National Library of Energy BETA

Sample records for aps engineering support

  1. Mission | APS Engineering Support Division

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    mission, the APS Engineering Support Division provides: Highly reliable, state-of-the-art computer infrastructure to meet the needs of the APS. Leading-edge information...

  2. APS Engineering Support Division (AES) | Advanced Photon Source

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    APS Engineering Support Division (AES) The APS Engineering Support Division provides reliable operations and technical support to the Advanced Photon Source user community. AES...

  3. ELECTROCHEMICAL CORROSION TESTING OF TANKS 241-AN-102 & 241-AP-107 & 241-AP-108 IN SUPPORT OF ULTRASONIC TESTING

    SciTech Connect (OSTI)

    WYRWAS RB; DUNCAN JB

    2008-11-20

    This report presents the results of the corrosion rates that were measured using electrochemical methods for tanks 241-AN-102 (AN-102), 241-AP-107 (AP 107), and 241-AP-108 (AP-108) performed under test plant RPP-PLAN-38215. The steel used as materials of construction for AN and AP tank farms was A537 Class 1. Test coupons of A537 Class 1 carbon steel were used for corrosion testing in the AN-107, AP-107, and AP-108 tank waste. Supernate will be tested from AN-102, AP-107, and Ap-108. Saltcake testing was performed on AP-108 only.

  4. RELATIVISTIC SUPERNOVAE HAVE SHORTER-LIVED CENTRAL ENGINES OR MORE EXTENDED PROGENITORS: THE CASE OF SN 2012ap

    SciTech Connect (OSTI)

    Margutti, R.; Milisavljevic, D.; Soderberg, A. M.; Sanders, N.; Chakraborti, S.; Kamble, A.; Drout, M.; Parrent, J.; Zauderer, A.; Guidorzi, C.; Morsony, B. J.; Ray, A.; Chomiuk, L.

    2014-12-20

    Deep, late-time X-ray observations of the relativistic, engine-driven, type Ic SN 2012ap allow us to probe the nearby environment of the explosion and reveal the unique properties of relativistic supernova explosions (SNe). We find that on a local scale of ∼0.01 pc the environment was shaped directly by the evolution of the progenitor star with a pre-explosion mass-loss rate of M-dot <5×10{sup −6} M{sub ⊙} yr{sup −1}, in line with gamma-ray bursts (GRBs) and the other relativistic SN 2009bb. Like sub-energetic GRBs, SN 2012ap is characterized by a bright radio emission and evidence for mildly relativistic ejecta. However, its late-time (δt ≈ 20 days) X-ray emission is ∼100 times fainter than the faintest sub-energetic GRB at the same epoch, with no evidence for late-time central engine activity. These results support theoretical proposals that link relativistic SNe like 2009bb and 2012ap with the weakest observed engine-driven explosions, where the jet barely fails to break out. Furthermore, our observations demonstrate that the difference between relativistic SNe and sub-energetic GRBs is intrinsic and not due to line-of-sight effects. This phenomenology can either be due to an intrinsically shorter-lived engine or to a more extended progenitor in relativistic SNe.

  5. Report on the value engineering workshop on APS beamline front ends

    SciTech Connect (OSTI)

    Kuzay, T.

    1993-01-01

    A formal value engineering evaluation process was developed to address the front end components of the beamlines for the Advanced Photon Source (APS). This process (described in Section 2) involved an information phase, a creative phase, a judgment phase, a development phase, and a recommendation phase. Technical experts from other national laboratories and industry were invited to a two-day Value Engineering Workshop on November 5-6, 1992. The results of this Workshop are described in Section 4. Following the Workshop, various actions by the APS staff led to the redesign of the front end components, which are presented in Sections 5 and 6. The cost benefit analysis is presented in Section 7. It is important of realize that an added benefit of the Workshop was to obtain numerous design evaluations and enhancements of the front end components by experts in the field. As the design work proceeds to Title II completion, the APS staff is including many of these suggestions.

  6. Supporting document for the historical tank content estimate for AP-tank farm

    SciTech Connect (OSTI)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  7. Management and integration of engineering and construction activities: Lessons learned from the AP1000{sup R} nuclear power plant China project

    SciTech Connect (OSTI)

    McCullough, M. C.; Ebeling-Koning, D.; Evans, M. C.

    2012-07-01

    The lessons learned during the early phase of design engineering and construction activities for the AP1000 China Project can be applied to any project involving multiple disciplines and multiple organizations. Implementation of a first-of-a-kind design to directly support construction activities utilizing resources assigned to design development and design delivery creates challenges with prioritization of activities, successful closure of issues, and communication between site organizations and the home office. To ensure successful implementation, teams were assigned and developed to directly support construction activities including prioritization of activities, site communication and ensuring closure of site emergent issues. By developing these teams, the organization is better suited to meet the demands of the construction schedule while continuing with design evolution of a standard plant and engineering delivery for multiple projects. For a successful project, proper resource utilization and prioritization are key for overcoming obstacles and ensuring success of the engineering organization. (authors)

  8. Fire Protection Support Engineer | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Fire Protection Support Engineer Department: Engineering Supervisor(s): Scott Decker Staff: AM 03 Requisition Number: 1600200 Position Summary: Assists project engineer with any ...

  9. Air Force Civil Engineer Support Agency | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Civil Engineer Support Agency Jump to: navigation, search Name: Air Force Civil Engineer Support Agency Place: Florida Zip: 32403-5319 Sector: Renewable Energy Product:...

  10. Reciprocating Engines in Support of Grid Modernization

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Imagination at work. Herman Wiegman PhD GE Global Research Feb 10, 2016 Reciprocating Engines in Support of Grid Modernization DOE-AMO Workshop Austin, TX Feb 2016 © 2015 General Electric Company - All rights reserved 2 Natural Gas Reciprocating Engines Lean Burn Rich Burn GE (Waukesha, Jenbacher), Caterpillar, Cummins, Cooper, Superior, .... Eff ~38%, NOx <1g/hp-hr , CHP compatible www.eren.doe.gov/deer.html Navigant - 27 GW of NG-Generators installed by 2024 © 2015 General Electric

  11. NASA @ APS | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NASA @ APS NASA engineers developing rocket propulsion hardware 1 of 8 NASA engineers developing rocket propulsion hardware Patrick McManamen, a propulsion system engineer at NASA, ...

  12. MA AP MA MA MA AP AP MA MA MA AP AP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    AP MA MA MA AP AP MA MA MA AP AP low low low AP MA Run PAMM AP Low alpha University Holidays APPAMM Spear Down Hrs S 30 31 S 30 5260 832 6092 2013 2014 Scheduled Hours Users...

  13. Sandia Energy - Materials Science and Engineering Support for...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Home Renewable Energy Energy...

  14. APS Science | Advanced Photon Source

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science APS Science features articles on Advanced Photon Source research and engineering highlights that are written for the interested public as well as the synchrotron x-ray,...

  15. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Eric L. Brosha, Anthony Burrell, Neil ...

  16. Society of Women Engineers Offers Support | GE Global Research

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Supporting Women in Engineering From School to Career Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Supporting Women in Engineering From School to Career Christine Surrette 2016.02.26 "Surround yourself with the dreamers and the doers, the believers and thinkers, but most of all, surround yourself with those who

  17. APS Science 2006.

    SciTech Connect (OSTI)

    Gibson, J. M.; Fenner, R. B.; Long, G.; Borland, M.; Decker, G.

    2007-05-24

    In my five years as the Director of the Advanced Photon Source (APS), I have been fortunate to see major growth in the scientific impact from the APS. This year I am particularly enthusiastic about prospects for our longer-term future. Every scientific instrument must remain at the cutting edge to flourish. Our plans for the next generation of APS--an APS upgrade--got seriously in gear this year with strong encouragement from our users and sponsors. The most promising avenue that has emerged is the energy-recovery linac (ERL) (see article on page xx), for which we are beginning serious R&D. The ERL{at}APS would offer revolutionary performance, especially for x-ray imaging and ultrafast science, while not seriously disrupting the existing user base. I am very proud of our accelerator physics and engineering staff, who not only keep the current APS at the forefront, but were able to greatly impress our international Machine Advisory Committee with the quality of their work on the possible upgrade option (see page xx). As we prepare for long-term major upgrades, our plans to develop and optimize all the sectors at APS in the near future are advancing. Several new beamlines saw first light this year, including a dedicated powder diffraction beamline (11-BM), two instruments for inelastic x-ray scattering at sector 30, and the Center for Nanoscale Materials (CNM) Nanoprobe beamline at sector 26. Our partnership in the first x-ray free-electron laser (LCLS) to be built at Stanford contributes to revolutionary growth in ultrafast science (see page xx), and we are developing a pulse chirping scheme to get ps pulses at sector 7 of the APS within a year or so. In this report, you will find selected highlights of scientific research at the APS from calendar year 2006. The highlighted work covers diverse disciplines, from fundamental to applied science. In the article on page xx you can see the direct impact of APS research on technology. Several new products have emerged from

  18. Final Report. LAW Glass Formulation to Support AP-101 Actual Waste Testing, VSL-03R3470-2, Rev. 0

    SciTech Connect (OSTI)

    Muller, I. S.; Pegg, I. L.; Rielley, Elizabeth; Carranza, Isidro; Hight, Kenneth; Lai, Shan-Tao T.; Mooers, Cavin; Bazemore, Gina; Cecil, Richard; Kruger, Albert A.

    2015-06-22

    The main objective of the work was to develop and select a glass formulation for vitrification testing of the actual waste sample of LAW AP-101 at Battelle - Pacific Northwest Division (PNWD). Other objectives of the work included preparation and characterization of glasses to demonstrate compliance with contract and processing requirements, evaluation of the ability to achieve waste loading requirements, testing to demonstrate compatibility of the glass melts with melter materials of construction, comparison of the properties of simulant and actual waste glasses, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  19. MA AP MA MA MA AP AP MA MA MA AP AP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    AP MA MA MA AP AP MA MA MA AP AP low low low AP MA Run PAMM / AP Low alpha University Holidays AP/PAMM Spear Down Hrs S 30 31 S 30 5260 832 6092 2013 2014 Scheduled Hours Users Total 29 31 30 29 31 30 F 31 28 29 30 T 31 28 27 29 28 30 30 27 29 W 30 29 26 29 27 31 28 AP T 29 26 29 27 AP PAMM 30 28 25 31 28 26 30 27 30 28 26 M 28 25 29 27 24 30 27 25 29 26 S 27 24 28 26 23 27 29 26 24 28 25 S 26 23 28 26 24 23 27 25 28 28 25 25 22 27 24 25 23 F 25 26 24 21 27 24 22 26 23 22 27 T 24 21 20 24 22 21

  20. APS Science 2009.

    SciTech Connect (OSTI)

    Gibson, J. M; Mills, D. M.; Gerig, R.

    2010-05-01

    It is my pleasure to introduce the 2009 annual report of the Advanced Photon Source. This was a very good year for us. We operated with high reliability and availability, despite growing problems with obsolete systems, and our users produced a record output of publications. The number of user experiments increased by 14% from 2008 to more than 3600. We congratulate the recipients of the 2009 Nobel Prize in Chemistry-Venkatraman Ramakrishnan (Cambridge Institute for Medical Research), Thomas Steitz (Yale University), and Ada Yonath (Weizmann Institute) - who did a substantial amount of this work at APS beamlines. Thanks to the efforts of our users and staff, and the ongoing counsel of the APS Scientific Advisory Committee, we made major progress in advancing our planning for the upgrade of the APS (APS-U), producing a proposal that was positively reviewed. We hope to get formal approval in 2010 to begin the upgrade. With advocacy from our users and the support of our sponsor, the Office of Basic Energy Sciences in the Department of Energy (DOE) Office of Science, our operating budgets have grown to the level needed to more adequately staff our beamlines. We were also extremely fortunate to have received $7.9 M in American Recovery and Reinvestment Act ('stimulus') funding to acquire new detectors and improve several of our beamlines. The success of the new Linac Coherent Light Source at Stanford, the world's first x-ray free-electron laser, made us particularly proud since the undulators were designed and built by the APS. Among other highlights, we note that more than one-quarter of the 46 Energy Frontier Research Centers, funded competitively across the U.S. in 2009 by the DOE, included the Advanced Photon Source in their proposed work, which shows that synchrotron radiation, and the APS in particular, are central to energy research. While APS research covers everything from fundamental to applied science (reflected by the highlights in this report), the challenge

  1. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    New Diesel Feedstocks and Future Fuels Future Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly New Feedstocks and Replacement Fuel Diesel Engine ...

  2. Engineered nano-scale ceramic supports for PEM fuel cells

    SciTech Connect (OSTI)

    Brosha, Eric L; Blackmore, Karen J; Burrell, Anthony K; Henson, Neil J; Phillips, Jonathan

    2010-01-01

    cell conditions must also exhibit high surface area as a necessary adjunct to obtaining high Pt dispersions and Pt utilization targets. Our goal in this work is to identify new synthesis approaches together with materials that will lead to ceramic supports with high surface areas and high Pt dispersions. Several strong candidates for use as PEMFC catalyst supports include: transition metal nitrides and substoichiometric titanium oxides, which hither to now have been prepared by other researcher groups with relatively low surface areas (ca. 1-50 m{sup 2}/g typical). To achieve our goals of engineering high surface area, conductive ceramic support for utilization in PEMFCs, a multi-institutional and multi-disciplinary team with experience synthesizing and investigating these materials has been assembled. This team is headed by Los Alamos National Laboratory and includes Oak Ridge National Laboratory and the University of New Mexico. This report describes our fiscal year 2010 technical progress related to applying advanced synthetiC methods towards the development of new ceramic supports for Pt catalysts for PEM fuel cells.

  3. APS and Frontiers

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the annual publication of Argonne research highlights. This page contains Frontiers articles focusing on APS-related research. APS Articles in Frontiers 2004 Cover of Frontiers...

  4. APS User Operations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Schedules APS Schedule Useful Links Beamline Design Library (former Design Exchange) Machine Status Link Bunch Clock Information APS Systems Status Storage Ring Operating Status...

  5. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 brosha_lanl_kickoff.pdf (672.5 KB) More Documents & Publications Long Term Innovative Technologies The Science And Engineering of Duralbe Ultralow PGM Catalysts DOE Durability Working Group October 2010 Meeting Minutes

  6. Reactor engineering support of operations at Three Mile Island nuclear station

    SciTech Connect (OSTI)

    Tropasso, R.T.

    1995-12-31

    The purpose of this paper is to detail the activities in which plant nuclear engineering personnel provide direct support to plant operations. The specific activities include steady-state, transient, and shutdown/refueling operation support as well as special project involvement. The paper is intended to describe the experiences at Three Mile Island (TMI) in which significant benefit to the success of the activity is achieved through the support of the nuclear engineers.

  7. Charles D. Young Project Engineer Government Support Directorate

    Office of Legacy Management (LM)

    ... Operations Office revealed five additional colleges and universities that performed research in support of Hanford's Division of Biology and Medicine and Division of Research. ...

  8. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation discusses a virtual lab which can model sophisticated future vehicle systems using three layers of model fidelity supporting each other. deer11zhang.pdf (2.07 MB) ...

  9. RD&D Study Plan for Advancement of Science and Engineering Supporting...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    RD&D Study Plan for Advancement of Science and Engineering Supporting Geologic Disposal in Bedded Salt- March 2013 Workshop Outcomes RD&D Study Plan for Advancement of Science and ...

  10. APS and Synchrotron-related Employment Opportunities | Advanced...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Opportunities Groundbreaking science and engineering at the APS has a real and positive impact on our technologies, our health, our economy, and our fundamental understanding of...

  11. APS and Logos

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Logos A quarterly magazine about Argonne research. The Argonne Logos articles in this section focus on APS-related research. APS Articles in Logos 2003 Cover of Logos Summer 2003...

  12. Global Green Energy ApS | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ApS Jump to: navigation, search Name: Global Green Energy ApS Place: Aarhus C, Denmark Zip: DK- 8000 Sector: Wind energy Product: Wind farm project developer. References: Global...

  13. APS 2007 Conferences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Accelerator Conference (APAC 2007) (Jan. 29-Feb. 2) Indore, India APS Upgrade ERL Optics Workshop (April 23) Argonne National Laboratory, Argonne, IL Synchrotron Radiation...

  14. MA MA AP

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    MA AP low low low MA Run PAMM / AP Low alpha University Holidays AP/PAMM Spear Down Oct Nov S Apr May Jun Jul Aug Sep 7/17/2015 SPEAR OPERATING SCHEDULE 2015-2016 2015 2016 Oct Nov Dec Jan Feb Mar S 1 1 2 1 4 1 M 2 1 2 1 T 3 1 3 PAMM 1 2 2 3 6 3 W 4 2 3 AP AP 5 2 1 3 2 4 F 2 6 4 1 5 2 4 3 T 1 5 3 5 2 7 4 3 1 5 4 1 6 4 1 5 8 5 S 4 8 2 6 3 2 7 4 2 6 5 S 3 7 6 5 3 7 6 3 8 6 3 7 4 8 7 M 5 9 7 4 9 10 7 AP PAMM PAMM PAMM PAMM 4 8 5 4 9 6 8 AP 5 9 6 5 AP 10 7 5 9 AP 8 6 10 9 13 W 7 11 9 11 T 6 10 8 12

  15. APS 1999 Conferences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of interest to the APS researcher community. Workshop on Scientific Applications of the LCLS. (Jan. 12-14) Stanford Synchrotron Radiation Laboratory (SSLC) Stanford, CA Workshop on...

  16. APS 1995 Conferences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Conferences & Workshops This section tracks conferences and workshops of interest to the APS researcher community. Synchrotron Radiation Instrumentation '95 (Oct. 17-20) A...

  17. NREL Supports Industry to Develop Computer-Aided Engineering Tools for Car

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Batteries - News Releases | NREL NREL Supports Industry to Develop Computer-Aided Engineering Tools for Car Batteries July 7, 2011 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) recently awarded three industry teams, after a competitive procurement process, a total of $7 million for the development of computer-aided software design tools to help produce the next generation of electric drive vehicle (EDV) batteries. These projects support DOE's

  18. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGES-Beta [OSTI]

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; et al

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  19. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    SciTech Connect (OSTI)

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Maruyama, B.

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  20. Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) ceramic design manual

    SciTech Connect (OSTI)

    1997-10-01

    This ceramic component design manual was an element of the Advanced Turbine Technology Applications Project (ATTAP). The ATTAP was intended to advance the technological readiness of the ceramic automotive gas turbine engine as a primary power plant. Of the several technologies requiring development before such an engine could become a commercial reality, structural ceramic components represented the greatest technical challenge, and was the prime focus of the program. HVTE-TS, which was created to support the Hybrid Electric Vehicle (HEV) program, continued the efforts begun in ATTAP to develop ceramic components for an automotive gas turbine engine. In HVTE-TS, the program focus was extended to make this technology applicable to the automotive gas turbine engines that form the basis of hybrid automotive propulsion systems consisting of combined batteries, electric drives, and on-board power generators as well as a primary power source. The purpose of the ceramic design manual is to document the process by which ceramic components are designed, analyzed, fabricated, assembled, and tested in a gas turbine engine. Interaction with ceramic component vendors is also emphasized. The main elements of the ceramic design manual are: an overview of design methodology; design process for the AGT-5 ceramic gasifier turbine rotor; and references. Some reference also is made to the design of turbine static structure components to show methods of attaching static hot section ceramic components to supporting metallic structures.

  1. APS Storage Ring Parameters

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    next up previous Next: Main Parameters APS Storage Ring Parameters M. Borland, G. Decker, L. Emery, W. Guo, K. Harkay, V. Sajaev, C.-Y. Yao Advanced Photon Source September 8, 2010...

  2. Approved Program Proposals (AP)

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    its recommendations to the ALS Division Director. A letter will be sent to the PIs of successful proposals specifying the percentage of beam time and the period of the AP. The...

  3. AP Declaration Helper : Home

    National Nuclear Security Administration (NNSA)

    Announcements: Get Help with the IAEA Additional Protocol Because you are reading this web page, there is a good chance that you already know about the Additional Protocol (AP)...

  4. ARM - Instrument - aps

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsaps Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Aerodynamic Particle Sizer (APS) Instrument Categories Aerosols The APS is part of the Aerosol Observing System (AOS). See Also Contact(s) Robert Bullard Brookhaven National Laboratory associate (631)-344-3330 rbullard@bnl.gov Annette Koontz Pacific Northwest National Laboratory Developer (509) 375-3609

  5. Engineering Basis Document Review Supporting the Double Shell Tank (DST) System Specification Development

    SciTech Connect (OSTI)

    LEONARD, M.W.

    2000-03-14

    The Double-Shell Tank (DST) System is required to transition from its current storage mission to a storage and retrieval mission supporting the River Protection Project Phase 1 privatization, defined in HNF-SD-WM-MAR-008, Tank Waste Remediation System Mission Analysis Report. Requirements for the DST subsystems are being developed using the top-down systems engineering process outlined in HNF-SD-WM-SEMP-002, Tank Waste Remediation System Systems Engineering Management Plan. This top-down process considers existing designs to the extent that these designs impose unavoidable constraints on the Phase 1 mission. Existing engineering-basis documents were screened, and the unavoidable constraints were identified. The constraints identified herein will be added to the DST System specification (HNF-SD-WM-TRD-007, System Specification for the Double-Shell Tank System). While the letter revisions of the DST System specification were constructed with a less rigorous review of the existing engineering-basis documents, the Revision 0 release of the specification must incorporate the results of the review documented herein. The purpose of this document is to describe the screening process and criteria used to determine which constraints are unavoidable and to document the screening results.

  6. Proposals for ORNL (Oak Ridge National Laboratory) support to Tiber LLNL (Lawrence Livermore National Laboratory). [Engineering Test Reactor

    SciTech Connect (OSTI)

    Berry, L.A.; Rosenthal, M.W.; Saltmarsh, M.J.; Shannon, T.E.; Sheffield, J.

    1987-01-27

    This document describes the interests and capabilities of Oak Ridge National Laboratory in their proposals to support the Lawrence Livermore National Laboratory (LLNL) Engineering Test Reactor (ETR) project. Five individual proposals are cataloged separately. (FI)

  7. Secretary Chu Statement on AP1000 Reactor Design Certification | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy AP1000 Reactor Design Certification Secretary Chu Statement on AP1000 Reactor Design Certification December 22, 2011 - 3:25pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu issued the following statement today in support of the Nuclear Regulatory Commission's (NRC) decision to certify Westinghouse Electric's AP1000 nuclear reactor design, a significant step towards constructing a new generation of U.S. nuclear reactors. In February 2010, the Obama Administration

  8. APS Science 2007.

    SciTech Connect (OSTI)

    Not Available

    2008-05-30

    This report provides research highlights from the Advanced Photon Source (APS). Although these highlights represent less than 10% of the published work from the APS in 2007, they give a flavor of the diversity and impact of user research at the facility. In the strategic planning the aim is to foster the growth of existing user communities and foresee new areas of research. This coming year finds the APS engaged in putting together, along with the users, a blueprint for the next five years, and making the case for a set of prioritized investments in beamlines, the accelerator, and infrastructure, each of which will be transformational in terms of scientific impact. As this is written plans are being formulated for an important user workshop on October 20-21, 2008, to prioritize strategic plans. The fruit from past investments can be seen in this report. Examples include the creation of a dedicated beamline for x-ray photon correlation spectroscopy at Sector 8, the evolution of dedicated high-energy x-ray scattering beamlines at sectors 1 and 11, a dedicated imaging beamline at Sector 32, and new beamlines for inelastic scattering and powder diffraction. A single-pulse facility has been built in collaboration with Sector 14 (BioCARS) and Phil Anfinrud at the National Institutes of Health, which will offer exceptionally high flux for single-pulse diffraction. The nanoprobe at Sector 26, built and operated jointly by the Argonne Center for Nanoscale Materials and the X-ray Operations and Research (XOR) section of the APS X-ray Science Division, has come on line to define the state of the art in nanoscience.

  9. APS Today: Calendar of Events

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    aps.anl.govNewsAPSToday Upcoming events at the Advanced Photon Source at Argonne National Laboratory. en-us Argonne National Laboratory http:www.aps.anl.govImages...

  10. APS high heat load monochromator

    SciTech Connect (OSTI)

    Lee, W.K.; Mills, D.

    1993-02-01

    This document contains the design specifications of the APS high heat load (HHL) monochromator and associated accessories as of February 1993. It should be noted that work is continuing on many parts of the monochromator including the mechanical design, crystal cooling designs, etc. Where appropriate, we have tried to add supporting documentation, references to published papers, and calculations from which we based our decisions. The underlying philosophy behind performance specifications of this monochromator was to fabricate a device that would be useful to as many APS users as possible, that is, the design should be as generic as possible. In other words, we believe that this design will be capable of operating on both bending magnet and ID beamlines (with the appropriate changes to the cooling and crystals) with both flat and inclined crystal geometries and with a variety of coolants. It was strongly felt that this monochromator should have good energy scanning capabilities over the classical energy range of about 4 to 20 keywith Si (111) crystals. For this reason, a design incorporating one rotation stage to drive both the first and second crystals was considered most promising. Separate rotary stages for the first and second crystals can sometimes provide more flexibility in their capacities to carry heavy loads (for heavily cooled first crystals or sagittal benders of second crystals), but their tuning capabilities were considered inferior to the single axis approach.

  11. APS User News | Advanced Photon Source

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    News & Calendars Users Home APS User News User Announcements Proposal Deadlines and Related Meetings Conferences and Workshops APS Seminars and Meetings APS Committees and Reviews...

  12. APS: Lighting up the future

    SciTech Connect (OSTI)

    Potent, V.J.

    1993-09-01

    Work on the Advanced Photon Source (APS) at Argonne National Laboratory (ANL) involves the construction and supporting research and development for a national user facility for synchrotron radiation research in the x-ray region. The facility, when operational in 1997, will provide super-intense x-ray beams for many areas of basic research and will serve the entire US x-ray research community of several thousand users. This paper describes the pertinent features of the design, construction and planned operation of the facility; and the impact quality has had in these areas. In addition, the introduction of several quality management techniques such as total quality management, reliability/availability planning, and user interface are discussed concerning their status and success.

  13. APS 2004 Conferences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    SPIE's 49th Annual Meeting. (Aug. 2-6) Denver, CO Second International Conference on Artificial Intelligence in Engineering and Technology. (Aug. 3-5) Koto Kinabalu, Malaysia...

  14. APS 2000 Conferences

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    (Jun. 26-28) University of Sheffield United Kingdom 1st International Workshop on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation...

  15. APS team works smarter, cuts substation construction costs by 36%

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    An aggressive, cost-cutting, team of T D employees at Arizona Public Service Co (APS) is building a new distribution substation in Phoenix for less than half the original cost that APS planners had calculated for the project's land, labor and materials. Scheduled for service in June of this year, APS analysts had originally projected land, labor and materials costs for the 20-MVA Bell substation at nearly $1.7-million-not including major equipment such as transformers, circuit breakers, and switches. However, after studying the project, an empowered APS crew was able to slash 36% off the original estimate-more than $610,000. What's more, APS spokesmen say that its new approach to substation construction and design has given its engineers and construction crews a laundry list of additional ideas to try out on future substation ventures. 4 figs., 1 tab.

  16. APS User News, Issue 88

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    -- John Rogers to be Keynote at Users Meeting -- 2015 APS Compton Award goes to Ice, Larson, and Sparks BRIEFLY NOTED -- Congratulations to Daniel Haskel, Winner of the 2015...

  17. ap | National Nuclear Security Administration

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ap | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

  18. APS- Renewable Energy Incentive Program

    Energy.gov [DOE]

    Through the Renewable Incentive Program, Arizona Public Service (APS) offers customers who install solar water heating systems the opportunity to sell the renewable energy credits (RECs) associat...

  19. Aps_notify Info Page

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Apsnotify -- APS Operations Event Notification List About Apsnotify English (USA) This list alerts subscribers to major events that may happen during operations at the Advanced...

  20. Engineering report on drilling in the Sand Wash Basin, Colorado. [In support of NURE program

    SciTech Connect (OSTI)

    Callihan, M C

    1980-01-01

    The Sand Wash Basin Drilling project was conducted by Bendix Field Engineering Corporation in support of the US Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program. This project consisted of 27 drill holes ranging in depth from 110 feet (33.5 m) to 1,995 feet (608.1 m). A total of 25,514 feet (7,471.9 m) was rotary drilled, and 1,593.5 feet (485.7 m) were cored resulting in a total of 26,107.5 feet (7,957.6 m) drilled for the project. The objective of the project was to provide comprehensive subsurface geologic data relevant to uranium mineralization. This was accomplished by drilling in major outcrop areas of the Browns Park Formation in Moffat and Routt Counties, Colorado. The project began May 18, 1979; drilling was completed November 4, 1979. Most site restoration and cleanup was completed during the fall of 1979 with the remainder to be completed during the spring of 1980.

  1. ARM - Campaign Instrument - ap-surf

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govInstrumentsap-surf Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Aerosol Profiler at Surface (AP-SURF) Instrument Categories Aerosols Campaigns Surface Observation in Support of in-situ Observations within the Arctic Boundary Layer [ Download Data ] North Slope Alaska, 2008.04.01 - 2008.05.31 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream

  2. Support

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    WIPP Support Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Community, State and Congressional Support for WIPP as a host for Underground Experiments ...

  3. AP1000 Design for Security

    SciTech Connect (OSTI)

    Long, L.B.; Cummins, W.E.; Winters, J.W.

    2006-07-01

    Nuclear power plants are protected from potential security threats through a combination of robust structures around the primary system and other vital equipment, security systems and equipment, and defensive strategy. The overall objective for nuclear power plant security is to protect public health and safety by ensuring that attacks or sabotage do not challenge the ability to safely shutdown the plant or protect from radiological releases. In addition, plants have systems, features and operational strategies to cope with external conditions, such as loss of offsite power, which could be created as part of an attack. Westinghouse considered potential security threats during design of the AP1000 PWR. The differences in plant configuration, safety system design, and safe shutdown equipment between existing plants and AP1000 affect potential vulnerabilities. This paper provides an evaluation of AP1000 with respect to vulnerabilities to security threats. The AP1000 design differs from the design of operating PWRs in the US in the configuration and the functional requirements for safety systems. These differences are intentional departures from conventional PWR designs which simplify plant design and enhance overall safety. The differences between the AP1000 PWR and conventional PWRs can impact vulnerabilities to security threats. The NRC addressed security concerns as part of their reviews for AP1000 Design Certification, and did not identify any security issues of concern. However, much of the detailed security design information for the AP1000 was deferred to the combined Construction and Operating License (COL) phase as many of the security issues are site-specific. Therefore, NRC review of security issues related to the AP1000 is not necessarily complete. Further, since the AP1000 plant design differs from existing PWRs, it is not obvious that the analyses and assessments prepared for existing plants also apply to the AP1000. We conclude that, overall, the AP1000

  4. The NuStart AP1000 Compact Control Room Implementation

    SciTech Connect (OSTI)

    Harmon, Daryl

    2006-07-01

    The nuclear power industry in the United States is experiencing renewed optimism that new nuclear power plants may be constructed in the foreseeable future. Presently a number of utilities in the U.S. are considering new nuclear plant construction. Among the reasons supporting the industry's optimism is the formation of the NuStart Energy Consortium. This consortium of leading energy companies, including Westinghouse Electric Company, is working with the U.S. Department of Energy to demonstrate and test the new licensing process for obtaining a Combined Construction and Operating License (COL) for an advanced light water reactor (ALWR). One ALWR design for which the NuStart Energy Consortium is pursuing a COL application is Westinghouse's passive AP1000. AP1000 received its Final Design Approval from the USNRC in the Fall of 2004 and was granted Design Certification by the NRC on December 30, 2005. A key element of the AP1000 COL application will be to close out Design Certification COL items related to the Main Control Room (MCR) and Human System Interface (HSI) design. During the AP1000 design certification licensing efforts, a control room and HSI design process was submitted and approved. Realizing that Instrumentation and Control (I and C) and HSI technology changes rapidly, Westinghouse chose to defer the detailed design of the control room and operator interfaces. This allows the latest technology to be used when a plant is actually going to be built. To fulfill the COL items for the upcoming application Westinghouse is performing a comprehensive Human Factors Engineering program in conjunction with development of an advanced set of HSI resources for a compact control room. This paper will discuss human factors program elements completed to date and the efforts currently in progress to complete the remaining elements. It will also describe the design progress for each HSI resource including a Wall Panel Information System, computerized procedure system

  5. Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Includes Engineering Standards Manual, Master Specifications Index, Drafting Manual, Design Guides, and more. IHS Standards Expert login information Collections include ANSI,...

  6. Introduction to APS | Advanced Photon Source

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Introduction to APS What is the APS? What is the APS? The Advanced Photon Source is a synchrotron light source that produces high-energy, high-brightness x-ray beams. The source is...

  7. Private Company Uses EERE-Supported Chemistry Model to Substantially Improve Combustion Engine Simulation Software

    Energy.gov [DOE]

    Convergent Science, Inc. (CSI) is using Lawrence Livermore National Laboratorys Multi-Zone Combustion Model (MCM) to help automotive engineers develop the next generation of high-efficiency, low-emission vehicles.

  8. APS Publications | Advanced Photon Source

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the Sector(s)CAT(s) beamline(s) where the work was done, and whether or not GUP beam time was used, to apspubs@aps.anl.gov. Reminder for ANL employees: ANL employees are not...

  9. APS Organization Chart | Advanced Photon Source

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    APS Organization Chart The Advanced Photon Source (APS) organization comprises three divisions and one project office. Advanced Photon Source Organization Photon Sciences Overview...

  10. engineering

    National Nuclear Security Administration (NNSA)

    an award last month for his 3D printing innovation. It could revolutionize additive manufacturing.

    Lawrence Livermore Lab engineer Bryan Moran wasn't necessarily...

  11. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking

    Energy.gov [DOE]

    Presentation discusses a virtual lab which can model sophisticated future vehicle systems using three layers of model fidelity supporting each other.

  12. Ford/BASF/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence

    SciTech Connect (OSTI)

    Veenstra, Mike; Purewal, Justin; Xu, Chunchuan; Yang, Jun; Blaser, Rachel; Sudik, Andrea; Siegel, Don; Ming, Yang; Liu, Dong'an; Chi, Hang; Gaab, Manuela; Arnold, Lena; Muller, Ulrich

    2015-06-30

    Widespread adoption of hydrogen as a vehicular fuel depends critically on the development of low-cost, on-board hydrogen storage technologies capable of achieving high energy densities and fast kinetics for hydrogen uptake and release. As present-day technologies -- which rely on physical storage methods such as compressed hydrogen -- are incapable of attaining established Department of Energy (DOE) targets, development of materials-based approaches for storing hydrogen have garnered increasing attention. Material-based storage technologies have potential to store hydrogen beyond twice the density of liquid hydrogen. To hasten development of these ‘hydride’ materials, the DOE previously established three centers of excellence for materials storage R&D associated with the key classes of materials: metal hydrides, chemical hydrogen, and adsorbents. While these centers made progress in identifying new storage materials, the challenges associated with the engineering of the system around a candidate storage material are in need of further advancement. In 2009 the DOE established the Hydrogen Storage Engineering Center of Excellence with the objective of developing innovative engineering concepts for materials-based hydrogen storage systems. As a partner in the Hydrogen Storage Engineering Center of Excellence, the Ford-UM-BASF team conducted a multi-faceted research program that addresses key engineering challenges associated with the development of materials-based hydrogen storage systems. First, we developed a novel framework that allowed for a material-based hydrogen storage system to be modeled and operated within a virtual fuel cell vehicle. This effort resulted in the ability to assess dynamic operating parameters and interactions between the storage system and fuel cell power plant, including the evaluation of performance throughout various drive cycles. Second, we engaged in cost modeling of various incarnations of the storage systems. This analysis

  13. AP600 containment purge radiological analysis

    SciTech Connect (OSTI)

    O`Connor, M.; Schulz, J.; Tan, C.

    1995-02-01

    The AP600 Project is a passive pressurized water reactor power plant which is part of the Design Certification and First-of-a-Kind Engineering effort under the Advanced Light Water Reactor program. Included in this process is the design of the containment air filtration system which will be the subject of this paper. We will compare the practice used by previous plants with the AP600 approach to meet the goals of industry standards in sizing the containment air filtration system. The radiological aspects of design are of primary significance and will be the focus of this paper. The AP600 Project optimized the design to combine the functions of the high volumetric flow rate, low volumetric flow rate, and containment cleanup and other filtration systems into one multi-functional system. This achieves a more simplified, standardized, and lower cost design. Studies were performed to determine the possible concentrations of radioactive material in the containment atmosphere and the effectiveness of the purge system to keep concentrations within 10CFR20 limits and within offsite dose objectives. The concentrations were determined for various reactor coolant system leakage rates and containment purge modes of operation. The resultant concentrations were used to determine the containment accessibility during various stages of normal plant operation including refueling. The results of the parametric studies indicate that a dual train purge system with a capacity of 4,000 cfm per train is more than adequate to control the airborne radioactivity levels inside containment during normal plant operation and refueling, and satisfies the goals of ANSI/ANS-56.6-1986 and limits the amount of radioactive material released to the environment per ANSI/ANS 59.2-1985 to provide a safe environment for plant personnel and offsite residents.

  14. Preliminary engineering studies for the support shell of the outer tracker of the SDC detector

    SciTech Connect (OSTI)

    Vandergriff, D.H.; Mayhall, J.

    1991-09-01

    The Solenoidal Detector Collaboration (SDC) detector is in the conceptual design phase. ORNL is currently working with various sub-groups on the design of the outer tracker portion of the SDC detector. A major focus in the outer tracker design is the structure that mounts and supports the tracking elements. This structure must meet extreme requirements of alignment and stability while containing a minimum of material. This report describes the requirements, evaluations, and analyses that have been performed on the two options being explored; a cylindrical support shell and a modular support shell.

  15. Development of Emergency Response Guidelines (ERGs) for AP1000

    SciTech Connect (OSTI)

    Yuichi Hayashi; Saiu, Gianfranco; Wright, Richard F.

    2006-07-01

    not required to operate following accidents. However, it is expected that they should be used if available and their operator actions should be incorporated into ERGs to restore safety-related PXS and/or to avoid ADS-4 actuation. Several LOCA and other cases were analyzed, including consideration of such operator actions as RNS injection, to support the development process of the AP1000 ERGs. These cases were modeled using the best-estimate state-of-art RELAP5 code. The analyses results show that RNS injection is effective for a typical small LOCA to avoid ADS-4 actuation. (authors)

  16. 1996ApJ...466..724G

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ApJ...466..724G 1996ApJ...466..724G 1996ApJ...466..724G 1996ApJ...466..724G 1996ApJ...466..724G 1996ApJ...466..724G 1996ApJ...466..724G 1996ApJ...466..724G

  17. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells. Tech Team Meeting Presentaion

    SciTech Connect (OSTI)

    Brosha, Eric L.; Elbaz Alon, Lior; Henson, Neil J.; Rockward, Tommy; Roy, Aaron; Serov, Alexey; Ward, Timothy

    2012-08-13

    Catalyst support durability is currently a technical barrier for commercialization of polymer electrolyte membrane (PEM) fuel cells, especially for transportation applications. Degradation and corrosion of the conventional carbon supports leads to losses in active catalyst surface area and, consequently, reduced performance. As a result, the goal of this work is to develop support materials that interact strongly with Pt, yet sustain bulk-like catalytic activities with very highly dispersed particles. Ceramic materials that are prepared using conventional solid-state methods have large grain sizes and low surface areas that can only be minimally ameliorated through grinding and ball milling. Other synthesis routes to produce ceramic materials must be investigated and utilized in order to obtain desired surface areas. In this work, several different synthesis methods are being utilized to prepare electronically conductive ceramic boride, nitride, and oxide materials with high surface areas and have the potential for use as PEMFC catalyst supports. Polymer-assisted deposition (PAD) and aerosol-through plasma (A-T-P) torch are among several methods used to obtain ceramic materials with surface areas that are equal to, or exceed Vulcan XC-72R supports. Cubic Mo-based ceramic phases have been prepared with average XRD-determined crystallite sizes as low as 1.6 nm (from full profile, XRD fitting) and a BET surface area exceeding 200 m{sup 2}/g. Additionally, black, sub-stoichiometric TiO{sub 2-x}, have been prepared with an average crystallite size in the 4 nm range and surface areas exceeding 250 m{sup 2}/gr. Pt disposition using an incipient wetness approach produced materials with activity for hydrogen redox reactions and ORR. Cyclic voltammetry data will be shown for a variety of potential Pt/ceramic catalysts. Initial experiments indicate enhanced Pt metal-support interactions as well. Plane wave periodic density functional calculations (VASP) are being used to

  18. ENGINEERING

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw America's energy blueprint is now. The challenges we face today are the most critical in decades-from the impact of energy use on global ecosystems to the difficulties of efficiently harnessing our natural resources. Because energy is fundamental to human welfare, we must develop sustainable systems that make clean,

  19. SUPPORTING SAFE STORAGE OF PLUTONIUM-BEARING MATERIALS THROUGH SCIENCE, ENGINEERING AND SURVEILLANCE

    SciTech Connect (OSTI)

    Dunn, K.; Chandler, G.; Gardner, C.; Louthan, M.; Mcclard, J.

    2009-11-10

    Reductions in the size of the U. S. nuclear weapons arsenal resulted in the need to store large quantities of plutonium-bearing metals and oxides for prolonged periods of time. To assure that the excess plutonium from the U. S. Department of Energy (DOE) sites was stored in a safe and environmentally friendly manner the plutonium-bearing materials are stabilized and packaged according to well developed criteria published as a DOE Standard. The packaged materials are stored in secure facilities and regular surveillance activities are conducted to assure continuing package integrity. The stabilization, packaging, storage and surveillance requirements were developed through extensive science and engineering activities including those related to: plutonium-environment interactions and container pressurization, corrosion and stress corrosion cracking, plutonium-container material interactions, loss of sealing capability and changes in heat transfer characteristics. This paper summarizes some of those activities and outlines ongoing science and engineering programs that assure continued safe and secure storage of the plutonium-bearing metals and oxides.

  20. (Engineering standards in the CARES (Central American Rural Electrification Support) project)

    SciTech Connect (OSTI)

    Garcia, A. III.

    1989-10-27

    Given the short time that the staff has been in place the overall progress has been exceptional. No doubt the professionalism and high level of technical competence of the staff are some of the primary reasons. Documentation of the projects is adequate to reconstruct events and information that result in key decisions. The current Annual Workplan, however, is cumbersome due to its organization and excess of redundant reporting. It needs to be re-organized based on the original goals of the Phase I Study and not the 35 components. The progress to date has been impressive. The NRECS Staff has made a significant impact on policy and engineering decisions in Belize, Guatemala and El Salvador, all with some proven cost savings. The demonstration projects and alternative designs have resulted in a high degree of credibility for the NRECA Staff. The proposed new engineering standards have gained acceptance in all of the countries as experience grows. They are well planned and carefully thought out. Professional training will be needed in the coming years to overcome the natural momentum of the status quo.

  1. Final Report - Partial Support of the Survey of Gradudate Students and Posdoctorates in Science and Engineering

    SciTech Connect (OSTI)

    Mulrow, Jeri

    2000-09-01

    Federally Funded Research and Development Centers (FFRDCs) are organizations that perform research and development and are exclusively or substantially financed by the federal government and are supported by the federal government either to meet a particular R&D objective or, in some instances, to provide major facilities at universities for research and associated training purposes. Many FFRDCs employ postdoctoral researchers (postdocs). The 2009 FFRDC survey collected the total number of postdocs employed by FFRDCs in the United States--categorized by source of support, citizenship, sex, and field of research--as of October 1, 2009.

  2. 1994ApJ...431..604G

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    4ApJ...431..604G 1994ApJ...431..604G 1994ApJ...431..604G 1994ApJ...431..604G 1994ApJ...431..604G 1994ApJ...431..604G 1994ApJ...431..604G 1994ApJ...431..604G 1994ApJ...431..604G 1994ApJ...431..604G 1994ApJ...431..604G 1994ApJ...431..604G 1994ApJ...431..604G

  3. Regulatory impact analysis and regulatory support document: Control of air pollution; determination of significance for nonroad sources and emission standards for new nonroad compression-ignition engines at or above 37 kilowatts (50 horsepower). Final report

    SciTech Connect (OSTI)

    Trimble, T.; North, D.R.; Green, K.A.H.; Sabourin, M.A.; Guerrieri, D.A.

    1994-05-27

    The regulatory impact analysis and support document provides additional information in support of the Final Rulemaking (FRM). This FRM will regulate all new nonroad compression-ignition engines greater than or equal to 37 kilowatts (50 hp), except engines which propel or are used on marine vessels, aircraft engines, engines which propel locomotives, and engines regulated by the Mining, Safety, and Health Administration. The regulated engines are hereafter referred to as nonroad large CI engines. The goal of this regulation is to substantially reduce NOx emission and smoke from nonroad large CI engines beginning in the 1996 model year.

  4. Emergency Operating Procedures (EOPs) for the AP1000 Simulator

    SciTech Connect (OSTI)

    Yuichi Hayashi; Saiu, Gianfranco; Wright, Richard F.

    2006-07-01

    The AP1000 is two-loop 1100 MWe advanced pressurized water reactor (PWR) that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 uses proven technology, which builds on over 30 years of operating PWR experience. The API000 final design certification was approved by the NRC in December, 2005. A total of 34 Emergency Operating Procedures (EOPs) for operation of the AP1000 simulator have been prepared based on the AP1000 Emergency Response Guidelines (ERGs), background information documents and detailed plant information. These include 28 EOPs at power and 6 EOPs during shutdown. The AP1000 ERGs were developed by using the generic ERGs for the low pressure reference PWR plant as a basis. The AP1000 design differences from the reference plant were reviewed and reflected in the process of developing operational steps in each ERG. The provisions of the AP1000 PRA were also reviewed and incorporated into the ERGs. Although the AP1000 design does not require operator actions for the first 72 hours after accidents, the operator actions with both safety-related and non-safety-related equipment have an important role to mitigate the consequence of accidents. In the event of a steam generator tube rupture (SGTR), although the AP1000 is designed so that no operator actions are required to recover from the event, there are actions that can be taken by the operator to limit the release of radioactive effluents from the ruptured SG. These actions include isolation of the ruptured SG and depressurization of the reactor coolant system (RCS) to terminate primary-to-secondary leakage, restoring reactor coolant inventory to ensure adequate core cooling and plant pressure control. It is expected that these operator actions should be incorporated into the ERG to reduce the fission product release. To support the development of the AP1000 ERGs

  5. APS beamline standard components handbook, Version 1. 3

    SciTech Connect (OSTI)

    Hahn, U.; Shu, D.; Kuzay, T.M.

    1993-02-01

    This Handbook in its current version (1.3) contains descriptions, specifications, and preliminary engineering design drawings for many of the standard components. The design status and schedules have been provided wherever possible. In the near future, the APS plans to update engineering drawings of identified standard beamline components and complete the Handbook. The completed version of this Handbook will become available to both the CATs and potential vendors. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction.

  6. AP-0001-001.PDF

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    AP-PO-0001-001.doc. Building Security Date: 2000/05/12 1. Introduction: Building security is a top priority for all CAMD personnel. Theft and vandalism have negative impacts by virtue of the loss of research data as well as the monetary loss. 2. Purpose: The purpose of this policy is to insure the facility is secure when it is unoccupied. 3. Definitions: a. Secure means all building alarms are armed and the gate is locked. 4. Scope of Policy: There are three (3) buildings at the CAMD facility,

  7. Westinghouse AP1000 Advanced Passive Plant

    SciTech Connect (OSTI)

    Cummins, W.E.; Schulz, T.L.

    2004-07-01

    The Westinghouse AP1000 Program is aimed at making available a nuclear power plant that is economical in the U.S deregulated electrical power industry in the near-term. The AP1000 is two-loop 1000 MWe pressurizer water reactor (PWR). It is an up-rated version of the AP600. It uses passive safety systems to provide significant and measurable improvements in plant simplification, safety, reliability, investment protection and plant costs. The AP1000 uses proven technology, which builds on over 30 years of operating PWR experience. The AP600 received Design Certification by the Nuclear Regulatory Commission in 1999; the AP1000 is expected to receive DC by the NRC in 2005. The AP1000 meets all of the US utility requirements. The AP1000 retains a maximum amount of the AP600 design so as to maintain the licensing basis, detailed design information / analysis, construction plan, cost estimate developed in the $400 million dollar AP600 FOKE program. On March 28, 2002, Westinghouse submitted to the U.S. NRC the AP1000 Design Control Document and Probabilistic Risk Assessment, thereby initiating the formal licensing review process. The results presented in these documents verify the safety performance of the AP1000 and conformance with the U.S. NRC licensing requirements. Westinghouse and the NRC have been engaged in a several rounds questions/answers. Technical issues have been resolved and the NRC is preparing their Final Safety Evaluation Report. Plans are being developed for implementation of the AP1000 plant. Key factors in this planning are the economics of AP1000 in the de-regulated US electricity market, and the associated business model for licensing, constructing and operating these new plants. (authors)

  8. Final characterization and safety screen report of double shell tank 241-AP-105 for evaporator campaign 97-1

    SciTech Connect (OSTI)

    Miller, G.L.

    1997-01-20

    Evaporator candidate feed from tank 241-AP-105 (hereafter referred to as AP-105) was characterized for physical, inorganic, organic and radiochemical parameters by the 222-S Laboratory as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4, and Engineering Change Notice, number 635332, Reference 5. This data package satisfies the requirement for a format IV, final report as described in Reference 1. This data package is also a follow-up to the 45-Day safety screen results for tank AP-105, Reference 8, which was issued on November 5, 1996, and is attached as Section II to this report. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory's Quality Assurance P1an, References 6 and 7. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation.

  9. 1992ApJ...399L..51G

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2ApJ...399L..51G 1992ApJ...399L..51G 1992ApJ...399L..51G 1992ApJ...399L..51G

  10. Layered Electrical Product Application Protocol (AP). Draft: Initial Graphics Exchange Specification (IGES)

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    An application protocol is an information systems engineering view of a specific product. The view represents an agreement on the generic activities needed to design and fabricate the product, the agreement on the information needed to support those activities, and the specific constructs of a product data standard for use in transfering some or all of the information required. This applications protocol describes the data for electrical and electronic products in terms of a product description standard called the Initial Graphics Exchange Specification (IGES). More specifically, the Layered Electrical Product IGES Application Protocol (AP) specifies the mechanisms for defining and exchanging computer-models and their associated data for those products which have been designed in two dimensional geometry so as to be produced as a series of layers in IGES format. The AP defines the appropriateness of the data items for describing the geometry of the various parts of a product (shape and location), the connectivity, and the processing and material characteristics. Excluded is the behavioral requirements which the product was intended to satisfy, except as those requirements have been recorded as design rules or product testing requirements.

  11. APS2013_Koniges.pptx

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Number o f C ores Speedup The P IC c ode W arp s cales w ell o n H opper a nd E dison with E dison b eing ~ 2X f aster t han H opper Warp h as b een s hown t o scale t o 1 28k o n H opper Plasma P hysics S imulaAons o n N ext G eneraAon P laEorms A. K oniges, R . G erber, D . S kinner, Y . Y ao, Y . H e, D . G rote, J ---L V ay, H . K aiser, a nd T . S terling APS D ivision o f P lasma P hysics A nnual M eeOng, D enver, C O, N ovember 2 013 --- M ore t han 5 00 c ores --- O pAmized f or S IMD (

  12. New APS Fellows for Los Alamos announced

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    New APS Fellows for Los Alamos announced New APS Fellows for Los Alamos announced Eight Los Alamos National Laboratory scientists are being honored as new Fellows in the American Physical Society (APS). October 31, 2016 From top left, Evgenya Simakov, James Werner, Joel Kress, Paul Johnson. From lower left, Herbert Funsten, John Kline, Richard Gustavsen and Jian-Xin Zhu. From top left, Evgenya Simakov, James Werner, Joel Kress, Paul Johnson. From lower left, Herbert Funsten, John Kline, Richard

  13. APS Seminars & Meetings | Advanced Photon Source

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Science Series A lunchtime gathering with presentations of the newest results from the experiment hall floor. Speakers are not announced in advance. Monthly APS Colloquium A...

  14. APS User Information | Advanced Photon Source

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    to APS, site access permission, user agreement, training, contactbio information your research: proposals, ESAFs, EEFs action items: things that need to be addressed before you...

  15. APS Map | Overview | Advanced Photon Source

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    technical facility: the linear accelerator, the booster synchrotron, the electron storage ring, insertion devices, and the experiment hall. APS systems map Next: Linear Accelerator...

  16. Eastman, AP start on coal unit

    SciTech Connect (OSTI)

    1995-10-25

    Eastman Chemical and Air Products and Chemicals (AP) have started construction of a $214-million, coal-to-methanol demonstration unit at Eastmans site in Kingsport, TN. The project is part of the Department of Energy`s clean coal technology program and is receiving $93 million in federal support. The demonstration unit-which will have a methanol capacity of 260 tons/day-will use novel catalyst technology for converting coal-derived synthesis gas (syngas) to methanol. Unlike conventional technology that processes syngas through a fixed bed of dry catalyst particles, the liquid-phase methanol process converts the syngas in a single vessel containing catalysts suspended in mineral oil. The companies say the innovation allows the process to better able handle the gases from coal gasifiers and is more stable and reliable than existing processes. Eastman says it will use the methanol produced by the plant as a chemical feedstock. It currently uses methanol as an intermediate in making acetic anhydride and dimethyl terephthalate. In addition, the companies say the methanol will be evaluated as a feedstock in making methyl tert-butyl ether for reformulated fuels. Eastman also says it will evaluate coproducing dimethyl ether (DME) with the methanol. DME can be used as a fuel additive or blended with methanol for a chemical feedstock, according to Eastman.

  17. AP1000 Containment Design and Safety Assessment

    SciTech Connect (OSTI)

    Wright, Richard F.; Ofstun, Richard P.; Bachere, Sebastien

    2002-07-01

    The AP1000 is an up-rated version of the AP600 passive plant design that recently received final design certification from the US NRC. Like AP600, the AP1000 is a two-loop, pressurized water reactor featuring passive core cooling and passive containment safety systems. One key safety feature of the AP1000 is the passive containment cooling system which maintains containment integrity in the event of a design basis accident. This system utilizes a high strength, steel containment vessel inside a concrete shield building. In the event of a pipe break inside containment, a high pressure signal actuates valves which allow water to drain from a storage tank atop the shield building. Water is applied to the top of the containment shell, and evaporates, thereby removing heat. An air flow path is formed between the shield building and the containment to aid in the evaporation and is exhausted through a chimney at the top of the shield building. Extensive testing and analysis of this system was performed as part of the AP600 design certification process. The AP1000 containment has been designed to provide increased safety margin despite the increased reactor power. The containment volume was increased to accommodate the larger steam generators, and to provide increased margin for containment pressure response to design basis events. The containment design pressure was increased from AP600 by increasing the shell thickness and by utilizing high strength steel. The passive containment cooling system water capacity has been increased and the water application rate has been scaled to the higher decay heat level. The net result is higher margins to the containment design pressure limit than were calculated for AP600 for all design basis events. (authors)

  18. Tank 241-AP-107, grab samples, 7AP-99-1, 7AP-99-3 and 7AP-99-4 analytical results for the final report

    SciTech Connect (OSTI)

    BELL, K.E.

    1999-08-12

    This document is the format IV, final report for the tank 241-AP-107 (AP-107) grab samples taken in May 1999 to address waste compatibility concerns. Chemical, radiochemical, and physical analyses on the tank AP-107 samples were performed as directed in Compatibility Grab Sampling and Analysis Plan for Fiscal year 1999. Any deviations from the instructions provided in the tank sampling and analysis plan (TSAP) were discussed in this narrative. Interim data were provided earlier to River Protection Project (RPP) personnel, however, the data presented here represent the official results. No notification limits were exceeded.

  19. Preserving Diesel Exhaust Ultrafine (Nano-) Particulate Structure in Genotoxicity Studies to Support Engineering Development of Emission Controls

    Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  20. EERE Success Story—Private Company Uses EERE-Supported Chemistry Model to Substantially Improve Combustion Engine Simulation Software

    Energy.gov [DOE]

    Convergent Science, Inc. (CSI) is using Lawrence Livermore National Laboratory’s Multi-Zone Combustion Model (MCM) to help automotive engineers develop the next generation of high-efficiency, low-emission vehicles.

  1. AP1000{sup R} licensing and deployment in the United States

    SciTech Connect (OSTI)

    Jordan, R. P.; Russ, P. A.; Filiak, P. P.; Castiglione, L. L.

    2012-07-01

    In recent years, both domestic and foreign utilities have turned to the standardized Westinghouse AP1000 plant design in satisfying their near - and long-term - sustainable energy needs. As direct support to these actions, licensing the AP1000 design has played a significant role by providing one of the fundamental bases in clearing regulatory hurdles leading to the start of new plant construction. Within the U.S. alone, Westinghouse AP1000 licensing activities have reached unprecedented milestones with the approvals of both AP1000 Design Certification and Southern Company's combined construction permit and operating license (COL) application directly supporting the construction of two new nuclear plants in Georgia. Further COL application approvals are immediately pending for an additional two AP1000 plants in South Carolina. And, across the U.S. nuclear industry spectrum, there are 10 other COL applications under regulatory review representing some 16 new plants at 10 sites. In total, these actions represent the first wave of new plant licensing under the regulatory approval process since 1978. Fundamental to the Nuclear Regulatory Commission's AP1000 Design Certification is the formal recognition of the AP1000 passive safety design through regulatory acceptance rulemaking. Through recognition and deployment of the AP1000 Design Certification, the utility licensee / operator of this reactor design are now offered an opportunity to use a simplified 'one-step' combined license process, thereby managing substantial back-end construction schedule risk from regulatory and intervention delays. Application of this regulatory philosophy represents both acceptance and encouragement of standardized reactor designs like the AP1000. With the recent AP1000 Design Certification and utility COL acceptances, the fundamental licensing processes of this philosophy have successfully proven the attainment of significant milestones with the next stage licensing actions directed

  2. APS- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    APS customers may also sign up for a $99 home checkup (a $400 value) to have specially trained contractors identify energy savings upgrades.  Visit the program website for specific details and...

  3. Microsoft PowerPoint - APS_07

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Barriers in Alcator C-Mod Catherine Fiore MIT Plasma Science and Fusion Center APS-DPP November 14, 2007 Orlando, Fl With Contributions from: W. L. Rowan , A. Dominguez, A. E....

  4. refractory_retain_whyte_APS07.ppt

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    2 1 Plasma Science & Fusion Center, MIT, Cambridge USA 2 FOM-Rijnhuizen, Netherlands APS Division of Plasma Physics Meeting Mini-Conference: First Micron of the Wall November...

  5. AP-PO-0002-001.PDF

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    AP-PO-0002-001.doc Experimental Hall Date: 20010109 Experimental Hall Policy: The following policies are to be followed for access to the Experimental Hall: 1. Smoking is not...

  6. New APS Fellows for Los Alamos

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    APS Fellows for Los Alamos announced October 31, 2016 LOS ALAMOS, N.M., Oct. 31, 2016-Eight Los Alamos National Laboratory scientists are being honored as new Fellows in the American Physical Society (APS). "Success in accomplishing Los Alamos's essential national-security missions requires innovation across an incredible breadth of scientific and technical disciplines," said Los Alamos National Laboratory Director Charlie McMillan. "The American Physical Society's recognition of

  7. Six Berkeley Lab (Three ALS) Scientists Are 2012 APS Fellows

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Six Berkeley Lab (Three ALS) Scientists Are 2012 APS Fellows Print This year's American Physical Society (APS) Fellows include six scientists from Berkeley Lab, three of whom are...

  8. Arizona Public Service Company APS | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Public Service Company APS Jump to: navigation, search Name: Arizona Public Service Company (APS) Place: Phoenix, Arizona Zip: 85004 Product: Generates, transmits and distributes...

  9. Margin Assessment of AP1000 Loss of Flow Transient

    SciTech Connect (OSTI)

    Carlin, Edward L.; Hilton, Peter A.; Yixing Sung

    2006-07-01

    The Reactor Coolant System (RCS) of the AP1000 plant consists of two circulating loops. Each loop contains two canned motor Reactor Coolant (RC) pumps that have a rotating inertia to provide RCS flow coast-down if power to the pumps is lost. Westinghouse analysis of the complete loss of flow (CLOF) accident in support of the AP1000 design certification was based on the USNRC-approved traditional methodology applied to operating plants. The RCS response during the transient was predicted using the LOFTRAN code based on a reactivity insertion curve highly skewed to the bottom of the reactor core, but the calculation of Departure from Nucleate Boiling Ratio (DNBR) was performed assuming a top-skewed axial power profile. A more realistic margin assessment can be made by using an improved method similar to Westinghouse RAVE methodology recently approved by the USNRC. The improved method uses the three-dimensional kinetic nodal code SPNOVA coupled with the reactor core thermal-hydraulic code VIPRE-W for predicting the reactor core response during the CLOF transient. The improved method significantly improves margin predictions by generating core power distributions consistent with the trip reactivity changes for the DNBR calculation. The margin assessment showed that the improved method resulted in a 19% DNBR increase as compared to the traditional method for the AP1000 CLOF transient. (authors)

  10. Simplified SBLOCA Analysis of AP1000

    SciTech Connect (OSTI)

    Brown, William L.

    2004-07-01

    The AP1000 is a 1000 MWe advanced nuclear power plant design that uses passive safety features such as a multi-stage, automatic depressurization system (ADS) and gravity-driven, safety injection from core make-up tanks (CMTs) and an in-containment refueling water storage tank (IRWST) to mitigate SBLOCA events. The period of most safety significance for AP1000 during a SBLOCA event is typically associated with the actuation of the fourth stage of the ADS and subsequent transition from CMT to IRWST safety injection. As this period of a SBLOCA is generally of a quasi-steady nature, the integral performance of the AP1000 can be understood and evaluated with a simplified model of the reactor vessel, ADS, and safety injection from the CMTs and IRWST. The simplified model of the AP1000 consists of a series of steady state simulations that uses drift flux in the core region and homogeneous treatment of the core exit region including the ADS flow paths to generate a family of core flow demand curves as a function of system pressure (i.e. mass flow required to satisfy core cooling). These core flow demand curves are plotted against passive safety system supply curves from the CMTs and IRWST to demonstrate the adequacy of the integral performance of the AP1000 during the most important phase of a SBLOCA. (author)

  11. Tank 241-AP-107, grab samples 7AP-97-1, 7AP-97-2 and 7AP-97-3 analytical results for the final report

    SciTech Connect (OSTI)

    Steen, F.H.

    1997-12-22

    This document is the final report for tank 241-AP-107 grab samples. Three grab samples were collected from riser 1 on September 11, 1997. Analyses were performed on samples 7AP-97-1, 7AP-97-2 and 7AP-97-3 in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) (Sasaki, 1997) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) (Rev. 1: Fowler, 1995; Rev. 2: Mulkey and Nuier, 1997). The analytical results are presented in the data summary report (Table 1). A notification was made to East Tank Farms Operations concerning low hydroxide in the tank and a hydroxide (caustic) demand analysis was requested. The request for sample analysis (RSA) (Attachment 2) received for AP-107 indicated that the samples were polychlorinated biphenyl (PCB) suspects. Therefore, prior to performing the requested analyses, aliquots were made to perform PCB analysis in accordance with the 222-S Laboratory administrative procedure, LAP-101-100. The results of this analysis indicated that no PCBs were present at 50 ppm and analysis proceeded as non-PCB samples. The results and raw data for the PCB analysis will be included in a revision to this document. The sample breakdown diagrams (Attachment 1) are provided as a cross-reference for relating the tank farm customer identification numbers with the 222-S Laboratory sample numbers and the portion of sample analyzed.

  12. Talks on Fermilab experiments at the 1992 APS meetings

    SciTech Connect (OSTI)

    Pordes, S.

    1992-03-01

    This report contains short abstracts of paper on Fermilab experiments at the 1992 APS meetings. (LSP)

  13. Support for the in situ vitrification treatability study at the Idaho National Engineering Laboratory: FY 1988 summary

    SciTech Connect (OSTI)

    Oma, K.H.; Reimus, M.A.H.; Timmerman, C.L.

    1989-02-01

    The objective of this project is to determine if in situ vitrification (ISV) is a viable, long-term confinement technology for previously buried solid transuranic and mixed waste at the Radioactive Waste Management Complex (RWMC). The RWMC is located at the Idaho National Engineering Laboratory (INEL). In situ vitrification is a thermal treatment process that converts contaminated soils and wastes into a durable glass and crystalline form. During processing, heavy metals or other inorganic constituents are retained and immobilized in the glass structure, and organic constituents are typically destroyed or removed for capture by an off-gas treatment system. The primary FY 1988 activities included engineering-scale feasibility tests on INEL soils containing a high metals loading. Results of engineering-scale testing indicate that wastes with a high metals content can be successfully processed by ISV. The process successfully vitrified soils containing localized metal concentrations as high as 42 wt % without requiring special methods to prevent electrical shorting within the melt zone. Vitrification of this localized concentration resulted in a 15.9 wt % metals content in the entire ISV test block. This ISV metals limit is related to the quantity of metal that accumulates at the bottom of the molten glass zone. Intermediate pilot-scale testing is recommended to determine metals content scale-up parameters in order to project metals content limits for large-scale ISV operation at INEL.

  14. General Engineers

    U.S. Energy Information Administration (EIA) (indexed site)

    General Engineers The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the General Engineer, whose work is associated with analytical studies and evaluation projects pertaining to the operations of the energy industry. Responsibilities: General Engineers perform or participate in one or

  15. Information engineering

    SciTech Connect (OSTI)

    Hunt, D.N.

    1997-02-01

    The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

  16. Operating experience review for the AP1000 plant

    SciTech Connect (OSTI)

    Chaney, T. E.; Lipner, M. H.

    2006-07-01

    Westinghouse is performing an update to the Operating Experience Review (OER) Report for the AP1000 project to account for operating experience since December 1996. Significant Operating Experience Reports, Significant Event Reports, Significant Event Notifications, Operations and Maintenance Reminders, Topical Reports, Event Analysis Reports and Licensee Event Reports were researched for pertinent input to the update. As a part of the OER, Westinghouse has also conducted operator interviews and observations during simulated plant operations and after operating events. The main purpose of the OER is to identify Human Factors Engineering (HFE) related safety issues from existing operating plant experience and to ensure that these issues are addressed in the new design. The issues and lessons learned regarding operating experience provide a basis for improving the plant design. (authors)

  17. Fuel nozzle assembly for use as structural support for a duct structure in a combustor of a gas turbine engine

    SciTech Connect (OSTI)

    Wiebe, David J; Fox, Timothy A

    2015-03-31

    A fuel nozzle assembly for use in a combustor apparatus of a gas turbine engine. An outer housing of the fuel nozzle assembly includes an inner volume and provides a direct structural connection between a duct structure and a fuel manifold. The duct structure defines a flow passage for combustion gases flowing within the combustor apparatus. The fuel manifold defines a fuel supply channel therein in fluid communication with a source of fuel. A fuel injector of the fuel nozzle assembly is provided in the inner volume of the outer housing and defines a fuel passage therein. The fuel passage is in fluid communication with the fuel supply channel of the fuel manifold for distributing the fuel from the fuel supply channel into the flow passage of the duct structure.

  18. Combustion Engine

    Energy.gov [DOE]

    Pictured here is an animation showing the basic mechanics of how an internal combustion engine works. With support from the Energy Department, General Motors researchers developed a new technology ...

  19. AP1000{sup R} severe accident features and post-Fukushima considerations

    SciTech Connect (OSTI)

    Scobel, J. H.; Schulz, T. L.; Williams, M. G.

    2012-07-01

    The AP1000{sup R} passive nuclear power plant is uniquely equipped to withstand an extended station blackout scenario such as the events following the earthquake and tsunami at Fukushima without compromising core and containment integrity. The AP1000 plant shuts down the reactor, cools the core, containment and spent fuel pool for more than 3 days using passive systems that do not require AC or DC power or operator actions. Following this passive coping period, minimal operator actions are needed to extend the operation of the passive features to 7 days using installed equipment. To provide defense-in-depth for design extension conditions, the AP1000 plant has engineered features that mitigate the effects of core damage. Engineered features retain damaged core debris within the reactor vessel as a key feature. Other aspects of the design protect containment integrity during severe accidents, including unique features of the AP1000 design relative to passive containment cooling with water and air, and hydrogen management. (authors)

  20. Engineering Technician

    Energy.gov [DOE]

    Alternate Title(s):Civil Engineering Technician; Electrical Engineering Technician; Mechanical Engineering Technician; Environmental Engineering Technician

  1. An Updated AP2 Beamline TURTLE Model

    SciTech Connect (OSTI)

    Gormley, M.; O'Day, S.

    1991-08-23

    This note describes a TURTLE model of the AP2 beamline. This model was created by D. Johnson and improved by J. Hangst. The authors of this note have made additional improvements which reflect recent element and magnet setting changes. The magnet characteristics measurements and survey data compiled to update the model will be presented. A printout of the actual TURTLE deck may be found in appendix A.

  2. DNP 2015: APS Division of Nuclear Physics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    New Mexico Annual Fall Meeting of the APS Division of Nuclear Physics October 28-31, 2015 Convention Center in downtown Santa Fe, NM Timetable for all workshops, regular and invited sessions Located at the foothills of the Sangre de Cristo Mountains, Santa Fe is a beautiful city with rich traditions in history, art, and culture. Santa Fe is one of the oldest cities in the United States and comprises a wide variety of excellent restaurants, museums, art galleries, and easily accessible

  3. Advanced Power Sources Ltd APS | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Sources Ltd APS Jump to: navigation, search Name: Advanced Power Sources Ltd (APS) Place: United Kingdom Product: UK R&D company based at Loughborough University focusing on fuel...

  4. Six Berkeley Lab (Three ALS) Scientists Are 2012 APS Fellows

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Six Berkeley Lab (Three ALS) Scientists Are 2012 APS Fellows Six Berkeley Lab (Three ALS) Scientists Are 2012 APS Fellows Print Friday, 07 December 2012 00:00 This year's American...

  5. APS beamline standard components handbook, Version 1.3. Revision 1

    SciTech Connect (OSTI)

    Hahn, U.; Shu, D.; Kuzay, T.M.

    1993-02-01

    This Handbook in its current version (1.3) contains descriptions, specifications, and preliminary engineering design drawings for many of the standard components. The design status and schedules have been provided wherever possible. In the near future, the APS plans to update engineering drawings of identified standard beamline components and complete the Handbook. The completed version of this Handbook will become available to both the CATs and potential vendors. Use of standard components should result in major cost reductions for CATs in the areas of beamline design and construction.

  6. AP1000{sup R} nuclear power plant safety overview for spent fuel cooling

    SciTech Connect (OSTI)

    Gorgemans, J.; Mulhollem, L.; Glavin, J.; Pfister, A.; Conway, L.; Schulz, T.; Oriani, L.; Cummins, E.; Winters, J.

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe class pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and costs. The AP1000 design uses passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems such as AC power, component cooling water, service water or HVAC. Furthermore, these passive features 'fail safe' during a non-LOCA event such that DC power and instrumentation are not required. The AP1000 also has simple, active, defense-in-depth systems to support normal plant operations. These active systems provide the first level of defense against more probable events and they provide investment protection, reduce the demands on the passive features and support the probabilistic risk assessment. The AP1000 passive safety approach allows the plant to achieve and maintain safe shutdown in case of an accident for 72 hours without operator action, meeting the expectations provided in the U.S. Utility Requirement Document and the European Utility Requirements for passive plants. Limited operator actions are required to maintain safe conditions in the spent fuel pool via passive means. In line with the AP1000 approach to safety described above, the AP1000 plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for design-basis events and beyond design-basis accidents. During normal and abnormal conditions, defense-in-depth and other systems provide highly reliable spent fuel pool cooling. They rely on off-site AC power or the on-site standby diesel generators. For unlikely design basis events with an extended loss of AC power (i.e., station blackout) or loss of heat sink or both, spent fuel cooling can still be provided indefinitely: - Passive systems, requiring minimal or no operator actions, are sufficient for at least 72 hours under all possible pool

  7. EA-134-APS Arizona Public Service Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4-APS Arizona Public Service Company EA-134-APS Arizona Public Service Company Order authorizing Arizona Public Service Company to export electric energy to Mexico. EA-134-APS Arizona Public Service Company (24.95 KB) More Documents & Publications EA-184 Morgan Stanley Capital Group Inc. EA-166 Duke Energy Trading and Marketing, L.L.C EA-181 H.Q Energy Services (U.S) Inc

  8. NERSC, LBL Researchers Share Materials Science Advances at APS

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    NERSC, LBL Researchers Highlight Materials Science at APS NERSC, LBL Researchers Share Materials Science Advances at APS March 3, 2014 APSlogo NERSC and Lawrence Berkeley National Laboratory (LBL) are well represented this week at the American Physical Society (APS) March meeting. Some 10,000 physicists, scientists, and students are expected to attend this year's meeting, which takes place March 3-7 in Denver, CO. Physicists and students will report on groundbreaking research from industry,

  9. Kreyssig and Yu named APS 2016 Fellows | The Ames Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Kreyssig and Yu named APS 2016 Fellows Ames Laboratory scientists Andreas Kreyssig and Edward Yu have been named 2016 Fellows of the American Physical Society (APS). According to APS, Kreyssig was elected for "elucidating the relationships between the structural, magnetic, and superconducting properties of iron-arsenide high temperature superconductors." Yu was elected for "his distinguished contributions to the field of efflux transporters, which mediate resistance to a variety

  10. Westinghouse Completes its AP1000® Test Stand

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    the AP1000 pressurized water reactor (PWR) first core for the Test Stand simulation because its advanced design and ... Stand focused on zero power physics test ...

  11. AP-3-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3-B Wholesale Power Rate Schedule AP-3-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), PJM ...

  12. AP-1-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1-B Wholesale Power Rate Schedule AP-1-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), the ...

  13. AP-2-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2-B Wholesale Power Rate Schedule AP-2-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), the ...

  14. AP-4-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4-B Wholesale Power Rate Schedule AP-4-B Wholesale Power Rate Schedule Area: American ... of American Electric Power Service Corporation (hereinafter called the Company) and ...

  15. Microsoft Word - 2007 Cross Cut - APS response.doc

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    External Reviewer Douglas Ohlendorf, University of Minnesota, External Reviewer Wei Yang, NIH, Bethesda, APS SAC Introduction: The reviewers met at the Advanced Photon Source...

  16. APS - Solutions for Business Financing | Department of Energy

    Energy.gov (indexed) [DOE]

    Equipment Program Info Sector Name Utility Administrator National Bank of Arizona Website http:www.aps.commainservicesSolutionsForBusinessfinancing.html Funding...

  17. CDM Accreditation Panel CDM AP | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Bonn, Germany Zip: 53153 Product: The CDM accreditation panel (CDM-AP) prepares the decision making of the Executive Board in accordance with the procedure for accrediting...

  18. Results from the NRC AP600 testing program at the Oregon State University APEX facility

    SciTech Connect (OSTI)

    Reyes, J.N. Jr.; Bessette, D.E.; DiMarzo, M.

    1996-03-01

    The Department of Nuclear Engineering at Oregon State University (OSU) is performing a series of confirmatory tests for the U.S. Nuclear Regulatory Commission. These tests are being conducted in the Advanced Plant Experiment (APEX) facility which is a 1/4 length scale and 1/192 volume scale integral system simulation of the Westinghouse Advanced Passive 600 MWe (AP600) plant. The purpose of the testing program is to examine AP600 passive safety system performance, particularly during long term cooling. Thus far, OSU has successfully performed ten integral system tests for the NRC. This paper presents a description of the APEX facility and summarizes the important results of the NRC test program at OSU.

  19. Jefferson Lab Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Engineering Privacy and Security Notice Skip over navigation search JLab Engineering Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Engineering Division Engineering Pressure Systems Seminars/Training print version Mechanical Systems Mechanical Engineering - Document Control Survey Alignment Machine Shop Installation/Vacuum Cryogenics Cryogenics - Cryogenics Department

  20. In-Vessel Retention of Molten Core Debris in the Westinghouse AP1000 Advanced Passive PWR

    SciTech Connect (OSTI)

    Scobel, James H.; Conway, L.E.; Theofanous, T.G.

    2002-07-01

    In-vessel retention (IVR) of molten core debris via external reactor vessel cooling is the hallmark of the severe accident management strategies in the AP600 passive PWR. The vessel is submerged in water to cool its external surface via nucleate boiling heat transfer. An engineered flow path through the reactor vessel insulation provides cooling water to the vessel surface and vents steam to promote IVR. For the 600 MWe passive plant, the predicted heat load from molten debris to the lower head wall has a large margin to the critical heat flux on the external surface of the vessel, which is the upper limit of the cooling capability. Up-rating the power of the passive plant from 600 to 1000 MWe (AP1000) significantly increases the heat loading from the molten debris to the reactor vessel lower head in the postulated bounding severe accident sequence. To maintain a large margin to the coolability limit for the AP1000, design features and severe accident management (SAM) strategies to increase the critical heat flux on the external surface of the vessel wall need to be implemented. A test program at the ULPU facility at University of California Santa Barbara (UCSB) has been initiated to investigate design features and SAM strategies that can enhance the critical heat flux. Results from ULPU Configuration IV demonstrate that with small changes to the ex-vessel design and SAM strategies, the peak critical heat flux in the AP1000 can be increased at least 30% over the peak critical heat flux predicted for the AP600 configuration. The design and SAM strategy changes investigated in ULPU Configuration IV can be implemented in the AP1000 design and will allow the passive plant to maintain the margin to critical heat flux for IVR, even at the higher power level. Continued testing for IVR phenomena is being performed at UCSB to optimize the AP1000 design and to ensure that vessel failure in a severe accident is physically unreasonable. (authors)

  1. XAS

    Energy Science and Technology Software Center (OSTI)

    002347MLTPL00 X-Ray Analysis Software http://www.aps.anl.gov/APS_Engineering_Support_Division/Scientific_Software/

  2. KCAT, Xradia, ALS and APS Performance Summary

    SciTech Connect (OSTI)

    Waters, A; Martz, H; Brown, W

    2004-09-30

    At Lawrence Livermore National Laboratory (LLNL) particular emphasis is being placed on the nondestructive characterization (NDC) of components, subassemblies and assemblies of millimeter-size extent with micrometer-size features (mesoscale). These mesoscale objects include materials that vary widely in composition, density, geometry and embedded features. Characterizing these mesoscale objects is critical for corroborating the physics codes that underlie LLNL's Stockpile Stewardship mission. In this report we present results from our efforts to quantitatively characterize the performance of several x-ray systems in an effort to benchmark existing systems and to determine which systems may have the best potential for our mesoscale imaging needs. Several different x-ray digital radiography (DR) and computed tomography (CT) systems exist that may be applicable to our mesoscale object characterization requirements, including microfocus and synchrotron systems. The systems we have benchmarked include KCAT (LLNL developed) and Xradia {mu}XCT (Xradia, Inc., Concord, CA), both microfocus systems, and Beamline 1-ID at the Advance Photon Source (APS) and the Tomography Beamline at the Advanced Light Source (ALS), both synchrotron based systems. The ALS Tomography Beamline is a new installation, and the data presented and analyzed here is some of the first to be acquired at the facility. It is important to note that the ALS system had not yet been optimized at the time we acquired data. Results for each of these systems has been independently documented elsewhere. In this report we summarize and compare the characterization results for these systems.

  3. Thermal Decomposition Characteristics of Orthorhombic Ammonium Perchlorate (o-AP) and an 0-AP/HTPB-Based Propellant

    SciTech Connect (OSTI)

    BEHRENS JR.,RICHARD; MINIER,LEANNA M.G.

    1999-10-25

    A study to characterize the low-temperature reactive processes for o-AP and an AP/HTPB-based propellant (class 1.3) is being conducted in the laboratory using the techniques of simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and scanning electron microscopy (SEM). The results presented in this paper are a follow up of the previous work that showed the overall decomposition to be complex and controlled by both physical and chemical processes. The decomposition is characterized by the occurrence of one major event that consumes up to {approx}35% of the AP, depending upon particle size, and leaves behind a porous agglomerate of AP. The major gaseous products released during this event include H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl. The recent efforts provide further insight into the decomposition processes for o-AP. The temporal behaviors of the gas formation rates (GFRs) for the products indicate that the major decomposition event consists of three chemical channels. The first and third channels are affected by the pressure in the reaction cell and occur at the surface or in the gas phase above the surface of the AP particles. The second channel is not affected by pressure and accounts for the solid-phase reactions characteristic of o-AP. The third channel involves the interactions of the decomposition products with the surface of the AP. SEM images of partially decomposed o-AP provide insight to how the morphology changes as the decomposition progresses. A conceptual model has been developed, based upon the STMBMS and SEM results, that provides a basic description of the processes. The thermal decomposition characteristics of the propellant are evaluated from the identities of the products and the temporal behaviors of their GFRs. First, the volatile components in the propellant evolve from the propellant as it is heated. Second, the hot AP (and HClO{sub 4}) at the AP-binder interface oxidize the binder through reactions that

  4. Bioener ApS formerly FLS milj a s | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Denmark Zip: 2500 Product: Industrial boiler manufacturer and EPC (Engineering, Procurement and Construction) contractor focussing on straw-firing. Coordinates: 55.67631,...

  5. AP1000{sup R} design robustness against extreme external events - Seismic, flooding, and aircraft crash

    SciTech Connect (OSTI)

    Pfister, A.; Goossen, C.; Coogler, K.; Gorgemans, J.

    2012-07-01

    Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel

  6. Justification for the development of a bending magnet beamline at sector 10 at the APS.

    SciTech Connect (OSTI)

    Kemner, K. M.; Biosciences Division

    2006-09-18

    The long-planned and much-needed merger of EnviroCAT into the Materials Research Collaborative Access Team (MR-CAT) will provide dedicated state-of-the-art facilities that are critical to research on a broad range of issues in environmental sciences. These CATs will focus on developing a bending magnet (BM) beamline for x-ray absorption fine structure (XAFS) and micro x-ray analysis of environmental samples through integration with existing insertion device (ID) capabilities in XAFS, micro x-ray analysis, and x-ray scattering. In addition, the expanded MR-CAT will serve as the hub of personnel and laboratory infrastructure support for molecular environmental science and biogeochemical science at the Advanced Photon Source (APS). In conjunction with the merger of EnviroCAT into MR-CAT, the US Environmental Protection Agency (EPA) will become a member institution of MR-CAT, joining the present members (University of Notre Dame, Illinois Institute of Technology, University of Florida, British Petroleum, and Argonne's Chemical Engineering and Biosciences Division). The motivation for blending capabilities meeting the needs of EnviroCAT users into the MR-CAT facilities is the explosion of synchrotron-radiation-based research in the field known as molecular environmental science (MES). This research is driven largely by the need to remediate contaminated environmental materials and to understand the scientific foundations that govern contaminant transport in the environment. Synchrotron radiation is playing a crucial role in solving environmental science problems by offering x-ray-based analytical techniques for detailed molecular- and atomic-level studies of these systems. This document focuses on the scientific justification for developing a specific type of BM beamline capability at Sector 10 for XAFS and micro x-ray analysis to support the growing MES community. However, the modification of Sector 10 will meet other future needs by providing (1) an existing undulator

  7. The power of simplification: Operator interface with the AP1000{sup R} during design-basis and beyond design-basis events

    SciTech Connect (OSTI)

    Williams, M. G.; Mouser, M. R.; Simon, J. B.

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and cost. The passive safety features are designed to function without safety-grade support systems such as component cooling water, service water, compressed air or HVAC. The AP1000 passive safety features achieve and maintain safe shutdown in case of a design-basis accident for 72 hours without need for operator action, meeting the expectations provided in the European Utility Requirements and the Utility Requirement Document for passive plants. Limited operator actions may be required to maintain safe conditions in the spent fuel pool (SFP) via passive means. This safety approach therefore minimizes the reliance on operator action for accident mitigation, and this paper examines the operator interaction with the Human-System Interface (HSI) as the severity of an accident increases from an anticipated transient to a design basis accident and finally, to a beyond-design-basis event. The AP1000 Control Room design provides an extremely effective environment for addressing the first 72 hours of design-basis events and transients, providing ease of information dissemination and minimal reliance upon operator actions. Symptom-based procedures including Emergency Operating Procedures (EOPs), Abnormal Operating Procedures (AOPs) and Alarm Response Procedures (ARPs) are used to mitigate design basis transients and accidents. Use of the Computerized Procedure System (CPS) aids the operators during mitigation of the event. The CPS provides cues and direction to the operators as the event progresses. If the event becomes progressively worse or lasts longer than 72 hours, and depending upon the nature of failures that may have occurred, minimal operator actions may be required outside of the control room in areas that have been designed to be accessible using components that have been

  8. The AP1000{sup R} China projects move forward to construction completion and equipment installation

    SciTech Connect (OSTI)

    Harrop, G.

    2012-07-01

    The AP1000 design is the only Generation III+ technology to receive design certification from the U.S. Nuclear Regulatory Commission. This evolutionary design provides the highest safety and performance standards and has several distinct advantages over other designs, including improved operations and reduced construction schedule risks through the use of modern, modular, engineering principles that allow construction and fabrication tasks traditionally performed in sequence to be undertaken in parallel. Since the first granting of Design Certification in 2005 by the NRC, the AP1000 design has been modified to meet emergent NRC requirements such as those requiring the design to withstand the impact of an aircraft crash. Both domestic and foreign utilities have turned to the Westinghouse AP1000 plant design to meet their near - and long-term sustainable energy needs. The first ever deployment of this advanced U.S. nuclear power technology began in China in 2007 with the award of a contract to build four AP1000 units, constructed in pairs at the coastal sites of Sanmen (Zhejiang Province) and Haiyang (Shandong Province). Currently, all four units are at an advanced stage of construction. The commercial operation date for Sanmen Unit 1 is November 2013 followed by Haiyang Unit 1 being operational in May 2014. Construction and equipment manufacture is at an advanced stage. Sanmen Unit 1 equipment that has been delivered includes the reactor vessel, the reactor vessel closure head, the passive residual heat removal heat exchanger, the integrated head package, the polar crane, and the refueling machine. The steam generators are also completed. The RV was installed within the containment vessel building in September 2011. The installation of this major equipment will allow the setting of the containment vessel top head. Haiyang Unit 1 is also achieving significant progress. Significant benefits continue to be realized as a result of lessons learned and experience gained

  9. AP600 design certification thermal hydraulics testing and analysis

    SciTech Connect (OSTI)

    Hochreiter, L.E.; Piplica, E.J.

    1995-09-01

    Westinghouse Electric Corporation, in conjunction with the Department of Energy and the Electric Power Research Institute, have been developing an advanced light water reactor design; the AP600. The AP600 is a 1940 Mwt, 600Mwe unit which is similar to a Westinghouse two-loop Pressurized Water Reactor. The accumulated knowledge on reactor design to reduce the capital costs, construction time, and the operational and maintenance cost of the unit once it begins to generate electrical power. The AP600 design goal is to maintain an overall cost advantage over fossil generated electrical power.

  10. Rotary engine

    SciTech Connect (OSTI)

    Meyman, U.

    1987-02-03

    A rotary engine is described comprising: two covers spaced from one another; rotors located between the covers and rotating and planetating in different phases; the rotors interengaging to form working chambers therebetween; means to supply fluid to the working chambers and means to exhaust fluid from the working chambers during the operating cycle of the engine; gearing for synchronizing rotation and planetation of the rotors and each including first and second gears arranged so that one of the gears is connected with the rotors while the other of the gears is connected with an immovable part of the engine and the gears engage with one another; carriers interconnecting the rotors and planetating in the same phase with the planetation of the rotors for synchronizing the rotation and planetation of the rotors; shafts arranged to support the carriers during their planetations; and elements for connecting the covers with one another.

  11. Neutral Beam Mechanical Engineer | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mechanical Engineer Department: Engineering Supervisor(s): Tim Stevenson Staff: ENG 04 Requisition Number: 1500578 Provides general Mechanical Engineering and operations support...

  12. AP-XPS Measures MIEC Oxides in Action

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    AP-XPS Measures MIEC Oxides in Action Print Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad...

  13. A hot-spare injector for the APS linac.

    SciTech Connect (OSTI)

    Lewellen, J. W.

    1999-04-13

    Last year a second-generation SSRL-type thermionic cathode rf gun was installed in the Advanced Photon Source (APS) linac. This gun (referred to as ''gun2'') has been successfully commissioned and now serves as the main injector for the APS linac, essentially replacing the Koontz-type DC gun. To help ensure injector availability, particularly with the advent of top-up mode operation at the APS, a second thermionic-cathode rf gun will be installed in the APS linac to act as a hot-spare beam source. The hot-spare installation includes several unique design features, including a deep-orbit Panofsky-style alpha magnet. Details of the hot-spare beamline design and projected performance are presented, along with some plans for future performance upgrades.

  14. 2012 APS-DPP Plasma Science Expo, Providence, RI | Princeton...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    APS-DPP Plasma Science Expo, Providence, RI View larger image IMG 1847 View larger image IMG 1598 View larger image IMG 1608 View larger image IMG 1609 View larger image IMG 1614...

  15. Microsoft Word - APS10_Highlight_I-mode

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    in Alcator C-Mod , to be presented by Amanda Hubbard at 52nd Annual Meeting of the APS Division of Plasma Physics, November 8-12, 2010 Chicago, IL, 02:00 PM on Wednesday,...

  16. European Utility Requirements (EUR) Volume 3 Assessment for AP1000

    SciTech Connect (OSTI)

    Demetri, K.J.; Saiu, Gianfranco

    2004-07-01

    The EUR (European Utility Requirements) effort was launched in December 1991 by several European Utilities. The main objective of the EUR organization is to produce a common set of utility requirements, endorsed by major European utilities for the next generation of Light Water Reactor (LWR) nuclear power plants. In 1997 an effort was undertaken by the EUR organization to jointly develop a document which would become 'Volume 3' of the EUR. The objectives of Volume 3 are: - develop a description of the standard nuclear island designs; - assessment of design compliance with the EUR Volume 1 and 2 against these designs; - define the requirements for the specific nuclear island designs. Five subsets of EUR Volume 3, based on EUR Revision B, are already published; all of which are next generation plant designs being developed for Europe beyond 2000. They include: - EP1000 - Passive Pressurized Light Water Reactor (3-Loop, 1000 MWe); - EPR - Evolutionary Pressurized Light Water Reactor (1500 MWe); - BWR90/90+ - Evolutionary Boiling Water Reactor (1400 MWe); - ABWR - Evolutionary Boiling Water Reactor (1400 MWe); - SWR 1000 - Boiling Water Reactor With Passive Features (1000 MWe). Other subsets being developed or proposed include: - AP1000 - Passive Pressurized Light Water Reactor (2-Loop, 1117 MWe); - VVER AES 92 - Pressurized Water Reactor With Passive Features (1000 MWe). The purpose of this paper is to provide an overview of the program, which will take place in 2004-2005 with the EUR group to prepare an EUR Volume 3 Subset for the AP1000 nuclear plant design. The AP1000 EUR compliance assessment, to be performed against EUR Revision C requirements, is an important step for the evaluation of the AP1000 design for application in Europe. The AP1000 relies heavily on the AP600 and has inherited design features (e.g., low boron core design) from the EP1000, for which compliance with EUR Revision B was a key design criterion. The EP1000, which also heavily relies on the AP

  17. Physicist honored with new APS award | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Physicist honored with new APS award By Jeanne Jackson DeVoe December 10, 2014 Tweet Widget Google Plus One Share on Facebook Ilya Dodin Ilya Dodin It's fitting that Theory Department physicist Ilya Dodin was the first to receive the American Physical Society's Thomas H. Stix Award for Outstanding Early Career Contributions to Plasma Physics Research. Dodin, honored at the annual APS-Division of Plasma Physics meeting in New Orleans in October, was recognized for his research on waves in

  18. Canfield wins APS McGroddy Prize | The Ames Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Canfield wins APS McGroddy Prize Professor Paul C. Canfield, a senior scientist at Ames Laboratory has been awarded the James C. McGroddy Prize for New Materials by the American Physical Society (APS). Canfield, who is also a Distinguished Professor and the Robert Allen Wright Professor of Physics and Astronomy at Iowa State University, was selected for the prize "for development and use of solution growth of single crystalline intermetallic materials to design, discover, and elucidate new

  19. APS Recent Publications | For the week ending 01.03.2016

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    list of entries in the APS Publications Database does not include abstracts, invited talks, awards, magazine articles, or patents. For complete lists, search the APS Publications...

  20. Michigan: General Motors Optimizes Engine Valve Technology |...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Michigan: General Motors Optimizes Engine Valve Technology Michigan: General Motors Optimizes Engine Valve Technology November 8, 2013 - 12:00am Addthis An EERE-supported effort to ...

  1. Solar powered Stirling engine

    SciTech Connect (OSTI)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  2. RD&D Study Plan for Advancement of Science and Engineering Supporting Geologic Disposal in Bedded Salt— March 2013 Workshop Outcomes

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes RD&D activities to support a safety case for disposal of heat generating radioactive waste (used nuclear fuel, high-level nuclear waste) in a generic bedded salt repository based on interactions from March, 2013 Workshop.

  3. Using CORE Model-Based Systems Engineering Software to Support Program Management in the U.S. Department of Energy Office of the Biomass Project: Preprint

    SciTech Connect (OSTI)

    Riley, C.; Sandor, D.; Simpkins, P.

    2006-11-01

    This paper describes how a model-based systems engineering software, CORE, is helping the U. S. Department of Energy's Office of Biomass Program assist with bringing biomass-derived biofuels to the market. This software tool provides information to guide informed decision-making as biomass-to-biofuels systems are advanced from concept to commercial adoption. It facilitates management and communication of program status by automatically generating custom reports, Gantt charts, and tables using the widely available programs of Microsoft Word, Project and Excel.

  4. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    SciTech Connect (OSTI)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L.

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  5. Chemical Diagnostics and Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CDE Chemical Diagnostics and Engineering We support stockpile manufacturing, surveillance, applied and basic energy sciences, threat reduction, public health, the environment, and space exploration. Contact Us Group Leader Peter Stark Deputy Group Leader Tom Yoshida Group Office (505) 667-5740 X-Ray Photoelectron Spectroscopy X-Ray Photoelectron Spectroscopy The Chemical Diagnostics and Engineering (C-CDE) Group combines engineering design with routine analytical services and state-of-the-art

  6. ARM - Ingest Supporting Tools and Forms

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Forms Ingest Ingest Workflow Graphic Supporting Workflow Documentation Supporting Tools and Forms Process Configuration Manager (PCM) Metadata Management Tool (MMT) ARM Data Integrator (ADI) Ingest Readiness Form Associated Status Reports Contacts Engineering Processes Engineering Home Workflow Graphic Engineering Workflow Document Tools for Workflow ECR ECO BCR Ingests Value-Added Products Reprocessing Instruments Data System Elements Field Campaign Startup Ingest Supporting Tools and Forms

  7. U.S. Army Engineer Waterways Experiment Station (WES) support to Department of Energy Rocky Flats Facility (DOE RFO) saltcrete processing. Progress report, April 15--September 30, 1995

    SciTech Connect (OSTI)

    1996-04-29

    This report summarizes work authorized for technical and scientific support to waste cementation and saltcrete processing operations. During this report period, the remaining tasks described in the agreement were completed and the project was closed. Accomplishments are summarized. The bulk of this report is a paper entitled ``Salt related expansion reactions in portland-cement-based waste forms.``

  8. Information Systems Engineering

    Energy.gov [DOE]

    The OCIO is dedicated to supporting the development and maintenance of DOE Department wide and site-specific software and IT systems engineering initiatives.  This webpage contains resources,...

  9. Rotary vee engine

    SciTech Connect (OSTI)

    Sullivan, R.W.; Holder, T.J.; Buchanan, M.F.

    1991-05-14

    This patent describes a rotary vee engine. It comprises: a housing; two cylinder blocks; angled support shaft means; an air/fuel system; angled pistons; and sealing means for sealing the combustion chamber.

  10. Computational Science and Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Computational Science and Engineering NETL's Computational Science and Engineering competency consists of conducting applied scientific research and developing physics-based simulation models, methods, and tools to support the development and deployment of novel process and equipment designs. Research includes advanced computations to generate information beyond the reach of experiments alone by integrating experimental and computational sciences across different length and time scales. Specific

  11. Engineered Natural Systems

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Engineered Natural Systems Onsite researchers at NETL develop processes, techniques, instrumentation, and relationships to collect, interpret, and disseminate data in an effort to characterize and understand the behavior of engineered natural systems. Research includes investigating theoretical and observed phenomena to support program needs and developing new concepts in the areas of analytical biogeochemistry, geology, and monitoring. Specific expertise includes: Analytical- Bio- and Geo-

  12. U.S. Army Engineer Waterways Experiment Station (WES) support to Department of Energy Rocky Flats Facility (DOE RF) saltcrete processing. Progress report, October 1--December 31, 1994

    SciTech Connect (OSTI)

    1995-01-27

    This report summarizes work authorized for technical and scientific support to waste cementation and saltcrete processing operations. During this report period, tasks described in amendment M003 were initiated, some were completed, and an additional task not listed in M003 also was completed at the request of DOE RF. Summaries of task-specific activities are in four enclosures to this progress report. Other activities during this quarter included negotiation and initiation of amendment M004, to extend the period of performance and continue WES assistance to DOE RF. The four enclosures are: continuing support to waste cementation and saltcrete operations at DOE Rocky Flats Facility; review of ``Analyses of saltcrete``; review of Connell, et al ``Saltcrete evaluation`` report dated August 16, 1993; and scoping study of simulated saltcrete.

  13. AP1000 Features Prevent Potential Containment Recirculation Screen Plugging

    SciTech Connect (OSTI)

    Andreychek, Timothy; Anderson, Richard; Schulz, Terry

    2004-07-01

    This paper presents the results of plant design development and evaluations that demonstrate that the AP1000 plant is not subject to potential containment recirculation screen plugging following a loss-of-coolant-accident (LOCA). Following a LOCA in a pressurized water reactor, it is necessary to recirculate water from the containment back into the reactor to maintain long term core cooling. The AP1000 utilizes passive safety systems to provide containment recirculation for long term core cooling following a LOCA. The AP1000 also has non-safety pumps which provide a backup means of providing recirculation. Screens are provided around the recirculation pipes to prevent debris from blocking recirculation flow and core cooling passages. Debris may be generated by the LOCA blowdown from insulation and coatings used inside containment. Even with effective cleanliness programs, there may be some resident debris such as dust and dirt. The potential for plugging the recirculation screens is a current PWR licensing issue. The AP1000 design provides inherent advantages with respect to the potential plugging of containment recirculation screens. These characteristics include prevention of fibrous debris generation, improved debris settling and improved recirculation screen design. Debris settling analysis demonstrates that failure of coatings does not result in debris being transported to the screens before it settles to the floor. Additional analysis also shows that the plant can tolerate conservative amounts of resident debris being transported to the screens. The AP1000 significantly reduces the probability of plugging the containment recirculation screens and significantly reduces inspection and maintenance of coatings used inside containment. (authors)

  14. EVALUATION OF AP-FARM SIMULANT COMPOSITION FOR ROTARY MICROFILTER TESTING

    SciTech Connect (OSTI)

    HUBER HJ

    2011-09-19

    This document identifies the feed composition of a Hanford AP tank farm simulant for rotary microfiltration testing. The composition is based on an Hanford Tank Waste Operations Simulator (HTWOS) model run in combination with Tank Waste Information Network (TWINS) data and mineralogical studies of actual waste solids. The feed simulant is intended to be used in test runs at SRNL. The simulant will be prepared in two parts: (1) A supernate, composed of water-soluble salts and (2) The undissolved (actually, undissolvable) solids. Test slurries with distinct solids concentrations (e.g., 0.5, 5 and 10 wt%) are then prepared as needed. The base for the composition of supernate and solids is the modeled feed sequence for a deployment scenario of the Supplemental Pretreatment units within AP-farm. These units comprise a filtration part, the RMF, and a Cesium-removal part, a Small Column Ion Exchange. The primary use of this simulant is for filtration testing - however, in case that it is also used for ion-exchange tests, the amount of Cs-137 that would need to be added is available in Table 1 and Attachment 3. A modified model run (MMR-049) of the Hanford Tank Waste Operations Simulator (HTWOS) system plan 6 case 3 was performed to identify the feed sequence. Case 3 assumed supplemental treatment besides the low activity waste (LAW) melter with supplemental pretreatment supporting the pretreatment facility. The MMR did not cap the duration of supplemental pretreatment to 15 months, but rather used it throughout the entire treatment mission as an add-on option to the pretreatment facility at the Waste Treatment and Immobilization Plant (WTP). Tank 241-AP-105 (AP-105) was chosen as the feed tank to the filtration unit. Other parameters included a fixed minimum of 0.5 wt% solids in the feed and a maximum Na-concentration of 5M in the supernate. The solids rejection from the filtration unit was set to 99.99% and the maximum allowed amount of solids within tank AP-105 was set

  15. Heterogeneous-phase reactions of nitrogen dioxide with vermiculite-supported magnesium oxide (as applied to the control of jet engine test cell emissions). Doctoral thesis

    SciTech Connect (OSTI)

    Kimm, L.T.

    1995-11-01

    Controlling nitrogen oxides (NOx) from a non-steady-state stationary source like a jet engine test cell (JETC) requires a method that is effective over a wide range of conditions. A heterogeneous, porous, high surface area sorbent material comprised of magnesium oxide powder attached to a vermiculite substrate has been commercially developed for this purpose. Data from extensive laboratory testing of this material in a packed-bed flow system are presented. NO2 removal efficiencies, kinetics, and proposed NO2 removal mechanisms over a range of representative JETC exhaust gas characteristics are described. Exhaust gas variables evaluated included: NO2 concentration, temperature, flow rate (retention time), oxygen content, and moisture content. Availability of water and oxygen were found to be important variables. It is probable that water is necessary for the conversion of MgO to Mg(OH)2, which is a more reactive compound having thermal stability over the range of temperatures evaluated. Gaseous oxygen serves to oxidize NO to NO2, the latter being more readily removed from the gas stream. The presence of oxygen also serves to offset thermal decomposition of NO2 or surface nitrite/nitrate. Effective `lifetime` and regenerability of the exposed sorbent material were also evaluated. NO2 removal efficiencies were found to greatly exceed those for NO, with a maximum value greater than 90 percent. The effective conversion of NO to NO2 is a crucial requirement for removal of the former. The reaction between NO2 and MgO-vermiculite is first-order with respect to NO2.

  16. APS Conference for Undergraduate Women in Physics | Princeton Plasma

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Physics Lab APS Conference for Undergraduate Women in Physics September 14, 2016 Xaymara Rivera, left, a freshman at Lehigh University, and Willma Arias de la Rosa, work on a robotic arm for PPPL's Princeton Tritium Observatory for Light, Early Universe Massive Neutrino Yield experiment (PTOLEMY). (Photo by Photo by Elle Starkman) Xaymara Rivera, left, a freshman at Lehigh University, and Willma Arias de la Rosa, work on a robotic arm for PPPL's Princeton Tritium Observatory for Light, Early

  17. PPPL researchers present cutting edge results at APS Plasma Physics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Conference | Princeton Plasma Physics Lab PPPL researchers present cutting edge results at APS Plasma Physics Conference November 10, 2014 Tweet Widget Google Plus One Share on Facebook Conceptual image of the solar wind from the sun encountering the Earth's magnetosphere. Conceptual image of the solar wind from the sun encountering the Earth's magnetosphere. Gallery: Fast-camera image showing plasma during magnetic reconnection. Fast-camera image showing plasma during magnetic reconnection.

  18. ARM - Field Campaign - Aerosol Life Cycle: UV-APS and Nano-SMPS

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    govCampaignsAerosol Life Cycle: UV-APS and Nano-SMPS ARM Data Discovery Browse Data ... Send Campaign : Aerosol Life Cycle: UV-APS and Nano-SMPS 2011.06.10 - 2011.06.25 Lead ...

  19. NERSC User James Drake Receives 2010 APS Maxwell Prize for Plasma...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    User James Drake Receives 2010 APS Maxwell Prize for Plasma Physics NERSC User James Drake Receives 2010 APS Maxwell Prize for Plasma Physics January 31, 2011 drake10.jpg Long-time...

  20. KP-AP-4-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AP-4-C Wholesale Power Rate Schedule KP-AP-4-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public ...

  1. Analysis of N-16 concentration in primary cooling system of AP1000 power reactor

    SciTech Connect (OSTI)

    Rohanda, Anis; Waris, Abdul

    2015-04-16

    Nitrogen-16 (N-16) is one of the radiation safety parameter on the primary reactor system. The activation product, N-16, is the predominant contributor to the activity in the reactor coolant system during reactor operation. N-16 is activation product derived from activation of O-16 with fast neutron based on {sup 16}O(n,p){sup 16}N reaction. Thus study is needed and it performs to determine N-16 concentration in reactor coolant (primary coolant) in supporting radiation safety. One of the way is using analytical methode based on activation and redecay princip to obtain N-16 concentration. The analysis was performed on the configuration basis and operational of Westinghouse AP1000 power reactor in several monitoring points at coolant reactor system. The results of the calculation of N-16 concentration at the core outlet, reactor vessel outlet, pressurizer line, inlet and outlet of steam generators, primary pumps, reactor vessels inlet and core inlet are: 281, 257, 255, 250, 145, 142, 129 and 112 µCi/gram respectively. The results of analysis compared with AP1000 design control document as standard values. The verification showed very high accuracy comparation between analytical results and standard values.

  2. Chemical Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical Engineering HomeTag:Chemical ...

  3. Reliability Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    LA-UR 15-27450 This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is ...

  4. Engineering Institute

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Education Opportunities » Engineering Institute Engineering Institute Engineering dynamics that include flight, vibration isolation for precision manufacturing, earthquake engineering, blast loading, signal processing, and experimental model analysis. Contact Leader, Los Alamos Charles Farrar Email Leader, UCSD Michael Todd Email Los Alamos Program Administrator Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email Collaboration for conducting

  5. Demonstration of a 50% Thermal Efficient Diesel Engine - Including...

    Energy.gov (indexed) [DOE]

    The Path to a 50% Thermal Efficient Engine Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle ...

  6. Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)

    SciTech Connect (OSTI)

    1995-01-01

    This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation.

  7. Tube support

    DOE Patents [OSTI]

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  8. Stirling engines

    SciTech Connect (OSTI)

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  9. Generic effluent monitoring system certification for AP-40 exhauster stack

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Davis, W.E.; Bussell, J.H.; Maughan, A.D.

    1997-09-01

    Tests were conducted to verify that the Generic Effluent Monitoring System (GEMS), as applied to the AP-40 exhauster stack, meets all applicable regulatory performance criteria for air sampling systems at nuclear facilities. These performance criteria address both the suitability of the air sampling probe location and the transport of the sample to the collection devices. The criteria covering air sampling probe location ensure that the contaminants in the stack are well mixed with the airflow at the probe location such that the extracted sample represents the whole. The sample transport criteria ensure that the sampled contaminants are quantitatively delivered to the collection device. The specific performance criteria are described in detail in the report. The tests demonstrated that the GEMS/AP-40 system meets all applicable performance criteria. The contaminant mixing tests were conducted by Pacific Northwest National Laboratory (PNNL) at the wind tunnel facility, 331-H Building, using a mockup of the actual stack. The particle sample transport tests were conducted by PNNL at the Numatec Hanford Company`s 305 Building. The AP-40 stack is typical of several 10-in. diameter stacks that discharge the filtered ventilation air from tank farms at the U.S. Department of Energy`s Hanford Site in Richland, Washington. The GEMS design features a probe with a single shrouded sampling nozzle, a sample delivery line, and sample collection system. The collection system includes a filter holder to collect the sample of record and an in-line detector head and filter for monitoring beta radiation-emitting particles. Unrelated to the performance criteria, it was found that the record sample filter holder exhibited symptoms of sample bypass around the particle collection filter. This filter holder should either be modified or replaced with a different type. 10 refs., 8 figs., 6 tabs.

  10. General Engineer / Nuclear Engineer

    Energy.gov [DOE]

    The Idaho Operations Office (DOE-ID) manages and oversees work done at the Idaho National Laboratory (INL), the DOE's lead nuclear energy laboratory in the United States. DOE-ID supports the...

  11. Simulation-Based Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Simulation-Based Engineering Simulation-Based Engineering is focused on predicting the behavior of complex multiphase flow reactors used in fossil-energy technologies. This effort combines theory, computational modeling, experiments, and industrial input. Physics- and science-based computational models and tools are needed to support the development and deployment of advanced fossil-fuel energy devices such as gasifiers and carbon capture reactors. It is critical to develop a practical framework

  12. NGNP Engineering Status

    SciTech Connect (OSTI)

    John Collins

    2010-08-01

    The objectives of Phase 1 Engineering and Design scope are to: 1) complete the initial design activities for a prototype nuclear reactor and plant that is capable of co-generating electricity, hydrogen, and process heat; 2) identify technological aspects of the NGNP that need further advancement by research and development activities; and 3) provide engineering support to the early licensing process, including technical input to white papers and developing the basis for future safety analyses.

  13. Technical, Engineering, and Programmatic Support (TEPS) Blanket...

    National Nuclear Security Administration (NNSA)

    BPAs are designed to leverage an ordering activity's buying power by taking advantage of ... Terranear PMC LLC (TPMC) Small Environmental Services DE-NA0001052 North Wind Inc. ...

  14. Reciprocating Engines in Support of Grid Modernization

    Energy.gov (indexed) [DOE]

    Non-Spin Reserves >500kW, 10 min to ramp, 30 min commitment Yes Ramping Reserves Award based on 5-min ramp capability Yes Demand Response >500kW, full capacity in 40 min, duration ...

  15. Value Engineering

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-30

    To establish Department of Energy (DOE) value engineering policy that establishs and maintains cost-effective value procedures and processes.

  16. Fabrication and Testing of Deflecting Cavities for APS

    SciTech Connect (OSTI)

    Mammosser, John; Wang, Haipeng; Rimmer, Robert; Jim, Henry; Katherine, Wilson; Dhakal, Pashupati; Ali, Nassiri; Jim, Kerby; Jeremiah, Holzbauer; Genfa, Wu; Joel, Fuerst; Yawei, Yang; Zenghai, Li

    2013-09-01

    Jefferson Lab (Newport News, Virginia) in collaboration with Argonne National Laboratory (Argonne, IL) has fabricated and tested four first article, 2.8 GHz, deflecting SRF cavities, for Argonne's Short-Pulse X-ray (SPX) project. These cavities are unique in many ways including the fabrication techniques in which the cavity cell and waveguides were fabricated. These cavity subcomponents were milled from bulk large grain niobium ingot material directly from 3D CAD files. No forming of sub components was used with the exception of the beam-pipes. The challenging cavity and helium vessel design and fabrication results from the stringent RF performance requirements required by the project and operation in the APS ring. Production challenges and fabrication techniques as well as testing results will be discussed in this paper.

  17. Functional design criteria 241-AP-102 Flexible Receiver System

    SciTech Connect (OSTI)

    Roblyer, S.P.

    1995-02-16

    A mixer pump was installed in the 1.07 m (42-in.) riser of the central pump pit of tank 241-AP-102 to mitigate potential fluid separation particle sedimentation by mixing the tank`s contents. The mixer pump performed this function until failure. Its removal is now necessary to meet possible tank content removal commitments or other corrective actions. The proposed removal procedure requires a flexible receiver that will provide a barrier to contamination during removal and transfer of the pump to the mixer pump storage container. This document describes the functional design criteria of the flexible receiver. These criteria include the functional and performance requirements of the flexible receiver as a barrier to contamination during normal conditions and contingencies and the instrumentation requirements.

  18. The chemical abundances of the Ap star HD94660

    SciTech Connect (OSTI)

    Giarrusso, M.

    2014-05-09

    In this work I present the determination of chemical abundances of the Ap star HD94660, a possible rapid oscillating star. As all the magnetic chemically peculiar objects, it presents CNO underabundance and overabundance of iron peak elements of ∼100 times and of rare earths up to 4 dex with respect to the Sun. The determination was based on the conversion of the observed equivalent widths into abundances simultaneously to the determination of effective temperature and gravity. Since the Balmer lines of early type stars are very sensitive to the surface gravity while the flux distribution is sensitive to the effective temperature, I have adopted an iterative procedure to match the H{sub α} line profile and the observed UV-Vis-NIR magnitudes of HD94660 looking for a consistency between the metallicity of the atmosphere model and the derived abundances. From my spectroscopic analysis, this star belongs to the no-rapid oscillating class.

  19. Private Company Uses EERE-Supported Chemistry Model to Substantially...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Private Company Uses EERE-Supported Chemistry Model to Substantially Improve Combustion Engine Simulation Software Private Company Uses EERE-Supported Chemistry Model to ...

  20. HPV16 E6 and E6AP differentially cooperate to stimulate or augment Wnt signaling

    SciTech Connect (OSTI)

    Sominsky, Sophia; Kuslansky, Yael; Shapiro, Beny; Jackman, Anna; Haupt, Ygal; Rosin-Arbesfeld, Rina; Sherman, Levana

    2014-11-15

    The present study investigated the roles of E6 and E6AP in the Wnt pathway. We showed that E6 levels are markedly reduced in cells in which Wnt signaling is activated. Coexpression of wild-type or mutant E6AP (C820A) in Wnt-activated cells stabilized E6 and enhanced Wnt/β-catenin/TCF transcription. Expression of E6AP alone in nonstimulated cells elevated β-catenin level, promoted its nuclear accumulation, and activated β-catenin/TCF transcription. A knockdown of E6AP lowered β-catenin levels. Coexpression with E6 intensified the activities of E6AP. Further experiments proved that E6AP/E6 stabilize β-catenin by protecting it from proteasomal degradation. This function was dependent on the catalytic activity of E6AP, the kinase activity of GSK3β and the susceptibility of β-catenin to GSK3β phosphorylation. Thus, this study identified E6AP as a novel regulator of the Wnt signaling pathway, capable of cooperating with E6 in stimulating or augmenting Wnt/β-catenin signaling, thereby possibly contributing to HPV carcinogenesis. - Highlights: • The roles of E6 and E6AP in the Wnt pathway were investigated. • E6AP stabilizes E6 and enhances E6 activity in augmentation of Wnt signaling. • E6AP cooperates with E6 to stabilize β-catenin and stimulate Wnt/β-catenin signaling. • E6AP and E6 act through different mechanisms to augment or stimulate Wnt signaling.

  1. Audit Report: AP-B-95-01 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AP-B-95-01 Audit Report: AP-B-95-01 November 1, 1994 Audit of Management and Control of Information Resources at Sandia National Laboratories Audit Report: AP-B-95-01 (1.97 MB) More Documents & Publications Audit Report: OAS-L-06-12 Final Notice of Violation, Sandia Corporation Audit Report: WR-B-97-07

  2. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  3. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  4. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  5. 2011 Annual Planning Summary for Office of Legacy Management (LM), Grand Junction (See LM APS)

    Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Office of Legacy Management (LM), Grand Junction (See LM APS).

  6. Sustainability Support

    Energy.gov [DOE]

    Sustainability Support serves as a corporate technical assistance, coordination, and integration resource to support line organizations in the resolution of sustainability issues and management concerns.

  7. Michigan: General Motors Optimizes Engine Valve Technology

    Energy.gov [DOE]

    An EERE-supported effort to increase energy efficiency, while maintaining low emissions, has resulted in new engine valve technology on the 2014 Chevrolet Impala.

  8. Kokam Engineering Company Ltd | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    429-450 Product: Korea-based manufacturer of high standard and reliable rechargeable Lithium batteries and supporting equipment. References: Kokam Engineering Company Ltd1 This...

  9. Shockwave Engine: Wave Disk Engine

    SciTech Connect (OSTI)

    2010-01-14

    Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engine’s pistons to pump and powers the car. MSU’s engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine’s rotors causing them to turn, which generates electricity. MSU’s redesigned engine would be the size of a cooking pot and contain fewer moving parts—reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

  10. Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project

    SciTech Connect (OSTI)

    DEXTER, M.L.

    1999-11-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance of the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.

  11. APS Alternative Fuel (Hydrogen) Pilot Plant - Monitoring System Report

    SciTech Connect (OSTI)

    James Francfort; Dimitri Hochard

    2005-07-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), along with Electric Transportation Applications and Arizona Pubic Service (APS), is monitoring the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant to determine the costs to produce hydrogen fuels (including 100% hydrogen as well as hydrogen and compressed natural gas blends) for use by fleets and other operators of advanced-technology vehicles. The hydrogen fuel cost data will be used as benchmark data by technology modelers as well as research and development programs. The Pilot Plant can produce up to 18 kilograms (kg) of hydrogen per day by electrolysis. It can store up to 155 kg of hydrogen at various pressures up to 6,000 psi. The dispenser island can fuel vehicles with 100% hydrogen at 5,000 psi and with blends of hydrogen and compressed natural gas at 3,600 psi. The monitoring system was designed to track hydrogen delivery to each of the three storage areas and to monitor the use of electricity on all major equipment in the Pilot Plant, including the fuel dispenser island. In addition, water used for the electrolysis process is monitored to allow calculation of the total cost of plant operations and plant efficiencies. The monitoring system at the Pilot Plant will include about 100 sensors when complete (50 are installed to date), allowing for analysis of component, subsystems, and plant-level costs. The monitoring software is mostly off-the-shelve, with a custom interface. The majority of the sensors input to the Programmable Automation Controller as 4- to 20-mA analog signals. The plant can be monitored over of the Internet, but the control functions are restricted to the control room equipment. Using the APS general service plan E32 electric rate of 2.105 cents per kWh, during a recent eight-month period when 1,200 kg of hydrogen was produced and the plant capacity factor was 26%, the electricity cost to produce one kg of hydrogen was $3.43. However, the

  12. Engineering Institute

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Institute Engineering Institute Multidisciplinary engineering research that integrates advanced modeling and simulations, novel sensing systems and new developments in information technology. May 14, 2013 Los Alamos Research Park Los Alamos Research Park, the home of Engineering Institute Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI Director Michael Todd (858) 534-5951 Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505)

  13. Engineering Services

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Services Engineering Services The Network OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Engineering Services ESnet provides interoperable, effective, reliable, and high performance network communications infrastructure, and certain

  14. Heavy Truck Engine Program

    SciTech Connect (OSTI)

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine

  15. Electrical Engineer

    Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operation Operations Engineering, (J4200) 5555...

  16. Environmental Engineer

    Energy.gov [DOE]

    A successful candidate in this position will be an environmental technical expert and advisor to integrate science and engineering principles to improve the natural environment and direct and...

  17. structured engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  18. Systems Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  19. Rotary engine

    SciTech Connect (OSTI)

    Leas, A. M.; Leas, L. E.

    1985-02-12

    Disclosed are an engine system suitable for use with methyl alcohol and hydrogen and a rotary engine particularly suited for use in the engine system. The rotary engine comprises a stator housing having a plurality of radially directed chamber dividers, a principal rotor, a plurality of subordinate rotors each having an involute gear in its periphery mounted on the principal rotor, and means for rotating the subordinate rotors so that their involute gears accept the radially directed dividers as the subordinate rotors move past them.

  20. Electronics Engineer

    Energy.gov [DOE]

    This position is located in the Communications Test and Energization (TETD) organization of Commissioning and Testing (TET), Engineering and Technical Services (TE), Transmission Services (T),...

  1. Mechanical Engineer

    Energy.gov [DOE]

    This position is located in the Engineering Services (PEJD) organization of Program Implementation Energy Efficiency, Power Services, Bonneville Power Administration (BPA). As part of the Power...

  2. Hook nozzle arrangement for supporting airfoil vanes

    DOE Patents [OSTI]

    Shaffer, J.E.; Norton, P.F.

    1996-02-20

    A gas turbine engine`s nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic. 8 figs.

  3. The History of the APS Shock Compression of Condensed Matter Topical Group

    SciTech Connect (OSTI)

    Forbes, J W

    2001-05-02

    In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wave/high pressure sessions at APS general meetings in even numbered years.

  4. History of the APS Topical Group on Shock Compression of Condensed Matter

    SciTech Connect (OSTI)

    Forbes, J W

    2001-10-19

    In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wavehigh pressure sessions at APS general meetings in even numbered years.

  5. Diesel Engine Idling Test

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  6. Resonator coiling in thermoacoustic engines

    SciTech Connect (OSTI)

    Olson, J.R.; Swift, G.W.

    1995-11-01

    Coiling the resonator of a thermoacoustic engine is one way to try to minimize the engine`s size. However, flow in bent pipes is known to alter the fluid flow pattern because of centrifugal forces. Theory and measurements will be presented on the energy dissipation caused by oscillating flow in curved pipes. Measurements have been taken using free oscillations of liquids in U-tubes, and using a thermoacoustic engine with straight and bent resonators. [Work supported by the TTI program of the US Department of Energy, and by the Tektronix Corporation.

  7. Tandem Differential Mobility Analyzer/Aerodynamic Particle Sizer (APS) Handbook

    SciTech Connect (OSTI)

    Collins, D

    2010-06-18

    The tandem differential mobility analyzer (TDMA) is a single instrument that cycles through a series of complementary measurements of the physical properties of size-resolved submicron particles. In 2008, the TDMA was augmented through the addition of an aerodynamic particle sizer (APS), which extends the upper limit of the measured size distribution into the supermicron range. These two instruments are operated in parallel, but because they are controlled by a common computer and because the size distributions measured by the two are integrated in the produced datastreams, they are described together here. Throughout the day, the TDMA sequentially measures submicron aerosol size distributions and size-resolved hygroscopic growth distributions. More specifically, the instrument is operated as a scanning DMA to measure size distributions and as a TDMA to measure size-resolved hygroscopicity. A typical measurement sequence requires roughly 45 minutes. Each morning additional measurements are made of the relative humidity (RH) dependent hygroscopicity and temperature-dependent volatility of size-resolved particles. When the outside temperature and RH are within acceptable ranges, the hydration state of size-resolved particles is also characterized. The measured aerosol distributions complement the array of aerosol instruments in the Aerosol Observing System (AOS) and provide additional details of the light-scattering and cloud-nucleating characteristics of the aerosol.

  8. Absolute properties of the eclipsing binary star AP Andromedae

    SciTech Connect (OSTI)

    Sandberg Lacy, Claud H.; Torres, Guillermo; Fekel, Francis C.; Muterspaugh, Matthew W. E-mail: gtorres@cfa.harvard.edu E-mail: matthew1@coe.tsuniv.edu

    2014-06-01

    AP And is a well-detached F5 eclipsing binary star for which only a very limited amount of information was available before this publication. We have obtained very extensive measurements of the light curve (19,097 differential V magnitude observations) and a radial velocity curve (83 spectroscopic observations) which allow us to fit orbits and determine the absolute properties of the components very accurately: masses of 1.277 ± 0.004 and 1.251 ± 0.004 M {sub ☉}, radii of 1.233 ± 0.006 and 1.1953 ± 0.005 R {sub ☉}, and temperatures of 6565 ± 150 K and 6495 ± 150 K. The distance to the system is about 400 ± 30 pc. Comparison with the theoretical properties of the stellar evolutionary models of the Yonsei-Yale series of Yi et al. shows good agreement between the observations and the theory at an age of about 500 Myr and a slightly sub-solar metallicity.

  9. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2011-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  10. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2010-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  11. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2012-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  12. Support Nodes

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Support Nodes Support Nodes xe6blade.png Hopper has nodes connected to the internal Gemini network that provide functions that support the compute nodes. These include job launch nodes (MOM nodes), Lustre router nodes, DVS nodes, networking nodes and nodes that support shared and dynamic libraries. MOM Nodes (On Compute Blades) manage and launch parallel applications execute job scripts 24 nodes 32 GB of memory per node Lustre Router Nodes (Service Nodes) route IO data to the /scratch file

  13. Thermoacoustic engines

    SciTech Connect (OSTI)

    Swift, G.W.

    1988-10-01

    Thermoacoustic engines, or acoustic heat engines, are energy-conversion devices that achieve simplicity and concomitant reliability by use of acoustic technology. Their efficiency can be a substantial fraction of Carnot's efficiency. In thermoacoustic prime movers, heat flow from a high-temperature source to a low-temperature sink generates acoustic power (which may be converted to electric power using a transducer). In thermoacoustic heat pumps and refrigerators, acoustic power is used to pump heat from a low-temperature source to a high-temperature sink. This review teaches the fundamentals of thermoacoustic engines, by analysis, intuition, and example.

  14. Three-dimensional analysis of AP600 standard plant shield building roof

    SciTech Connect (OSTI)

    Greimann, L.; Fanous, F.; Safar, S.; Khalil, A.; Bluhm, D.

    1999-06-01

    The AP600 passive containment vessel is surrounded by a concrete cylindrical shell covered with a truncated conical roof. This roof supports the passive containment cooling system (PCS) annular tank, shield plate and other nonstructural attachments. When the shield building is subjected to different loading combinations as defined in the Standard Review Plan (SRP), some of the sections in the shield building could experience forces in excess of their design values. This report summarized the three-dimensional finite element analysis that was conducted to review the adequacy of the proposed Westinghouse shield building design. The ANSYS finite element software was utilized to analyze the Shield Building Roof (SBR) under dead, snow, wind, thermal and seismic loadings. A three-dimensional model that included a portion of the shield building cylindrical shell, the conical roof and its attachments, the eccentricities at the cone-cylinder connection and at the compression ring and the PCS tank was developed. Mesh sensitivity studies were conducted to select appropriate element size in the cylinder, cone, near air intakes and in the vicinity of the eccentricities. Also, a study was carried out to correctly idealize the water-structure interaction in the PCS tank. Response spectrum analysis was used to calculate the internal forces at different sections in the SBR under Safe Shutdown Earthquake (SSE). Forty-nine structural modes and twenty sloshing modes were used. Two horizontal components of the SSE together with a vertical component were used. Modal stress resultants were combined taking into account the effects of closely spaced modes. The three earthquake directions were combined by the Square Root of the Sum Squares method. Two load combinations were studied. The load combination that included dead, snow, fluid, thermal and seismic loads was selected to be the most critical. Interaction diagrams for critical sections were developed and used to check the design

  15. Civil Engineer

    Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  16. Engineering Technician

    Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  17. Harmonic engine

    DOE Patents [OSTI]

    Bennett, Charles L.

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  18. General Engineer

    Energy.gov [DOE]

    This position is located in Office of Standard Contract Management, within the Office of the General Counsel (GC). The purpose of the position is to conduct technical and engineering reviews of the...

  19. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  20. Description of the OSU APEX test facility to assess AP600 passive safety

    SciTech Connect (OSTI)

    Hochreiter, L.E.; Lau, L.K.; Reyes, J.N. Jr.; Groome, J.T.

    1995-12-31

    The objective of this paper is to describe the Advanced Plant Experiment (APEX) test facility, which is a new integral system test facility located at Oregon State University (OSU) specifically scaled, designed, and built to simulate all of the important geometrical details of the Westinghouse AP600. The APEX facility has been designed and constructed to develop a database that can be used to validate the thermal hydraulic safety analysis codes that will be used in the AP600 design certification process. The test facility has been specifically designed and scaled to model small break loss-of-coolant and long-term cooling transients, which utilize the AP600 passive safety systems.

  1. MARS Flight Engineering Status

    SciTech Connect (OSTI)

    Fast, James E.; Dorow, Kevin E.; Morris, Scott J.; Thompson, Robert C.; Willett, Jesse A.

    2010-04-06

    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09.

  2. Quick release engine cylinder

    DOE Patents [OSTI]

    Sunnarborg, Duane A.

    2000-01-01

    A quick release engine cylinder allows optical access to an essentially unaltered combustion chamber, is suitable for use with actual combustion processes, and is amenable to rapid and repeated disassembly and cleaning. A cylinder member, adapted to constrain a piston to a defined path through the cylinder member, sealingly engages a cylinder head to provide a production-like combustion chamber. A support member mounts with the cylinder member. The support-to-cylinder mounting allows two relationships therebetween. In the first mounting relationship, the support engages the cylinder member and restrains the cylinder against the head. In the second mounting relationship, the cylinder member can pass through the support member, moving away from the head and providing access to the piston-top and head.

  3. Crank shaft support assembly

    DOE Patents [OSTI]

    Natkin, Robert J.; Oltmans, Bret; Allison, John E.; Heater, Thomas J.; Hines, Joy Adair; Tappen, Grant K.; Peiskammer, Dietmar

    2007-10-23

    A crank shaft support assembly for increasing stiffness and reducing thermal mismatch distortion in a crank shaft bore of an engine comprising different materials. A cylinder block comprises a first material and at least two crank journal inserts are insert-molded into respective crank journal regions of the cylinder block and comprise a second material having greater stiffness and a lower thermal coefficient of expansion that the first material. At least two bearing caps are bolted to the respective crank journal inserts and define, along with the crank journal inserts, at least two crank shaft support rings defining a crank shaft bore coaxially aligned with a crank shaft axis. The bearing caps comprise a material having higher stiffness and a lower thermal coefficient of expansion than the first material and are supported on the respective crank journal inserts independently of any direct connection to the cylinder block.

  4. Expression, purification, crystallization and structure of human adipocyte lipid-binding protein (aP2)

    SciTech Connect (OSTI)

    Marr, Eric; Tardie, Mark; Carty, Maynard; Brown Phillips, Tracy; Wang, Ing-Kae; Soeller, Walt; Qiu, Xiayang Karam, George

    2006-11-01

    The crystal structure of human adipocyte lipid-binding protein (aP2) with a bound palmitate is reported at 1.5 resolution. Human adipocyte lipid-binding protein (aP2) belongs to a family of intracellular lipid-binding proteins involved in the transport and storage of lipids. Here, the crystal structure of human aP2 with a bound palmitate is described at 1.5 resolution. Unlike the known crystal structure of murine aP2 in complex with palmitate, this structure shows that the fatty acid is in a folded conformation and that the loop containing Phe57 acts as a lid to regulate ligand binding by excluding solvent exposure to the central binding cavity.

  5. Audit Report: AP-FS-97-02 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FS-97-02 Audit Report: AP-FS-97-02 June 6, 1997 Audit of Departmental Integrated Standardized Core Accounting System (DISCAS) Operations at Selected Field Sites Audit Report: ...

  6. A Flexible Approach to Big Data at the APS | Argonne National...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    A Flexible Approach to Big Data at the APS November 23, 2015 11:00AM to 12:00PM Presenter Ray Osborn (MSD), Senior Physicist Location Building 401, Room A1100 Type Seminar Series...

  7. Comparative Study of Station Blackout Counterpart Tests in APEX and ROSA/AP600

    SciTech Connect (OSTI)

    Lafi, Abd Y.; Reyes, Jose N. Jr.

    2000-05-15

    A comparison is presented between station blackout tests conducted in both the Advanced Plant Experiment (APEX) facility and in the modified Rig of Safety Assessment (ROSA/AP600) Large-Scale Test Facility. The comparison includes the depressurization and liquid-level behavior during secondary-side blowdown, natural circulation, automatic depressurization system operation, and in-containment refueling water storage tank injection. Reasonable agreement between the test results from APEX NRC-2 and ROSA/AP600 AP-BO-01 has been observed with respect to the timing of depressurization and liquid draining rates. This indicates that the reduced height and pressure scaling of APEX preserves the sequence of events relative to the full-height and pressure ROSA/AP600.

  8. Microsoft PowerPoint - APS07_poster_AdvScen.ppt

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    and the Alcator C-Mod team. MIT Plasma Science and Fusion Center *Princeton Plasma Physics Laboratory Poster NP8:66 49 th Annual Meeting of APS-DPP Orlando, Florida November...

  9. http://www.epa.gov/ttn/chief/ap42/index.html

    National Nuclear Security Administration (NNSA)

    This is current through the Fifth Edition, Supplement C of AP 42. For sections and chapters added after November 1997, see the chapter web pages below. Introduction Introduction to ...

  10. Analysis of N-16 concentration in primary cooling system of AP1000...

    Office of Scientific and Technical Information (OSTI)

    Analysis of N-16 concentration in primary cooling system of AP1000 power reactor Citation Details In-Document Search Title: Analysis of N-16 concentration in primary cooling system ...

  11. KP-AP-1-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1-C Wholesale Power Rate Schedule KP-AP-1-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies ...

  12. Audit Report: AP-B-95-02 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    B-95-02 Audit Report: AP-B-95-02 July 31, 1995 Audit of Selected Aspects of the Unclassified Computer Security Program at a DOE Headquarters Computing Facility Audit Report: AP-B-95-02 (77.9 KB) More Documents & Publications Evaluation Report on The Department's Unclassified Cyber Security Program 2002, DOE/IG-0567 Audit Report: IG-0818 Excessing of Computers Used for Unclassified Controlled Information at the Idaho National Laboratory, IG-0755

  13. Consortium Support (Fixed Support) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Support (Fixed Support) Consortium Support (Fixed Support) Consortium Fixed Support.doc (174 KB) More Documents & Publications Consortium Template (Expenditure-Based

  14. AP1000 Design Basis Event Simulation at the APEX-1000 Test Facility

    SciTech Connect (OSTI)

    Wright, Richard F.; Groome, John

    2004-07-01

    The AP1000 is a 1000 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 relies heavily on the 600 MWe AP600 which received design certification in 1999. A critical part of the AP600 design certification process involved the testing of the passive safety systems. A one-fourth height, one-fourth pressure test facility, APEX-600, was constructed at the Oregon State University to study design basis events, and to provide a body of data to be used to validate the computer models used to analyze the AP600. This facility was extensively modified to reflect the design changes for AP1000 including higher power in the electrically heated rods representing the reactor core, and changes in the size of the pressurizer, core makeup tanks and automatic depressurization system. Several design basis events are being simulated at APEX-1000 including a double-ended direct vessel injection (DEDVI) line break and a 2-inch cold leg break. These tests show that the core remains covered with ample margin until gravity injection is established regardless of the initiating event. The tests also show that liquid entrainment from the upper plenum which is proportional to the reactor power does not impact the ability of the passive core cooling system to keep the core covered. (authors)

  15. Tank waste remediation system engineering plan

    SciTech Connect (OSTI)

    Rifaey, S.H.

    1998-01-09

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

  16. Enabling High Efficiency Ethanol Engines

    SciTech Connect (OSTI)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  17. Stirling Engines and Irrigation Pumping

    SciTech Connect (OSTI)

    West, C.D.

    1987-01-01

    This report was prepared in support of the Renewable Energy Applications and Training Project that is sponsored by the U.S. Agency for International Development for which ORNL provides technical assistance. It briefly outlines the performance that might be achievable from various kinds of Stirling-engine-driven irrigation pumps. Some emphasis is placed on the very simple liquid-piston engines that have been the subject of research in recent years and are suitable for manufacture in less well-developed countries. In addition to the results quoted here (possible limits on M4 and pumping head for different-size engines and various operating conditions), the method of calculation is described in sufficient detail for engineers to apply the techniques to other Stirling engine designs for comparison.

  18. Chemical mixing study for the Hanford TWRS Supporting facilities (U)

    SciTech Connect (OSTI)

    Heal, D.W.; Brantley, W.M.

    1996-09-03

    This Engineering Calculation addresses consequences of mixing any two hazardous chemicals contained in the same section of TWRS supporting facilities, as screened in accordance with `Westinghouse Savannah River Company Engineering and Construction Services Division Guidelines and Methods.`

  19. Web Support

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Web Support We want to be able to respond promptly to your queries. To expedite our response, please check the specific website or page in question for the name of the appropriate ...

  20. Final Technical Report; NUCLEAR ENGINEERING RECRUITMENT EFFORT

    SciTech Connect (OSTI)

    Kerrick, Sharon S.; Vincent, Charles D.

    2007-07-02

    This report provides the summary of a project whose purpose was to support the costs of developing a nuclear engineering awareness program, an instruction program for teachers to integrate lessons on nuclear science and technology into their existing curricula, and web sites for the exchange of nuclear engineering career information and classroom materials. The specific objectives of the program were as follows: OBJECTIVE 1: INCREASE AWARENESS AND INTEREST OF NUCLEAR ENGINEERING; OBJECTIVE 2: INSTRUCT TEACHERS ON NUCLEAR TOPICS; OBJECTIVE 3: NUCLEAR EDUCATION PROGRAMS WEB-SITE; OBJECTIVE 4: SUPPORT TO UNIVERSITY/INDUSTRY MATCHING GRANTS AND REACTOR SHARING; OBJECTIVE 5: PILOT PROJECT; OBJECTIVE 6: NUCLEAR ENGINEERING ENROLLMENT SURVEY AT UNIVERSITIES

  1. Value Engineering

    Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-01-07

    To establish Department of Energy (DOE) value engineering policy that meets the requirements of Public Law 104-106, Section 4306 as codified by 41 United States Code 432. Canceled by DOE N 251.94. Does not cancel other directives.

  2. Harmonic engine

    DOE Patents [OSTI]

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  3. DOE Awards Support Service Contract

    Energy.gov [DOE]

    Cincinnati - The U.S. Department of Energy (DOE) announced an award today which was made under the National Nuclear Security Administration (NNSA)’s Technical, Engineering, and Programmatic Support Services (TEPS) Blanket Purchase Agreement (BPA) DE-NA0001224 to Link Technologies, Inc., of Germantown, MD.

  4. Advanced Reciprocating Engine Systems

    Energy.gov [DOE]

    The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

  5. Rotary engine

    SciTech Connect (OSTI)

    Fawcett, S.L.

    1987-03-03

    In an internal combustion engine, external heat engine, heat pump, gaseous expander, pump or gas compressor, the combustion is described including means forming a cylindrical working chamber having intake and exhaust port means for gases, and two pistons having an arcuate length within the range of 90/sup 0/ to 120/sup 0/ of the cylindrical portion of the working chamber to move toward and away from each other for compression and expansion of gases by rotation on separate concentrically-arranged shafts. A seal means is carried by the walls of the cylindrical working chamber at each of spaced apart locations to continuously form a gas sealing relation with both of the pistons while the pistons rotate toward and away from each other in the cylindrical working chamber.

  6. Rotary engine

    SciTech Connect (OSTI)

    Larson, T. G.

    1985-10-22

    The rotary engine has a circumferential main chamber and at least one smaller combustion chamber spaced from the main chamber. The rotor includes a plurality of radially-projecting sealing members in spaced relationship thereabout for maintaining a fluid-sealed condition along a single fixed transverse strip area on the interior surface of the main chamber. A single radially-oriented axially-parallel piston vane is also carried by the rotor and moves through the fixed strip area of the main chamber at each revolution of the rotor. Plural passages for intake, compression, expansion, and exhaust are ported into the main chamber at locations proximate to the fixed strip area. Valve means in the passages selectively open and close the same for a cycle of engine operation involving intake, compression, burning, and exhaust.

  7. Project Engineer (Nuclear/Mechanical Engineer) | Princeton Plasma...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Project Engineer (NuclearMechanical Engineer) Department: Engineering Supervisor(s): ... Its Mechanical Engineering Division (MED) is seeking to hire a NuclearMechanical Engineer ...

  8. HCCI in a Variable Compression Ratio Engine: Effects of Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in a Variable Compression Ratio Engine: Effects of Engine Variables HCCI in a Variable Compression Ratio Engine: Effects of Engine Variables 2004 Diesel Engine Emissions Reduction ...

  9. Rotary engine

    SciTech Connect (OSTI)

    Fawcett, S.L.

    1988-02-09

    In an internal combustion engine, external heat engine, heat pump, gaseous expander, pump or gas compressor, the combination is described including means forming a cylindrical working chamber communicating with intake and exhaust port means for gases, two pistons having an arcuate length within the range of 90/sup 0/ to 120/sup 0/ of the cylindrical surface of the working chamber. The pistons are movable toward and away from each other for compression and expansion of gases in the working chamber while separately rotating concentrically-arranged shafts, a drive shaft, three sets of gearing for connecting the pistons to the drive shaft, a first set of the gearing drivingly coupled to a first of the separate concentric shafts, a second set of the gearing drivingly coupled to a second of the concentric shaft, and a third set of the gearing comprising non-circular gears. The drive shaft is secured to one gear of each of the first, second and third gear sets of gearing for rotating the drive shaft with a substantially constant velocity and torque output throughout the several phases of the working cycle of the engine, compressor or pump.

  10. Hook nozzle arrangement for supporting airfoil vanes

    DOE Patents [OSTI]

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A gas turbine engine's nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic.

  11. Department of Energy Announces Funding to Support the Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    energy. These programs will increase American economic competitiveness and support job growth by promoting science, technology, engineering, and math (STEM) education, an...

  12. DOE Awards Support Service Contract | Department of Energy

    Energy.gov (indexed) [DOE]

    Application Maintenance Support and associated Program elements as well as project management, professional engineering and scientific disciplines The contractor shall provide...

  13. Sandia National Laboratories: Careers: Aerospace Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Aerospace Engineering Aerospace imagery Sandia's aerospace engineers have provided critical data for the design and analysis of flight vehicles since the 1950s. Aerospace engineers at Sandia support atmospheric and space flight vehicles across the speed regimes, from subsonic to hypersonic, through their collaborative work on multidisciplinary teams. Our aerodynamics and astronautics specialists integrate the results from experiments, analysis, and simulation to solve complex problems of

  14. Sandia National Laboratories: Careers: Nuclear Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nuclear Engineering Nuclear Engineer Sandia's primary mission is ensuring that the U.S. nuclear arsenal is safe, secure, reliable, and capable of fully supporting our nation's deterrence policy. Nuclear engineers at Sandia work in multidisciplinary teams on a variety of projects that involve nuclear reactors, weapons, equipment, and information systems. For example, they design, develop, and test nuclear equipment and systems. They also monitor the testing, operation, and maintenance of nuclear

  15. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  16. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  17. Tank 241-AP-103 08/1999 Compatibility Grab Samples and Analytical Results for the Final Report

    SciTech Connect (OSTI)

    BELL, K.E.

    1999-12-09

    This document is the format IV, final report for the tank 241-AP-103 (AP-103) grab samples taken in August 1999 to address waste compatibility concerns. Chemical, radiochemical, and physical analyses on the tank AP-103 samples were performed as directed in ''Compatibility Grub Sampling and Analysis Plan for Fiscal Year 1999'' (Sasaki 1999a). Any deviations from the instructions provided in the tank sampling and analysis plan (TSAP) were discussed in this narrative. No notification limits were exceeded.

  18. AP and L sees window of opportunity to double revenue via cogeneration

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    The sale of cogenerated process steam to industries could allow Arkansas Power and Light to expand its operation from power generation to manufactured energy at double the revenue. Rising oil prices and pending gas deregulation are forcing industrial customers to look for alternative fuel supplies. Utilities must seize the opportunity to sell cogenerated steam before prospective customers decide to generate their own power and steam, although a user survey shows that industry is reluctant to commit the capital at this time. AP and L's system will join combined-cycle cogeneration and coal gasification. Four figures display the data developed during AP and L's continuing feasibility studies. (DCK)

  19. Supporters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Supporters Supporters Register Now! Register Now! Come back later for updates on this year's supporters!

  20. Envera Variable Compression Ratio Engine

    SciTech Connect (OSTI)

    Charles Mendler

    2011-03-15

    the compression ratio can be raised (to as much as 18:1) providing high engine efficiency. It is important to recognize that for a well designed VCR engine cylinder pressure does not need to be higher than found in current production turbocharged engines. As such, there is no need for a stronger crankcase, bearings and other load bearing parts within the VCR engine. The Envera VCR mechanism uses an eccentric carrier approach to adjust engine compression ratio. The crankshaft main bearings are mounted in this eccentric carrier or 'crankshaft cradle' and pivoting the eccentric carrier 30 degrees adjusts compression ratio from 9:1 to 18:1. The eccentric carrier is made up of a casting that provides rigid support for the main bearings, and removable upper bearing caps. Oil feed to the main bearings transits through the bearing cap fastener sockets. The eccentric carrier design was chosen for its low cost and rigid support of the main bearings. A control shaft and connecting links are used to pivot the eccentric carrier. The control shaft mechanism features compression ratio lock-up at minimum and maximum compression ratio settings. The control shaft method of pivoting the eccentric carrier was selected due to its lock-up capability. The control shaft can be rotated by a hydraulic actuator or an electric motor. The engine shown in Figures 3 and 4 has a hydraulic actuator that was developed under the current program. In-line 4-cylinder engines are significantly less expensive than V engines because an entire cylinder head can be eliminated. The cost savings from eliminating cylinders and an entire cylinder head will notably offset the added cost of the VCR and supercharging. Replacing V6 and V8 engines with in-line VCR 4-cylinder engines will provide high fuel economy at low cost. Numerous enabling technologies exist which have the potential to increase engine efficiency. The greatest efficiency gains are realized when the right combination of advanced and new technologies

  1. Computational Engineering of Defects in Soft and Hard Materials...

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Engineering of Defects in Soft and Hard Materials for Energy and Quantum Information ... Specifically, this project supports the application of large--scale quantum simulation ...

  2. Stirling engine

    SciTech Connect (OSTI)

    Bolger, S.R.

    1992-03-17

    This patent describes an engine. It comprises at least two variable volume compartments joined by a porous medium regenerator; heat exchangers in heat exchange relationships with the variable volume compartments; a fixed quantity of gas in the compartments; a piston in each of the compartments; means to control the pistons to vary the volumes of the gas transferring between the compartments in the form of overlapping quadrilateral waveforms to compress the gas in both compartments through the same cycle pressure ratio during a cycle compression step, to shift the gas between compartments and to expand the gas in both compartments through the same cycle pressure ratio during a cycle expansion step.

  3. Rotary vee engine

    SciTech Connect (OSTI)

    Sullivan, R.W.; Holder, T.J.; Buchanan, M.F.

    1991-07-09

    This patent describes a rotary vee engine. It comprises a housing having outer ends; two cylinder blocks each having inner and outer ends and mounted in the housing for rotation of one cylinder block about a first rotational axis and rotation of the other cylinder block about a second rotational axis, the axes being angled to intersect adjacent the inner ends of the blocks at an included angle less than one hundred and eighty degrees; each cylinder bloc having cylinders positioned at a selected radial distance from the respective rotational axis and extending parallel to the axis to intersect the inner end of the cylinder block; angled pistons each having a portion disposed in a cylinder of one block and a portion disposed in a cylinder in the other block for orbital motion of the pistons coordinately with the rotation of the cylinder blocks; angled support shaft means for rotatably and axially supporting each of the cylinder blocks in the housing; an improved air/fuel system for directing pressurized charges of air/fuel mixture radially inwardly into each of the cylinders during the operation of the engine comprising; a central cavity formed by the housing between the inner ends of the cylinder blocks for receiving air/fuel mixture.

  4. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    SciTech Connect (OSTI)

    Wang, Zujun Huang, Shaoyan; Liu, Minbo; Xiao, Zhigang; He, Baoping; Yao, Zhibin; Sheng, Jiangkun

    2014-07-15

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 ?m CMOS technology. The flux of neutron beams was about 1.33 10{sup 8} n/cm{sup 2}s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 10{sup 11}, 5 10{sup 11}, and 1 10{sup 12} n/cm{sup 2}, respectively. The mean dark signal (K{sub D}), dark signal spike, dark signal non-uniformity (DSNU), noise (V{sub N}), saturation output signal voltage (V{sub S}), and dynamic range (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

  5. Survey and alignment report on the primary control network for the APS

    SciTech Connect (OSTI)

    Friedsam, H.; Penicka, M.; Zhao, S.

    1993-02-01

    During November 1992 the survey and alignment team measured the entire primary control network for the APS. This task had to be finished before the enclosure of the EAA and the RF buildings were put in place, inhibiting several lines of sight necessary for the determination of the monument locations.

  6. EVALUATION OF THE TEMPORARY TENT COVER TRUSS SYSTEM AP PRIMARY VENT SYSTEM

    SciTech Connect (OSTI)

    HAQ MA

    2009-12-31

    The purpose of this calculation is to evaluate a temporary ten cover truss system. This system will be used to provide weather protection to the workers during replacement of the filter for the Primary Ventilation System in AP Tank Farm. The truss system has been fabricated utilizing tubes and couplers, which are normally used for scaffoldings.

  7. Rotary engine

    SciTech Connect (OSTI)

    Brownfield, L.A.

    1980-12-02

    The major components of this rotary engine are two equal sized rotary units, the housing containing them along with associated ignition and cooling systems. Each of the rotary units consists of a shaft, gear, two outer compressor wheels, and one center power wheel which has twice the axial thickness as the compressor wheel. All the wheels are cylindrical in shape with a lobe section comprising a 180/sup 0/ arc on the periphery of each wheel which forms an expanding and contracting volumetric chamber by means of leading and trailing lips. The lobes of the first rotary unit are situated 180/sup 0/ opposite the lobes of the second adjacent mating rotary unit, thus lobes can intermesh with its corresponding wheel.

  8. Rotary reciprocating internal combustion engine

    SciTech Connect (OSTI)

    Ogren, W.

    1992-06-23

    This patent describes a rotary reciprocating internal combustion engine. It comprises a housing which comprises a cylindrical head with two end and frame plates mounted on both ends of the head enclose the head, the head including a pair of fuel into ports and a pair of exhaust ports, a pair of ring gears; a rotor axially aligned in the cylindrical head and comprising a set of four radially extending cylinders and pistons reciprocable in the cylinders; a power take off shaft fixed to the crank support plates and axially aligned with the rotor; oiling means for oiling the rotary engine; and a set of eight crank gears.

  9. Low thermal expansion seal ring support

    DOE Patents [OSTI]

    Dewis, David W.; Glezer, Boris

    2000-01-01

    Today, the trend is to increase the temperature of operation of gas turbine engines. To cool the components with compressor discharge air, robs air which could otherwise be used for combustion and creates a less efficient gas turbine engine. The present low thermal expansion sealing ring support system reduces the quantity of cooling air required while maintaining life and longevity of the components. Additionally, the low thermal expansion sealing ring reduces the clearance "C","C'" demanded between the interface between the sealing surface and the tip of the plurality of turbine blades. The sealing ring is supported by a plurality of support members in a manner in which the sealing ring and the plurality of support members independently expand and contract relative to each other and to other gas turbine engine components.

  10. Metabolic Engineering X Conference

    SciTech Connect (OSTI)

    Flach, Evan

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  11. ORISE: Supporting DOE's mission to recognize outstanding scientists,

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    engineers Oak Ridge Institute for Science Education Supporting DOE's Mission to Recognize Outstanding Scientists, Engineers ORISE peer review group managed two reviews and three award ceremonies for science and technology researchers Winners of the 2011 Presidential Early Career Awards for Scientists and Engineers (PECASE) On Aug. 1, 2012, the U.S. Department of Energy held a ceremony to honor the 13 winners of the 2011 Presidential Early Career Awards for Scientists and Engineers (PECASE),

  12. Sandia Energy - HCCI/SCCI Engine Fundamentals

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive HCCISCCI Engine Fundamentals HCCISCCI Engine...

  13. Sandia Energy - HCCI/SCCI Engine Fundamentals

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Heavy Duty HCCISCCI Engine Fundamentals HCCISCCI Engine...

  14. Study of Engine Operating Parameter Effects on GDI Engine Particle...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Results show ...

  15. Increased Engine Efficiency via Advancements in Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engine Efficiency via Advancements in Engine Combustion Systems Increased Engine Efficiency via Advancements in Engine Combustion Systems Presentation given at the 16th Directions...

  16. Rotary engine

    SciTech Connect (OSTI)

    Smith, T.A.

    1992-01-28

    This patent describes an improved rotary engine. It comprises an annular master cylinder composed of a cylindrical housing, a continuous hollow outer concentric shaft, an outward end housing and an inward end housing; means to form a dynamically balanced disc piston assembly extending from the the outward end housing to the the inward end housing thereby dividing the the annular master cylinder into at least three separate gas tight cylinders formed by rotating discs, each cylinder having at least two pistons independently rotatable therein; means to isolate the unexpanded gases from any exit path into the housing of the piston controlling means; and wherein one of the pistons in each cylinder is connected directly to the the continuous outer concentric shaft to form a first piston assembly, the other of the pistons in each cylinder is connected to the discs which are connected to the end of an inner concentric shaft to form a second piston assembly, means for controlling the piston action by a common eccentric shaft such that as the pistons rotate they expand and reduce the distance between them thereby changing the volume between the pistons within each of the cylinders.

  17. Design, Integration, Construction, Communications and Engineering (DICCE) 2

    National Nuclear Security Administration (NNSA)

    Contract in support of NNSA Nuclear Smuggling Detection and Deterrence | National Nuclear Security Administration | (NNSA) Solicitation Design, Integration, Construction, Communications and Engineering (DICCE) 2 Contract in support of NNSA Nuclear Smuggling Detection and Deterrence Welcome to the Department of Energy (DOE), National Nuclear Security Administration (NNSA) webpage for the Design, Integration, Construction, Communications and Engineering (DICCE) competition. The purpose of this

  18. Taking an engine`s temperature

    SciTech Connect (OSTI)

    Allison, S.W.; Beshears, D.L.; Cates, M.R.; Noel, B.W.; Turley, W.D.

    1997-01-01

    Ceramic and ceramic-coated components will be of increasing importance in the advanced engines now under development. Ceramics enable engines to run at much higher temperatures than the superalloys in more conventional engines can. The two options for noncontact high-temperature measurements of ceramic components are pyrometry and phosphor thermometry. This article describes how when properly applied as a thin coating, thermally sensitive phosphors can monitor the temperature of ceramic surfaces inside an engine.

  19. Advanced System for Process Engineering

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  20. Confirmatory analysis of the AP1000 passive residual heat removal heat exchanger with 3-D computational fluid dynamic analysis

    SciTech Connect (OSTI)

    Schwall, James R.; Karim, Naeem U.; Thakkar, Jivan G.; Taylor, Creed; Schulz, Terry; Wright, Richard F.

    2006-07-01

    The AP1000 is an 1100 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 received final design approval from the US-NRC in 2004. The AP1000 design is based on the AP600 design that received final design approval in 1999. Wherever possible, the AP1000 plant configuration and layout was kept the same as AP600 to take advantage of the maturity of the design and to minimize new design efforts. As a result, the two-loop configuration was maintained for AP1000, and the containment vessel diameter was kept the same. It was determined that this significant power up-rate was well within the capability of the passive safety features, and that the safety margins for AP1000 were greater than those of operating PWRs. A key feature of the passive core cooling system is the passive residual heat removal heat exchanger (PRHR HX) that provides decay heat removal for postulated LOCA and non-LOCA events. The PRHR HX is a C-tube heat exchanger located in the in-containment refueling water storage tank (IRWST) above the core promoting natural circulation heat removal between the reactor cooling system and the tank. Component testing was performed for the AP600 PRHR HX to determine the heat transfer characteristics and to develop correlations to be used for the AP1000 safety analysis codes. The data from these tests were confirmed by subsequent integral tests at three separate facilities including the ROSA facility in Japan. Owing to the importance of this component, an independent analysis has been performed using the ATHOS-based computational fluid dynamics computer code PRHRCFD. Two separate models of the PRHR HX and IRWST have been developed representing the ROSA test geometry and the AP1000 plant geometry. Confirmation of the ROSA test results were used to validate PRHRCFD, and the AP1000 plant model

  1. aps2007

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    of heterodyned PCI measurements, ICRF simulation codes such as TORIC can be tested and wave amplitudes inside the plasma can be determined by "synthetic diagnostic" method...

  2. AP R

    Office of Legacy Management (LM)

    ... DRAP has determined that the Los Alamos Area Office is continuing remedial action in areas where the pipeline runs under land excessed to the Incorporated County of Los Alamos and ...

  3. EERE Success Story-Michigan: General Motors Optimizes Engine Valve

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology | Department of Energy Michigan: General Motors Optimizes Engine Valve Technology EERE Success Story-Michigan: General Motors Optimizes Engine Valve Technology November 8, 2013 - 12:00am Addthis An EERE-supported effort to increase energy efficiency, while maintaining low emissions, has resulted in new engine valve technology on the 2014 Chevrolet Impala. EERE's Vehicle Technologies Office supported the research that led to this technical development with a $6.2 million award in

  4. Initial testing of a variable-stroke Stirling engine

    SciTech Connect (OSTI)

    Thieme, L.G.

    1985-02-01

    In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. This report describes the engine, presents initial steady-state test data taken at Lewis, and describes a major drive system failure and subsequent modifications. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.

  5. Engine lubricating system

    SciTech Connect (OSTI)

    Kurio, N.; Yoshimi, H.

    1988-08-23

    This patent describes an engine lubricating system in which a measured amount of lubricating oil is supplied to the combustion chamber of an engine by a metering oil pump so that a larger amount of lubricating oil is supplied to the combustion chamber when the engine load is heavy than when the engine load is light, characterized by having a lubricating oil supply rate correction means which non-linearly increases the amount of the lubricating oil supplied to the combustion chamber with respect to engine r.p.m. so that the amount of oil supplied per unit engine revolution is greater at high engine speed than at low engine speed.

  6. Chemical & Engineering News

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical & Engineering News Home...

  7. An equivalent circuit model and power calculations for the APS SPX crab cavities.

    SciTech Connect (OSTI)

    Berenc, T. )

    2012-03-21

    An equivalent parallel resistor-inductor-capacitor (RLC) circuit with beam loading for a polarized TM110 dipole-mode cavity is developed and minimum radio-frequency (rf) generator requirements are calculated for the Advanced Photon Source (APS) short-pulse x-ray (SPX) superconducting rf (SRF) crab cavities. A beam-loaded circuit model for polarized TM110 mode crab cavities was derived. The single-cavity minimum steady-state required generator power has been determined for the APS SPX crab cavities for a storage ring current of 200mA DC current as a function of external Q for various vertical offsets including beam tilt and uncontrollable detuning. Calculations to aid machine protection considerations were given.

  8. Comparison of SPES-2 and APEX tests to examine AP600 integral system performance

    SciTech Connect (OSTI)

    Hochreiter, L.E.; Reyes, J.N. Jr.

    1995-12-31

    The Westinghouse Electric Corporation has performed a series of tests in the SPES-2 facility (Simulatore Per Esperienze di Sicurezza--Simulator for Safety Experimental Analysis) in Piacenza, Italy and in the APEX (Advanced Plant Experiment) facility, at Oregon State University. These testing programs are designed to evaluate the thermal hydraulic performance of the passive safety systems (gravity driven injection, natural convection, and passive cooling) of the Westinghouse Advanced Passive 600 MWe pressurized water reactor (AP600). They are also designed to obtain data that can be used to assess and validate the safety analysis techniques and computer codes being used to predict the transient system behavior of the AP600. This paper presents a comparison of the two test facility designs and the results of counterpart tests.

  9. Mechanical design upgrade of the APS storage ring rf cavity tuner

    SciTech Connect (OSTI)

    Jones, J.; Bromberek, D.; Kang, Y.

    1997-08-01

    The Advanced Photon Source (APS) storage ring (SR) rf system employs four banks of four spherical, single-cell resonant cavities. Each cavity is tuned by varying the cavity volume through insertion/retraction of a copper piston located at the circumference of the cavity and oriented perpendicular to the accelerator beam. During the commissioning of the APS SR, the tuners and cavity tuner ports were prone to extensive arcing and overheating. The existing tuners were modified to eliminate the problems, and two new, redesigned tuners were installed. In both cases marked improvements were obtained in the tuner mechanical performance. As measured by tuner piston and flange surface temperatures, tuner heating has been reduced by a factor of five in the new version. Redesign considerations discussed include tuner piston-to-housing alignment, tuner piston and housing materials and cooling configurations, and tuner piston sliding electrical contacts. The tuner redesign is also distinguished by a modular, more maintainable assembly.

  10. FY04 Engineering Technology Reports Technology Base

    SciTech Connect (OSTI)

    Sharpe, R M

    2005-01-27

    Lawrence Livermore National Laboratory's Engineering Directorate has two primary discretionary avenues for its investment in technologies: the Laboratory Directed Research and Development (LDRD) program and the ''Tech Base'' program. This volume summarizes progress on the projects funded for technology-base efforts in FY2004. The Engineering Technical Reports exemplify Engineering's more than 50-year history of researching and developing (LDRD), and reducing to practice (technology-base) the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and technical resources. This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Tech Base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. The objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; and (4) the initial scoping and

  11. KP-AP-2-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2-C Wholesale Power Rate Schedule KP-AP-2-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia to whom power may be transmitted pursuant to contracts between the Government, American Electric Power Service Corporation (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection LLC

  12. KP-AP-3-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3-C Wholesale Power Rate Schedule KP-AP-3-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia to whom power may be scheduled pursuant to contracts between the Government, American Electric Power Service Corporation (hereinafter called the Company), PJM Interconnection LLC (hereinafter called PJM), and the Customer. This rate

  13. Analysis of an AP600 intermediate-size loss-of-coolant accident

    SciTech Connect (OSTI)

    Boyack, B.E.; Lime, J.F.

    1995-09-01

    A postulated double-ended guillotine break of an AP600 direct-vessel-injection line has been analyzed. This event is characterized as an intermediate-break loss-of-coolant accident. Most of the insights regarding the response of the AP600 safety systems to the postulated accident are derived from calculations preformed with the TRAC-PF1/MOD2 code. However, complementary insights derived from a scaled experiment conducted in the ROSA facility, as well as insights based upon calculations by other codes, are also presented. Based upon the calculated and experimental results, the AP600 will not experience a core heat up and will reach a safe shutdown state using only safety-class equipment. Only the early part of the long-term cooling period initiated by In-containment Refueling Water Storage Tank injection was evaluated. Thus, the observation that the core is continuously cooled should be verified for the later phase of the long-term cooling period when sump injection and containment cooling processes are important.

  14. DISCOVERY OF AN EXTENDED X-RAY JET IN AP LIBRAE

    SciTech Connect (OSTI)

    Kaufmann, S.; Wagner, S. J.; Tibolla, O.

    2013-10-20

    Chandra observations of the low-energy-peaked BL Lac object (LBL) AP Librae (AP Lib) revealed the clear discovery of a non-thermal X-ray jet. AP Lib is the first LBL with an extended non-thermal X-ray jet that shows emission into the very high energy range. The X-ray jet has an extension of ∼15''(≈ 14 kpc). The X-ray jet morphology is similar to the radio jet observed with Very Large Array at 1.36 GHz emerging in the southeast direction and bends by 50° at a distance of 12'' toward the northeast. The intensity profiles of the X-ray emission studied are consistent with those found in the radio range. The spectral analysis reveals that the X-ray spectra of the core and jet region are both inverse-Compton-(IC)-dominated. This adds to a still small sample of BL Lac objects whose X-ray jets are IC-dominated and thus more similar to the high-luminosity Fanaroff-Riley II sources than to the low-luminosity Fanaroff-Riley I objects, which are usually considered to be the parent population of BL Lac objects.

  15. Tank 241-AP-105, cores 208, 209 and 210, analytical results for the final report

    SciTech Connect (OSTI)

    Nuzum, J.L.

    1997-10-24

    This document is the final laboratory report for Tank 241-AP-105. Push mode core segments were removed from Risers 24 and 28 between July 2, 1997, and July 14, 1997. Segments were received and extruded at 222-S Laboratory. Analyses were performed in accordance with Tank 241-AP-105 Push Mode Core Sampling and Analysis Plan (TSAP) (Hu, 1997) and Tank Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995). None of the subsamples submitted for total alpha activity (AT), differential scanning calorimetry (DSC) analysis, or total organic carbon (TOC) analysis exceeded the notification limits as stated in TSAP and DQO. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group, and are not considered in this report. Appearance and Sample Handling Two cores, each consisting of four segments, were expected from Tank 241-AP-105. Three cores were sampled, and complete cores were not obtained. TSAP states core samples should be transported to the laboratory within three calendar days from the time each segment is removed from the tank. This requirement was not met for all cores. Attachment 1 illustrates subsamples generated in the laboratory for analysis and identifies their sources. This reference also relates tank farm identification numbers to their corresponding 222-S Laboratory sample numbers.

  16. Project W-519 CDR supplement: Raw water and electrical services for privatization contractor, AP tank farm operations

    SciTech Connect (OSTI)

    Parazin, R.J.

    1998-07-31

    This supplement to the Project W-519 Conceptual Design will identify a means to provide RW and Electrical services to serve the needs of the TWRS Privatization Contractor (PC) at AP Tank Farm as directed by DOE-RL. The RW will serve the fire suppression and untreated process water requirements for the PC. The purpose of this CDR supplement is to identify Raw Water (RW) and Electrical service line routes to the TWRS Privatization Contractor (PC) feed delivery tanks, AP-106 and/or AP-108, and establish associated cost impacts to the Project W-519 baseline.

  17. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  18. INTERIM REPORT FOR HANFORD TANKS AY-102 & AP-101 EFFECT OF CHEMISTRY & OTHER VARIABLES ON CORROSION & STRESS CORROSION CRACKING

    SciTech Connect (OSTI)

    HARTY, W.M.

    2007-05-05

    The objective of this work is to determine the range of conditions where the tank steel is susceptible to localized corrosion and SCC in simulants for waste in tanks AY-102 and AP-101.

  19. Computer-Aided Engineering | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Computer-Aided Engineering Illustration of an offshore wind turbine on a barge with an illustration of how the moorings would work. A simulation of a 5-MW wind turbine on an offshore semi-submersible with catenary moorings. The National Wind Technology Center (NWTC) at NREL develops advanced computer-aided engineering (CAE) tools to support the wind and water power industries with state-of-the-art design and analysis capabilities. We have developed many software tools that produce realistic

  20. Recent Stirling engine loss - understanding results

    SciTech Connect (OSTI)

    Tew, R.C.; Thieme, L.G.; Dudenhoefer, J.E.

    1994-09-01

    For several years, the National Aeronautics and Space Administration and other US Government agencies have been funding experimental and analytical efforts to improve the understanding of Stirling thermodynamic losses. NASA`s objective is to improve Stirling engine design capability to support the development of new engines for space power. An overview of these efforts was last given at the 1988 IECEC. Recent results of this research are reviewed.

  1. Materials Engineering Research Facility | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  2. SUPPORT FOR HU CFRT SUMMER HIGH SCHOOL FUSION WORKSHOP

    SciTech Connect (OSTI)

    Punjabi, Alkesh

    2010-02-09

    Nine summer fusion science research workshops for minority and female high school students were conducted at the Hampton University Center for Fusion Research and Training from 1996 to 2005. Each workshop was of the duration of eight weeks. In all 35 high school students were mentored. The students presented 28 contributed papers at the annual meetings of the American Physical Society Division of Plasma Physics. These contributed papers were very well received by the plasma physics and fusion science research community. The students won a number of prestigious local, state, and national honors, awards, prizes, and scholarships. The notable among these are the two regional finalist positions in the 1999 Siemens-Westinghouse Science and Technology Competitions; 1st Place U.S. Army Award, 2006; 1st Place U.S. Naval Science Award, 2006; Yale Science and Engineering Association Best 11th Grade Project, 2006; Society of Physics Students Book Award, 2006; APS Corporate Minority Scholarship and others. This workshop program conducted by the HU CFRT has been an exemplary success, and served the minority and female students exceptionally fruitfully. The Summer High School Fusion Science Workshop is an immensely successful outreach activity conducted by the HU CFRT. In this workshop, we train, motivate, and provide high quality research experiences to young and talented high school scholars with emphasis on under-represented minorities and female students in fusion science and related areas. The purpose of this workshop is to expose minority and female students to the excitement of research in science at an early stage in their academic lives. It is our hope that this may lead the high school students to pursue higher education and careers in physical sciences, mathematics, and perhaps in fusion science. To our knowledge, this workshop is the first and only one to date, of fusion science for under-represented minorities and female high school students at an HBCU. The faculty

  3. Evaluation of the Scaling of the APEX-1000 Test Facility to AP1000 for Design Basis Events

    SciTech Connect (OSTI)

    Wright, Richard F.; Gagnon, Andre; Skinner, Jesse; Groome, John

    2004-07-01

    The AP1000 is a 1000 MWe advanced nuclear power plant that uses passive safety features to enhance plant safety and to provide significant and measurable improvements in plant simplification, reliability, investment protection and plant costs. The AP1000 relies heavily on the 600 MWe AP600 which received design certification in 1999. A critical part of the AP600 design certification process involved the testing of the passive safety systems. A one-fourth height, one-fourth pressure test facility, APEX-600, was constructed at the Oregon State University to study design basis events, and to provide a body of data to be used to validate the computer models used to analyze the AP600. This facility was extensively modified to reflect the design changes for AP1000 including higher power in the electrically heated rods representing the reactor core, and changes in the size of the pressurizer, core makeup tanks and automatic depressurization system. Several design basis events have been simulated at APEX-1000 including double-ended direct vessel injection (DEDVI) line break, 2-inch cold leg break, and inadvertent actuation of the automatic depressurization system. These events were analyzed as part of the AP1000 safety analysis using the NOTRUMP computer code. Applying the scaling factors that were used to size the APEX-1000 facility, the test results can be compared to the NOTRUMP plant simulations. These comparisons indicate the similarity between the design basis events in AP1000 and APEX-1000, the adequacy of the scaling of APEX-1000, and the applicability of the NOTRUMP code. (authors)

  4. Meteorological Support at the Savanna River Site

    SciTech Connect (OSTI)

    Addis, Robert P.

    2005-10-14

    The Department of Energy (DOE) operates many nuclear facilities on large complexes across the United States in support of national defense. The operation of these many and varied facilities and processes require meteorological support for many purposes, including: for routine operations, to respond to severe weather events, such as lightning, tornadoes and hurricanes, to support the emergency response functions in the event of a release of materials to the environment, for engineering baseline and safety documentation, as well as hazards assessments etc. This paper describes a program of meteorological support to the Savannah River Site, a DOE complex located in South Carolina.

  5. Improved Pharmacological and Structural Properties of HIV Fusion Inhibitor AP3 over Enfuvirtide: Highlighting Advantages of Artificial Peptide Strategy

    DOE PAGES-Beta [OSTI]

    Zhu, Xiaojie; Zhu, Yun; Ye, Sheng; Wang, Qian; Xu, Wei; Su, Shan; Sun, Zhiwu; Yu, Fei; Liu, Qi; Wang, Chao; et al

    2015-08-19

    Enfuvirtide (T20), is the first HIV fusion inhibitor approved for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, its clinical application is limited because of short half-life, drug resistance and cross-reactivity with the preexisting antibodies in HIV-infected patients. Using an artificial peptide strategy, we designed a peptide with non-native protein sequence, AP3, which exhibited potent antiviral activity against a broad spectrum of HIV-1 strains, including those resistant to T20, and had remarkably longer in vivo half-life than T20. While the preexisting antibodies in HIV-infected patients significantly suppressed T20’s antiviral activity, these antibodies neither recognizedmore » AP3, nor attenuated its anti-HIV-1 activity. Structurally different from T20, AP3 could fold into single-helix and interact with gp41 NHR. The two residues, Met and Thr, at the N-terminus of AP3 form a hook-like structure to stabilize interaction between AP3 and NHR helices. Therefore, AP3 has potential for further development as a new HIV fusion inhibitor with improved antiviral efficacy, resistance profile and pharmacological properties over enfuvirtide. Meanwhile, this study highlighted the advantages of artificially designed peptides, and confirmed that this strategy could be used in developing artificial peptide-based viral fusion inhibitors against HIV and other enveloped viruses.« less

  6. ATS materials support

    SciTech Connect (OSTI)

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K.; Holcomb, R.S.; Rawlins, M.H.

    1996-12-31

    The technology based portion of the Advanced Turbine System Program (ATS) contains several subelements which address generic technology issues for land-base gas turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National laboratory (ORNL) for the Department of Energy. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. The materials manufacturing subelement was developed with input from gas turbine manufacturers, material suppliers, government laboratories and universities. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single-crystal airfoil manufacturing technologies, materials characterization and technology information exchange. Westinghouse Power Generation and Pratt and Whitney each have material programs to develop dependable TBCs that enable increased turbine inlet temperatures while maintaining airfoil substrate temperatures at levels to meet the ATS life goals. Howmet and PCC Airfoils each have projects to extend the capability of single-crystal complex-cored airfoil technology to larger sizes so that higher turbine inlet temperatures can be attained in land-based turbines in a cost-effective manner. Materials characterization tasks are ongoing on TBCs in support of the industrial projects. In addition, a project on long-term testing of ceramics and ceramic-matrix composites for gas turbines is being conducted in support of programs at Solar Turbines, Allison Engines, and Westinghouse Power Generation.

  7. 2011 APS-DPP Poster Session, Salt Lake City, UT | Princeton Plasma Physics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lab APS-DPP Poster Session, Salt Lake City, UT View larger image DSCN 0030 View larger image DSCN 0031 View larger image DSCN 0032 View larger image DSCN 0033 View larger image DSCN 0035 View larger image DSCN 0037 View larger image DSCN 0039 View larger image DSCN 0040 View larger image DSCN 0041 View larger image DSCN 0042 View larger image DSCN 0043 View larger image DSCN 0045 View larger image DSCN 0047 View larger image DSCN 0049 View larger image DSCN 0050 View larger image DSCN 0051

  8. 2012 APS-DPP Plasma Science Expo, Providence, RI | Princeton Plasma Physics

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Lab APS-DPP Plasma Science Expo, Providence, RI View larger image IMG 1847 View larger image IMG 1598 View larger image IMG 1608 View larger image IMG 1609 View larger image IMG 1614 View larger image IMG 1647 View larger image IMG 1650 View larger image IMG 1651 View larger image IMG 1657 View larger image IMG 1659 View larger image IMG 1662 View larger image IMG 1663 View larger image IMG 1664 View larger image IMG 1668 View larger image IMG 1672 View larger image IMG 1675 View larger

  9. Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste

    SciTech Connect (OSTI)

    Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.; Farmer, O.T.; Greenwood, L.R.; Hoppe, E.W.; Hoopes, F.V.; Lumetta, G.J.; Mong, G.M.; Ratner, R.T.; Soderquist, C.Z.; Steele, M.J.; Swoboda, R.G.; Urie, M.W.; Wagner, J.J.

    2000-10-17

    Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.

  10. VERA Modeling and Simulation of the AP1000 PWR Cycle 1 Depletion

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    CASL-U-2015-0302-000 VERA Modeling and Simulation of the AP1000 PWR Cycle 1 Depletion L3:VMA.AMA.P11.06 David Salazar, Westinghouse Fausto Franceschini, Westinghouse September 30, 2015 L3:VMA.AMA.P11.06 Official Use Only ii Protected under CASL Master NDA CASL-U-2015-0302-000 REVISION LOG Revision Date Affected Pages Revision Description 0 09/30/2015 All Initial issuance Document pages that are: Export Controlled ____________No______________________________________ IP/Proprietary/NDA

  11. The Phillips Stirling engine

    SciTech Connect (OSTI)

    Hargreaves, C.M.

    1991-01-01

    This book is about the Stirling engine and its development from the heavy cast-iron machine of the 19th century to that of today. It is a history of a research effort spanning nearly 50 years, together with an outline of principles, and some technical details and descriptions of the more important engines. Contents include: the hot-air engine; the 20th-century revival; the Stirling cycle; rhombic-drive engines; heating and cooling; pistons and seals; electric generators and heat pumps; exotic heat sources; the engine and the environment; swashplate engines; and the past and the future.

  12. Pilot summer program supports science teachers

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Pilot summer program supports science teachers Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit Pilot summer program supports science teachers Regional teachers learn about what "matters" July 1, 2013 Teachers expand their Science, Technology, Engineering and Math (STEM) skills during a pilot workshop New Mexico Public Education Department's Math and Science Director, Lesley

  13. Employee Giving Campaign supports community partnerships

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Employee Giving Campaign supports community partnerships Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit Employee Giving Campaign supports community partnerships A personal message from Alan Bishop, Principal Associate Director for Science, Technology, and Engineering, Los Alamos National Laboratory December 1, 2014 Alan Bishop, Principal Associate Director for Science, Technology, and

  14. ARM - Engineering Change Request & Engineering Change Order Guidelines

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    resources, as soon as possible, when operational, science, or engineering needs require a quick engineering response where no design or redesign is required. Engineering Consultant...

  15. ARM - Engineering Work Request & Engineering Work Order Guidelines

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Work Request & Engineering Work Order Guidelines Page Contents: Introduction Discussion of the ARM Climate Research Facility Engineering Process: The Engineering Change Request ...

  16. FY06 Engineering Research and Technology Report

    SciTech Connect (OSTI)

    Minichino, C; Alves, S W; Anderson, A T; Bennett, C V; Brown, C G; Brown, W D; Chinn, D; Clague, D; Clark, G; Cook, E G; Davidson, J C; Deri, R J; Dougherty, G; Fasenfest, B J; Florando, J N; Fulkerson, E S; Haugen, P; Heebner, J E; Hickling, T; Huber, R; Hunter, S L; Javedani, J; Kallman, J S; Kegelmeyer, L M; Koning, J; Kosovic, B; Kroll, J J; LeBlanc, M; Lin, J; Mariella, R P; Miles, R; Nederbragt, W W; Ness, K D; Nikolic, R J; Paglieroni, D; Pannu, S; Pierce, E; Pocha, M D; Poland, D N; Puso, M A; Quarry, M J; Rhee, M; Romero, C E; Rose, K A; Sain, J D; Sharpe, R M; Spadaccini, C M; Stolken, J S; Van Buuren, A; Wemhoff, A; White, D; Yao, Y

    2007-01-22

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2006. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out primarily through two internal programs: the Laboratory Directed Research and Development (LDRD) program and the technology base, or ''Tech Base'', program. LDRD is the vehicle for creating technologies and competencies that are cutting-edge, or require discovery-class research to be fully understood. Tech Base is used to prepare those technologies to be more broadly applicable to a variety of Laboratory needs. The term commonly used for Tech Base projects is ''reduction to practice''. Thus, LDRD reports have a strong research emphasis, while Tech Base reports document discipline-oriented, core competency activities. This report combines the LDRD and Tech Base summaries into one volume, organized into six thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Precision Engineering; Engineering Systems for Knowledge and Inference; and Energy Manipulation.

  17. FY08 Engineering Research and Technology Report

    SciTech Connect (OSTI)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  18. NASA Lewis Stirling engine computer code evaluation

    SciTech Connect (OSTI)

    Sullivan, T.J.

    1989-01-01

    In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Stirling engine performance code was evaluated by comparing code predictions without engine-specific calibration factors to GPU-3, P-40, and RE-1000 Stirling engine test data. The error in predicting power output was /minus/11 percent for the P-40 and 12 percent for the RE-1000 at design conditions and 16 percent for the GPU-3 at near-design conditions (2000 rpm engine speed versus 3000 rpm at design). The efficiency and heat input predictions showed better agreement with engine test data than did the power predictions. Concerning all data points, the error in predicting the GPU-3 brake power was significantly larger than for the other engines and was mainly a result of inaccuracy in predicting the pressure phase angle. Analysis into this pressure phase angle prediction error suggested that improvement to the cylinder hysteresis loss model could have a significant effect on overall Stirling engine performance predictions. 13 refs., 26 figs., 3 tabs.

  19. A combined cycle engine test facility

    SciTech Connect (OSTI)

    Engers, R.; Cresci, D.; Tsai, C.

    1995-09-01

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  20. ESnet Support for WAN Data Movement Eli Dart, Network Engineer

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... use of the network is now gated on two things * End system resources, particularly ... to major science networks (CENIC, Internet2) * Performance Assurance using ...

  1. Conduct of Engineering and Technical Support Procedure Manual

    Energy.gov [DOE]

    Defines a standard approach for the control of software and firmware that is not exempt per internal SQA Procedure(s).

  2. EM Contractors' Donations Support 4-Year Engineering Degree at...

    Office of Environmental Management (EM)

    USC Aiken Chancellor Sandra Jordan, and SRR President and Project Manager Ken Rueter. ... USC Aiken Chancellor Sandra Jordan, and SRR President and Project Manager Ken Rueter. ...

  3. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  4. ADMINISTRATIVE SUPPORT INFORMATION MANAGEMENT ADMINISTRATIVE...

    National Nuclear Security Administration (NNSA)

    ... DIRECTOR, BUSINESS MANAGEMENT R&D S&E, ELECTRICAL ENGINEERING DIRECTOR, COMMUNICATIONS ... CONSTRUCTION MANAGER CHEMISTRY ELECTRICAL ENGINEER CRYPTOGRAPHY FACILITIES ...

  5. Open loop compensation for the eddy current effect in the APS storage ring vacuum chamber

    SciTech Connect (OSTI)

    Chung, Y.; Bridges, J.; Emery, L.; Decker, G.

    1991-01-01

    In the third generation synchrotron light sources, closed orbit stabilization against external vibrations is critical to ensure low emittance and high brightness. The Advanced Photon Source (APS) will use a large number (678) of correction magnets to create local bumps and to achieve global orbit stabilization. In this paper, we will present the result of the effort to counter the effect due to the finite inductance of the magnet and the eddy current in the 1/2 in.-thick aluminum storage ring vacuum chamber. The amplitude attenuation and the phase shift of the correction magnet field inside the APS storage ring vacuum chamber were measured. A circuit to compensate for this effect was then inserted between the signal source and the magnet power supply. The amplitude was restored with an error of less than 20% of the source signal amplitude and the phase shift was reduced from 80{degrees} to 12{degrees} at 10 Hz. Incorporation of this circuit in the closed loop feedback scheme and the resulting beneficial effect in the closed orbit stabilization will be discussed. 4 refs., 4 figs.

  6. Symbiotic Engineering | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Symbiotic Engineering Jump to: navigation, search Name: Symbiotic Engineering Place: Boulder, CO Website: www.symbioticengineering.com References: Symbiotic Engineering1...

  7. ETA Engineering | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ETA Engineering Jump to: navigation, search Logo: ETA Engineering Name: ETA Engineering Address: 4049 E. Presidio St., Suite 117 Place: Mesa, Arizona Zip: 85215 Product: renewable...

  8. RESEARCH PERSONNEL AND ENGINEERING STAFF

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Research Scientist (20%) Engineering Staff Walter Chapman, Mech. Engineer - To 93002 Greg Derrig, Senior Mechanical Engineer Lee Norris, Instr. Shop Supervisor - From 10102 ...

  9. Tomorrow's Women Engineers

    Energy.gov [DOE]

    Middle school girls in Argonne, Illinois, will meet with women engineers to work together on hands-on projects.

  10. Polymer Engineering Center

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Polymer Engineering Center University of Wisconsin-Madison Experimental and Numerical Studies of the Temperature Field in Selective Laser Sintering to Improve Shrinkage and Warpage Prediction Prof. Dr.-Ing. Natalie Rudolph Polymer Engineering Center Department of Mechanical Engineering University of Wisconsin-Madison 1513 University Ave Madison, WI 53706 Advanced Qualification of Additive Manufacturing Materials Workshop, July 20-21, 2015 in Santa Fe, NM Polymer Engineering Center University of

  11. Weapon Systems Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Systems Engineering Weapon Systems Engineering Serving the nation and our allies by providing a safe, secure, and effective stockpile Contact Us Division Leader (acting), Program Director J. Patrick Garcia Email Deputy Division Leader (acting), Stockpile Integration Jay Carnes Email Division Office (505) 606-0068 Human Resources Contacts Andrea Gonzales (505) 665-8043 Jeremy Vonharders (505) 665-5993 Careers/Jobs LANL nuclear engineer demonstrates a 3-D model Bradley Cox, a nuclear engineer

  12. DOE Announces Up to $5 Million to Support the Next Generation of Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Automotive Designers and Engineers | Department of Energy Up to $5 Million to Support the Next Generation of Advanced Automotive Designers and Engineers DOE Announces Up to $5 Million to Support the Next Generation of Advanced Automotive Designers and Engineers February 16, 2011 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced up to $5 million in funding to support Graduate Automotive Technology Education (GATE) Centers of Excellence. The GATE Centers will focus

  13. Black Pine Engineering

    Energy.gov [DOE]

    Black Pine Engineering is commercializing a disruptive technology in the turbomachinery industry. Using a patented woven composite construction, Black Pine Engineering can make turbomachines (turbines, compressors) that are cheaper and lighter than competing technologies. Using this technology, Black Pine Engineering will sell turbo-compressors which solve the problem of wasted steam in geothermal power plants.

  14. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    SciTech Connect (OSTI)

    Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi; Turk, Tom; Sepčić, Kristina; Benoit, Evelyne; Frangež, Robert

    2012-12-01

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  15. ELECTRICAL SUPPORT SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    S. Roy

    2004-06-24

    The purpose of this revision of the System Design Description (SDD) is to establish requirements that drive the design of the electrical support system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience/users are design engineers. This type of SDD both ''leads'' and ''trails'' the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. The SDD trails the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to electrical support systems are obtained from the ''Project Functional and Operational Requirements'' (F&OR) (Siddoway 2003). Other requirements to support the design process have been taken from higher-level requirements documents such as the ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), and fire hazards analyses. The above-mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canon and Leitner 2003) requirements. This SDD contains several appendices that include supporting information. Appendix B lists key system charts, diagrams, drawings, and lists, and Appendix C includes a list of system procedures.

  16. AP-Cloud: Adaptive particle-in-cloud method for optimal solutions to Vlasov–Poisson equation

    DOE PAGES-Beta [OSTI]

    Wang, Xingyu; Samulyak, Roman; Jiao, Xiangmin; Yu, Kwangmin

    2016-04-19

    We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Here, simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less

  17. Supporting Data-Producing

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    ... Model (CESM) runs ANL * Integrating Simulation and Observation: Discovery Engines for Big Data * ASCRBES pilot (SNSAPS) HPCOR 2014, June 18-19, Oakland, CA 6 What are your ...

  18. Acoustic cooling engine

    DOE Patents [OSTI]

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  19. Mod II engine performance

    SciTech Connect (OSTI)

    Richey, A.E.; Huang, S.C.

    1987-01-01

    The Automotive Stirling Engine Program (ASE) is directed at the development of a kinematic Stirling engine for automotive use. This program is sponsored by the Department of Energy (DOE) and managed by the NASA-Lewis Research Center (NASA-LeRC). Following proof-of-concept testing and development of promising performance values with early versions of the Stirling engine, a production-type automotive design, the Mod II engine, was developed. The design of this engine and its systems has been previously presented. Based on this design, the first engine has been built and development testing has started. Projections for this first engine build are presented in this paper. Results of initial tests are also given including identification of development items and formulation of plans for resolution of existing deficiencies.

  20. Engine intake system

    SciTech Connect (OSTI)

    Kanesaka, H.

    1989-02-07

    An intake system is described for an internal combustion engine, the system comprising: an intake passage having an intake port and an inertial supercharging intake pipe leading to the intake port; an intake valve mounted in the intake port and operatively connected to the engine for alternately opening and closing the intake port; a rotary valve operatively connected to the engine and disposed in the intake passage intermediate the inertial supercharging intake pipe and the intake port. The rotary valve is rotatable for opening and closing the intake passage, and timing adjusting means operatively connected to the engine and to the rotary valve for retarding the opening of the rotary valve relative to the opening of the intake valve at low engine speeds, and for advancing the opening of the rotary valve at high engine speeds, whereby the retarding and advancing of the opening of the rotary valve enables inertial supercharging in the intake pipe at both low and high engine speeds.

  1. Introduce a Girl to Engineering | Y-12 National Security Complex

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Introduce a Girl to ... Introduce a Girl to Engineering The mp4 video format is not supported by this browser. Download video Captions: On Time: 3:35 min. Consolidated Nuclear Security, LLC hosted some 150 female high school students from five area schools as part of Introduce a Girl to Engineering. The goal of the event was to inspire girls to consider careers in science, technology, engineering and math

  2. Effects of ethanol on small engines and the environment

    SciTech Connect (OSTI)

    Bettis, M.D.

    1995-01-09

    With the support of the Missouri Corn Merchandising Council and the Department of Energy, Northwest Missouri State University conducted an applied research project to investigate the effects of the commercially available ethanol/gasoline fuel blend on small engines. The study attempted to identify any problems when using the 10% ethanol/gasoline blend in engines designed for gasoline and provide solutions to the problems identified. Fuel economy, maximum power, internal component wear, exhaust emissions and engine efficiency were studied.

  3. Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Progress Report | Department of Energy Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low

  4. Vehicle Technologies Office: 2015 Advanced Combustion Engine Annual

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Progress Report | Department of Energy Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2015 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low

  5. High Efficiency Engine Technologies Program

    SciTech Connect (OSTI)

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in

  6. Idaho Science, Technology, Engineering and Mathematics Overview

    SciTech Connect (OSTI)

    2011-01-01

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  7. Idaho Science, Technology, Engineering and Mathematics Overview

    ScienceCinema (OSTI)

    None

    2013-05-28

    Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  8. Sandia National Laboratories: Careers: Business Support & Operations

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Business Support & Operations Photo of Sandia staff Solving the world's most challenging technical problems requires the support of business and operations professionals. Sandia is rich in opportunities for business support and operations professionals to use their education and experience to build flexible solutions in a dynamic research-and-development environment. Our support and operations personnel partner with internationally recognized scientists and engineers to solve the most

  9. FY2014 Advanced Combustion Engine Annual Progress Report

    SciTech Connect (OSTI)

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  10. A systems engineering primer for every engineer and scientist

    SciTech Connect (OSTI)

    Edwards, William R.

    2001-12-10

    The Systems Engineering (SE) staff at LBNL has generated the following artifacts to assist projects with implementing a systems approach: (1) The present document that focuses on the what, why, and when of SE. It also provides a simple case-study to illustrate several SE tasks. (2) A web site with primary emphasis on the project life-cycle and workflow, (http://www-eng.LBNL.gov/Systems/index.html). It includes: SE guidelines and principles; A list of in-house tools; Templates; Case studies with ''how to'' examples; and Links to useful SE material. These sources are living documents to be updated as necessary. The viewpoint adopted in this document is that what LBNL engineers and scientists need is a set of principles and guiding practices for developing R and D systems rather than a ''cookbook''. There are many excellent ''how to'' resources such as the ''INCOSE Systems Engineering Handbook'' to guide those in search of more details. The SE staff is another resource available to consult and support projects. This document specifies SE principles and activities that are applicable to all LBNL projects independent of their specific differences. Each project should tailor the SE implementation to meet its individual needs and culture including project-specific resources, procedures, products, and tools.

  11. Mechanical Engineering Department technical review

    SciTech Connect (OSTI)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E

    1982-01-01

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  12. Overview of Engine Combustion Research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Robert W. Carling; Gurpreet Singh

    1999-04-26

    The objectives of this paper are to describe the ongoing projects in diesel engine combustion research at Sandia National Laboratories' Combustion Research Facility and to detail recent experimental results. The approach we are employing is to assemble experimental hardware that mimic realistic engine geometries while enabling optical access. For example, we are using multi-cylinder engine heads or one-cylinder versions of production heads mated to one-cylinder engine blocks. Optical access is then obtained through a periscope in an exhaust valve, quartz windows in the piston crown, windows in spacer plates just below the head, or quartz cylinder liners. We have three diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, and a one-cylinder Caterpillar engine to evaluate combustion of alternative diesel fuels.

  13. Analysis of large scale tests for AP-600 passive containment cooling system

    SciTech Connect (OSTI)

    Sha, W.T.; Chien, T.H.; Sun, J.G.; Chao, B.T.

    1997-07-01

    One unique feature of the AP-600 is its passive containment cooling system (PCCS), which is designed to maintain containment pressure below the design limit for 72 hours without action by the reactor operator. During a design-basis accident, i.e., either a loss-of-coolant or a main steam-line break accident, steam escapes and comes in contact with the much cooler containment vessel wall. Heat is transferred to the inside surface of the steel containment wall by convection and condensation of steam and through the containment steel wall by conduction. Heat is then transferred from the outside of the containment surface by heating and evaporation of a thin liquid film that is formed by applying water at the top of the containment vessel dome. Air in the annual space is heated by both convection and injection of steam from the evaporating liquid film. The heated air and vapor rise as a result of natural circulation and exit the shield building through the outlets above the containment shell. All of the analytical models that are developed for and used in the COMMIX-ID code for predicting performance of the PCCS will be described. These models cover governing conservation equations for multicomponents single phase flow, transport equations for the {kappa}-{epsilon} two-equation turbulence model, auxiliary equations, liquid-film tracking model for both inside (condensate) and outside (evaporating liquid film) surfaces of the containment vessel wall, thermal coupling between flow domains inside and outside the containment vessel, and heat and mass transfer models. Various key parameters of the COMMIX-ID results and corresponding AP-600 PCCS experimental data are compared and the agreement is good. Significant findings from this study are summarized.

  14. Mission Support - Hanford Site

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mission Support Richland Operations Office Richland Operations Office River Corridor Central Plateau Groundwater Mission Support Long-Term Stewardship HAMMER Newsroom Mission Support Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size MissionSupportCollage The Richland Operations Office's Mission Support organization provides both DOE offices and the entire Hanford Site with quality, cost-effective infrastructure and support services to enable the cleanup mission to

  15. Emergency Support Function #12; Energy Annex - Support Agencies...

    Energy Savers

    Annex - Support Agencies Emergency Support Function 12; Energy Annex - Support Agencies Emergency Support Function 12 - Energy Annex - Support Agencies and their related...

  16. Mine roof support system

    SciTech Connect (OSTI)

    Culley, D.H.

    1982-01-26

    A mine roof support system is disclosed having sets of laterally spaced pairs of elongated support members adapted to be moved into and out of abutting relation with a mine roof. Wheel supported frames extend between and connect adjacent end portions of each pair of support members with adjacent wheel supported frames at the ends of the support members being in spaced tandem relation and connected to each other by connector members. Extensible prop members are connected to and move the wheel supported frames and the elongated support members connected thereto selectively toward and away from the mine roof.

  17. Two-Phase Natural Circulation Flow in AP-1000 In-Vessel Retention-Related ULPU-V Facility Experiments

    SciTech Connect (OSTI)

    Dinh, T.N.; Tu, J.P.; Theofanous, T.G.

    2004-07-01

    This paper is concerned with two-phase flow regimes and characteristics of coolant natural circulation around a reactor pressure vessel (RPV) in in-vessel retention (IVR) scenarios when the external vessel flooding is applied to arrest a hypothetical core melt accident. We focus on the AP1000 advanced plant design, and factors of potential importance to the coolant flow and the limit of coolability in IVR. This paper presents a synthesis of experimental results obtained in the ULPU-V facility, which simulates the AP1000 reactor geometry. We provide an analysis and interpretation of the ULPU-V observations, and discuss their relevant to the IVR performance. (authors)

  18. Advanced System for Process Engineering

    Energy Science and Technology Software Center (OSTI)

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  19. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid

    SciTech Connect (OSTI)

    Charron, Richard; Pierce, Daniel

    2015-02-24

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. As such, the shaft cover support accomplishes in a single component what was only partially accomplished in two components in conventional configurations. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the engine. The shaft cover support has a radially extending region that is offset from the inlet and outlet that enables the shaft cover support to surround the transition, thereby reducing the overall length of this section of the engine.

  20. Stirling cycle rotary engine

    SciTech Connect (OSTI)

    Chandler, J.A.

    1988-06-28

    A Stirling cycle rotary engine for producing mechanical energy from heat generated by a heat source external to the engine, the engine including: an engine housing having an interior toroidal cavity with a central housing axis for receiving a working gas, the engine housing further having a cool as inlet port, a compressed gas outlet port, a heated compressed gas inlet port, and a hot exhaust gas outlet port at least three rotors each fixedly mounted to a respective rotor shaft and independently rotatable within the toroidal cavity about the central axis; each of the rotors including a pair of rotor blocks spaced radially on diametrically opposing sides of the respective rotor shaft, each rotor block having a radially fixed curva-linear outer surface for sealed rotational engagement with the engine housing.

  1. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  2. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  3. Integrated and Engineered Systems

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Integrated and Engineered Systems Integrated and Engineered Systems National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact thumbnail of Business Development Executive Miranda Intrator Business Development Executive Richard P. Feynmnan Center for Innovation (505) 665-8315 Email Engineers at Los Alamos create, design, and build the

  4. Systems Engineering | Wind | NREL

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Systems Engineering and Integration Systems Engineering and Integration Systems Engineering and Integration The fuel cycle in use today in the United States faces challenges in achieving the goals of sustainability. While used fuel is safely stored at reactor sites, the development of a system to manage all of the waste now and in the future has proven to be a persistently difficult task. Uncertainties about long-term resource availability make it difficult to properly value reusable material in

  5. Science & Engineering Capabilities

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Capabilities Science & Engineering Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy solutions to supercomputing. Accelerators, Electrodynamics» Energy» Materials Science» Bioscience: Bioenergy, Biosecurity, and Health» Engineering» National Security, Weapons Science» Chemical Science» High-Energy-Density Plasmas, Fluids»

  6. Explore: Mechanical Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Mechanical Engineering Explore a Career: Mechanical Engineering The work of mechanical engineers can be seen in everything from the design and fabrication of space-based custom instrumentation, to the development of new, innovative solutions for the nation's nuclear security problems. Super Cam and Chem Cam photographed to scale. Super Cam and Chem Cam photographed to scale. At Los Alamos National Laboratory, there is no shortage of challenge and career excitement for our highly skilled

  7. Electrical Engineer (Project Manager)

    Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Maintenance, Engineering & Construction Facility...

  8. Internal Combustion Engine Basics

    Energy.gov [DOE]

    Internal combustion engines provide outstanding drivability and durability, with more than 250 million highway transportation vehicles in the United States relying on them.

  9. Recent Graduate- Electrical Engineer

    Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Operations Engineering (J4200) 5555...

  10. XML Engineering Environment

    Energy Science and Technology Software Center (OSTI)

    2006-07-27

    The XML Engineering Environment is a reconfigurable software system that allows users to translate, enhance and route data from sources to sinks.

  11. Internet strategies for engineers

    SciTech Connect (OSTI)

    Hill, K.; Beruvides, M.G.

    1997-11-01

    This report contains viewgraphs on using internet strategies for engineers. How the internet is being used and what problems are being encountered are being considered.

  12. ARM - Engineering Processes

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Processes Workflow Graphic Engineering Workflow Document Tools for Workflow ECR ECO BCR Ingests Value-Added Products Reprocessing Instruments Data System Elements Field...

  13. Nuclear Power & Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management ...

  14. Supervisory Electrical Engineer

    Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Maintenance, (J5640) Engineering and Construciton 5555 E....

  15. Stirling engine heating system

    SciTech Connect (OSTI)

    Johansson, L.N.; Houtman, W.H.; Percival, W.H.

    1988-06-28

    A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.

  16. SCADA Engineering Solutions

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  17. Engine and method for operating an engine

    DOE Patents [OSTI]

    Lauper, Jr., John Christian; Willi, Martin Leo; Thirunavukarasu, Balamurugesh; Gong, Weidong

    2008-12-23

    A method of operating an engine is provided. The method may include supplying a combustible combination of reactants to a combustion chamber of the engine, which may include supplying a first hydrocarbon fuel, hydrogen fuel, and a second hydrocarbon fuel to the combustion chamber. Supplying the second hydrocarbon fuel to the combustion chamber may include at least one of supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into an intake system of the engine and supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into the combustion chamber. Additionally, the method may include combusting the combustible combination of reactants in the combustion chamber.

  18. Career Map: Industrial Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Engineer Career Map: Industrial Engineer Two industrial engineers analyze data on a computer. Industrial Engineer Position Title Industrial Engineer Alternate Title(s) Production Engineer, Process Engineer, Manufacturing Engineer, Industrial Production Manager Education & Training Level Advanced, Bachelors required, prefer graduate degree Education & Training Level Description Industrial engineers should have a bachelor's degree in industrial engineering. Employers also value

  19. Career Map: Research Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Engineer Career Map: Research Engineer Two research engineers wearing safety glasses view results of an experiment. Research Engineer Position Title Research Engineer Alternate Title(s) Government Engineer, Research and Development Engineer, Basic Research Engineer, Component Researcher, Materials Engineer Education & Training Level Bachelor's degree required, prefer graduate degree Education & Training Level Description Research engineers must have a bachelor's degree. Employers value

  20. Perturbing engine performance measurements to determine optimal engine control settings

    DOE Patents [OSTI]

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  1. Cell–scaffold interaction within engineered tissue

    SciTech Connect (OSTI)

    Chen, Haiping; Liu, Yuanyuan Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  2. Engine cycle design considerations for nuclear thermal propulsion systems

    SciTech Connect (OSTI)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T. )

    1993-01-20

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown.

  3. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability

    DOE PAGES-Beta [OSTI]

    Parplys, Ann C.; Zhao, Weixing; Sharma, Neelam; Groesser, Torsten; Liang, Fengshan; Maranon, David G.; Leung, Stanley G.; Grundt, Kirsten; Dray, Eloïse; Idate, Rupa; et al

    2015-08-31

    NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintainingmore » wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Finally, our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.« less

  4. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  5. Quarterly Nuclear Deployment Summary, July 2012 | Department...

    Energy Savers

    to support engineering, design certification and licensing ... UTILITY SITE LOCATION REACTOR NO. UNITS COLA DATES ... Nuclear Vogtle GA AP10001 2 33108 53008 21012 ...

  6. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  7. Stirling engine piston ring

    SciTech Connect (OSTI)

    Howarth, R.B.

    1983-12-27

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring. 2 figs.

  8. Stirling engine piston ring

    DOE Patents [OSTI]

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  9. Engineering Division Superconducting

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    & Engineering Division Superconducting Magnet Technology for Fusion and Large Scale Applications Joseph V. Minervini Massachusetts Institute of Technology Plasma Science and Fusion Center Princeton Plasma Physics Laboratory Colloquium Princeton, NJ October 15, 2014 Technology & Engineering Division Contents * Fusion Magnets - Present and Future - Vision - State-of-the-art - New developments in superconductors * Advanced fusion magnet technology * Other large scale applications of

  10. Free piston stirling engines

    SciTech Connect (OSTI)

    Walker, C.

    1985-01-01

    This book presents a basic introduction to free piston Stirling engine technology through a review of specialized background material. It also includes information based on actual construction and operation experience with these machines, as well as theoretical and analytical insights into free piston Stirling engine technology.

  11. History & Reflections of Engineering at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Lafranchi, E

    2002-04-18

    I thought it was important to relate how this project began. Jens Mahler, Mechanical Engineering Deputy Associate Director, recalls that during a discussion between him and Wally Decker, Wally suggested that he document the significant events and the organization of the Mechanical Engineering Department since 1952, i.e., write a history of Mechanical Engineering. Jens agreed that Wally should begin this effort. Upon learning of this, Dave Pehrson, Deputy Associate Director for Engineering, suggested that the History be expanded to include Electronics Engineering and that it be called A History of Engineering. Dave asked me to join Wally on this effort and, unfortunately, Wally died shortly after I started. In the first part of this History, I have attempted to capture the important contributions that Engineering has made to the Programs, since Engineering's primary mission is to provide ''support to the Laboratory Programs.'' In the later parts you will find views discussing the development and application of Engineering's technology base. While Engineering's direct programmatic support had first priority, Engineering had other responsibilities as well. Some of these were to hire and train a competent technical and leadership staff, to anticipate and develop engineering technologies for future use by the Programs, to provide support to institutional activities, to be the vehicle for internal technology transfer, to provide for the movement of personnel between Programs, to groom individuals to assume programmatic and institutional leadership positions, and to develop, operate, and maintain facilities. Engineering developed the reputation as ''the flywheel of the Laboratory.'' It was also known as willing to provide people for tasks broader than just primarily technical roles, such as membership on salary review committees, and members and chairs of the student policy committees and safety groups. This History is not a compilation of facts only but a reflection by

  12. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  13. FY2013 Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect (OSTI)

    None

    2013-12-01

    Annual progress report on the work of the the Advanced Combustion Engine Program. The Advanced Combustion Engine Program supports the Vehicle Technologies Office mission by addressing critical technical barriers to commercializing higher efficiency, very low emissions, advanced combustion engines for passenger and commercial vehicles that meet future federal emissions regulations.

  14. FY2012 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect (OSTI)

    None

    2013-02-01

    Annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  15. Metabolic Engineering VII Conference

    SciTech Connect (OSTI)

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  16. Thermoacoustic engines and refrigerators

    SciTech Connect (OSTI)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  17. Reactor vessel support system

    DOE Patents [OSTI]

    Golden, Martin P.; Holley, John C.

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  18. Two-Stroke Engines: New Frontier in Engine Efficiency

    Energy.gov [DOE]

    Companies are revisiting two-stroke engines in the hopes of finding a new frontier in engine efficiency without the additional cost. But, not all two-stroke engines are the same.

  19. NREL and Partners to Provide up to $13.5 Million to Support Natural Gas

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Engine and Vehicle Development - News Releases | NREL and Partners to Provide up to $13.5 Million to Support Natural Gas Engine and Vehicle Development September 20, 2010 Together, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), the California Energy Commission (CEC), and the South Coast Air Quality Management District (SCAQMD) will invest up to $13.5 million to support the development of natural gas engines and vehicles. As part of the cost-shared projects,

  20. Department of Energy Announces Funding to Support the Next Generation of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    American Scientists and Engineers | Department of Energy to Support the Next Generation of American Scientists and Engineers Department of Energy Announces Funding to Support the Next Generation of American Scientists and Engineers March 10, 2011 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced the launch of two new fellowship programs designed to attract the country's best and brightest scientific minds to work on advanced clean energy

  1. Condensation in the presence of noncondensible gases: AP600 containment simulation

    SciTech Connect (OSTI)

    Anderson, M.H.; Corradini, M.L.

    1995-09-01

    The Westinghouse Electric Corporation has designed an advanced pressurized light water reactor, AP600. This reactor is designed with a passive cooling system to remove sensible and decay heat from the containment. The heat removal path involves condensation heat transfer, aided by natural convective forces generated by buoyancy effects. A one-twelfth scale rectangular slice of the proposed reactor containment was constructed at the University of Wisconsin to simulate conditions anticipated from transients and accidents that may occur in a full scale containment vessel under a variety of conditions. Similitude of the test facility was obtained by considering the appropriate dimensionless group for the natural convective process (modified Froude number) and the aspect ratio (H/R) of the containment vessel. An experimental investigation to determine the heat transfer coefficients associated with condensation on a vertical and horizontal cooled wall (located in the scaled test section) at several different inlet steam flow rates and test section temperatures was conducted. In this series of experiments, the non-condensible mass fraction varied between (0.9-0.4) with corresponding mixture temperatures between 60-90{degrees}C. The heat transfer coefficients of the top horizontal surface varied from (82-296)W/m{sup 2}K and the vertical side heat transfer coefficients varied form (70-269)m{sup 2}K. The results were then compared to boundary layer heat and mass transfer theory by the use of the McAdams correlation for free convection.

  2. A new diffractometer for high energy synchrotron radiation at the elliptical multipole wiggler at the APS.

    SciTech Connect (OSTI)

    Ruett, U.

    1998-08-06

    The use of high energy synchrotrons radiation (above 80 keV) for diffraction experiments offers many advantages resulting from the high penetration depth of the high energy photons and the small Bragg angles. The main features are: the possibility for the study of large sample crystals in transmission geometry, simple sample environments, high instrumental resolution in reciprocal space, the ability to utilize high momentum transfers and small correction factors for scattered intensities. The experiments performed at this kind of diffractometer are mainly flux experiments, in which the only requirement is a relatively small angular divergence for the incident beam in the scattering plane. The new triple crystal diffractometer introduced here will be installed at the elliptical multipole wiggler beamline at the Advanced Photon Source (APS), Because of the high critical energy of this device, 32 keV, the wiggler will produce high intensities at very high photon energies. To collect up to 1 mrad of the horizontal divergence of the beam, a bent annealed silicon monochromator will scatter and focus in the horizontal scattering plane. The diffractometer will be operated in the vertical scattering plane taking advantage of the small vertical beam divergence.

  3. Constant-current charging supplies for the Advanced Photon Source (APS) linear accelerator modulators

    SciTech Connect (OSTI)

    Fuja, R.; Grelick, A.E.; Meyer, D.

    1997-06-01

    The APS linac beam energy must be stable to within {+-}1% to match the energy acceptance of the positron accumulator ring. The klystron pulse modulators must therefore provide a pulse-to-pulse repeatability of 0.1% in order for the beam to have the required energy stability. The modulators have had difficulty achieving the necessary repeatability since the pulse forming network (PFN) charging scheme does not include a deQing circuit. Several of the major charging circuit components are also less reliable than desired. In order to increase operating reliability and to improve pulse-to-pulse stability, it is planned to replace the high voltage power supplies in all modulators with constant-current power supplies. A new modulator charging supply that contains two EMI series 303 constant-current power supplies was constructed. Each of these EMI supplies delivers 1.5 A at up to 40 kV. One supply is sufficient for linac operation at up to 45 Hz, and two supplies in parallel enable linac operation at the nominal rf repetition rate of 60 Hz. This paper discusses test results from the new modulator, and also describes the existing modulators and their performance limitations.

  4. A linear MOSFET regulator for improving performance of the booster ramping power supplies at the APS.

    SciTech Connect (OSTI)

    Feng, G.; Deriy, B.; Wang, J.; Accelerator Systems Division

    2008-01-01

    The APS booster ring uses ramping power supplies to power the sextupole, quadrupole, and dipole magnets as the beam energy ramps up linearly to 7 GeV. Due to the circuit topology used, those supplies are unable to follow the linear ramp to the desired accuracy. The best regulation achieved is 0.25% while 0.1% is desired. In addition to the unsatisfying regulation, those supplies are sensitive to AC line perturbation and are not able to reject AC line noises of more than a few tens of hertz. To improve the performance, a linear MOSFET regulation system using paralleled MOSFET devices in series with the power supply is proposed. The system uses a realtime current feedback loop to force the MOSFETs to work in the linear operation mode. By using this linear MOSFET regulator, the voltage drop on MOSFETs, and hence the voltage imposed on magnets, can be regulated very quickly. As a result, the regulation of the magnet current can be improved significantly. So far the simulation results show that with the linear regulator, the current regulation can be improved to better than 0.1%. Because of the high bandwidth of the linear regulator, it can reduce the harmonic content in the output current as well as reject the AC line disturbance. This paper discusses the circuit topology, the regulation method, and the simulation results.

  5. Automotive stirling engine development program overview and status report

    SciTech Connect (OSTI)

    Nightingale, N.P.

    1983-08-01

    The Automotive Stirling Engine (ASE) Development Program has been under contract (No. DEN3-32) with the Department of Energy (DOE)/National Aeronautics and Space Administration (NASA)-Lewis Research Center since 1978. Four Mod I engines (first-generation automotive Stirling engine) have accumulated more than 2000 test hours, and one engine was installed in a vehicle where its transient characteristics were evaluated, and mileage/emissions data recorded. A design effort to upgrade the Mod I has been completed, and two engines are at test. Major design changes have been made in the Reference Engine System Design (RESD) to reduce manufacturing cost. In support of these design changes, an extensive component development program is underway in combustion, ceramic heat exchangers, seals, and control systems.

  6. DOE Selects Mission Support Alliance, LLC for Mission Support...

    Office of Environmental Management (EM)

    Mission Support Alliance, LLC for Mission Support Contract at its Hanford Site DOE Selects Mission Support Alliance, LLC for Mission Support Contract at its Hanford Site September ...

  7. Supported PV module assembly

    DOE Patents [OSTI]

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  8. Emergency Medical Support

    Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume defines coordination between emergency planners and emergency medical support. Canceled by DOE G 151.1-4.

  9. E85 Optimized Engine

    SciTech Connect (OSTI)

    Bower, Stanley

    2011-12-31

    A 5.0L V8 twin-turbocharged direct injection engine was designed, built, and tested for the purpose of assessing the fuel economy and performance in the F-Series pickup of the Dual Fuel engine concept and of an E85 optimized FFV engine. Additionally, production 3.5L gasoline turbocharged direct injection (GTDI) EcoBoost engines were converted to Dual Fuel capability and used to evaluate the cold start emissions and fuel system robustness of the Dual Fuel engine concept. Project objectives were: to develop a roadmap to demonstrate a minimized fuel economy penalty for an F-Series FFV truck with a highly boosted, high compression ratio spark ignition engine optimized to run with ethanol fuel blends up to E85; to reduce FTP 75 energy consumption by 15% - 20% compared to an equally powered vehicle with a current production gasoline engine; and to meet ULEV emissions, with a stretch target of ULEV II / Tier II Bin 4. All project objectives were met or exceeded.

  10. May 3 PSERC Webinar: Physical and Cyber Infrastructure Supporting the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Future Grid | Department of Energy May 3 PSERC Webinar: Physical and Cyber Infrastructure Supporting the Future Grid May 3 PSERC Webinar: Physical and Cyber Infrastructure Supporting the Future Grid April 26, 2016 - 4:03pm Addthis The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar that will address the final report summarizing findings from the PSERC/NSF Executive Forum and Workshop on Physical and Cyber Infrasture to Support the Future Grid,

  11. EA-1993: Proposed High Explosive Science & Engineering Project, Pantex Plant, Amarillo, Texas

    Office of Energy Efficiency and Renewable Energy (EERE)

    The proposed action would be to design, construct, and operate a High Explosive Science and Engineering (HE S&E) facility that would support NNSA’s mission at the Pantex Plant. The HE S&E facility would serve as the scientific and engineering hub supporting all High Explosive Center of Excellence activities and technology development activities at Pantex.

  12. Office of Sustainability Support

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Sustainability Support serves as AUs organizational lead in partnering with the Departments Sustainability Performance Office to support the understanding and implementation of sustainability programs and requirements within the Department, including through supporting development and implementation of DOEs annual Strategic Sustainability Program Plan.

  13. Career Map: Electrical Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrical Engineer Career Map: Electrical Engineer Two electrical engineers inspect the electrical components to a turbine. Electrical Engineer Position Title Electrical Engineer Alternate Title(s) Electronics Engineer, Project Engineer, Power Systems, Transmission Engineer Education & Training Level Advanced, bachelor's required, prefer graduate degree Education & Training Level Description Electrical engineers must have a bachelor's degree. Employers also value practical experience,

  14. Ceramic tile expansion engine housing

    DOE Patents [OSTI]

    Myers, B.

    1995-04-11

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow there between. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow. 8 figures.

  15. Ceramic tile expansion engine housing

    DOE Patents [OSTI]

    Myers, Blake

    1995-01-01

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow therebetween. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow.

  16. VALUE ENGINEERING.PDF

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 I N S P E C T I O N R E P O R T U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF INSPECTIONS FOLLOW-ON INSPECTION OF THE DEPARTMENT OF ENERGY'S VALUE ENGINEERING PROGRAM DECEMBER 2001 U.S. DEPARTMENT OF ENERGY Washington, DC 20585 December 20, 2001 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman /s/ Inspector General SUBJECT: INFORMATION: Report on "Follow-on Inspection of the Department of Energy's Value Engineering Program" BACKGROUND Value Engineering is a

  17. Principles of models based engineering

    SciTech Connect (OSTI)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  18. FY11 annual Report: PHEV Engine Control and Energy Management Strategy

    SciTech Connect (OSTI)

    Chambon, Paul H

    2011-10-01

    Objectives are to: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; and (2) Validate and optimize hybrid supervisory control techniques developed during previous and on-going research projects by integrating them into the vehicle level control system and complementing them with the modified engine control strategies in order to further reduce emissions during both cold start and engine re-starts. Approach used are: (1) Perform a literature search of engine control strategies used in conventional powertrains to reduce cold start emissions; (2) Develop an open source engine controller providing full access to engine control strategies in order to implement new engine/catalyst warm-up behaviors; (3) Modify engine cold start control algorithms and characterize impact on cold start behavior; and (4) Develop an experimental Engine-In-the-Loop test stand in order to validate control methodologies and verify transient thermal behavior and emissions of the real engine when combined with a virtual hybrid powertrain. Some major accomplishments are: (1) Commissioned a prototype engine controller on a GM Ecotec 2.4l direct injected gasoline engine on an engine test cell at the University of Tennessee. (2) Obtained from Bosch (with GM's approval) an open calibration engine controller for a GM Ecotec LNF 2.0l Gasoline Turbocharged Direct Injection engine. Bosch will support the bypass of cold start strategies if calibration access proves insufficient. The LNF engine and its open controller were commissioned on an engine test cell at ORNL. (3) Completed a literature search to identify key engine cold start control parameters and characterized their impact on the real engine using the Bosch engine controller to calibrate them. (4) Ported virtual hybrid vehicle model from offline simulation environment to

  19. sup 1 H and sup 31 P-NMR assignments of the non-exchangeable protons of the consensus acceptor exon:intron junction d(CpTpApCpApGpGpT)

    SciTech Connect (OSTI)

    Lown, J.W.; Chang, D.K.; Debart, F.; Rayner, B.; Imbach, J.L. )

    1986-06-01

    The consensus acceptor exon:intron junction d(CpTpApCpApGpGpT) has been synthesized by a modified phosphotriester method. The non-self complementary octamer exists in the single strand form in aqueous buffer at 20 degrees C as evidenced by temperature variable {sup 1}H-NMR and NOE measurements. The non-exchangeable proton assignments were secured using a combination of techniques including two-dimensional COSY, NOESY and the double quantum technique {sup 1}H-{sup 1}H-INADEQUATE as well as inversion recovery T1 experiments. The new technique of {sup 31}P-1H shift correlation is particularly valuable in removing certain ambiguities in the sugar proton assignments. Characteristic chemical shifts for the base protons which are determined by their immediate molecular environments are also useful in assignments. The consensus acceptor exon:intron junction adopts a random coil conformation in solution under the experimental conditions employed.

  20. Supported microporous ceramic membranes

    DOE Patents [OSTI]

    Webster, E.; Anderson, M.

    1993-12-14

    A method for the formation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms. 4 figures.

  1. Supported microporous ceramic membranes

    DOE Patents [OSTI]

    Webster, Elizabeth; Anderson, Marc

    1993-01-01

    A method for permformation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms.

  2. BEW Engineering | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Services Product: BEW Engineering provides engineering consulting services, and performs research and development in electrical power systems for bulk power and distributed energy...

  3. Taitem Engineering | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Taitem Engineering Jump to: navigation, search Name: Taitem Engineering Place: Ithaca, NY Information About Partnership with NREL Partnership with NREL Yes Partnership Type "CRADA"...

  4. Pract Engineering | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Pract Engineering Jump to: navigation, search Name: Pract Engineering Address: 1150 55th Street, Suite C Place: Emeryville, California Zip: 94608 Region: Bay Area Sector: Renewable...

  5. ION Engineering | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    ION Engineering Jump to: navigation, search Name: ION Engineering Place: Boulder, Colorado Zip: 80301 Sector: Carbon Product: ION is the first clean-tech company to successfully...

  6. Nuclear Engineering | Argonne National Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Nuclear Engineering Advancing the safe and secure use of nuclear energy Argonne's Nuclear Engineering (NE) division works to advance nuclear energy as a proven, abundant and ...

  7. Windward Engineering | Open Energy Information

    Open Energy Information (Open El) [EERE & EIA]

    Windward Engineering Jump to: navigation, search Name: Windward Engineering Place: Spanish Fork, Utah Zip: 84660 Sector: Wind energy Product: Provides simulations, testing and...

  8. Mine roof support

    SciTech Connect (OSTI)

    Bollmann, A.

    1982-01-05

    A mine roof support has a base, a supporting prop extending upwardly from the base, an elongated roof-supporting element having one portion supported by the supporting prop and another portion telescopable relative to the one portion toward a mine face and having a free end formed as a housing with a width corresponding to the width of the one portion, and a thrust prop arranged to support the free end section of the telescopable portion of the roof-supporting element and having a roof-side end section which is forcedly displaceable in the housing in direction of elongation of a mine and pivotable in a substantially vertical plane about an axle arranged in the housing.

  9. Defining engine efficiency limits

    Energy.gov [DOE]

    Investigates the potential to reduce engine efficiency losses and how this impacts the entire system in terms of a direct increase in work output or a change in the loss mechanism.

  10. Energy Technology Engineering Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Technology Engineering Center (ETEC) is located within Area IV of the Santa Susana Field Laboratory. The ETEC occupies 90-acres within the 290 acre site. The Santa Susana Field...

  11. INL '@work' Nuclear Engineer

    SciTech Connect (OSTI)

    McLean, Heather

    2008-01-01

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  12. Polymer Engineering Center

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Powder bed fusion: SLS Material extrusion: FDM Directed energy depos.: AFP v v v F q ... Pfeifer, 2015 4" Polymer Engineering Center University of Wisconsin-Madison Layup on cold ...

  13. General Engineer (Project Manager)

    Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  14. Student Trainee (General Engineer)

    Energy.gov [DOE]

    This position is located in Power Services (P) of the Bonneville Power Administration (BPA). The position involves periods of pertinent formal education and periods of employment in an engineering...

  15. Displacer for Stirling engine

    SciTech Connect (OSTI)

    Brown, A. T.

    1985-12-24

    In a Stirling engine and the like, a displacer piston having a plurality of internal baffles and insulation so as to prevent undesired heat transfer across the displacer piston.

  16. HANFORD ENGINEER WORKS

    Office of Legacy Management (LM)

    HANFORD ENGINEER WORKS IJd *P-t - - ssiticatiC+n cwcetted rat G.E. NUCLEONICS PROJECT xi I @L.%&--G-ENERAI,@ ELECTRIC z ,m ...-. I--..-. By Authority of. COMPANY . Atmic ...

  17. INL '@work' Nuclear Engineer

    ScienceCinema (OSTI)

    McLean, Heather

    2016-07-12

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  18. Civil Engineer (Structural)

    Energy.gov [DOE]

    This position is located in Structural Design (TELD). The primary purpose of this position is to serve as a senior engineer responsible for loading, design, and analysis of all structures on BPA's...

  19. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.; Mosca, J.O.

    1992-02-25

    This patent describes a rotary internal combustion engine. It includes a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing, the engine block being relatively rotatable within the housing about a central axis; means connectable to an external drive member for translating the relative rotation of the engine block with respect to the housing into useful work; at least one radially arranged cylinder assembly on the block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; the piston, cylinder and cylinder end wall together.

  20. Section 44: Engineered Barriers

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Notice 44.8.1.2 Hydration Studies 44.8.1.3 Refinement to ... is an uncertain process, the MgO engineered barrier reduces uncertainty in the repository chemical conditions by ...

  1. Internal combustion engine

    SciTech Connect (OSTI)

    Bernauer, O.

    1980-10-07

    An internal combustion engine is described that has walls delimiting the working space or spaces of the internal combustion engine, in which a hydrogen-impervious, encapsulated metal hydride storage device is provided which is in heat-conducting contact with these walls; the interior of the encapsulation is adapted to be selectively connected to a source of hydrogen and/or to a separate further hydrogen storage device.

  2. Liquid metal thermoacoustic engine

    SciTech Connect (OSTI)

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  3. Stirling engine power control

    SciTech Connect (OSTI)

    Fraser, J.P.

    1983-08-02

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold. 3 figs.

  4. Stirling engine power control

    DOE Patents [OSTI]

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  5. Science, Technology & Engineering

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Alan Bishop selected to lead LANL Science, Technology & Engineering directorate August 17, 2012 LOS ALAMOS, NEW MEXICO, August 17, 2012-Los Alamos National Laboratory Director Charles McMillan announced today that after a yearlong, nationwide search, Alan Bishop has been selected to be the Laboratory's next Principal Associate Director for Science, Technology, and Engineering (PADSTE). Bishop has been acting in that role - 2 - since Aug. 29, 2011.Over the course of a distinguished 30-year

  6. Windmills for ramjet engine

    SciTech Connect (OSTI)

    Giles, H.L.

    1983-01-18

    A solid fueled ramjet engine comprising solid fuel within a combustion chamber in the form of a hollow cylinder, and a windmill at the entrance to the hollow cylinder for promoting better distribution of the air, better mixing of the air and combustion gases, and more complete combustion of the solid fuel. The windmill is turned by the incoming airflow and can rotate a generator to provide a source of electrical power for the aircraft on which the engine is used.

  7. Boildown Study on Supernatant Liquid Retrieved from AP-107 in May 2010

    SciTech Connect (OSTI)

    Callaway, W. S.; Page, J. S.

    2013-02-12

    A boildown study was completed on a composite prepared from supernatant liquid grab samples retrieved from tank 241-AP-107 in May of 2010. The composite was a clear, yellow liquid containing no visible solids at hot cell ambient temperatures (25-27 °C). The density of the test composite was 1.216 g/mL at 26.8 °C. The boiling temperature curves generated at three reduced pressures—40-, 60-, and 80 Torr—displayed steadily increasing boiling temperatures with increasing volume reduction with no significant discontinuities. Only minimal foaming was observed after the volume reduction proceeded beyond 50 %WVR (percent waste volume reduction). The bulk densities (D{sub Bulk}{sup 18 °C}) and quantities of settled and centrifuged solids present were measured on samples of the boildown concentrates that were kept at 18 °C for 7-8 days. Estimated values of the bulk densities of the concentrates at 60-Torr boiling temperatures (D{sub Bulk}{sup 60 Torr}) were also calculated. Solids were observed in all boildown concentrates at process temperatures, at hot cell ambient temperatures (25-27 °C), and at 18 °C. The quantity of solids found in the cooled concentrates increased slowly through 50.2 %WVR. The quantity of solids found in concentrates after 54.0 %WVR was noticeably greater. Beyond 54.0 %WVR, the quantity of solids found in cooled concentrates increased dramatically. Analysis of boildown test samples indicated that sodium oxalate and sodium carbonate solids form in cooled concentrates after volume reduction of 8.4 %WVR or less. The major contributors to the large increase in the quantity of solids found in concentrates after 54 %WVR were sodium nitrate and sodium carbonate.

  8. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  9. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  10. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  11. Dose calculations using MARS for Bremsstrahlung beam stops and collimators in APS beamline stations.

    SciTech Connect (OSTI)

    Dooling, J.; Accelerator Systems Division

    2010-11-01

    The Monte Carlo radiation transport code MARS is used to model the generation of gas bremsstrahlung (GB) radiation from 7-GeV electrons which scatter from residual gas atoms in undulator straight sections within the Advanced Photon Source (APS) storage ring. Additionally, MARS is employed to model the interactions of the GB radiation with components along the x-ray beamlines and then determine the expected radiation dose-rates that result. In this manner, MARS can be used to assess the adequacy of existing shielding or the specifications for new shielding when required. The GB radiation generated in the 'thin-target' of an ID straight section will consist only of photons in a 1/E-distribution up to the full energy of the stored electron beam. Using this analytical model, the predicted GB power for a typical APS 15.38-m insertion device (ID) straight section is 4.59 x 10{sup -7} W/nTorr/mA, assuming a background gas composed of air (Z{sub eff} = 7.31) at room temperature (293K). The total GB power provides a useful benchmark for comparisons between analytical and numerical approaches. We find good agreement between MARS and analytical estimates for total GB power. The extended straight section 'target' creates a radial profile of GB, which is highly peaked centered on the electron beam. The GB distribution reflects the size of the electron beam that creates the radiation. Optimizing the performance of MARS in terms of CPU time per incident trajectory requires the use of a relatively short, high-density gas target (air); in this report, the target density is {rho}L = 2.89 x 10{sup -2} g/cm{sup 2} over a length of 24 cm. MARS results are compared with the contact dose levels reported in TB-20, which used EGS4 for radiation transport simulations. Maximum dose-rates in 1 cc of tissue phantom form the initial basis for comparison. MARS and EGS4 results are approximately the same for maximum 1-cc dose-rates and attenuation in the photon-dominated regions; for thicker

  12. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect (OSTI)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  13. Engine systems and methods of operating an engine

    SciTech Connect (OSTI)

    Scotto, Mark Vincent

    2015-08-25

    One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  14. Career Map: Mechanical Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Mechanical Engineer Career Map: Mechanical Engineer A mechanical engineer works with a large yellow robotic arm. Mechanical Engineer Position Title Mechanical Engineer Alternate Title(s) Project Engineer, Quality Engineer, Research Engineer, Design Engineer, Sales Engineer Education & Training Level Advanced, Bachelor's degree required, prefer graduate degree Education & Training Level Description Mechanical engineers need a bachelor's degree. A graduate degree is typically needed for

  15. Development of Advanced Small Hydrogen Engines

    SciTech Connect (OSTI)

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  16. BEST: Biochemical Engineering Simulation Technology

    SciTech Connect (OSTI)

    Not Available

    1996-01-01

    The idea of developing a process simulator that can describe biochemical engineering (a relatively new technology area) was formulated at the National Renewable Energy Laboratory (NREL) during the late 1980s. The initial plan was to build a consortium of industrial and U.S. Department of Energy (DOE) partners to enhance a commercial simulator with biochemical unit operations. DOE supported this effort; however, before the consortium was established, the process simulator industry changed considerably. Work on the first phase of implementing various fermentation reactors into the chemical process simulator, ASPEN/SP-BEST, is complete. This report will focus on those developments. Simulation Sciences, Inc. (SimSci) no longer supports ASPEN/SP, and Aspen Technology, Inc. (AspenTech) has developed an add-on to its ASPEN PLUS (also called BioProcess Simulator [BPS]). This report will also explain the similarities and differences between BEST and BPS. ASPEN, developed by the Massachusetts Institute of Technology for DOE in the late 1970s, is still the state-of-the-art chemical process simulator. It was selected as the only simulator with the potential to be easily expanded into the biochemical area. ASPEN/SP, commercially sold by SimSci, was selected for the BEST work. SimSci completed work on batch, fed-batch, and continuous fermentation reactors in 1993, just as it announced it would no longer commercially support the complete ASPEN/SP product. BEST was left without a basic support program. Luckily, during this same time frame, AspenTech was developing a biochemical simulator with its version of ASPEN (ASPEN PLUS), which incorporates most BEST concepts. The future of BEST will involve developing physical property data and models appropriate to biochemical systems that are necessary for good biochemical process design.

  17. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    SciTech Connect (OSTI)

    TC MACKEY; FG ABATT; MW RINKER

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is in the spring constants used to model the anchor bolt response for the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. Consequently, focus was placed on the changes in the anchor bolt responses, and a full reevaluation of all tank components was judged to be unnecessary. To confirm this judgement, primary tank stresses from the revised analysis of the BES-BEC case are compared to the original analysis and it was verified that the changes are small, as expected.

  18. Cryogenic support system

    DOE Patents [OSTI]

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1988-11-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

  19. Cryogenic support system

    DOE Patents [OSTI]

    Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.

    1988-01-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.

  20. Crystalline titanate catalyst supports

    DOE Patents [OSTI]

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  1. Conduction cooled tube supports

    DOE Patents [OSTI]

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  2. Crystalline titanate catalyst supports

    DOE Patents [OSTI]

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  3. Vessel structural support system

    DOE Patents [OSTI]

    Jenko, James X.; Ott, Howard L.; Wilson, Robert M.; Wepfer, Robert M.

    1992-01-01

    Vessel structural support system for laterally and vertically supporting a vessel, such as a nuclear steam generator having an exterior bottom surface and a side surface thereon. The system includes a bracket connected to the bottom surface. A support column is pivotally connected to the bracket for vertically supporting the steam generator. The system also includes a base pad assembly connected pivotally to the support column for supporting the support column and the steam generator. The base pad assembly, which is capable of being brought to a level position by turning leveling nuts, is anchored to a floor. The system further includes a male key member attached to the side surface of the steam generator and a female stop member attached to an adjacent wall. The male key member and the female stop member coact to laterally support the steam generator. Moreover, the system includes a snubber assembly connected to the side surface of the steam generator and also attached to the adjacent wall for dampening lateral movement of the steam generator. In addition, the system includes a restraining member of "flat" attached to the side surface of the steam generator and a bumper attached to the adjacent wall. The flat and the bumper coact to further laterally support the steam generator.

  4. Mine roof supporting system

    SciTech Connect (OSTI)

    Curry, P.F.

    1981-06-23

    A stabilizing arrangement for mine roof support systems of the type in which a series of support units, each including a transverse beam supported at opposite ends by extensible props, are interconnected by extensible struts in a manner to be selfadvancing by alternate retraction of support units from a roof supporting condition and extension of the struts to advance such retracted units relative to others of such units which are in an extended roof engaging condition. The connection of each prop to the beam in a given unit is pivotal to allow deflection of the beam and props of a supporting unit from a normal perpendicular relationship under load. The stabilizing means restores the props and beam to a normal perpendicular relationship for advancing movement of each support unit. The supporting units are further stabilized relative to the struts by prop supporting brackets permitting canting movement of the props from a perpendicular relationship with respect to the struts but maintaining the props in a generally upright position for unit advance.

  5. Detector Support Group

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    search Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to ...

  6. Advanced Reciprocating Engine Systems (ARES)

    Energy.gov [DOE]

    Advanced Natural Gas Reciprocating Engines Increase Efficiency and Reduce Emissions for Distributed Power Generation Applications

  7. The Joys of Nuclear Engineering

    ScienceCinema (OSTI)

    Jon Carmack

    2016-07-12

    Nuclear fuels researcher Jon Carmack talks about the satisfactions of a career in nuclear engineering.

  8. Liquid-sodium thermoacoustic engine

    SciTech Connect (OSTI)

    Migliori, A.; Swift, G.W.

    1988-08-01

    We have constructed a thermoacoustic engine that uses liquid sodium as its working substance. The engine generates acoustic power using heat flowing from a high-temperature source to a low-temperature sink. The measured performance of this engine disagrees significantly with numerical calculations based on our theory of thermoacoustic engines. The efficiency of the engine is a substantial fraction of Carnot's efficiency, and its power density is comparable to that of the conventional heat engines in widespread use. Thus we expect this type of engine to be of practical, economic importance.

  9. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  10. Software engineering and graphical programming languages

    SciTech Connect (OSTI)

    Jefferson, K.; Porter, T.; West, T.

    1997-11-01

    This report contains viewgraphs on software engineering and adapting engineering processes to a graphical programming languages.

  11. Tumor Engineering: The Other Face of Tissue Engineering

    SciTech Connect (OSTI)

    Ghajar, Cyrus M; Bissell, Mina J

    2010-03-09

    a result of heterotypic interactions between endothelium and stroma. Employing such biomimetic strategies has already led to success in cancer research. Studying tumors in 3D has proven far more accurate in reproducing in vivo growth characteristics and chemotherapeutic resistance than 2D approaches. A number of animal studies and co-culture experiments have identified also the importance of interactions with other nonmalignant cell types - such as endothelial cells, fibroblasts, adipocytes, leukocytes, and circulating progenitors - to support and sustain tumor growth, invasion, and metastasis. Reproducing not only the 'dynamic reciprocity' but also the 'dynamic cooperativity' between these constituents in a spatially, temporally, and functionally accurate fashion presents quite a challenge for engineering tumors. So, why do it? The reason is to ask important fundamental questions that cannot easily be answered in vivo or on tissue culture plastic for the reasons mentioned.

  12. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  13. Gas-Fired Reciprocating Engines

    Energy.gov [DOE]

    The reciprocating, or piston-driven, engine is a widespread and well-known technology. Also called internal combustion engines, reciprocating engines require fuel, air, compression, and a combustion source to function. Depending on the ignition source, they generally fall into two categories: (1) spark-ignited engines, typically fueled by gasoline or natural gas, and (2) compression-ignited engines, typically fueled by diesel oil fuel.

  14. Ceramic Automotive Stirling Engine Program

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  15. Visual Engineering | The Ames Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Visual Engineering Visual Engineering At the Ames Laboratory we are working with Iowa State Image University to create an interactive visual engineering environment to design new products, better power plants, or any other engineering products. In addition, Mark Bryden and Doug McCorkle, along with collaborators at NETL and Reaction Engineering International have developed open-source software to look at the physics behind power plant operation within this visual environment. Image Their VE-PSI

  16. Nanostructured catalyst supports

    DOE Patents [OSTI]

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  17. Nanostructured catalyst supports

    SciTech Connect (OSTI)

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  18. Zephyr: A secure Internet process to streamline engineering

    SciTech Connect (OSTI)

    Jordan, C.W.; Niven, W.A.; Cavitt, R.E.

    1998-05-12

    Lawrence Livermore National Laboratory (LLNL) is implementing an Internet-based process pilot called `Zephyr` to streamline engineering and commerce using the Internet. Major benefits have accrued by using Zephyr in facilitating industrial collaboration, speeding the engineering development cycle, reducing procurement time, and lowering overall costs. Programs at LLNL are potentializing the efficiencies introduced since implementing Zephyr. Zephyr`s pilot functionality is undergoing full integration with Business Systems, Finance, and Vendors to support major programs at the Laboratory.

  19. Working with SRNL - Our Facilities - Engineering Development Laboratory

    U.S. Department of Energy (DOE) all webpages (Extended Search)

    Engineering Development Laboratory Working with SRNL Our Facilities - Engineering Development Laboratory This fully-equipped, climate-controlled, 10,000 sq. ft. laboratory contains three high bays, three overhead cranes, a large fabrication shop, ample electrical support systems, several data acquisition systems, and over 3,000 pieces of measuring and test instrumentation. Innovative equipment tests and demonstrations are performed in the laboratory, as well as tests on existing and proposed

  20. Working With PNNL Mentors, Engineering Students Deliver Prototype

    National Nuclear Security Administration (NNSA)

    Safeguards Fixtures | National Nuclear Security Administration | (NNSA) Working With PNNL Mentors, Engineering Students Deliver Prototype Safeguards Fixtures Friday, December 18, 2015 - 12:00am NNSA Blog Earlier this month, Washington State University mechanical engineering students delivered two prototypes developed as part of their senior design projects to their Pacific Northwest National Laboratory mentors. The design projects were supported by the Next Generation Safeguards Initiative