE.jpg THRUST 2: Photoelectrocatalysis Thrust 3: integration

  14. The Wyodak-Anderson coal assessment, Powder River Basin, Wyoming and Montana -- An ArcView project

    SciTech Connect

    Flores, R.M.; Gunther, G.; Ochs, A.; Ellis, M.E.; Stricker, G.D.; Bader, L.R.

    1998-12-31

    In 1997, more than 305 million short tons of clean and compliant coal were produced from the Wyodak-Anderson and associated coal beds and zones of the Paleocene Fort Union Formation in the Powder River Basin, Wyoming and Montana. To date, all coal produced from the Wyodak-Anderson, which averages 0.47 percent sulfur and 6.44 percent ash, has met regulatory compliance standards. Twenty-eight percent of the total US coal production in 1997 was from the Wyodak-Anderson coal. Based on the current consumption rates and forecast by the Energy Information Administration (1996), the Wyodak-Anderson coal is projected to produce 413 million short tons by the year 2016. In addition, this coal deposit as well as other Fort Union coals have recently been targeted for exploration and development of methane gas. New US Geological Survey (USGS) digital products could provide valuable assistance in future mining and gas development in the Powder River Basin. An interactive format, with querying tools, using ArcView software will display the digital products of the resource assessment of Wyodak-Anderson coal, a part of the USGS National Coal Resource Assessment of the Powder River Basin. This ArcView project includes coverages of the data point distribution; land use; surface and subsurface ownerships; coal geology, stratigraphy, quality and geochemistry; and preliminary coal resource calculations. These coverages are displayed as map views, cross sections, tables, and charts.

  15. Enigmatic uppermost Permian-lowermost Triassic stratigraphic relations in the northern Bighorn basin of Wyoming and Montana

    SciTech Connect

    Paull, R.A.; Paull, R.K. )

    1991-06-01

    Eighteen measured sections in the northern Bighorn basin of Wyoming and Montana provide the basis for an analysis of Permian-Triassic stratigraphic relations. This boundary is well defined to the south where gray calcareous siltstones of the Lower Triassic Dinwoody disconformably overlie the Upper Permian Ervay Member of the Park City Formation with little physical evidence of a significant hiatus. The Dinwoody is gradationally overlain by red beds of the Red Peak Formation. The Dinwoody this to zero near the state line. Northward, the erathem boundary is enigmatic because fossils are absent and there is no evidence of an unconformity. Poor and discontinuous exposures contribute to the problem. Up to 20 m of Permian or Triassic rocks or both overlie the Pennsylvanian Tensleep Sandstone in the westernmost surface exposures on the eastern flank of the Bighorn basin with physical evidence of an unconformity. East of the exposed Tensleep, Ervay-like carbonates are overlain by about 15 m of Dinwoody-like siltstones interbedded with red beds and thin dolomitic limestone. In both areas, they are overlain by the Red Peak Formation. Thin carbonates within the Dinwoody are silty, coarse algal laminates with associated peloidal micrite. Carbonates north of the Dinwoody termination and above probably Ervay are peloidal algal laminates with fenestral fabric and sparse coated shell fragments with pisoids. These rocks may be Dinwoody equivalents or they may be of younger Permian age than the Ervay. Regardless, revision of stratigraphic nomenclature in this area may bed required.

  16. EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana

    Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming.

  17. A resource evaluation of the Bakken Formation (Upper Devonian and Lower Mississippian) continuous oil accumulation, Williston Basin, North Dakota and Montana

    SciTech Connect

    Schmoker, J.W.

    1996-01-01

    The Upper Devonian and Lower Mississippian Bakken Formation in the United States portion of the Williston Basin is both the source and the reservoir for a continuous oil accumulation -- in effect a single very large field -- underlying approximately 17,800 mi{sup 2} (46,100 km{sup 2}) of North Dakota and Montana. Within this area, the Bakken Formation continuous oil accumulation is not significantly influenced by the water column and cannot be analyzed in terms of conventional, discrete fields. Rather, the continuous accumulation can be envisioned as a collection of oil-charged cells, virtually all of which are capable of producing some oil, but which vary significantly in their production characteristics. Better well-performance statistics are linked regionally to higher levels of thermal maturity and to lower levels of reservoir heterogeneity. Although portions of the Bakken Formation continuous oil accumulation have reached a mature stage of development, the accumulation as a whole is far from depleted.

  18. Big Horn County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Subtype B. Places in Big Horn County, Montana Busby, Montana Crow Agency, Montana Fort Smith, Montana Hardin, Montana Lodge Grass, Montana Muddy, Montana Pryor, Montana St....

  19. Valley County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fort Peck, Montana Frazer, Montana Glasgow, Montana Nashua, Montana Opheim, Montana St. Marie, Montana Retrieved from "http:en.openei.orgwindex.php?titleValleyCounty,Montana...

  20. Madison County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Number 6 Climate Zone Subtype B. Places in Madison County, Montana Alder, Montana Big Sky, Montana Ennis, Montana Harrison, Montana Norris, Montana Sheridan, Montana Silver...

  1. Thrust 1 - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1: Electrocatalysis Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral

  2. Thrust 2 - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2: Photoelectrocatalysis Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS

  3. Thrust 3 - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3: Integration Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral

  4. Thrust 4 - JCAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4: Prototyping Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral

  5. Geothermal resources of the Green River Basin, Wyoming, including thermal data for the Wyoming portion of the Thrust Belt

    SciTech Connect

    Spencer, S.A.; Heasler, H.P.; Hinckley, B.S.

    1985-01-01

    The geothermal resources of the Green River basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth is tabulated. It was concluded that large areas are underlain by water at temperatures greater than 120/sup 0/F. Although much of this water is too deep to be economically tapped solely for geothermal use, oil and gas wells presently provide access to this significant geothermal resource. Isolated areas with high temperature gradients exist. These areas - many revealed by hot springs - represent geothermal systems which might presently be developed economically. 34 refs., 11 figs., 8 tabs. (ACR)

  6. THRUST BEARING

    DOEpatents

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  7. Beaverhead County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Number 6 Climate Zone Subtype B. Places in Beaverhead County, Montana Dillon, Montana Jackson, Montana Lima, Montana Polaris, Montana Wisdom, Montana Retrieved from "http:...

  8. Fergus County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Denton, Montana Grass Range, Montana Lewistown Heights, Montana Lewistown, Montana Moore, Montana Winifred, Montana Retrieved from "http:en.openei.orgw...

  9. Carbon County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bearcreek, Montana Belfry, Montana Bridger, Montana Fromberg, Montana Joliet, Montana Red Lodge, Montana Retrieved from "http:en.openei.orgwindex.php?titleCarbonCounty,Mo...

  10. Powell County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    169-2006 Climate Zone Number 6 Climate Zone Subtype B. Places in Powell County, Montana Avon, Montana Deer Lodge, Montana Elliston, Montana Garrison, Montana Ovando, Montana...

  11. BLM Montana State Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana State Office Jump to: navigation, search Logo: BLM Montana State Office Name: BLM Montana State Office Abbreviation: Montana Address: 5001 Southgate Drive Place: Billings,...

  12. ,"Montana Natural Gas Summary"

    Energy Information Administration (EIA) (indexed site)

    Prices" "Sourcekey","N3050MT3","N3010MT3","N3020MT3","N3035MT3","N3045MT3" "Date","Natural Gas Citygate Price in Montana (Dollars per Thousand Cubic Feet)","Montana Price of ...

  13. Montana Joint Application for Proposed Work in Montana's Streams...

    OpenEI (Open Energy Information) [EERE & EIA]

    Notice Form Topic JOINT APPLICATION FOR PROPOSED WORK IN MONTANA'S STREAMS, WETLANDS, FLOODPLAINS, AND OTHER WATER BODIES Organization Montana Department of Natural...

  14. ,"Montana Natural Gas Summary"

    Energy Information Administration (EIA) (indexed site)

    ...050MT3","N3010MT3","N3020MT3","N3035MT3","NA1570SMT3","N3045MT3" "Date","Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Montana Natural Gas Imports Price ...

  15. Montana Watershed Coordination Council | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Coordination Council Jump to: navigation, search Logo: Montana Watershed Coordination Council Name: Montana Watershed Coordination Council Place: Helena, Montana Zip: 59604-6873...

  16. Montana Construction Dewatering General Permit Application Information...

    OpenEI (Open Energy Information) [EERE & EIA]

    overview of Construction Dewatering General Permit process. Author Montana Department of Environmental Quality - Water Protection Bureau Published Montana Department of...

  17. Bozeman, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    congressional district.12 Registered Research Institutions in Bozeman, Montana Big Sky Carbon Sequestration Partnership Registered Energy Companies in Bozeman, Montana...

  18. HERO Whitefish, Montana

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    side lodging at the Kandahar Lodge in Whitefish, Montana Prices start at 250 per person and include 2 nights lodging, 3 days skiing and daily breakfast (for 6 sharing a...

  19. Montana Understanding the Basics of Water Law In Montana Webpage...

    OpenEI (Open Energy Information) [EERE & EIA]

    Understanding the Basics of Water Law In Montana Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Understanding the Basics of Water Law...

  20. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  1. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  2. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when

  3. Variable thrust cartridge

    DOEpatents

    Taleyarkhan, Rusi P.

    2000-11-07

    The present invention is a variable thrust cartridge comprising a water-molten aluminum reaction chamber from which a slug is propelled. The cartridge comprises a firing system that initiates a controlled explosion from the reaction chamber. The explosive force provides a thrust to a slug, preferably contained within the cartridge.

  4. Montana Natural Gas Processed in Montana (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Montana (Million Cubic Feet) Montana Natural Gas Processed in Montana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 11,185 11,206 12,493 12,507 12,862 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed Montana-Montana

  5. Montana Natural Gas Plant Liquids Production Extracted in Montana (Million

    Gasoline and Diesel Fuel Update

    Cubic Feet) Montana (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in Montana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,340 1,359 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-Montana

  6. Physics Thrust Areas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ADEPS » Physics » Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical component of maintaining our capabilities in national security research To further understand the physical world, generate new or improved technology in experimental physics, and establish a physics foundation for current and future Los Alamos programs, Physics Division leverages its expertise and

  7. Montana Produced Water General Permit - Example Authorization...

    OpenEI (Open Energy Information) [EERE & EIA]

    General Permit. Author Montana Department of Environmental Quality - Water Protection Bureau Published State of Montana, 052010 DOI Not Provided Check for DOI availability:...

  8. Montana Construction Dewatering General Permit - Example Authorization...

    OpenEI (Open Energy Information) [EERE & EIA]

    General Permit. Author Montana Department of Environmental Quality - Water Protection Bureau Published State of montana, 92010 DOI Not Provided Check for DOI availability: http:...

  9. Montana Suction Dredge General Permit Application Information...

    OpenEI (Open Energy Information) [EERE & EIA]

    process. Author Montana Department of Environmental Quality - Water Protection Bureau Published State of Montana, 082012 DOI Not Provided Check for DOI availability:...

  10. Montana Watershed Protection Section Contacts Webpage | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    contact information for the Watershed Protection Section of the Water Quality Planning Bureau. Author Montana Water Quality Planning Bureau Published State of Montana, Date Not...

  11. Montana Cultural Records Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LibraryAdd to library Web Site: Montana Cultural Records Webpage Abstract Provides access to the Montana Antiquities Database and provides information about the structure and...

  12. Montana Stream Permitting Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Stream Permitting Webpage Abstract Provides access to Montana Stream Permitting guide....

  13. Montana Environmental Quality Council | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Council Jump to: navigation, search Name: Montana Environmental Quality Council Address: Legislative Environmental Policy Office PO Box 201704 Place: Helena, Montana Zip:...

  14. Montana - Encroachment Permit Application | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Encroachment Permit Application Author Montana Department of Transportation...

  15. Anaconda, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Anaconda, Montana: Energy Resources Jump to: navigation, search Name Anaconda, Montana Equivalent URI DBpedia GeoNames ID 5637146 Coordinates 46.1285369, -112.9422641 Show Map...

  16. Montana Fish, Wildlife & Parks | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fish, Wildlife & Parks Jump to: navigation, search Logo: Montana Fish, Wildlife & Parks Name: Montana Fish, Wildlife & Parks Address: 1420 East 6th Ave, PO Box 200701 Place:...

  17. Montana Department of Natural Resources & Conservation | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Natural Resources & Conservation Jump to: navigation, search Logo: Montana Department of Natural Resources& Conservation Name: Montana Department of Natural Resources& Conservation...

  18. Montana Department of Transportation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Transportation Name: Montana Department of Transportation Address: 2701 Prospect Avenue P.O. Box 201001 Place: Helena, Montana Zip: 59620 Website: www.mdt.mt.gov Coordinates:...

  19. Geothermal resources of Montana

    SciTech Connect

    Metesh, J.

    1994-06-01

    The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

  20. Montana Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    is designated for your school's state, county, city, or district. For more information, please visit the High School Coach page. Montana Region High School Regional Montana Montana...

  1. Montana Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    for your school's state, county, city, or district. For more information, please visit the Middle School Coach page. Montana Region Middle School Regional Montana Montana...

  2. PP-305 Montana Alberta Tie Ltd | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5 Montana Alberta Tie Ltd PP-305 Montana Alberta Tie Ltd Presidential permit authorizing Montana Alberta Tie Ltd to construct, operate, and maintain electric transmission ...

  3. Montana s Green Electricity Buying Cooperation GEBCO | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Electricity Buying Cooperation GEBCO Jump to: navigation, search Name: Montana's Green Electricity Buying Cooperation (GEBCO) Place: Montana Product: A montana based cooperative to...

  4. Montana Bureau of Mines and Geology Website | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Web Site: Montana Bureau of Mines and Geology Website Abstract Provides access to digital information on Montana's geology. Author Montana Bureau of Mines and Geology...

  5. BLACKLEAF CANYON TWO MEDICINE CREEK POTSHOT PROSPECT GLACIER E

    Energy Information Administration (EIA) (indexed site)

    Gas Reserve Class No 2001 gas reserves Basin Outline WY UT ID CO MT WA OR NV CANADA INDEX MAP ID Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Montana Thrust Belt 1 1 0 1 Basin 2001 Reserve Summary for Montana Thrust Belt Fields CANADA USA Montana Thrust Belt Oil & Gas Fields By 2001 Gas

  6. RAPID/Overview/Geothermal/Exploration/Montana | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationMontana) Redirect page Jump to: navigation, search REDIRECT...

  7. Montana Electric Cooperatives- Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or...

  8. EIS-0393: Montanore Project; Montana

    Energy.gov [DOE]

    The USDA Forest Service (Kootenai National Forest) and the Montana Department of Environmental Quality prepared an EIS that evaluates the potential environmental impacts of a proposed copper and silver underground mine about 18 miles south of Libby, Montana. DOE’s Bonneville Power Administration, a cooperating agency, has jurisdiction over the construction of a transmission line and two substations needed for powering the mine facilities if the proposed action is implemented.

  9. Thrusts in High Performance Computing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in HPC 1 Thrusts in High Performance Computing Science at Scale Petaflops to Exaflops Science through Volume Thousands to Millions of Simulations Science in Data Petabytes to ...

  10. Montana State Land Board | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Land Board Jump to: navigation, search Name: Montana State Land Board Place: Helena, Montana Website: dnrc.mt.govLandBoardStaff.as References: Webpage1 This article is a stub....

  11. Montana 310 Permit Database | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    0 Permit Database Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana 310 Permit Database Abstract Provides access to Montana's 310 permit mapping...

  12. Butte, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Butte is a city in Silver Bow County, Montana. It falls under Montana's At-large congressional district.12 Registered Energy...

  13. Billings, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    a stub. You can help OpenEI by expanding it. Billings is a city in Yellowstone County, Montana. It falls under Montana's At-large congressional district.12 References US...

  14. Bozeman, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Bozeman is a city in Gallatin County, Montana. It falls under Montana's At-large congressional district.12 Registered Research...

  15. Montana Geographic Information Library | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana Geographic Information Library Jump to: navigation, search OpenEI Reference LibraryAdd to library Map: Montana Geographic Information LibraryInfo GraphicMapChart Abstract...

  16. Montana Tribal Energy Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Montana Tribal Energy Forum September 18, 2014 - 12:05pm Addthis Aug. 19-20, 2014 Browning, Montana Blackfeet Community College The Office of Indian Energy and Office of Energy ...

  17. Helena, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Helena is a city in Lewis and Clark County, Montana. It falls under Montana's At-large congressional...

  18. Energy Incentive Programs, Montana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Montana Energy Incentive Programs, Montana Updated February 2015 What public-purpose-funded energy efficiency programs are available in my state? Montana's electricity restructuring law mandated the creation of a universal system benefit (USB) charge for the funding of energy efficiency, renewables and low-income energy assistance programs. The USB was extended indefinitely in 2009. In 2013, programs administered by Montana utilities budgeted over $10 million to promote increased energy

  19. Montana/Transmission | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana Electric Power Cooperative, Western Area Power Administration, Bonneville Power Administration, Western Area Power Administration, Columbia Grid, Northern Tier...

  20. MONTANA PALLADIUM RESEARCH INITIATIVE

    SciTech Connect

    Peters, John McCloskey, Jay Douglas, Trevor Young, Mark Snyder, Stuart Gurney, Brian

    2012-05-09

    Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy'™s Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows high potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process

  1. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  2. Low-thrust rocket trajectories

    SciTech Connect

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  3. Micro thrust and heat generator

    DOEpatents

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  4. Micro thrust and heat generator

    DOEpatents

    Garcia, Ernest J.

    1998-01-01

    A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).

  5. Grenville foreland thrust belt hidden beneath the eastern US midcontinent

    SciTech Connect

    Hauser, E.C. (Cornell Univ., Ithaca, NY (United States))

    1993-01-01

    Grenville foreland thrust structures are observed beneath the eastern US midcontinent on COCORP (Consortium for Continental Reflection Profiling) line OH-1 and a short seismic line in southwest Ohio. These structures represent the first evidence for a significant Grenville foreland thrust belt preserved in eastern North America. On the COCORP lines, the structures include a thrust ramp anticline and an associated asymmetric syncline. The Grenville front tectonic zone appears to truncate these foreland structures, indicating a later, second phase expressed as a deeply penetrating, out-of-sequence thrust zone associated with the main uplift of the Grenville province on the east. A short, shallow seismic line in southwestern Ohio reveals an east-dipping sequence of prominently layered rocks that may lie above a footwall ramp to a deeper Grenville thrust fault. A drill hole into the less reflective top of this dipping sequence encountered unmetamorphosed sedimentary rocks like those increasingly reported from other drill holes in southwestern Ohio and adjacent states. Although possibly part of a late Precambrian (Keweenawan ) rift, these clastic sedimentary rocks may instead preserve evidence of a heretofore unrecognized Grenville foreland basin in eastern North America. Alternatively these Precambrian sedimentary rocks together with an underlying, but yet undrilled, strongly layered sequence may correlate with similarly layered rocks observed on COCORP and industrial seismic lines within the Middle Proterozoic granite-rhyolite province to the west in Indiana and Illinois and indicate that unmetamorphosed sedimentary material is an important constituent of the granite-rhyolite province. 25 refs., 6 figs.

  6. Application for presidential permit OE Docket No. PP-305 Montana...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Update Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Update Application from Montana Alberta Tie Ltd to construct, operate, and maintain ...

  7. Application for presidential permit OE Docket No. PP-305 Montana...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ltd Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd Application from Montana Alberta Tie Ltd to construct, operate, and maintain electric ...

  8. Application for presidential permit OE Docket No. PP-305 Montana...

    Energy Saver

    Scope Change 1 Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Scope Change 1 Application from Montana Alberta Tie Ltd to construct, operate, ...

  9. Montana - Land Use License Application | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Land Use License Application Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Land Use License Application Author Montana Department of Natural...

  10. Montana Pending Water Right Application Status Webpage | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    rights application status system. Author Montana Department of Natural Resources and Conservation - Water Resources Division Published State of Montana, Date Not Provided DOI...

  11. Montana Surface Water Application for Beneficial Use (DNRC Form...

    OpenEI (Open Energy Information) [EERE & EIA]

    for Beneficial Use (DNRC Form 600 GW) Citation Montana Department of Natural Resources & Conservation. Form: Montana Surface Water Application for Beneficial Use (DNRC Form 600...

  12. Montana Surface Water Application for Beneficial Use (DNRC Form...

    OpenEI (Open Energy Information) [EERE & EIA]

    Beneficial Use (DNRC Form 600 SW) Citation Montana Department of Natural Resources and Conservation. Form: Montana Surface Water Application for Beneficial Use (DNRC Form 600...

  13. Montana 2012 Report on Selected Heritage Properties | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    and Conservation complies with the Montana State Antiquities Act. Author Patrick J. Rennie Organization Montana Department of Natural Resources and Conservation Published...

  14. Montana Portable Suction Dredging General Permit - Example Authorizati...

    OpenEI (Open Energy Information) [EERE & EIA]

    Dredging. Author Montana Department of Environmental Quality - Water Protection Bureau Published State of Montana, 082010 DOI Not Provided Check for DOI availability:...

  15. Montana State Historic Preservation Office | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    recognize and protect the heritage sites of Montana, preserving our rich cultural landscape for generations to come. References "Montana SHPO Website" State Historic...

  16. Montana - Access Road Easement Policy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Access Road Easement Policy Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Access Road Easement Policy Author Montana Department of...

  17. Montana Stream Protection Act Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Stream Protection Act Webpage Abstract Provides overview of Montana...

  18. Montana Domestic Sewage Treatment Lagoons General Permit Information...

    OpenEI (Open Energy Information) [EERE & EIA]

    Lagoons General Permit Information Citation Montana Department of Environmental Quality - Water Protection Bureau. 72012. Montana Domestic Sewage Treatment Lagoons General Permit...

  19. Montana Domestic Sewage Treatment Lagoons General Permit Fact...

    OpenEI (Open Energy Information) [EERE & EIA]

    Lagoons General Permit Fact Sheet Citation Montana Department of Environmental Quality - Water Protection Bureau. 82012. Montana Domestic Sewage Treatment Lagoons General Permit...

  20. Montana-Dakota Utilities Co (Wyoming) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana-Dakota Utilities Co (Wyoming) (Redirected from MDU Resources Group Inc (Wyoming)) Jump to: navigation, search Name: Montana-Dakota Utilities Co Place: Wyoming Phone Number:...

  1. Montana - Right-of-Way Checklist | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Checklist Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Right-of-Way Checklist Author Montana Department of Transportation Published...

  2. Montana Building with Wildlife Guide | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Provides guidance on conservation oriented development. Authors State of Montana Fish and Wildlife & Parks Organizations State of Montana Fish and Wildlife & Parks Published...

  3. Montana's At-large congressional district: Energy Resources ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Registered Research Institutions in Montana's At-large congressional district Big Sky Carbon Sequestration Partnership Registered Energy Companies in Montana's At-large...

  4. Montana Board of Oil and Gas Conservation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oil and Gas Conservation Jump to: navigation, search Name: Montana Board of Oil and Gas Conservation Address: 2535 St. Johns Avenue Place: Montana Zip: 59102 Website:...

  5. Montana Tribal Energy Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Montana Tribal Energy Forum Montana Tribal Energy Forum Here you will find the presentations from the Montana Tribal Energy Forum presented on August 19-20, 2014. Keynote Presentation: USDA's Energy Resources and Promise Zones - Leslie Wheelock, Office of Tribal Relations, Office of the Secretary. U.S. Department of Agriculture (3.5 MB) DOE's Tribal Energy Program - Lizana Pierce, Tribal Energy Program, U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (4.57 MB)

  6. Montana/Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Grant Program No Black Hills Power - Commercial Energy Efficiency Programs (Montana) Utility Rebate Program Yes Black Hills Power - Residential Customer Rebate Program...

  7. Montana Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  8. AWEA State Wind Energy Forum--Montana

    Energy.gov [DOE]

    The American Wind Energy Association will host this forum for a broad array of Montana wind stakeholders, including landowners, county officials, rural bankers, agricultural producers, policy...

  9. ,"Montana Natural Gas Gross Withdrawals and Production"

    Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Monthly","72016","01151989" ,"Release ...

  10. Montana Underground Natural Gas Storage - All Operators

    Energy Information Administration (EIA) (indexed site)

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

  11. Montana Pollutant Discharge Elimination System (MPDES) Webpage...

    OpenEI (Open Energy Information) [EERE & EIA]

    System (MPDES) Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Pollutant Discharge Elimination System (MPDES) Webpage Abstract Provides...

  12. Montana/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Montana...

  13. Montana Association of Conservation Districts Webpage | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Districts Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Association of Conservation Districts Webpage Abstract Homepage of...

  14. Montana Natural Resources Conservation Service Webpage | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Service Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Natural Resources Conservation Service Webpage Abstract USDA's webpage...

  15. Montana State Antiquities Database | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Antiquities Database Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana State Antiquities Database Abstract Database contains cultural resource...

  16. Montana Groundwater Information Center Webpage | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Center Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Groundwater Information Center Webpage Abstract Provides access to...

  17. Final Report - Montana State University - Microbial Activity...

    Office of Scientific and Technical Information (OSTI)

    Media Citation Details In-Document Search Title: Final Report - Montana State University - Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media ...

  18. Missoula, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Missoula, Montana: Energy Resources (Redirected from Missoula, MT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.872146, -113.9939982 Show Map Loading...

  19. Custer, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Custer, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1291529, -107.5550754 Show Map Loading map... "minzoom":false,"mappingservi...

  20. Broadview, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.0977314, -108.8770972 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  1. Lockwood, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lockwood, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.8191203, -108.414855 Show Map Loading map... "minzoom":false,"mappingserv...

  2. Huntley, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.899401, -108.3015173 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  3. Carter, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Carter, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.7810776, -110.9563375 Show Map Loading map... "minzoom":false,"mappingservi...

  4. Shepherd, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shepherd, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.943568, -108.3423516 Show Map Loading map... "minzoom":false,"mappingserv...

  5. Manhattan, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.8563173, -111.3307931 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  6. Belgrade, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.7760403, -111.1768973 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  7. Ballantine, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ballantine, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.9488511, -108.1451196 Show Map Loading map... "minzoom":false,"mappings...

  8. Whitefish, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Whitefish, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.4110757, -114.3376334 Show Map Loading map... "minzoom":false,"mappingse...

  9. Absarokee, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Absarokee, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5204982, -109.4429444 Show Map Loading map... "minzoom":false,"mappingse...

  10. Laurel, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.6691159, -108.7715328 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  11. Agency, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.3279854, -114.2934517 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  12. Butte, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Butte, Montana: Energy Resources (Redirected from Butte, MT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.003917, -112.534446 Show Map Loading map......

  13. Worden, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Worden, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.959962, -108.1609536 Show Map Loading map... "minzoom":false,"mappingservic...

  14. Loma, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Loma, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9369164, -110.5035455 Show Map Loading map... "minzoom":false,"mappingservice...

  15. ,"Montana Natural Gas Gross Withdrawals and Production"

    Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Monthly","62016","01151989" ,"Release ...

  16. Recovery Act State Memos Montana

    Energy.gov [DOE] (indexed site)

    Montana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  17. Montana Alternative Energy Revolving Loan Program

    Energy.gov [DOE]

    Presentation by Montana Alternative Energy Revolving Loan Program Kathi Montgomery from the Montana Department of Environmental Quality at the August 26, 2009 TAP Webcast for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program (WIP) Technical Assistance Project for state and local officials.

  18. Montana Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update

    Production (Billion Cubic Feet) Montana Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 12 13...

  19. Northern Lights, Inc (Montana) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lights, Inc Place: Montana Phone Number: (800) 326-9594 Website: www.nli.coop Facebook: https:www.facebook.comNLIcooperative Outage Hotline: (1-866-665-4837) Outage Map:...

  20. BLACKLEAF CANYON TWO MEDICINE CREEK POTSHOT PROSPECT GLACIER E

    Energy Information Administration (EIA) (indexed site)

    BOE Reserve Class No 2001 Reserves 0.1 - 10 MBOE Basin Outline WY UT ID CO MT WA OR NV CANADA INDEX MAP ID Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Montana Thrust Belt 1 1 0 1 Basin 2001 Reserve Summary for Montana Thrust Belt Fields CANADA USA Montana Thrust Belt Oil & Gas Fields By 2001 BOE

  1. BLACKLEAF CANYON TWO MEDICINE CREEK POTSHOT PROSPECT GLACIER E

    Energy Information Administration (EIA) (indexed site)

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl Basin Outline WY UT ID CO MT WA OR NV CANADA INDEX MAP ID Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Montana Thrust Belt 1 1 0 1 Basin 2001 Reserve Summary for Montana Thrust Belt Fields CANADA USA Montana Thrust Belt Oil & Gas Fields By 2001 Liquids

  2. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    Energy Information Administration (EIA) (indexed site)

    8:00:02 AM" "Back to Contents","Data 1: Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSMTMMCF" "Date","Montana Natural Gas ...

  3. Montana Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Montana Natural Gas Gross Withdrawals (Million Cubic Feet) Montana Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 ...

  4. Montana Code 75-20-101 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 75-20-101Legal Abstract Montana Major facility siting act Published NA Year Signed or Took...

  5. Montana Code 75-20 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Page Edit with form History Montana Code 75-20 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana Code 75-20Legal...

  6. Montana Code 75-20-216 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 75-20-216Legal Published NA Year Signed or Took Effect 2014 Legal Citation Montana Code...

  7. Montana Water Rights Form Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Water Rights Form Webpage Abstract Provides access to water rights forms. Author Montana...

  8. West Yellowstone, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Yellowstone is a town in Gallatin County, Montana. It falls under Montana's At-large...

  9. Montana Rule 17.20.2 Geothermal Investigation Reports | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana Rule 17.20.2 Geothermal Investigation ReportsLegal Abstract Montana regulation...

  10. Montana MCA Title 85, Water Use | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana MCA Title 85, Water UseLegal Abstract Water Use regulations under Montana Code...

  11. Central Montana E Pwr Coop Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    E Pwr Coop Inc Jump to: navigation, search Name: Central Montana E Pwr Coop Inc Place: Montana Phone Number: 406-268-1211 Website: www.cmepc.org Outage Hotline: 406-268-1211...

  12. EIS-0106: Great Falls-Conrad Transmission Line Project, Montana

    Energy.gov [DOE]

    The Western Area Power Administration prepared this EIS to evaluate the environmental impacts of the construction and operation of a 230-kilovolt transmission line from Great Falls, Montana, to Conrad, Montana.

  13. Secretary Chu Highlights Clean Energy Opportunities in Montana | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Clean Energy Opportunities in Montana Secretary Chu Highlights Clean Energy Opportunities in Montana September 16, 2010 - 11:04am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What are the key facts? Montana received $26.5 million going toward their weatherization assistance program. The state energy program received $25.9 million. Montana also received an additional $15.2 million for the Energy Efficiency and Conservation Block Grant

  14. Montana Domestic Sewage Treatment Lagoons General Permit | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    GuidanceSupplemental Material Abstract Example authorization of Domestic Sewage Treatment Lagoons General Permit. Author Montana Department of Environmental Quality -...

  15. Montana Notice of Intent: Domestic Sewage Treatment Lagoons General...

    OpenEI (Open Energy Information) [EERE & EIA]

    Abstract Provides instructions for submitting an NOI for Domestic Sewage Treatment Lagoons General Permit. Author Montana Department of Environmental Quality -...

  16. EIS-0393: Montanore Project; Montana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EIS-0393: Montanore Project; Montana EIS-0393: Montanore Project; Montana Summary The USDA Forest Service (Kootenai National Forest) and the Montana Department of Environmental Quality prepared an EIS that evaluates the potential environmental impacts of a proposed copper and silver underground mine about 18 miles south of Libby, Montana. DOE's Bonneville Power Administration, a cooperating agency, has jurisdiction over the construction of a transmission line and two substations needed for

  17. Montana Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Montana Recovery Act State Memo Montana Recovery Act State Memo Montana has substantial natural resources, including coal, oil, natural gas, hydroelectric, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Montana are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal. Through these investments,

  18. Thrust bolting: roof bolt support apparatus

    DOEpatents

    Tadolini, Stephen C.; Dolinar, Dennis R.

    1992-01-01

    A method of installing a tensioned roof bolt in a borehole of a rock formation without the aid of a mechanical anchoring device or threaded tensioning threads by applying thrust to the bolt (19) as the bonding material (7') is curing to compress the strata (3) surrounding the borehole (1), and then relieving the thrust when the bonding material (7') has cured.

  19. Co-Optima Information Webinar- Thrust I

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thrust 1 Technical Overview Jim Szybist (ORNL), Dan Gaspar (PNNL) September 14, 2016 2 Thrust 1 Approach * From biomass to blendstock * Blendstock properties * Fuel properties and engine performance * Advanced spark ignition engine performance 3 From biomass to blendstocks - spark ignition candidates identified * Identified 9 molecular classes suitable for further evaluation * Paraffins (especially highly branched paraffins), olefins, cycloalkanes, aromatics, alcohols, furans, ketones, ethers,

  20. Bakken and other Devonian-Mississippian petroleum source rocks, northern Rocky Mtns.-Williston basin: Depositional and burial history and maturity estimations

    SciTech Connect

    Peterson, J.A.

    1996-06-01

    The three-member Devonian-Mississippian Bakken-Exshaw organic-rich shaly facies is widely distributed in the northern U.S. and southern Canadian Cordillera. Equivalent facies are also present as far south as Utah and Nevada. Paleogeographically, these rocks thin markedly or pinchout to the west approximately along the Devonian-Mississippian carbonate reef-mound belt of the Cordilleran shelf margin. Although these rocks reach maximum organic richness approximately at the Devonian-Carboniferous transition, similar but somewhat less organic-rich Bakken-like beds are also present in underlying Upper Devonian and overlying Lower Carboniferous carbonate depositional cycles. At least ten cycles are identified in the underlying Duperow and Jefferson Formations, characterized by basal organic-rich Bakken-like shale or shaly carbonate that grades upward into carbonate mound or reefal beds, overlain by evaporite or solution breccia. Cycles in the overlying Lodgepole and Mission Canyon Formations, as many as 10-12 in number, are similar except that the carbonates are composed of algal-oolith, crinoid, or mixed skeletal beds, and end-cycle evaporitic units are less prevalent in the lower cycles. These dark shaly beds are the most important source of hydrocarbon reserves in Montana and the Williston basin. Maximum net thickness of the Devonian-Mississippian organic-rich facies is in the Williston basin. However, variable thicknesses of these potential source rocks is present in parts of Montana as far west as the thrust belt. Burial history studies suggest that in some areas these rocks are probably thermally immature. However, in much of the area original burial depths are sufficient for them to reach the thermally mature stage, and therefore are of importance to further exploration efforts in the Devonian-Mississippian Madison-Duperow-Jefferson Formations.

  1. Montana Shale Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Montana Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 13 7 2010's 13 13 16 19 42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Montana Shale Gas Proved Reserves, Reserves Changes, and Production Shale

  2. Co-Optima Informational Webinar- Thrust II Engine Studies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thrust II engine studies Jointly conducted under the Fuel Properties and Advanced Engine Development Teams 2 * Encompasses both gasoline-like and diesel like fuels * Examines compatibility of Thrust I fuels with Thrust II engine technologies * Seeks to accelerate Thrust II technology development * Cross-cutting projects with Thrust I examining sprays, aftertreatment, and PM formation Thrust II Advanced Compression Ignition Engines Discovery What are the important fuel properties or performance

  3. Collar nut and thrust ring

    DOEpatents

    Lowery, Guy B.

    1991-01-01

    A collar nut comprises a hollow cylinder having fine interior threads at one end for threadably engaging a pump mechanical seal assembly and an inwardly depending flange at the other end. The flange has an enlarged portion with a groove for receiving an O-ring for sealing against the intrusion of pumpage from the exterior. The enlarged portion engages a thrust ring about the pump shaft for crushing a hard O-ring, such as a graphite O-ring. The hard O-ring seals the interior of the mechanical seal assembly and pump housing against the loss of lubricants or leakage of pumpage. The fine threads of the hollow cylinder provide the mechanical advantage for crushing the hard O-ring evenly and easily with a hand tool from the side of the collar nut rather than by tightening a plurality of bolts from the end and streamlines the exterior surface of the mechanical seal. The collar nut avoids the spatial requirements of bolt heads at the end of a seal and associated bolt head turbulence.

  4. Geometry and evolution of the frontal part of the Magallanes foreland thrust and fold belt (Vicuna Area), Tierra del Fuego, southern Chile

    SciTech Connect

    Alvarez-Marron, J.; McClay, K.R. ); Harambour, S.; Rojas, L.; Skarmeta, J. )

    1993-11-01

    The Magallanes foreland thrust and fold belt is a thin-skinned foreland thrust and fold belt of Paleocene to Oligocene age that deforms Upper Jurassic through Tertiary volcanic, volcaniclastic, and siliciclastic strata of the Magallanes basin, southern Andean Cordillera, Chile. This paper is a detailed description and analysis of the geology and structural evolution of the thrust front (Vicuna area of southern Tierra del Fuego). Reflection seismic and well data, together with 1:50,000 scale geological mapping, have been used in the analysis. In the southern part of the Vicuna area, two different thrust systems have been found: an upper imbricate fan that deforms Upper Jurassic and Cretaceous strata, and a younger, lower duplex composed of Cretaceous and probably Upper Jurassic rocks. The imbricate fan is characterized by fault-propagation folding in which listric thrust faults merge downward into a sole thrust that probably is located within the Upper Jurassic stratigraphy. The sole thrust of the upper imbricates forms the roof thrust of the underlying duplex. In the northern part of the Vicuna area, the syntectonic sedimentary wedge of the foredeep consists of Late Cretaceous through Tertiary siliciclastics that have been deformed and uplifted by passive back thrusting at the triangle zone. The structural style in the foreland region shows three main subhorizontal detachment levels located within the sedimentary wedge as a result of the progressive transfer of slip from the thrust belt to the foreland. Minor blind thrusts produce stacked [open quotes]pop up[close quotes] and triangle structures that result in complex geometries in the cores of anticlines. A forward-breaking sequence of thrusting is interpreted. During deformation, the active foredeep wedge migrated at least 10 km northward. Balanced geological cross sections indicate approximately 60% (-30 km) shortening for this part of the Magallanes thrust belt.

  5. LANSCE | Lujan Center | Science Thrust Areas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science Thrust Areas User research at the Lujan Center is focused in four science thrust areas. Each has a contact person who is available to discuss proposed experiments and to provide advice on the appropriate instrument and instrument scientist, available sample environments, and other details for planned experiments. Lujan Center instrument scientists welcome questions and discussions about new experiments and are happy to provide guidance for proposal development. New users are encouraged

  6. Electricity Generation from Geothermal Resources on the Fort Peck Reservation in Northeast Montana

    SciTech Connect

    Carlson, Garry J.; Birkby, Jeff

    2015-05-12

    Tribal lands owned by Assiniboine and Sioux Tribes on the Fort Peck Indian Reservation, located in Northeastern Montana, overlie large volumes of deep, hot, saline water. Our study area included all the Fort Peck Reservation occupying roughly 1,456 sq miles. The geothermal water present in the Fort Peck Reservation is located in the western part of the Williston Basin in the Madison Group complex ranging in depths of 5500 to 7500 feet. Although no surface hot springs exist on the Reservation, water temperatures within oil wells that intercept these geothermal resources in the Madison Formation range from 150 to 278 degrees F.

  7. Sustainable Energy Resources for Consumers (SERC) Success Story: Montana |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Success Story: Montana Sustainable Energy Resources for Consumers (SERC) Success Story: Montana This document contains information on how Montana SERC Program Delivers Strong Changes through Targeted Low-Income Weatherization Efforts. serc_mt_highlight.pdf (588.63 KB) More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water

  8. Montana Total Electric Power Industry Net Summer Capacity, by...

    Energy Information Administration (EIA) (indexed site)

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2671,2671,2682,2701,2782 " ... " Other Gases","-","-",2,2,2 "Nuclear","-","-","-","-","-" ...

  9. Amsterdam-Churchill, Montana: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Amsterdam-Churchill, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.744628, -111.319624 Show Map Loading map......

  10. Montana Administrative Rules 17-20-924 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana Administrative Rules 17-20-924Legal Abstract Electric Transmission Lines, Economy Considerations Published NA Year Signed or Took Effect 2013 Legal Citation Not...

  11. Montana-Dakota Utilities- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient equipment for natural gas and electric customers. Natural gas customers are eligible for rebates on furnaces...

  12. EA-2022: Sleeping Giant Hydropower Project; Helena, Montana ...

    Energy.gov [DOE] (indexed site)

    Plant site at Canyon Ferry Dam on the Missouri River near Helena, Montana. The new hydropower generator would interconnect to Western's transmission system at an existing...

  13. Montana 319 Projects (Nonpoint Source Programs) Wiki | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Source Programs) Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana 319 Projects (Nonpoint Source Programs) Wiki Abstract Provides...

  14. RAPID/Geothermal/Water Use/Montana | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    RAPIDGeothermalWater UseMontana < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  15. Montana Water Rights Bureau New Appropriations Rule | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Montana Water Rights Bureau New Appropriations RulePermittingRegulatory GuidanceGuideHandbook...

  16. Montana-Dakota Utilities- Commercial Energy Efficiency Incentive Program

    Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers a variety of rebates to commercial customers for the purchase and installation of energy efficient lighting measures, air conditioning equipment, variable...

  17. Montana Department of Environmental Quality | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Quality is an organization based in Helena, Montana. References "Webpage" Air Quality Permitting Contact Contacts.png Dave Klemp (406) 404.0286 http:...

  18. Montana 401 Water Quality Certification Webpage | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Certification Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana 401 Water Quality Certification Webpage Abstract Contains information on...

  19. Montana Streamside Management Zone Law Webpage | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Zone Law Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Streamside Management Zone Law Webpage Abstract Provides information on...

  20. Montana Information for 310 Applicant | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    for 310 Applicant Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Information for 310 Applicant Abstract Provides overview of joint...

  1. Montana Watershed Restoration Plans Wiki | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Plans Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Watershed Restoration Plans Wiki Abstract Provides an overview of...

  2. Montana Hazardous Waste Program Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Waste Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Hazardous Waste Program Webpage Abstract Provides overview of permitting...

  3. Montana Nonpoint Source FAQs Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Source FAQs Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Nonpoint Source FAQs Webpage Abstract Provides answers to common...

  4. Montana Environmental Policy Act Guide | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Environmental Policy Act Guide Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Montana Environmental Policy Act...

  5. Montana Board of Water Well Contractors Handbook | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Montana Board of Water Well Contractors HandbookPermittingRegulatory...

  6. Montana Ground Water Pollution Control System Permit Application...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ground Water Pollution Control System Permit Application Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution...

  7. Montana Ground Water Pollution Control System Information Webpage...

    OpenEI (Open Energy Information) [EERE & EIA]

    Ground Water Pollution Control System Information Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution Control System...

  8. Flathead County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Flathead County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.424152, -114.15315 Show Map Loading map... "minzoom":false,"mappin...

  9. Prairie County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.7980893, -105.4045354 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  10. Broadwater County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.2693726, -111.4519716 Show Map Loading map... "minzoom":false,"mappingservi...

  11. Wibaux County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wibaux County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.7836649, -104.3183897 Show Map Loading map... "minzoom":false,"mappi...

  12. Lincoln County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.5880903, -115.6596529 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  13. Lake County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.671374, -114.1339242 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  14. Montana - Instructions for Application for Utilities Across State...

    OpenEI (Open Energy Information) [EERE & EIA]

    Lands Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Instructions for Application for Utilities Across State Trust Lands Abstract This...

  15. Big Sandy, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sandy, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.1788692, -110.1135412 Show Map Loading map... "minzoom":false,"mappingservic...

  16. Garfield County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.2662361, -107.1263146 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  17. Treasure County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Treasure County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.2106667, -107.2586097 Show Map Loading map... "minzoom":false,"map...

  18. Pondera County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pondera County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.2321517, -112.2886317 Show Map Loading map... "minzoom":false,"mapp...

  19. Montana Total Maximum Daily Load Development Projects Wiki |...

    OpenEI (Open Energy Information) [EERE & EIA]

    Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Total Maximum Daily Load Development Projects Wiki Abstract Provides information on...

  20. Fallon County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fallon County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.3762402, -104.4280327 Show Map Loading map... "minzoom":false,"mappi...

  1. Granite County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Granite County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.3374643, -113.4647823 Show Map Loading map... "minzoom":false,"mapp...

  2. Wheatland County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Wheatland County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.4922893, -109.8418592 Show Map Loading map......

  3. Blaine County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.6065395, -108.9462246 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  4. Jefferson County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1450553, -112.0752952 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  5. Montana - Application for Right of Way Easement for Utilities...

    OpenEI (Open Energy Information) [EERE & EIA]

    Lands Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Application for Right of Way Easement for Utilities Through State Lands Abstract...

  6. Chouteau County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Chouteau County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.0033098, -110.4737958 Show Map Loading map... "minzoom":false,"map...

  7. Carter County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4522431, -104.3707837 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  8. Sheridan County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.701151, -104.4278092 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  9. Willow Creek, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.99794, -109.727303 Show Map Loading map... "minzoom":false,"mappingservice":"google...

  10. Ravalli County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.0174639, -114.1817424 Show Map Loading map... "minzoom":false,"mappingservi...

  11. Daniels County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Daniels County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.7744137, -105.7248763 Show Map Loading map... "minzoom":false,"mapp...

  12. Roosevelt County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.2850231, -105.1099231 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  13. Petroleum County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.1565346, -108.3203282 Show Map Loading map... "minzoom":false,"mappingservi...

  14. Yellowstone County, Montana: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.7856577, -108.4343805 Show Map Loading map... "minzoom":false,"mappingservi...

  15. Stillwater County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Stillwater County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.7001096, -109.3922403 Show Map Loading map......

  16. Custer County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.2160876, -105.6225 Show Map Loading map... "minzoom":false,"mappingservice":"google...

  17. Montana Disinfected Water and Hydrostatic Testing General Permit...

    OpenEI (Open Energy Information) [EERE & EIA]

    Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana Disinfected Water and Hydrostatic Testing General Permit Form Type Other Form Topic...

  18. Richland County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9200496, -104.8017491 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  19. Toole County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Toole County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.6974247, -111.6408212 Show Map Loading map... "minzoom":false,"mappin...

  20. Hill County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.7488096, -110.0350874 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  1. Rosebud County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Rosebud County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.3904836, -106.5944313 Show Map Loading map... "minzoom":false,"mapp...

  2. Meagher County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Meagher County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.620195, -110.8848271 Show Map Loading map... "minzoom":false,"mappi...

  3. Musselshell County, Montana: Energy Resources | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Musselshell County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.4218783, -108.4064758 Show Map Loading map......

  4. Glacier County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.5217475, -112.9196649 Show Map Loading map... "minzoom":false,"mappingservi...

  5. Mineral County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.1497031, -114.9626904 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  6. Cascade County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cascade County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4688355, -111.5453228 Show Map Loading map... "minzoom":false,"mapp...

  7. Teton County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9019946, -112.2717561 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  8. Liberty County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.4917189, -110.9704148 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  9. Missoula County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.0240503, -113.6869923 Show Map Loading map... "minzoom":false,"mappingservi...

  10. Montana Restricted Use Permit Application | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Use Permit Application Abstract Application for conducting commercial use with Montana Fish, Wildlife & Parks jurisdiction. Form Type ApplicationNotice Form Topic Restricted Use...

  11. Montana Notice of Intent: Domestic Sewage Treatment Lagoons General...

    OpenEI (Open Energy Information) [EERE & EIA]

    Reference LibraryAdd to library Form: Montana Notice of Intent: Domestic Sewage Treatment Lagoons General Permit (MDEQ Form NOI) Abstract Form to be completed by owner or...

  12. Gallatin County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Zone Subtype B. Registered Research Institutions in Gallatin County, Montana Big Sky Carbon Sequestration Partnership Registered Energy Companies in Gallatin County,...

  13. Big Sky, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sky, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2846507, -111.368292 Show Map Loading map... "minzoom":false,"mappingservice":...

  14. Montana Sand and Gravel Operations General Permit - Example Authorizat...

    OpenEI (Open Energy Information) [EERE & EIA]

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Montana Sand and Gravel Operations General Permit - Example AuthorizationPermitting...

  15. Montana Underground Storage Tanks Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Underground Storage Tanks Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Underground Storage Tanks Webpage Abstract Provides overview...

  16. MCA 22-3-430 - Montana Antiquities Avoidance and Mitigation ...

    OpenEI (Open Energy Information) [EERE & EIA]

    MCA 22-3-430 - Montana Antiquities Avoidance and MitigationLegal Abstract Sets forth a principle of preferred avoidance of heritage properties or paleontological remains,...

  17. Montana Crude Oil + Lease Condensate Proved Reserves (Million...

    Energy Information Administration (EIA) (indexed site)

    Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  18. RAPID/Geothermal/Exploration/Montana | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    construction will require the MEPA review. Local Exploration Process not available Policies & Regulations MCA 82-1-1 Geophysical Exploration Montana Rule 17.20.2 Geothermal...

  19. EIS-0393: Montanore Project, Montana | Department of Energy

    Energy.gov [DOE] (indexed site)

    prepared an EIS that evaluates the potential environmental impacts of a proposed copper and silver underground mine about 18 miles south of Libby, Montana. DOE's Bonneville...

  20. Vista Montana, Watsonville, California: Moving Toward Zero Energy Homes

    SciTech Connect

    2003-12-01

    Fact sheet describes the energy efficient and solar energy features of the Vista Montana Zero Energy Home, participant in the Zero Energy Homes initiative.

  1. Montana Natural Gas Gross Withdrawals and Production

    Energy Information Administration (EIA) (indexed site)

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  2. Montana Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Montana Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 5,866 100.0 Total Net Summer Renewable Capacity 3,085 52.6 Geothermal - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 29,791 100.0 Total

  3. Montana Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total Storage

  4. Montana Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region East Region South Central Region Midwest Region Mountain Region Pacific Region Period: Monthly Annual Download Series History Download

  5. Low thrust NTP for manned Mars operations

    SciTech Connect

    Olsen, T.; Madsen, W. ); Redd, L. )

    1993-01-10

    The impact on manned Mars operations of selecting a nuclear thermal propulsion (NTP) module with a relatively low total thrust, in the 222--445 kN (50--100 klbf) range, is explored. The propulsion module may consist of one or more engines. Selection of a low total thrust is robust across a wide range of payload masses provided perigee kicks are utilized for trans-Mars insertion (TMI). The longer time taken for TMI when using a low total thrust and perigee kicks allows for extensive system evaluation before commitment to Earth escape, but will require fuels with lifetimes of at least a few hours. Longer fuel life could be obtained without using advanced fuels by operating at lower fuel temperatures later in the mission. The additional traversals through the Van Allen belts inherent with using perigee kicks for TMI does not significantly increase the radiation exposure of the crew. Negative reactivity from xenon buildup between perigee kicks can be mitigated by coasting on the intermediate orbits, by altering the selection of the intermediate orbits, by deep throttling, or by building in sufficient excess reactivity. Thrust misalignments of a realistic magnitude do not pose an Earth impact hazard. Engine crosstalk in clusters is a very manageable problem. High propulsion module reliability can be achieved with a propulsion module consisting of a cluster of three or four small engines without dropping the module thrust-to-weight ratio below an acceptable level. A total design thrust in the 222--445 kN range is high enough for Earth return with only one of the engines of the cluster operating.

  6. Wolf Point Substation, Roosevelt County, Montana

    SciTech Connect

    Not Available

    1991-05-01

    The Western Area Power Administration (Western), an agency of the United States Department of Energy, is proposing to construct the 115-kV Wolf Point Substation near Wolf Point in Roosevelt County, Montana (Figure 1). As part of the construction project, Western's existing Wolf Point Substation would be taken out of service. The existing 115-kV Wolf Point Substation is located approximately 3 miles west of Wolf Point, Montana (Figure 2). The substation was constructed in 1949. The existing Wolf Point Substation serves as a Switching Station'' for the 115-kV transmission in the region. The need for substation improvements is based on operational and reliability issues. For this environmental assessment (EA), the environmental review of the proposed project took into account the removal of the old Wolf Point Substation, rerouting of the five Western lines and four lines from the Cooperatives and Montana-Dakota Utilities Company, and the new road into the proposed substation. Reference to the new proposed Wolf Point Substation in the EA includes these facilities as well as the old substation site. The environmental review looked at the impacts to all resource areas in the Wolf Point area. 7 refs., 6 figs.

  7. Montana State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Montana State Historic Preservation Programmatic Agreement Montana State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. state_historic_preservation_programmatic_agreement_mt.pdf (1.03 MB) More Documents & Publications Delaware State Historic Preservation Programmatic Agreement Florida State Historic Preservation Programmatic Agreement Louisiana

  8. Exploration within the Sub-Andean Thrust Belt of Southern Bolivia

    SciTech Connect

    Nelson, K.J. )

    1993-02-01

    The Sub-Andean thrust belt of Southern Bolivia is a proven hydrocarbon province. Chevron began a regional study of the area in 1988 and chose the Caipipendi block due to its high potential for significant new oil reserves. A regional work program designed to acquire and integrate seismic data, geologic field data, geochemistry, and gravity data was used to generated structural models, evaluate regional risk components and to detail leads. The structural style within the Caipipendi block is interpreted as being an in sequence, thin skinned thrust belt with eastward verging folds and thrust faults. Tight surface anticlines associated with a Middle Devonian detachment have been later folded by deeper fault bend folds associated with the Silurian detachment. While the tight surface folds are presently producing oil, the deeper broader structures associated with the Silurian detachement have not been tested. Seismic data, utilized for the first time in this part of the Sub-Andean thrust belt, integrated with balanced structural cross sections, is the key to evaluating this new play. Geochemical analysis, including oil biomarker work, indicate that the oils are sourced from the Silurian-Devonian sequence. A generative oil system model formulated by integrating the geochemical analysis with maturation modeling indicates that the Devonian Los Monos formation is the primary oil source. Anticipated reservoirs for the new play are Carboniferous and Devonian sandstones which are also productive elsewhere in the basin.

  9. EM Science of Safety: Robotics Technology Thrust | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    EM Science of Safety: Robotics Technology Thrust EM Science of Safety: Robotics Technology Thrust Presentation from the 2016 DOE National Cleanup Workshop. EM Science of Safety: Robotics Technology Thrust (6.67 MB) More Documents & Publications PRESENTATION: OVERVIEW OF DOE OFFICE OF ENVIRONMENTAL MANAGEMENT (EM) Focus on the Field OREM Hosts Community Workshop

  10. Montana Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Montana" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",5866,100 "Total Net Summer Renewable Capacity",3085,52.6 " Geothermal","-","-" " Hydro Conventional",2705,46.1 "

  11. Montana Shale Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Montana Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 140 125 137 2010's 186 192 216 229 482 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31

  12. MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS

    SciTech Connect

    DOE

    2005-09-13

    The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability.

  13. Thrust bolting: Roof-bolt-support apparatus

    SciTech Connect

    Tadolini, S.C.; Dolinar, D.R.

    1991-01-01

    The invention relates to a method for installing a roof bolt in a borehole of a rock formation and more specifically to tensioning the unit without the aid of a mechanical anchoring device or threaded tensioning threads. The bolt is capable of being placed into tension along the length and the levels of active support can be controlled by varying the length of the grouted portion and the level of thrust applied to the bolt during installation.

  14. Development of transfer zones and location of oil and gas fields in frontal part of Bolivian Andean fold-and-thrust belt

    SciTech Connect

    Baby, P. ); Specht, M.; Colletta, B.; Letouzey, J. ); Mendez, E. ); Guillier, B. )

    1993-02-01

    The frontal part of the Bolivian Andean thrust belt consists of a thick series of paleozoic to cenozoic sedimentary rocks (5 to 8 km thick) which are folded and thrusted towards the east on a sole thrust at the base of paleozoic series. The front of this tectonic wedge is characterized by transfer zones of various scales and geometries. The main oil and gas fields are located in these transfer zones. A study realized from YPFB (Yacimientos Petroliferos Fiscales Bolivianos) seismic data shows that in all the cases, the deformation is controlled by the geometry and thickness variations of the paleozoic basin. The most spectacular transfer zone appears at the bolivian orocline scale and corresponds to the famous bending of the andean thrust front close to Santa Cruz. More to the south (19 to 22[degrees] S) the southern foreland fold and thrust belt is characterized by a set of local right lateral offset transfer zones ([open quotes]en echellon[close quotes] folds). The difference of geometry and scale of the transfer zones seems to be related to the variation of the angle value between the shortening direction and the direction of the paleozoic basin borders. In order to test our interpretation, to constrain the boundary conditions and to study the thrust propagation sequence, we performed a set of analog model experiments whose 3D visualization was analyzed by computerized X-ray tomography.

  15. BLE: Battery Life Estimator | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    BOE Reserve Class No 2001 Reserves 0.1 - 10 MBOE Basin Outline WY UT ID CO MT WA OR NV CANADA INDEX MAP ID Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Montana Thrust Belt 1 1 0 1 Basin 2001 Reserve Summary for Montana Thrust Belt Fields CANADA USA Montana Thrust Belt Oil & Gas Fields By 2001 BOE

    Gas Reserve Class No 2001 gas reserves Basin Outline WY UT ID CO MT WA OR NV CANADA INDEX MAP ID Total Total Total Number Liquid Gas BOE of

  16. Ouachita Mountain thrust front: An integrated approach to prospect analysis in thrust belts

    SciTech Connect

    Dodge, R.L. ); Keeling, M.A. ); Cassiani, D. )

    1990-05-01

    The thrust front of the Ouachita Mountains in western Arkansas is defined by the prominent asymmetric Washburn anticline. Previously interpreted as a complexly thrust-faulted anticline, the feature has been reinterpreted as a delta or triangle structure based on integration of surface mapping from thematic mapper (TM) data with subsurface interpretation of seismic and well-log cross sections. The northern limb of the Washburn anticline consists of a relatively unfaulted steeply north-dipping sheet above a major north-dipping backthrust. The southern limb consists of several steeply south-dipping thrust sheets that form a duplex zone in the center of the delta structure. Seismic and well-log interpretations suggested the presence of the imbrication in the core of the structure, but poor seismic resolution within the structure made interpretation of the backthrust and duplex geometry difficult. Surface mapping from TM imagery indicates the presence of the backthrust and the extent and geometry of the delta structure. Thrust sheets and horses also crop out, and their geometry is a guide to interpretation of subsurface data sets. The new model of the Ouachita thrust front as a delta structure has aided in subsurface data analysis and has resulted in a better understanding of trap geometry and distribution. This study also demonstrates the application of detailed surface mapping from satellite remote-sensing data to prospect-scale analysis.

  17. Petroleum systems of the Papuan Basin, Papua New Guinea, and their exploration potential

    SciTech Connect

    Kaufman, R.L.; Phelps, J.C.

    1995-08-01

    The Papuan Basin of Papua New Guinea is a mature basin with a complex geologic history. The basin was initiated during Permo-Triassic rifting of the northern margin of Australia. Passive margin sedimentation occurred until the Oligocene to Recent when the basin was compressionally inverted, resulting in the formation of the present-day fold and thrust belt. Numerous hydrocarbon fields, some commercial, occur in traps along the front of the thrust belt. In mature complex basins such as this, it is critical to fully characterize existing petroleum systems as well as deliberately search for new systems. A recent systematic synthesis of the available geochemical data has defined three systems. Most important is the Jurassic system which is responsible for most of the oil and gas fields and all commercial production. Cretaceous and Tertiary systems, newly discovered in the basin, are based on detailed isotope and biomarker analysis of numerous oil seep. These additional petroleum systems open up new plays for exploration. To better define the pre-thrust basin geometry and help constrain the timing of hydrocarbon generation and migration, a series of palinspastically-stored cross-sections were constructed. Maturity modelling at different basin locations along these cross-sections evaluated the relative importance of two important species: (1) pre-thrust generation from local kitchens behind the present thrust belt, and (2) syn-thrust generation by loading of stacked thrust sheets within the fold belt. The relative importance of re-migration from pre-thrust traps vs direct charging into present day fold belt traps was evaluated using oil composition data.

  18. Box Elder, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Box Elder is a census-designated place in Chouteau County and Hill County, Montana. It...

  19. Montana Dry Natural Gas Expected Future Production (Billion Cubic...

    Energy Information Administration (EIA) (indexed site)

    Expected Future Production (Billion Cubic Feet) Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  20. Montana Code 76-2-301 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 76-2-301Legal Abstract This statute covers local government zoning ordinances and planning....

  1. Montana Code 76-2-201 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    201 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 76-2-201Legal Abstract This statute covers county zoning...

  2. Montana Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Montana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 ...

  3. Montana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    Energy Information Administration (EIA) (indexed site)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Montana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  4. Montana Guide to the Streamside Management Zone Law & Rules Webpage...

    OpenEI (Open Energy Information) [EERE & EIA]

    Guide to the Streamside Management Zone Law & Rules Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Guide to the Streamside Management...

  5. Montana Natural Streambed and Land Preservation Act Webpage ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Streambed and Land Preservation Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Natural Streambed and Land Preservation Act Webpage...

  6. Montana Code 75-20-102 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 75-20-102Legal Abstract A Certificate of Compliance is required for the development of...

  7. Montana Code 75-20-104 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 75-20-104Legal Abstract Definition of facilities. Published NA Year Signed or Took Effect...

  8. Montana Code 75-20-211 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 75-20-211Legal Abstract This section includes the requirements for the Certificate of...

  9. Montana Code 75-20-301 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 75-20-301Legal Abstract Decision of department - findings necessary for certification...

  10. Montana Water Rights Bureau Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Water Rights Bureau Webpage Abstract Provides overview of administration of water rights by...

  11. Montana Air Quality Program Laws & Rules Webpage | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Air Quality Program Laws & Rules Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Air Quality Program Laws & Rules Webpage Abstract...

  12. Montana Stream Permitting Guide Webpage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guide Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Stream Permitting Guide Webpage Abstract Provides a guide to required stream...

  13. Montana Board of Water Well Contractors Webpage | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Board of Water Well Contractors Webpage Abstract Provides information on water well...

  14. Energy Secretary Chu Announces Montana Schools Win National Student...

    Office of Environmental Management (EM)

    Energy Secretary Chu Announces Montana Schools Win National Student Efficiency Competition May 2, 2012 - 3:05pm Addthis WASHINGTON, D.C. - Secretary of Energy Steven Chu today ...

  15. Montana Code 70-30-102 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana Code 70-30-102Legal Published NA Year Signed or Took Effect 2014 Legal Citation Not...

  16. McCone County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    McCone County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4500913, -105.8810733 Show Map Loading map... "minzoom":false,"mappi...

  17. Montana Facilities Which Do Not Discharge Process Wastewater...

    OpenEI (Open Energy Information) [EERE & EIA]

    Form 2E) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana Facilities Which Do Not Discharge Process Wastewater (MDEQ Form 2E) Abstract Form...

  18. Montana 2012 Final Water Quality Integrated Report: Appendix...

    OpenEI (Open Energy Information) [EERE & EIA]

    Appendix A Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Montana 2012 Final Water Quality Integrated Report: Appendix A Abstract Index for impaired...

  19. Montana MCA 77-4-102, Geothermal Resource Definitions | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana MCA 77-4-102, Geothermal Resource DefinitionsLegal Abstract Definitions for...

  20. Montana Notice of Intent: Sand and Gravel General Permit (MDEQ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Form NOI) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana Notice of Intent: Sand and Gravel General Permit (MDEQ Form NOI) Abstract Form to be...

  1. Montana MPDES General Information Form (MDEQ Form 1) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    (MDEQ Form 1) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana MPDES General Information Form (MDEQ Form 1) Abstract Completion of form allows...

  2. Montana 2012 Final Water Quality Integrated Report | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Montana 2012 Final Water Quality Integrated Report Abstract Provides an overview of sources of...

  3. Montana Public Water Supply Law and Rules Webpage | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Public Water Supply Law and Rules Webpage Abstract Provides overview of statutes and...

  4. Application for presidential permit OE Docket No. PP-305 Montana...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    210 - Nov. 1, 2005 Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Federal Register Notice Volume 70, No. 210 - Nov. 1, 2005 Application from...

  5. Montana Natural Gas Gross Withdrawals from Gas Wells (Million...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 4,561 3,826 4,106 ...

  6. Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    Energy Information Administration (EIA) (indexed site)

    Shale Gas (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1,239 1,119 1,239 ...

  7. Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. Park County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Park County is a county in Montana. Its FIPS County Code is 067. It is classified as ASHRAE...

  9. Dawson County, Montana: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Dawson County is a county in Montana. Its FIPS County Code is 021. It is classified as ASHRAE...

  10. MCA 22-3-421 - Montana Antiquities Definitions | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 22-3-421 - Montana Antiquities DefinitionsLegal Abstract This is the definitions section for...

  11. MCA 22-3-429 - Montana Antiquities Consultation, Notice, Appeal...

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 22-3-429 - Montana Antiquities Consultation, Notice, AppealLegal Abstract Provides for...

  12. Lewis and Clark County, Montana: Energy Resources | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lewis and Clark County is a county in Montana. Its FIPS County Code is 049. It is classified...

  13. Montana Joint Application for Proposed Work in Streams, Lakes...

    OpenEI (Open Energy Information) [EERE & EIA]

    Streams, Lakes and Wetlands Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Joint Application for Proposed Work in Streams, Lakes and...

  14. EA-1940: Proposed Federal Loan Guarantee for Montana Advanced Biofuels

    Energy.gov [DOE]

    Montana Advanced Biofuels (MAB) submitted an application to DOE for a Federal loan guarantee to support construction of a multi-feedstock biorefinery that would produce approximately 115 million gallons per year of ethanol in Great Falls, Montana. The biorefinery would utilize renewable biomass in the form of barley and wheat to produce ethanol and other by-products, including wheat gluten, barley bran, and barley meal. NOTE: The EA is cancelled because the applicant withdrew from the program.

  15. Energy Secretary Chu Announces Montana Schools Win National Student

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Efficiency Competition | Department of Energy Montana Schools Win National Student Efficiency Competition Energy Secretary Chu Announces Montana Schools Win National Student Efficiency Competition May 2, 2012 - 3:05pm Addthis WASHINGTON, D.C. - Secretary of Energy Steven Chu today announced the winners of the America's Home Energy Education Challenge, a national student competition designed to encourage students and their families to take action to start saving money by saving energy. A team

  16. Montana Natural Gas Processed in Wyoming (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Wyoming (Million Cubic Feet) Montana Natural Gas Processed in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 785 656 622 631 637 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed Montana-Wyoming

  17. EIS-0529 Columbia River System Operations; Idaho, Montana, Oregon, and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Washington | Department of Energy 9 Columbia River System Operations; Idaho, Montana, Oregon, and Washington EIS-0529 Columbia River System Operations; Idaho, Montana, Oregon, and Washington Summary The U.S. Army Corps of Engineers, the Bureau of Reclamation, and DOE's Bonneville Power Administration (BPA), as joint lead agencies, are preparing an EIS that analyzes the potential environmental impacts of the operation (as a coordinated system) and maintenance of 14 federal multiple-purpose

  18. Final Report - Montana State University - Microbial Activity and

    Office of Scientific and Technical Information (OSTI)

    Precipitation at Solution-Solution Mixing Zones in Porous Media (Technical Report) | SciTech Connect Final Report - Montana State University - Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media Citation Details In-Document Search Title: Final Report - Montana State University - Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media Background. The use of biological and chemical processes that degrade or immobilize

  19. US hydropower resource assessment for Montana

    SciTech Connect

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Montana.

  20. Improved recovery demonstration for Williston Basin carbonates. Quarterly report, October 1, 1994--December 31, 1994

    SciTech Connect

    1995-04-01

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Results of seismic surveys are presented.

  1. Thrust bearing assembly for a downhole drill motor

    SciTech Connect

    Geczy, B. A.

    1985-12-24

    A bidirectional thrust bearing assembly is used between a downhole fluid motor and a rock bit for drilling oil wells. The bearing assembly has a stationary housing with radial journal bearing sleeves and a rotatable drive shaft also having radial bearing sleeves. A pair of oppositely facing thrust bearing rings are mounted in the housing. A second pair of thrust bearing rings are mounted on the shaft so as to have faces opposing the bearing faces on the first pair of rings. Belleville springs resiliently bias a pair of the thrust bearing rings apart and carry the thrust load between such rings. Each ring has a plurality of inserts of hard material, preferably polycrystalline diamond, at the bearing surface. Means are provided for circulating drilling fluid from the motor through the thrust bearing faces for forming hydrodynamic fluid bearing films in the bearing interfaces.

  2. Late Cretaceous extension in the hinterland of the Sevier thrust...

    OpenEI (Open Energy Information) [EERE & EIA]

    Sevier thrust belt, northwestern Utah and southern Idaho Abstract Cover rocks of the Raft River metamorphic core complex, located in the Sevier belt hinterland, preserve a...

  3. EIS-0399: Montana Alberta Tie Ltd. (MATL) 230-KV Transmission Line

    Energy.gov [DOE]

    DOE, jointly with the Montana Department of Environmental Quality (MDEQ), prepared an EIS that evaluated the potential environmental impacts of a proposed international transmission line that would cross the U.S.-Canada border in northwest Montana.

  4. MCA 87-5-501 et seq. - Montana Stream Protection | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    7-5-501 et seq. - Montana Stream Protection Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 87-5-501 et seq. - Montana Stream...

  5. M.C.A. 75-1-101 - Montana Environmental Policy Act | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    M.C.A. 75-1-101 - Montana Environmental Policy Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: M.C.A. 75-1-101 - Montana...

  6. PROJECT PROFILE: Montana State Energy Office (SEEDS2-SES) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Montana State Energy Office (SEEDS2-SES) PROJECT PROFILE: Montana State Energy Office (SEEDS2-SES) Project Name: Montana Community-Scale Solar Strategy Project Funding Opportunity: Solar Energy Evolution and Diffusion Studies 2 - State Energy Strategies (SEEDS2-SES) SunShot Subprogram: Soft Costs Location: Helena, MT SunShot Award Amount: $380,000 Awardee Cost Share: $95,000 This project is developing a cost-effective, community solar energy strategy for Montana that will expand

  7. Structural styles of subandean fold and thrust belt of Peru and Southern Ecuador

    SciTech Connect

    Aleman, A.M.

    1988-01-01

    Along-strike variations in structural styles of the east-verging Subandean fold and thrust belt (SAFTB) in Peru and southern Ecuador are controlled by the presence or absence of thick Late Permian to Jurassic evaporite sequences rather than changes in subducting plate geometries as has been suggested previously for the Andes. Salt distribution and thickness have not only controlled the styles and segmentation along the SAFTB but also have been important factors in strike variations across the belt. The southern Ecuador SAFTB lacks significant evaporite units and is characterized by thick-skinned deformation that encompasses high-angle reverse faults, and broad, low-amplitude folds. The style changes to thin-skinned deformation near 2S lat. and it is well illustrated in the Santiago and Huallaga basins where thick evaporite units are present. This segment is characterized by a major decollement on the salt, grabens formed by salt withdrawal from reactivation of thrust faults as listric normal faults, salt piercement at or near synclinal axes, and periclines and asymmetric folds. The frontal thrust of this thin-skinned segment consists of box, overturned and upright folds above shallow salt domes, and by a major backthrust at the mountain front. This segment extends to 1030'S lat., near Oxapampa, Peru, where the thin-skinned SAFTB is narrow and changes across strike to a thick-skinned deformation as the evaporite units thin and disappear eastward. South of 1030'S lat., a new thick-skinned deformation segment is present in southern Peru and characterizes most of the deformation in the SAFTB of the Ucayali and Madre De Dios basins.

  8. Delaware basin/Central basin platform margin: The development of a subthrust deep-gas province in the Permian Basin

    SciTech Connect

    Purves, W.J. ); Ting, S.C. )

    1990-05-01

    A deep-gas-prone province was identified along the Delaware basin/Central Basin platform margin, a margin conventionally interpreted to be bounded by high-angle normal or high-angle reverse structures. Redefinition of the tectonic style between the Delaware basin and the adjacent platform resulted in the identification of this Delaware basin/Central Basin platform subthrust province and a giant prospect within it. Definition of a giant-sized gas prospect in northern Pecos County, Texas, revealed that portions of this margin may be characterized by shingled, low-angle, eastward-dipping, basement involved thrust faults. Interpretations suggest that hidden, subthrust footwall structures may trend discontinuously for greater than 100 mi along this structural margin. Subthrust footwall structures formed as basinal buttress points for the Central Basin platform to climb over the Delaware basin. In this area, structural relief of over 19,000 ft over a 10-mi width is believed due to stacking of low-angle thrust sheets. Seismic resolution of this subthrust margin has been complexed by allochtonous hanging-wall gravity-glide blocks and folds and by velocity changes in overlying syn- and posttectonic sediments associated with basin-to-shelf lithofacies changes. Statistical studies indicate that this deep-gas province has a play potential of greater than 10 tcf of gas, with individual prospect sizes exceeding 1 tcfg. The prospects defined along this trend are deep (approximately 20,000 ft) subthrust structural traps that are indigenously sourced and reservoired by dual-matrix porosity. Vitrinite supported maturation modeling suggests that these subthrust structures formed prior to catagenic conversion of the oldest source rocks to oil and later to gas. Tectonically fractured Ordovician Ellenburger and Devonian sediments are considered the principal reservoirs. Shales overlying reservoir intervals form vertical seals.

  9. Montana Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Montana Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 60,500 59,058 57,793 1970's 59,193 57,105 61,757 56,960 146,907 156,203 0 0 0 1980's 11,825 13,169 15,093 16,349 19,793 16,212 14,177 15,230 15,475 1990's 14,629 14,864 12,697 11,010 10,418 9,413 10,141 8,859 8,715 5,211 2000's 5,495 5,691 6,030 6,263 6,720 10,057 12,685 13,646 13,137 12,415 2010's 12,391 11,185 12,727 14,575 14,751 15,146 -

  10. Late Paleozoic structural evolution of Permian basin

    SciTech Connect

    Ewing, T.E.

    1984-04-01

    The southern Permian basin is underlain by the NNW-trending Central Basin disturbed belt of Wolfcamp age (Lower Permian), the deep Delaware basin to its west, and the shallower Midland basin to its eat. The disturbed belt is highly segmented with zones of left-lateral offset. Major segments from south to north are: the Puckett-Grey Ranch zone; the Fort Stockton uplift; the Monahans transverse zone; the Andector ridges and the Eunice ridge; the Hobbs transverse zone; and the Tatum ridges, which abut the broad Roosevelt uplift to the north. The disturbed belt may have originated along rift zones of either Precambrian or Cambrian age. The extent of Lower and Middle Pennsylvanian deformation is unclear; much of the Val Verde basin-Ozona arch structure may have formed then. The main Wolfcamp deformation over thrust the West Texas crustal block against the Delaware block, with local denudation of the uplifted edge and eastward-directed backthrusting into the Midland basin. Latter in the Permian, the area was the center of a subcontinental bowl of subsidence - the Permian basin proper. The disturbed belt formed a pedestal for the carbonate accumulations which created the Central Basin platform. The major pre-Permian reservoirs of the Permian basin lie in large structural and unconformity-bounded traps on uplift ridges and domes. Further work on the regional structural style may help to predict fracture trends, to assess the timing of oil migration, and to evaluate intrareservoir variations in the overlying Permian giant oil fields.

  11. Montana Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Montana Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 59 6 326 3 9 17 39 95 3 2010's 30 44 4 4 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Montana Dry Natural Gas Proved

  12. Montana Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Montana Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 57 10 225 3 6 20 41 90 3 2010's 40 44 30 72 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Montana Dry Natural Gas Proved Reserves Dry Natural

  13. Montana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Montana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,956 2,147 2,268 2,377 2,277 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Montana Natural Gas

  14. Montana Natural Gas Processed in North Dakota (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    North Dakota (Million Cubic Feet) Montana Natural Gas Processed in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 176 865 1,460 1,613 1,647 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed Montana-North Dakota

  15. Montana Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update

    (Million Cubic Feet) North Dakota (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 303 344 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-North Dakota

  16. Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update

    Cubic Feet) Wyoming (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 27 27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-Wyoming

  17. High-pressure gasification of Montana subbituminous coal

    SciTech Connect

    Goyal, A.; Bryan, B.; Rehmat, A.

    1991-01-01

    A data base for the fluidized-bed gasification of different coals at elevated pressures has been developed at the Institute of Gas Technology (IGT) with different ranks of coal at pressures up to 450 psig and at temperatures dictated by the individual coals. Adequate data have been obtained to characterize the effect of pressure on the gasification of Montana Rosebud subbituminous coal and North Dakota lignite. The results obtained with Montana Rosebud subbituminous coal are presented here. This program was funded by the Gas Research Institute. 9 refs., 10 figs., 3 tabs.

  18. Climate Zone 6B | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Basin County, Montana Lake County, Montana Laramie County, Wyoming Lemhi County, Idaho Lewis and Clark County, Montana Liberty County, Montana Lincoln County, Montana Madison...

  19. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect

    Cunningham, A.E.; Schaps, S.; McGregor, D.

    1996-12-31

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  20. Petroleum systems of Jianghan Basin, Hubel Province, China

    SciTech Connect

    Cunningham, A.E. ); Schaps, S.; McGregor, D. )

    1996-01-01

    The Jianghan Basin is a Cretaceous-Tertiary nonmarine rift basin superimposed on a late Precambrian to Jurassic passive margin and foreland basin succession deformed by mid-Mesozoic folding and thrusting. Hence the basin has potential for superimposed petroleum systems. Oil production is established in a Tertiary petroleum system developed in two major depocenters, the Jiangling (west) and Qianjiang (east) Depressions. Lacustrine source beds in the early Eocene Xingouzhui and late Eocene Qianjiang Formations generated hydrocarbons during local maximum basin fill in the Oligocene to present. Very early, low temperature generation of petroleum occurs where Type 1S Qianjiang Formation kerogen is present. Tertiary fluvial and deltaic sandstones form reservoirs that trap oil in highs or rollover structures formed by normal faulting and salt movement. The pre-rift section contains large folds and good source-beds, but has high exploration risk. Factors limiting effectiveness of older petroleum systems are: (1) Uplift and erosion of thrust structures; (2) Overmaturation of pre-Permian source rocks prior to folding and thrusting; (3) Limited extent of secondary maturation of Late Paleozoic and Mesozoic source beds; and (4) Disruption of older traps and seals by widespread normal faulting. Production of hydrocarbons from Permian and Triassic rocks to the west of Hubei suggests that further seismic work and drilling are merited to evaluate pre-Tertiary potential in the Jianghan Basin.

  1. ALBANIA: Thrust and backthrust systems of external Albanides: Examples

    SciTech Connect

    Bega, Z.; Janopulli, V.

    1995-08-01

    External Albanides have proved as an oil/gas province in a certain limited area. Better understanding of thrusting and backthrusting systems and how both systems work, could improve objectives for exploration beyond actual discoveries. Backthrusting is not seen any more typical for Cenozoic sediments, where buried front of thrust faulted belts are very active. Mesozoic rocks, that are dominated by westward thrust propagation are also affected by backthrusting, thus leaving more space for other units accommodation. New concepts postulated are based on Deep Holes, Seismic Data, Outcrops and Spot Imagery. Among onshore examples, some of them cross existing fields.

  2. Structural and stratigraphic analysis of the Dinaride thrust belt; A frontier exploration province in central-Southern Europe

    SciTech Connect

    Tasker, D.R.; Weir, G.M.; Dale, R.C. )

    1993-09-01

    The Dinarides are a 200-300-km-wide southwest vergent fold and thrust belt extending along the eastern margin of the Adriatic Sea. The complex and varied structural and stratigraphic relationships can be used to define three major tectonic units: the internal, central, and external Dinarides. In the Internal Dinarides, platform sequences deposited in the Early and Middle Triassic underwent rapid subsidence and drowning in the Late Triassic and Early Jurassic along with rifting and subsequent formation of oceanic crust. Melange and flysch were deposited during the late Jurassic through Cretaceous as the developing thrust belt encroached upon the northeastern margin of the Dinaride carbonate platform. The Dinaride carbonate platform forms the cores of the central and external Dinarides and is composed primarily of Permian-Triassic clastics and evaporites overlain by Middle Triassic through early Eocene platform carbonates. The entire sequence is overlain by late Eocene and early Oligocene synorogenic flysch. In the central Dinarides, late Jurassic and Early Cretaceous unconformities suggest structural uplift prior to the onset of thrusting. Deformation involves Paleozoic basement and includes a major decollement in the Permian Triassic clastic and evaporite unit. Thrusting in the external Dinarides occurred in the late Eocene-early Oligocene and is restricted to Middle Triassic and younger units with major detachments forming near the base of the Ladinian and within a Late Jurassic-Early Cretaceous evaporite. Important oil source and seal lithofacies occur within intraplatform basins and lagoons in the Mesozoic sequences of the central and external Dinarides. Widespread dolomitized units within the Mesozoic carbonate sequence are potential reservoir zones. The presence of surface hydrocarbon seeps and of existing production on trend to the Dinarides in the thrust belt of Italy and Albania suggest the potential for hydrocarbon discoveries in this underexplored area.

  3. EIS-0124: Conrad-Shelby Transmission Line Project, Montana

    Energy.gov [DOE]

    The U.S. Department of Energy's Western Area Power Administration developed this statement to assess the environmental impact of adding a 230 kV transmission line between Conrad and Shelby, Montana and a new substation near Shelby to update the stressed electrical transmission system.

  4. EIS-0090: Fort Peck-Havre Transmission Line Project, Montana

    Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of its proposed action to construct and operate a 230kV transmission line from Fort Peck to Havre, Montana, with three intermediate interconnecting substations.

  5. Joel Brock > Research Thrust Leader - Complex OxidesProfessor...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Joel Brock Research Thrust Leader - Complex Oxides Professor Applied and Engineering Physics Research Group Webpage jdb20@cornell.edu Dr. Brock is a Professor in the School of...

  6. Center for Inverse Design: Research Thrusts and Subtasks

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Thrusts and Subtasks The Center for Inverse Design creates an unprecedented coupling of theory and experiment to realize the thesis that inverse design can revolutionize the way materials science will be done in the future. Inverse design entails the theory-driven search of materials with given functionality, and discovery of hitherto unreported materials with relevant functionality. We have three thrusts, with six subtasks, that map directly into the overall Center objectives.

  7. Thrust stand for vertically oriented electric propulsion performance evaluation

    SciTech Connect

    Moeller, Trevor; Polzin, Kurt A.

    2010-11-15

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater.

  8. Gladden Pull-Apart Basin, offshore Belize

    SciTech Connect

    Morrice, S. )

    1993-02-01

    The junction of the American and Caribbean plates in Belize has created a complex structural setting for oil and gas exploration. Recent seismic offshore Belize has been used to identify three structural provinces, from west to east: a shallow thrust zone, a narrow upthrown wrench faulted zone and a deeper extensional basin, named the Gladden Pull-Apart Basin. Hydrocarbon leakage from recent fault movement appears to have depleted the shallow structures to the west, but the pull-apart basin has a thick sequence of low-frequency clay-dominated sealing rocks with the potential to preserve hydrocarbon accumulations in Cretaceous carbonate banks. These buried carbonate are of the same age and depositional environment of Mexico's Golden Lane/Tabasco Reforma carbonate banks which are world class giant fields. The Belize and Mexican carbonate banks are within the same Cretaceous depositional basin, the Peten Basin. Seismic interpretations in offshore Belize have been integrated with gravity and magnetic surveys. This provides additional support for the deep extensional basin. The location of the thick Cretaceous carbonate banks is better interpreted with the integration of these three geophysical tools. Airborne geochemical surveys were used to detect the presence of oil seeps on the east and west basin margins.

  9. Mercury Emission Control Technologies for PPL Montana-Colstrip Testing

    SciTech Connect

    John P. Kay; Michael L. Jones; Steven A. Benson

    2007-04-01

    The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection. Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this

  10. A.R.M. 36.2.521 - Administrative Procedures for Montana Environmental...

    OpenEI (Open Energy Information) [EERE & EIA]

    M. 36.2.521 - Administrative Procedures for Montana Environmental Policy Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  11. Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Scope Change #1

    Energy.gov [DOE]

    Application from Montana Alberta Tie Ltd to construct, operate, and maintain electric transmission facilities at the U.S-Canada border. Scope Change #1

  12. Montana Rule 36.2.10 General State Land Rules | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    State Land RulesLegal Abstract Montana regulation governing general rules for the administration of state lands. Published NA Year Signed or Took Effect 2014 Legal Citation...

  13. Montana Rule 36.25.4 Geothermal Rules and Regulations | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Rules and RegulationsLegal Abstract Montana regulation governing administration of geothermal resources in the state. Published NA Year Signed or Took Effect...

  14. Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Update

    Energy.gov [DOE]

    Application from Montana Alberta Tie Ltd to construct, operate, and maintain electric transmission facilities at the U.S-Canada border.

  15. Montana Rivers Information System : Edit/Entry Program User's Manual.

    SciTech Connect

    United States. Bonneville Power Administration; Montana Department of Fish, Wildlife and Parks

    1992-07-01

    The Montana Rivers Information System (MRIS) was initiated to assess the state`s fish, wildlife, and recreation value; and natural cultural, and geologic features. The MRIS is now a set of data bases containing part of the information in the Natural Heritage Program natural features and threatened and endangered species data bases and comprises of the Montana Interagency Stream Fisheries Database; the MDFWP Recreation Database; and the MDFWP Wildlife Geographic Information System. The purpose of this User`s Manual is to describe to the user how to maintain the MRIS database of their choice by updating, changing, deleting, and adding records using the edit/entry programs; and to provide to the user all information and instructions necessary to complete data entry into the MRIS databases.

  16. Montana Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 11 -30 17 10 -3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  17. Montana Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 3 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Extensions

  18. Montana Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Million Barrels) Montana Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 21 2010's -4 3 -7 -10 -1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  19. Montana Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Montana Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5 2010's 41 23 55 48 89 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  20. Montana Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Montana Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 115 46 7 14 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  1. Montana Shale Proved Reserves Acquisitions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Montana Shale Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 0 41 3 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Acquisitions

  2. Montana Shale Proved Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Montana Shale Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 8 2010's 40 14 -7 -4 196 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Adjustments

  3. Montana Shale Proved Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Montana Shale Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 25 5 31 33 87 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Extensions

  4. Montana Shale Proved Reserves Revision Decreases (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Decreases (Billion Cubic Feet) Montana Shale Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 34 2010's 16 14 2 28 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Revision Decreases

  5. Montana Shale Proved Reserves Revision Increases (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet) Montana Shale Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 42 2010's 14 14 18 31 64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Revision Increases

  6. Montana Shale Proved Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Montana Shale Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 1 42 3 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Sales

  7. EA-1978: Sand Creek Winds, McCone County, Montana

    Energy.gov [DOE]

    Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of the proposed Sand Creek Winds Project, a 75-MW wind farm between the towns of Circle and Wolf Point in McCone County, Montana. The proposed wind farm would interconnect to Western’s existing Wolf Point to Circle 115-kV transmission line approximately 18 miles north of Wolf Point.

  8. Methods for determining atypical gate valve thrust requirements

    SciTech Connect

    Steele, R. Jr.; Watkins, J.C.; DeWall, K.G.

    1995-04-01

    Evaluating the performance of rising stem, wedge type, gate valves used in nuclear power plant is not a problem when the valves can be design-basis tested and their operability margins determined diagnostically. The problem occurs when they cannot be tested because of plant system limitations or when they can be tested only at some less-than-design-basis condition. To evaluate the performance of these valves requires various analytical and/or extrapolation methods by which the design-basis stem thrust requirement can be determined. This has been typically accomplished with valve stem thrust models used to calculate the requirements or by extrapolating the results from a less-than-design-basis test. The stem thrust models used by the nuclear industry to determine the opening or closing stem thrust requirements for these gate valves have generally assumed that the highest load the valve experiences during closure (but before seating) is at flow isolation and during unwedging or before flow initiation in the opening direction. However, during full-scale valve testing conducted for the USNRC, several of the valves produced stem thrust histories that showed peak closing stem forces occurring before flow isolation in the closing direction and after flow initiation in the opening direction. All of the valves that exhibited this behavior in the closing direction also showed signs of internal damage. Initially, we dismissed the early peak in the closing stem thrust requirement as damage-induced and labeled it nonpredictable behavior. Opening responses were not a priority in our early research, so that phenomenon was set aside for later evaluation.

  9. Problems of millipound thrust measurement. The "Hansen Suspension"

    SciTech Connect

    Carta, David G.

    2014-03-31

    Considered in detail are problems which led to the need and use of the 'Hansen Suspension'. Also discussed are problems which are likely to be encountered in any low level thrust measuring system. The methods of calibration and the accuracies involved are given careful attention. With all parameters optimized and calibration techniques perfected, the system was found capable of a resolution of 10 {mu} lbs. A comparison of thrust measurements made by the 'Hansen Suspension' with measurements of a less sophisticated device leads to some surprising results.

  10. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  11. A 10 nN resolution thrust-stand for micro-propulsion devices

    SciTech Connect

    Chakraborty, Subha; Courtney, Daniel G.; Shea, Herbert

    2015-11-15

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 μN thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 μN thrust in air was first used to validate the thrust-stand. Better than 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 μN of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 μN resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors.

  12. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  13. Parana basin

    SciTech Connect

    Zalan, P.V.; Wolff, S.; Conceicao, J.C.J.; Vieira, I.S.; Astolfi, M.A.; Appi, V.T.; Zanotto, O.; Neto, E.V.S.; Cerqueira, J.R.

    1987-05-01

    The Parana basin is a large intracratonic basin in South America, developed entirely on continental crust and filled with sedimentary and volcanic rocks ranging in age from Silurian to Cretaceous. It occupies the southern portion of Brazil (1,100,000 km/sup 2/ or 425,000 mi/sup 2/) and the eastern half of Paraguay (100,000 km/sup 2/ or 39,000 mi/sup 2/); its extension into Argentina and Uruguay is known as the Chaco-Parana basin. Five major depositional sequences (Silurian, Devonian, Permo-Carboniferous, Triassic, Juro-Cretaceous) constitute the stratigraphic framework of the basin. The first four are predominantly siliciclastic in nature, and the fifth contains the most voluminous basaltic lava flows of the planet. Maximum thicknesses are in the order of 6000 m (19,646 ft). The sequences are separated by basin wide unconformities related in the Paleozoic to Andean orogenic events and in the Mesozoic to the continental breakup and sea floor spreading between South America and Africa. The structural framework of the Parana basin consists of a remarkable pattern of criss-crossing linear features (faults, fault zones, arches) clustered into three major groups (N45/sup 0/-65/sup 0/W, N50/sup 0/-70/sup 0/E, E-W). The northwest- and northeast-trending faults are long-lived tectonic elements inherited from the Precambrian basement whose recurrent activity throughout the Phanerozoic strongly influenced sedimentation, facies distribution, and development of structures in the basin. Thermomechanical analyses indicate three main phases of subsidence (Silurian-Devonian, late Carboniferous-Permian, Late Jurassic-Early Cretaceous) and low geothermal gradients until the beginning of the Late Jurassic Permian oil-prone source rocks attained maturation due to extra heat originated from Juro-Cretaceous igneous intrusions. The third phase of subsidence also coincided with strong tectonic reactivation and creation of a third structural trend (east-west).

  14. Montana Integrated Carbon to Liquids (ICTL) Demonstration Program

    SciTech Connect

    Fiato, Rocco; Sharma, Ramesh; Allen, Mark; Peyton, Brent; Macur, Richard; Cameron, Jemima

    2013-09-30

    Integrated carbon-to-liquids technology (ICTL) incorporates three basic processes for the conversion of a wide range of feedstocks to distillate liquid fuels: (1) Direct Microcatalytic Coal Liquefaction (MCL) is coupled with biomass liquefaction via (2) Catalytic Hydrodeoxygenation and Isomerization (CHI) of fatty acid methyl esters (FAME) or trigylceride fatty acids (TGFA) to produce liquid fuels, with process derived (3) CO{sub 2} Capture and Utilization (CCU) via algae production and use in BioFertilizer for added terrestrial sequestration of CO{sub 2}, or as a feedstock for MCL and/or CHI. This novel approach enables synthetic fuels production while simultaneously meeting EISA 2007 Section 526 targets, minimizing land use and water consumption, and providing cost competitive fuels at current day petroleum prices. ICTL was demonstrated with Montana Crow sub-bituminous coal in MCL pilot scale operations at the Energy and Environmental Research Center at the University of North Dakota (EERC), with related pilot scale CHI studies conducted at the University of Pittsburgh Applied Research Center (PARC). Coal-Biomass to Liquid (CBTL) Fuel samples were evaluated at the US Air Force Research Labs (AFRL) in Dayton and greenhouse tests of algae based BioFertilizer conducted at Montana State University (MSU). Econometric modeling studies were also conducted on the use of algae based BioFertilizer in a wheat-camelina crop rotation cycle. We find that the combined operation is not only able to help boost crop yields, but also to provide added crop yields and associated profits from TGFA (from crop production) for use an ICTL plant feedstock. This program demonstrated the overall viability of ICTL in pilot scale operations. Related work on the Life Cycle Assessment (LCA) of a Montana project indicated that CCU could be employed very effectively to reduce the overall carbon footprint of the MCL/CHI process. Plans are currently being made to conduct larger-scale process

  15. Montana Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Montana Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 -91 -74 1980's 573 30 -448 75 -74 56 -61 -25 83 -106 1990's 29 -27 58 -154 142 -4 16 33 -12 42 2000's 13 51 58 -28 -56 3 13 9 -3 135 2010's -19 -59 38 3 39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  16. Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 49 44 47 1980's 61 86 45 49 46 49 42 42 60 43 1990's 48 48 52 50 49 51 52 55 51 41 2000's 67 73 77 86 95 100 117 112 114 113 2010's 93 75 65 62 58 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  17. Montana Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Montana Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 31 71 47 1980's 45 60 33 31 38 3 7 2 1 126 1990's 40 17 16 0 1 0 2 22 6 15 2000's 57 36 96 146 131 130 144 81 75 32 2010's 86 14 37 36 77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  18. Montana Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Decreases (Billion Cubic Feet) Montana Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 25 21 86 1980's 189 83 95 79 77 40 31 16 33 25 1990's 32 33 21 11 76 14 12 133 43 55 2000's 133 90 109 26 124 122 78 74 56 210 2010's 100 97 191 49 54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  19. Montana Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet) Montana Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 112 120 45 1980's 72 102 72 58 54 65 60 57 48 91 1990's 34 20 22 29 26 133 59 99 119 98 2000's 130 82 40 46 73 63 65 92 41 132 2010's 103 43 31 113 89 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  20. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  1. Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 439 457 542 437 449 474 519 1990's 557 518 423 295 206 168 168 188 208 235 2000's 218 396 249 512 606 697 820 816 788 771 2010's 800 604 612 645 657 639 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release

  2. Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Consumption (Million Cubic Feet) Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 2 4 6 8 13 40 31 38 2000's 43 53 54 66 74 4 2 1 1 1 2010's 1 0 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Delivered to

  3. Montana Renewable Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",10130,9364,10000,9506,9415 "Solar","-","-","-","-","-" "Wind",436,496,593,821,930 "Wood/Wood Waste",94,111,111,95,97 "MSW Biogenic/Landfill Gas","-","-","-","-","-"

  4. Montana Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",17583,18960,18822,16181,19068 " Coal",17085,18357,18332,15611,18601 " Petroleum",419,479,419,490,409 " Natural Gas",68,106,66,78,57 " Other Gases",11,19,6,1,2 "Nuclear","-","-","-","-","-" "Renewables",10661,9971,10704,10422,10442 "Pumped

  5. Montana Associated-Dissolved Natural Gas, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs, Wet (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2 2 3 20 2000's 14 11 25 31 41 25 24 23 24 23 2010's 55 31 76 50 96 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  6. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6 1980's 11 14 10 12 10 11 11 11 13 8 1990's 9 7 8 6 7 7 6 5 5 6 2000's 6 7 8 7 9 15 19 21 27 35 2010's 24 19 22 25 25 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 4 6 4 2 2 17 26 42 3 2010's 30 45 4 4 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  8. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 34 -32 -9 26 -17 9 0 -4 -1 -29 1990's 14 -18 3 -8 6 1 -3 -5 1 4 2000's 1 4 8 -8 -4 0 1 1 7 84 2010's -38 -33 -3 -5 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  9. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 1980's 21 13 5 6 3 1 2 2 1 1 1990's 1 1 1 0 1 0 1 1 6 3 2000's 5 15 14 25 16 39 22 18 9 5 2010's 41 14 38 37 79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 13 20 15 18 19 8 10 8 8 10 1990's 7 4 8 5 6 3 1 4 7 28 2000's 10 9 14 3 12 14 19 32 17 65 2010's 31 34 20 43 49 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11 1980's 26 12 18 17 10 21 25 19 25 13 1990's 19 8 7 11 8 7 7 4 14 42 2000's 9 12 7 7 26 20 51 60 11 126 2010's 40 32 26 51 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 5 8 0 1 1 19 28 47 3 2010's 29 45 4 4 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  13. Montana Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Decreases (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 29 2010's 0 3 28 4 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Revision Decreases

  14. Montana Coalbed Methane Proved Reserves Revision Increases (Billion Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Increases (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 23 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Revision Increases

  15. Montana Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Montana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 29 2010's 25 24 27 30 30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  16. Montana Crude Oil + Lease Condensate New Reservoir Discoveries in Old

    Energy Information Administration (EIA) (indexed site)

    Fields (Million Barrels) New Reservoir Discoveries in Old Fields (Million Barrels) Montana Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 2 1 1 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  17. Montana Crude Oil + Lease Condensate Reserves Acquisitions (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Acquisitions (Million Barrels) Montana Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 115 45 8 15 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Acquisitions

  18. Montana Crude Oil + Lease Condensate Reserves New Field Discoveries

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) New Field Discoveries (Million Barrels) Montana Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 2 10 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate New Field

  19. Montana Crude Oil + Lease Condensate Reserves Revision Decreases (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Decreases (Million Barrels) Montana Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 47 2010's 44 51 38 59 44 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Revision Decreases, Wet After Lease

  20. Montana Crude Oil + Lease Condensate Reserves Revision Increases (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Increases (Million Barrels) Montana Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 72 2010's 54 54 19 75 19 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Revision Increases

  1. Montana Natural Gas Liquids Lease Condensate, Proved Reserves Adjustments

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Adjustments (Million Barrels) Montana Natural Gas Liquids Lease Condensate, Proved Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 2 -1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Reserves Adjustments

  2. Montana Natural Gas Liquids Lease Condensate, Proved Reserves Decreases

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Decreases (Million Barrels) Montana Natural Gas Liquids Lease Condensate, Proved Reserves Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Reserves Revision Decreases

  3. Montana Natural Gas Liquids Lease Condensate, Reserves New Field

    Energy Information Administration (EIA) (indexed site)

    Discoveries (Million Barrels) New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate New Field Discoveries Montana Lease Condensate Proved Reserves, Reserve Changes, and Production

  4. Montana Natural Gas Liquids Lease Condensate, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Million Barrels) Reserves in Nonproducing Reservoirs (Million Barrels) Montana Natural Gas Liquids Lease Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 1 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  5. Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves (Million Barrels) Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 16 11 18 19 18 21 16 16 11 16 1990's 15 14 12 8 8 8 7 5 5 8 2000's 4 5 6 8 6 9 10 11 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids

  6. Montana Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Montana Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 96 43 92 110 2000's 90 104 117 206 199 110 176 151 161 127 2010's 146 81 124 80 125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  7. Montana Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Montana Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 94 41 89 89 2000's 76 93 92 175 158 85 152 128 137 104 2010's 91 50 48 30 29 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  8. Montana Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 42 1980's 51 74 36 39 38 41 31 32 47 36 1990's 40 42 46 44 43 45 47 51 46 35 2000's 62 67 70 79 86 86 100 92 88 80 2010's 70 57 45 39 35 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Montana Nonassociated Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 1 4 4 5 9 19 8 0 0 4 1990's 10 3 5 0 0 1 1 0 0 0 2000's 41 4 0 0 6 14 28 1 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. Montana Nonassociated Natural Gas, Wet After Lease Separation, New Field

    Energy Information Administration (EIA) (indexed site)

    Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 7 0 2 1 0 0 4 0 0 1 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 1 0 0 1 0 20 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  11. Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 56 0 325 1 7 0 13 55 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  12. Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -68 1980's 550 56 -430 51 -58 52 -67 -22 77 -73 1990's 14 -12 56 -151 137 -5 20 36 -13 42 2000's 10 48 49 -21 -55 8 12 10 -10 56 2010's 16 -25 46 11 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 40 1980's 24 47 29 25 36 2 5 1 0 128 1990's 39 17 15 0 0 0 1 21 0 12 2000's 53 22 83 122 116 92 123 64 67 28 2010's 47 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  14. Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 80 1980's 179 63 83 63 61 33 22 8 25 16 1990's 25 30 13 6 71 11 11 130 37 28 2000's 125 82 96 23 113 109 60 43 40 148 2010's 70 65 175 8 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 35 1980's 48 91 56 44 47 46 35 40 24 80 1990's 15 12 15 18 18 127 52 96 106 56 2000's 121 70 34 39 47 44 15 34 30 8 2010's 65 12 6 65 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 52 2 227 1 5 1 13 45 0 2010's 12 0 27 70 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Nonassociated

  17. Montana Shale Proved Reserves New Field Discoveries (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Shale Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas New Field Discoveries Montana Shale Gas Proved Reserves, Reserves Changes, and Production

  18. Montana Shale Proved Reserves New Reservoir Discoveries in Old Fields

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Montana Shale Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas New

  19. ,"Montana Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File Name:","ng_enr_dry_dcu_smt_a.xls"

  20. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 51 1980's 122 89 81 108 77 91 98 97 101 68 1990's 86 66 61 53 55 53 51 42 52 67 2000's 70 85 94 112 130 161 195 219 197 312 2010's 302 270 289 304 325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  1. Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 6 83 2000's 36 43 65 79 104 88 91 90 50 42 2010's 74 59 95 104 155 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing

  2. Montana Natural Gas Plant Liquids, Expected Future Production (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Expected Future Production (Million Barrels) Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 16 11 18 19 18 21 16 16 11 16 1990's 15 14 12 8 8 8 7 5 5 8 2000's 3 5 6 7 6 9 10 11 11 12 2010's 11 10 10 11 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  3. Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 786 1980's 1,186 1,247 789 813 748 793 725 704 733 821 1990's 834 782 814 631 672 739 755 727 737 784 2000's 822 822 820 956 872 837 874 848 817 681 2010's 657 522 327 286 361 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. Avian use of Norris Hill Wind Resource Area, Montana

    SciTech Connect

    Harmata, A.; Podruzny, K.; Zelenak, J.

    1998-07-01

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  5. Montana Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Montana Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 317 313 314 307 308 303 307 309 309 312 320 329 2007 330 329 324 320 328 330 325 331 335 334 340 339 2008 334 330 332 331 327 323 324 327 330 330 326 302 2009 304 311 305 302 297 292 286 281 279 275 268 263 2010 265 264 267 265 259 258 256 251 251 249 247 236 2011 229 223 221 221 219 217 218 217 225 211 208 206 2012 202 202

  6. ,"Montana Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  7. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect

    Not Available

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  8. Pennsylvanian-Permian tectonism in the Great Basin: The Dry Mountain trough and related basins

    SciTech Connect

    Snyder, W.S.; Spinosa, C.; Gallegos, D.M. )

    1991-02-01

    Pennsylvanian-Permian tectonism affected the continental margin of western North America from the Yukon to the Mojave Desert. Specific signatures of this tectonism include local angular unconformities, regional disconformities, renewed outpouring of clastic debris from a reactivated Antler and related highlands, and development of deeper water basins with anoxic sediments deposited below wave base. The basins formed include Ishbel trough (Canada), the Wood River basin (Idaho), Cassia basin, Ferguson trough, Dry Mountain trough (all Nevada), and unnamed basins in Death Valley-Mojave Desert region. The Dry Mountain trough (DMT) was initiated during early Wolfcampian and received up to 1,200 m of sediment by the late Leonardian. The lower contact is a regional unconformity with the Ely Limestone, or locally with the Diamond Peak or Vinini formations. Thus, following a period of localized regional uplift that destroyed the Ely basin, portions of the uplifted and exposed shelf subsided creating the Dry Mountain trough. Evidence suggesting a tectonic origin for the DMT includes (1) high subsidence rates (60-140 m/m.y.); (2) renewed influx of coarse clastic debris from the Antler highlands: (3) possible pre-Early Permian folding, thrusting, and tilting within the highlands; and (4) differential subsidence within the Dry Mountain trough, suggesting the existence of independent fault blocks.

  9. Tobias Hanrath > Research Thrust Leader - Fuel Cells and Batteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Assistant Professor Chemical and Biomolecular Engineering > Faculty Directory > The Energy Materials Center at Cornell Hanrath Research Thrust Leader - Fuel Cells and Batteries Assistant Professor Chemical and Biomolecular Engineering Research Group Webpage th358@cornell.edu Research There is a tremendous opportunity space for nanostructured materials to play a key role in next generation energy technologies. Our research efforts focus on the fundamental study of optoelectronic

  10. David Muller > Research Thrust Leader - Complex Oxides

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Professor Applied and Engineering Physics > Faculty Directory > The Energy Materials Center at Cornell David Muller Research Thrust Leader - Complex Oxides Professor Applied and Engineering Physics Research Group Webpage dm24@cornell.edu He joined the Applied and Engineering Physics faculty at Cornell University in July 2003, is a graduate of the University of Sydney and completed his Ph.D. in physics at Cornell in 1996. David was a member of the technical staff at Bell Laboratories

  11. Website Provides Data for Key Oil Play in North Dakota, Eastern Montana |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Website Provides Data for Key Oil Play in North Dakota, Eastern Montana Website Provides Data for Key Oil Play in North Dakota, Eastern Montana July 19, 2011 - 1:00pm Addthis Washington, DC - A new web-based geographic information system designed to improve oil production in North Dakota and eastern Montana has been launched with support from the U.S. Department of Energy. The Bakken Decision Support System (BDSS) assembles data for the Bakken and Three Forks Formations

  12. Direct thrust measurement of a permanent magnet helicon double layer thruster

    SciTech Connect

    Takahashi, K.; Lafleur, T.; Charles, C.; Alexander, P.; Boswell, R. W.; Perren, M.; Laine, R.; Pottinger, S.; Lappas, V.; Harle, T.; Lamprou, D.

    2011-04-04

    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure.

  13. NMR Analysis of Mowry Formation Shale From Different Sedimentary Basins

    SciTech Connect

    1994-03-31

    The work performed in this study is Task 017 `NMR Analysis of Mowry Formation Shale from Different Sedimentary Basins` of U.S. Department of Energy cooperative agreement DE-FC21-93MC30127. This topical report covers work done between November 1993 and December 1994. This jointly sponsored research (JSR) project augments and complements research being conducted by the University of Wyoming Institute For Energy Research for the Gas Research Institute (GRI). The project --A New Innovative Exploitation Strategy for Gas Accumulations Within Pressure Compartments -- is a 3-year renewal of a project funded by the GRI Pressure Compartmentalization Program that began in 1990. That project, Analysis of Pressure Chambers and Seals in the Powder River Basin, Wyoming and Montana, characterized a new class of hydrocarbon traps, the discovery of which can provide an impetus to revitalize the domestic petroleum industry. This research project is pertinent to the U.S. Department of Energy Geoscience and Enhanced Oil Recovery Programs.

  14. Model Development to Establish Integrated Operational Rule Curves for Hungry Horse and Libby Reservoirs - Montana, 1996 Final Report.

    SciTech Connect

    Marotz, Brian; Althen, Craig; Gustafson, Daniel

    1996-01-01

    Hungry Horse and Libby dams have profoundly affected the aquatic ecosystems in two major tributaries of the Columbia River by altering habitat and water quality, and by imposing barriers to fish migration. In 1980, the U.S. Congress passed the Pacific Northwest Electric Power Planning and Conservation Act, designed in part to balance hydropower development with other natural resources in the Columbia System. The Act formed the Northwest Power Planning Council (Council) who developed a program to protect, mitigate and enhance fish and wildlife on the Columbia River and its tributaries. Pursuant to the Council`s Fish and Wildlife Program for the Columbia River System (1987), we constructed computer models to simulate the trophic dynamics of the reservoir biota as related to dam operation. Results were used to develop strategies to minimize impacts and enhance the reservoir and riverine fisheries, following program measures 903(a)(1-4) and 903(b)(1-5). Two FORTRAN simulation models were developed for Hungry Horse and Libby reservoirs located in northwestern Montana. The models were designed to generate accurate, short-term predictions specific to two reservoirs and are not directly applicable to other waters. The modeling strategy, however, is portable to other reservoir systems where sufficient data are available. Reservoir operation guidelines were developed to balance fisheries concerns in the headwaters with anadromous species recovery actions in the lower Columbia (Biological Rule Curves). These BRCs were then integrated with power production and flood control to reduce the economic impact of basin-wide fisheries recovery actions. These Integrated Rule Curves (IRCs) were developed simultaneously in the Columbia Basin System Operation Review (SOR), the Council`s phase IV amendment process and recovery actions associated with endangered Columbia Basin fish species.

  15. Restoration of geological surface-UNFOLD method-a validation of complex structural mapping interpretation in the Andean Thrust Belt

    SciTech Connect

    Guillier, B. ); Oller, J.; Mendez, E.; Leconte, J.C.; Letouzey, J.; Specht, M.; Gratier, J.P.

    1993-02-01

    One of the most important problems in petroleum structural geology is dependable interpretation of structural maps obtained by seismic and sub-surface data. One method for validating the geometry of geological structures is the balancing cross-section technique which allows verification of cross-section geometry by a return to its initial horizontal state. However, this can not be used for of 3D halokinesis, shale tectonics, structures formed by polyphased noncoaxial tectonic events, or strike-slip and wrench faulting. An alternative approach is to test the restoration of folded and faulted surfaces to verify 3D structures by balancing geological surfaces represented by a structural map. This method tests the geometry of studied horizon and faults and is based upon the fact that, initially, actual folded/faulted structures were continuous at deposition. The balancing surface program, UNFOLD, restores the actual geological surface to its initial state. Misfits along faults implied poor structural map drawings or strong internal deformation of the geological level. By trial and error method, we returned to the initial data interpretation modifications. This method has been applied to 2D and 3D seismic structural interpretation in different structural styles, environments, rift zones, salt basins, wrench faulting, thrust belt,etc. Some applications to oil field structures in the Andean Thrust Belt have been done to check and validate the complex structural mapping interpretation.

  16. Montana Code 76-2-301 and 302 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and 302 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana Code 76-2-301 and 302Legal Abstract Land Resources and Use...

  17. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Montana

    SciTech Connect

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Montana.

  18. Montana - ARM 36.25 - State Land Leasing | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ARM 36.25 - State Land Leasing Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Montana - ARM 36.25 - State Land LeasingLegal Abstract...

  19. Lower Yellowstone Intake Diversion Dam Fish Passage Project, Montana. Draft Environmental Impact Statement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lower Yellowstone Intake Diversion Dam Fish Passage Project, Montana DRAFT - Appendix E Monitoring and Adaptive Management i Contents 1.0 Introduction ............................................................................................................................. 1 Project Goal and Objectives ................................................................................................... 1 2.0 Rock

  20. EA-1978: Sand Creek Winds, McCone County, Montana | Department...

    Energy.gov [DOE] (indexed site)

    analyze the potential environmental impacts of the proposed Sand Creek Winds Project, a 75-MW wind farm between the towns of Circle and Wolf Point in McCone County, Montana. The...

  1. Montana - MCA 75-20 - Major Facility Siting | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    MCA 75-20 - Major Facility Siting Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana - MCA 75-20 - Major Facility...

  2. Montana Rule 36.25.1 Surface Management Rules | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    36.25.1 Surface Management RulesLegal Abstract Montana regulation governing the administration of state surface land Published NA Year Signed or Took Effect 2014 Legal Citation...

  3. EIS-0353: South Fork Flathead Watershed/Westlope Cutthroat Trout Conservation Project, Montana

    Energy.gov [DOE]

    In cooperation with Montana, Fish, Wildlife, and Parks, Bonneville Power Administration is proposing to implement a conservation program to preserve the genetic purity of the westslope cutthroat trout populations in the South Fork of the Flathead River drainage.

  4. Montana ARM 17.20.1606, Electric Transmission Lines, Need Standard...

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana ARM 17.20.1606, Electric Transmission Lines, Need StandardLegal Abstract Need...

  5. Montana - ARM 17.20 - Major Facility Siting | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana - ARM 17.20 - Major Facility SitingLegal Abstract This section governs the rules and...

  6. EA-1932: Bass Lake Native Fish Restoration, Eureka, Lincoln County, Montana

    Energy.gov [DOE]

    This EA was initiated to evaluate the potential environmental impacts of a BPA proposal to fund Montana Fish, Wildlife and Parks to help restore native fish populations to the Tobacco River and Lake Koocanusa. The project has been cancelled.

  7. MCA 75-11-501 et seq. - Montana Underground Storage Tank Act...

    OpenEI (Open Energy Information) [EERE & EIA]

    11-501 et seq. - Montana Underground Storage Tank Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 75-11-501 et seq. -...

  8. MCA 22-3-421 et seq. - Montana State Antiquities Act | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 22-3-421 et seq. - Montana State Antiquities ActLegal Abstract Provides for protecting...

  9. Montana MCA 69-3-101, Definition for Public Utility | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    69-3-101, Definition for Public Utility Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana MCA 69-3-101, Definition...

  10. Montana Regional High School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Montana Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Montana Regional High School Science Bowl

  11. EA-1551: Montana Alberta Tie Ltd. (MATL) 230-KV Transmission Line

    Energy.gov [DOE]

    DOE started to prepare, jointly with the Montana Department of Environmental Quality (MDEQ), an EA that would also serve as a state EIS. The document would evaluate the potential environmental impacts of a proposed international transmission line that would cross the U.S.-Canada border in northwest Montana. Based on comments received on the DOE Draft EA/MDEQ Draft EIS, DOE cancelled preparation of the EA and announced preparation of DOE/EIS-0399 (of the same title).

  12. Lower Yellowstone Intake Diversion Dam Fish Passage Project, Montana. Draft Environmental Impact Statement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lower Yellowstone Intake Diversion Dam Modification Project, Montana DRAFT APPENDIX D Lower Yellowstone Intake Fish Passage EIS Fish Passage Connectivity Index and Cost Effectiveness and Incremental Cost Analysis MAY 2016 Lower Yellowstone Intake Diversion Dam Fish Passage Project, Montana APPENDIX D Lower Yellowstone Intake Fish Passage EIS Fish Passage Connectivity Index and Cost Effectiveness and Incremental Cost Analysis Lower Yellowstone Intake Diversion Dam Fish Passage Project Draft

  13. Addendum: Lower Yellowstone Intake Diversion Dam Fish Passage Project, Montana - Draft Environmental Impact Statement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Yellowstone Intake Diversion Dam Fish Passage Project, Montana Draft Environmental Impact Statement- Addendum June 2016 1 Addendum: Lower Yellowstone Intake Diversion Dam Fish Passage Project, Montana Draft Environmental Impact Statement Introduction The Corps of Engineers (Corps) and the Bureau of Reclamation (Reclamation) have prepared this addendum to the Lower Yellowstone Intake Diversion Dam Fish Passage Project Draft Environmental Impact Statement (EIS) to provide the public with the

  14. Devonian oil in Mississippian and Mesozoic reservoirs-unconformity controls on migration and accumulation, Sweetgrass Arch, Montana

    SciTech Connect

    Dolson, J.; Piombino, J. ); Franklin, M. ); Harwood, R. )

    1993-10-01

    Lower Cretaceous and Mississippian strata of the Sweetgrass Arch of western Montana have produced over 300 MMBO, primarily from three large combination traps. Gas chromatography-mass spectrometry (GC-MS) data suggest a Devonian/Mississippian Bakken Formation oil source. Most thermally mature Bakken strata are located at least 60 mi (90 km) to the west in the footwall to the thrust belt. Hydrocarbons have migrated vertically through fractures in the Mississippian Madison Group to regional seals in Jurassic shales. Lateral migration occurs predominately within the Jurassic subcrop of the Mississippian Sun River Dolomite. Permeability barriers, paleohills, subtle structures and possible hydrodynamic modification along the migration pathway account for most of the Sun River production. A lack of effective bottom seals generally prevents these subtle traps from developing large accumulations in areas of steep structural dip. The pre-Cretaceous unconformity, which underlies the Lower Cretaceous Cutbank sandstone, bevels across this Mississippian migration route downplunge in Canada, diverting oils southward to the giant Cutbank field accumulation. Alluvial plain and fan sandstones west of the field have sheet-like geometries and appear to have poor lateral seals. Most of the Cutbank accumulation occurs where valley incisement of a north-south trending paleodrainage system juxtaposes these sheet sandstones updip against Jurassic Rierdon and Sawtooth shales, forming a valley wall trap. Additional minor Jurassic and Lower Cretaceous production occurs updip from leak points created by poor lateral seals adjacent the pre-Cretaceous unconformity. These interpretations provide new insight into field distributions throughout the Sweetgrass Arch. 37 refs., 26 figs., 1 tab.

  15. Small Wind Electric Systems: A Montana Consumer's Guide

    SciTech Connect

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  16. Montana Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Exports (No Intransit Deliveries) (Million Cubic Feet) Montana Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 162 136 127 178 90 40 39 82 1990's 75 41 14 106 3,087 1,510 2000's 1,606 2,978 16,036 8,889 23,379 19,159 21,245 20,420 16,399 12,504 2010's 9,437 6,826 4,332 2,353 891 35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  17. Montana Natural Gas Imports (No intransit Receipts) (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Imports (No intransit Receipts) (Million Cubic Feet) Montana Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 70,647 136,508 137,661 155,377 95,958 178,262 318,618 323,538 1990's 343,716 393,463 467,036 511,294 535,855 570,396 576,511 572,977 580,548 807,124 2000's 800,026 662,662 787,652 719,011 757,642 728,851 684,278 779,129 666,251 502,435 2010's 706,201 679,848 754,058 719,176 541,135 534,807

  18. Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1.48 1990's 1.44 1.38 1.52 1.66 1.47 1.23 1.88 2.15 1.82 2.03 2000's 3.72 3.98 3.00 5.21 5.71 7.77 6.74 6.66 8.22 3.88 2010's 4.13 3.75 2.45 3.23 4.39 2.40 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016

  19. Montana Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Montana Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,531 1,612 1,596 1,371 1,639 1,520 1,247 1990's 1,705 1,162 1,448 2,084 2,037 2,070 2,233 2,089 1,792 798 2000's 2,360 2,644 3,113 3,543 3,933 4,502 4,864 4,327 4,067 3,371 2010's 3,265 2,613 3,845 3,845 2,650 2,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  20. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 35,777 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  1. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 269,766 - = No Data Reported; -- = Not Applicable; NA =

  2. Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,436 3,746 5,968 2000's 7,652 7,483 7,719 8,344 8,224 7,956 7,592 7,810 7,328 5,047 2010's 7,442 6,888 6,979 6,769 4,128 3,646 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  3. Montana Natural Gas Plant Liquids Production (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Liquids Production (Million Cubic Feet) Montana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 744 744 705 1970's 3,032 750 839 918 857 831 761 630 503 776 1980's 890 818 940 1,049 1,069 1,189 1,086 1,058 1,072 1,095 1990's 1,091 1,055 907 741 631 597 576 409 410 435 2000's 272 470 575 615 634 1,149 1,422 1,576 1,622 1,853 2010's 1,367 1,252 1,491 1,645 1,670 1,730 - = No Data Reported; -- = Not

  4. Montana Natural Gas Total Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Total Consumption (Million Cubic Feet) Montana Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 59,851 59,840 62,129 2000's 67,955 65,051 69,532 68,473 66,829 68,355 73,879 73,822 76,422 75,802 2010's 72,025 78,217 73,399 79,670 78,110 74,016 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  5. Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  6. Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 184,212 180,918 178,620 181,242 179,235 181,374 183,442 187,348 185,848 181,029 1991 179,697 178,285 176,975 176,918 178,145 179,386 181,094 182,534 182,653 181,271 178,539 174,986 1992 111,256 109,433 109,017 109,150 110,146 110,859 111,885 112,651 112,225 110,868 107,520 101,919 1993 96,819 92,399 89,640 87,930

  7. Montana Quantity of Production Associated with Reported Wellhead Value

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Montana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 47,751 47,534 46,113 42,203 42,814 47,748 52,044 1990's 45,998 48,075 50,359 58,810 51,953 46,739 46,868 50,409 51,967 55,780 2000's 67,294 78,493 86,075 86,027 90,771 101,666 106,843 110,942 802,619 293,941 2010's

  8. Montana Natural Gas % of Total Residential Deliveries (Percent)

    Energy Information Administration (EIA) (indexed site)

    % of Total Residential Deliveries (Percent) Montana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.41 0.39 0.41 0.42 0.42 0.42 0.42 2000's 0.40 0.42 0.44 0.40 0.41 0.41 0.45 0.42 0.44 0.46 2010's 0.44 0.46 0.46 0.42 0.42 0.41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  9. Montana Natural Gas Liquids Lease Condensate, Reserves Based Production

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate Estimated Production Montana Lease Condensate

  10. Small Wind Electric Systems: A Montana Consumer's Guide (Revised)

    SciTech Connect

    Not Available

    2006-04-01

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  11. Montana Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) (Million Barrels) Montana Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 1 0 0 0 0 0 0 2010's 0 0 2 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease

  12. Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 837 1980's 1,308 1,336 870 921 825 884 823 801 834 889 1990's 920 848 875 684 727 792 806 769 789 851 2000's 892 907 914 1,068 1,002 998 1,069 1,067 1,014 993 2010's 959 792 616 590 686 - = No Data Reported; -- = Not Applicable; NA = Not

  13. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    SciTech Connect

    Not Available

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  14. Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  15. Montana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update

    Base Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 109,573 109,573 109,573 109,573 112,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 1991 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 1992 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 1993 169,892 169,892 169,892 169,892

  16. Montana Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    706,201 679,848 754,058 719,176 541,135 534,807 1982-2015 Import Price 4.13 3.75 2.45 3.23 4.39 2.40 1989-2015 Export Volume 9,437 6,826 4,332 2,353 891 35 1982-2015 Export Price 4.05 3.82 2.40 3.43 5.38 12.54 198

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee

  17. Montana Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 35,777 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  18. Basin Destination State

    Annual Energy Outlook

    43 0.0294 W - W W - - - Northern Appalachian Basin Florida 0.0161 W W W W 0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin...

  19. Basin Destination State

    Gasoline and Diesel Fuel Update

    4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 26.24 - W...

  20. Basin Destination State

    Annual Energy Outlook

    3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 28.49 - W...

  1. Franciscan-Knoxville Problem: Relationship between an accretionary prism and adjacent fore-arc basin

    SciTech Connect

    Korsch, R.J.

    1983-01-01

    The relationship between the Franciscan complex and Knoxville shales in the Californian Coast Ranges has been the subject of debate for a considerable period of time. Initially, gradational and unconformable relationships for the contact were proposed. This was followed by the recognition, at some localities, of a thrust fault contact. Plate tectonics has provided a framework for interpretation of the Franciscan complex as an accretionary prism related to subduction of oceanic crust and the Great Valley sequence, including the Knoxville shales, as fore-arc basin deposits. Thus, the contact between the two units was the initial site of the Benioff zone, which then migrated westward as the accretionary prism developed. In the Franciscan complex and Great Valley sequence many thrusts have been recognized recently. At different localities, the Franciscan complex can be observed juxtaposed against various units of the Great Valley sequence, suggesting a complicated thrusting history subsequent to initiation of the Benioff zone. Some of the thrusts had movement during development of the accretionary prism, but movement on others may be post-subduction in time. The term ''Coast Range thrust'' has been used to refer to the contact, but in recent years its meaning has become blurred by liberalization and excessive use. It is proposed that the term be used only as originally proposed, that is, as the thrust that juxtaposes the Franciscan complex and the ophiolitic base of the Great Valley sequence.

  2. Thrust Generation with Low-Power Continuous-Wave Laser and Aluminum Foil Interaction

    SciTech Connect

    Horisawa, Hideyuki; Sumida, Sota; Funaki, Ikkoh

    2010-05-06

    The micro-newton thrust generation was observed through low-power continuous-wave laser and aluminum foil interaction without any remarkable ablation of the target surface. To evaluate the thrust characteristics, a torsion-balance thrust stand capable for the measurement of the thrust level down to micro-Newton ranges was developed. In the case of an aluminum foil target with 12.5 micrometer thickness, the maximum thrust level was 15 micro-newtons when the laser power was 20 W, or about 0.75 N/MW. It was also found that the laser intensity, or laser power per unit area, irradiated on the target was significantly important on the control of the thrust even under the low-intensity level.

  3. Source rocks of the Sub-Andean basins

    SciTech Connect

    Raedeke, L.D. )

    1993-02-01

    Seven source rock systems were mapped using a consistent methodology to allow basin comparison from Trinidad to southern Chile. Silurian and Devonian systems, deposited in passive margin and intracratonic settings, have fair-good original oil/gas potential from central and northern Bolivia to southern Peru. Kerogens range from mature in the foreland to overmature in the thrust belt. Permian to Carboniferous deposition in local restricted basins formed organic-rich shales and carbonates with very good original oil/gas potential, principally in northern Bolivia and southern Peru. Late Triassic to early Jurassic marine shales and limestones, deposited in deep, narrow, basins from Ecuador to north-central maturity. Locally, in the Cuyo rift basin of northern Argentina, a Triassic lacustrine unit is a very good, mature oil source. Early Cretaceous to Jurassic marine incursions into the back-arc basins of Chile-Argentina deposited shales and limestones. Although time transgressive (younging to the south), this system is the principal source in southern back-arc basins, with best potential in Neuquen, where three intervals are stacked A late Cretaceous marine transgressive shale is the most important source in northern South America. The unit includes the La Luna and equivalents extending from Trinidad through Venezuela, Colombia, Ecuador, and into northern Peru. Elsewhere in South America upper Cretaceous marine-lacustrine rocks are a possible source in the Altiplano and Northwest basins of Bolivia and Argentina. Middle Miocene to Oligocene source system includes shallow marine, deltaic, and lacustrine sediments from Trinidad to northern Peru.

  4. Developing an oil generation model for resource assessment of the Bakken Formation, US portion of the Williston Basin

    SciTech Connect

    Krystinik, K.B.; Charpentier, R.R.

    1984-01-01

    A study of the Bakken Formation, the proposed source rock for much of the hydrocarbons generated in the Williston basin, was done using well-log data. Principal components analysis, cluster analysis, and discriminant analysis were used on bulk density, neutron porosity, and resistivity logs, and formation temperatures. These analyses indicate that the present-day distribution of organic matter controls much of the variability in the log values. The pattern of present-day total organic carbon (TOC) is high in the central part of the basin near northeastern Montana and along the east edge of the basin. Low values of TOC occur in the area of the Nesson anticline and along the southwest edge of the basin. Using the regression of density on temperature and the analysis of residuals from this regression, it is possible to separate maturity effects from those of original deposition. These analyses reveal that original concentrations of organic matter were low near the shoreline and increased offshore to a high in northeast Montana. The pre-maturation and present-day TOC distributions derived using statistical analyses and well-log data can easily be explained by the depositional pattern and thermal history that would be expected in this basin, and by geochemical analyses. 9 refs., 13 figs., 3 tabs.

  5. Thrust 1: Structure and Dynamics of Simple Fluid-Solid Interfaces (Peter T. Cumm

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Thrust 1: Structure and Dynamics of Simple Fluid-Solid Interfaces (Peter T. Cummings, Vanderbilt University, Thrust Leader). This thrust integrate multiscale computational modeling and novel experimental probes of interfacial fluid properties at 'simple' interfaces, such as planar, cylindrical, and spherical surfaces, parallel slit and cylindrical pores, etc. which can be rigorously modeled with the minimum incorporation of simplifying approximations and assumptions. Such simple interfaces are

  6. Frank DiSalvo > Research Thrust Leader - Fuel Cells and Batteries...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Thrust Leader - Fuel Cells and Batteries John A. Newman Professor of Physical Science Chemistry and Chemical Biology Research Group Webpage fjd3@cornell.edu Research The ...

  7. Chemical characterization of sediments and pore water from the upper Clark Fork River and Milltown Reservoir, Montana

    SciTech Connect

    Brumbaugh, W.G.; Ingersoll, C.G.; Kemble, N.E.; May, T.W.; Zajicek, J.L. . Midwest Science Center)

    1994-12-01

    The upper Clark Fork River basin in western Montana is widely contaminated by metals from past mining, milling, and smelting activities. As part of a comprehensive ecological risk assessment for the upper Clark Fork River, the authors measured physical and chemical characteristics of surficial sediment samples that were collected from depositional zones for subsequent toxicity evaluations. Sampling stations included five locations along the upper 200 km of the river, six locations in or near Milltown Reservoir and two tributary references. Concentrations of As, Cd, Cu, Mn, Pb, and Zn decreased from the upper stations to the downstream stations in the Clark Fork River but then increased in all Milltown Reservoir stations to levels similar to uppermost river stations. Large percentages of the total Cd, Cu, Pb, and Zn were extractable by dilute HCL for all samples. Copper and zinc accounted for greater than 95% of extractable metals on a molar basis. Acid-volatile sulfide (AVS) concentrations were typically moderate in grab sediment samples and appeared to regulate dissolved concentrations of Cd, Cu, and Zn in sediment pore waters. Acid-volatile sulfide is important in controlling metal solubility in the depositional areas of the Clark Fork River and should be monitored in any future studies. Spatial variability within a sampling station was high for Cu, Zn, and AVS; therefore, the potential for toxicity to sediment-dwelling organisms may be highly localized.

  8. Development of a Geologic Exploration Model foe the Permo-Pennsylvanian Petroleum System in South-Central Montana

    SciTech Connect

    David A. Lopez

    2007-06-30

    presented: migration occurred (1) before mid-Jurassic erosion produced a major regional unconformity or (2) about 82 million years ago. Migration pre-Laramide occurred because oil in both the Bighorn Basin and the Powder River Basin are part of the same petroleum system. Geochemical analyses of oils from producing fields across the region show the oils are all similar and have the same source and generation history. No Phosphoria source rocks exist in the project area of south-central Montana, requiring that oil migrated from distant source areas, probably in central and southwestern Wyoming. Oil shows and production in the Tensleep are absent in the northern part of the project area. This appears to be controlled by the merging of the top of the Tensleep Sandstone and the Jurassic unconformity (top of the Triassic Chugwater Formation). There should be potential for the discovery of oil in Tensleep stratigraphic traps or combination traps everywhere south of the Jurassic-Pennsylvanian Isopach zero contour except where the Tensleep has been exposed by uplift and erosion. Known Tensleep fields in south-central Montana are generally small in area, which agrees with outcrop studies that show eolian dune sequences are generally quite small in lateral extent, on the order of 10 to 40 acres. Although existing fields are small in area, they are very productive; individual wells will probably make 300,000 to 500,000 barrels of oil. In the project area, hydrodynamic considerations are important. All the existing Tensleep fields have active water drives. In many cases, the reservoir pressure today is as it was when initially discovered. In areas of high structural complexity, such as the Lodge Grass-Crow Agency fault and the Lake Basin fault zone, significant structural closure may be necessary to trap oil because of the strong hydrodynamic influence exerted by the underlying Madison Formation aquifer.

  9. Energy Information Administration (EIA) (indexed site)

    Montana Montana

  10. Data Archive and Portal Thrust Area Strategy Report

    SciTech Connect

    Sivaraman, Chitra; Stephan, Eric G.; Macduff, Matt C.; Hagler, Clay D.

    2014-09-30

    This report describes the Data Archive and Portal (DAP), a key capability of the U.S. Department of Energy's Atmosphere to Electron (A2e) initiative. The DAP Thrust Area Planning Group was organized to develop a plan for deploying this capability. Primarily, the report focuses on a distributed system--a DOE Wind Cloud--that functions as a repository for all A2e data. The Wind Cloud will be accessible via an open, easy-to-navigate user interface that facilitates community data access, interaction, and collaboration. DAP management will work with the community, industry, and international standards bodies to develop standards for wind data and to capture important characteristics of all data in the Wind Cloud.

  11. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  12. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    SciTech Connect

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  13. Montana Natural Gas Pipeline and Distribution Use Price (Dollars per

    Energy Information Administration (EIA) (indexed site)

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.11 0.11 1970's 0.11 0.12 0.17 0.21 0.23 0.42 0.46 0.73 0.83 1.16 1980's 1.29 1.90 2.87 3.00 3.04 2.51 2.28 1.86 1.65 1.57 1990's 1.75 1.76 1.63 2.15 1.53 1.16 1.44 1.77 1.72 2.12 2000's 2.96 2.48 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  14. Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Wellhead Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.08 0.09 0.10 1970's 0.10 0.12 0.12 0.24 0.25 0.43 0.45 0.72 0.85 1.21 1980's 1.45 1.91 2.15 2.41 2.46 2.39 2.05 1.80 1.70 1.55 1990's 1.79 1.66 1.62 1.55 1.46 1.36 1.41 1.59 1.53 1.68 2000's 2.84 3.12 2.39 3.73 4.51 6.57 5.53 5.72 7.50 3.16 2010's 3.64 - = No Data Reported; -- = Not Applicable;

  15. Geothermal regime and thermal history of the Llanos Basin, Columbia

    SciTech Connect

    Bachu, S.; Underschultz, J.R.; Ramon, J.C.; Villegas, M.E.

    1995-01-01

    The Llanos basin is a siliciclastic foreland sub-Andean sedimentary basin located in Columbia between the Cordillera Oriental and the Guyana Precambrian shield. Data on bottom-hole temperature, lithology, porosity, and vitrinite reflectance from all 318 wells drilled in the central and southern parts of the basin were used to analyze its geothermal regime and thermal history. Average geothermal gradients in the Llanos basin decrease generally with depth and westward toward the fold and thrust belt. The geothermal regime is controlled by a moderate, generally westward-decreasing basement heat flow, by depositional and compaction factors, and, in places, by advection by formation waters. Compaction leads to increased thermal conductivity with depth, whereas westward downdip flow in deep sandstone formations may exert a cooling effect in the central-western part of the basin. Vitrinite reflectance variation with depth shows a major discontinuity at the pre-Cretaceous unconformity. Areally, vitrinite reflectance increases southwestward in Paleozoic strata and northwestward in post-Paleozoic strata. These patterns indicate that the thermal history of the basin probably includes three thermal events that led to peaks in oil generation: a Paleozoic event in the southwest, a failed Cretaceous rifting event in the west, and an early Tertiary back-arc event in the west. Rapid cooling since the last thermal event is possibly caused by subhorizontal subduction of cold oceanic lithospheric plate.

  16. Undrilled New Ireland basin in Papua New Guinea

    SciTech Connect

    Exon, N.F.; Marlow, M.S.

    1986-07-01

    The arcuate, west-northwest-trending, mostly offshore New Ireland basin is 900 km long and about 160 km wide, and extends northeastward from Manus Island, New Hanover, and New Ireland. The basin formed in a forearc between a southerly Eocene to early Miocene volcanic arc, and a northerly outer-arc high bounding the Manus Trench. Its southern margin drops down to the back-arc Manus basin, which commenced spreading in the Pilocene. North of Manus Island, the New Ireland basin contains areas of deformed strata that have apparently been accreted to the Manus arc by south-dipping thrust faults. In places these strata are overlain by shallowly buried lava flows, which may represent attempted spreading. The sedimentary sequence in the eastern part of the basin is interpreted to contain thick Oligocene to early Miocene volcaniclastic sediments, overlain by 1000-2000 m of Miocene shelf carbonates, overlain by 2000 m of overburden. The presumed shelf carbonates could contain both source and reservoir rocks. The Lee line 401 revealed a flat, high-amplitude reflector or bright spot in an anticlinal core 1700 m beneath the seabed in water 2500 m deep off New Ireland, suggesting that hydrocarbons have been generated in New Ireland basin.

  17. Statistical model for source rock maturity and organic richness using well-log data, Bakken Formation, Williston basin, United States

    SciTech Connect

    Krystinik, K.B.; Charpentier, R.R.

    1987-01-01

    A study of the Bakken Formation, the proposed source rock for much of the hydrocarbons generated in the Williston basin, was done using bulk density, neutron porosity, and resistivity logs, and formation temperatures. Principal components, cluster, and discriminant analyses indicate that the present-day distribution of organic matter controls much of the variability in the log values. Present-day total organic carbon values are high in the central part of the basin near northeastern Montana and along the east edge of the basin, and low in the area of the Nesson anticline and along the southwest edge of the basin. Using a regression of density on temperature and the analysis of residuals from this regression, hydrocarbon maturity effects were partially separated from depositional effects. These analyses suggest that original concentrations of organic matter were low near the limits of the Bakken and increased to a high in northeastern Montana. The pre-maturation distribution of total organic carbon and the present-day total organic carbon distribution, as determined by statistical analyses of well-log data, agree with the results of geochemical analyses. The distributions can be explained by a relatively simple depositional pattern and thermal history for the Bakken. 6 figures, 3 tables.

  18. Timing of the deposition of uppermost Cretaceous and Paleocene coal-bearing deposits in the Greater Glendive area, Montana and North Dakota

    SciTech Connect

    1996-02-01

    With the aid of a grant from the National Geographic Society, a cooperative agreement with the State University of New York at Stony Brook, and contract with the U.S. Department of Energy, Late Cretaceous and Paleocene geologic and paleontologic field studies were undertaken in Makoshika, State Park and vicinity, Dawson County, Montana. This region was chosen as a study area because of its potential for yielding new fossil localities and extensive exposures both above and below the K/T boundary, as suggested by previous research by David W. Krause and Joseph H. Hartman. Related field studies were also undertaken in areas adjacent to the Cedar Creek Anticline in North Dakota. This work was part of ongoing research to document change in the composition of mammalian and molluscan faunas during the Late Cretaceous and Paleocene and to relate observed patterns to floral and invertebrate changes in composition. This study focuses on the record of mammals and mollusks in the Makoshika stratigraphic section and places old and new observations into a paleomagnetic and palynomorph framework. Of particular interest is the appearance and diversification of archaic ungulate mammals. Simultaneous dinosaur extinction with ungulate radiation has been invoked in gradual, as opposed to catastrophic, models of faunal change at the K/T boundary. However, supposed Cretaceous localities bearing archaic ungulates and other mammals of {open_quotes}Paleocene aspect{close_quotes} may be the product of faunal reworking. Elsewhere in the Williston Basin (e.g., Garfield and McCone Counties, Montana), the molluscan record of uppermost Cretaceous and Paleocene strata indicates the extinction of all of the highly sculptured unionid bivalves just prior to the onset of coal swamps and subsequent coal formation.

  19. SOURCE TERM TARGETED THRUST FY 2005 NEW START PROJECTS

    SciTech Connect

    NA

    2005-10-05

    While a significant amount of work has been devoted to developing thermodynamic data. describing the sorption of radionuclides to iron oxides and other geomedia, little data exist to describe the interaction of key radionuclides found in high-level radioactive waste with the uranium surfaces expected in corroded spent nuclear fuel (SNF) waste packages. Recent work indicates that actinide adsorption to the U(VI) solids expected in the engineered barrier system may play a key role in the reduction of dissolved concentrations of radionuclides such as Np(V). However, little is known about the mechanism(s) of adsorption, nor are the thermodynamic data available to represent the phenomenon in predictive modeling codes. Unfortunately, this situation makes it difficult to consider actinide adsorption to the U(VI) silicates in either geochemical or performance assessment (PA) predictions. The primary goal in the Source Term Targeted Thrust area is to ''study processes that control radionuclide release from the waste form''. Knowledge of adsorption of actinides to U(VI) silicate solids its and parameterization in geochemical models will be an important step towards this goal.

  20. Basin Destination State

    Gasoline and Diesel Fuel Update

    0.0323 0.0284 W - W W - - - Northern Appalachian Basin Florida 0.0146 W W W W 0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian...

  1. EA-1961: Kalispell-Kerr Transmission Line Rebuild Project; Kalispell and Polson, Montana

    Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to evaluate potential environmental impacts of rebuilding its 41-mile long 115 kilovolt (kV) wood-pole Kalispell-Kerr transmission line between Kalispell and Polson, Montana. The proposed action is to replace wood-pole structures and other line components and improve access roads.

  2. Controls of alluvial stratigraphy in the Upper Pennsylvania-Lower Permian Dunkard Basin

    SciTech Connect

    Dominic, D.F. )

    1991-08-01

    The Casselman, Pittsburgh, and Waynesburg formations exposed in northern West Virginia were deposited within a foreland basin adjacent to the Alleghenian fold and thrust belt. Sandstones were deposited in fluvial channels on an aggrading and prograding coastal plain. however, unlike mid-continental cyclothems, these channels were isolated from eustatic changes because previous delta progradation had blocked circulation between the local depositional basin and the larger mid-continental sea. Thus, eustatic changes had no direct or strong influence on Dunkard basin deposition, a conclusion supported by interbasinal correlation. Also, climate was largely stable during this interval. The evolution of channel properties, therefore, most likely reflects the influence of intrabasinal controls and possibly tectonism. Detailed correlation indicates that coeval channel belts were separated by about 50 km with an intervening area of slower subsidence and deposition. Quantitative reconstruction of bankfull hydraulics and geometry indicates that channels were of moderate sinuosity, were not braided, and were of two distinct sizes (average widths, 80 and 250 m, respectively). An overall decrease in discharge in the smaller channels throughout the studied interval may be attributed to a slowing of subsidence rates as the locus of sedimentation prograded beyond the northwestern margin of the Rome Trough or to thrustward migration of a forebulge following episodic thrusting. The increase in size and discharge of channels in the uppermost Waynesburg Formation is attributed to progradation of the upper fluvial-deltaic plain over the lower fluvial-deltaic plain, a progradation that may likewise have been promoted by thrusting.

  3. Method to Produce High Specific Impulse and Moderate Thrust from a

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Fusion-powered Rocket Engine: (ARE-Aneutronic Rocket Engine) --- Inventor(s) Samuel A. Cohen, Michael Paluszek, Yosef Razin, and Gary Pajer | Princeton Plasma Physics Lab Method to Produce High Specific Impulse and Moderate Thrust from a Fusion-powered Rocket Engine: (ARE-Aneutronic Rocket Engine) --- Inventor(s) Samuel A. Cohen, Michael Paluszek, Yosef Razin, and Gary Pajer This Invention describes a fusion-powered rocket engine that will produce high specific impulse, Isp, moderate thrust,

  4. EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota

    Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana, Hettinger, North Dakota, and New Underwood, South Dakota, in Custer and Fallon Counties in Montana, Adams, Bowman, and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

  5. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    Gasoline and Diesel Fuel Update

    Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin ... Major Tight Gas Plays, Lower 48 States 0 200 400 100 300 Miles Source: Energy ...

  6. The petroleum geologic characteristics of Sichuan basin, central China

    SciTech Connect

    Sheng, Li De )

    1991-03-01

    Sichuan basin is the main gas producer of China. It covers an area of 230,000 km{sup 2}. The evolution of this basin since Meso-Cenozoic was influenced by both trans-Eurasia Tethys tectonism from the west and the circum-Pacific tectonism from the east. So it has dual characteristics, compressional and tensional. The northward-moving Indian Plate resulted in a series of thrust fault zones along the Longmenshan western margin of Sichuan basin. Jurassic oil pools and Triassic, Permian, Carboniferous, and Sinian gas pools are present, where a series of box-like anticlines, comblike anticlines, and gentle slope dome anticlines, and gentle slope dome anticline, carbonate reef buildups are the main trap types. Significant role of fractures and caves of carbonate reservoir formations in Sichuan basin affects the production capacity of gas/oil wells and abundances of gas/oil reserves. Three-dimensional seismic methods are used to predict the unconformities and the paleokarst and fracture zones. Acidizing treatments were used for well completions.

  7. Late Cenozoic fault kinematics and basin development, Calabrian arc, Italy

    SciTech Connect

    Knott, S.D.; Turco, E.

    1988-08-01

    Current views for explaining the present structure of the Calabrian arc emphasize bending or buckling of an initially straight zone by rigid indentation. Although bending has played an important role, bending itself cannot explain all structural features now seen in the arc for the following reasons: (1) across-arc extension is inconsistent with buckling, (2) north-south compression predicted by a bending mechanism to occur in the internal part of a curved mountain belt is not present in the Calabrian arc, and (3) lateral shear occurs throughout the arc, not just along the northern and southern boundaries. The model presented here is based on lateral bending of mantle and lower crust (demonstrated by variation in extension in the Tyrrhenian basin) and semibrittle faulting and block rotation in the upper crust. These two styles of deformation are confined to the upper plate of the Calabrian subduction system. This deformation is considered to have been active from the beginning of extension in the Tyrrhenian basin (late Tortonian) and is still active today (based on Holocene seismicity). Block rotations are a consequence of lateral heterogeneous shear during extension. Therefore, some of the observed rotation of paleo-magnetic declinations may have occurred in areas undergoing extension and not just during thrusting. Inversion of sedimentary basins by block rotation is predicted by the model. The model will be a useful aid in interpreting reflection seismic data and exploring and developing offshore and onshore sedimentary basins in southern Italy.

  8. Ramu basin, Papua New Guinea: A record of late Miocene terrane collision

    SciTech Connect

    Cullen, A.B.

    1996-05-01

    The Ramu basin lies along a plate boundary where the Finisterre terrane is colliding with the Indo-Australian plate. Estimates for the age of initial collision range from early Miocene to middle Pliocene. Two unsuccessful wells (Keram 1 and Tsumba 1) drilled to basement and two-dimensional seismic data show that folded and faulted early to middle Miocene carbonates and clastics (the Wogamush sequence) are overlain by relatively undeformed Pliocene marine clastics (the Wewak sequence) along a regional unconformity. The pre-Pliocene section, which is at the crux of resolving the age of initial collision, has been correlated previously to the Finisterre terrane. Clastics within that section, derived from older terranes south of the basin, imply an early Miocene age for collision. I propose that Miocene sedimentary and volcanic rocks in the two wells are correlative with the Wogamush beds of the Maramuni arc. The Ramu basin can then be viewed as having a two-stage evolution. During the Miocene, the basin was part of the Maramuni arc, the polarity of which is unresolved. A collisional successor basin developed in the late Miocene as the Finisterre terrane (Adelbert block) collided with the arc. Thrust faults on the northeastern side of the basin, truncated by a regional unconformity, are interpreted to mark the suture of the Adelbert block. A northern earliest Pliocene sediment source for the basal Wewak sequence was probably the Finisterre terrane, but multiple source areas are inferred for the rest of that sequence. Middle Pliocene inversion of the basin`s northeastern flank, characterized by reverse faulting and forced folding, is attributed to plate boundary reorganization caused by rifting in the Bismarck Sea. The Ramu basin has numerous untested structures related to both collision and basin inversion. Gas-prone source rocks are present, but are largely immature. Reservoir and charge considerations place the Ramu basin in the very high risk sector for exploration.

  9. Price of Montana Natural Gas Exports (Dollars per Thousand Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Montana Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Montana Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1.45 1990's 1.69 1.72 1.66 1.93 1.43 -- 2000's 3.25 3.43 2.73 4.90 5.30 7.33 6.05 6.16 8.14 3.63 2010's 4.05 3.82 2.40 3.43 5.38 12.54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016

  10. Engineering Research and Development and Technology thrust area report FY92

    SciTech Connect

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  11. Lower Yellowstone Intake Diversion Dam Fish Passage Project, Montana. Draft Environmental Impact Statement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lower Yellowstone Intake Diversion Dam Fish Passage Project, Montana DRAFT - Appendix F Correspondence Lower Yellowstone Intake Diversion Dam Correspondence Fish Passage Project Appendix F Attachment 1 Correspondence Distributed DEPARTM ENT OF THE ARMY CORPS OF ENGINEERS, OMAHA DISTRICT 1616 CAPITOL AVENUE OMAHA NE 68102-4901 April 5, 2016 District Commander Mr. Lester Randall, Chairman Kickapoo Tribe in Kansas PO Box 271 1107 Goldfinch Road Horton, Kansas 66439 Dear Chairman Randall: The U.S.

  12. Cumulative Effects of Micro-Hydro Development on the Fisheries of the Swan River Drainage, Montana, First Annual Progress Report (Covering Field Season July-November 1982).

    SciTech Connect

    Leathe, Stephen A.; Graham, Patrick J.

    1984-03-01

    This fisheries study is to determine the potential cumulative biological and economic effects of 20 small or micro-hydro-electric facilities (less than 5 megawatts) proposed to be constructed on tributaries to the Swan River, a 1738 square kilometer (671 square mile) drainage located in northwestern Montana. The study addresses portions of measure 1204 (b) (2) of the Norwthwest Power Planning Council's Columbia River Basin Fish and Wildlife Program. Aerial pre-surveys conducted during 1982 identified 102 stream reaches that may support fish populations in the Swan drainage between Swan and Lindbergh lakes. These reaches were located in 49 tributary streams and constituted 416 kilometers (258 miles) of potential fish habitat. Construction of all proposed small hydro projects would divert water from 54 kilometers (34 miles) or about 13 percent of the tributary system. Only two of the 20 proposed hydro sites did not support trout populations and most were populated by migratory bull trout and westslope cutthroat trout. Potential cumulative habitat losses that could result from dewatering of all proposed project areas were predicted using a stream reach classification scheme involving stream gradient, drainage ara, and fish population data. Preliminary results of this worst case analysis indicate that 23, 19 and 6 percent of the high quality rearing habitat for cutthroat, bull, and brook trout respectively would be lost.

  13. Geochemical provenance of anomalous metal concentrations in stream sediments in the Ashton 1:250,000 quadrangle, Idaho/Montana/Wyoming

    SciTech Connect

    Shannon, S.S. Jr.

    1982-01-01

    Stream-sediment samples from 1500 sites in the Ashton, Idaho/Montana/Wyoming 1:250,000 quadrangle were analyzed for 45 elements. Almost all samples containing anomalous concentrations (exceeding one standard deviation above the mean value of any element) were derived from drainage basins underlain by Quaternary rhyolite, Tertiary andesite or Precambrian gneiss and schist. Aluminum, barium, calcium, cobalt, iron, nickel, magnesium, scandium, sodium, strontium, and vanadium have no andesite provenance. Most anomalous manganese, europium, hafnium, and zirconium values were derived from Precambrian rocks. All other anomalous elemental concentrations are related to Quaternary rhyolite. This study demonstrates that multielemental stream-sediment analyses can be used to infer the provenance of stream sediments. Such data are available for many parts of the country as a result of the National Uranium Resource Evaluation. This study suggests that stream-sediment samples collected in the Rocky Mountains can be used either as pathfinders or as direct indicators to select targets for mineral exploration for a host of metals.

  14. Geology of oil and gas accumulations in the Papuan fold and thrust belt

    SciTech Connect

    Foo, W.K. )

    1990-06-01

    The high level of exploration interest in Papua New Guinea has developed in large part because of recent discoveries in the western Papuan fold and thrust belt and shows in the adjacent foreland region. Results from recent drilling in the Iagifu/Hedinia area by a Chevron-led joint venture have outlined several pools in culminations along a 50 km long structural axis. Oil and gas are sourced from a thick succession of Jurassic marine shales that were deposited along the rifted northern margin of the Australian plate. Generation and migration is interpreted to have peaked coincident with development of the fold and thrust belt during the Neogene. Trapping occurred as anticlines and thrust sheets developed sequentially from northeast to southwest. Several trends remain untested on lands held by various groups, primarily in the area west of the Juha gas condensate pool.

  15. Wave Basin | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Basin Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaveBasin&oldid596392" Feedback Contact needs updating Image needs updating Reference...

  16. Basin Destination State

    Annual Energy Outlook

    10.68 12.03 13.69 14.71 16.11 19.72 20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - - Northern Appalachian Basin Michigan 6.74 8.16 W 8.10 W W...

  17. Basin Destination State

    Gasoline and Diesel Fuel Update

    11.34 12.43 13.69 14.25 15.17 18.16 18.85 6.5 3.8 Northern Appalachian Basin Massachusetts W W - - - - - - - - - Northern Appalachian Basin Michigan 7.43 8.85 W 8.37 W W...

  18. K Basin safety analysis

    SciTech Connect

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  19. Developing an oil generation model for resource assessment of Bakken formation, Williston Basin

    SciTech Connect

    Charpentier, R.R.; Krystinik, K.B.

    1984-04-01

    A model was developed for oil generation in the Devonian and Mississippian Bakken Formation, which has been proposed as the main hydrocarbon source rock within the Williston basin. The data consisted of formation temperatures and of density, neutron-porosity, resistivity, and gamma-ray logs from more than 250 wells in North Dakota and Montana. The upper and the lower shale members of the Bakken Formation were studied. Regression analysis, analysis of residuals, and cluster, discriminant, and factor analyses were used in an attempt to separate depositional effects--especially variations in organic content-from maturity. Regression and analysis of residuals indicate differences both areally and between the upper and lower members. In the upper member, and less strongly in the lower member, the center of the basin differs from the basin margins in that it has extreme residuals--either high or low. Clustering and residual analyses show roughly the same areal patterns. Inverse relationships, similar to those suggested by other workers, were found between formation temperature and organic content and between density logs and organic content. Also found, though, was that the addition of other factors, such as neutron porosity, helps to indicate organic content. Preliminary results show that it may be possible to model oil generation by using statistical techniques on well-log data. In particular, the model has the potential to refine estimates of the amount of hydrocarbons generated by the Bakken Formation in the Williston basin.

  20. Reserves in western basins

    SciTech Connect

    Caldwell, R.H.; Cotton, B.W.

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.