National Library of Energy BETA

Sample records for automotive engineering biofuels

  1. Automotive HCCI Engine Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Automotive HCCI Engine Research Automotive HCCI Engine Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace006_steeper_2012_o.pdf (6.04 MB) More Documents & Publications Automotive HCCI Engine Research Automotive HCCI Engine Research Automotive HCCI Engine Research

  2. Ceramic Automotive Stirling Engine Program

    SciTech Connect

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  3. 10 Questions for an Automotive Engineer: Thomas Wallner

    Energy.gov [DOE]

    Meet Thomas Wallner – automotive engineer extraordinaire, who hails from Argonne National Laboratory’s Center for Transportation Research. He took some time to answer our 10 Questions and share his insight on advanced engine technologies from dual-fuel to biofuels.

  4. Supercharging system for automotive engines

    SciTech Connect

    Yamada, T.; Yabuhara, H.; Takimoto, F.

    1988-03-15

    A supercharging system for an automotive engine is described comprising: a turbocharger driven by exhaust-gas of the engine; a supercharger; an intake passage connecting the turbocharger and the supercharger in series, for supplying air to the engine; driving means for driving the supercharger by the engine; clutch means provided in the driving means; a first bypass provided around the supercharger; a control valve provided in the first bypass; a second bypass provided around the turbine of the turbocharger; a waste gate valve provided in the second bypass; a first actuator for operating the control valve; a second actuator for operating the waste gate valve; first means for operating the second actuator to open the waste gate valve when supercharging pressure exceeds a predetermined value; an engine speed sensor for detecting speed of the engine; an engine load sensor for detecting load on the engine; and a control unit.

  5. High Efficiency Full Expansion (FEx) Engine for Automotive Application...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Full Expansion (FEx) Engine for Automotive Applications High Efficiency Full Expansion (FEx) Engine for Automotive Applications Large increases in engine thermal efficiency result ...

  6. Engineering Biofuels from Photosynthetic Bacteria - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Engineering Biofuels from Photosynthetic Bacteria Argonne National Laboratory Contact ANL About This Technology <em>Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors.</em> Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors. Technology Marketing

  7. Engineering Biofuels from Photosynthetic Bacteria | Argonne National

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratory Engineering Biofuels from Photosynthetic Bacteria Technology available for licensing: Using photosynthetic bacteria to produce biofuels. 30-70% of the fuel's waste can be used to create other fuel sources Combines both engineered and natural photosynthetic mechanisms to generate the fuel PDF icon biofuels_from_bacteria

  8. Mod I automotive Stirling engine mechanical development

    SciTech Connect

    Simetkosky, M.

    1984-01-01

    The Mod I Stirling engine was the first automotive Stirling engine designed specifically for automotive application. Testing of these engines has revealed several deficiencies in engine mechanical integrity which have been corrected by redesign or upgrade. The main deficiencies uncovered during the Mod I program lie in the combustion, auxiliary, main seal, and heater head areas. This paper will address each of the major area deficiencies in detail, and describe the corrective actions taken as they apply to the Mod I and the next Stirling-engine design, the Upgraded Mod I (a redesign to incorporate new materials for cost/weight reduction and improved performance).

  9. Past experiences with automotive external combustion engines

    SciTech Connect

    Amann, C.A.

    1999-07-01

    GMR (General Motors Research Laboratories, now GM R and D Center) has a history of improving the internal combustion engine, especially as it relates to automotive use. During the quarter century from 1950--75, considerable effort was devoted to evaluating alternative powerplants based on thermodynamic cycles different from those on which the established spark-ignition and diesel engines are founded. Two of these, the steam engine and the Stirling engine, incorporated external combustion. Research on those two alternatives is reviewed. Both were judged to fall short of current needs for commercial success as prime movers for conventional automotive vehicles.

  10. Engineering microbes to produce biofuels

    SciTech Connect

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  11. Advanced Biofuels from Cellulose via Genetic Engineering of Clostridiu...

    Energy.gov [DOE] (indexed site)

    2015 Project Peer Review Advanced Biofuels from Cellulose via Genetic Engineering of ... and can be upgraded to branched alkane biofuels for blending into existing fuel ...

  12. Automotive Stirling engine: Mod II design report

    SciTech Connect

    Nightingale, N.P.

    1986-10-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod II, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, and demonstrate poor performance. Installed in a General Motors 1985 Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/L (41 mi/gal) - a value 50% above the current vehicle fleet average. The Mod II Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation. 35 figs.

  13. Sandia Energy - Automotive HCCI Engine

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    because of its potential to rival the high efficiency of diesel engines while keeping NOx and particulate emissions extremely low. However, researchers must overcome several...

  14. Automotive Stirling Engine Development Program Mod I Stirling engine development

    SciTech Connect

    Simetkosky, M.A.

    1983-08-01

    The Automotive Stirling Engine (ASE) Development Program was established to enable research and development of alternate propulsion systems. The program was awarded to Mechanical Technology Incorporated (MTI) for the purpose of developing an automotive Stirling engine, and transferring Stirling-engine technology to the United States. MTI has fabricated and tested four Mod I engines that have accumulated over 1900 test hours to date. The engines evaluated in the test cell have achieved an average of 34.5% efficiency at their maximum efficiency point (2000 rpm), and have developed an average maximum output power (power available to the drive train) level of 54.4 kW (73.2 bhp). All engines are still operating, and are being used to develop components and control strategy for the Upgraded Mod I engine design (predicted to increase maximum power output and efficiency while reducing total engine system weight).

  15. Importance of systems biology in engineering microbes for biofuel...

    Office of Scientific and Technical Information (OSTI)

    Importance of systems biology in engineering microbes for biofuel production Citation Details In-Document Search Title: Importance of systems biology in engineering microbes for ...

  16. Automotive Stirling Engine Mod I design review report. Volume III

    SciTech Connect

    Not Available

    1982-08-01

    This volume, No. 3, of the Automotive Stirling Engine Mod 1 Design Review Report contains a preliminary parts list and detailed drawings of equipment for the basic Stirling engine and for the following systems: vehicular Stirling Engine System; external heat system; hot and cold engine systems; engine drive; controls and auxiliaries; and vehicle integration. (LCL)

  17. Engineering and Materials for Automotive Thermoelectric Applications...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Electrical and Thermal Transport Optimization of High Efficient n-type ...

  18. Society of Automotive Engineers World Congress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Society of Automotive Engineers World Congress Society of Automotive Engineers World Congress April 6, 2006 - 10:12am Addthis Remarks Prepared for Energy Secretary Samuel Bodman Thank you, Greg. It's always a pleasure to be in a room full of engineers. As an engineer myself, I know there is nothing our profession likes better than plain talk and solving problems. So, I'm going to serve you up some plain talk and then some assignments. Our nation faces big challenges in the energy and

  19. Advanced Biofuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels, Biomass, Energy, ...

  20. Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)

    SciTech Connect

    Not Available

    2011-09-01

    In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

  1. Automotive Stirling Engine Development Program. RESD Summary report

    SciTech Connect

    Not Available

    1984-05-01

    This is the final report compiling a summary of the information presented and discussed at the May 1983 Automotive Stirling Engine (AES) Reference Engine System Design (RESD) review held at the NASA Lewis Research Center. The design of the engine and its auxiliaries and controls is described. Manufacturing costs in production quantity are also presented. Engine system performance predictions are discussed and vehicle integration is developed, along with projected fuel economy levels.

  2. Biofuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ... Twitter Google + Vimeo Newsletter Signup SlideShare Biofuels HomeBiofuels National ...

  3. Automotive stirling engine development program overview and status report

    SciTech Connect

    Nightingale, N.P.

    1983-08-01

    The Automotive Stirling Engine (ASE) Development Program has been under contract (No. DEN3-32) with the Department of Energy (DOE)/National Aeronautics and Space Administration (NASA)-Lewis Research Center since 1978. Four Mod I engines (first-generation automotive Stirling engine) have accumulated more than 2000 test hours, and one engine was installed in a vehicle where its transient characteristics were evaluated, and mileage/emissions data recorded. A design effort to upgrade the Mod I has been completed, and two engines are at test. Major design changes have been made in the Reference Engine System Design (RESD) to reduce manufacturing cost. In support of these design changes, an extensive component development program is underway in combustion, ceramic heat exchangers, seals, and control systems.

  4. NREL's Cyanobacteria Engineering Shortens Biofuel Production Process, Captures CO2

    SciTech Connect

    2015-09-01

    This highlight describes NREL's work to systematically analyze the flow of energy in a photosynthetic microbe and show how the organism adjusts its metabolism to meet the increased energy demand for making ethylene. This work successfully demonstrates that the organism could cooperate by stimulating photosynthesis. The results encourage further genetic engineering for the conversion of CO2 to biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting. biofuels and chemicals. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  5. Automotive Stirling reference engine design report

    SciTech Connect

    Not Available

    1981-06-01

    The Reference Stirling Engine System, which was to provide the best possible fuel economy while meeting or exceeding all other program objectives is described. It was designed to meet the requirements of a Reference Vehicle, which is a 1984 GM Pontiac Phoenix (X-body). This design utilizes all new technology that can reasonably be expected to be developed by 1984 and that is judged to provide significant improvement, relative to development risk and cost.

  6. Biofuels

    ScienceCinema

    Kalluri, Udaya

    2014-05-23

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  7. Biofuels

    SciTech Connect

    Kalluri, Udaya

    2014-05-02

    Udaya Kalluri is part of a multidisciplinary scientific team working to unlock plants in order to create more potent biofuels without harsh processing.

  8. Knock-free engine control system for turbocharged automotive engine

    SciTech Connect

    Hirabayashi, Y.

    1985-04-09

    In a turbocharged internal combustion engine, in order to optimize engine torque output spark timing control and boost pressure control are coordinated in such a manner that spark advance angle is adjusted only when the measured boost pressure equals a predetermined value and is allowed to vary only within a specified range advanced from a reference value derived from an empirical memory table on the basis of engine speed and boost pressure. When engine operating conditions are such that spark advance angle would fall outside of the specified range, spark advance angle is then held at the empirical value and boost pressure is adjusted in order to optimize engine torque. The coordinated control system can also be designed to respond to exhaust gas temperature on a first-priority basis, i.e., when exhaust temperature is sensed to be dangerously high, boost pressure is reduced regardless of other engine conditions.

  9. Advanced Biofuels: How Scientists are Engineering Bacteria to...

    Energy.gov [DOE] (indexed site)

    which is among the most highly touted of the potential feedstocks for advanced biofuels. ... This would open the door to the production of advanced biofuels from lignocellulosic ...

  10. Engaging the Next Generation of Automotive Engineers through...

    Energy.gov [DOE] (indexed site)

    (GRAs), and Clean Cities University Workforce Development Program (CCUWDP) GATE Center for Automotive Fuel Cell Systems at Virginia Tech EcoCAR 2 Plugging into the Future

  11. Automotive

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... strategies, and the fundamentals of fuel sprays for these applications. ...

  12. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  13. Automotive Stirling Engine Development Program. Technical progress report for period January 1-March 29, 1980

    SciTech Connect

    Not Available

    1980-06-01

    The activities performed on the Stirling Reference Engine System Design; components and subsystems; P-40 baseline Stirling engine installation and test; the first automotive engine to be built on the program; computer development activities; and technical assistance to the Government are summarized. The overall program philosophy is outlined, and data and results are given.

  14. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  15. Automotive Stirling Engine Development Program. Quarterly technical progress report for period June 29-October 3, 1980

    SciTech Connect

    Not Available

    1980-12-01

    Current information on component and subsystems development activities and engine and vehicle testing during July to October 1980 in the Automotive Stirling Engine Development Program is reported. Computer code development progress is also covered. The status of the manufacture of the Mod I is given in some detail. Program engine operating hours through the end of this quarterly period reach a total of 6181 h.

  16. Materials selection for automotive engines. (Latest citations from Metadex). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning material selection and substitution for automobile engines. Mechanical properties, including dimensional stability, are reviewed. Machined parts, castings, forgings, and extrusions are examined. Citations concerning automotive bodies, frames, and structures are presented in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Materials selection for automotive engines. (Latest citations from Metadex). Published Search

    SciTech Connect

    1997-04-01

    The bibliography contains citations concerning material selection and substitution for automobile engines. Mechanical properties, including dimensional stability, are reviewed. Machined parts, castings, forgings, and extrusions are examined. Citations concerning automotive bodies, frames, and structures are presented in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Materials selection for automotive engines. (Latest citations from Metadex). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning material selection and substitution for automobile engines. Mechanical properties, including dimensional stability, are reviewed. Machined parts, castings, forgings, and extrusions are examined. Citations concerning automotive bodies, frames, and structures are presented in a separate bibliography. (Contains a minimum of 165 citations and includes a subject term index and title list.)

  19. Sandia Energy - Lyle Pickett Named a Society of Automotive Engineers...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to the field. His contributions are providing both a new understanding of the fundamentals of fuel sprays and an international collaboration (the Engine Combustion Network)...

  20. Michigan: Universities Train Next Generation of Automotive Engineers...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    out Advanced Electric Drive Vehicle Education programs to educate future engineers about electric drive vehicles. All three universities are developing courses for undergraduate...

  1. BETO Seeks Stakeholder Input on the Use of Advanced Biofuel Blends in Small Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy’s Bioenergy Technologies Office has released a Request for Information (RFI) seeking stakeholder input on the following topics related to the use of advanced biofuel blends in small engines

  2. Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydroccarbon Biorefineries

    SciTech Connect

    none,

    2008-03-01

    This roadmap to “Next Generation Hydrocarbon Biorefineries” outlines a number of novel process pathways for biofuels production based on sound scientific and engineering proofs of concept demonstrated in laboratories around the world. This report was based on the workshop of the same name held June 25-26, 2007 in Washington, DC.

  3. High Efficiency Full Expansion (FEx) Engine for Automotive Applications

    Energy.gov [DOE]

    Large increases in engine thermal efficiency result from a new method of large reductions in both heat energy normally lost to the cooling medium and in heat energy in the exhaust system.

  4. Automotive Stirling engine Mod I design-review report. Volume II

    SciTech Connect

    Not Available

    1982-08-01

    Volume No. 2 of the Automotive Stirling Engine Mod I Design Review Report contains descriptions of the operating principles, performance requirements and design details of the auxiliaries and control systems for the MOD I Stirling engine system. These components and sub-systems have the following main functions: provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; provide a driver acceptable method for controlling the power output of the engine; provide adequate lubrication and cooling water circulation; generate the electric energy required for engine and vehicle operation; provide a driver acceptable method for starting, stopping and monitoring the engine; and provide a guard system, that protects the engine at component or system malfunction.

  5. Automotive Stirling-Engine Development Program. Semiannual technical progress report, July 1-December 31, 1981

    SciTech Connect

    Ernst, W.; Piller, S.; Richey, A.; Simetkosky, M.

    1982-09-01

    This is the first semiannual technical progress report prepared under the automotive Stirling Engine Development Program; it covers the fourteenth and fifteenth quarters of activity after award of the contract. Quarterly technical progress reports reported program activities from the first quarter through the thirteenth quarter; thereafter, reporting was changed to a semiannual format. This report summarizes activities performed on Mod I engine testing and test results, progress in manufacturing, assembling and testing of a Mod I engine in the United States, P-40 Stirling engine dynamometer and multifuels testing, analog/digital controls system testing, Stirling reference engine manufacturing and reduced size studies, components and subsystems, computer code development activities. The overall program philosophy is outlined, and data and results are presented.

  6. Review of alternate automotive engine fuel economy. Final report January-October 78

    SciTech Connect

    Cole, D.; Bolt, J.A.; Huber, P.; Taylor, T. Jr.

    1980-11-01

    This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucks through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.

  7. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  8. Biofuels combustion*

    DOE PAGES [OSTI]

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  9. Biofuels combustion*

    SciTech Connect

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.

  10. Engineering E. coli for Biofuel, Bioproduct Production | U.S. DOE Office of

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science (SC) Engineering E. coli for Biofuel, Bioproduct Production Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC

  11. Control studies of an automotive turbocharged diesel engine with variable geometry turbine

    SciTech Connect

    Winterbone, D.E.; Jai In, S.

    1988-01-01

    Major advances are being made in engine hardware, control theories and microcomputer technology. The application of advanced control and monitoring techniques to engines should enable them to meet all the restrictions imposed upon them while they operate to their full potential. Variable geometry turbocharging of automotive diesel engines is a good example of a case where the control implications need to be considered carefully. This paper reports a technique for developing the dynamic characteristics of turbocharged diesel engines with variable geometry turbine and compares the results with measurements obtained on an engine. It is the first step in the design process for a true, dynamic, multivariable controller. Most current systems are simply scheduling devices with little understanding or consideration of possible interactions between various control loops. A non-linear simulation model for a turbocharged diesel engine was used to investigate the performance of the engine. Major features of the program, aspects of constructing a model for control purposes and identification procedures of the engine dynamic are discussed.

  12. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect

    Valentin Soloiu

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels?? combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  13. Biofuels from E. Coli: Engineering E. coli as an Electrofuels Chassis for Isooctane Production

    SciTech Connect

    2010-07-16

    Electrofuels Project: Ginkgo Bioworks is bypassing photosynthesis and engineering E. coli to directly use carbon dioxide (CO2) to produce biofuels. E. coli doesn’t naturally metabolize CO2, but Ginkgo Bioworks is manipulating and incorporating the genes responsible for CO2 metabolism into the microorganism. By genetically modifying E. coli, Ginkgo Bioworks will enhance its rate of CO2 consumption and liquid fuel production. Ginkgo Bioworks is delivering CO2 to E. coli as formic acid, a simple industrial chemical that provides energy and CO2 to the bacterial system.

  14. Engineering-economic analyses of automotive fuel economy potential in the United States

    SciTech Connect

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  15. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    SciTech Connect

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  16. Vehicle Technologies Office Merit Review 2014: Automotive Low Temperature Gasoline Combustion Engine Research

    Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  17. Vehicle Technologies Office Merit Review 2015: Automotive Low Temperature Gasoline Combustion Engine Research

    Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  18. Driving Biofuels End Use: BETO/VTO Collaborations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conventional Engine + Realistic Fuels GEFORCE - Near term technology exploration 6 6 | Vehicle Technologies Program Efficiency Through Biofuels Biofuel blends enhance ...

  19. Engine performance comparison associated with carburetor icing during aviation grade fuel and automotive grade fuel operation. Final report Jan-Jul 82

    SciTech Connect

    Cavage, W.; Newcomb, J.; Biehl, K.

    1983-05-01

    A comprehensive sea-level-static test cell data collection and evaluation effort to review operational characteristics of 'off-the-shelf' carburetor ice detection/warning devices for general aviation piston engine aircraft during operation on aviation grade fuel and automotive grade fuel. Presented herein are results, observations and conclusions drawn from over 250 hours of test cell engine operation on 100LL aviation grade fuel, unleaded premium and unleaded regular grade automotive fuel. Sea-level-static test cell engine operations were conducted utilizing a Teledyne Continental Motors 0-200A engine and a Cessna 150 fuel system to review engine operational characteristics of 100LL aviation grade fuel and various blends of automotive grade fuel as well as carburetor ice detectors/warning devices sensitivity/effectiveness during actual carburetor icing. The primary purpose of test cell engine operation was to observe real-time carburetor icing characteristics associated with possible automotive grade fuel utilization by piston-powered light general aviation aircraft. In fulfillment of this task, baseline engine operations were established with 100LL aviation grade fuel followed by various blend of automotive grade fuel prior to imposing carburetor icing conditions and assessing operational characteristics.

  20. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Guess, Adam

    2013-03-01

    Adam Guss of Oak Ridge National Lab on "Metabolic engineering of Clostridium thermocellum for biofuel production" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  1. Development of Renewable Biofuels Technology by Transcriptomic Analysis and Metabolic Engineering of Diatoms

    SciTech Connect

    Hildebrand, Mark

    2013-11-18

    limitation, or to enable lipid accumulation along with high biomass accumulation.The significance of this project is that it will enable greater control over lipid production in diatoms by manipulable intracellular processes rather than from variable environmental conditions, and it will possibly enable lipid accumulation under normal growth conditions. Current economics dictate the use of open outdoor raceway pond systems for commercial-scale microalgal growth for biofuels production (although advanced design enclosed bioreactors are under consideration, they are currently not cost effective). Outdoor systems are subject to large variability in environmental conditions. In microalgae, lipid accumulation generally occurs under nutrient limiting conditions, which prevents high biomass accumulation. Potentially, one could carefully adjust the level of a particular nutrient so that it would become limiting after sufficient biomass accumulated; however, given the variability inherent in microalgal cellular metabolism under different light, temperature, and nutrient regimes, this will be a relatively uncontrolled and poorly reproducible approach. A better strategy would be to provide ample nutrients, but trigger lipid accumulation “artificially” by manipulating intracellular processes through metabolic engineering. In addition, identifying the key regulatory steps involved in controlling carbon partitioning in the cell coupled with metabolic engineering should enable greater partitioning of carbon into lipids during non-limiting nutrient growth conditions. The approaches outlined in this proposal are aimed at achieving these goals, and are expected to have a substantial impact on the development of renewable biofuels technology. Development of the approaches described in this proposal will provide a rich interdisciplinary educational experience for high school and undergraduate students to foster their development in a scientific career.

  2. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Solid-State ...

  3. Vehicle Technologies Office: Graduate Automotive Technology Education (GATE)

    Energy.gov [DOE]

    DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive...

  4. Implementing agreement for a program of research and development on high temperature materials for automotive engines. Report for the period April 1981-March 1982. Annex 1: ceramics for automotive gas turbine engines

    SciTech Connect

    Not Available

    1982-12-01

    Several Consulting Committee meetings have been conducted since the last annual report of activities. These included a session on 11 March 1981, held in conjunction with the International Gas Turbine Conference in Houston, TX and a gathering on 27 October 1981, which coincided with the US Department of Energy Contractors Coordination Meeting at Dearborn, Michigan. These various conferences permitted in-depth technical discussions. Regarding information exchange, thus far more than 52 reports have been provided from West German participants to their US counterparts. In response to this data, all available reports from current major United States automotive engine and ceramic component development efforts being conducted by the US DOE have been provided to West Germany. Two types of structural ceramics have been exchanged and subjected to destructive and non-destructive testing. Results from five hundred specimens are currently being evaluated. As far as scientist exchange visits, engineers from the DFVLR, IzfP and Daimler-Benz have visited AMMRC as well as numerous US contractor facilities. Further efforts have been devoted to development of life prediction methodology and both experimental and analytical progress has been made. Calculations of rotor hub transient thermal response have been compared by Ford and Daimler-Benz engineers. In conclusion, during the past year, significant progress has been achieved on all active tasks delineated under the International Energy Agency Implementing Agreement.

  5. Automotive Stirling-Engine Development Program. Semiannual technical progress report, July 1-December 31, 1982

    SciTech Connect

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.

    1983-01-01

    Progress is reported on the following subjects: technology develpment, Mod I engine test program, Mod I engine characterization/analysis, Mod I transient test bed fuel economy, Mod I-A engine performance, reference engine system design (RESD), and downsized RESD study. (MHR)

  6. Automotive Stirling Engine Development Program. Semiannual technical progress report, January 1-June 30, 1983

    SciTech Connect

    Not Available

    1983-08-01

    Activities performed on Mod I engine testing and test results, testing of the Mod I engine in the United States, Mod I engine characterization and analyses, Mod I Transient Test Bed fuel economy, Upgraded Mod I performance and testing, Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are summarized. The overall program philosophy is outlined, and data and results are presented.

  7. University of Illinois at Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. University of Illinois at Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion Engines

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  9. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  10. Automotive Stirling Engine development program: Semiannual technical progress report, January 1--June 30, 1987

    SciTech Connect

    Not Available

    1988-02-01

    During this reporting period, progress was made toward the performance characterization of the Mod II engine, and by the end of the period, the engine hours had increased by 203 hours to a total of 223. Performance evaluation of the Mod II Basic Stirling Engine (BSE) began.

  11. BiofuelsReportFinal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BASED ON THE JUNE 25-26, 2007 WORKSHOP WASHINGTON, D.C. A RESEARCH ROADMAP FOR MAKING LIGNOCELLULOSIC BIOFUELS A PRACTICAL REALITY UNIVERSITY OF MASSACHUSETTS AMHERST SPONSORED BY: Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydrocarbon Biorefineries THE NATIONAL SCIENCE FOUNDATION AMERICAN CHEMICAL SOCIETY THE DEPARTMENT OF ENERGY Publication Date: March 2008 Suggested citation for this document: NSF. 2008. Breaking the Chemical and Engineering

  12. High temperature self-lubricating coatings for air lubricated foil bearings for the automotive gas turbine engine

    SciTech Connect

    Bhushan, B.

    1980-04-01

    The objective of this program was to further develop the coating combinations identified in a previous program for compliant surface bearings and journals to be used in an automotive gas turbine engine. The coatings should be able to withstand the sliding start/stops during rotor lifetoff and touchdown and occasional short-time, high speed rubs under representative loading of the engine - 14 kPa and at 35 kPa if possible, and at a maximum temperature of 427 to 650/sup 0/C. Some dozen coating variations of CdO-graphite, Cr/sup 2/O/sub 3/ (by sputtering) and CaF/sub 2/ (plasma sprayed) were identified. The coatings were optimized and they were examined for stoichiometry, metallurgical condition, and adhesion. Sputtered Cr/sub 2/O/sub 3/ was most adherent when optimum parameters were used and it was applied on an annealed (soft) substrate. Metallic binders and interlayers have been used to improve the ductility and the adherence. The following coating combinations have satisfied the above requirements: CdO-graphite-Ag (HL-800-2)/sup TM/ on foil versus det. gun Cr/sub 3/C/sub 2/ good up to 427/sup 0/C and sputtered Cr/sub 2/O/sub 3/ versus det. gun Cr/sub 3/C/sub 2/ good from RT to 427 to 650/sup 0/C.

  13. Biofuel alternatives to ethanol: pumping the microbial well ...

    Office of Scientific and Technical Information (OSTI)

    Biofuel alternatives to ethanol: pumping the microbial well Citation Details In-Document Search Title: Biofuel alternatives to ethanol: pumping the microbial well Engineered ...

  14. Sandia Energy - HCCI/SCCI Engine Fundamentals

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive HCCISCCI Engine Fundamentals HCCISCCI Engine...

  15. Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition

    Energy.gov [DOE]

    The Advanced Vehicle Technology Competition (AVTC) program is an engineering education program managed by Argonne National Laboratory for the U.S. Department of Energy in partnership with Natural Resources Canada and the U.S. and Canadian auto industries.

  16. Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors

    DOEpatents

    Riecke, George T.; Stotts, Robert E.

    1992-01-01

    The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

  17. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality

    SciTech Connect

    Hazen, Samuel

    2013-09-27

    Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process, we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.

  18. On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines

    SciTech Connect

    Galindo, J.; Climent, H.; Guardiola, C.; Tiseira, A.

    2009-11-15

    Surge is becoming a limiting factor in the design of boosting systems of downsized diesel engines. Although standard compressor flowcharts are used for the selection of those machines for a given application, on-engine conditions widely differ from steady flow conditions, thus affecting compressor behaviour and consequently surge phenomenon. In this paper the effect of pulsating flow is investigated by means of a steady gas-stand that has been modified to produce engine-like pulsating flow. The effect of pressure pulses' amplitude and frequency on the compressor surge line location has been checked. Results show that pulsating flow in the 40-67 Hz range (corresponding to characteristic pulsation when boosting an internal combustion engine) increases surge margin. This increased margin is similar for all the tested frequencies but depends on pulsation amplitude. In a further step, a non-steady compressor model is used for modelling the tests, thus allowing a deeper analysis of the involved phenomena. Model results widely agree with experimental results. (author)

  19. Automotive Thermoelectric Generator Design Issues | Department...

    Energy.gov [DOE] (indexed site)

    Mechanical, electrical, thermal engineering, and durability issues related to use of TEGs in the challenging automotive environment need to be resolved as they affect warranty cost ...

  20. Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America

    Energy.gov [DOE]

    Researchers at the Energy Department's Joint BioEnergy Institute (JBEI) have engineered the first strains of the bacteria to digest switchgrass biomass and synthesize its sugars into all three types of transportation fuels -- gasoline, diesel and jet fuels.

  1. Experiments and modelling of surge in small centrifugal compressor for automotive engines

    SciTech Connect

    Galindo, J.; Serrano, J.R.; Climent, H.; Tiseira, A.

    2008-01-15

    In this paper the surge phenomenon in small centrifugal compressors used for turbocharging internal combustion engines is analyzed. The experimental work was focused on the measurement of compressor behaviour within the surge zone by means of a specifically designed facility. The presented model is based on the introduction of a fluid inertia term that accounts for the non quasi steady effects and the use of a compressor map extended to the surge and negative flows zone obtained from experimental tests. The compressor model was implemented in a one-dimensional gas-dynamic model. The comparison of the modelled and measured evolution of instantaneous pressure during deep surge operation shows good agreement. Furthermore, the model is also able to predict the amplitude and frequency of pressure pulses when the compressor operates in surge with different outlet duct lengths. (author)

  2. Enhanced air/fuel mixing for automotive Stirling engine turbulator-type combustors

    SciTech Connect

    Riecke, G.T.; Stotts, R.E.

    1992-02-25

    This patent describes a combustor for use in a Stirling engine and the like. It comprises: a combustor chamber; a fuel inlet couple to the chamber to inject fuel therein; a turbulator means disposed in the chambers downstream of the fuel inlet means for injecting combustion air into the chamber, the turbulator means being so positioned to cause a mixing of the combustion air and fuel injected in the chamber; diverter means for dividing the combustion air and creating a primary mixing zone downstream fa the primary mixing zone; and wherein the primary mixing zone comprises a fuel rich zone where combustion initiates and the secondary mixing zone has sufficient combustion air to complete combustion of the fuel.

  3. Sandia National Laboratories: Research: Biofuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biofuels Overcoming challenges to make advanced "drop-in" biofuels a reality Sandia researchers are developing clean and renewable sources of energy to help minimize climate change and reduce U.S. dependence on foreign oil. To this end, we are creating thermochemical, chemical, and biochemical conversion technologies to efficiently generate renewable biofuels that can displace gasoline, diesel, and jet fuel with no loss of performance or engine efficiency. Sandia is focused on two

  4. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90{degree} shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45{degree} angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  5. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90[degree] shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45[degree] angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  6. Strategic Perspectives on Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Strategic Perspectives on Biofuels Strategic Perspectives on Biofuels Plenary V: Biofuels and Sustainability: Acknowledging Challenges and Confronting Misconceptions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Lee R. Lynd, Professor of Engineering, Dartmouth College lynd_bioenergy_2015.pdf (970.36 KB) More Documents & Publications Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual

  7. Biofuels in Defense, Aviation, and Marine

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    biorefineries o Cost-competitive biofuel with conventional petroleum (wo ... F2F2 13 | Bioenergy Technologies Office * Engine re-light at altitude, polar climate, in ...

  8. Conversion Technologies for Advanced Biofuels … Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Elected to National Academy of Engineering, 1999. 35 years experience in research in biofuels, renewable resources, and biotechnology. . Bio-oil Upgrading - Presenter Information ...

  9. Automotive HCCI Engine Research

    Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  10. Automotive HCCI Engine Research

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  11. Automotive HCCI Engine Research

    Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Automotive HCCI Engine Research

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  13. Quality, Performance, and Emission Impacts of Biofuels and Biofuel...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Performance of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and ...

  14. Flexibility in Biofuel Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Flexibility in Biofuel Manufacturing Dan Gaspar Sustainable Transportation Summit July 12, 2016 Fuel selection overview If we identify the critical fuel properties and target values that maximize efficiency and emissions performance for a given engine architecture, then fuels that have properties with those values (regardless of chemical composition) will provide comparable performance Governing Co-Optima hypotheses: There are engine architectures and strategies that provide higher thermodynamic

  15. Strategic Perspectives on Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Perspectives on Biofuels Bioenergy 2015: Opportunities in a Changing Energy Landscape Washington, DC June 24, 2015 Lee Rybeck Lynd Thayer School of Engineering, Dartmouth College Global Sustainable Bioenergy Project Bioenergy Science Center Enchi Corp. Thayer School of Engineering, Dartmouth GSB Global Sustainable Bioenergy The two biggest energy supply challenges to get to a low-carbon world Second half of low-carbon electricity - in light of intermittency of other renewables Second half of

  16. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels

    SciTech Connect

    Needham, J.R.

    1980-09-01

    A literature study has been carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from Syncrude. The findings from the search are presented and discussed in detail, conclusions reached and recommendations made.

  17. BioEnergy Engineering LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Engineering LLC Jump to: navigation, search Name: BioEnergy Engineering LLC Place: Tennessee Sector: Biofuels Product: A biofuels engineering and design firm with proprietary...

  18. Development of Computer-Aided Design Tools for Automotive Batteries...

    Energy.gov [DOE] (indexed site)

    Engineering for Electric Drive Vehicle Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

  19. Development of Computer-Aided Design Tools for Automotive Batteries...

    Energy.gov [DOE] (indexed site)

    Progress of Computer-Aided Engineering of Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries ...

  20. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy ... Engineering and Materials for Automotive Thermoelectric Applications Electrical and ...

  1. Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 1. Engine Load Range and Downsize Downspeed Opportunity

    SciTech Connect

    Splitter, Derek A; Szybist, James P

    2013-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to 87 AKI, up to 20 bar IMEPg (indicated mean effective pressure gross) at = 1. EGR provided thermodynamic advantages and was a key enabler for increasing engine efficiency for all fuel types. However, with E30, EGR was less useful for knock mitigation than gasoline or IB24. Torque densities with E30 with 15% EGR at = 1 operation were similar or better than a modern EURO IV calibration turbo-diesel engine. The results of the present study suggest that it could be possible to implement a 40% downsize + downspeed configuration (1.2 L engine) into a representative midsize sedan. For example, for a midsize sedan at a 65 miles/h cruise, an estimated fuel consumption of 43.9 miles per gallon (MPG) (engine out 102 g-CO2/km) could be achieved with similar reserve power to a 2.0 L engine with 87AKI (38.6 MPG, engine out 135 g-CO2/km). Data suggest that, with midlevel alcohol gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol gasoline blends and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  2. Emissions comparison of alternative fuels in an advanced automotive diesel engine. Interim report, October 1997--April 1998

    SciTech Connect

    Sirman, M.B.; Owens, E.C.; Whitney, K.A.

    1998-09-01

    Exhaust emissions mappings were conducted for six alternative diesel fuels in a Daimler-Benz (DB) OM6l1 diesel engine. The OM6l 1 engine is a 2.2L, direct-injection diesel with a Bosch, high-pressure, common-rail, fuel-injection system. The engine design closely matches the specifications of the Partnership for a New Generation Vehicle (PNGV) target compression-ignition engine. Triplicate 13-mode, steady-state test sequences were performed for each fuel, with a 2-D control fuel serving as the baseline. No adjustments were made to the engine to compensate for any performance differences resulting from fuel property variations.

  3. Energy 101: Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biofuels Energy 101: Biofuels August 16, 2013 - 12:11pm Addthis Learn how biomass is converted into clean, renewable transportation fuels to power our cars, trucks, planes, and trains. Biomass is an organic renewable energy source that includes materials such as agriculture and forest residues, energy crops, and algae. Scientists and engineers at the U.S. Department of Energy and its national laboratories are finding new, more efficient ways to convert biomass into biofuels that can take the

  4. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect

    John Frey

    2009-02-22

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  5. WHEB Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    WHEB Biofuels Jump to: navigation, search Name: WHEB Biofuels Place: London, United Kingdom Sector: Biofuels Product: Ethanol producer that also invests in emerging biofuels...

  6. West Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: West Biofuels Place: California Sector: Biofuels Product: West Biofuels LLC is a 2007 start-up company based in California with funding...

  7. LC Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LC Biofuels Jump to: navigation, search Name: LC Biofuels Place: Richmond, California Sector: Biofuels Product: Biofuels producer that owns and operatres a 1.3m facility in...

  8. Rusni Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: Rusni Biofuels Place: Andhra Pradesh, India Sector: Biofuels Product: Rusni Biofuels India (P) Ltd.,we are specialized in sales of...

  9. Border Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Border Biofuels Jump to: navigation, search Name: Border Biofuels Place: Melrose, United Kingdom Zip: TD6 OSG Sector: Biofuels Product: Biofuels business which went into...

  10. Northeast Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: Northeast Biofuels Place: United Kingdom Sector: Biofuels Product: Northeast biofuels is a cluster of companies and organisations...

  11. ECCO Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ECCO Biofuels Jump to: navigation, search Name: ECCO Biofuels Place: Texas Sector: Biofuels Product: ECCO Biofuels manufactures biodiesel production facilities as well as produces...

  12. Abundant Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: Abundant Biofuels Place: Monterey, California Sector: Biofuels Product: Abundant Biofuels plans to develop biodiesel feedstock...

  13. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels, executive summary

    SciTech Connect

    Needham, J.R.

    1980-09-01

    A literature study was carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from syncrude. The findings from the search were presented and discussed in detail in the main report (Ricardo DP.81/539). In this executive summary, the conclusions and recommendations from the main report are presented.

  14. Automotive Stirling Engine Market and Industrial Readiness Program (MIRP). Final report for Phase IA, September 15, 1982-July 31, 1984

    SciTech Connect

    Not Available

    1984-08-01

    A brief history of the project is presented. Included in appendices are the scope of work, management and cost plans, major milestones, and the digital engine control spare parts' list. (MHR)

  15. Anthropogenic CO2 as a Feedstock for Cyanobacteria-Based Biofuels |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Anthropogenic CO2 as a Feedstock for Cyanobacteria-Based Biofuels Anthropogenic CO2 as a Feedstock for Cyanobacteria-Based Biofuels Breakout Session 2-A: The Future of Algae-Based Biofuels Anthropogenic CO2 as a Feedstock for Cyanobacteria-Based Biofuels Ronald R. Chance, Executive Vice President, Engineering, Algenol chance_bioenergy_2015.pdf (2.15 MB) More Documents & Publications Metabolic Pathways and Metabolic Engineering 2016 National Algal Biofuels Technology

  16. Analysis of advanced biofuels.

    SciTech Connect

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  17. Can regenerataive braking be applied to a Stirling engine (Stirling-powered regenerative-retarding propulsion system for automotive application)

    SciTech Connect

    Walker, G.

    1980-07-01

    A recently completed University of Calgary study has shown that regenerative retarding (the storage and later use of energy normally dissipated as heat by friction brakes) can be applied to vehicles powered by Stirling-cycle engines. Changes in the valving arrangement of a multiple-cylinder Stirling powerplant can convert the engine to a heat pump capable of recovering energy that would ordinarily be wasted during a vehicle's downhill travel and of transferring the energy through a liquid-metal heat pipe to storage in a thermal battery for later reuse in the vehicle's externally heated propulsion system. Up to 60% of the fuel needed to drive a truck uphill could be saved by regenerative braking downhill. When petroleum-based diesel fuel and gasoline are no longer available at low cost, the energy sources for Stirling-engine propulsion will include electricity, natural gas, coal, and various organic wastes. The thermal battery/Stirling engine combination will then be competitive; the battery will be charged overnight by electrical-resistance heating or the combustion of nonpetroleum fuels. The system would be most appropriate for urban or nonurban vehicles in stop-and-go applications, e.g., buses and delivery vehicles.

  18. Efflux Pumps to Increase Microbial Tolerance and Biofuel Production -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Efflux Pumps to Increase Microbial Tolerance and Biofuel Production Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Engineering microbial biofuel tolerance and export using efflux pumps (356 KB) Technology Marketing Summary Aindrila Mukhopadhyay, Jay Keasling, and Mary Dunlop at the Joint BioEnergy Institute (JBEI) have

  19. Vehicle Technologies Office: Biofuels End-Use Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Alternative Fuels » Vehicle Technologies Office: Biofuels End-Use Research Vehicle Technologies Office: Biofuels End-Use Research Biofuels offer Americans viable domestic, environmentally sustainable alternatives to gasoline and diesel. Learn about the basics, benefits, and issues to consider related to biodiesel and ethanol on the Alternative Fuels Data Center. The Vehicle Technologies Office supports research to increase our knowledge of the effects of biofuels on engines and

  20. GM's Perspective on Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    GM's Perspective on Advanced Biofuels More Documents & Publications New Directions in Engines and Fuels The Drive for Energy Diversity and Sustainability: The Impact on...

  1. Simulation Approaches for Drop-in Biofuels | Argonne National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biodiesel is a particularly promising biofuel due to its compatibility with the current ... alternate fuels for compression ignition engine applications," ICES2012-81078, ASME ...

  2. Fourth annual report to Congress on the Automotive Technology Development Program

    SciTech Connect

    Not Available

    1983-11-01

    Program implementation and management are described. The status of conventional power-train technology is described with respect to uniform charge reciprocating Otto engine, stratified charge reciprocating Otto engine, rotary Otto engine, diesel engine, and transmissions. The three tasks of the Automotive Technology Development Program are discussed as follows; automotive gas turbine project, automotive Stirling engine development project, and the heavy duty transport technology project.

  3. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Energy.gov [DOE] (indexed site)

    Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and ...

  4. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Energy.gov [DOE] (indexed site)

    Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric ...

  5. Impacts of Mid-level Biofuel Content in Gasoline on SIDI Engine-Out and Tailpipe Particulate Matter Emissions: Preprint

    SciTech Connect

    He, X.; Ireland, J. C.; Zigler, B. T.; Ratcliff, M. A.; Knoll, K. E.; Alleman, T. L.; Tester, J. T.

    2011-02-01

    The influences of ethanol and iso-butanol blended with gasoline on engine-out and post Three-Way Catalyst (TWC) particle size distribution and number concentration were studied using a GM 2.0L turbocharged Spark Ignition Direct Injection (SIDI) engine. The engine was operated using the production ECU with a dynamometer controlling the engine speed and the accelerator pedal position controlling the engine load. A TSI Fast Mobility Particle Sizer (FMPS) spectrometer was used to measure the particle size distribution in the range from 5.6 to 560 nm with a sampling rate of 1 Hz. US federal certification gasoline (E0), two ethanol-blended fuels (E10 and E20), and 11.7% iso-butanol blended fuel (BU12) were tested. Measurements were conducted at ten selected steady-state engine operation conditions. Bi-modal particle size distributions were observed for all operating conditions with peak values at particle sizes of 10 nm and 70 nm. Idle and low speed / low load conditions emitted higher total particle numbers than other operating conditions. At idle, the engine-out Particulate Matter (PM) emissions were dominated by nucleation mode particles, and the production TWC reduced these nucleation mode particles by more than 50%, while leaving the accumulation mode particle distribution unchanged. At engine load higher than 6 bar NMEP, accumulation mode particles dominated the engine-out particle emissions and the TWC had little effect. Compared to the baseline gasoline (E0), E10 does not significantly change PM emissions, while E20 and BU12 both reduce PM emissions under the conditions studied. Iso-butanol was observed to impact PM emissions more than ethanol, with up to 50% reductions at some conditions. In this paper, the issues related to PM measurement using FMPS are also discussed. While some uncertainties are due to engine variation, the FMPS must be operated under careful maintenance procedures in order to achieve repeatable measurement results.

  6. Sandia Energy Biofuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    nhanced-sandia-sintef-collaborationfeed 0 Lignin-Feasting Microbe Holds Promise for Biofuels http:energy.sandia.govlignin-feasting-microbe-holds-promise-for-biofuels http:...

  7. Algal Biofuels | Bioenergy | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biofuels NREL is developing technologies and helping prepare a new generation workforce to enable the commercialization of algal biofuels. Photo of bright green algae in flasks in ...

  8. Brazil's biofuels scenario

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DO ETANOL Brazil's biofuels scenario: What are the main drivers which will shape investments in the long term? Artur Yabe Milanez Manager BNDES Biofuels Department LIVRO VERDE ...

  9. Algal Biofuels Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algal Biofuels Strategy Report on Workshop Results and Recent Work Roxanne Dempsey Technology Manager 2 Algal Biofuels Strategy Session Agenda-Report on Workshop Results and Recent ...

  10. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    SciTech Connect

    2012-02-15

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  11. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  12. University of Illinois at Urbana-Champaign's GATE Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana-Champaign's GATE Center for Advanced Automotive Bio-Fuel Combustion ...

  13. University of Illinois at Urbana-Champaigns GATE Center for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion Engines University of Illinois at Urbana-Champaigns GATE Center for Advanced Automotive Bio-Fuel Combustion ...

  14. AZ Automotive: Presentation

    Energy.gov [DOE]

    The role of midsize automotive module suppliers in meeting the goals of the Energy Independence and Security act of 2007

  15. Automotive vehicle sensors

    SciTech Connect

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  16. Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  17. Biofuels Information Center

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biofuels Information Center BETO 2015 Peer Review Kristi Moriarty March 24, 2015 2 Goal Statement * The purpose of the Biofuels Information Center (BIC) task is to increase deployment of biofuels production facilities and infrastructure by providing essential biofuels data, tools, and information to all stakeholders * The Bioenergy Atlas tools provide interactive maps and analysis of all relevant biomass data with the purpose of growing the domestic bioenergy market for biofuels and biopower

  18. Godavari Biofuel | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Godavari Biofuel Jump to: navigation, search Name: Godavari Biofuel Place: Maharashtra, India Product: Holds license to produce ethanol. References: Godavari Biofuel1 This...

  19. Biofuels International | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    International Jump to: navigation, search Name: Biofuels International Place: Indiana Sector: Biofuels Product: Pittsburgh based biofuels project developer presently developing a...

  20. Cobalt Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cobalt Biofuels Jump to: navigation, search Logo: Cobalt Biofuels Name: Cobalt Biofuels Address: 500 Clyde Avenue Place: Mountain View, California Zip: 94043 Region: Bay Area...

  1. SG Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: SG Biofuels Address: 132. N. El Camino Real Place: Encinitas, California Zip: 92024 Region: Southern CA Area Sector: Biofuels Product:...

  2. Algenol Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Algenol Biofuels Jump to: navigation, search Name: Algenol Biofuels Place: Bonita Springs, Florida Zip: 34135 Sector: Biofuels, Carbon Product: Algenol is developing a process for...

  3. Solix Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solix Biofuels Jump to: navigation, search Logo: Solix Biofuels Name: Solix Biofuels Address: 430 B. North College Ave Place: Fort Collins, Colorado Zip: 80524 Region: Rockies Area...

  4. United Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: United Biofuels Place: York, Pennsylvania Product: Waste and animal fats to biofuel producer, switched to animal fats from soy in fall of...

  5. Shirke Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Shirke Biofuels Jump to: navigation, search Name: Shirke Biofuels Place: India Product: Indian biodiesel producer. References: Shirke Biofuels1 This article is a stub. You can...

  6. Bently Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bently Biofuels Jump to: navigation, search Name: Bently Biofuels Place: Minden, Nevada Zip: 89423 Product: Biodiesel producer in Nevada. References: Bently Biofuels1 This...

  7. Biofuels Market Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Market Opportunities Biofuels Market Opportunities Breakout Session 2C-Fostering Technology Adoption II: Expanding the Pathway to Market Biofuels Market Opportunities John Eichberger, Vice President Government Relations, National Association of Convenience Stores eichberger_biomass_2014.pdf (727.47 KB) More Documents & Publications End Use and Fuel Certification Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Flexible Fuel Vehicles: Providing a Renewable Fuel

  8. National Algal Biofuels Technology Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary V: National Algal Biofuels Technology Review National Algal Biofuels Technology Review Matthew Posewitz, Professor, Colorado School of Mines

  9. Algae to Biofuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Algae to Biofuels Algae to Biofuels What if you could power your life using pond scum? Algae, plant-like aquatic microorganisms, produce oil similar to petroleum and can be grown ...

  10. Coda Automotive | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Coda Automotive Place: Santa Monica, California Zip: 90403 Product: California-based electric vehicle company which builds its cars in China. References: Coda Automotive1...

  11. Development of Cell/Pack Level Models for Automotive Li-Ion Batteries...

    Energy.gov [DOE] (indexed site)

    Level Models for Automotive Li-Ion Batteries with Experimental Validation Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Vehicle Technologies Office ...

  12. National Algal Biofuels Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roadmap National Algal Biofuels Technology Roadmap The U.S. Department of Energy (DOE) Biomass Program's National Algal Biofuels Technology Roadmap was prepared with the input of more than 200 scientists, engineers, industry representatives, research managers, and other stakeholders, this document represents the synthesis of the Biomass Program's National Algal Biofuels Technology Roadmap Workshop, comments gathered during a public comment period, and supporting scientific literature. This

  13. Northeast Biofuels Collaborative | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Collaborative Jump to: navigation, search Logo: Northeast Biofuels Collaborative Name: Northeast Biofuels Collaborative Address: 101 Tremont Street Place: Boston,...

  14. International Coastal Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Coastal Biofuels Jump to: navigation, search Name: International Coastal Biofuels Place: Tazewell, Virginia Zip: 24651 Sector: Biofuels Product: International Coastal Biofuels is a...

  15. Tees Valley Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tees Valley Biofuels Jump to: navigation, search Name: Tees Valley Biofuels Place: United Kingdom Sector: Biofuels Product: Company set up by North East Biofuels to establish an...

  16. Blackhawk Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Blackhawk Biofuels LLC Jump to: navigation, search Name: Blackhawk Biofuels, LLC Place: Freeport, Illinois Zip: 61032 Sector: Biofuels Product: Blackhawk Biofuels was founded by a...

  17. Blue Ridge Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Blue Ridge Biofuels LLC Place: Asheville, North Carolina Zip: 28801 Sector: Biofuels Product: Blue Ridge Biofuels is a worker...

  18. Mid America Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Mid-America Biofuels LLC Place: Jefferson City, Missouri Zip: 65102 Sector: Biofuels Product: Joint Venture of Biofuels LLC,...

  19. US Canadian Biofuels Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Canadian Biofuels Inc Jump to: navigation, search Name: US Canadian Biofuels Inc. Place: Green Bay, Wisconsin Zip: 54313 Sector: Biofuels Product: US Canadian Biofuels Inc is the...

  20. Best Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Best Biofuels LLC Place: Austin, Texas Zip: 78746 Sector: Biofuels Product: Best Biofuels is developing and commercialising vegetable...

  1. Algae Biofuels Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algae Biofuels Technology Algae Biofuels Technology Algae Biofuels Technology PDF icon Algae Biofuels Technology More Documents & Publications The Promise and Challenge of Algae as...

  2. Northwest Missouri Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Missouri Biofuels LLC Jump to: navigation, search Name: Northwest Missouri Biofuels, LLC Place: St Joseph, Missouri Sector: Biofuels Product: Northwest Missouri Biofuels operates a...

  3. Endicott Biofuels II LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Endicott Biofuels II LLC Jump to: navigation, search Name: Endicott Biofuels II, LLC Place: Houston, Texas Zip: 77060-3235 Sector: Biofuels Product: Houston-based biofuels producer...

  4. Empire Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Empire Biofuels LLC Place: New York, New York Zip: 13148 Sector: Biofuels Product: Empire Biofuels LLC (Empire) was founded in April...

  5. Momentum Biofuels Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Momentum Biofuels Inc Jump to: navigation, search Name: Momentum Biofuels Inc Place: League City, Texas Zip: 77573 Sector: Biofuels Product: Momentum Biofuels, a Texas-based...

  6. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  7. Pathways for Algal Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    DEPARTMENT OF ENERGY BIOMASS PROGRAM Pathways for Algal Biofuels November 27, 2012 Daniel B. Fishman Lead Technology Development Manager 2 | Biomass Program eere.energy.gov Adds value to unproductive or marginal lands of a range of biofuel feedstocks suitable for diesel and aviation fuels Activities include R&D on algal feedstocks and issues related to the sustainable production of algae-derived biofuels. Algae Feedstocks Courtesy Sapphire Courtesy Sapphire Courtesy University of Arizona 3

  8. Biofuels Basics | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biofuels Basics Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to make it undrinkable). It is most commonly made by fermenting any biomass high in carbohydrates through a process similar to beer brewing. Today,

  9. Algal Biofuel Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    goals, development must move beyond biodiesel and ethanol to fuels 2010 2010 950 ... 30 35 40 Billions of Gallons Ethanol & Biodiesel Conventional (Starch) Biofuel Biodiesel ...

  10. Biofuels Marker Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for Convenience & Fuel Retailing Biofuels Market Opportunities John Eichberger NACS Vice President Government Relations Fuels Institute Executive Director The Association for ...

  11. CPS Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CPS Biofuels Jump to: navigation, search Name: CPS Biofuels Place: Cary, North Carolina Zip: 27513 Sector: Biofuels Product: R&D company that is developing a new process to produce...

  12. Biofuels Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education & Workforce Development » Bioenergy Basics » Biofuels Basics Biofuels Basics Biofuels such as ethanol and biodiesel can make a big difference in improving our environment, helping our economy, and reducing our dependence on foreign oil. This page discusses biofuels research supported by the Bioenergy Technologies Office. Biofuels for Transportation Ethanol Biodiesel Renewable Diesel Biofuels for Transportation Most vehicles on the road today are fueled by gasoline and diesel

  13. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel

  14. New tech could be "Mr. Fusion" for biofuel | Argonne National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    convert waste from kitchens or latrines into an alcohol that can power diesel engines. New tech could be "Mr. Fusion" for biofuel By Else Tennessen * September 13, 2013 Tweet...

  15. Mead Biofuel | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuel Jump to: navigation, search Name: Mead Biofuel Place: Eastsound, Washington State Zip: 98245 Product: Distributor of biodiesel throughout the San Juan Islands, Washington....

  16. Michigan Biofuel | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuel Jump to: navigation, search Name: Michigan Biofuel Place: Lupton, Michigan Product: Michigan-based manufacturer of biodiesel processors and related equipment. Coordinates:...

  17. SciTech Connect: "biofuels"

    Office of Scientific and Technical Information (OSTI)

    biofuels" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "biofuels" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  18. Vercipia Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Vercipia Biofuels Jump to: navigation, search Name: Vercipia Biofuels Place: Highlands County, Florida Product: Florida-based JV owning existing intellectual property and...

  19. Piedmont Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: Piedmont Biofuels Place: Chatham County, North Carolina Product: Community coop producing biodiesel in small scale to cope with Chatham...

  20. Greenlight Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: Greenlight Biofuels Place: Charlottesville, Virginia Product: Charlottesville-based company that develops, builds, owns and operates...

  1. Mint Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: Mint Biofuels Place: Pune, Maharashtra, India Zip: 412 111 Product: Maharashtra-based biodiesel producer. Coordinates: 18.52671,...

  2. Integrity Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: Integrity Biofuels Place: Grammer, Indiana Product: Planning a 38m litre (10m gallon) per year biodiesel plant in Indiana. Coordinates:...

  3. Propel Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Propel Biofuels Jump to: navigation, search Name: Propel Biofuels Address: 4444 Woodland Park Ave North Place: Seattle, Washington Zip: 98103 Region: Pacific Northwest Area Sector:...

  4. Acciona Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Acciona Biofuels Jump to: navigation, search Name: Acciona Biofuels Place: Pamplona, Spain Zip: 31002 Product: A subsidiary of Acciona Energia, that specialises in the...

  5. Optimum Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: Optimum Biofuels Place: Higley, Arizona Zip: 85236 Product: Arizona-based operator of a bio diesel refinery in Coolidge, with soybean oil...

  6. FUMPA Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    FUMPA Biofuels Jump to: navigation, search Name: FUMPA Biofuels Place: Redwood Falls, MN, Minnesota Product: Biodiesel producer based in Redwood Falls, Minnesota. References: FUMPA...

  7. Yokayo Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Yokayo Biofuels Jump to: navigation, search Name: Yokayo Biofuels Place: Ukiah, California Zip: 95482 Product: California-based biodiesel producer and distributor with operations...

  8. Keystone Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Keystone Biofuels Jump to: navigation, search Name: Keystone Biofuels Place: Shiremanstown, Pennsylvania Product: Biodiesel producer that runs a 3.7m liter plant in Pennsylvania....

  9. Riksch Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Riksch Biofuels Jump to: navigation, search Name: Riksch Biofuels Place: Crawfordsville, Iowa Zip: 52621 Product: Biodiesel producer building a plant in Crawfordsville, IA...

  10. Austin Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Austin Biofuels Jump to: navigation, search Name: Austin Biofuels Place: Austin, Texas Product: Supplies pure and blended biodiesel to all of Texas. It has benefited from support...

  11. National Advanced Biofuels Consortium Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Biofuels Consortium Virent Board of Directors June 15, 2010 NABC: For Open ... Cellulosic Ethanol RD&D Advanced Biofuels R&D Technoeconomic Analysis Resource Analysis...

  12. Co-Evolution of Biofuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Evolution of Biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ...

  13. Innovative Topics for Advanced Biofuels

    Energy.gov [DOE] (indexed site)

    Innovative Topics for Advanced Biofuels Jonathan Male, Ph.D. PNNL Report-Out Webinar ... into biomass sugars to feed advanced biofuels Separations - Compatibility with ...

  14. Biofuel Solutions | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    developer, which had been developing one plant in Fairmont, Minnesota and another in Wood River, Biofuel Energy LLC took over plant development of Biofuel Solutions' projects in...

  15. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Education & Workforce Development Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology ...

  16. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Generator Development for Automotive Waste Heat Recovery Thermoelectric Generator ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  17. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Energy.gov [DOE] (indexed site)

    Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric ...

  18. Novel biofuel formulations for enhanced vehicle performance

    SciTech Connect

    Miller, Dennis; Narayan, Ramani; Berglund, Kris; Lira, Carl; Schock, Harold; Jaberi, Farhad; Lee, Tonghun; Anderson, James; Wallington, Timothy; Kurtz, Eric; Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion

  19. Scale-up of Algal Biofuel Production Using Waste Nutrients

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Scale-up of Algal Biofuel Production Using Waste Nutrients Civil and Environmental Engineering California Polytechnic State University San Luis Obispo, California MicroBio Engineering, Inc. San Luis Obispo, California Phase 1 Goal Statement * Develop the capability for 2500 gal/ac-yr of biofuel intermediates via HTL from

  20. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  1. Engine Waste Heat Recovery Concept Demonstration | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in a Small Engine Test Cell for Enhanced Kinetic Engine Modeling Accuracy A Thermoelectric Generator with an Intermediate Heat Exchanger for Automotive Waste Heat Recovery ...

  2. Sustainable Biofuels Development Center

    SciTech Connect

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  3. Biofuels.jpg | OSTI, US Dept of Energy Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information Biofuels

  4. National Bio-fuel Energy Laboratory

    SciTech Connect

    Jezierski, Kelly

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors

  5. Biofuels Quality Surveys | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Quality Surveys Biofuels Quality Surveys 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ft013_alleman_2012_p.pdf (1.21 MB) More Documents & Publications Performance of Biofuels and Biofuel Blends Performance of Biofuels and Biofuel Blends Quality, Performance, and Emission Impacts of Biofuels and Biofuel Blends

  6. New Leaf Biofuel | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuel Jump to: navigation, search Name: New Leaf Biofuel Address: 1380 Garnet Place: San Diego, California Zip: 92109 Region: Southern CA Area Sector: Biofuels Product: Collects...

  7. Continental Biofuels Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Continental Biofuels Corporation Jump to: navigation, search Name: Continental Biofuels Corporation Place: Dallas, Texas Zip: 75240 Sector: Biofuels Product: Dallas-based company...

  8. Biofuels Power Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Corp Jump to: navigation, search Name: Biofuels Power Corp Place: The Woodlands, Texas Zip: 77380 Sector: Biofuels, Renewable Energy Product: Biofuels Power Corp produces and...

  9. DuPont Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: DuPont Biofuels Place: Wilmington, Delaware Zip: 19898 Product: Biofuel technology development subsidiary of DuPont. Co-developing...

  10. Category:Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Organizations Pages in category "Biofuels" This category contains only the following page. T The Biofuels Center of North Carolina Retrieved from "http:en.openei.orgw...

  11. BP Biofuels Brasil | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Brasil Jump to: navigation, search Name: BP Biofuels Brasil Place: Campinas, Sao Paulo, Brazil Zip: 13025-320 Sector: Biofuels Product: Brazil based BP subsidiary focused...

  12. Amereco Biofuels Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Amereco Biofuels Corp Jump to: navigation, search Name: Amereco Biofuels Corp Place: Phoenix, Arizona Zip: 85028 Sector: Biofuels Product: Amereco pursues technologies that...

  13. Greenergy Biofuels Limited | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Limited Jump to: navigation, search Name: Greenergy Biofuels Limited Place: London, Greater London, United Kingdom Zip: WC1V 7BD Sector: Biofuels Product: Imports, blends...

  14. Novare Biofuels Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Novare Biofuels Inc Jump to: navigation, search Logo: Novare Biofuels Inc Name: Novare Biofuels Inc Address: 2983 Sterling Ct Place: Boulder, Colorado Zip: 80301 Region: Rockies...

  15. Aaditya Biofuels Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Aaditya Biofuels Ltd Jump to: navigation, search Name: Aaditya Biofuels Ltd. Place: Gujarat, India Product: Gujarat-based biodiesel producer. References: Aaditya Biofuels Ltd.1...

  16. Butamax Advanced Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Butamax Advanced Biofuels LLC Jump to: navigation, search Name: Butamax Advanced Biofuels LLC Place: Wilmington, Delaware Zip: 19880-0268 Sector: Biofuels Product: Delaware-based...

  17. Raven Biofuels International Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels International Corporation Jump to: navigation, search Name: Raven Biofuels International Corporation Place: Paramus, New Jersey Zip: 07652-1236 Sector: Biofuels Product:...

  18. Bioproducts and Biofuels - Growing Together! | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Biofuels - Growing Together Bioproducts and Biofuels - Growing Together Breakout Session 2B-Integration of Supply Chains II: Bioproducts-Enabling Biofuels and Growing the ...

  19. Folium - Biofuels from Tobacco - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Folium - Biofuels from Tobacco Lawrence Berkeley National Laboratory Contact LBL About This ...

  20. Biofuels - Biomass Feedstock - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Biofuels - Biomass Feedstock Idaho National Laboratory Contact INL About This Technology Technology ...

  1. Sandia's Biofuels Program

    SciTech Connect

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  2. Sandia's Biofuels Program

    ScienceCinema

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2016-07-12

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  3. NREL: Learning - Biofuels Basics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The two most common types of biofuels in use today are ethanol and biodiesel. Ethanol is an alcohol, the same as in beer and wine (although ethanol used as a fuel is modified to ...

  4. Biofuels Issues and Trends

    Gasoline and Diesel Fuel Update

    Biofuels Issues and Trends October 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Biofuels Issues and Trends i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government.

  5. USDA Feedstocks and Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Chief Economist Office of Energy Policy and New Uses Harry S. Baumes, Ph. D. Director Office of Energy Policy and New Uses Aviation Biofuels Workshop Co-sponsored by: US DOE, FAA, and CAAFI Washington, DC November 27, 20012 USDA Feedstocks and Biofuels Office of the Chief Economist Office of Energy Policy and New Uses * Research and Development * USDA Activities * Q&As AGENDA Office of the Chief Economist Office of Energy Policy and New Uses Complexity: Diversity of Production Environment

  6. Carbon Cycle Engineering | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cycle Engineering Jump to: navigation, search Name: Carbon Cycle Engineering Address: 13725 Dutch Creek Road Place: Athens, Ohio Zip: 45701 Sector: Biofuels, Biomass, Efficiency,...

  7. Center for Advanced Biofuel Systems (CABS) Final Report

    SciTech Connect

    Kutchan, Toni M.

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and will have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the

  8. CleanTech Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CleanTech Biofuels Jump to: navigation, search Name: CleanTech Biofuels Place: St. Louis, Missouri Zip: 63130 Sector: Biofuels Product: CleanTech Biofuels holds exclusive licenses...

  9. Microalgal Biofuels Analysis Laboratory Procedures | Bioenergy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Microalgal Biofuels Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for analyzing microalgal biofuels. These procedures help scientists and ...

  10. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy.gov [DOE] (indexed site)

    Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates ...

  11. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Advanced Conversion Roadmap Workshop Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels

  12. Advancing Commercialization of Algal Biofuels through Increased...

    Energy.gov [DOE] (indexed site)

    Advancing Commercialization of Algal Biofuels through Increased Biomass Productivity ... including: NAABB, Cornell's Marine Algal Biofuels Consortium, ATP3. * Participation in ...

  13. Advanced Cellulosic Biofuels - Leveraging Ensyn's Commercially...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Cellulosic Biofuels Leveraging Ensyn's commercially-proven RTP technology 2015 ... Refinery Coprocessing vs traditional approaches Traditional biofuels Ethanol, biodiesel ...

  14. Development of Renewable Biofuels Technology by Transcriptomic...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    information Development of Renewable Biofuels Technology by Transcriptomic Analysis ... and the development of diatoms as biofuels production organisms, which will ...

  15. Bioenergy & Biofuels Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects Bioenergy & Biofuels Projects BIOENERGY &amp; BIOFUELS 1 PROJECT in 1 LOCATION 25,000,000 GALLONS ANNUAL PRODUCTION CAPACITY 14,900,000 GALLONS OF GASOLINE SAVED ANNUALLY 132,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 BIOENERGY &amp; BIOFUELS PROJECT LOAN PROGRAM TECHNOLOGY

  16. National Algal Biofuels Roadmap Review: Chapter 4

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary V: National Algal Biofuels Technology Review National Algal Biofuels Roadmap Review: Chapter 4 Valerie Harmon, Principal, Harmon Consulting

  17. World Biofuels Study

    SciTech Connect

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over

  18. Bluebird Automotive | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sector: Vehicles Product: Producer of electric vehicles for the delivery market and other cars, specialising in making fast electric vehicles. References: Bluebird Automotive1...

  19. Integrity Automotive | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Product: Joint venture between Kentucky businessman Randal Waldman of Integrity Manufacturing and California-based electric car maker Zap. References: Integrity Automotive1...

  20. Automotive Energy Storage Systems 2015

    Energy.gov [DOE]

    Automotive Energy Storage Systems 2015, the ITB Group’s 16th annual technical conference, was held from March 4–5, 2015, in Novi, Michigan.

  1. BioFuels Atlas (Presentation)

    SciTech Connect

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  2. US Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: US Biofuels Place: Rome, Georgia Product: Biodiesel producer based in Georgia References: US Biofuels1 This article is a stub. You can help OpenEI by expanding it. US...

  3. Hampton Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: Hampton Biofuels Place: New York, New York Zip: 10017 Product: A start-up looking to develop a biodiesel plant in upstate New York....

  4. EERE Success Story-Michigan: General Motors Optimizes Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ...div> Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency EERE Success Story-Michigan: Universities Train Next Generation of Automotive Engineers EERE Success ...

  5. Wastewater Reclamation and Biofuel Production Using Algae

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wastewater Reclamation and Biofuel Production Using Algae Tryg Lundquist, Ph.D., P.E., Presenter Ian Woertz, Matt Hutton, Ruth Spierling, Shelley Blackwell, Braden Crowe Bioenergy | June 24, 2015 | Washington DC 1 California Polytechnic State University San Luis Obispo, California MicroBio Engineering, Inc. San Luis Obispo, California * 2014 US DOE Algae Biomass Yield Project * 2013 US DOE Water & Nutrient Recycling Project * 2013 US DOE ATP 3 Testbed Site (Prime: ASU) * 2011 CEC Algae

  6. Biofuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Most vehicles on the road today run on gasoline and diesel fuels, which are produced from oil-a non-renewable resource, meaning supplies are limited. Renewable resources, in contrast, are constantly replenished and are unlikely to run out. Biomass is one type of renewable resource that can be converted into liquid fuels (biofuels) for transportation.

  7. Algal Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algal Biofuels Algal Biofuels Algae image The Bioenergy Technologies Office's (BETO's) Algae Program is carrying out a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels by working with partners to develop new technologies, to integrate technologies at commercially-relevant scales, and conduct crosscutting analyses to understand the potential and challenges of an algal biofuel industry that is capable of annually producing

  8. An Energy-limited Model of Algal Biofuels Production: Towards the Next Generation of Advanced Biofuels

    DOE PAGES [OSTI]

    Dunlop, Eric

    2013-01-01

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  9. An energy-limited model of algal biofuel production: Toward the next generation of advanced biofuels

    DOE PAGES [OSTI]

    Dunlop, Eric H.; Coaldrake, A. Kimi; Silva, Cory S.; Seider, Warren D.

    2013-10-22

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  10. An Energy-limited Model of Algal Biofuels Production: Towards the Next Generation of Advanced Biofuels

    SciTech Connect

    Dunlop, Eric

    2013-01-01

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting the simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.

  11. Feature Stories | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ... potentially contaminated sites and applies remediation ...

  12. Science Highlights | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science Highlights Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels...

  13. Bright Automotive Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Automotive Inc Jump to: navigation, search Name: Bright Automotive, Inc. Place: Anderson, Indiana Zip: 46013 Product: Designer and OEM for the IDEA PHEV. References: Bright...

  14. Innovative Drivetrains in Electric Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Drivetrains in Electric Automotive Technology Education (IDEATE) Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) 2012 DOE Hydrogen and Fuel Cells ...

  15. Automotive Thermoelectric Generators and HVAC | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermoelectric Generators and HVAC Automotive Thermoelectric Generators and HVAC Provides overview of DOE-supported projects in automotive thermoelectric generators and heatersair ...

  16. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop ...

  17. Korean Automotive Research Instituiton | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Korean Automotive Research Instituiton Jump to: navigation, search Name: Korean Automotive Research Instituiton Place: Korea Information About Partnership with NREL Partnership...

  18. Fisker Automotive Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Fisker Automotive Inc Jump to: navigation, search Name: Fisker Automotive Inc Place: Irvine, California Zip: 92606 Product: Irvine-based hybrid vehicle manufacturer. Coordinates:...

  19. Green Automotive Company Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Company Inc Jump to: navigation, search Name: Green Automotive Company Inc Place: Texas Zip: 75001 Product: Texas-based electric vehicle manufacturer. References: Green Automotive...

  20. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  1. Oscar Automotive Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oscar Automotive Ltd Place: London, Greater London, United Kingdom Sector: Hydro, Hydrogen Product: OSCar Automotive is working towards the commercialisation of hydrogen fuel...

  2. Lignin Bioproducts to Enable Biofuels

    DOE PAGES [OSTI]

    Wyman, Charles E.; Ragauskas, Arthur J

    2015-09-15

    Here we report that today's and tomorrow's biofuels production facilities could benefit tremendously from increasing the value from the large amount of lignin that results from biofuels operations. Certainly, the scientific community, and biofuels industry has begun to recognize the challenges and opportunities associated with lignin.

  3. Sustainable Algal Biofuels Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algal Biofuels Consortium Thursday May 21, 2013 9.5.1.5, 9.5.1.7, 9.5.1.8 Dr. Gary Dirks (SABC Principal Investigator) Dr. John McGowen (SABC Project Manager) Arizona State University Dr. Philip Pienkos (SABC Director) NREL Cultivating Energy Solutions The primary goals were to evaluate biochemical conversion as a potentially viable strategy for converting all the components of algal biomass into biofuels and evaluate the fit-for-use properties of those algal derived fuels and fuel

  4. Microbial engineering for the production of fatty acids and fatty acid derivatives

    DOEpatents

    Stephanopoulos, Gregory; Abidi, Syed Hussain Imam

    2014-07-01

    Some aspects of this invention relate to methods useful for the conversion of a carbon source to a biofuel or biofuel precursor using engineered microbes. Some aspects of this invention relate to the discovery of a key regulator of lipid metabolism in microbes. Some aspects of this invention relate to engineered microbes for biofuel or biofuel precursor production.

  5. Role of Friction in Materials Selection for Automotive Applications

    SciTech Connect

    Blau, Peter Julian

    2013-01-01

    This is an invited article for a special issue of the ASM International monthly magazine that concerns "Automotive Materials and Applications." The article itself overviews frictional considerations in material selection for automobiles. It discusses implications for energy efficiency (engine friction) and safety (brakes) among other topics.

  6. Development of Computer-Aided Design Tools for Automotive Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 8_hartridge_2012_o.pdf (1.32 MB) More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries Review of A123s HEV and PHEV USABC Programs

  7. Beetles, Biofuel, and Coffee

    SciTech Connect

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  8. PNNL Aviation Biofuels

    SciTech Connect

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  9. Biofuel impacts on water.

    SciTech Connect

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  10. SeQuential Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: SeQuential Biofuels LLC Place: Portland, Oregon Zip: 97231 Sector: Biofuels Product: A biofuels marketing and distribution company...

  11. Systems-Level Synthetic Biology for Advanced Biofuel Production

    SciTech Connect

    Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall; Meserole, Stephen; Tallant, David

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  12. NREL's Cyanobacteria Engineering Shortens Biofuel Production Process, Captures CO2 (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The flexibility of cyanobacterial metabolism supports direct conversion of carbon dioxide (CO 2 ) to ethylene. Photosynthesis fuels growth in plants and algae, two of the primary components of biomass. Biomass, in turn, can be converted into various fuels and chemicals. NREL researchers have shortened this process by engineering one photosynthetic organism, cyanobacterium, so that it converts CO 2 directly into the target chemical ethylene, bypassing the biomass produc- tion and processing

  13. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in ...

  14. Engine Combustion

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ... Transportation Energy Co-Evolution of Biofuels Biofuels Publications Lignocellulosic ...

  15. Metabolomics of Clostridial Biofuel Production

    SciTech Connect

    Rabinowitz, Joshua D; Aristilde, Ludmilla; Amador-Noguez, Daniel

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  16. Chapter 1: Feedstock Engineering and Biomass Pretreatments: New...

    Office of Scientific and Technical Information (OSTI)

    Engineering and Biomass Pretreatments: New Views for a Greener Biofuels Process Citation Details In-Document Search Title: Chapter 1: Feedstock Engineering and Biomass ...

  17. Recycling of Nutrients and Water in Algal Biofuels Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (Engineering) Co-PI: Corinne Lehr, Ph.D. (Chemistry) This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Recycling of Nutrients and Water in Algal Biofuels Production Civil and Environmental Engineering California Polytechnic State University San Luis Obispo, California MicroBio Engineering, Inc. San Luis Obispo, California Goal Statement * Improve the sustainability of algae

  18. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  19. A model for improving microbial biofuel production using a synthetic feedback loop

    SciTech Connect

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  20. Advanced Biofuels Cost of Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OF ENERGY BIOMASS PROGRAM Advanced Biofuels Cost of Production Aviation Biofuels Conference Zia Haq DPA Coordinator October 12, 2012 2 | Office of the Biomass Program eere.energy.gov Introduction * Resource assessment - do we have enough biomass? * Techno-economic analysis - can biofuels be produced at competitive prices? * Sustainability - What are the greenhouse gas emissions? * Integrated biorefineries - what is being funded at DOE and what are future plans? 3 | Office of the Biomass Program

  1. National Algal Biofuels Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Roadmap MAY 2010 BIOMASS PROGRAM U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels Technology Roadmap A technology roadmap resulting from the National Algal Biofuels Workshop December 9-10, 2008 College Park, Maryland Workshop and Roadmap sponsored by the U.S. Department of Energy Office of Energy Efficiency and

  2. Tarryn Miller: Fueling biofuel's promise

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tarryn Miller: Fueling biofuel's promise Tarryn Miller: Fueling biofuel's promise Student intern driven to develop cyanobacteria as viable carbon-neutral energy source. August 27, 2013 Tarryn Miller: Fueling biofuel's promise Student intern driven to develop cyanobacteria as viable carbon-neutral energy source. "Utilizing scientific discoveries for the good of human kind and flora and fauna here on earth has the utmost importance in my mind. If I can help create a sustainable energy source,

  3. Heartland Biofuel | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: Heartland Biofuel Place: Flora, Indiana Product: Biodiesel producer that operates a 1.7m plant in Flora, Indiana. Coordinates: 32.54209,...

  4. Biofuels Digest | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Digest Jump to: navigation, search Name: Biofuels Digest Address: 801 Brickell Avenue Suite 900 Place: Miami, Florida Zip: 33131 Sector: Services Product: Information Year Founded:...

  5. Biofuels and Renewable Energy Page

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bioenergy Conventional Renewable Energy Wind Power Hydro Power Power System INL Home Biofuels and Renewable Energy Renewable energy resources are expected to play major role in...

  6. BioFuels Atlas Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kristi Moriarity's presentation on NREL's BioFuels Atlas from the May 12, 2011, Clean Cities and Biomass Program State webinar.

  7. SG BioFuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    SG BioFuels Jump to: navigation, search Name: SG BioFuels Place: Encinitas, California Zip: 92024 Product: California-based biofuel producer operating across the United States....

  8. Sun Biofuels SBF | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels SBF Jump to: navigation, search Name: Sun Biofuels (SBF) Place: London, Greater London, United Kingdom Zip: W8 7LP Product: London-based jatropha and biofuel project...

  9. SunBelt Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    SunBelt Biofuels Jump to: navigation, search Logo: SunBelt Biofuels Name: SunBelt Biofuels Place: Soperton, Georgia Zip: 30457 Sector: Biomass Product: Freedom Giant Miscanthus...

  10. 5 boro biofuel | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    boro biofuel Jump to: navigation, search Logo: 5 boro biofuel Name: 5 boro biofuel Address: 100 maiden lane Place: New York, New York Zip: 10035 Region: Northeast - NY NJ CT PA...

  11. Advanced Biofuels Cost of Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biofuels Cost of Production Advanced Biofuels Cost of Production Presentation given by the Biomass Program's Zia Haq at the Aviation Biofuels Conference on the cost of production of advanced biofuels. aviation_biofuels_haq.pdf (514.11 KB) More Documents & Publications A Review of DOE Biofuels Program DOE Perspectives on Advanced Hydrocarbon-based Biofuels Pathways for Algal Biofuels

  12. Mod II engine performance

    SciTech Connect

    Richey, A.E.; Huang, S.C.

    1987-01-01

    The Automotive Stirling Engine Program (ASE) is directed at the development of a kinematic Stirling engine for automotive use. This program is sponsored by the Department of Energy (DOE) and managed by the NASA-Lewis Research Center (NASA-LeRC). Following proof-of-concept testing and development of promising performance values with early versions of the Stirling engine, a production-type automotive design, the Mod II engine, was developed. The design of this engine and its systems has been previously presented. Based on this design, the first engine has been built and development testing has started. Projections for this first engine build are presented in this paper. Results of initial tests are also given including identification of development items and formulation of plans for resolution of existing deficiencies.

  13. Market Drivers for Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Market Drivers for Biofuels Market Drivers for Biofuels This presentation, entitled "Market Drivers for Biofuels," was given at the Third Annual MSW to Biofuels Summit in February, 2013, by Brian Duff. duff_msw_to_biofuels_summit.pdf (2.42 MB) More Documents & Publications Office of the Biomass Program Educational Opportunities in Bioenergy Intro Webinar Webinar: Using the New Bioenergy KDF for Data Discovery and Research Sustainability for the Global Biofuels Industry: Minimizing

  14. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    SciTech Connect

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more

  15. Major DOE Biofuels Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biomass Program Major DOE Biofuels Project Locations in the United States Major DOE Biofuels Project Locations (63.81 KB) More Documents & Publications Major DOE Biofuels Project Locations Major DOE Biofuels Project Locations Algal Biofuel Technologies

  16. USDA Biofuels R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    USDA Biofuels R&D USDA Biofuels R&D USDA Biofuels R&D PDF icon USDA Biofuels R&D More Documents & Publications Webinar: Biofuels for the Environment and Communities 2015 Peer...

  17. Reducing Enzyme Costs Increases Market Potential of Biofuels; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect

    Not Available

    2010-06-01

    Fact sheet describing NREL's work with enzyme producers Novozymes and Genencor to engineer new cellulase enzymes to breakdown cellulosic ethanol into fermentable sugars that can be converted into biofuels.

  18. Biofuel Authority Rajasthan | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Authority Rajasthan Jump to: navigation, search Name: Biofuel Authority Rajasthan Place: Jaipur, Rajasthan, India Zip: 302005 Sector: Biofuels Product: Jaipur-based local body to...

  19. Biofuel Industries Group LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Industries Group LLC Jump to: navigation, search Name: Biofuel Industries Group LLC Place: Adrian, Michigan Zip: 49221 Product: Biofuel Industries Group, LLC owns and operates the...

  20. Biofuel Energy Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuel Energy Corporation Address: 1600 Broadway Place: Denver, Colorado Zip: 80202 Region: Rockies Area Sector: Biofuels Product: Ethanol producer Website: bfenergy.com...

  1. A Prospective Target for Advanced Biofuel Production

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

  2. Algal Biofuels Strategy Workshop - Spring Event | Department...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Algal Biology Toolbox Workshop Summary Report Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels Strategy Workshop - Fall ...

  3. 2016 Bioenergizeme Infographic Challenge: Algae Biofuels, Exploring...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algae Biofuels, Exploring the Energy of Tomorrow Today 2016 Bioenergizeme Infographic Challenge: Algae Biofuels, Exploring the Energy of Tomorrow Today 2016 Bioenergizeme ...

  4. Assessing the Economic Potential of Advanced Biofuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the Economic Potential of Advanced Biofuels - Sandia Energy Energy Search Icon Sandia Home ... Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ...

  5. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions ...

  6. Central Texas Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Texas Biofuels LLC Jump to: navigation, search Name: Central Texas Biofuels LLC Place: Giddings, Texas Zip: 78942 Product: Biodiesel producer in Giddings, Texas. References:...

  7. Enhanced Biofuels Technologies India | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Technologies India Jump to: navigation, search Name: Enhanced Biofuels & Technologies India Place: Coimbatore, Tamil Nadu, India Zip: 641 029 Product: Tamil Nadu-based...

  8. BRMF Georgia Mountain Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BRMF Georgia Mountain Biofuels Jump to: navigation, search Name: BRMFGeorgia Mountain Biofuels Place: Clayton, Georgia Product: Biodiesel plant developer in Georgia. References:...

  9. Ultimate Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Ultimate Biofuels LLC Place: Ann Arbor, Michigan Zip: 48108 Product: Plans to develop sweet sorghum based ethanol plants. References:...

  10. US Biofuels Inc USB | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc USB Jump to: navigation, search Name: US Biofuels, Inc (USB) Place: Delaware Sector: Biofuels Product: A Delaware corporation and a wholly owned subsidiary of Australian...

  11. Biofuels America Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels America Inc Jump to: navigation, search Name: Biofuels America Inc Place: Memphis, Tennessee Zip: 38126 Product: Tennessee-based company that has proposed building a...

  12. Polo Nacional de Biocombustiveis Brazilian Biofuels Programme...

    OpenEI (Open Energy Information) [EERE & EIA]

    Nacional de Biocombustiveis Brazilian Biofuels Programme Jump to: navigation, search Name: Polo Nacional de Biocombustiveis (Brazilian Biofuels Programme) Place: Piracicaba (SP),...

  13. Independence Biofuels Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Inc Jump to: navigation, search Name: Independence Biofuels Inc Place: Middletown, Pennsylvania Zip: 17057 Sector: Renewable Energy, Vehicles Product: Provides clean,...

  14. Carolina Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Carolina Biofuels LLC Place: North Carolina Zip: 29687 Product: Biodiesel producer based in South Carolina. References: Carolina Biofuels LLC1 This article is a stub. You can...

  15. Flambeau River Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Flambeau River Biofuels Jump to: navigation, search Name: Flambeau River Biofuels Place: Park Falls, Wisconsin Sector: Biomass Product: A subsidiary of Flambeau River Papers LLC...

  16. US Biofuels Ltd Ohio | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Ltd Ohio Jump to: navigation, search Name: US Biofuels Ltd (Ohio) Place: Columbus, Ohio Zip: 43215 Product: Builder of a bioethanol plant in Richmond, OH. References: US...

  17. Greenlight Biofuels Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ltd Jump to: navigation, search Name: Greenlight Biofuels Ltd. Place: Texas Product: Texas-based biodiesel producer. References: Greenlight Biofuels Ltd.1 This article is a stub....

  18. Biofuels of Colorado LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    of Colorado LLC Jump to: navigation, search Name: Biofuels of Colorado LLC Place: Denver, Colorado Zip: 80216 Product: Biodiesel producer in Denver, Colorado. References: Biofuels...

  19. Welsh Biofuels Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Welsh Biofuels Ltd Jump to: navigation, search Name: Welsh Biofuels Ltd Place: Brynmenym Bridgend, United Kingdom Zip: CF329RQ Sector: Biomass Product: Biomass fuel company...

  20. Middle Georgia Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Georgia Biofuels Jump to: navigation, search Name: Middle Georgia Biofuels Place: East Dublin, Georgia Zip: 31027 Product: Georgia-based biodiesel producer. References: Middle...

  1. ASAlliances Biofuels Defunct | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    ASAlliances Biofuels Defunct Jump to: navigation, search Name: ASAlliances Biofuels (Defunct) Place: Dallas, Texas Product: Former JV formed to construct three large-scale ethanol...

  2. Patriot BioFuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BioFuels Jump to: navigation, search Name: Patriot BioFuels Place: Little Rock, Arkansas Zip: 72201 Product: Arkansas-based biodiesel company with production facilities at...

  3. Greenleaf Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Greenleaf Biofuels LLC Jump to: navigation, search Name: Greenleaf Biofuels LLC Place: Guilford, Connecticut Zip: 6437 Product: Connecticut-based biodiesel start-up planning to...

  4. Pure Biofuels Corporation formerly Metasun Enterprises Inc |...

    OpenEI (Open Energy Information) [EERE & EIA]

    Pure Biofuels Corporation formerly Metasun Enterprises Inc Jump to: navigation, search Name: Pure Biofuels Corporation (formerly Metasun Enterprises Inc) Place: Beverly Hills,...

  5. BlackGold Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BlackGold Biofuels Jump to: navigation, search Name: BlackGold Biofuels Place: Philadelphia, Pennsylvania Zip: 19107 Product: Philadelphia-based developer of a waste...

  6. North American Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Jump to: navigation, search Name: North American Biofuels Place: Bohemia, New York Product: Biodiesel eqwuipment manufacturer and producer of biodiesel Coordinates:...

  7. Midwestern Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Midwestern Biofuels LLC Jump to: navigation, search Name: Midwestern Biofuels LLC Place: South Shore, Kentucky Zip: 41175 Sector: Biomass Product: Kentucky-based biomass energy...

  8. United Biofuels Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Inc Jump to: navigation, search Name: United Biofuels Inc Place: Plover, Wisconsin Zip: 54467 Sector: Biomass Product: Wisconsin-based manufacturer and distributor of...

  9. India Biofuels Company IBFC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    IBFC Jump to: navigation, search Name: India Biofuels Company (IBFC) Place: Madhya Pradesh, India Product: India-based company that intends to develop biofuel feedstock...

  10. Memphis Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Memphis Biofuels LLC Place: Memphis, Tennessee Product: Biodiesel start-up planning to construct a 36-million-gallon-per-year...

  11. Verde Biofuels Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Inc Jump to: navigation, search Name: Verde Biofuels Inc Place: Fountain Inn, South Carolina Product: The company is a biodiesel producer and distributor. References:...

  12. Mercurius Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Mercurius Biofuels LLC Jump to: navigation, search Name: Mercurius Biofuels LLC Address: 3190 Bay Road Place: Ferndale, Washington Zip: 98248 Region: Pacific Northwest Area Sector:...

  13. Triangle biofuels Industries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Triangle biofuels Industries Jump to: navigation, search Name: Triangle biofuels Industries Place: Iowa Product: Biodiesel producer developing a 19mlpa plant in Johnston, IA....

  14. Borger Biofuels LLLP | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Borger Biofuels LLLP Jump to: navigation, search Name: Borger Biofuels LLLP Place: Borger, Texas Product: Developing a 110m gallon ethanol plant in Borger, Texas. Coordinates:...

  15. CREDA HPCL Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    CREDA HPCL Biofuels Jump to: navigation, search Name: CREDA-HPCL Biofuels Place: Raipur, India Zip: 492001 Sector: Renewable Energy Product: Indian-based joint venture between...

  16. Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...

    Energy.gov [DOE] (indexed site)

    Jose Olivares of Los Alamos National Laboratory (LANL) presented the results of algal biofuels research conducted by the National Alliance for Advanced Biofuels and Bioproducts ...

  17. The President's Biofuels Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The President's Biofuels Initiative The President's Biofuels Initiative Presentation by Neil Rossmeissl at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed ...

  18. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integrated Biorefineries:Biofuels, Biopower, and Bioproducts Integrated Biorefineries:Biofuels, Biopower, and Bioproducts The U.S. goal to produce 21 billion gallons of advanced ...

  19. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts

    Energy.gov [DOE] (indexed site)

    biofuels. Developing the U.S. bioeconomy requires building many integrated biorefneries capable of converting a broad range of biomass feedstocks into affordable biofuels, ...

  20. Cross-cutting Technologies for Advanced Biofuels

    Energy.gov [DOE] (indexed site)

    Cross-cutting Technologies for Advanced Biofuels Report-Out Webinar February 9, 2012 Adam ... Cost Largest cost contributor to biofuels production Impact of Harvesting...

  1. Algal Biofuels Strategy Workshop - Fall Event

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Algal Biofuels Strategy Proceedings from the November 19-20, 2013, Workshop Mesa, ... (BETO's) Algae Program hosted the Algal Biofuels Strategy Workshop at Arizona State ...

  2. Algae Raceway to speed path to biofuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Algae Raceway to speed path to biofuels - Sandia Energy Energy Search Icon Sandia Home ... Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ...

  3. United Biofuels Private Limited | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    United Biofuels Private Limited Jump to: navigation, search Name: United Biofuels Private Limited Place: Tamil Nadu, India Sector: Biomass Product: India-based owner and operator...

  4. Algae Biorefinery Development for Biofuels and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary V: National Algal Biofuels Technology Review Algae Biorefinery Development for Biofuels and Bioproducts Lieve Laurens, Senior Scientist, National Renewable Energy Laboratory

  5. A New Biofuels Technology Blooms in Iowa

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production.

  6. Algal Biofuel Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biofuel Technologies Algal Biofuel Technologies At the November 6, 2008 joint Web conference of DOE's Biomass and Clean Cities programs, Al Darzins (National Renewable Energy ...

  7. Microbial engineering for the production of fatty acids and fatty...

    Office of Scientific and Technical Information (OSTI)

    Some aspects of this invention relate to methods useful for the conversion of a carbon source to a biofuel or biofuel precursor using engineered microbes. Some aspects of this ...

  8. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    SciTech Connect

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  9. Engineering and Materials for Automotive Thermoelectric Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Design and optimization of TE exhaust generator, vehicle integration, and thermal management; distributed cooling and heating with TE devices; discovery and development of highly efficient TE materials.

  10. Optical-Engine Study of a Low-Temperature Combustion Strategy...

    Energy.gov [DOE] (indexed site)

    An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel Automotive HCCI Engine Research ...

  11. Picture of the Week: Growing a greener future with algal biofuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 Growing a greener future with algal biofuels At the New Mexico Consortium, Los Alamos scientists are using genetic engineering to improve algae strains for increased biomass yield and carbon capture efficiency. September 6, 2015 x x View larger version Growing a greener future with algal biofuels At the New Mexico Consortium, Los Alamos scientists are using genetic engineering to improve algae strains for increased biomass yield and carbon capture efficiency. Algal biomass can be converted to

  12. NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE ...

  13. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...

    Energy.gov [DOE] (indexed site)

    Development for commercialization of automotive thermoelectric generators from high-ZT TE ... Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and ...

  14. Automotive Thermoelectric Moduleswith Scalable Thermo- andElectro...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Automotive Thermoelectric Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric ...

  15. Biofuels: Project summaries

    SciTech Connect

    Not Available

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  16. Bioproducts to Enable Biofuels Workshop

    Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting the one-day Bioproducts to Enable Biofuels Workshop on July 16, 2015, in Westminster, Colorado. BETO is seeking to collect information from key industry, university, and national laboratory stakeholders, regarding the challenges associated with the coproduction of biomass derived chemicals and products alongside biofuels.

  17. Consortium for Algal Biofuels Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... p roteotype , I nterna&onal C onference o n A lgal B iomass, Biofuels, a nd B ioproducts. ... P rovided b y A lgal Biofuels, N AS---NRC S tudy, M arch 1 7, 2 011, S an D iego, C A . ...

  18. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  19. Biofuels: 1995 project summaries

    SciTech Connect

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  20. Graduate Automotive Technology Education (GATE) Center

    SciTech Connect

    Jeffrey Hodgson; David Irick

    2005-09-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  1. Recycling of Nutrients and Water in Algal Biofuels Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recycling of Nutrients and Water in Algal Biofuels Production Thursday, May 23, 2013 DOE Bioenergy Production Technologies Office Algae R&D Activities Peer Review PI: Tryg Lundquist Ph D P E (Engineering) PI: Tryg Lundquist, Ph.D., P.E. (Engineering) Co-PI: Corinne Lehr, Ph.D. (Chemistry) C f S California Polytechnic State University San Luis Obispo This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement * Improve the

  2. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  3. Bannon Automotive LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name: Bannon Automotive LLC Place: New York Product: New York-based manufacturer of electric cars. References: Bannon Automotive LLC1 This article is a stub. You can help...

  4. Graduate Automotive Technology Education (GATE) Initiative Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards September 8, 2011 - 11:46am Addthis Graduate Automotive Technology Education (GATE) Initiative Awards DOE's Graduate Automotive Technology Education (GATE) initiative will award $6.4 million over the course of five years to support seven Centers of Excellence at American colleges, universities, and university-affiliated research

  5. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect

    2011-01-01

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  6. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being

  7. International Trade of Biofuels (Brochure)

    SciTech Connect

    Not Available

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  8. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    SciTech Connect

    Nelson, Douglas

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  9. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  10. A Review of DOE Biofuels Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    OF ENERGY BIOMASS PROGRAM A Review of DOE Biofuels Program 4th International Conference on Biofuels Standards (ICBS-2012) - NIST Zia Haq DPA Coordinator November 13, 2012 2 | Office of the Biomass Program eere.energy.gov Introduction * Develop and deploy integrated biorefineries * Research and develop advanced biofuels technologies * Navy/USDA/DOE Advanced Biofuels Initiative * Resource assessment - do we have enough biomass? * Techno-economic analysis - can biofuels be produced at competitive

  11. ARPA-E: Engineering Innovative New Biofuels

    SciTech Connect

    Burbaum, Jonathan; Peter, Gary; Kirby, Jim; Lemaux, Peggy

    2014-02-24

    ARPA-E's PETRO program was created to supply the transportation sector with plant-derived fuels that are cost-competitive with petroleum and don't affect U.S. food supply. This video highlights the role that ARPA-E has played in connecting traditionally distinct research areas to inform the research and development efforts of PETRO project teams. Specifically, it highlights how the University of Florida leveraged lessons learned from the Joint BioEnergy Institute's work with E. coli to directly influence their work in harvesting fuel molecules from pine trees, as well as how the same genes tested in pine are now being tested in tobacco at Lawrence Berkeley National Laboratory. This transfer of knowledge facilitates new discovery.

  12. ARPA-E: Engineering Innovative New Biofuels

    ScienceCinema

    Burbaum, Jonathan; Peter, Gary; Kirby, Jim; Lemaux, Peggy

    2014-03-13

    ARPA-E's PETRO program was created to supply the transportation sector with plant-derived fuels that are cost-competitive with petroleum and don't affect U.S. food supply. This video highlights the role that ARPA-E has played in connecting traditionally distinct research areas to inform the research and development efforts of PETRO project teams. Specifically, it highlights how the University of Florida leveraged lessons learned from the Joint BioEnergy Institute's work with E. coli to directly influence their work in harvesting fuel molecules from pine trees, as well as how the same genes tested in pine are now being tested in tobacco at Lawrence Berkeley National Laboratory. This transfer of knowledge facilitates new discovery.

  13. Biodiesel and the Advanced Biofuel Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biodiesel and the Advanced Biofuel Market Biodiesel and the Advanced Biofuel Market The Success of Advanced Biofuels Anne Steckel, Vice President of Federal Affairs, National ...

  14. 2016 Bioenergizeme Infographic Challenge: Algae as a Biofuel | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Algae as a Biofuel 2016 Bioenergizeme Infographic Challenge: Algae as a Biofuel 2016 Bioenergizeme Infographic Challenge: Algae as a Biofuel

  15. PPC Worley and Independence Biofuels JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Worley and Independence Biofuels JV Jump to: navigation, search Name: PPC, Worley and Independence Biofuels JV Place: Pennsylvania Sector: Biofuels Product: JV between PPC, Worley...

  16. Sandia Energy - Biofuels Blend Right In: Researchers Show Ionic...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Home Renewable Energy Energy Transportation Energy Biofuels...

  17. Aurora BioFuels Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BioFuels Inc Jump to: navigation, search Name: Aurora BioFuels Inc. Place: Alameda, California Zip: 94502 Sector: Biofuels, Renewable Energy Product: California-based renewable...

  18. Algal Biofuels Strategy: Report on Workshop Results and Recent...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algal Biofuels Strategy: Report on Workshop Results and Recent Work Breakout Session 3B-Integration of Supply Chains III: Algal Biofuels Strategy Algal Biofuels Strategy: Report on ...

  19. U.S. and Brazil Bilateral Collaboration on Biofuels

    Energy.gov [DOE] (indexed site)

    U.S. and Brazil Bilateral Collaboration on Biofuels Global Solutions for Global ... blending with gasoline Ethanol for pure biofuels U.S. EIA, Biofuels Issues and Trends, ...

  20. Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery Algenol Biofuels Inc., will create a pilot-scale biorefinery ...

  1. Wastewater Reclamation and Biofuel Production Using Algae | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Wastewater Reclamation and Biofuel Production Using Algae Wastewater Reclamation and Biofuel Production Using Algae Breakout Session 2-A: The Future of Algae-Based Biofuels ...

  2. PetroSun Biofuels China | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    PetroSun Biofuels China Jump to: navigation, search Name: PetroSun Biofuels China Place: China Sector: Biofuels Product: PetroSun Biofuels China is a wholly owned subsidiary of...

  3. From Biomass to Biofuels: NREL Leads the Way

    SciTech Connect

    Not Available

    2006-08-01

    This brochure covers how biofuels can help meet future needs for transportation fuels, how biofuels are produced, U.S. potential for biofuels, and NREL's approach to efficient affordable biofuels.

  4. Major DOE Biofuels Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    47.09 KB) More Documents & Publications Major DOE Biofuels Project Locations Algal Biofuel Technologies Slide 1

  5. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting Technologies for ...

  6. BETO Announces June Webinar: Algal Biofuels Consortium Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results ...

  7. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries Afternoon ...

  8. Methods for the economical production of biofuel from biomass

    DOEpatents

    Hawkins, Andrew C; Glassner, David A; Buelter, Thomas; Wade, James; Meinhold, Peter; Peters, Matthew W; Gruber, Patrick R; Evanko, William A; Aristidou, Aristos A; Landwehr, Marco

    2013-04-30

    Methods for producing a biofuel are provided. Also provided are biocatalysts that convert a feedstock to a biofuel.

  9. Innovative Topics for Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovative Topics for Advanced Biofuels Innovative Topics for Advanced Biofuels PNNL report-out presentation at the CTAB webinar on innovative topics for advanced biofuels. ctab_webinar_innovative_topics.pdf (1.55 MB) More Documents & Publications Cross-cutting Technologies for Advanced Biofuels Conversion Technologies for Advanced Biofuels - Carbohydrates Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading

  10. Cross-cutting Technologies for Advanced Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cross-cutting Technologies for Advanced Biofuels Cross-cutting Technologies for Advanced Biofuels NREL report-out presentation at the CTAB webinar on crosscutting technologies for advanced biofuels. ctab_webinar_crosscutting.pdf (1.34 MB) More Documents & Publications Innovative Topics for Advanced Biofuels Conversion Technologies for Advanced Biofuels - Carbohydrates Production Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  11. Engineering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Includes Engineering Standards Manual, Master Specifications Index, Drafting Manual, Design Guides, and more. IHS Standards Expert login information Collections include ANSI,...

  12. biofuel art | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    biofuel art Home Dc's picture Submitted by Dc(266) Contributor 20 March, 2015 - 11:22 Public Art Generates Renewable Energy Beautifully biofuel art clean energy lagi land art...

  13. Gem BioFuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BioFuels Jump to: navigation, search Name: Gem BioFuels Place: Douglas, Isle of Man, United Kingdom Zip: IM1 4LB Product: Ilse of Man-based biodiesel feedstock developer with...

  14. Synergy Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: Synergy Biofuels LLC Place: Dryden, Virginia Zip: 24243 Product: Developing a 3m gallon (11.4m litre) biodiesel facility in Lee...

  15. E Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: E-Biofuels LLC Place: Fishers, Indiana Zip: 46038 Product: Indiana-based biodiesel producer. Coordinates: 43.01397, -77.471829...

  16. Pan Am Biofuels Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Am Biofuels Inc Jump to: navigation, search Name: Pan-Am Biofuels Inc Place: Park City, Utah Zip: 84068 Product: Utah-based jatropha oil feedstock producer. References: Pan-Am...

  17. Pinnacle Biofuels Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels Inc Jump to: navigation, search Name: Pinnacle Biofuels, Inc. Place: Crossett, Arkansas Zip: 71635 Product: Pinnacle owns and operates a 37.9mLpa (10m gallon) capacity...

  18. Argonaut BioFuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Argonaut BioFuels Jump to: navigation, search Name: Argonaut BioFuels Place: Virginia Product: Manufacturer of wood pellets that has a plant in Virginia, US. References: Argonaut...

  19. Enerkem Mississippi Biofuels Pontotoc, MS Facility

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Enerkem Mississippi Biofuels Pontotoc, MS Facility 2013 IBR Peer Review May 21 st , 2013 ... as part of the first wave of advanced biofuels projects in the U.S. The advanced and ...

  20. Reducing Plant Lignin for Cheaper Biofuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reducing Plant Lignin for Cheaper Biofuels Reducing Plant Lignin for Cheaper Biofuels Print Wednesday, 04 May 2016 12:11 Lignin is a polymer that permeates plant cell walls. ...

  1. A New Biofuels Technology Blooms in Iowa

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative...

  2. Development of Cellulosic Biofuels (LBNL Summer Lecture Series)

    ScienceCinema

    Somerville, Chris [Director, Energy Biosciences Institute

    2016-07-12

    Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.

  3. United States Automotive Materials Partnership LLC (USAMP)

    SciTech Connect

    United States Automotive Materials Partnership

    2011-01-31

    materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this

  4. Legislating Biofuels in the United States (Presentation)

    SciTech Connect

    Clark, W.

    2008-07-01

    Legislation supporting U.S. biofuels production can help to reduce petroleum consumption and increase the nation's energy security.

  5. Fungible and Compatible Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fungible and Compatible Biofuels Fungible and Compatible Biofuels The purpose of this study is to summarize the various barriers to more widespread distribution of biofuels through our common carrier fuel distribution system, which includes pipelines, barges and rail, fuel tankage, and distribution terminals, and with a special focus on biofuels, which may come into increased usage in the future. Addressing these barriers is necessary to allow the more widespread utilization and distribution of

  6. FACTSHEET: Energy Department Investments in Biofuels Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Energy Department Investments in Biofuels Innovation FACTSHEET: Energy Department Investments in Biofuels Innovation July 2, 2012 - 10:00am Addthis As part of the Obama Administration's commitments to an all-out, all-of-the-above strategy to develop every source of American energy and reduce our reliance on imported oil, the Energy Department is working to catalyze breakthroughs in innovative biofuel technologies and advance biofuels production at refineries across the

  7. A New Biofuels Technology Blooms in Iowa

    ScienceCinema

    Mathisen, Todd; Bruch, Don

    2016-07-12

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  8. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-08-01

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  9. A New Biofuels Technology Blooms in Iowa

    SciTech Connect

    Mathisen, Todd; Bruch, Don

    2010-01-01

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  10. Potential for Biofuels from Algae (Presentation)

    SciTech Connect

    Pienkos, P. T.

    2007-11-15

    Presentation on the potential for biofuels from algae presented at the 2007 Algae Biomass Summit in San Francisco, CA.

  11. Center for Lightweighting Automotive Materials and Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Center for Lightweighting Automotive Materials and Processing 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education GATE Center of Excellence in ...

  12. Autonomie Automotive Simulation Tool | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    industrial, aerospace, and automotive applications. It provides an efficient methodology that includes four key elements in the development process: modeling a plant (from...

  13. Electrifying the Automotive Market | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electrifying the Automotive Market Argonne is developing battery technology that extends the range for electric vehicles while increasing safety and decreasing price. PDF icon...

  14. Advanced Cellulosic Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Cellulosic Biofuels Advanced Cellulosic Biofuels Breakout Session 2-B: New/Emerging Pathways Advanced Cellulosic Biofuels Dr. Robert Graham, Chief Executive Officer and Chairman, Ensyn Corporation graham_bioenergy_2015.pdf (1.94 MB) More Documents & Publications Cellulosic Liquid Fuels Commercial Production Today Production of Renewable Fuels from Biomass by FCC Co-processing Biorefinery Optimization Workshop Presentations

  15. Conversion Technologies for Advanced Biofuels - Carbohydrates Production

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production. ctab_webinar_carbohydrates_production.pdf (519.37 KB) More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  16. Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctab_webinar_carbohydrates_upgrading.pdf (583.49 KB) More Documents & Publications Advanced Conversion Roadmap Workshop Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels

  17. Verenium Biofuels Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Verenium Biofuels Fact Sheet Verenium Biofuels Fact Sheet Operation and maintenance of a demonstration-scale facility in Jennings, Louisiana with some capital additions. Verenium_Biofuels.pdf (19.29 KB) More Documents & Publications Pacific Ethanol, Inc Verenium Pilot- and Demonstration-Scale Biorefinery Pacific Ethanol, Inc

  18. Zap Youngman Automotive Group JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Zap & Youngman Automotive Group JV Place: China Sector: Vehicles Product: Joint Venture between ZAP (OTCBB: ZAAP) and Youngman Automotive Group (China) to develop,...

  19. Xiamien King Long United Automotive Industry Suzhou | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Xiamien King Long United Automotive Industry Suzhou Jump to: navigation, search Name: Xiamien King Long United Automotive Industry (Suzhou) Place: Suzhou, Fujian Province, China...

  20. Reva Electric Bannon Automotive JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    & Bannon Automotive JV Place: New York Product: New York-based JV, manufacturer of electric cars. References: Reva Electric & Bannon Automotive JV1 This article is a stub....

  1. Fact #868: April 13, 2015 Automotive Technology Has Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles - Dataset Fact 868: April 13, 2015 Automotive Technology Has Improved ...

  2. FY 2008 Progress Report for Lightweighting Materials - 4. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4. Automotive Metals-Titanium FY 2008 Progress Report for Lightweighting Materials - 4. Automotive Metals-Titanium Lightweighting Materials focuses on the development and ...

  3. FY 2008 Progress Report for Lightweighting Materials - 2. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2. Automotive Metals-Wrought FY 2008 Progress Report for Lightweighting Materials - 2. Automotive Metals-Wrought Lightweighting Materials focuses on the development and validation ...

  4. FY 2009 Progress Report for Lightweighting Materials - 3. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3. Automotive Metals - Cast FY 2009 Progress Report for Lightweighting Materials - 3. Automotive Metals - Cast The primary Lightweight Materials activity goal is to validate a ...

  5. FY 2008 Progress Report for Lightweighting Materials - 5. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5. Automotive Metals-Steel FY 2008 Progress Report for Lightweighting Materials - 5. Automotive Metals-Steel Lightweighting Materials focuses on the development and validation of ...

  6. FY 2009 Progress Report for Lightweighting Materials - 2. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2. Automotive Metals - Wrought FY 2009 Progress Report for Lightweighting Materials - 2. Automotive Metals - Wrought The primary Lightweight Materials activity goal is to validate ...

  7. Looking From A Hilltop: Automotive Propulsion System Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Looking From A Hilltop: Automotive Propulsion System Technology Looking From A Hilltop: Automotive Propulsion System Technology Outlook for global fuel economy requirements and ...

  8. FY 2009 Progress Report for Lightweighting Materials - 5. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5. Automotive Metals - Steel FY 2009 Progress Report for Lightweighting Materials - 5. Automotive Metals - Steel The primary Lightweight Materials activity goal is to validate a ...

  9. FY 2009 Progress Report for Lightweighting Materials - 6. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6. Automotive Metals - Crosscutting FY 2009 Progress Report for Lightweighting Materials - 6. Automotive Metals - Crosscutting The primary Lightweight Materials activity goal is to ...

  10. CX: Categorical Determination-Alcoa Tennessee Automotive Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project Categorical ...

  11. FY 2009 Progress Report for Lightweighting Materials - 4. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4. Automotive Metals - Titanium FY 2009 Progress Report for Lightweighting Materials - 4. Automotive Metals - Titanium The primary Lightweight Materials activity goal is to ...

  12. FY 2008 Progress Report for Lightweighting Materials - 6. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6. Automotive Metals-Crosscutting FY 2008 Progress Report for Lightweighting Materials - 6. Automotive Metals-Crosscutting Lightweighting Materials focuses on the development and ...

  13. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt ...

  14. FY 2008 Progress Report for Lightweighting Materials - 3. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3. Automotive Metals-Cast FY 2008 Progress Report for Lightweighting Materials - 3. Automotive Metals-Cast Lightweighting Materials focuses on the development and validation of ...

  15. Electrocatalysts for Automotive Fuel Cells: Status and Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrocatalysts for Automotive Fuel Cells: Status and Challenges Electrocatalysts for Automotive Fuel Cells: Status and Challenges Presentation by Nilesh Dale for the 2013 DOE ...

  16. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and ...

  17. Penn State DOE Graduate Automotive Technology Education (Gate...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE Graduate Automotive Technology Education ...

  18. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  19. W.E.T. Automotive Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    E.T. Automotive Systems Jump to: navigation, search Name: W.E.T. Automotive Systems Place: Odelzhausen, Germany Information About Partnership with NREL Partnership with NREL Yes...

  20. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Aluminum Industry Roadmap for the Automotive Market (May 1999) ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) autoroadmap.pdf (481.39 KB) More ...

  1. engineering

    National Nuclear Security Administration (NNSA)

    an award last month for his 3D printing innovation. It could revolutionize additive manufacturing.

    Lawrence Livermore Lab engineer Bryan Moran wasn't necessarily...

  2. Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biofuel Blends | Department of Energy of Biofuels and Biofuel Blends Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and Biofuel Blends Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about performance of biofuels and biofuel blends. ft003_mccormick_2014_o.pdf (1.04 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Performance of

  3. Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets

    SciTech Connect

    Bunting, Bruce G

    2012-10-01

    The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).

  4. Predictive Simulation of Engines

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ... Transportation Energy Co-Evolution of Biofuels Biofuels Publications Lignocellulosic ...

  5. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  6. Flambeau_River_Biofuels.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Flambeau_River_Biofuels.pdf Flambeau_River_Biofuels.pdf Flambeau_River_Biofuels.pdf Flambeau_River_Biofuels.pdf (26 KB) More Documents & Publications Pacific Ethanol, Inc Flambeau River Biofuels Demonstration-Scale Biorefinery NewPage Demonstration-Scale Biorefinery

  7. A Review of DOE Biofuels Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Review of DOE Biofuels Program A Review of DOE Biofuels Program Presentation given by the Biomass Program's Zia Haq at NIST's 4th International Conference on Biofuels Standards on the Biomass Program. nist_haq.pdf (858.66 KB) More Documents & Publications Technology Pathway Selection Effort DOE Perspectives on Advanced Hydrocarbon-based Biofuels Advanced Biofuels Cost of Production

  8. Two-stroke engines; Cleaner and meaner

    SciTech Connect

    Siuru, B.

    1990-06-01

    This article discusses how advanced technologies such as direct fuel injection and stratified charge combustion have turned the two-stroke engine into a clean, gasoline conserving powerhouse. The testing of prototype automotive designs is discussed.

  9. Biofuels National Strategic Benefits Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biofuels National Strategic Benefits Analysis March 24, 2015 (Draft 3/8/2015) Strategic Analysis and Sustainability Principal Investigator: Paul Leiby (ORNL) Co-Investigators: Rocio Uria-Martinez (ORNL)and Maxwell Brown (Colo. Sch. Of Mines) This presentation does not contain any proprietary, confidential, or otherwise restricted information *2 Managed by UT-Battelle for the U.S. Department of Energy *Presentation_name Goal Statement * To assess, quantify and explain potential fuel market

  10. ENGINEERING

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw America's energy blueprint is now. The challenges we face today are the most critical in decades-from the impact of energy use on global ecosystems to the difficulties of efficiently harnessing our natural resources. Because energy is fundamental to human welfare, we must develop sustainable systems that make clean,

  11. 2016 National Algal Biofuels Technology Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  12. 2016 National Algal Biofuels Technology Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review June 2016 Bioenergy Technologies Office National Algal Biofuels Technology Review U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office June 2016 Review Editors: Amanda Barry, 1,5 Alexis Wolfe, 2 Christine English, 3,5 Colleen Ruddick, 4 and Devinn Lambert 5 2010 National Algal Biofuels Technology Roadmap: eere.energy.gov/bioenergy/pdfs/algal_biofuels_roadmap.pdf A complete list of roadmap and review contributors is available in the

  13. Algae Biorefinery Development for Biofuels and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algae Biorefinery Development for Biofuels and Bioproducts Bioenergy 2016 Washington, DC July 14, 2016 Lieve Laurens 2 Reduce cost of algal biofuels: * Harness unique position of algae as highly efficient photosynthetic cell factories * Identify key targets to contribute to lowering the overall cost of algal biofuels production * Quantify impact of major components supporting a multi-product algal biorefinery model * Analogous to replacing the whole barrel paradigm; low volume product streams

  14. Integrated Biorefineries: Biofuels, Bioproducts, and Biopower | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Integrated Biorefineries: Biofuels, Bioproducts, and Biopower Integrated Biorefineries: Biofuels, Bioproducts, and Biopower Achieving national energy and climate goals will require an economically viable and environmentally sustainable U.S. bioindustry. A crucial step in developing this industry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, bioproducts, and biopower. ibr_overview.pdf (713.96

  15. Biofuel Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived

  16. Technology Innovation Outlook for Advanced Liquid Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Innovation Outlook for Advanced Liquid Biofuels Bioenergy 2016: Mobilizing the Bioeconomy through Innovation Innovative Approaches and Materials for Clean Energy Washington, DC July 14, 2016 Introduction to IRENA * The Intergovernmental Organisation focused on renewable energy * 148 members countries (including EU) and 28 in process of accession The Case for Advanced Biofuels Advanced biofuels broaden sustainable feedstock options. 2010 2030 2030 2030 reference Remap Doubling (IRENA, 2016)

  17. Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria

    SciTech Connect

    2010-07-01

    Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

  18. International Trade of Biofuels (Brochure), Energy Analysis,...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and trade of biofuels have increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established...

  19. C2 Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search Name: C2 Biofuels Place: Atlanta, Georgia Product: Ethanol production from cellulose. Coordinates: 33.748315, -84.391109 Show Map Loading...

  20. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    life cycle analysis of biofuels continue to improve 2 Feedstock Production Feedstock Logistics, Storage and Transportation Feedstock Conversion Fuel Transportation and...

  1. Great Lakes Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Great Lakes Biofuels LLC Place: Madison, Wisconsin Zip: 53704 Sector: Services Product: Biodiesel research, consulting, management distribution and services company. Coordinates:...

  2. Biofuels Atlas (United States) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Atlas (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biofuels Atlas (United States) Focus Area: Clean Transportation Topics: Potentials & Scenarios...

  3. Consolidated Biofuels Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Inc Jump to: navigation, search Name: Consolidated Biofuels Inc Place: McKinney, Texas Zip: 75071 Product: Chicago based producer of biodiesel. Coordinates: 33.19895,...

  4. Biofuels Media Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Media Ltd Jump to: navigation, search Name: Biofuels Media Ltd. Place: London, Greater London, United Kingdom Zip: W6 0HX Product: London-based conference organiser Coordinates:...

  5. San Francisco Biofuels Cooperative | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cooperative Jump to: navigation, search Name: San Francisco Biofuels Cooperative Address: 1255 Post St Place: San Francisco, California Zip: 94109 Region: Bay Area Website:...

  6. Integrated Biorefineries: Biofuels, Bioproducts, and Biopower...

    Energy.gov [DOE] (indexed site)

    A crucial step in developing this industry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, ...

  7. Algal Biofuels Techno-Economic Analysis

    Energy.gov [DOE] (indexed site)

    Algal Biofuels Techno-Economic Analysis Algae Platform Review March 24, 2015 Alexandria, ... viability, eventual adoption of algal biofuelsproducts into U.S. market 2 NATIONAL ...

  8. Technology Innovation Outlook for Advanced Liquid Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 3C: Innovative Approaches and Materials for Clean Energy Technology Innovation Outlook for Advanced Liquid Biofuels Jeffrey Skeer, Senior Programme Officer, International Renewable Energy Agency

  9. Effects of Deployment Investment on the Growth of the Biofuels Industry

    SciTech Connect

    Vimmerstedt, L. J.; Bush, B. W.

    2013-12-01

    In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstration and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scale biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model -- a system dynamics model of the biomass to biofuels system -- that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial positive effect on the development of the biofuels industry. Results also show that other conditions, such as supportive policies, have major impacts on the effectiveness of such investments.

  10. Ultra Soy of America DBA USA Biofuels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ultra Soy of America DBA USA Biofuels Jump to: navigation, search Name: Ultra Soy of America (DBA USA Biofuels) Place: Fort Wayne, Indiana Zip: 46898 Sector: Biofuels Product: An...

  11. List of Companies in Biofuels Sector | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    List of Companies in Biofuels Sector Jump to: navigation, search BiomassImage.JPG Companies in the Biofuels sector: Add a Company Download CSV (rows 1-256) Map of Biofuels...

  12. BioFuels and BioEnergy - SRSCRO

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    BioFuels and BioEnergy BioFuels and BioEnergy BioFuels and BioEnergy Bioenergy is renewable energy derived from biological sources, to be used for heat, electricity, or vehicle ...

  13. Effects of Deployment Investment on the Growth of the Biofuels...

    Office of Scientific and Technical Information (OSTI)

    In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel ...

  14. #LabChat Q&A: Biofuels of the Future, Sept. 26 at 2 pm EDT

    Energy.gov [DOE]

    Our biofuels experts can answer your questions about biofuels, bioenergy and the next generation of fuel.

  15. Process Design and Economics for the Conversion of Lignocellulosic...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... This preliminary analysis suggests that this fuel meets the EISA RFS cellulosic biofuel ... Standard D4814 - 13a. "Standard Specification for Automotive Spark-Ignition Engine Fuel." ...

  16. Katherine Riley | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric...

  17. Paul Hewett | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric...

  18. Alternative Fuels Data Center: Cities Clean up With Biofuels

    Alternative Fuels and Advanced Vehicles Data Center

    Cities Clean up With Biofuels to someone by E-mail Share Alternative Fuels Data Center: Cities Clean up With Biofuels on Facebook Tweet about Alternative Fuels Data Center: Cities Clean up With Biofuels on Twitter Bookmark Alternative Fuels Data Center: Cities Clean up With Biofuels on Google Bookmark Alternative Fuels Data Center: Cities Clean up With Biofuels on Delicious Rank Alternative Fuels Data Center: Cities Clean up With Biofuels on Digg Find More places to share Alternative Fuels Data

  19. NREL: Transportation Research - Future Automotive Systems Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Simulator Future Automotive Systems Technology Simulator FASTSim icon The FASTSim simulation tool evaluates the impact of technology improvements on efficiency, performance, cost, and battery life in conventional and advanced vehicles. Developed by NREL, the Future Automotive Systems Technology Simulator (FASTSim) evaluates the impact of technology improvements on efficiency, performance, cost, and battery life in conventional vehicles, hybrid electric vehicles (HEVs), plug-in hybrid

  20. Automotive Fuel Cell Research and Development Needs

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    USCAR / FreedomCAR Fuel Cell Tech Team Industry Members Craig Gittleman, David Masten and Scott Jorgensen General Motors James Waldecker, Shinichi Hirano and Mark Mehall Ford Motor Company Tarek Abdel-Baset Chrysler LLC Automotive Fuel Cell R&D Needs DOE Fuel Cell Pre-Solicitation Workshop March 16, 2010 Golden, CO General Motors - Ford - Chrysler Overview * Purpose: To provide automotive OEM perspective on topics recommended for study in the DOE Fuel Cell Subprogram * Categories described

  1. BioFuel Energy Corp | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Corp Jump to: navigation, search Name: BioFuel Energy Corp Place: Denver, Colorado Zip: 80202 Product: Develops, owns and operates ethanol facilities. References: BioFuel...

  2. DOE Science Showcase - Biofuels in the databases | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Biofuels in the databases The new ScienceCinema provides access ... DOE Green Energy renewable energy portal offers biofuels related research. Science ...

  3. AE Biofuels Inc formerly American Ethanol Inc | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    AE Biofuels Inc formerly American Ethanol Inc Jump to: navigation, search Name: AE Biofuels Inc. (formerly American Ethanol Inc.) Place: Cupertino, California Zip: CA 95014...

  4. Mapping biofuel field: A bibliometric evaluation of research output

    DOE PAGES [OSTI]

    Starbuck Downes, C. Meghan; Boeing, Wiebke; Deng, Shuguang; Ivey, Shanna; Khandan, Nirmal; Schaub, Tanner; Unc, Adrian; Van Voorhies, Wayne; Lammers, Pete

    2013-08-14

    Fundamental research as part of the National Alliance for Advanced Biofuels and Bioproducts for the advancement of technology for algal based biofuel products.

  5. Technology Roadmap: Biofuels for Transport | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Technology Roadmap: Biofuels for Transport (Redirected from Technology Roadmap - Biofuels for Transport) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology...

  6. Biofuel Advanced Research and Development LLC BARD | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    biofuels startup company that aims to produce soy biodiesel initially but plans to transition to algae-oil based fuels in 2010. References: Biofuel Advanced Research and...

  7. Imagine Tomorrow: Student Competition Leads to Innovative Biofuel...

    Energy Saver

    A Moscow High School team's "unconventional biofuels" project involved not only demonstrating coffee extraction methods for biofuels production, but also featured a cost-benefit ...

  8. DOE Announces Webinars on Algal Biofuels Consortium Research...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algal Biofuels Consortium Research Results, Solar Energy Maps, and More DOE Announces Webinars on Algal Biofuels Consortium Research Results, Solar Energy Maps, and More June 10, ...

  9. DOE Announces Additional Steps in Developing Sustainable Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in Developing Sustainable Biofuels Industry DOE Announces Additional Steps in Developing Sustainable Biofuels Industry October 7, 2008 - 4:14pm Addthis Releases Results from...

  10. INEOS Bio: Commercialization of Advanced Biofuels From Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    INEOS Bio: Commercialization of Advanced Biofuels From Waste INEOS Bio: Commercialization of Advanced Biofuels From Waste Update from INEOS Bio Dan Cummings, Vice President, INEOS ...

  11. Supply Chain Sustainability Analysis of Three Biofuel Pathways...

    Office of Scientific and Technical Information (OSTI)

    Supply Chain Sustainability Analysis of Three Biofuel Pathways Citation Details In-Document Search Title: Supply Chain Sustainability Analysis of Three Biofuel Pathways The ...

  12. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy ...

  13. Thailand-Status and Potential for the Development of Biofuels...

    OpenEI (Open Energy Information) [EERE & EIA]

    Status and Potential for the Development of Biofuels and Rural Renewable Energy Jump to: navigation, search Name Thailand-Status and Potential for the Development of Biofuels and...

  14. BioFuels Energy LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BioFuels Energy LLC Jump to: navigation, search Name: BioFuels Energy, LLC Place: Encinitas, California Zip: 92024 Sector: Renewable Energy Product: Encinitas-based renewable...

  15. PowerSHIFT Biofuels LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels LLC Jump to: navigation, search Name: PowerSHIFT Biofuels LLC Place: Wyoming Product: Focused on biodiesel plants and power generation facilities in the US. References:...

  16. Deadwood Biofuels LLC Kramer Energy Group | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Deadwood Biofuels LLC Kramer Energy Group Jump to: navigation, search Name: Deadwood Biofuels LLC (Kramer Energy Group) Place: Rapid City, South Dakota Zip: 57709 Product: South...

  17. New Generation Biofuels Holdings Inc formerly H2Diesel | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Generation Biofuels Holdings Inc formerly H2Diesel Jump to: navigation, search Name: New Generation Biofuels Holdings Inc. (formerly H2Diesel) Place: Lake Mary, Florida Zip: 32746...

  18. Mozambique-Biofuels, Land Access and Rural Livelihoods | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Biofuels, Land Access and Rural Livelihoods Jump to: navigation, search Name Mozambique-Biofuels, Land Access and Rural Livelihoods AgencyCompany Organization International...

  19. Vega Biofuels Inc formerly Vega Promotional Systems | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Vega Biofuels Inc formerly Vega Promotional Systems Jump to: navigation, search Name: Vega Biofuels Inc (formerly Vega Promotional Systems) Place: Norcross, Georgia Zip: 30010...

  20. Biofuels Center of North Carolina | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Center of North Carolina Jump to: navigation, search Name: Biofuels Center of North Carolina Place: Oxford, North Carolina Zip: 27565 Sector: Biofuels Product: State-funded,...