National Library of Energy BETA

Sample records for area phone number

  1. Phone Numbers for Beam Lines and Other Services | Stanford Synchrotron

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radiation Lightsource Phone Numbers for Beam Lines and Other Services The local area code for SSRL is 650. All numbers listed below should be dialed as 650-926-xxxx from other area codes. When calling an onsite location from within SSRL simply dial the 4-digit extension. When calling an offsite number within the 650 area code dial, dial 9 plus the 7-digit number. To call a number in another area code dial 9-1-area code - phone number. Beam Lines Beam Line Extension 1-4 5214 1-5 5215 2-1 5221

  2. Property:OutagePhoneNumber | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    OutagePhoneNumber Jump to: navigation, search Property Name OutagePhoneNumber Property Type String Description An outage hotline or 24-hour customer service number Note: uses...

  3. MENTEE QUESTIONNAIRE Name: Title: Email: Office Phone Number:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MENTEE QUESTIONNAIRE Name: Title: Email: Office Phone Number: Office Address: Why are you interested in the mentoring program? (This information will be included with the invitation to your potential mentor.) What goals do you want to work on during your participation in the mentoring program? Is there someone you would like to be your mentor? Yes No If yes, please list their name and any other possible mentors in order of preference: Expectations of the Mentoring Program How long? 6-months

  4. MENTOR QUESTIONNAIRE Name: Title: Email: Office Phone Number:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MENTOR QUESTIONNAIRE Name: Title: Email: Office Phone Number: Office Address: is interested in this program because: Are you willing to act as a mentor for ? Yes No Expectations of the Mentoring Program How long? 6-months minimum commitment. Are you willing to commit to the 6-months minimum timeframe? Yes No How much time? You decide with your mentee; 1-4 hours/month is recommended. Please return completed form to Ames Lab Human Resources, 105 TASF. Are you willing to commit 1-4 hours per month

  5. ORISE: Contact Us - phone numbers, email addresses, shipping addresses

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Oak Ridge Institute for Science Education Contact Us Employee Phone Directory Enter the name of the person you are looking for: To use this directory, you must know the full last name of the employee. Last Name:* First Name: Search (*required field) General Information Communications Oak Ridge Institute for Science and Education MC-100-44 P.O. Box 117 Oak Ridge, TN 37831-0117 Work: (865) 576-3146 Fax: (865) 241-2923 communications@orau.org ORISE Director's Office Andy Page, Director Oak Ridge

  6. ORISE: Contact information for REAC/TS - phone numbers, e-mail

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contact Us Radiation Emergency Assistance CenterTraining Site staff contact information Emergency Number 865.576.1005 (Ask for REACTS) Nicholas Dainiak, M.D., FACP Medical and...

  7. Western Area Power Administration | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Western Area Power Administration Jump to: navigation, search Name: Western Area Power Administration Place: Colorado Phone Number: 720-962-7000 Website: ww2.wapa.govsites...

  8. Cell Phone Detection Techniques

    SciTech Connect

    Pratt, Richard M.; Bunch, Kyle J.; Puzycki, David J.; Slaugh, Ryan W.; Good, Morris S.; McMakin, Douglas L.

    2007-10-01

    A team composed of Rick Pratt, Dave Puczyki, Kyle Bunch, Ryan Slaugh, Morris Good, and Doug McMakin teamed together to attempt to exploit cellular telephone features and detect if a person was carrying a cellular telephone into a Limited Area. The cell phones electromagnetic properties were measured, analyzed, and tested in over 10 different ways to determine if an exploitable signature exists. The method that appears to have the most potential for success without adding an external tag is to measure the RF spectrum, not in the cell phone band, but between 240 and 400MHz. Figures 1- 7 show the detected signal levels from cell phones from three different manufacturers.

  9. Addresses and Phone Numbers | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Wind Technology Center 303-384-6900 Photovoltaics 303-384-6491 Solar Hot Water Heating 303-384-7440 Solar Thermal 303-384-7425 Transportation Deployment 303-275-4470 Wind ...

  10. Hemispheric sunspot unit area: comparison with hemispheric sunspot number and sunspot area

    SciTech Connect

    Li, K. J.; Xiang, N. B.; Qu, Z. N.; Xie, J. L.

    2014-03-01

    The monthly mean northern and southern hemispheric sunspot numbers (SNs) and sunspot areas (SAs) in the time interval of 1945 January to 2012 December are utilized to construct the monthly northern and southern hemispheric sunspot unit areas (SUAs), which are defined as the ratio of hemispheric SA to SN. Hemispheric SUAs are usually found to rise at the beginning and to fall at the ending time of a solar cycle more rapidly, forming a more irregular cycle profile than hemispheric SNs and SAs, although it also presents Schwabe-cycle-like hemispheric SNs and SAs. Sunspot activity (SN, SA, and SUA) is found asynchronously and is asymmetrically distributed in the northern and southern hemispheres, and hemispheric SNs, SAs, and SUAs are not in phase in the two hemispheres. The similarity of hemispheric SNs and SAs is found to be much more obvious than that of hemispheric SUAs and SNs (or SAs), and also for their north-south asymmetry. A notable feature is found for the behavior of the SUA around the minimum time of cycle 24: the SUA rapidly decreases from the cycle maximum value to the cycle minimum value of sunspot cycles 19-24 within just 22 months.

  11. Property:PhoneNumber | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    + 757-787-9750 800-431-2632 + A.J. Rose Manufacturing Company + 440-934-2859 + A.O. Smith + 414-359-4000 + A1 Sun, Inc. + (510) 526-5715 + A10 Power + 415-729-4A10 or...

  12. (Document Number)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    A TA-53 TOUR FORM/RADIOLOGICAL LOG (Send completed form to MS H831) _____________ _____________________________ _________________________________ Tour Date Purpose of Tour or Tour Title Start Time and Approximate Duration ___________________________ ______________ _______________________ _________________ Tour Point of Contact/Requestor Z# (if applicable) Organization/Phone Number Signature Locations Visited: (Check all that apply, and list any others not shown. Prior approval must be obtained

  13. Request Number:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  14. Change Number

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    13-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the Central Plateau 200 Area Non-Tank Farm Remedial Action Work Plans (M-013 Series Milestones) Description/Justification of Change The Hanford Federal Facility

  15. Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range

    SciTech Connect

    1997-05-14

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

  16. TTO Phone List | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    TTO Phone List TTO Phone List TTO Phone List Revised 04/02/2014 TTO Phone List Revised 04-02-14.docx (23.97 KB) More Documents & Publications Technology Transfer Reporting Form Vehicle Technologies Office Merit Review 2015: High Energy High Power Battery Exceeding PHEV-40 Requirements Technical Standards Managers Contact List

  17. Mobile phone and my health

    SciTech Connect

    Surducan, Aneta; Dabala, Dana; Neamtu, Camelia Surducan, Vasile Surducan, Emanoil

    2013-11-13

    The interaction of the microwave radiation emitted by mobile phones with the user's body is analyzed from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommendations perspective as a correlation between the specific absorption ratio (SAR) of the mobile phone and the call duration. The relative position of the cell phone to the user's body, the dielectric properties of the exposed body parts, the SAR value and the call duration are considered in the local body temperature rise due to the microwave heating effect. The recommended local temperature rise limit in the human body is evaluated according to standards. The aim of this study is to disseminate information to young people, especially high school students, about the microwave thermal effects on the human body, to make them aware of the environmental electromagnetic pollution and to offer them a simple method of biological self protection.

  18. Calculating Confidence, Uncertainty, and Numbers of Samples When Using Statistical Sampling Approaches to Characterize and Clear Contaminated Areas

    SciTech Connect

    Piepel, Gregory F.; Matzke, Brett D.; Sego, Landon H.; Amidan, Brett G.

    2013-04-27

    This report discusses the methodology, formulas, and inputs needed to make characterization and clearance decisions for Bacillus anthracis-contaminated and uncontaminated (or decontaminated) areas using a statistical sampling approach. Specifically, the report includes the methods and formulas for calculating the • number of samples required to achieve a specified confidence in characterization and clearance decisions • confidence in making characterization and clearance decisions for a specified number of samples for two common statistically based environmental sampling approaches. In particular, the report addresses an issue raised by the Government Accountability Office by providing methods and formulas to calculate the confidence that a decision area is uncontaminated (or successfully decontaminated) if all samples collected according to a statistical sampling approach have negative results. Key to addressing this topic is the probability that an individual sample result is a false negative, which is commonly referred to as the false negative rate (FNR). The two statistical sampling approaches currently discussed in this report are 1) hotspot sampling to detect small isolated contaminated locations during the characterization phase, and 2) combined judgment and random (CJR) sampling during the clearance phase. Typically if contamination is widely distributed in a decision area, it will be detectable via judgment sampling during the characterization phrase. Hotspot sampling is appropriate for characterization situations where contamination is not widely distributed and may not be detected by judgment sampling. CJR sampling is appropriate during the clearance phase when it is desired to augment judgment samples with statistical (random) samples. The hotspot and CJR statistical sampling approaches are discussed in the report for four situations: 1. qualitative data (detect and non-detect) when the FNR = 0 or when using statistical sampling methods that account

  19. Nondestructive Waste Assay Using Gamma-Ray Active & Passive Computed Tomography. Mixed Waste Focus Area. OST Reference Number 2123

    SciTech Connect

    None, None

    1999-09-01

    This project was supported by the Mixed Waste Focus Area (MWFA) and the Federal Environmental Technology Center (FETC) to develop an improved nondestructive assay (NDA) capability that uses gamma-ray computed tomography and gamma-energy spectral analysis techniques to perform waste assay measurements. It was the intent of the Gamma-Ray Active & Passive Computed Tomography (A&PCT) development and demonstration project to enhance the overall utility of waste assay through the implementation of techniques that can accommodate known measurement complications, e.g., waste matrix and radioactive material distribution heterogeneities. This technology can measure the radionuclide content in all types of waste regardless of their classification as low level (LLW), transuranic (TRU) or mixed (MLLW or MTRU). The nondestructive waste assay capability needed to support Department of Energy (DOE) mixed waste characterization needs is necessarily a function of the waste form configurations in inventory. These waste form configurations exhibit a number of variables impacting assay system response that must be accounted for to ensure valid measurement data. Such variables include: matrix density, matrix elemental composition, matrix density distribution, radioactive material radionuclidic/isotopic composition, radioactive material physical/chemical form, and physical distribution in the waste matrix. Existing nondestructive assay technologies have identified capability limits with respect to these variables. Certain combinations of these variables result in waste configurations within the capability of one or more of the existing systems. Other combinations that are prevalent in the inventory are outside of the capability of such systems.

  20. Other Contracting Authority NNSA ORGANIZATION HCA LIMIT PHONE NUMBER

    Energy Saver

    Organization Name Date Submitted File Name ACEEE Steve Nadel 4/15/2011 ACEEE 4.15.2011 Alameda-Contra Coasta Transit District Chris Peeples 4/15/2011 Alameda-Contra Coasta Transit District 4.15.2011 American Academy of Arts and Sciences Robert W. Fri and Leslie C. Berlowitz 4/15/2011 American Academy of Arts and Science 4.15.2011 American Electric Power Michael L. Weinstein 4/15/2011 AEP 4.15.2011 American Gas Association, American Gas Foundation, American Public Gas Association, American Public

  1. CB-EMIS CELL PHONE CLIENT

    Energy Science and Technology Software Center

    2007-01-02

    The cell phone software allows any Java enabled cell phone to view sensor and meteorological data via an internet connection using a secure connection to the CB-EMIS Web Service. Users with appropriate privileges can monitor the state of the sensors and perform simple maintenance tasks remotely. All sensitive data is downloaded from the web service, thus protecting sensitive data in the event a cell phone is lost.

  2. WADeG Cell Phone

    Energy Science and Technology Software Center

    2009-09-01

    The on cell phone software captures the images from the CMOS camera periodically, stores the pictures, and periodically transmits those images over the cellular network to the server. The cell phone software consists of several modules: CamTest.cpp, CamStarter.cpp, StreamIOHandler .cpp, and covertSmartDevice.cpp. The camera application on the SmartPhone is CamStarter, which is “the” user interface for the camera system. The CamStarter user interface allows a user to start/stop the camera application and transfer files tomore » the server. The CamStarter application interfaces to the CamTest application through registry settings. Both the CamStarter and CamTest applications must be separately deployed on the smartphone to run the camera system application. When a user selects the Start button in CamStarter, CamTest is created as a process. The smartphone begins taking small pictures (CAPTURE mode), analyzing those pictures for certain conditions, and saving those pictures on the smartphone. This process will terminate when the user selects the Stop button. The camtest code spins off an asynchronous thread, StreamIOHandler, to check for pictures taken by the camera. The received image is then tested by StreamIOHandler to see if it meets certain conditions. If those conditions are met, the CamTest program is notified through the setting of a registry key value and the image is saved in a designated directory in a custom BMP file which includes a header and the image data. When the user selects the Transfer button in the CamStarter user interface, the covertsmartdevice code is created as a process. Covertsmartdevice gets all of the files in a designated directory, opens a socket connection to the server, sends each file, and then terminates.« less

  3. Change Number

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Date: M-16-04-04 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. May 27, 2004 Originator: K. A. Klein Phone:...

  4. Property:Incentive/Cont3Phone | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cont3Phone Jump to: navigation, search Property Name IncentiveCont3Phone Property Type String Pages using the property "IncentiveCont3Phone" Showing 25 pages using this property....

  5. Change Number

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the M-016 Series Milestones Description/Justification of Change The Hanford Federal Facility Agreement and Consent Order (TPA) contains commitments for the U.S.

  6. Change Number

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/5/2002 Originator Phone P. M. Knollmeyer, RL Assistant Manager Central Plateau 376-7435 Class of Change [ I - Signatories [X ] II - Executive Manager [ ] III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-015 in Accordance with the Central Plateau Agreement In Principle Description/Justification of Change The Hanford Federal Facility

  7. Change Number

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    20-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, RL Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-020 in Accordance with the Central Plateau Agreement In Principle Description/Justification of Change The Hanford Federal Facility

  8. The new phone books are here! | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The new phone books are here In the days of Google search, you may not get as excited as Navin R. Johnson (Steve Martin's character in "The Jerk") that the new phone books are...

  9. Phone List | U.S. DOE Office of Science (SC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Phone List SLAC Site Office (SSO) SSO Home About Organization Chart .pdf file (155KB) Phone List Jobs Projects Contract Management NEPA Documents Contact Information SLAC Site Office U.S. Department of Energy Bldg 41, M/S 08A 2575 Sand Hill Road Menlo Park, CA 94025 P: (650) 926-2505 About Phone List Print Text Size: A A A FeedbackShare Page Name Office Phone Other Phone Bazzell, Kevin (650) 926-2513 C: (510) 292-0586 Burke, Patrick (650) 926-8573 C:(510) 459-3184 / BSO: (510) 486-7203 Golan,

  10. Austin Energy Dials Down Home Energy Use With Smart Phones |...

    Energy Saver

    Austin Energy Dials Down Home Energy Use With Smart Phones bbrnstoriesaustinenergy9-2-14.jpg Better Buildings Residential Network member Austin Energy used summer's ...

  11. Shell Canada Limited application to construct and operate an oil sands mine in the Fort McMurray area, decision 99-2, application number 970588

    SciTech Connect

    1999-11-01

    Shell Canada has applied before the Alberta Energy and Utilities Board for approval to construct, operate, and reclaim an oil sands mine and associated bitumen extraction facilities (the Muskeg River Mine) in the Fort McMurray area. This report reviews the views of the applicant, the Board, and various intervenors at the hearing held to consider issues related to the application. Issues discussed include the need for the proposed project, its socio-economic effects, Shell`s public consultation process, mine planning and resource conservation, the extraction process to be used, tailings management, environmental effects, land reclamation, and cumulative effects of oil sands developments. The Board`s conclusion and decision regarding the application are also presented.

  12. Shell Canada Limited application to construct and operate an oil sands mine in the Fort McMurray area, decision 99-2, application number 970588

    SciTech Connect

    Not Available

    1999-01-01

    Shell Canada has applied before the Alberta Energy and Utilities Board for approval to construct, operate, and reclaim an oil sands mine and associated bitumen extraction facilities (the Muskeg River Mine) in the Fort McMurray area. This report reviews the views of the applicant, the Board, and various intervenors at the hearing held to consider issues related to the application. Issues discussed include the need for the proposed project, its socio-economic effects, Shell's public consultation process, mine planning and resource conservation, the extraction process to be used, tailings management, environmental effects, land reclamation, and cumulative effects of oil sands developments. The Board's conclusion and decision regarding the application are also presented.

  13. Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines Smart Phone Technologies Reduce Risks to Eagles from Wind Turbines January 10, 2013 - 2:12pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. A DOE Success Story A team of researchers led by Dr. Todd Katzner at the West Virginia University (WVU) is using a global positioning system (GPS) similar to that found in a smart phone to track movements of

  14. Property:Incentive/ContPhone | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Type String Pages using the property "IncentiveContPhone" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + (802)...

  15. Lab Phone Numbers - Center for Plasma in the Laboratory and Astrophysi...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Rotating Wall Machine Plasma-Couette Experiment Madison Plasma Dynamo Experiment - Theory Groups MHD Turbulence Transport in Fusion Devices Plasma Astrophysics RFP Theory -...

  16. Forensic analysis of the microbiome of phones and shoes

    SciTech Connect

    Lax, Simon; Hampton-Marcell, Jarrad T.; Gibbons, Sean M.; Colares, Geórgia Barguil; Smith, Daniel; Eisen, Jonathan A.; Gilbert, Jack A.

    2015-05-12

    Background: Microbial interaction between human-associated objects and the environments we inhabit may have forensic implications, and the extent to which microbes are shared between individuals inhabiting the same space may be relevant to human health and disease transmission. In this study, two participants sampled the front and back of their cell phones, four different locations on the soles of their shoes, and the floor beneath them every waking hour over a 2-day period. A further 89 participants took individual samples of their shoes and phones at three different scientific conferences. Results: Samples taken from different surface types maintained significantly different microbial community structures. The impact of the floor microbial community on that of the shoe environments was strong and immediate, as evidenced by Procrustes analysis of shoe replicates and significant correlation between shoe and floor samples taken at the same time point. Supervised learning was highly effective at determining which participant had taken a given shoe or phone sample, and a Bayesian method was able to determine which participant had taken each shoe sample based entirely on its similarity to the floor samples. Both shoe and phone samples taken by conference participants clustered into distinct groups based on location, though much more so when an unweighted distance metric was used, suggesting sharing of low-abundance microbial taxa between individuals inhabiting the same space. In conclusion, correlations between microbial community sources and sinks allow for inference of the interactions between humans and their environment.

  17. Forensic analysis of the microbiome of phones and shoes

    DOE PAGES [OSTI]

    Lax, Simon; Hampton-Marcell, Jarrad T.; Gibbons, Sean M.; Colares, Geórgia Barguil; Smith, Daniel; Eisen, Jonathan A.; Gilbert, Jack A.

    2015-05-12

    Background: Microbial interaction between human-associated objects and the environments we inhabit may have forensic implications, and the extent to which microbes are shared between individuals inhabiting the same space may be relevant to human health and disease transmission. In this study, two participants sampled the front and back of their cell phones, four different locations on the soles of their shoes, and the floor beneath them every waking hour over a 2-day period. A further 89 participants took individual samples of their shoes and phones at three different scientific conferences. Results: Samples taken from different surface types maintained significantly differentmore » microbial community structures. The impact of the floor microbial community on that of the shoe environments was strong and immediate, as evidenced by Procrustes analysis of shoe replicates and significant correlation between shoe and floor samples taken at the same time point. Supervised learning was highly effective at determining which participant had taken a given shoe or phone sample, and a Bayesian method was able to determine which participant had taken each shoe sample based entirely on its similarity to the floor samples. Both shoe and phone samples taken by conference participants clustered into distinct groups based on location, though much more so when an unweighted distance metric was used, suggesting sharing of low-abundance microbial taxa between individuals inhabiting the same space. In conclusion, correlations between microbial community sources and sinks allow for inference of the interactions between humans and their environment.« less

  18. Estimation of retired mobile phones generation in China: A comparative study on methodology

    SciTech Connect

    Li, Bo; Yang, Jianxin; Lu, Bin; Song, Xiaolong

    2015-01-15

    Highlights: • The sales data of mobile phones in China was revised by considering the amount of smuggled and counterfeit mobile phones. • The estimation of retired mobile phones in China was made by comparing some relevant methods. • The advanced result of estimation can help improve the policy-making. • The method suggested in this paper can be also used in other countries. • Some discussions on methodology are also conducted in order for the improvement. - Abstract: Due to the rapid development of economy and technology, China has the biggest production and possession of mobile phones around the world. In general, mobile phones have relatively short life time because the majority of users replace their mobile phones frequently. Retired mobile phones represent the most valuable electrical and electronic equipment (EEE) in the main waste stream because of such characteristics as large quantity, high reuse/recovery value and fast replacement frequency. Consequently, the huge amount of retired mobile phones in China calls for a sustainable management system. The generation estimation can provide fundamental information to construct the sustainable management system of retired mobile phones and other waste electrical and electronic equipment (WEEE). However, the reliable estimation result is difficult to get and verify. The priority aim of this paper is to provide proper estimation approach for the generation of retired mobile phones in China, by comparing some relevant methods. The results show that the sales and new method is in the highest priority in estimation of the retired mobile phones. The result of sales and new method shows that there are 47.92 million mobile phones retired in 2002, and it reached to 739.98 million in China in 2012. It presents an increasing tendency with some fluctuations clearly. Furthermore, some discussions on methodology, such as the selection of improper approach and error in the input data, are also conducted in order to

  19. Special Workshop: Building Location Aware Apps on the iPhone

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Special Workshop: Building Location Aware Apps on the iPhone Special Workshop: Building Location Aware Apps on the iPhone WHEN: Jul 17, 2015 11:00 AM - 2:00 PM WHERE: Time Out Pizzeria 1350 Central Ave, Los Alamos, USA SPEAKER: Mike Ham CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login iPhone App Development Class Event Description Learn to build an iPhone app that uses U.S. Global Positioning System (GPS) data! This three-hour course will cover how to build an

  20. Number | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  1. U-239: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Addresses | Department of Energy 39: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source Addresses U-239: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source Addresses August 20, 2012 - 7:00am Addthis PROBLEM: Apple iPhone SMS Processing Flaw Lets Remote Users Spoof SMS Source Addresses PLATFORM: Version(s): 6 beta 4 and prior versions ABSTRACT: A remote user can spoof SMS source addresses. Reference LINKS: SecurityTracker Alert ID: 1027410 Apple.com PCMag.com

  2. NSR Key Number Retrieval

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  3. OSTIblog Articles in the smart phone Topic | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    smart phone Topic OSTI and Social Media: A Great Way to "Share" DOE STI by Nena Moss 08 ... smartphone-toting consumers drive new paths to DOE research using new social media tools. ...

  4. Special Workshop: Building Location Aware Apps on the iPhone

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    build and run an app: 1. A modern Apple computer with wifi running the xCode program (free download), 2. An iPhone with a charging cable. However, these items are not required....

  5. Metallic glass could make your next cell phone harder to break

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Metallic glass could make your next cell phone harder to break Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Metallic glass could make your next cell phone harder to break Lab researcher works to rearrange the atoms in metals June 20, 2014 New insights to changing the atomic structure of metals New insights to changing the atomic structure of metals Contact Linda Anderman Email Metal and glass objects are all

  6. Big Numbers | Jefferson Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Big Numbers Big Numbers May 16, 2011 This article has some numbers in it. In principle, numbers are just language, like English or Japanese. Nevertheless, it is true that not everyone is comfortable or facile with numbers and may be turned off by too many of them. To those people, I apologize that this article pays less attention to maximizing the readership than some I do. But sometimes it's just appropriate to indulge one's self, so here goes. When we discuss the performance of some piece of

  7. Florida Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Florida Natural Gas Number of Oil Wells (Number of ... Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Florida ...

  8. T-670: Skype Input Validation Flaw in 'mobile phone' Profile Entry Permits Cross-Site Scripting Attacks

    Energy.gov [DOE]

    The software does not properly filter HTML code from user-supplied input in the The "mobile phone" profile entry before displaying the input.

  9. Florida Natural Gas Number of Commercial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers Florida Number of Natural Gas ...

  10. Florida Natural Gas Number of Industrial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial ... Referring Pages: Number of Natural Gas Industrial Consumers Florida Number of Natural Gas ...

  11. Florida Natural Gas Number of Residential Consumers (Number of...

    Gasoline and Diesel Fuel Update

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential ... Referring Pages: Number of Natural Gas Residential Consumers Florida Number of Natural Gas ...

  12. New York Natural Gas Number of Commercial Consumers (Number of...

    Annual Energy Outlook

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New York Number of Natural Gas ...

  13. New Mexico Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers New Mexico Number of Natural ...

  14. North Dakota Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial ... Referring Pages: Number of Natural Gas Commercial Consumers North Dakota Number of Natural ...

  15. Quantum random number generator

    DOEpatents

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  16. Thermal decomposition of electronic wastes: Mobile phone case and other parts

    SciTech Connect

    Molto, Julia; Egea, Silvia; Conesa, Juan Antonio; Font, Rafael

    2011-12-15

    Highlights: > Pyrolysis and combustion of different parts of mobile phones produce important quantities of CO and CO{sub 2}. > Naphthalene is the most abundant PAH obtained in the thermal treatment of mobile phones. > Higher combustion temperature increases the chlorinated species evolved. - Abstract: Pyrolysis and combustion runs at 850 {sup o}C in a horizontal laboratory furnace were carried out on different parts of a mobile phone (printed circuit board, mobile case and a mixture of both materials). The analyses of the carbon oxides, light hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorodibenzo-p-dioxin, polychlorodibenzofurans (PCDD/Fs), and dioxin-like PCBs are shown. Regarding semivolatile compounds, phenol, styrene, and its derivatives had the highest yields. In nearly all the runs the same PAHs were identified, naphthalene being the most common component obtained. Combustion of the printed circuit board produced the highest emission factor of PCDD/Fs, possibly due to the high copper content.

  17. Report number codes

    SciTech Connect

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  18. Quantum random number generation

    DOE PAGES [OSTI]

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Zhang, Zhen; Qi, Bing

    2016-06-28

    Here, quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at amore » high speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  19. Samsung recalls 1M Samsung Galazy Note 7 phones > EMC2 News > The Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Materials Center at Cornell Samsung recalls 1M Samsung Galazy Note 7 phones September 15th, 2016 › Jon Swartz, USA TODAY 8:48 p.m. EDT September 15, 2016 SAN FRANCISCO - Samsung has officially recalled 1 million of its Galaxy Note 7 phones sold before Sept. 15 because of "serious fire and burn hazards." The electronics giant made the announcement during a conference call with the U.S. Consumer Product Safety Commission late Thursday. Samsung says it received 92 reports of

  20. ALARA notes, Number 8

    SciTech Connect

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

  1. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Vaska, P.; Fowler, J.S.; Telang, F.; Alexoff, D.; Logan, J.; Wong, C.

    2011-03-01

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ({sup 18}F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm{sup 3}) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ({micro}mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 {micro}mol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute

  2. The Citizen Cyberscience Lectures - 1) Mobile phones and Africa: a success story 2) Citizen Problem Solving

    SciTech Connect

    2009-10-28

    Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Citizen Problem Solving Dr. Alpheus Bingham, InnoCentive The Citizen Cyberscience Lectures are hosted by the partners of the Citizen Cyberscience Centre, CERN, The UN Institute of Training and Research and the University of Geneva. The goal of the Lectures is to provide an inspirational forum for participants from the various international organizations and academic institutions in Geneva to explore how information technology is enabling greater citizen participation in tackling global development challenges as well as global scientific research. The first Citizen Cyberscience Lectures will welcome two speakers who have both made major innovative contributions in this area. Dr. Mo Ibrahim, founder of Celtel International, one of Africa’s most successful mobile network operators, will talk about “Mobile phones and Africa: a success story”. Dr. Alpheus Bingham, founder of InnoCentive, a Web-based community that solves industrial R&D; challenges, will discuss “Citizen Problem Solving”. The Citizen Cyberscience Lectures are open and free of charge. Participants from outside CERN must register by sending an email to Yasemin.Hauser@cern.ch BEFORE the 23rd october to be able to access CERN. THE LECTURES Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Abstract The introduction of mobile phones into Africa changed the continent, enabling business and the commercial sector, creating directly and indirectly, millions of jobs. It enriched the social lives of many people. Surprisingly, it supported the emerging civil society and advanced the course of democracy Bio Dr Mo Ibrahim is a global expert in mobile communications with a distinguished academic and business career. In 1998, Dr Ibrahim founded Celtel International to build and operate mobile networks in Africa. Celtel became one of Africa’s most successful companies with operations in 15 countries

  3. The Citizen Cyberscience Lectures - 1) Mobile phones and Africa: a success story 2) Citizen Problem Solving

    ScienceCinema

    None

    2016-07-12

    Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Citizen Problem Solving Dr. Alpheus Bingham, InnoCentive The Citizen Cyberscience Lectures are hosted by the partners of the Citizen Cyberscience Centre, CERN, The UN Institute of Training and Research and the University of Geneva. The goal of the Lectures is to provide an inspirational forum for participants from the various international organizations and academic institutions in Geneva to explore how information technology is enabling greater citizen participation in tackling global development challenges as well as global scientific research. The first Citizen Cyberscience Lectures will welcome two speakers who have both made major innovative contributions in this area. Dr. Mo Ibrahim, founder of Celtel International, one of Africa’s most successful mobile network operators, will talk about “Mobile phones and Africa: a success story”. Dr. Alpheus Bingham, founder of InnoCentive, a Web-based community that solves industrial R&D; challenges, will discuss “Citizen Problem Solving”. The Citizen Cyberscience Lectures are open and free of charge. Participants from outside CERN must register by sending an email to Yasemin.Hauser@cern.ch BEFORE the 23rd october to be able to access CERN. THE LECTURES Mobile phones and Africa: a success story Dr. Mo Ibrahim, Mo Ibrahim Foundation Abstract The introduction of mobile phones into Africa changed the continent, enabling business and the commercial sector, creating directly and indirectly, millions of jobs. It enriched the social lives of many people. Surprisingly, it supported the emerging civil society and advanced the course of democracy Bio Dr Mo Ibrahim is a global expert in mobile communications with a distinguished academic and business career. In 1998, Dr Ibrahim founded Celtel International to build and operate mobile networks in Africa. Celtel became one of Africa’s most successful companies with operations

  4. Modular redundant number systems

    SciTech Connect

    1998-05-31

    With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.

  5. Research Areas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Areas Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Biosciences The Biosciences Area forges multidisciplinary teams to solve national challenges in energy, environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three divisions and is enabled by Berkeley

  6. Wyoming Natural Gas Number of Residential Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  7. Virginia Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. Utah Natural Gas Number of Industrial Consumers (Number of Elements...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  9. Wisconsin Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  10. Virginia Natural Gas Number of Commercial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  11. Wyoming Natural Gas Number of Industrial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  12. Utah Natural Gas Number of Residential Consumers (Number of Elements...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  13. Vermont Natural Gas Number of Residential Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  14. Utah Natural Gas Number of Commercial Consumers (Number of Elements...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  15. Virginia Natural Gas Number of Industrial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. West Virginia Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. Wisconsin Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Vermont Natural Gas Number of Commercial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  19. Wyoming Natural Gas Number of Commercial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  20. West Virginia Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  1. Washington Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. Washington Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  3. Washington Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  4. Wisconsin Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  5. Vermont Natural Gas Number of Industrial Consumers (Number of...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  6. West Virginia Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  7. New York Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  8. New Mexico Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update

    Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  9. New Jersey Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update

    Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  10. North Carolina Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  11. North Carolina Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  12. North Dakota Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  13. North Dakota Natural Gas Number of Residential Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  14. North Carolina Natural Gas Number of Commercial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  15. New Hampshire Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  16. New Hampshire Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update

    Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. New Hampshire Natural Gas Number of Residential Consumers (Number...

    Annual Energy Outlook

    Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  18. New Mexico Natural Gas Number of Industrial Consumers (Number...

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  19. OSTIblog Articles in the smart phone Topic | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information smart phone Topic OSTI and Social Media: A Great Way to "Share" DOE STI by Nena Moss 08 Jul, 2014 in OSTI's mission is to advance science and sustain technological creativity by making R&D findings available and useful to DOE researchers and the public. As part of this commitment to America's science and technology future, we strive to place information in consumers' hands, specifically, at their fingertips. Rapidly changing technology

  20. Agency Points of Contact for Tribal Consultation Agency Point of Contact Email and Phone

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Points of Contact for Tribal Consultation Agency Point of Contact Email and Phone Department of the Interior Sarah Harris Chief of Staff to the Assist Secretary - Indian Affairs Tribalconsultation@bia.gov (202) 208-7163 Department of Justice Tracy Toulou Director, Office of Tribal Justice OTJ@usdoj.gov (202) 514-8812 Department of State Reta Lewis Special Representative for Global Intergovernmental Affairs tribalconsultation@state.gov (202) 647-7710 Department of the Treasury Alexander Gelber

  1. Verification Challenges at Low Numbers

    SciTech Connect

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  2. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  3. Research Areas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  4. Number

    Office of Legacy Management (LM)

    It is seen that all operations are performed vet, thus eliminating almost entirely a dust exposure hazard. A* Monazite sand is at present derived from India which supplies an ore ...

  5. Tennessee Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Tennessee Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 52 75 NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Tennessee Natural Gas Summ

  6. Texas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Texas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 85,030 94,203 96,949 104,205 105,159 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Texas Natural

  7. Pennsylvania Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Pennsylvania Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,046 7,627 7,164 8,481 7,557 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Pennsylvania

  8. Louisiana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Louisiana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,201 5,057 5,078 5,285 4,968 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Louisiana Natural

  9. Michigan Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Michigan Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 510 514 537 584 532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Michigan Natural Gas Summary

  10. Mississippi Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Mississippi Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 561 618 581 540 501 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Mississippi Natural Gas

  11. Missouri Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Missouri Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 1 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Missouri Natural Gas Summary

  12. Montana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Montana Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,956 2,147 2,268 2,377 2,277 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Montana Natural Gas

  13. Nebraska Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nebraska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 84 73 54 51 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nebraska Natural Gas Summar

  14. Nevada Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Nevada Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4 4 4 4 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Nevada Natural Gas Summary

  15. Ohio Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Ohio Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,775 6,745 7,038 7,257 5,941 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Ohio Natural Gas

  16. Oklahoma Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Oklahoma Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,723 7,360 8,744 7,105 8,368 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oklahoma Natural

  17. Alabama Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alabama Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 346 367 402 436 414 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alabama Natural Gas Sum

  18. Alaska Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alaska Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,040 1,981 2,006 2,042 2,096 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alaska Natural Gas

  19. Arizona Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arizona Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arizona Natural Gas Summary

  20. Arkansas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Arkansas Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 165 174 218 233 240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Arkansas Natural Gas

  1. California Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) California Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 25,958 26,061 26,542 26,835 27,075 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) California

  2. Colorado Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Colorado Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,963 6,456 6,799 7,771 7,733 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Colorado Natural

  3. Utah Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Utah Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,119 3,520 3,946 4,249 3,966 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Utah Natural Gas

  4. Virginia Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2 1 1 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Virginia Natural Gas Summary

  5. Wyoming Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Wyoming Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4,430 4,563 4,391 4,538 4,603 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Wyoming Natural Gas

  6. Kentucky Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Kentucky Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 317 358 340 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kentucky Natural Gas Su

  7. 300 Area signal cable study

    SciTech Connect

    Whattam, J.W.

    1994-09-15

    This report was prepared to discuss the alternatives available for removing the 300 Area overhead signal cable system. This system, installed in 1969, has been used for various monitoring and communication signaling needs throughout the 300 Area. Over the years this cabling system has deteriorated, has been continually reconfigured, and has been poorly documented to the point of nonreliability. The first step was to look at the systems utilizing the overhead signal cable that are still required for operation. Of the ten systems that once operated via the signal cable, only five are still required; the civil defense evacuation alarms, the public address (PA) system, the criticality alarms, the Pacific Northwest Laboratory Facilities Management Control System (FMCS), and the 384 annunciator panel. Of these five, the criticality alarms and the FMCS have been dealt with under other proposals. Therefore, this study focused on the alternatives available for the remaining three systems (evacuation alarms, PA system, and 384 panel) plus the accountability aid phones. Once the systems to be discussed were determined, then three alternatives for providing the signaling pathway were examined for each system: (1) re-wire using underground communication ducts, (2) use the Integrated Voice/Data Telecommunications System (IVDTS) already installed and operated by US West, and (3) use radio control. Each alternative was developed with an estimated cost, advantages, and disadvantages. Finally, a recommendation was provided for the best alternative for each system.

  8. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities

    SciTech Connect

    Lim, Seong-Rin; Schoenung, Julie M.

    2010-08-15

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancer potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones.

  9. Maryland Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Maryland Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Maryland Natural Gas Summary

  10. Oregon Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oregon Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Oregon Natural Gas Summary

  11. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Natural

  12. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 25 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Natural Gas Indu

  13. Indiana Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's NA NA NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Indiana Natural Gas Summary

  14. Kansas Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Kansas Natural Gas Summary

  15. ARM - Measurement - Particle number concentration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Particle number concentration The number of particles present in any given volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  16. Total Number of Operable Refineries

    Energy Information Administration (EIA) (indexed site)

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  17. Compendium of Experimental Cetane Numbers

    SciTech Connect

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  18. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 260 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  19. South Dakota Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 578 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  20. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 136 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  1. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  2. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 219 215 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  3. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 400 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release

  4. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 144 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release

  5. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 187 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  6. Exxon Valdez oil spill: State/federal natural resource damage assessment final report. Effects of pink salmon (oncorhynchus gorbuscha) escapement level on egg retention, preemergent fry, and adult returns to the kodiak and chignik management areas caused by the Exxon Valdez oil spill. Fish/shellfish study numbers 7b and 8b. Final report

    SciTech Connect

    1993-12-01

    As a result of the 1989 Exxon Valdez oil spill, commercial salmon fishing in and around the Kodiak and Chignik areas was severely restricted throughout the 1989 season. Consequently, pink salmon escapements for these areas greatly exceeded targeted escapement objectives. Investigations were conducted within the Kodiak and Chignik Management Areas during 1989 and 1990 to determine if negative impacts on future odd-year brood line pink salmon production occurred as a result of overescapement in 1989.

  7. Departmental Business Instrument Numbering System

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  8. Departmental Business Instrument Numbering System

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  9. McAdams Wright Ragen | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Suite 3900 Place: Seattle, Washington Zip: 98104 Region: Pacific Northwest Area Product: Financial Services Number of Employees: 51-200 Phone Number: 206-664-8850 Website:...

  10. McNamee Lawrence & Co | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Street Place: Boston, Massachusetts Zip: 02116 Region: Greater Boston Area Product: Financial Advisory Services Number of Employees: 11-50 Year Founded: 2001 Phone Number:...

  11. Munro Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Raynham, Massachusetts Zip: 02767 Region: Greater Boston Area Sector: Solar Product: Photovoltaics Number of Employees: 51-200 Year Founded: 1946 Phone Number: (508) 536-2196...

  12. Advent International | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Area Product: Global private equity firm. Number of Employees: 201-500 Year Founded: 1984 Phone Number: (617) 951-9400 Website: www.adventinternational.com Coordinates:...

  13. PRV PERFORMANCE | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Golden, CO Zip: 80403-2183 Region: Rockies Area Sector: Vehicles Product: Venturi Induction for Automobiles Number of Employees: 1-10 Year Founded: 2003 Phone Number:...

  14. Austin Technology Incubator | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Austin Technology Incubator Address: 3925 West Braker Lane Place: Austin, Texas Zip: 78759 Region: Texas Area Number of Employees: 11-50 Year Founded: 1989 Phone Number:...

  15. Lighthouse Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Frontier Place: Boulder, Colorado Zip: 80301 Region: Rockies Area Sector: Solar Product: Solar Panel Installers Number of Employees: 51-200 Year Founded: 2006 Phone Number:...

  16. Solar Maid Ventura County | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    California Region: Southern CA Area Sector: Solar Product: Solar Operations and Maintenance Number of Employees: 1-10 Year Founded: 2012 Phone Number: 661-575-5212 Website:...

  17. Czero, Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    United States Zip: 80524 Region: Rockies Area Sector: Services Product: Engineering Services Number of Employees: 1-10 Year Founded: 2007 Phone Number: (719) 331-9662...

  18. CPower | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    NJ CT PA Area Sector: Efficiency Product: Provides various energy efficiencymanagement services Number of Employees: 51-200 Year Founded: 2000 Phone Number: 212-361-6300...

  19. Makai Ocean Engineering Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Southern CA Area Sector: Marine and Hydrokinetic, Ocean, Renewable Energy Product: OTEC Number of Employees: 28 Year Founded: 1973 Phone Number: 808.259.8871 Website:...

  20. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,027 132,392 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 2,651 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  2. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,917 1,124,572 - = No Data

  3. Texas Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 294,879 284,013 270,227 1990's 268,181 269,411 292,990 297,516 306,376 325,785 329,287 332,077 320,922 314,598 2000's 315,906 314,858 317,446 320,786 322,242 322,999 329,918 326,812 324,671 313,384 2010's 312,277 314,041 314,811 314,036 316,756 319,512 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,398 6,655 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. Texas Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,155,948 3,166,168 3,201,316 1990's 3,232,849 3,274,482 3,285,025 3,346,809 3,350,314 3,446,120 3,501,853 3,543,027 3,600,505 3,613,864 2000's 3,704,501 3,738,260 3,809,370 3,859,647 3,939,101 3,984,481 4,067,508 4,156,991 4,205,412 4,248,613 2010's 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282

  6. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 241,682 - = No Data Reported; -- = Not

  7. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 4,932 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  9. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 24,088 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Rhode Island Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 236,323 - = No Data Reported; -- =

  11. South Carolina Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,323 56,871 - = No Data Reported; -- = Not Applicable; NA = Not

  12. South Carolina Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,442 1,438 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. South Carolina Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 605,644 620,555 - = No Data Reported; -- =

  14. South Dakota Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 24,040 - = No Data Reported; -- = Not Applicable; NA = Not

  15. South Dakota Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 182,568 - = No Data Reported; -- =

  16. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,996 57,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  17. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 845 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  18. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 903,686 888,023 - = No Data Reported; -- = Not Applicable; NA

  19. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 11,888 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  20. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,134 11,933 11,902 1990's 12,000 12,424 13,766 13,880 14,104 14,917 14,982 15,221 15,646 15,247 2000's 17,111 17,302 17,921 18,385 18,707 18,633 18,824 18,921 19,571 20,806 2010's 21,142 22,461 23,555 24,765 27,047 31,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  1. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 78,138 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  2. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 1,169 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  3. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 1,113,342 - = No Data Reported;

  4. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 140,533 - = No Data Reported; -- = Not

  5. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 11,266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. Massachusetts Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  7. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 254,484 - = No Data Reported; -- = Not Applicable; NA =

  8. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 7,931 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  10. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,380 138,871 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,880 1,868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  12. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1,496,790

  13. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 49,911 49,821 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  14. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 930 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  15. Mississippi Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 440,252 439,359 - = No Data Reported; -- =

  16. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,134 141,216 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 3,232 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  19. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 35,777 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  20. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 269,766 - = No Data Reported; -- = Not Applicable; NA =

  1. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 57,521 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  2. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 8,868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Nebraska Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Nebraska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400,218 403,657 406,723 1990's 407,094 413,354 418,611 413,358 428,201 427,720 439,931 444,970 523,790 460,173 2000's 475,673 476,275 487,332 492,451 497,391 501,279 499,504 494,005 512,013 512,551 2010's 510,776 514,481 515,338 527,397 522,408 525,165 - = No Data Reported; -- = Not Applicable; NA

  4. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 42,860 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  5. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 824,039 - = No Data Reported; -- = Not Applicable; NA =

  6. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 269,981 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 6,502 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,968

  9. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,005 96,471 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  10. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,062 3,059 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 941,137 - = No Data Reported; -- = Not Applicable; NA

  12. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 80,877 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  13. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 1,117 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 717,999 - = No Data Reported; -- = Not Applicable; NA =

  15. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,847 67,746 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  16. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 3,300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,900 768,568 - = No Data Reported; -- = Not Applicable;

  18. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 13,549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  19. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 128,605 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 46,702 46,636 46,776 1990's 47,292 53,982 47,781 47,678 48,568 49,145 49,693 50,115 51,712 53,022 2000's 54,056 54,724 56,260 56,082 56,186 56,572 57,091 57,169 57,586 57,191 2010's 56,676 56,547 56,532 56,585 56,649 56,793 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  1. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 545 567,962 564,195 572,461 1990's 586,866 642,659 604,899 610,337 635,335 661,192 689,597 724,911 764,167 802,469 2000's 846,016 884,789 925,927 957,442 993,885 1,042,662 1,088,574 1,119,266 1,128,264 1,130,047 2010's 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 1,200,783 - = No Data Reported;

  2. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 69,265 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 1,023 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  4. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 550,108 - = No Data Reported; -- = Not Applicable;

  5. California Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 413 404,507 407,435 410,231 1990's 415,073 421,278 412,467 411,648 411,140 411,535 408,294 406,803 588,224 416,791 2000's 413,003 416,036 420,690 431,795 432,367 434,899 442,052 446,267 447,160 441,806 2010's 439,572 440,990 442,708 444,342 443,115 446,510 - = No Data Reported; -- = Not Applicable;

  6. California Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 36,854 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. California Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916

  8. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 150,545 - = No Data Reported; -- = Not Applicable;

  9. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 8,098 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581

  11. Connecticut Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 38 40,886 41,594 43,703 1990's 45,364 45,925 46,859 45,529 45,042 45,935 47,055 48,195 47,110 49,930 2000's 52,384 49,815 49,383 50,691 50,839 52,572 52,982 52,389 53,903 54,510 2010's 54,842 55,028 55,407 55,500 56,591 57,403 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  12. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 3,945 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  13. Connecticut Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400 411,349 417,831 424,036 1990's 428,912 430,078 432,244 427,761 428,157 431,909 433,778 436,119 438,716 442,457 2000's 458,388 458,404 462,574 466,913 469,332 475,221 478,849 482,902 487,320 489,349 2010's 490,185 494,970 504,138 513,492 522,658 531,380 - = No Data Reported; --

  14. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 13,430 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 161,607 - = No Data Reported; -- = Not Applicable; NA =

  16. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,578 123,307 - = No Data Reported; -- = Not Applicable; NA =

  17. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 2,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  19. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 2,815 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  20. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 28,952 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  1. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 40,744 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 374,557 - = No Data Reported; -- = Not Applicable; NA =

  3. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 295,869 - = No Data Reported; -- = Not Applicable; NA =

  4. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 23,049 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  5. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  6. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 160,051 - = No Data Reported; -- = Not Applicable; NA =

  7. Indiana Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,497 5,696 6,196 1990's 6,439 6,393 6,358 6,508 6,314 6,250 6,586 6,920 6,635 19,069 2000's 10,866 9,778 10,139 8,913 5,368 5,823 5,350 5,427 5,294 5,190 2010's 5,145 5,338 5,204 5,178 5,098 5,095 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  8. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  9. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,186 99,662 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  11. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 908,058 - = No Data Reported; -- = Not Applicable; NA =

  12. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,654 86,034 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  13. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,328 7,218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 860,441 861,419 - = No Data Reported; -- = Not Applicable; NA =

  15. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,630 85,961 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  16. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 2,008 2,041 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 761,935 764,946 - = No Data Reported; -- = Not Applicable; NA

  18. Illinois Natural Gas Number of Oil Wells (Number of Elements)

    Gasoline and Diesel Fuel Update

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 295,869 - = No Data Reported; -- = Not Applicable; NA =

  19. Sand Mountain Electric Coop | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sand Mountain Electric Coop Jump to: navigation, search Name: Sand Mountain Electric Coop Place: Alabama Phone Number: Rainsville Area: 256---638---2153; Henagar Area:...

  20. Number of Producing Gas Wells

    Gasoline and Diesel Fuel Update

    Area 2010 2011 2012 2013 2014 2015 View History U.S. 487,627 574,593 577,916 572,742 565,951 555,364 1989-2015 Alabama 7,026 6,243 6,203 6,174 6,117 6,044 1989-2015 Alaska 269 274 ...

  1. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    SciTech Connect

    Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. The mechanism of the dissolution of lithium and cobalt was studied. Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ash diffusion control dense constant sizes spherical particles i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  2. Concept Study: Exploration and Production in Environmentally Sensitive Arctic Areas

    SciTech Connect

    Shirish Patil; Rich Haut; Tom Williams; Yuri Shur; Mikhail Kanevskiy; Cathy Hanks; Michael Lilly

    2008-12-31

    The Alaska North Slope offers one of the best prospects for increasing U.S. domestic oil and gas production. However, this region faces some of the greatest environmental and logistical challenges to oil and gas production in the world. A number of studies have shown that weather patterns in this region are warming, and the number of days the tundra surface is adequately frozen for tundra travel each year has declined. Operators are not allowed to explore in undeveloped areas until the tundra is sufficiently frozen and adequate snow cover is present. Spring breakup then forces rapid evacuation of the area prior to snowmelt. Using the best available methods, exploration in remote arctic areas can take up to three years to identify a commercial discovery, and then years to build the infrastructure to develop and produce. This makes new exploration costly. It also increases the costs of maintaining field infrastructure, pipeline inspections, and environmental restoration efforts. New technologies are needed, or oil and gas resources may never be developed outside limited exploration stepouts from existing infrastructure. Industry has identified certain low-impact technologies suitable for operations, and has made improvements to reduce the footprint and impact on the environment. Additional improvements are needed for exploration and economic field development and end-of-field restoration. One operator-Anadarko Petroleum Corporation-built a prototype platform for drilling wells in the Arctic that is elevated, modular, and mobile. The system was tested while drilling one of the first hydrate exploration wells in Alaska during 2003-2004. This technology was identified as a potentially enabling technology by the ongoing Joint Industry Program (JIP) Environmentally Friendly Drilling (EFD) program. The EFD is headed by Texas A&M University and the Houston Advanced Research Center (HARC), and is co-funded by the National Energy Technology Laboratory (NETL). The EFD

  3. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    SciTech Connect

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-11-15

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  4. Microsoft Word - Current Contact Information2.docx

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contact Information: Name: Date: Z Number: Home Phone: ( ) Cell Phone: ( ) Work Phone: ( ) Mailing Address: Street or PO Box Apt...

  5. Climate Zone Number 8 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Alaska Northwest Arctic Borough, Alaska Southeast Fairbanks Census Area, Alaska Wade Hampton Census Area, Alaska Yukon-Koyukuk Census Area, Alaska Retrieved from "http:...

  6. Property:Building/FloorAreaResidential | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BuildingFloorAreaResidential Jump to: navigation, search This is a property of type Number. Floor area for Residential Pages using the property "BuildingFloorAreaResidential"...

  7. Property:Building/FloorAreaHotels | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    BuildingFloorAreaHotels Jump to: navigation, search This is a property of type Number. Floor area for Hotels Pages using the property "BuildingFloorAreaHotels" Showing 1 page...

  8. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada

    Office of Legacy Management (LM)

    Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada Controlled Copy No.: Revision No.: 3 March 2006 Approved for public release; further dissemination unlimited. DOE/NV--1025--Rev. 3 Available for public sale, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering:

  9. SolFocus | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    View, California Zip: 94043 Region: Bay Area Sector: Solar Product: Concentrator Photovoltaic Energy Systems Year Founded: 2005 Phone Number: 650-623-7100 Website:...

  10. The Paper Battery Company Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    12180 Region: Northeast - NY NJ CT PA Area Sector: Buildings Product: Scalable energy storage sheet Year Founded: 2008 Phone Number: 5182669027 Website: www.paperbatteryco.com...

  11. Sevin Rosen Funds (California) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Sevin Rosen Funds (California) Address: 421 Kipling Street Place: Palo Alto, California Zip: 94301 Region: Bay Area Product: Venture fund Year Founded: 1981 Phone Number: (650)...

  12. EnerVault Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    California Zip: 94087 Region: Bay Area Sector: Renewable energy Product: Grid-scale energy storage systems Year Founded: 2008 Phone Number: 408-636-7519 Website:...

  13. Idaho Transportation Department | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Department Name: Idaho Transportation Department Address: 3311 W. State St. PO Box 7129 Place: Boise, Idaho Zip: 83707-1129 Region: Rockies Area Phone Number:...

  14. Sustainable Energy Advantage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Boston Area Sector: Renewable Energy Product: analysis and support (strategy, policy, marketing, product development, pricing) Year Founded: 1998 Phone Number: (508) 665-5850...

  15. Integrated Energy Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Integrated Energy Systems Address: 747 N Main Street Place: Orange, California Zip: 92868 Region: Southern CA Area Sector: Solar Product: EPC Year Founded: 1985 Phone Number:...

  16. EcoElectron Ventures | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    California Zip: 92024 Region: Southern CA Area Product: Seed stage capital investment fund Phone Number: (760) 635-1681 Website: www.ecoelectron.com Coordinates:...

  17. Adobe Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Adobe Solar Jump to: navigation, search Logo: Adobe Solar Name: Adobe Solar Place: Denver, Colorado Region: Rockies Area Sector: Solar Product: solar electric systems Phone Number:...

  18. TransAtlantic Petroleum | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Area Product: acquisition, development, exploration, and production of crude oil and natural gas. Year Founded: 1985 Phone Number: 214-220-4323 Website: www.transatlanticpetro...

  19. N2Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Utah Zip: 84093 Region: Rockies Area Sector: Solar Product: HOE Solar performance optics for PV, CSP, Desal and UV water treatment Year Founded: 2003 Phone Number: 801 608...

  20. Inovus | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Pacific Northwest Area Sector: Solar Product: http:www.inovussolar.comsolar-street-lighting-products Year Founded: 2007 Phone Number: (208) 908-0627 Website:...

  1. NGEN Partners LLC (Silicon Valley) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    University Avenue Place: Palo Alto, California Zip: 94301 Region: Bay Area Product: Invest in early to late-stage clean energy businesses. Year Founded: 2001 Phone Number: (650)...

  2. New England Breeze Solar and Wind Installers | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Greater Boston Area Sector: Renewable energy, Services, Solar, Wind energy Product: Solar Panel and Wind Turbine Installation Year Founded: 2006 Phone Number: 978-567-9463...

  3. Mason Energy + Management | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Colorado Zip: 80303 Region: Rockies Area Sector: Buildings, Efficiency, Services Product: Energy Efficiency for Commercial Buildings Year Founded: 2009 Phone Number: 720 242-7088...

  4. Clean Tech Institute | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    California Zip: 95126 Region: Bay Area Sector: Services Product: Research, Workforce Training, Consulting Services Phone Number: 408-280-6242 Website: www.cleantechinstitute.org...

  5. Expansion Capital Partners LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Area Product: Venture capital firm that invests in expansion-stage, clean technology enterprises Year Founded: 2001 Phone Number: (415) 788-8802 Website: www.expansioncapital.com...

  6. @Ventures (California) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bay Area Product: Venture capital firm investing in early stage clean technology enterprises Phone Number: (650) 322-3246 Website: www.ventures.com Coordinates: 37.450078,...

  7. @Ventures (Massachusetts) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Boston Area Product: Venture capital firm investing in early stage clean technology enterprises Phone Number: (978) 658-8980 Website: www.ventures.com Coordinates: 42.581566,...

  8. May 2013 Electrical Safety Occurrences

    Energy.gov [DOE] (indexed site)

    or impact to facility operations. Similar OR Report Number: Facility Manager: Name Collins, Michael A. Phone (803) 208-1313 Title Tritium Facility Area Operations Manager...

  9. Poulsen Hybrid, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    6 Waterview Drive Place: Shelton, Connecticut Zip: 06615 Region: Northeast - NY NJ CT PA Area Sector: Vehicles Product: Poulsen Hybrid Year Founded: 2007 Phone Number:...

  10. Material flows of mobile phones and accessories in Nigeria: Environmental implications and sound end-of-life management options

    SciTech Connect

    Osibanjo, Oladele Nnorom, Innocent Chidi

    2008-02-15

    Presently, Nigeria is one of the fastest growing Telecom markets in the world. The country's teledensity increased from a mere 0.4 in 1999 to 10 in 2005 following the liberalization of the Telecom sector in 2001. More than 25 million new digital mobile lines have been connected by June 2006. Large quantities of mobile phones and accessories including secondhand and remanufactured products are being imported to meet the pent-up demand. This improvement in mobile telecom services resulted in the preference of mobile telecom services to fixed lines. Consequently, the contribution of fixed lines decreased from about 95% in year 2000 to less than 10% in March 2005. This phenomenal progress in information technology has resulted in the generation of large quantities of electronic waste (e-waste) in the country. Abandoned fixed line telephone sets estimated at 120,000 units are either disposed or stockpiled. Increasing quantities of waste mobile phones estimated at 8 million units by 2007, and accessories will be generated. With no material recovery facility for e-waste and/or appropriate solid waste management infrastructure in place, these waste materials end up in open dumps and unlined landfills. These practices create the potential for the release of toxic metals and halocarbons from batteries, printed wiring boards, liquid crystal display and plastic housing units. This paper presents an overview of the developments in the Nigerian Telecom sector, the material in-flow of mobile phones, and the implications of the management practices for wastes from the Telecom sector in the country.

  11. Developing and Enhancing Workforce Training Programs: Number...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the ...

  12. Florida Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update

    Gas and Gas Condensate Wells (Number of Elements) Florida Natural Gas Number of Gas and ...2016 Referring Pages: Number of Producing Gas Wells (Summary) Florida Natural Gas Summary

  13. Low Mach Number Models in Computational Astrophysics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ann Almgren Low Mach Number Models in Computational Astrophysics February 4, 2014 Ann Almgren. Berkeley Lab Downloads Almgren-nug2014.pdf | Adobe Acrobat PDF file Low Mach Number...

  14. Climate Zone Number 5 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  15. AREA 5 RWMS CLOSURE

    National Nuclear Security Administration (NNSA)

    153 CLOSURE STRATEGY NEVADA TEST SITE AREA 5 RADIOACTIVE WASTE MANAGEMENT SITE Revision 0 ... Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management ...

  16. AU Funtional Area Points of Contact by Office Directors - July 7, 2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Functional Area Points of Contact Listing by AU Office Director 1 Function/Subject Director Email Phone Accident Investigations Josh Silverman Josh.Silverman@hq.doe.gov (202) 586-6535 Administrative Review (Clearance eligibility determinations) Sam Callahan Samuel.Callahan@hq.doe.gov (301) 903-3767 Annual Report to Congress on Special Nuclear Material Robert Lingan Robert.lingan@hq.doe.gov (202) 586-1461 Annual Site Environmental Reports Josh Silverman Josh.Silverman@hq.doe.gov (202) 586-6535

  17. On the binary expansions of algebraic numbers

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Pomerance, Carl

    2003-07-01

    Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1's in the binary expansions of real algebraic numbers. A central result is that if a real y has algebraic degree D > 1, then the number {number_sign}(|y|, N) of 1-bits in the expansion of |y| through bit position N satisfies {number_sign}(|y|, N) > CN{sup 1/D} for a positive number C (depending on y) and sufficiently large N. This in itself establishes the transcendency of a class of reals {summation}{sub n{ge}0} 1/2{sup f(n)} where the integer-valued function f grows sufficiently fast; say, faster than any fixed power of n. By these methods we re-establish the transcendency of the Kempner--Mahler number {summation}{sub n{ge}0}1/2{sup 2{sup n}}, yet we can also handle numbers with a substantially denser occurrence of 1's. Though the number z = {summation}{sub n{ge}0}1/2{sup n{sup 2}} has too high a 1's density for application of our central result, we are able to invoke some rather intricate number-theoretical analysis and extended computations to reveal aspects of the binary structure of z{sup 2}.

  18. Property:Building/FloorAreaUnheatedRentedPremises | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Property:BuildingFloorAreaUnheatedRentedPremises Jump to: navigation, search This is a property of type Number. Floor area for Unheated but...

  19. Property:Building/FloorAreaHeatedGarages | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Property:BuildingFloorAreaHeatedGarages Jump to: navigation, search This is a property of type Number. Floor area for Heated garages (> 10 C)...

  20. Property:Building/FloorAreaOffices | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Property:BuildingFloorAreaOffices Jump to: navigation, search This is a property of type Number. Floor area for Offices Pages using the property...

  1. Property:Building/FloorAreaRestaurants | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Property:BuildingFloorAreaRestaurants Jump to: navigation, search This is a property of type Number. Floor area for Restaurants Pages using the...

  2. Property:Building/FloorAreaShops | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Property:BuildingFloorAreaShops Jump to: navigation, search This is a property of type Number. Floor area for Shops Pages using the property...

  3. Property:Building/FloorAreaWarehouses | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Property:BuildingFloorAreaWarehouses Jump to: navigation, search This is a property of type Number. Floor area for Warehouses Pages using the...

  4. Property:Building/FloorAreaOtherRetail | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Property:BuildingFloorAreaOtherRetail Jump to: navigation, search This is a property of type Number. Floor area for Other retail Pages using the...

  5. Property:Building/FloorAreaTheatresConcertHallsCinemas | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Property:BuildingFloorAreaTheatresConcertHallsCinemas Jump to: navigation, search This is a property of type Number. Floor area for Theatres,...

  6. Property:Building/FloorAreaHealthServicesDaytime | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search This is a property of type Number. Floor area for Daytime health services Pages using the property "BuildingFloorAreaHealthServicesDaytime" Showing 4...

  7. Property:Building/FloorAreaSportCenters | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    This is a property of type Number. Floor area for Swimming baths, indoor and outdoor sports centres Pages using the property "BuildingFloorAreaSportCenters" Showing 2 pages...

  8. Self-correcting random number generator

    DOEpatents

    Humble, Travis S.; Pooser, Raphael C.

    2016-09-06

    A system and method for generating random numbers. The system may include a random number generator (RNG), such as a quantum random number generator (QRNG) configured to self-correct or adapt in order to substantially achieve randomness from the output of the RNG. By adapting, the RNG may generate a random number that may be considered random regardless of whether the random number itself is tested as such. As an example, the RNG may include components to monitor one or more characteristics of the RNG during operation, and may use the monitored characteristics as a basis for adapting, or self-correcting, to provide a random number according to one or more performance criteria.

  9. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  10. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  11. ARM - Measurement - Cloud particle number concentration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume of air. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  12. Microsoft Word - 2013 IWD #3155 Trident Target Area Operations...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Reference Documents List permits, operating manuals, security plans, and other reference ... Point-of-Contact Name Phone Pager Email Bobby Romero 667-2718 664-8601 ...

  13. Particle Number & Particulate Mass Emissions Measurements on...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Poster ...

  14. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  15. Identification of Export Control Classification Number - ITER

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" ... be shipped from the United States to the ITER International Organization in Cadarache, ...

  16. Climate Zone Number 7 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Prince of Wales-Outer Ketchikan Census Area, Alaska Ramsey County, North Dakota Red Lake County, Minnesota Renville County, North Dakota Rio Grande County, Colorado...

  17. Technical Area 21

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  18. Compendium of Experimental Cetane Number Data

    SciTech Connect

    Murphy, M. J.; Taylor, J. D.; McCormick, R. L.

    2004-09-01

    In this report, we present a compilation of reported cetane numbers for pure chemical compounds. The compiled database contains cetane values for 299 pure compounds, including 156 hydrocarbons and 143 oxygenates. Cetane number is a relative ranking of fuels based on the amount of time between fuel injection and ignition. The cetane number is typically measured either in a combustion bomb or in a single-cylinder research engine. This report includes cetane values from several different measurement techniques - each of which has associated uncertainties. Additionally, many of the reported values are determined by measuring blending cetane numbers, which introduces significant error. In many cases, the measurement technique is not reported nor is there any discussion about the purity of the compounds. Nonetheless, the data in this report represent the best pure compound cetane number values available from the literature as of August 2004.

  19. 100 Area - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 ... Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility ...

  20. 700 Area - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 ... Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility ...

  1. 200 Area - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 ... Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility ...

  2. 300 Area - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 ... Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility ...

  3. Nusselt numbers in rectangular ducts with laminar viscous dissipation

    SciTech Connect

    Morini, G.L.; Spiga, M.

    1999-11-01

    The need for high thermal performance has stimulated the use of rectangular ducts in a wide variety of compact heat exchangers, mainly in tube-fin and plate-fin exchangers, in order to obtain an enhancement in heat transfer, with the same cross-sectional area of the duct. In this paper, the steady temperature distribution and the Nusselt numbers are analytically determined for a Newtonian incompressible fluid in a rectangular duct, in fully developed laminar flow with viscous dissipation, for any combination of heated and adiabatic sides of the duct, in H1 boundary condition, and neglecting the axial heat conduction in the fluid. The Navier-Stokes and the energy balance equations are solved using the technique of the finite integral transforms. For a duct with four uniformly heated sides (4 version), the temperature distribution and the Nusselt numbers are obtained as a function of the aspect ratio and of the Brinkman number and presented in graphs and tables Finally it is proved that the temperature field in a fully developed T boundary condition can be obtained as a particular case of the H1 problem and that the corresponding Nusselt numbers do not depend on the Brinkman number.

  4. Site Monitoring Area Maps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  5. Sweet Surface Area

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sweet Surface Area Sweet Surface Area Create a delicious root beer float and learn sophisticated science concepts at the same time. Sweet Surface Area Science is all around us, so why not have some delicious fun while we do it? The process of making a root beer float (PDF) is simple but it involves some pretty sophisticated scientific concepts. Carbonation, surface area, viscosity, and temperature all play a roll in creating a treat that is up to your personal highest standards

  6. Treatability study Number PDC-1-O-T. Final report

    SciTech Connect

    1998-04-22

    Los Alamos National Laboratory provided treatability study samples from four waste streams, designated Stream {number_sign}1, Stream {number_sign}3, Stream {number_sign}6, and Stream {number_sign}7. Stream {number_sign}1 consisted of one 55-gallon drum of personal protective equipment (PPE), rags, and neutralizing agent (bicarbonate) generated during the cleanup of a sodium dichromate solution spill. Stream {number_sign}3 was one 55-gallon drum of paper, rags, lab utensils, tools, and tape from the decontamination of a glovebox. The sample of Stream {number_sign}6 was packaged in three 30-gallon drums and a 100 ft{sup 3} wooden box. It consisted of plastic sheeting, PPE, and paper generated from the cleanup of mock explosive (barium nitrate) from depleted uranium parts. Stream {number_sign}7 was scrap metal (copper, stainless and carbon steel joined with silver solder) from the disassembly of gas manifolds. The objective of the treatability study is to determine: (1) whether the Perma-Fix stabilization/solidification process can treat the waste sample to meet Land Disposal Restrictions and the Waste Acceptance Criteria for LANL Technical Area 54, Area G, and (2) optimum loading and resulting weight and volume of finished waste form. The stabilized waste was mixed into grout that had been poured into a lined drum. After each original container of waste was processed, the liner was closed and a new liner was placed in the same drum on top of the previous closed liner. This allowed an overall reduction in waste volume but kept waste segregated to minimize the amount of rework in case analytical results indicated any batch did not meet treatment standards. Samples of treated waste from each waste stream were analyzed by Perma-Fix Analytical Services to get a preliminary approximation of TCLP metals. Splits of these samples were sent to American Environmental Network`s mixed waste analytical lab in Cary, NC for confirmation analysis. Results were all below applicable

  7. Mo Year Report Period: EIA ID NUMBER:

    Energy Information Administration (EIA) (indexed site)

    Mo Year Report Period: EIA ID NUMBER: http:www.eia.govsurveyformeia14instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https:...

  8. Identification of Export Control Classification Number - ITER

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for the products (equipment, components and/or materials) and if applicable the nonproprietary associated installation/maintenance documentation that will be shipped from the United States to the ITER International Organization in Cadarache, France or to ITER Members worldwide on behalf of the Company. In rare instances an

  9. LANL Site By The Numbers May 2016

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    These legacy sites are identified as either solid waste management units (SWMUs) or areas of concern (AOCs). Five of the remaining 12 sites are currently scheduled to be remediated ...

  10. "Name","Work Phone","Contact","E-Mail","Location","Manager Group Name"

    Office of Scientific and Technical Information (OSTI)

    Name","Work Phone","Contact","E-Mail","Location","Manager Group Name" ", TBD","","","","National Nuclear Security Administration","Technical Information Officers" ", TBD","","","","Savannah River Operations Office","Technical Information Officers" ", TBD","","","","Office of

  11. Inner Area Principles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Inner Area Principles The Inner Area principles proposed by the Tri-Parties are a good beginning toward consideration of what kind of approach will be needed to remedy the problems of the Central Plateau. However, the Board feels that some principles have been overlooked in the preparation of these. [1] While it has been generally agreed that designated waste disposal facilities of the Inner Area (like ERDF and IDF) would not be candidates for remediation. What happened to the remedial approach

  12. Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?

    SciTech Connect

    Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

    2007-02-28

    Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and types of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.

  13. Western Area Power Administration

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Area Power Administration Follow-up to Nov. 25, 2008 Transition ... Southwestern Power Administration CONSTRUCTION BUDGET ITEM DESCRIPTION FY 2009* MICROWAVE ...

  14. WIPP Documents - All documents by number

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Note: Documents that do not have document numbers are not included in this listing. Large file size alert This symbol means the document may be a large file size. All documents by number Common document prefixes DOE/CAO DOE/TRU DOE/CBFO DOE/WIPP DOE/EA NM DOE/EIS Other DOE/CAO Back to top DOE/CAO 95-1095, Oct. 1995 Remote Handled Transuranic Waste Study This study was conducted to satisfy the requirements defined by the WIPP Land Withdrawal Act and considered by DOE to be a prudent exercise in

  15. Approximate resolution of hard numbering problems

    SciTech Connect

    Bailleux, O.; Chabrier, J.J.

    1996-12-31

    We present a new method for estimating the number of solutions of constraint satisfaction problems. We use a stochastic forward checking algorithm for drawing a sample of paths from a search tree. With this sample, we compute two values related to the number of solutions of a CSP instance. First, an unbiased estimate, second, a lower bound with an arbitrary low error probability. We will describe applications to the Boolean Satisfiability problem and the Queens problem. We shall give some experimental results for these problems.

  16. Probing lepton number violation on three frontiers

    SciTech Connect

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  17. U.S. Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) U.S. Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 181,241 195,869 203,990 215,815 215,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) U.S. Natural

  18. South Dakota Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) South Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 72 69 74 68 65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) South Dakota Natural Gas

  19. New Mexico Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New Mexico Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12,887 13,791 14,171 14,814 14,580 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New Mexico

  20. New York Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) New York Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 988 1,170 1,589 1,731 1,697 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) New York Natural Gas

  1. North Dakota Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) North Dakota Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,561 7,379 9,363 11,532 12,799 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) North Dakota

  2. West Virginia Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) West Virginia Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,373 2,509 2,675 2,606 2,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) West Virginia

  3. The 17 GHz active region number

    SciTech Connect

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Gimnez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  4. Climate Zone Number 1 | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C Dry(1B) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C...

  5. Nevada Number of Natural Gas Consumers

    Annual Energy Outlook

    760,391 764,435 772,880 782,759 794,150 808,970 1987-2014 Sales 764,435 772,880 782,759 794,150 808,970 1997-2014 Commercial Number of Consumers 41,303 40,801 40,944 41,192 41,710 ...

  6. Washington Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231...

  7. North Carolina Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update

    ,102,001 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1987-2014 Sales 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1997-2014 Commercial Number of Consumers 113,630...

  8. Pennsylvania Number of Natural Gas Consumers

    Annual Energy Outlook

    1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 618 606 604 540 627 666 1967-2014 Industrial Number of Consumers 4,745 4,624 5,007 5,066 5,024 5,084 1987-2014...

  9. The New Element Curium (Atomic Number 96)

    DOE R&D Accomplishments

    Seaborg, G. T.; James, R. A.; Ghiorso, A.

    1948-00-00

    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  10. Oklahoma Number of Natural Gas Consumers

    Annual Energy Outlook

    924,745 914,869 922,240 927,346 931,981 937,237 1987-2014 Sales 914,869 922,240 927,346 931,981 937,237 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers ...

  11. New Mexico Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update

    560,479 559,852 570,637 561,713 572,224 614,313 1987-2014 Sales 559,825 570,592 561,652 572,146 614,231 1997-2014 Transported 27 45 61 78 82 1997-2014 Commercial Number of...

  12. Kansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update

    855,454 853,842 854,730 854,800 858,572 861,092 1987-2014 Sales 853,842 854,730 854,779 858,546 861,066 1997-2014 Transported 0 0 21 26 26 2004-2014 Commercial Number of Consumers...

  13. New Hampshire Number of Natural Gas Consumers

    Annual Energy Outlook

    96,924 95,361 97,400 99,738 98,715 99,146 1987-2014 Sales 95,360 97,400 99,738 98,715 99,146 1997-2014 Transported 1 0 0 0 0 2010-2014 Commercial Number of Consumers 16,937 16,645 ...

  14. Minnesota Number of Natural Gas Consumers

    Annual Energy Outlook

    423,703 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1987-2014 Sales 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 1997-2014 Commercial Number of Consumers 131,801 132,163 ...

  15. RL-721 REV7 I. Project Title: NEPA REVIEW SCREENING FORM Document ID Number:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    42 Radiological Survey Activities in the 600 Area of the Hanford Site Supporting Land Conveyance II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings, etc.): The U.S. Department of Energy, Richland Operations (DOE-RL) proposes to conduct radiological surveys of a portion of the 600 Area of the Hanford Site. The surveys are needed to

  16. Energy By The Numbers: An Energy Revolution | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy By The Numbers: An Energy Revolution Energy By The Numbers: An Energy Revolution

  17. Number of Gas Producing Oil Wells

    Energy Information Administration (EIA) (indexed site)

    & Notes Definitions, Sources & Notes Area 2011 2012 2013 2014 2015 View History U.S. ... Louisiana 5,201 5,057 5,078 5,285 4,968 2011-2015 Maryland 0 0 0 0 0 2011-2015 Michigan 51...

  18. C:\Forms\DOE F 1500.6.cdr

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 (2-91) U.S. Department of Energy (See Reverse for Instructions and Privacy Act Statement) Employee Name(s): Old Duty Station: New Duty Station: Change of Station Authorization No: Reporting Date: Provide following information if requesting Home Purchase Service: Please check services interested in obtaining: Office Phone Number I prefer to be contacted by relocation service company at (Phone - & Area Code) (time of day) Employee Signature Date Home Phone Number a. Address of Residence to

  19. Geothermal br Resource br Area Geothermal br Resource br Area...

    OpenEI (Open Energy Information) [EERE & EIA]

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  20. Louisiana Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    893,400 897,513 963,688 901,635 903,686 888,023 1987-2015 Sales 893,400 897,513 963,688 901,635 903,686 888,023 1997-2015 Transported 0 0 0 0 0 0 1997-2015 Commercial Number of Consumers 58,562 58,749 63,381 59,147 58,996 57,873 1987-2015 Sales 58,501 58,685 63,256 58,985 58,823 57,695 1998-2015 Transported 61 64 125 162 173 178 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 461 441 415 488 530 515 1967-2015 Industrial Number of Consumers 942 920 963 916 883 845 1987-2015 Sales

  1. Maine Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    21,142 22,461 23,555 24,765 27,047 31,011 1987-2015 Sales 21,141 22,461 23,555 24,765 27,047 31,011 1997-2015 Transported 1 0 0 0 0 0 2010-2015 Commercial Number of Consumers 9,084 9,681 10,179 11,415 11,810 11,888 1987-2015 Sales 7,583 8,081 8,388 9,481 9,859 10,216 1998-2015 Transported 1,501 1,600 1,791 1,934 1,951 1,672 1999-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 642 681 718 714 765 847 1967-2015 Industrial Number of Consumers 94 102 108 120 126 136 1987-2015 Sales 26 29

  2. Mississippi Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    436,840 442,479 442,840 445,589 440,252 439,359 1987-2015 Sales 436,840 439,511 440,171 442,974 440,252 439,359 1997-2015 Transported 0 2,968 2,669 2,615 0 0 2010-2015 Commercial Number of Consumers 50,537 50,636 50,689 50,153 49,911 49,821 1987-2015 Sales 50,503 50,273 50,360 49,829 49,870 49,766 1998-2015 Transported 34 363 329 324 41 55 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 419 400 352 388 445 395 1967-2015 Industrial Number of Consumers 980 982 936 933 943 930

  3. Missouri Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    348,549 1,342,920 1,389,910 1,357,740 1,363,286 1,369,204 1987-2015 Sales 1,348,549 1,342,920 1,389,910 1,357,740 1,363,286 1,369,204 1997-2015 Transported 0 0 0 0 0 0 2010-2015 Commercial Number of Consumers 138,670 138,214 144,906 142,495 143,134 141,216 1987-2015 Sales 137,342 136,843 143,487 141,047 141,587 140,144 1998-2015 Transported 1,328 1,371 1,419 1,448 1,547 1,072 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 441 451 378 453 509 435 1967-2015 Industrial Number of

  4. Montana Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    257,322 259,046 259,957 262,122 265,849 269,766 1987-2015 Sales 256,841 258,579 259,484 261,637 265,323 269,045 1997-2015 Transported 481 467 473 485 526 721 2005-2015 Commercial Number of Consumers 34,002 34,305 34,504 34,909 35,205 35,777 1987-2015 Sales 33,652 33,939 33,967 34,305 34,558 35,022 1998-2015 Transported 350 366 537 604 647 755 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 602 651 557 601 612 541 1967-2015 Industrial Number of Consumers 384 381 372 372 369 366

  5. Nebraska Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    510,776 514,481 515,338 527,397 522,408 525,165 1987-2015 Sales 442,413 446,652 447,617 459,712 454,725 457,504 1997-2015 Transported 68,363 67,829 67,721 67,685 67,683 67,661 1997-2015 Commercial Number of Consumers 56,246 56,553 56,608 58,005 57,191 57,521 1987-2015 Sales 40,348 40,881 41,074 42,400 41,467 41,718 1998-2015 Transported 15,898 15,672 15,534 15,605 15,724 15,803 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 569 568 468 555 567 512 1967-2015 Industrial Number of

  6. Alabama Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    778,985 772,892 767,396 765,957 769,900 768,568 1986-2015 Sales 778,985 772,892 767,396 765,957 769,900 768,568 1997-2015 Transported 0 0 0 0 0 0 1997-2015 Commercial Number of Consumers 68,163 67,696 67,252 67,136 67,847 67,746 1986-2015 Sales 68,017 67,561 67,117 67,006 67,718 67,619 1998-2015 Transported 146 135 135 130 129 127 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 397 371 320 377 406 368 1967-2015 Industrial Number of Consumers 3,039 2,988 3,045 3,143 3,244 3,300

  7. Alaska Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    121,166 121,736 122,983 124,411 126,416 128,605 1986-2015 Sales 121,166 121,736 122,983 124,411 126,416 128,605 1997-2015 Commercial Number of Consumers 12,998 13,027 13,133 13,246 13,399 13,549 1986-2015 Sales 12,673 12,724 13,072 13,184 13,336 13,529 1998-2015 Transported 325 303 61 62 63 20 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 1,225 1,489 1,515 1,411 1,338 1,363 1967-2015 Industrial Number of Consumers 3 5 3 3 1 4 1987-2015 Sales 2 2 3 2 1 4 1998-2015 Transported 1

  8. Arkansas Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    549,970 551,795 549,959 549,764 549,034 550,108 1986-2015 Sales 549,970 551,795 549,959 549,764 549,034 550,108 1997-2015 Commercial Number of Consumers 67,987 67,815 68,765 68,791 69,011 69,265 1986-2015 Sales 67,676 67,454 68,151 68,127 68,291 68,438 1998-2015 Transported 311 361 614 664 720 827 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 592 590 603 692 734 688 1967-2015 Industrial Number of Consumers 1,079 1,133 990 1,020 1,009 1,023 1986-2015 Sales 580 554 523 513 531

  9. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  10. North Dakota Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    23,585 125,392 130,044 133,975 137,972 141,465 1987-2015 Sales 123,585 125,392 130,044 133,975 137,972 141,465 1997-2015 Transported 0 0 0 0 0 0 2004-2015 Commercial Number of Consumers 17,823 18,421 19,089 19,855 20,687 21,345 1987-2015 Sales 17,745 18,347 19,021 19,788 20,623 21,283 1998-2015 Transported 78 74 68 67 64 62 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 578 596 543 667 677 577 1967-2015 Industrial Number of Consumers 307 259 260 266 269 286 1987-2015 Sales 255

  11. Oregon Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    682,737 688,681 693,507 700,211 707,010 717,999 1987-2015 Sales 682,737 688,681 693,507 700,211 707,010 717,999 1997-2015 Commercial Number of Consumers 77,370 77,822 78,237 79,276 80,480 80,877 1987-2015 Sales 77,351 77,793 78,197 79,227 80,422 80,772 1998-2015 Transported 19 29 40 49 58 105 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 352 390 368 386 353 319 1967-2015 Industrial Number of Consumers 1,053 1,066 1,076 1,085 1,099 1,117 1987-2015 Sales 821 828 817 821 839 853

  12. Rhode Island Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    25,204 225,828 228,487 231,763 233,786 236,323 1987-2015 Sales 225,204 225,828 228,487 231,763 233,786 236,323 1997-2015 Commercial Number of Consumers 23,049 23,177 23,359 23,742 23,934 24,088 1987-2015 Sales 21,507 21,421 21,442 21,731 21,947 22,084 1998-2015 Transported 1,542 1,756 1,917 2,011 1,987 2,004 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 454 468 432 490 551 499 1967-2015 Industrial Number of Consumers 249 245 248 271 266 260 1987-2015 Sales 57 53 56 62 62 48

  13. South Carolina Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    570,797 576,594 583,633 593,286 605,644 620,555 1987-2015 Sales 570,797 576,594 583,633 593,286 605,644 620,555 1997-2015 Commercial Number of Consumers 55,853 55,846 55,908 55,997 56,323 56,871 1987-2015 Sales 55,776 55,760 55,815 55,902 56,225 56,768 1998-2015 Transported 77 86 93 95 98 103 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 432 396 383 426 451 413 1967-2015 Industrial Number of Consumers 1,325 1,329 1,435 1,452 1,442 1,438 1987-2015 Sales 1,139 1,137 1,215 1,223

  14. South Dakota Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    69,838 170,877 173,856 176,204 179,042 182,568 1987-2015 Sales 169,838 170,877 173,856 176,204 179,042 182,568 1997-2015 Commercial Number of Consumers 22,267 22,570 22,955 23,214 23,591 24,040 1987-2015 Sales 22,028 22,332 22,716 22,947 23,330 23,784 1998-2015 Transported 239 238 239 267 261 256 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 495 492 406 523 522 434 1967-2015 Industrial Number of Consumers 580 556 574 566 575 578 1987-2015 Sales 453 431 445 444 452 449 1998-2015

  15. Tennessee Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    ,085,387 1,089,009 1,084,726 1,094,122 1,106,917 1,124,572 1987-2015 Sales 1,085,387 1,089,009 1,084,726 1,094,122 1,106,917 1,124,572 1997-2015 Commercial Number of Consumers 127,914 128,969 130,139 131,091 131,027 132,392 1987-2015 Sales 127,806 128,866 130,035 130,989 130,931 132,294 1998-2015 Transported 108 103 104 102 96 98 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 439 404 345 411 438 401 1967-2015 Industrial Number of Consumers 2,702 2,729 2,679 2,581 2,595 2,651

  16. Number of Gas Producing Oil Wells

    Gasoline and Diesel Fuel Update

    73 0 1 2 3 4 5 6 7 8 9 10 11 12 Number of Consumers Eligible Participating Table 26. Number of consumers eligible and participating in a customer choice program in the residential sector, 2015 Figure 26. Top Five States with Participants in a Residential Customer Choice Program, 2015 California 10,969,597 6,712,311 441,523 Colorado 1,712,153 1,254,056 0 Connecticut 531,380 1,121 340 District of Columbia 147,895 147,867 17,167 Florida 701,981 17,626 16,363 Georgia 1,777,558 1,468,084 1,468,084

  17. Utah Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    821,525 830,219 840,687 854,389 869,052 891,917 1987-2015 Sales 821,525 830,219 840,687 854,389 869,052 891,917 1997-2015 Commercial Number of Consumers 61,976 62,885 63,383 64,114 65,134 66,143 1987-2015 Sales 61,929 62,831 63,298 63,960 64,931 65,917 1998-2015 Transported 47 54 85 154 203 226 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 621 643 558 646 586 541 1967-2015 Industrial Number of Consumers 293 286 302 323 326 320 1987-2015 Sales 205 189 189 187 176 157 1998-2015

  18. Vermont Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    38,047 38,839 39,917 41,152 42,231 43,267 1987-2015 Sales 38,047 38,839 39,917 41,152 42,231 43,267 1997-2015 Commercial Number of Consumers 5,137 5,256 5,535 5,441 5,589 5,696 1987-2015 Sales 5,137 5,256 5,535 5,441 5,589 5,696 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 464 472 418 873 864 1,039 1967-2015 Industrial Number of Consumers 38 36 38 13 13 14 1987-2015 Sales 37 35 38 13 13 14 1998-2015 Transported 1 1 0 0 0 0 1999-2015 Average Consumption per Consumer (Thousand

  19. Washington Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    067,979 1,079,277 1,088,762 1,102,318 1,118,193 1,133,629 1987-2015 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1,133,629 1997-2015 Commercial Number of Consumers 99,231 99,674 100,038 100,939 101,730 102,266 1987-2015 Sales 99,166 99,584 99,930 100,819 101,606 102,129 1998-2015 Transported 65 90 108 120 124 137 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 517 567 534 553 535 489 1967-2015 Industrial Number of Consumers 3,372 3,353 3,338 3,320 3,355 3,385 1987-2015

  20. West Virginia Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    344,131 342,069 340,256 340,102 338,652 337,643 1987-2015 Sales 344,125 342,063 340,251 340,098 338,649 337,642 1997-2015 Transported 6 6 5 4 3 1 1997-2015 Commercial Number of Consumers 34,063 34,041 34,078 34,283 34,339 34,448 1987-2015 Sales 33,258 33,228 33,257 33,466 33,574 33,706 1998-2015 Transported 805 813 821 817 765 742 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 731 708 664 707 702 656 1967-2015 Industrial Number of Consumers 102 94 97 95 92 101 1987-2015 Sales 32

  1. Wisconsin Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    663,583 1,671,834 1,681,001 1,692,891 1,705,907 1,721,640 1987-2015 Sales 1,663,583 1,671,834 1,681,001 1,692,891 1,705,907 1,721,640 1997-2015 Transported 0 0 0 0 0 0 1997-2015 Commercial Number of Consumers 164,173 165,002 165,657 166,845 167,901 169,271 1987-2015 Sales 163,060 163,905 164,575 165,718 166,750 168,097 1998-2015 Transported 1,113 1,097 1,082 1,127 1,151 1,174 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 501 528 465 596 637 533 1967-2015 Industrial Number of

  2. Colorado Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    ,634,587 1,645,716 1,659,808 1,672,312 1,690,581 1,712,153 1986-2015 Sales 1,634,582 1,645,711 1,659,803 1,672,307 1,690,576 1,712,150 1997-2015 Transported 5 5 5 5 5 3 1997-2015 Commercial Number of Consumers 145,460 145,837 145,960 150,145 150,235 150,545 1986-2015 Sales 145,236 145,557 145,563 149,826 149,921 150,230 1998-2015 Transported 224 280 397 319 314 315 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 396 383 355 392 386 359 1967-2015 Industrial Number of Consumers

  3. Connecticut Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    490,185 494,970 504,138 513,492 522,658 531,380 1986-2015 Sales 489,380 494,065 503,241 512,110 521,460 530,309 1997-2015 Transported 805 905 897 1,382 1,198 1,071 1997-2015 Commercial Number of Consumers 54,842 55,028 55,407 55,500 56,591 57,403 1986-2015 Sales 50,132 50,170 50,312 48,976 51,613 54,165 1998-2015 Transported 4,710 4,858 5,095 6,524 4,978 3,238 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 741 815 764 836 905 914 1967-2015 Industrial Number of Consumers 3,063

  4. Delaware Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    50,458 152,005 153,307 155,627 158,502 161,607 1986-2015 Sales 150,458 152,005 153,307 155,627 158,502 161,607 1997-2015 Commercial Number of Consumers 12,861 12,931 12,997 13,163 13,352 13,430 1986-2015 Sales 12,706 12,656 12,644 12,777 12,902 12,967 1998-2015 Transported 155 275 353 386 450 463 1999-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 948 810 772 849 890 873 1967-2015 Industrial Number of Consumers 114 129 134 138 141 144 1987-2015 Sales 40 35 29 28 28 29 1998-2015

  5. Florida Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    675,551 679,199 686,994 694,210 703,535 701,981 1986-2015 Sales 661,768 664,564 672,133 679,191 687,766 685,828 1997-2015 Transported 13,783 14,635 14,861 15,019 15,769 16,153 1997-2015 Commercial Number of Consumers 60,854 61,582 63,477 64,772 67,461 65,313 1986-2015 Sales 41,750 41,068 41,102 40,434 41,303 37,647 1998-2015 Transported 19,104 20,514 22,375 24,338 26,158 27,666 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 888 869 861 926 928 961 1967-2015 Industrial Number of

  6. Hawaii Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    25,389 25,305 25,184 26,374 28,919 28,952 1987-2015 Sales 25,389 25,305 25,184 26,374 28,919 28,952 1998-2015 Commercial Number of Consumers 2,551 2,560 2,545 2,627 2,789 2,815 1987-2015 Sales 2,551 2,560 2,545 2,627 2,789 2,815 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 697 691 727 713 692 678 1980-2015 Industrial Number of Consumers 24 24 22 22 23 25 1997-2015 Sales 24 24 22 22 23 25 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 14,111 15,087 16,126

  7. Idaho Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    46,602 350,871 353,963 359,889 367,394 374,557 1987-2015 Sales 346,602 350,871 353,963 359,889 367,394 374,557 1997-2015 Commercial Number of Consumers 38,506 38,912 39,202 39,722 40,229 40,744 1987-2015 Sales 38,468 38,872 39,160 39,681 40,188 40,704 1998-2015 Transported 38 40 42 41 41 40 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 390 433 404 465 422 410 1967-2015 Industrial Number of Consumers 184 178 179 183 189 187 1987-2015 Sales 108 103 105 109 115 117 1998-2015

  8. Iowa Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    879,713 883,733 892,123 895,414 900,420 908,058 1987-2015 Sales 879,713 883,733 892,123 895,414 900,420 908,058 1997-2015 Commercial Number of Consumers 98,396 98,541 99,113 99,017 99,186 99,662 1987-2015 Sales 96,996 97,075 97,580 97,334 97,413 97,834 1998-2015 Transported 1,400 1,466 1,533 1,683 1,773 1,828 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 525 526 442 572 579 494 1967-2015 Industrial Number of Consumers 1,528 1,465 1,469 1,491 1,572 1,572 1987-2015 Sales 1,161

  9. Kentucky Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    758,129 759,584 757,790 761,575 761,935 764,946 1987-2015 Sales 728,940 730,602 730,184 736,011 737,290 742,011 1997-2015 Transported 29,189 28,982 27,606 25,564 24,645 22,935 1997-2015 Commercial Number of Consumers 84,707 84,977 85,129 85,999 85,630 85,961 1987-2015 Sales 80,541 80,392 80,644 81,579 81,338 81,834 1998-2015 Transported 4,166 4,585 4,485 4,420 4,292 4,127 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 435 407 361 435 467 412 1967-2015 Industrial Number of

  10. Wyoming Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    153,852 155,181 157,226 158,889 160,896 159,925 1987-2015 Sales 117,735 118,433 118,691 117,948 118,396 116,456 1997-2015 Transported 36,117 36,748 38,535 40,941 42,500 43,469 1997-2015 Commercial Number of Consumers 19,977 20,146 20,387 20,617 20,894 20,816 1987-2015 Sales 14,319 14,292 14,187 14,221 14,452 14,291 1998-2015 Transported 5,658 5,854 6,200 6,396 6,442 6,525 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 558 580 514 583 583 622 1967-2015 Industrial Number of

  11. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number

    Gasoline and Diesel Fuel Update

    of Elements) Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 2 3 3 3 1 1 0 0 0 0 2001 0 0 0 0 2 2 0 0 0 0 0 0 2002 2 2 2 2 2 2 2 2 2 2 2 1 2003 0 0 2 2 2 2 2 2

  12. Stockpile Stewardship Quarterly, Volume 2, Number 1

    National Nuclear Security Administration (NNSA)

    1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in

  13. Notices Total Estimated Number of Annual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    372 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update

  14. WIPP Site By The Numbers August 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 ft. By the Numbers The Waste Isolation Pilot Plant (WIPP) is a Department of Energy facility designed to safely isolate defense- related transuranic (TRU) waste from people and the environment. WIPP, which began waste disposal operations in 1999, is located 26 miles outside of Carlsbad, New Mexico. Waste temporarily stored at sites around the country is shipped to WIPP and permanently disposed in rooms mined out of an ancient salt formation below the surface. TRU waste destined for WIPP

  15. Droplet Number Concentration Value Added Product

    Energy Science and Technology Software Center

    2015-08-06

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration (Nd) will increase and droplet size will decrease, for a given liquid water path. This will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation; however, the magnitude and variability of these processes under different environmental conditions is still uncertain.McComiskey et al. (2009) have implemented a method, based onBoers andmore » Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions. In order to provide data sets for studying aerosol-cloud interactions, the McComiskey et al. (2009) method was implemented as the Droplet Number Concentration (NDROP) value-added product (VAP).« less

  16. Table B14. Number of Establishments in Building, Number of Buildings, 1999

    Energy Information Administration (EIA) (indexed site)

    4. Number of Establishments in Building, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Establishments in Building" ,,"One","Two to Five","Six to Ten","Eleven to Twenty","More than Twenty","Currently Unoccupied" "All Buildings ................",4657,3528,688,114,48,27,251 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  17. U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number

    Energy Information Administration (EIA) (indexed site)

    of Elements) Acquifers Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49 2000's 49 39 38 43 43 44 44 43 43 43 2010's 43 43 44 47 46 47 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of

  18. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5 5 4 4 2000's 4 4 4 4 4 4 4 4 0 0 2010's 0 0 0 0 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Producing Gas

  19. Decontamination & decommissioning focus area

    SciTech Connect

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  20. Physics Thrust Areas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ADEPS » Physics » Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical component of maintaining our capabilities in national security research To further understand the physical world, generate new or improved technology in experimental physics, and establish a physics foundation for current and future Los Alamos programs, Physics Division leverages its expertise and

  1. Strategic Focus Areas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Strategic Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect effective leadership, fiscal responsibility and program success. Education: K-16 Science, Technology, Engineering and Math (STEM) programs that are focused on reducing the achievement gap. Lockheed Martin dedicates 50% of its support to STEM education programs & activities. Customer & Constituent Relations:

  2. Hanford 300 Area ROD

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    300 Area ROD Briefing to the Hanford Advisory Board March 6, 2014 Larry Gadbois -- EPA Recap of the 300 Area ROD Primary new concept -- Uranium Sequestration: * Purpose: Accelerate restoration of groundwater uranium contamination. * Protect groundwater from downward leaching from the vadose zone (overlying soil). * Add phosphate to chemically bond with uranium into geologically stable autunite. Does not dissolve. * Dissolve phosphate in water, apply at ground surface, inject into the ground,

  3. Comparison of personal radio frequency electromagnetic field exposure in different urban areas across Europe

    SciTech Connect

    Joseph, Wout; University of Basel ; Thuroczy, Gyoergy; French National Institute for Industrial Environment and Risks , Verneuil en Halatte ; Gajsek, Peter; Trcek, Tomaz; Bolte, John; Vermeeren, Guenter; University of Basel ; Juhasz, Peter; Finta, Viktoria

    2010-10-15

    Background: Only limited data are available on personal radio frequency electromagnetic field (RF-EMF) exposure in everyday life. Several European countries performed measurement studies in this area of research. However, a comparison between countries regarding typical exposure levels is lacking. Objectives: To compare for the first time mean exposure levels and contributions of different sources in specific environments between different European countries. Methods: In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), measurement studies were performed using the same personal exposure meters. The pooled data were analyzed using the robust regression on order statistics (ROS) method in order to allow for data below the detection limit. Mean exposure levels were compared between different microenvironments such as homes, public transports, or outdoor. Results: Exposure levels were of the same order of magnitude in all countries and well below the international exposure limits. In all countries except for the Netherlands, the highest total exposure was measured in transport vehicles (trains, car, and busses), mainly due to radiation from mobile phone handsets (up to 97%). Exposure levels were in general lower in private houses or flats than in offices and outdoors. At home, contributions from various sources were quite different between countries. Conclusions: Highest total personal RF-EMF exposure was measured inside transport vehicles and was well below international exposure limits. This is mainly due to mobile phone handsets. Mobile telecommunication can be considered to be the main contribution to total RF-EMF exposure in all microenvironments.

  4. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of

    Gasoline and Diesel Fuel Update

    Elements) Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 615 717 624 481 563 655 728 848 NA 787 2010's 774

  5. Health Code Number (HCN) Development Procedure

    SciTech Connect

    Petrocchi, Rocky; Craig, Douglas K.; Bond, Jayne-Anne; Trott, Donna M.; Yu, Xiao-Ying

    2013-09-01

    This report provides the detailed description of health code numbers (HCNs) and the procedure of how each HCN is assigned. It contains many guidelines and rationales of HCNs. HCNs are used in the chemical mixture methodology (CMM), a method recommended by the department of energy (DOE) for assessing health effects as a result of exposures to airborne aerosols in an emergency. The procedure is a useful tool for proficient HCN code developers. Intense training and quality assurance with qualified HCN developers are required before an individual comprehends the procedure to develop HCNs for DOE.

  6. The New Element Berkelium (Atomic Number 97)

    DOE R&D Accomplishments

    Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.

    1950-04-26

    An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.

  7. Experimental Stations by Number | Stanford Synchrotron Radiation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lightsource Experimental Stations by Number Beam Line by Techniques Photon Source Parameters Station Type Techniques Energy Range Contact Person Experimental Station 1-5 X-ray Materials Small-angle X-ray Scattering (SAXS) focused 4600-16000 eV Christopher J. Tassone Tim J. Dunn Experimental Station 2-1 X-ray Powder diffraction Thin film diffraction Focused 5000 - 14500 eV Apurva Mehta Charles Troxel Jr Experimental Station 2-2 X-ray X-ray Absorption Spectroscopy 5000 to 37000 eV Ryan Davis

  8. Property:NumberOfLEDSTools | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Name NumberOfLEDSTools Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLEDSTools&oldid322418" Feedback Contact needs updating Image...

  9. Property:Number of Plants Included in Planned Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Number of Plants Included in Planned Estimate Jump to: navigation, search Property Name Number of Plants Included in Planned Estimate Property Type String Description Number of...

  10. Property:Number of Color Cameras | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Color Cameras Jump to: navigation, search Property Name Number of Color Cameras Property Type Number Pages using the property "Number of Color Cameras" Showing 25 pages using this...

  11. Cool Earth Solar | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zip: 94551 Region: Bay Area Sector: Solar Product: Electricty from High Concentrating PV Number of Employees: 11-50 Year Founded: 2007 Phone Number: 925.454.8506 Website:...

  12. Genifuel | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Salt Lake City, Utah Zip: 84109 Region: Rockies Area Sector: Biofuels Product: Renewable Natural Gas Number of Employees: 1-10 Year Founded: 2006 Phone Number: 801-467-9976...

  13. New Enterprise Associates (NEA) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hill Road Place: Menlo Park, California Zip: 94025 Region: Bay Area Product: Venture Capital Firm Number of Employees: 51-200 Year Founded: 1978 Phone Number: 650-854-9499...

  14. InfiniRel Corporation | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ste 209 Place: Frisco, Texas Zip: 75034 Region: Texas Area Product: Condition-Based Maintenance System Number of Employees: 1-10 Year Founded: 2009 Phone Number: 512-299-6674...

  15. VerdeLogix | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    80910 Region: Rockies Area Sector: Efficiency Product: VL 100 Energy Gatway, VL 200 Portal Number of Employees: 1-10 Year Founded: 2008 Phone Number: 719 229 1648 Website:...

  16. Enginuity Energy, LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    17050 Region: Northeast - NY NJ CT PA Area Sector: Biomass Product: Power Generation and Energy Conservation Number of Employees: 1-10 Year Founded: 2007 Phone Number: 717 796...

  17. Adirondack North Country Association | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Street, Suite 201 Place: Saranac Lake, New York Zip: 12946 Region: Northeast - NY NJ CT PA Area Number of Employees: 1-10 Year Founded: 1954 Phone Number: 518 891 6200 Website:...

  18. The New Element Californium (Atomic Number 98)

    DOE R&D Accomplishments

    Seaborg, G. T.; Thompson, S. G.; Street, K. Jr.; Ghiroso, A.

    1950-06-19

    Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties.

  19. Operational Area Monitoring Plan

    Office of Legacy Management (LM)

    ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan

  20. OLED area illumination source

    DOEpatents

    Foust, Donald Franklin; Duggal, Anil Raj; Shiang, Joseph John; Nealon, William Francis; Bortscheller, Jacob Charles

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  1. Wide area continuous offender monitoring

    SciTech Connect

    Hoshen, J.; Drake, G.; Spencer, D.

    1996-11-01

    The corrections system in the U.S. is supervising over five million offenders. This number is rising fast and so are the direct and indirect costs to society. To improve supervision and reduce the cost of parole and probation, first generation home arrest systems were introduced in 1987. While these systems proved to be helpful to the corrections system, their scope is rather limited because they only cover an offender at a single location and provide only a partial time coverage. To correct the limitations of first-generation systems, second-generation wide area continuous electronic offender monitoring systems, designed to monitor the offender at all times and locations, are now on the drawing board. These systems use radio frequency location technology to track the position of offenders. The challenge for this technology is the development of reliable personal locator devices that are small, lightweight, with long operational battery life, and indoors/outdoors accuracy of 100 meters or less. At the center of a second-generation system is a database that specifies the offender`s home, workplace, commute, and time the offender should be found in each. The database could also define areas from which the offender is excluded. To test compliance, the system would compare the observed coordinates of the offender with the stored location for a given time interval. Database logfiles will also enable law enforcement to determine if a monitored offender was present at a crime scene and thus include or exclude the offender as a potential suspect.

  2. Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 700 1990's 690 650 600 505 460 420 2000's 380 350 400 430 280 400 330 305 285 310 2010's 230 1,027 1,027 1,089 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  3. South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 1990's 54 54 38 47 55 56 61 60 59 60 2000's 71 68 69 61 61 69 69 71 71 89 2010's 102 155 159 133 128 124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  4. Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8 1990's 7 7 9 7 7 7 8 8 8 8 2000's 7 7 5 7 7 7 7 7 7 7 2010's 7 7 7 7 5 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  5. Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4 1990's 8 6 5 8 12 15 24 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 19 15 7 6 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring

  6. Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15 1990's 11 12 22 59 87 87 88 91 95 96 2000's 98 96 106 109 111 114 114 186 322 285 2010's 276 307 299 246 109 140 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next

  7. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18 1990's 19 16 16 18 19 17 18 17 15 19 2000's 17 20 18 15 15 15 14 18 21 24 2010's 26 28 24 24 12 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  8. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 1990's 111 110 112 113 104 100 102 141 148 99 2000's 152 170 165 195 224 227 231 239 261 261 2010's 269 274 281 300 338 329 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  9. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 1990's 5 6 6 6 6 7 7 8 8 8 2000's 9 8 7 9 6 6 7 7 6 6 2010's 5 5 4 3 6 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages:

  10. Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 1990's 356 373 382 385 390 372 370 372 185 300 2000's 280 300 225 240 251 316 316 43 45 51 2010's 50 40 40 34 36 35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016

  11. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada, for Calendar Year 2007

    SciTech Connect

    2008-09-01

    This report presents data collected during the annual post-closure site inspection conducted at the Central Nevada Test Area Surface Corrective Action Unit (CAU) 417 in May 2007. The annual post-closure site inspection included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspection conducted at the UC-1 Central Mud Pit (CMP) indicated the site and soil cover were in good condition. No new cracks or fractures were observed in the soil cover during the annual inspection. A crack on the west portion of the cover was observed during the last quarterly inspection in December 2006. This crack was filled with bentonite as part of the maintenance activities conducted in February 2007 and will be monitored during subsequent annual inspections. The vegetation on the soil cover was adequate but showing signs of the area's ongoing drought. No issues were identified with the CMP fence, gate, or subsidence monuments. New DOE Office of Legacy Management signs with updated emergency phone numbers were installed as part of this annual inspection, no issues were identified with the warning signs and monuments at the other two UC-1 locations. The annual subsidence survey was conducted at UC-1 CMP and UC-4 Mud Pit C as part of the maintenance activities conducted in February 2007. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed. A vegetation survey of the UC-1 CMP cover and adjacent areas was conducted as part of the annual inspection in May 2007. The vegetation survey indicated that revegetation continues to be successful, although stressed due to the area's prevailing drought conditions. The vegetation should continue to be monitored to document any changes in the plant community and to identify conditions that could potentially require remedial action to maintain a viable vegetation

  12. Maryland Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    071,566 1,077,168 1,078,978 1,099,272 1,101,292 1,113,342 1987-2015 Sales 923,870 892,844 867,627 852,555 858,352 875,150 1997-2015 Transported 147,696 184,324 211,351 246,717 242,940 238,192 1997-2015 Commercial Number of Consumers 75,192 75,788 75,799 77,117 77,846 78,138 1987-2015 Sales 54,966 53,778 52,383 52,763 53,961 53,651 1998-2015 Transported 20,226 22,010 23,416 24,354 23,885 24,487 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 898 891 846 923 961 898 1967-2015

  13. Massachusetts Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    389,592 1,408,314 1,447,947 1,467,578 1,461,350 1,478,072 1987-2015 Sales 1,387,842 1,406,447 1,445,934 1,464,120 1,457,055 1,471,658 1997-2015 Transported 1,750 1,867 2,013 3,458 4,295 6,414 1997-2015 Commercial Number of Consumers 144,487 138,225 142,825 144,246 139,556 140,533 1987-2015 Sales 128,256 121,065 124,099 124,963 120,803 121,754 1998-2015 Transported 16,231 17,160 18,726 19,283 18,753 18,779 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 499 586 511 692 758 750

  14. Michigan Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    3,152,468 3,153,895 3,161,033 3,180,349 3,192,807 3,213,910 1987-2015 Sales 2,952,550 2,946,507 2,939,693 2,950,315 2,985,315 3,016,548 1997-2015 Transported 199,918 207,388 221,340 230,034 207,492 197,362 1997-2015 Commercial Number of Consumers 249,309 249,456 249,994 250,994 253,127 254,484 1987-2015 Sales 217,325 213,995 212,411 213,532 219,240 222,427 1998-2015 Transported 31,984 35,461 37,583 37,462 33,887 32,057 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 611 656 578

  15. New Jersey Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    2,649,282 2,659,205 2,671,308 2,686,452 2,705,274 2,728,340 1987-2015 Sales 2,556,514 2,514,492 2,467,520 2,428,664 2,482,281 2,559,463 1997-2015 Transported 92,768 144,713 203,788 257,788 222,993 168,877 1997-2015 Commercial Number of Consumers 234,158 234,721 237,602 236,746 240,083 241,417 1987-2015 Sales 200,680 196,963 192,913 185,030 186,591 190,255 1998-2015 Transported 33,478 37,758 44,689 51,716 53,492 51,162 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 775 817 735

  16. California Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    0,542,584 10,625,190 10,681,916 10,754,908 10,781,720 10,969,597 1986-2015 Sales 10,469,734 10,545,585 10,547,706 10,471,814 10,372,973 10,539,966 1997-2015 Transported 72,850 79,605 134,210 283,094 408,747 429,631 1997-2015 Commercial Number of Consumers 439,572 440,990 442,708 444,342 443,115 446,510 1986-2015 Sales 399,290 390,547 387,760 387,806 385,878 391,672 1998-2015 Transported 40,282 50,443 54,948 56,536 57,237 54,838 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 564

  17. Ohio Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    3,240,619 3,236,160 3,244,274 3,271,074 3,283,968 3,294,010 1987-2015 Sales 1,418,217 1,352,292 855,055 636,744 664,114 670,508 1997-2015 Transported 1,822,402 1,883,868 2,389,219 2,634,330 2,619,854 2,623,502 1997-2015 Commercial Number of Consumers 268,346 268,647 267,793 269,081 269,758 269,981 1987-2015 Sales 92,621 85,877 51,308 35,966 37,035 36,612 1998-2015 Transported 175,725 182,770 216,485 233,115 232,723 233,369 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 583 601

  18. Texas Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    4,288,495 4,326,156 4,370,057 4,424,103 4,469,282 4,523,977 1987-2015 Sales 4,287,929 4,326,076 4,369,990 4,424,037 4,469,220 4,523,911 1997-2015 Transported 566 80 67 66 62 66 1997-2015 Commercial Number of Consumers 312,277 314,041 314,811 314,036 316,756 319,512 1987-2015 Sales 310,842 312,164 312,574 311,493 313,971 316,538 1998-2015 Transported 1,435 1,877 2,237 2,543 2,785 2,974 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 605 587 512 553 584 556 1967-2015 Industrial

  19. Georgia Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    1,740,587 1,740,006 1,739,543 1,805,425 1,759,394 1,777,558 1986-2015 Sales 321,290 321,515 319,179 377,652 319,109 320,228 1997-2015 Transported 1,419,297 1,418,491 1,420,364 1,427,773 1,440,285 1,457,330 1997-2015 Commercial Number of Consumers 124,759 123,454 121,243 126,060 122,578 123,307 1986-2015 Sales 32,318 32,162 31,755 36,556 31,850 31,850 1998-2015 Transported 92,441 91,292 89,488 89,504 90,728 91,457 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 482 458 428 454 482

  20. Illinois Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    ,842,206 3,855,942 3,878,806 3,838,120 3,870,670 3,876,362 1987-2015 Sales 3,568,120 3,594,047 3,605,796 3,550,217 3,570,339 3,545,188 1997-2015 Transported 274,086 261,895 273,010 287,903 300,331 331,174 1997-2015 Commercial Number of Consumers 291,395 293,213 297,523 282,743 294,391 295,869 1987-2015 Sales 240,197 241,582 244,480 225,913 235,097 231,769 1998-2015 Transported 51,198 51,631 53,043 56,830 59,294 64,100 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 680 735 632

  1. Indiana Number of Natural Gas Consumers

    Energy Information Administration (EIA) (indexed site)

    1,669,026 1,707,148 1,673,132 1,681,841 1,693,267 1,704,243 1987-2015 Sales 1,579,351 1,614,042 1,584,155 1,600,366 1,618,827 1,635,444 1997-2015 Transported 89,675 93,106 88,977 81,475 74,440 68,799 1997-2015 Commercial Number of Consumers 156,557 161,293 158,213 158,965 159,596 160,051 1987-2015 Sales 139,058 143,227 139,676 139,589 140,196 141,013 1998-2015 Transported 17,499 18,066 18,537 19,376 19,400 19,038 1998-2015 Average Consumption per Consumer (Thousand Cubic Ft.) 485 471 421 520 570

  2. Federal Offshore--Gulf of Mexico Natural Gas Number of Oil Wells (Number of

    Gasoline and Diesel Fuel Update

    Condensate Wells (Number of Elements) Gas and Gas Condensate Wells (Number of Elements) Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 NA 2000's NA 3,271 3,245 3,039 2,781 2,123 2,419 2,552 1,527 1,984 2010's 1,852 2,226 1,892 1,588 1,377 1,163 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  3. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of

    Gasoline and Diesel Fuel Update

    Elements) Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 62 63 59 63 58 61 59 63 62 65 2001 61 61 63 65 64 60 58 56 54 58 59 58 2002 54 57 54 50 51 50 52 50 56 57 50 43 2003 40 41 41 40 38 39 41 43 39 39 38 42 2004 43 45 45 45 44 49 48 49 48 48 49 50 2005 52 53 51 50 55 57 54 55 56 57 57 58 2006 55 57 59 58 58 57

  4. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number

    Gasoline and Diesel Fuel Update

    of Elements) Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 13 4 23 12

  5. Site Monitoring Area Maps

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The spatial location and boundaries for each Site shown on the Site Monitoring Area maps ... P-SMA-2 DP-SMA-0.4 LA-SMA-2.3 LA-SMA-5.51 LA-SMA-6.38 P-SMA-2.15 DP-SMA-0.6 ...

  6. Plutonium focus area

    SciTech Connect

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  7. Subsurface contaminants focus area

    SciTech Connect

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  8. 300 Area Remedial Investigation/Feasibility Study and Proposed...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    S. Hudson Page 1 of 2 300 Area Remedial InvestigationFeasibility Study and Proposed Plan Deconstruct Advice Points (paragraph number ) 4-1 The Board believes the Tri-Party...

  9. Property:AreaGeology | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak...

  10. Figure 1. Project Area, Focused Study Area, Potential Access...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance...

  11. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 48,609 1990's 50,867 47,615 46,298 47,101 48,654 54,635 53,816 56,747 58,736 58,712 2000's 60,577 63,704 65,779 68,572 72,237 74,827 74,265 76,436 87,556 93,507 2010's 95,014 139,368 140,087 140,964 142,292 142,368 - = No Data Reported; -- = Not Applicable; NA = Not

  12. U.S. Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    (Number of Elements) U.S. Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,013,040 4,124,745 4,168,048 1990's 4,236,280 4,357,252 4,409,699 4,464,906 4,533,905 4,636,500 4,720,227 4,761,409 5,044,497 5,010,189 2000's 5,010,817 4,996,446 5,064,384 5,152,177 5,139,949 5,198,028 5,273,379 5,308,785 5,444,335 5,322,332 2010's 5,301,576 5,319,817 5,356,397 5,372,522 5,413,546 5,449,180 - = No Data

  13. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 262,483 1990's 269,790 276,987 276,014 282,152 291,773 298,541 301,811 310,971 316,929 302,421 2000's 341,678 373,304 387,772 393,327 406,147 425,887 440,516 452,945 476,652 493,100 2010's 487,627 574,593 577,916 572,742 565,951 555,364 - = No Data Reported; -- = Not

  14. U.S. Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    (Number of Elements) U.S. Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 195,544 199,041 225,346 1990's 218,341 216,529 209,616 209,666 202,940 209,398 206,049 234,855 226,191 228,331 2000's 220,251 217,026 205,915 205,514 209,058 206,223 193,830 198,289 225,044 207,624 2010's 192,730 189,301 189,372 192,288 192,139 188,585 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. U.S. Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    (Number of Elements) U.S. Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 47,710,444 48,474,449 49,309,593 1990's 50,187,178 51,593,206 52,331,397 52,535,411 53,392,557 54,322,179 55,263,673 56,186,958 57,321,746 58,223,229 2000's 59,252,728 60,286,364 61,107,254 61,871,450 62,496,134 63,616,827 64,166,280 64,964,769 65,073,996 65,329,582 2010's 65,542,345 65,940,522 66,375,134 66,812,393

  16. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 30,000 1990's 30,300 31,000 31,000 31,100 31,150 31,025 31,792 32,692 21,576 23,822 2000's 36,000 40,100 40,830 42,437 44,227 46,654 49,750 52,700 55,631 57,356 2010's 44,500 61,815 62,922 61,838 67,621 68,536 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,309 1990's 16,889 15,271 13,512 15,569 12,958 14,169 15,295 14,958 18,399 16,717 2000's 15,700 16,350 17,100 16,939 20,734 18,838 17,459 18,145 19,213 18,860 2010's 19,137 19,318 19,345 18,802 18,660 18,382 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,207 1990's 1,438 2,620 3,257 5,500 6,000 5,258 5,826 6,825 7,000 6,750 2000's 7,068 7,425 7,700 8,600 8,500 8,900 9,200 9,712 9,995 10,600 2010's 10,100 10,480 10,381 10,322 10,246 9,929 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 543 1990's 585 629 507 620 583 535 568 560 527 560 2000's 997 1,143 979 427 1,536 1,676 1,836 2,315 2,343 2,320 2010's 1,979 1,703 1,666 1,632 1,594 1,560 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,700 1990's 2,607 2,802 2,890 3,075 2,940 2,918 2,990 3,071 3,423 3,634 2000's 3,321 4,331 4,544 4,539 4,971 5,751 6,578 6,925 7,095 7,031 2010's 6,059 6,615 6,366 5,870 5,682 5,655 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. New Jersey Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) New Jersey Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 200,387 206,261 212,496 1990's 217,548 215,408 212,726 215,948 219,061 222,632 224,749 226,714 234,459 232,831 2000's 243,541 212,726 214,526 223,564 223,595 226,007 227,819 230,855 229,235 234,125 2010's 234,158 234,721 237,602 236,746 240,083 241,417 - = No Data Reported; -- = Not Applicable; NA

  2. New Jersey Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) New Jersey Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,265 6,123 6,079 1990's 5,976 8,444 11,474 11,224 10,608 10,362 10,139 17,625 16,282 10,089 2000's 9,686 9,247 8,473 9,027 8,947 8,500 8,245 8,036 7,680 7,871 2010's 7,505 7,391 7,290 7,216 7,157 7,019 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  3. New York Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) New York Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23,276 24,654 27,426 1990's 25,008 28,837 28,198 23,833 21,833 22,484 15,300 23,099 5,294 6,136 2000's 6,553 6,501 3,068 2,984 2,963 3,752 3,642 7,484 7,080 6,634 2010's 6,236 6,609 5,910 6,311 6,313 6,030 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  4. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34,450 1990's 34,586 34,760 34,784 34,782 34,731 34,520 34,380 34,238 34,098 33,982 2000's 33,897 33,917 34,593 33,828 33,828 33,735 33,945 34,416 34,416 34,963 2010's 34,931 31,966 31,647 30,804 31,060 26,599 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  5. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 27,443 1990's 24,547 28,216 28,902 29,118 29,121 29,733 29,733 29,734 30,101 21,790 2000's 21,507 32,672 33,279 34,334 35,612 36,704 38,060 38,364 41,921 43,600 2010's 44,000 51,712 51,472 50,606 50,044 49,852 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,701 1990's 2,362 3,392 3,350 3,514 3,565 3,526 4,105 4,156 4,171 4,204 2000's 4,359 4,597 4,803 5,157 5,526 5,523 6,227 6,591 6,860 6,913 2010's 7,026 6,243 6,203 6,174 6,117 6,044 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,830 1990's 2,952 2,780 3,500 3,500 3,500 3,988 4,020 3,700 3,900 3,650 2000's 4,000 4,825 6,755 7,606 3,460 3,462 3,814 4,773 5,592 6,314 2010's 7,397 8,428 9,012 9,324 9,778 9,965 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. California Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,214 1990's 1,162 1,377 1,126 1,092 1,261 997 978 930 847 1,152 2000's 1,169 1,244 1,232 1,249 1,272 1,356 1,451 1,540 1,645 1,643 2010's 1,580 4,240 4,356 4,183 4,211 4,209 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,125 1990's 5,741 5,562 5,912 6,372 7,056 7,017 8,251 12,433 13,838 13,838 2000's 22,442 22,117 23,554 18,774 16,718 22,691 20,568 22,949 25,716 27,021 2010's 28,813 43,792 46,141 46,883 46,876 46,322 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. District of Columbia Natural Gas Number of Commercial Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Commercial Consumers (Number of Elements) District of Columbia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 14,683 11,370 11,354 1990's 11,322 11,318 11,206 11,133 11,132 11,089 10,952 10,874 10,658 12,108 2000's 11,106 10,816 10,870 10,565 10,406 10,381 10,410 9,915 10,024 10,288 2010's 9,879 10,050 9,771 9,963 10,049 9,975 - = No Data Reported; -- = Not Applicable; NA = Not

  11. District of Columbia Natural Gas Number of Residential Consumers (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Residential Consumers (Number of Elements) District of Columbia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 134 130,748 134,758 134,837 1990's 136,183 136,629 136,438 135,986 135,119 135,299 135,215 134,807 132,867 137,206 2000's 138,252 138,412 143,874 136,258 138,134 141,012 141,953 142,384 142,819 143,436 2010's 144,151 145,524 145,938 146,712 147,877 147,895 - = No Data

  12. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,310 1990's 1,307 1,334 1,333 1,336 1,348 1,347 1,367 1,458 1,479 1,498 2000's 1,502 1,533 1,545 2,291 2,386 2,321 2,336 2,350 525 563 2010's 620 914 819 921 895 899 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  13. Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,935 1990's 16,980 17,948 18,400 19,472 19,365 22,020 21,388 21,500 21,000 17,568 2000's 15,206 15,357 16,957 17,387 18,120 18,946 19,713 19,713 17,862 21,243 2010's 22,145 25,362 25,013 24,802 24,840 24,451 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  14. Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,248 1990's 11,713 12,169 12,483 12,836 13,036 13,311 13,501 13,825 14,381 14,750 2000's 13,487 14,370 14,367 12,900 13,920 14,175 15,892 16,563 16,290 17,152 2010's 17,670 12,708 13,179 14,557 NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. U.S. Natural Gas Number of Commercial Consumers - Sales (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) - Sales (Number of Elements) U.S. Natural Gas Number of Commercial Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,823,842 4,599,494 2000's 4,576,873 4,532,034 4,588,964 4,662,853 4,644,363 4,698,626 4,733,822 2010's 4,584,884 4,556,220 4,518,745 4,491,326 4,528,749 4,559,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  16. U.S. Natural Gas Number of Commercial Consumers - Transported (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Commercial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 220,655 410,695 2000's 433,944 464,412 475,420 489,324 495,586 499,402 539,557 2010's 716,692 763,597 837,652 881,196 884,797 889,774 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016

  17. U.S. Natural Gas Number of Industrial Consumers - Sales (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Sales (Number of Elements) U.S. Natural Gas Number of Industrial Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 182,424 157,050 2000's 157,806 152,974 143,177 142,816 151,386 146,450 135,070 2010's 129,119 124,552 121,821 123,124 122,502 120,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release

  18. U.S. Natural Gas Number of Industrial Consumers - Transported (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Industrial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49,014 71,281 2000's 75,826 64,052 62,738 62,698 57,672 59,773 58,760 2010's 63,611 64,749 67,551 69,164 69,637 68,159 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  19. U.S. Natural Gas Number of Residential Consumers - Sales (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Sales (Number of Elements) U.S. Natural Gas Number of Residential Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 55,934,175 56,520,482 56,023,710 2000's 56,261,031 56,710,548 57,267,445 57,815,669 58,524,797 59,787,524 60,129,047 2010's 60,267,648 60,408,842 60,010,723 59,877,464 60,189,501 60,921,844 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  20. U.S. Natural Gas Number of Residential Consumers - Transported (Number of

    Energy Information Administration (EIA) (indexed site)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Residential Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 252,783 801,264 2,199,519 2000's 2,978,319 3,576,181 3,839,809 4,055,781 3,971,337 3,829,303 4,037,233 2010's 5,274,697 5,531,680 6,364,411 6,934,929 7,007,250 6,952,017 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Efficient Wide Area Data Transfer Protocols

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Efficient Wide Area Data Transfer Protocols for 100 Gbps Networks and Beyond Ezra Kissel School of Informatics and Computing Indiana University Bloomington, IN 47405 ezkissel@indiana.edu Martin Swany School of Informatics and Computing Indiana University Bloomington, IN 47405 swany@iu.edu Brian Tierney Lawrence Berkeley National Laboratory Berkeley, CA 94720 bltierney@lbl.gov Eric Pouyoul Lawrence Berkeley National Laboratory Berkeley, CA 94720 epouyoul@lbl.gov Due to a number of recent

  2. Bay Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Page Edit History Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development...

  3. Rockies Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development...

  4. Texas Area | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the...

  5. Large area bulk superconductors

    DOEpatents

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  6. Property:NEPA SerialNumber | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    SerialNumber Jump to: navigation, search Property Name NEPA SerialNumber Property Type String This is a property of type String. Pages using the property "NEPA SerialNumber"...

  7. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Energy Information Administration (EIA) (indexed site)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  8. East Tennessee Technology Park by the Numbers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    East Tennessee Technology Park by the Numbers East Tennessee Technology Park by the Numbers September 13, 2016 - 12:15pm Addthis East Tennessee Technology Park by the Numbers East Tennessee Technology Park by the Numbers East Tennessee Technology Park by the Numbers East Tennessee Technology Park by the Numbers Statistics associated with decontaminating, decommissioning and demolishing the five gaseous diffusion buildings at the East Tennessee Technology Park. Notable figures from the EM

  9. Property:NumberOfLowEmissionDevelopmentStrategiesExample | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    issionDevelopmentStrategiesExample Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLowEmissionDevelopmentStrategiesExample&oldid326472...

  10. Property:NumberOfLowEmissionDevelopmentStrategiesExamples | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    sionDevelopmentStrategiesExamples Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLowEmissionDevelopmentStrategiesExamples&oldid323715...

  11. Property:NumberOfResourceAssessments | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfResourceAssessments&oldid31439...

  12. Property:Number of Plants included in Capacity Estimate | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  13. Local Energy Assurance Planning: Map of States with Number of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    States with Number of Cities Selected Local Energy Assurance Planning: Map of States with Number of Cities Selected Map of the United States identifying the States with cities ...

  14. T-1 Training Area

    SciTech Connect

    2014-11-07

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  15. T-1 Training Area

    ScienceCinema

    None

    2015-01-09

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  16. Final DOE Areas Feasibility Study, Appendices A - F

    Office of Legacy Management (LM)

    DOE Areas Feasibility Study Appendices LEHR CERCLA Completion Rev. 0 03/07/08 J:\DOE_STOLLER\4110\143\FEASIBILITY_STUDY\20080307_FS_TEXT_REV0.DOC WEISS ASSOCIATES Project Number: 130-4110-143 APPENDIX A COST ESTIMATES Final DOE Areas Feasibility Study Appendix A LEHR CERCLA Completion Rev. 0 03/07/08 Tables J:\DOE_Stoller\4110\143\Feasibility_Study\Rev0\Appendices\20080307_FS_APPA_tbls.doc Weiss Associates Project Number: 130-4110-143 Table A-1. Feasibility Study Cost Estimate Summaries Area/

  17. Property:Building/FloorAreaSchoolsChildDayCare | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Property Edit with form History Property:BuildingFloorAreaSchoolsChildDayCare Jump to: navigation, search This is a property of type Number. Floor area for Schools, including...

  18. Project Registration Number Assignments (Active) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Active) Project Registration Number Assignments (Active) As of: May 2016 Provides a table of Project Registration Number Assignments (Active) Project Registration Number Assignment (Active) (511.76 KB) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Completed

  19. Project Registration Number Assignments (Completed) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Completed) Project Registration Number Assignments (Completed) As of: May 2016 Provides a table of Project Registration Number Assignments (Completed) Project Registration Number Assignments (Completed) (406.85 KB) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Active

  20. AREA RADIATION MONITOR

    DOEpatents

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)