National Library of Energy BETA

Sample records for approximate heat contents

  1. ,"California Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","California Heat Content of Natural Gas ... 10:59:46 AM" "Back to Contents","Data 1: California Heat Content of Natural Gas Consumed

  2. ,"Virginia Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Virginia Heat Content of Natural Gas ... 11:00:21 AM" "Back to Contents","Data 1: Virginia Heat Content of Natural Gas Consumed

  3. ,"Oklahoma Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Oklahoma Heat Content of Natural Gas ... 11:00:12 AM" "Back to Contents","Data 1: Oklahoma Heat Content of Natural Gas Consumed

  4. ,"Texas Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Texas Heat Content of Natural Gas ...2016 6:34:00 AM" "Back to Contents","Data 1: Texas Heat Content of Natural Gas Consumed

  5. ,"West Virginia Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","West Virginia Heat Content of Natural Gas ... AM" "Back to Contents","Data 1: West Virginia Heat Content of Natural Gas Consumed

  6. ,"North Carolina Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","North Carolina Heat Content of Natural Gas ... 10:27:02 AM" "Back to Contents","Data 1: North Carolina Heat Content of Natural Gas ...

  7. ,"North Dakota Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","North Dakota Heat Content of Natural Gas ... 10:27:03 AM" "Back to Contents","Data 1: North Dakota Heat Content of Natural Gas ...

  8. ,"New Mexico Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","New Mexico Heat Content of Natural Gas ... 10:27:06 AM" "Back to Contents","Data 1: New Mexico Heat Content of Natural Gas Consumed

  9. MULTI-SCALE MODELING AND APPROXIMATION ASSISTED OPTIMIZATION OF BARE TUBE HEAT EXCHANGERS

    SciTech Connect

    Bacellar, Daniel; Ling, Jiazhen; Aute, Vikrant; Radermacher, Reinhard; Abdelaziz, Omar

    2014-01-01

    Air-to-refrigerant heat exchangers are very common in air-conditioning, heat pump and refrigeration applications. In these heat exchangers, there is a great benefit in terms of size, weight, refrigerant charge and heat transfer coefficient, by moving from conventional channel sizes (~ 9mm) to smaller channel sizes (< 5mm). This work investigates new designs for air-to-refrigerant heat exchangers with tube outer diameter ranging from 0.5 to 2.0mm. The goal of this research is to develop and optimize the design of these heat exchangers and compare their performance with existing state of the art designs. The air-side performance of various tube bundle configurations are analyzed using a Parallel Parameterized CFD (PPCFD) technique. PPCFD allows for fast-parametric CFD analyses of various geometries with topology change. Approximation techniques drastically reduce the number of CFD evaluations required during optimization. Maximum Entropy Design method is used for sampling and Kriging method is used for metamodeling. Metamodels are developed for the air-side heat transfer coefficients and pressure drop as a function of tube-bundle dimensions and air velocity. The metamodels are then integrated with an air-to-refrigerant heat exchanger design code. This integration allows a multi-scale analysis of air-side performance heat exchangers including air-to-refrigerant heat transfer and phase change. Overall optimization is carried out using a multi-objective genetic algorithm. The optimal designs found can exhibit 50 percent size reduction, 75 percent decrease in air side pressure drop and doubled air heat transfer coefficients compared to a high performance compact micro channel heat exchanger with same capacity and flow rates.

  10. Proposal for determining the energy content of gravitational waves by using approximate symmetries of differential equations

    SciTech Connect

    Hussain, Ibrar; Qadir, Asghar; Mahomed, F. M.

    2009-06-15

    Since gravitational wave spacetimes are time-varying vacuum solutions of Einstein's field equations, there is no unambiguous means to define their energy content. However, Weber and Wheeler had demonstrated that they do impart energy to test particles. There have been various proposals to define the energy content, but they have not met with great success. Here we propose a definition using 'slightly broken' Noether symmetries. We check whether this definition is physically acceptable. The procedure adopted is to appeal to 'approximate symmetries' as defined in Lie analysis and use them in the limit of the exact symmetry holding. A problem is noted with the use of the proposal for plane-fronted gravitational waves. To attain a better understanding of the implications of this proposal we also use an artificially constructed time-varying nonvacuum metric and evaluate its Weyl and stress-energy tensors so as to obtain the gravitational and matter components separately and compare them with the energy content obtained by our proposal. The procedure is also used for cylindrical gravitational wave solutions. The usefulness of the definition is demonstrated by the fact that it leads to a result on whether gravitational waves suffer self-damping.

  11. U.S. Total Consumption of Heat Content of Natural Gas (BTU per...

    Gasoline and Diesel Fuel Update

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  12. U.S. Heat Content of Natural Gas Deliveries to Other Sectors...

    Energy Information Administration (EIA) (indexed site)

    Other Sectors Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  13. U.S. Heat Content of Natural Gas Deliveries to Electric Power...

    Energy Information Administration (EIA) (indexed site)

    Electric Power Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  14. ,"U.S. Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Heat Content of Natural Gas Consumed",4,"Annual",2015,"6/30/2003" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ng_cons_heat_dcu_nus_a.xls"

  15. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... ,"Data 1","District of Columbia Heat Content of Natural Gas Deliveries to Consumers ...

  16. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Idaho Heat Content of Natural Gas Deliveries to Consumers ...

  17. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","New Mexico Heat Content of Natural Gas Deliveries to Consumers ...

  18. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Utah Heat Content of Natural Gas Deliveries to Consumers ...

  19. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Oklahoma Heat Content of Natural Gas Deliveries to Consumers ...

  20. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","North Carolina Heat Content of Natural Gas Deliveries to Consumers ...

  1. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","West Virginia Heat Content of Natural Gas Deliveries to Consumers ...

  2. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Georgia Heat Content of Natural Gas Deliveries to Consumers ...

  3. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Arizona Heat Content of Natural Gas Deliveries to Consumers ...

  4. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Kansas Heat Content of Natural Gas Deliveries to Consumers ...

  5. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Louisiana Heat Content of Natural Gas Deliveries to Consumers ...

  6. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Vermont Heat Content of Natural Gas Deliveries to Consumers ...

  7. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Colorado Heat Content of Natural Gas Deliveries to Consumers ...

  8. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Rhode Island Heat Content of Natural Gas Deliveries to Consumers ...

  9. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Arkansas Heat Content of Natural Gas Deliveries to Consumers ...

  10. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Wisconsin Heat Content of Natural Gas Deliveries to Consumers ...

  11. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Wyoming Heat Content of Natural Gas Deliveries to Consumers ...

  12. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Ohio Heat Content of Natural Gas Deliveries to Consumers ...

  13. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","South Carolina Heat Content of Natural Gas Deliveries to Consumers ...

  14. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Iowa Heat Content of Natural Gas Deliveries to Consumers ...

  15. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Nebraska Heat Content of Natural Gas Deliveries to Consumers ...

  16. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Alabama Heat Content of Natural Gas Deliveries to Consumers ...

  17. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Mississippi Heat Content of Natural Gas Deliveries to Consumers ...

  18. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Alaska Heat Content of Natural Gas Deliveries to Consumers ...

  19. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Oregon Heat Content of Natural Gas Deliveries to Consumers ...

  20. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Missouri Heat Content of Natural Gas Deliveries to Consumers ...

  1. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Hawaii Heat Content of Natural Gas Deliveries to Consumers ...

  2. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Montana Heat Content of Natural Gas Deliveries to Consumers ...

  3. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Florida Heat Content of Natural Gas Deliveries to Consumers ...

  4. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Massachusetts Heat Content of Natural Gas Deliveries to Consumers ...

  5. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Tennessee Heat Content of Natural Gas Deliveries to Consumers ...

  6. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Illinois Heat Content of Natural Gas Deliveries to Consumers ...

  7. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Washington Heat Content of Natural Gas Deliveries to Consumers ...

  8. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Minnesota Heat Content of Natural Gas Deliveries to Consumers ...

  9. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Maryland Heat Content of Natural Gas Deliveries to Consumers ...

  10. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Texas Heat Content of Natural Gas Deliveries to Consumers ...

  11. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","South Dakota Heat Content of Natural Gas Deliveries to Consumers ...

  12. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","California Heat Content of Natural Gas Deliveries to Consumers ...

  13. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Michigan Heat Content of Natural Gas Deliveries to Consumers ...

  14. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","New York Heat Content of Natural Gas Deliveries to Consumers ...

  15. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","North Dakota Heat Content of Natural Gas Deliveries to Consumers ...

  16. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","New Jersey Heat Content of Natural Gas Deliveries to Consumers ...

  17. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Virginia Heat Content of Natural Gas Deliveries to Consumers ...

  18. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Data for" ,"Data 1","Delaware Heat Content of Natural Gas Deliveries to Consumers ...

  19. CONTENTS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    8.0 - HOISTING AND RIGGING IN HOSTILE ENVIRONMENTS February 18, 2010 Rev 1 Page 1 CHAPTER 18.0 TABLE OF CONTENTS TABLE OF CONTENTS..................................................................................................................................1 PAGINATION TABLE.....................................................................................................................................1 18.0 HOISTING AND RIGGING IN HOSTILE ENVIRONMENTS

  20. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Nevada Heat Content of Natural Gas Deliveries to ... 1:28:11 AM" "Back to Contents","Data 1: Nevada Heat Content of Natural Gas Deliveries to ...

  1. CONTENTS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3.0 - CRITICAL, SPECIAL, & ENGINEERED LIFTS January 4, 2016 Rev 1 Page 1 CHAPTER 3.0 TABLE OF CONTENTS 3.0 CRITICAL LIFTS ....................................................................................................................................... 3 3.1 SCOPE .......................................................................................................................................................... 3 3.2 CRITICAL LIFT DETERMINATION

  2. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland

    SciTech Connect

    Horttanainen, M. Teirasvuo, N.; Kapustina, V.; Hupponen, M.; Luoranen, M.

    2013-12-15

    Highlights: • New experimental data of mixed MSW properties in a Finnish case region. • The share of renewable energy of mixed MSW. • The results were compared with earlier international studies. • The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. • Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.

  3. CONTENTS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Volume 2, Sampling Technical Requirements Effective Date: 6/1/07 Vol. 2: i CONTENTS 1.0 SAMPLING AND ANALYSIS PROCESS .................................................................... 1-1 2.0 DATA QUALITY OBJECTIVES ................................................................................... 2-1 3.0 SAMPLING SYSTEMS .................................................................................................. 3-1 3.1 Facility Management

  4. CONTENTS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Volume 4, Laboratory Technical Requirements Effective Date: 6/1/07 Vol. 4: i CONTENTS 1.0 QUALITY ASSURANCE OBJECTIVES......................................................................... 1-1 1.1 DATA QUALITY OBJECTIVES............................................................................ 1-1 1.2 CLIENT DATA QUALITY REQUIREMENTS ..................................................... 1-2 1.2.1 Precision

  5. Observed and simulated full-depth ocean heat-content changes for 1970–2005

    DOE PAGES [OSTI]

    Cheng, Lijing; Trenberth, Kevin E.; Palmer, Matthew D.; Zhu, Jiang; Abraham, John P.

    2016-07-26

    Greenhouse-gas emissions have created a planetary energy imbalance that is primarily manifested by increasing ocean heat content (OHC). Updated observational estimates of full-depth OHC change since 1970 are presented that account for recent advancements in reducing observation errors and biases. The full-depth OHC has increased by 0.74 [0.68, 0.80]  ×  1022 J yr−1 (0.46 Wm−2) and 1.22 [1.16–1.29]  ×  1022 J yr−1 (0.75 Wm−2) for 1970–2005 and 1992–2005, respectively, with a 5 to 95 % confidence interval of the median. The CMIP5 models show large spread in OHC changes, suggesting that some models are not state-of-the-art and require further improvements. However, the ensemble median has excellent agreement with our observational estimate:more » 0.68 [0.54–0.82]  ×  1022 J yr−1 (0.42 Wm−2) from 1970 to 2005 and 1.25 [1.10–1.41]  ×  1022 J yr−1 (0.77 Wm−2) from 1992 to 2005. These results increase confidence in both the observational and model estimates to quantify and study changes in Earth's energy imbalance over the historical period. We suggest that OHC be a fundamental metric for climate model validation and evaluation, especially for forced changes (decadal timescales).« less

  6. Contents

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Program and Book of Abstracts Contents Organizers i-ii Detailed Program iii-viii Oral presentations 1-38 Posters P1-P27 Program Schematic back cover The LAPD Symposium brings together scientists from laser physics, low- temperature plasma chemistry and physics, and nuclear fusion. The Symposium is an important, unique, and fruitful source for cross-fertilization between these fields. Major topics include laser-aided diagnostics for fusion plasmas, industrial process plasmas, and environmental

  7. Discussion on the energy content of the galactic dark matter Bose-Einstein condensate halo in the Thomas-Fermi approximation

    SciTech Connect

    De Souza, J.C.C.; Pires, M.O.C. E-mail: marcelo.pires@ufabc.edu.br

    2014-03-01

    We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.

  8. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","32016" ,"Release ...

  9. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","District of Columbia Heat Content ...

  10. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic ...

  11. Heat

    Gasoline and Diesel Fuel Update

    ... Q 1,354 5,925 Q 742 Q District chilled water 4,608 4,561 325 Q 888 3,718 582 756 Q ... 5,864 21,579 48,053 1,534 Buildings with water heating 79,015 76,584 11,576 8,420 19,548 ...

  12. Waste Heat Recovery

    Office of Environmental Management (EM)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  13. Tips: Heat Pumps | Department of Energy

    Energy.gov [DOE] (indexed site)

    climates, providing up to three times more heat than the energy they use. Today's heat pump can reduce your electricity use for heating by approximately 50% compared to...

  14. Heat release analysis of engine pressure data

    SciTech Connect

    Gatowski, J.A.; Balles, E.N.; Chun, K.M.; Nelson, F.E.; Ekchian, J.A.; Heywood, J.B.

    1984-01-01

    In analyzing the processes inside the cylinder of an internal combustion engine, the principal diagnostic at the experimenter's disposal is a measured time history of the cylinder pressure. This paper develops, tests, and applies a heat release analysis procedure that maintains simplicity while including the effects of heat transfer, crevice flows and fuel injection. The heat release model uses a one zone description of the cylinder contents with thermodynamic properties represented by a linear approximation. Applications of the analysis to a single-cylinder spark-ignition engine, a special square cross-section visualization spark-ignition engine, and a direct-injection stratified charge engine are presented.

  15. Microsoft PowerPoint - mather_twpice_heating_newyork.ppt

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Manus Clear-Sky Heating Rates (Kday) Shortwave Longwave Net Ice Water Content + Liquid Water Content Radiative Heating Radiative heating profiles for the period January 26 -...

  16. Approximate option pricing

    SciTech Connect

    Chalasani, P.; Saias, I.; Jha, S.

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  17. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heating Oil Weekly Heating Oil and Propane Prices (October - March)" ,"Click worksheet ... Heating Oil Weekly Heating Oil and Propane Prices (October - March)",29,"Weekly","3...

  18. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heating Oil Weekly Heating Oil and Propane Prices (October - March)" ,"Click worksheet ... Heating Oil Weekly Heating Oil and Propane Prices (October - March)",32,"Weekly","3...

  19. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Consumers",52,"Monthly","8/2016","01/15/2012" ,"Data 2","Heat Content of Natural Gas Delivered to Consumers",52,"Annual",2015,"06/30/2003" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","ngm25vmall.xls" ,"Available from Web

  20. Tips: Heat Pumps | Department of Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    electric heating, providing up to three times more heat than the energy they use. Today's heat pump can reduce your electricity use for heating by approximately 50% compared to...

  1. Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3. Public

  2. Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation

    SciTech Connect

    Xing, Lu; Cullin, James; Spitler, Jeffery; Im, Piljae; Fisher, Daniel

    2011-01-01

    A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

  3. Approximate circuits for increased reliability

    DOEpatents

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  4. Approximate circuits for increased reliability

    DOEpatents

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  5. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heating Oil Weekly Heating Oil and Propane Prices (October - March)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","La...

  6. Compare All CBECS Activities: District Heat Use

    Energy Information Administration (EIA) (indexed site)

    District Heat Use Compare Activities by ... District Heat Use Total District Heat Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 433...

  7. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    SciTech Connect

    Lin, Bo; Zhang, Weiwen; Zhao, Yuliang; Li, Yuanyuan

    2015-06-15

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.

  8. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. I. Semi-infinite slab approximations

    SciTech Connect

    Berkel, M. van; Zwart, H. J.; Tamura, N.; Ida, K.; Hogeweij, G. M. D.; Inagaki, S.; Baar, M. R. de

    2014-11-15

    In this paper, a number of new approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on semi-infinite slab approximations of the heat equation. The main result is the approximation of χ under the influence of V and τ based on the phase of two harmonics making the estimate less sensitive to calibration errors. To understand why the slab approximations can estimate χ well in cylindrical geometry, the relationships between heat transport models in slab and cylindrical geometry are studied. In addition, the relationship between amplitude and phase with respect to their derivatives, used to estimate χ, is discussed. The results are presented in terms of the relative error for the different derived approximations for different values of frequency, transport coefficients, and dimensionless radius. The approximations show a significant region in which χ, V, and τ can be estimated well, but also regions in which the error is large. Also, it is shown that some compensation is necessary to estimate V and τ in a cylindrical geometry. On the other hand, errors resulting from the simplified assumptions are also discussed showing that estimating realistic values for V and τ based on infinite domains will be difficult in practice. This paper is the first part (Part I) of a series of three papers. In Part II and Part III, cylindrical approximations based directly on semi-infinite cylindrical domain (outward propagating heat pulses) and inward propagating heat pulses in a cylindrical domain, respectively, will be treated.

  9. Approximate Model for Turbulent Stagnation Point Flow.

    SciTech Connect

    Dechant, Lawrence

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.

  10. Industrial Process Heating - Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Industrial Process Heating - Technology Assessment 1 2 Contents 3 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Industrial Process Heating Overview ............................................................................................ 2 6 2. Technology Assessment and Potential ................................................................................................. 6 7 2.1. Status

  11. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. II. Semi-infinite cylindrical approximations

    SciTech Connect

    Berkel, M. van; Hogeweij, G. M. D.; Tamura, N.; Ida, K.; Zwart, H. J.; Inagaki, S.; Baar, M. R. de

    2014-11-15

    In this paper, a number of new explicit approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in a cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based upon the heat equation in a semi-infinite cylindrical domain. The approximations are based upon continued fractions, asymptotic expansions, and multiple harmonics. The relative error for the different derived approximations is presented for different values of frequency, transport coefficients, and dimensionless radius. Moreover, it is shown how combinations of different explicit formulas can yield good approximations over a wide parameter space for different cases, such as no convection and damping, only damping, and both convection and damping. This paper is the second part (Part II) of a series of three papers. In Part I, the semi-infinite slab approximations have been treated. In Part III, cylindrical approximations are treated for heat waves traveling towards the center of the plasma.

  12. Characterization of industrial process waste heat and input heat streams

    SciTech Connect

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  13. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  14. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heating Oil and Propane Prices (October - March)" ,"Click worksheet name or tab at bottom ... ,"Data 1","U.S. Weekly Heating Oil and Propane Prices (October - March)",4,"Weekly","3...

  15. Combined Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Combined Heat and Power 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Combined Heat and Power overview ........................................................................................... 2 5 1.2 Benefits of CHP for the Nation ...................................................................................................... 4 6 1.3 Benefits of CHP for

  16. Computer Experiments for Function Approximations

    SciTech Connect

    Chang, A; Izmailov, I; Rizzo, S; Wynter, S; Alexandrov, O; Tong, C

    2007-10-15

    This research project falls in the domain of response surface methodology, which seeks cost-effective ways to accurately fit an approximate function to experimental data. Modeling and computer simulation are essential tools in modern science and engineering. A computer simulation can be viewed as a function that receives input from a given parameter space and produces an output. Running the simulation repeatedly amounts to an equivalent number of function evaluations, and for complex models, such function evaluations can be very time-consuming. It is then of paramount importance to intelligently choose a relatively small set of sample points in the parameter space at which to evaluate the given function, and then use this information to construct a surrogate function that is close to the original function and takes little time to evaluate. This study was divided into two parts. The first part consisted of comparing four sampling methods and two function approximation methods in terms of efficiency and accuracy for simple test functions. The sampling methods used were Monte Carlo, Quasi-Random LP{sub {tau}}, Maximin Latin Hypercubes, and Orthogonal-Array-Based Latin Hypercubes. The function approximation methods utilized were Multivariate Adaptive Regression Splines (MARS) and Support Vector Machines (SVM). The second part of the study concerned adaptive sampling methods with a focus on creating useful sets of sample points specifically for monotonic functions, functions with a single minimum and functions with a bounded first derivative.

  17. Plasma Physics Approximations in Ares

    SciTech Connect

    Managan, R. A.

    2015-01-08

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for Aα (ζ ),Aβ (ζ ), ζ, f(ζ ) = (1 + e-μ/θ)F1/2(μ/θ), F1/2'/F1/2, Fcα, and Fcβ. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  18. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Propane Weekly Heating Oil and Propane Prices (October - March)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest ...

  19. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Heating Oil and Propane Prices (October - March)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ...

  20. Geothermal district heating and cooling in Vicenza, Italy

    SciTech Connect

    Leoni, P.

    1995-06-01

    The discovery of a large low-enthalpy geothermal water reservoir under the city of Vicenza (110,000 people) in northern Italy, through an oil prospecting venture, opened up the opportunity to install a district heating system with low energy consumption. Although the geothermal water is at 67{degrees}C, this is insufficient for heating the city`s commercial and residential buildings using their existing high-temperature heat distribution systems. Heat pumps are, therefore, used to obtain optimum useful heat energy from the geothermal source. Experience so far suggests that the system can reduce energy consumption by up to 60%, or 3885 MWh/year. The 2000 m deep well was completed in 1983 and is the first such well in Italy to be located within an urban area, making it ideal as a heat source for a district heating system. It produces 100 m{sup 3}/h of low salt-content water. The {open_quotes}Vicenza{close_quotes} geothermal heating and cooling project was developed by {open_quotes}Aziende Industriali Muncipalizzate{close_quotes} from 1988 to 1991, a utility company owned by the city of Vicenza, with the purpose of distributing approximately 40,000 MWh year to residential and commercial buildings. The project includes the installation of a power plant, and a district heating and cooling network. A reduction in the consumption of conventional fuels both for heating and domestic water has been achieved through a highly-efficient thermodynamic system based on reversible heat pumps. The system provides heating in the winter and air conditioning in summer.

  1. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,035 1,030 1,025 1,022 1,020 1,020 2013-2015...

  2. Maine Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,046 1,044 1,047 1,032 1,030 1,029 2007-2014...

  3. ,"Massachusetts Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmam.xls" ...

  4. ,"Nebraska Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnem.xls" ...

  5. ,"Oregon Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusorm.xls" ...

  6. ,"Hawaii Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcushim.xls" ...

  7. ,"Maine Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmem.xls" ...

  8. ,"Arizona Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusazm.xls" ...

  9. ,"Wisconsin Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswim.xls" ...

  10. ,"Alaska Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusakm.xls" ...

  11. ,"Montana Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmtm.xls" ...

  12. ,"Delaware Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusdem.xls" ...

  13. ,"Connecticut Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusctm.xls" ...

  14. ,"Missouri Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmom.xls" ...

  15. ,"Iowa Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusiam.xls" ...

  16. ,"Illinois Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusilm.xls" ...

  17. ,"Alabama Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusalm.xls" ...

  18. ,"Georgia Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusgam.xls" ...

  19. ,"Kansas Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusksm.xls" ...

  20. ,"Utah Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusutm.xls" ...

  1. ,"Indiana Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusinm.xls" ...

  2. ,"Ohio Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusohm.xls" ...

  3. ,"Kentucky Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuskym.xls" ...

  4. ,"Colorado Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuscom.xls" ...

  5. ,"Tennessee Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcustnm.xls" ...

  6. ,"Washington Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswam.xls" ...

  7. ,"Nevada Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnvm.xls" ...

  8. ,"Minnesota Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmnm.xls" ...

  9. ,"Arkansas Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusarm.xls" ...

  10. ,"Louisiana Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuslam.xls" ...

  11. ,"Florida Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusflm.xls" ...

  12. ,"Idaho Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusidm.xls" ...

  13. ,"Maryland Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmdm.xls" ...

  14. ,"Mississippi Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmsm.xls" ...

  15. ,"Wyoming Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcuswym.xls" ...

  16. ,"Vermont Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusvtm.xls" ...

  17. ,"Michigan Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusmim.xls" ...

  18. Nevada Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,033 1,024 1,029 1,033 1,034 1,043 2007-2015

  19. Nevada Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 View History Delivered to Consumers 1,043 1,043 1,042 1,043 1,042 1,037 2013-2016

  20. Washington Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,030 1,032 1,029 1,028 1,030 1,044 2007-2014...

  1. Washington Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,054 1,060 1,062 1,065 1,069 1,070 2013-2015...

  2. California Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,020 1,022 1,027 1,030 1,036 2007-2015

  3. California Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,034 1,035 1,021 1,042 1,035 1,038 2013-2016

  4. ,"Pennsylvania Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    ,"Excel File Name:","ngconsheatdcuspam.xls" ,"Available from Web Page:","http:www.eia.govdnavngngconsheatdcuspam.htm" ,"Source:","Energy Information ...

  5. Wyoming Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,031 1,034 1,034 1,042 1,040 1,060 2007-2015

  6. Wyoming Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,071 1,055 1,053 1,048 1,053 1,058 2013-2016

  7. Hawaii Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,040 1,040 1,048 1,046 983 959 2007-2014...

  8. Hawaii Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 954 947 959 990 1,005 1,011 2013-2015...

  9. Alabama Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,018 1,018 1,016 1,017 1,025 1,030 2007-2015

  10. Nebraska Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,068 1,060 1,055 1,053 1,054 1,054 2013-2016

  11. Missouri Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,007 1,010 1,012 1,014 1,015 1,023 2007-2015

  12. Minnesota Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,039 1,041 1,045 1,041 1,043 1,035 2013-2016

  13. Colorado Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,076 1,069 1,060 1,051 1,050 1,052 2013-2016

  14. Virginia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,055 1,053 1,051 1,057 1,055 1,055 2013-2016

  15. Colorado Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,019 1,032 1,039 1,042 1,043 1,058 2007-2015

  16. Wisconsin Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,034 1,045 1,043 1,044 1,045 1,046 2013-2016

  17. Pennsylvania Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,034 1,036 1,040 1,049 1,047 1,047 2007-2015

  18. Ohio Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,034 1,031 1,032 1,046 1,045 1,067 2007-2015

  19. Oklahoma Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,032 1,032 1,030 1,036 1,040 1,047 2007-2015

  20. Vermont Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,020 1,030 1,027 1,027 1,029 1,032 2013-2016

  1. Tennessee Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,025 1,032 1,031 1,034 1,035 1,035 2013-2016

  2. Arkansas Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,012 1,017 1,015 1,015 1,024 1,028 2007-2015

  3. Massachusetts Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,035 1,033 1,035 1,033 1,031 1,030 2007-2015

  4. Washington Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,032 1,029 1,028 1,030 1,043 1,065 2007-2015

  5. Utah Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,042 1,044 1,044 1,046 1,046 1,043 2013-2016

  6. Alaska Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,001 1,001 1,001 1,000 1,000 1,000 2013-2016

  7. Maryland Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,027 1,027 1,037 1,051 1,050 1,055 2007-2015

  8. Michigan Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,016 1,014 1,017 1,017 1,021 1,031 2007-2015

  9. Vermont Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,007 1,008 1,012 1,015 1,016 1,026 2007-2015

  10. Montana Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,032 1,032 1,034 1,034 1,033 1,030 2013-2016

  11. Mississippi Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,014 1,010 1,012 1,016 1,029 1,031 2007-2015

  12. Nebraska Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,004 1,011 1,019 1,031 1,039 1,055 2007-2015

  13. Oregon Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,038 1,036 1,035 1,036 1,033 1,034 2013-2016

  14. Ohio Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,071 1,071 1,077 1,077 1,073 1,072 2013-2016

  15. Mississippi Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,031 1,028 1,029 1,030 1,031 1,032 2013-2016

  16. Minnesota Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,010 1,010 1,019 1,015 1,033 1,041 2007-2015

  17. Texas Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,028 1,025 1,026 1,027 1,030 1,033 2007-2015

  18. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,044 1,047 1,032 1,030 1,028 1,026 2007-2015

  19. Washington Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,066 1,064 1,069 1,073 1,070 1,075 2013-2016

  20. Michigan Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,036 1,034 1,041 1,040 1,040 1,038 2013-2016

  1. Tennessee Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,014 1,014 1,021 1,026 1,027 2007-2015

  2. Virginia Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,028 1,027 1,034 1,040 1,041 1,053 2007-2015

  3. Wisconsin Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,010 1,014 1,019 1,025 1,032 1,039 2007-2015

  4. Utah Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,045 1,038 1,043 1,047 1,041 1,044 2007-2015

  5. Pennsylvania Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,044 1,045 1,046 1,046 1,048 1,045 2013-2016

  6. Alaska Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,005 1,013 1,012 1,002 1,002 1,001 2007-2015

  7. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,019 1,026 1,025 1,027 1,035 1,037 2013-2016

  8. Maryland Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,050 1,053 1,049 1,050 1,061 1,055 2013-2016

  9. Arizona Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,040 1,042 1,041 1,044 1,046 1,047 2013-2016

  10. Louisiana Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,024 1,019 1,015 1,014 1,030 1,032 2007-2015

  11. Arkansas Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,019 1,029 1,014 1,015 1,019 1,015 2013-2016

  12. Alabama Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,030 1,030 1,029 1,029 1,029 1,025 2013-2016

  13. Oregon Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,015 1,021 1,022 1,015 1,025 1,037 2007-2015

  14. Montana Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,012 1,016 1,025 1,028 1,026 1,029 2007-2015

  15. Massachusetts Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,027 1,028 1,029 1,030 1,031 1,032 2013-2016

  16. Louisiana Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,023 1,023 1,022 1,023 1,024 1,025 2013-2016

  17. Oklahoma Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,049 1,049 1,047 1,050 1,049 1,047 2013-2016

  18. Arizona Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,016 1,015 1,021 1,025 1,029 1,039 2007-2015

  19. Texas Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,036 1,036 1,033 1,030 1,029 1,028 2013-2016

  20. Missouri Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,026 1,025 1,024 1,023 1,024 1,023 2013-2016

  1. Connecticut Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,022 1,026 1,031 1,024 1,027 1,027 2007-2015

  2. Connecticut Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,026 1,026 1,025 1,026 1,025 1,025 2013-2016

  3. Delaware Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,025 1,027 1,049 1,056 1,050 2007-2015

  4. Delaware Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,043 1,044 1,042 1,042 1,044 1,043 2013-2016

  5. Florida Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,019 1,015 1,015 1,016 1,022 1,024 2007-2015

  6. Florida Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,024 1,023 1,021 1,020 1,023 1,026 2013-2016

  7. Georgia Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,022 1,018 1,015 1,016 1,020 1,027 2007-2015

  8. Georgia Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,030 1,028 1,030 1,027 1,028 1,029 2013-2016

  9. Hawaii Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,040 1,048 1,046 1,006 959 982 2007-2015

  10. Hawaii Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,003 992 1,018 1,050 967 947 2013-2016

  11. Idaho Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,021 1,017 1,015 1,022 1,017 1,030 2007-2015

  12. Idaho Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,044 1,056 1,044 1,035 1,028 1,035 2013-2016

  13. Illinois Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,008 1,011 1,011 1,016 1,023 1,029 2007-2015

  14. Illinois Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,030 1,032 1,032 1,027 1,029 1,030 2013-2016

  15. Indiana Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,012 1,012 1,012 1,015 1,019 1,027 2007-2015

  16. Indiana Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,032 1,034 1,038 1,042 1,035 1,047 2013-2016

  17. Iowa Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,006 1,009 1,014 1,029 1,040 1,053 2007-2015

  18. Iowa Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,052 1,053 1,057 1,058 1,057 1,061 2013-2016

  19. Kansas Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,019 1,020 1,022 1,018 1,024 1,036 2007-2015

  20. Kansas Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,037 1,033 1,032 1,034 1,033 1,039 2013-2016

  1. Kentucky Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,030 1,027 1,030 1,025 1,027 1,023 2007-2015

  2. Kentucky Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,023 1,026 1,018 1,025 1,033 1,038 2013-2016

  3. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Nevada Natural Gas Gross Withdrawals from ... 1:29:19 AM" "Back to Contents","Data 1: Nevada Natural Gas Gross Withdrawals from ...

  4. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Minnesota Natural Gas Injections into Underground ... 7:00:26 AM" "Back to Contents","Data 1: Minnesota Natural Gas Injections into Underground ...

  5. Miniaturized Air-to-Refrigerant Heat Exchangers

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... O., Aute, V., Radermacher, R., Novel Heat Exchanger Design using Computational Fluid Dynamics and Approximation Assisted Optimization, ASHRAE 2015, Winter Conference, January ...

  6. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    3:51:09 AM" "Back to Contents","Data 1: Rocky Mountain (PADD 4) Total Crude Oil and Products Imports" "Sourcekey","MTTIPP41","MTTIPR40-MP01","MTTIPR40-ME01","MTTIPR40-NAG...

  7. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"9302016 3:18:06 AM" "Back to Contents","Data 1: U.S. Imports of Crude Oil and Petroleum Products" "Sourcekey","MTTIMUS1","MCRIMUS1","MNGIMUS1","MPPIMUS1"...

  8. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"9302016 3:18:15 AM" "Back to Contents","Data 1: U.S. Imports of Crude Oil and Petroleum Products" "Sourcekey","MTTIMUS2","MCRIMUS2","MNGIMUS2","MPPIMUS2"...

  9. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    586-8800",,,"9302016 3:42:44 AM" "Back to Contents","Data 1: Total Crude Oil and Products Imports from All Countries" "Sourcekey","MTTIPP11","MTTIPP21","MTTIPP31","MTTIPP41"...

  10. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"9302016 3:18:11 AM" "Back to Contents","Data 1: U.S. Imports of Crude Oil and Petroleum Products" "Sourcekey","MTTIMUS1","MCRIMUS1","MNGIMUS1","MPPIMUS1"...

  11. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Motor Gasoline Sales to End Users Prices ... 8:28:36 AM" "Back to Contents","Data 1: Motor Gasoline Sales to End Users Prices " ...

  12. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    ...,"Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"4292016 6:42:48 AM" "Back to Contents","Data 1: U.S. LNG Imports from Indonesia ...

  13. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Spain (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NSPDMCF"...

  14. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports by Vessel to Japan (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0EVENUS-NJADMCF"...

  15. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports by Vessel to Japan (Million Cubic Feet)" "Sourcekey","NGMEPG0EVENUS-NJAMMCF" "Date","Liquefied U.S....

  16. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Japan (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NJADMCF"...

  17. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Florida Sales of Distillate Fuel Oil by End ... 1:37:48 PM" "Back to Contents","Data 1: Florida Sales of Distillate Fuel Oil by End Use" ...

  18. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Nevada Price of Natural Gas Sold to Commercial ... 1:00:55 AM" "Back to Contents","Data 1: Nevada Price of Natural Gas Sold to Commercial ...

  19. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to United Kingdom (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NUKDMCF"...

  20. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"9302016 2:59:18 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS1","MCRFPP11","MCRFPFL1","MCRFPNY1","MCRFPPA1","MCRFPVA1","M...

  1. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"9302016 2:59:18 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS2","MCRFPP12","MCRFPFL2","MCRFPNY2","MCRFPPA2","MCRFPVA2","M...

  2. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Brazil (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NBRDMCF"...

  3. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    to Contents","Data 1: East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by Pipeline, Tanker, Barge and Rail" "Sourcekey","MTTNRP11","MCRNRP11","MPEMNP11","MPP...

  4. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    "Back to Contents","Data 1: East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by Pipeline, Tanker, Barge and Rail" "Sourcekey","MTTNRP11","MCRNRP11","MPEMNP11"...

  5. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    ..."Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"09302016 8:50:56 AM" "Back to Contents","Data 1: Natural Gas Underground Storage ...

  6. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    ..."Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"9292016 7:02:55 AM" "Back to Contents","Data 1: Natural Gas Underground Storage ...

  7. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    ..."Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"10072016 1:14:05 PM" "Back to Contents","Data 1: Net Storage Changes ...

  8. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    ..."Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"9292016 7:02:54 AM" "Back to Contents","Data 1: Natural Gas Underground Storage ...

  9. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    to Contents","Data 1: Natural Gas Futures Contract 4 (Dollars per Million Btu)" "Sourcekey","RNGC4" "Date","Natural Gas Futures Contract 4 (Dollars per Million Btu)" 34318,1.906 ...

  10. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    to Contents","Data 1: Natural Gas Futures Contract 3 (Dollars per Million Btu)" "Sourcekey","RNGC3" "Date","Natural Gas Futures Contract 3 (Dollars per Million Btu)" 34349,2.116 ...

  11. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    to Contents","Data 1: Natural Gas Futures Contract 2 (Dollars per Million Btu)" "Sourcekey","RNGC2" "Date","Natural Gas Futures Contract 2 (Dollars per Million Btu)" 34349,2.188 ...

  12. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    AM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Chile (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NCIDMCF"...

  13. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"5302016 7:40:48 PM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS1","MCRFPP11","MCRFPFL1","MCRFPNY1","MCRFPPA1","MCRFPVA1","M...

  14. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Minnesota Price of Natural Gas Sold to Commercial ... 6:57:30 AM" "Back to Contents","Data 1: Minnesota Price of Natural Gas Sold to Commercial ...

  15. An approximation technique for jet impingement flow

    SciTech Connect

    Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.

    2015-03-10

    The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.

  16. Combined Retrieval, Microphysical Retrievals and Heating Rates...

    Office of Scientific and Technical Information (OSTI)

    Shortwave broadband total upwelling irradiance; Liquid water content; Liquid water path; Radiative heating rate Dataset File size NAView Dataset View Dataset DOI: 10.5439116949

  17. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Contents","Data 1: U.S., PAD Districts, and States" "Sourcekey","8NA8O0NUSC","8NA8O0R10C","8NA8O0SDEC","8NA8O0SFLC","8NA8O0SGAC","8NA8O0SMDC","8NA8O0SN...

  18. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  19. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Weekly","11/11/2016","1/3/1986" ,"Data 2","Conventional Gasoline",2,"Weekly","11/11/2016","6/6/1986" ,"Data 3","RBOB Regular Gasoline",1,"Weekly","11/11/2016","9/12/2003" ,"Data 4","No. 2 Heating Oil",1,"Weekly","11/11/2016","6/6/1986" ,"Data 5","Ultra-Low-Sulfur No. 2 Diesel

  20. Workbook Contents

    Energy Information Administration (EIA) (indexed site)

    Daily","11/14/2016","1/2/1986" ,"Data 2","Conventional Gasoline",2,"Daily","11/14/2016","6/2/1986" ,"Data 3","RBOB Regular Gasoline",1,"Daily","11/14/2016","3/11/2003" ,"Data 4","No. 2 Heating Oil",1,"Daily","11/14/2016","6/2/1986" ,"Data 5","Ultra-Low-Sulfur No. 2 Diesel

  1. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  2. Susanville District Heating District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  3. Total Space Heating Water Heating Cook-

    Annual Energy Outlook

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  4. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  5. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  6. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  7. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  8. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Water Heating SPECIFICATION, CHECKLIST AND GUIDE Renewable Energy Ready Home Table of Contents About the Renewable Energy Ready Home Specifications Assumptions of the RERH Solar Water Heating Specification ........................................................................... 1 Builder and Specification Limitations ............................................................................................................. 2 Renewable Energy Ready Home Solar Water Heating

  9. A Survey of Techniques for Approximate Computing

    DOE PAGES [OSTI]

    Mittal, Sparsh

    2016-03-18

    Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less

  10. An improved proximity force approximation for electrostatics

    SciTech Connect

    Fosco, Cesar D.; Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP Bariloche ; Lombardo, Fernando C.; IFIBA ; Mazzitelli, Francisco D.

    2012-08-15

    A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.

  11. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    SciTech Connect

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac; Flores, Francisco

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  12. Heat collector

    DOEpatents

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  13. Heat collector

    DOEpatents

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  14. Acoustically enhanced heat exchange and drying apparatus

    DOEpatents

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  15. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  16. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  17. EERE Website Content Checklist

    Energy.gov [DOE]

    This checklist is a tool to guide EERE content developers and editors in creating and reviewing content for websites.

  18. Approximate inverse preconditioners for general sparse matrices

    SciTech Connect

    Chow, E.; Saad, Y.

    1994-12-31

    Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.

  19. Second derivatives for approximate spin projection methods

    SciTech Connect

    Thompson, Lee M.; Hratchian, Hrant P.

    2015-02-07

    The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical second derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.

  20. Microscopic justification of the equal filling approximation

    SciTech Connect

    Perez-Martin, Sara; Robledo, L. M.

    2008-07-15

    The equal filling approximation, a procedure widely used in mean-field calculations to treat the dynamics of odd nuclei in a time-reversal invariant way, is justified as the consequence of a variational principle over an average energy functional. The ideas of statistical quantum mechanics are employed in the justification. As an illustration of the method, the ground and lowest-lying states of some octupole deformed radium isotopes are computed.

  1. Total Space Heating Water Heating Cook-

    Annual Energy Outlook

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  2. #HeatChat @Energy: Ask Us Your Home Heating Questions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy #HeatChat @Energy: Ask Us Your Home Heating Questions #HeatChat @Energy: Ask Us Your Home Heating Questions October 21, 2015 - 10:10am Addthis Check out our <a href="/node/780416">Energy Saver 101 infographic</a> for everything you need to know about home heating. Check out our Energy Saver 101 infographic for everything you need to know about home heating. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs How can I participate? Ask us

  3. Heating apparatus

    SciTech Connect

    Page, V. J.

    1981-02-10

    A solar energy heating apparatus is described comprising means for concentrating solar energy incident thereon at an absorption station, an absorber located at the said absorption station for absorbing solar energy concentrated thereat, a first passageway associated with the said energy concentrating means for directing fluid so as to be preheated by the proportion of the incident energy absorbed by the said means, a second passageway associated with the absorber for effecting principal heating of fluid directed therethrough. The second passageway is such that on directing fluid through the first passageway it is initially preheated by the proportion of the incident energy absorbed by the energy concentrating means, the preheated fluid thereafter being directed to the second passageway where the principal heating takes place.

  4. Photoelectron spectroscopy and the dipole approximation

    SciTech Connect

    Hemmers, O.; Hansen, D.L.; Wang, H.

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  5. Relativistic Random Phase Approximation At Finite Temperature

    SciTech Connect

    Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.

    2009-08-26

    The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

  6. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Saver

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  7. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) ...

  8. Heat exchanger

    DOEpatents

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  9. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    SciTech Connect

    Powell, J.; Reich, M.; Barletta, R.

    1996-03-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

  10. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  11. Semiclassical approximation to supersymmetric quantum gravity

    SciTech Connect

    Kiefer, Claus; Lueck, Tobias; Moniz, Paulo

    2005-08-15

    We develop a semiclassical approximation scheme for the constraint equations of supersymmetric canonical quantum gravity. This is achieved by a Born-Oppenheimer type of expansion, in analogy to the case of the usual Wheeler-DeWitt equation. The formalism is only consistent if the states at each order depend on the gravitino field. We recover at consecutive orders the Hamilton-Jacobi equation, the functional Schroedinger equation, and quantum gravitational correction terms to this Schroedinger equation. In particular, the following consequences are found: (i) the Hamilton-Jacobi equation and therefore the background spacetime must involve the gravitino, (ii) a (many-fingered) local time parameter has to be present on super Riem {sigma} (the space of all possible tetrad and gravitino fields) (iii) quantum supersymmetric gravitational corrections affect the evolution of the very early Universe. The physical meaning of these equations and results, in particular, the similarities to and differences from the pure bosonic case, are discussed.

  12. Comparison of Methods for Calculating Radiative Heat Transfer

    SciTech Connect

    Schock, Alfred; Abbate, M J

    2012-01-19

    Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.

  13. Magnetic reconnection under anisotropic magnetohydrodynamic approximation

    SciTech Connect

    Hirabayashi, K.; Hoshino, M.

    2013-11-15

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p{sub ?}>p{sub ?}) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.

  14. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    SciTech Connect

    Menikoff, Ralph

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gr ̈uneisen EOS developed for an atomic solid, the specific heat and Gr ̈uneisen coefficient depend on both density and temperature.

  15. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  16. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  17. Heat transfer and heat exchangers reference handbook

    SciTech Connect

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  18. Heating systems for heating subsurface formations

    DOEpatents

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  19. Bond selective chemistry beyond the adiabatic approximation

    SciTech Connect

    Butler, L.J.

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  20. Heat exchanger

    DOEpatents

    Brackenbury, P.J.

    1983-12-08

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  1. Heat exchanger

    DOEpatents

    Brackenbury, Phillip J.

    1986-01-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  2. Heat exchanger

    DOEpatents

    Brackenbury, Phillip J.

    1986-04-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  3. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  4. Particle-number conservation in static-path approximation for thermal superfluid systems

    SciTech Connect

    Kaneko, K.; Schiller, A.

    2007-12-15

    By applying particle-number projection to the static-path approximation (SPA), the heat capacity and the breakdown of pairing correlations are investigated in the thermally excited, superfluid systems {sup 172}Yb, {sup 94}Mo, and {sup 56}Fe. For the heavy nucleus {sup 172}Yb, the heat capacities in both the SPA and the number-projected SPA (NPSPA) exhibit an S shape; the difference between the SPA and NPSPA heat-capacity curves is not very large and the particle-number projection thereby enhances the S shape already seen in the SPA. The temperature at which the S-shape of heat capacity curve occurs parallels the temperature of the breakdown of pairing correlations as indicated by the effective pairing gap. However, for the comparatively lighter nuclei {sup 94}Mo and {sup 56}Fe, the SPA does not produce an S-shaped heat capacity on its own; only after particle-number projection the S shape appears in the heat-capacity curve. For {sup 94}Mo, we compare the NPSPA result with thermal odd-even mass differences, which are regarded as a direct measure of the pairing gap.

  5. Industrial heat pump demonstration project

    SciTech Connect

    Not Available

    1988-09-01

    This booklet describes an industrial heat pump demonstration project conducted at a plant in Norwich, New York. The project required retrofitting an open-cycle heat pump to a single-effect, recirculating-type evaporator. The heat pump design uses an electrically driven centrifugal compressor to recover the latent heat of the water vapor generated by the evaporator. The compressed vapor is returned to the process, where it displaces the use of boiler steam. The goal was to reduce costs associated with operating the evaporator, which is used for reduction the water content of whey (a liquid by-product from cheese production). The retrofit equipment has now completed more than one year of successful operation. Heat pump coefficient of performance has been measured and is in the range of 14 to 18 under varying process conditions. Generalization of project results indicates that the demonstrated technology achieved attractive economics over a wide range of energy price assumptions, especially when the heat pump is applied to larger processes. 5 refs., 17 figs.

  6. Dual source heat pump

    DOEpatents

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  7. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  8. Carbon footprints of heating oil and LPG heating systems

    SciTech Connect

    Johnson, Eric P.

    2012-07-15

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  9. Anomalous ion heating and superthermal electrons in the MST reversed-field pinch

    SciTech Connect

    Hokin, S.; Almagri, A.; Assadi, S.; Cekic, M.; Chapman, B.; Chartas, G.; Crocker, N.; Cudzinovic, M.; Den Hartog, D.J.; Dexter, R.; Fiksel, G.; Fonck, R.; Henry, J.; Holly, D.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Sprott, C.; Stoneking, M.; Watts, C.

    1992-09-01

    Anomalous ion heating and superthermal electron populations have been studied in the MST reversed-field pinch. The ion heating is much stronger than that given by classical electron-ion friction, and is particularly strong during dynamo bursts. The heating displays a marked density dependence: in a 350-kA discharge with a maximum {bar n} = 0.9 {times} 10{sup 13} cm{sup {minus} 3}, T{sub i} rises sharply as {bar n} drops below 0.4 {times} 10{sub 13} cm{sup {minus}3} late in the discharge. Superthermal electrons are produced in the core, with temperatures of T{sub eh}, = 350--700 eV while the bulk core temperature is T{sub e}o = 130--230 eV. The fraction of superthermal electrons decreases with increasing density, from 40% at {bar n} = 0.5 {times} 10{sup 13} cm{sup {minus}3} to 8% at {bar n} = 1.9 {times} 10{sup 13} cm{sup {minus}3} at I = 350 kA. However, data with similar plasma parameters but higher oxygen impurity content had a lower T{sub eh} and higher hot fraction. The edge superthermal electron distribution is well fit by a drifted bi-Maxwellian distribution with T{sub {parallel}} {approximately} T{sub e0} and relative drift speed v{sub d}/v{sub th} = 0.4. With the assumption that the parallel heat flux measured with a pyroelectric probe is carried by superthermal electrons, the measured electron current is consistent with T{sub {perpendicular}} {approximately} T{sub ea} {approximately} T{sub e0}/3 and accounts for over half of the total edge parallel current measured with magnetic probes.

  10. Geothermal Heat Pumps for Federal Buildings

    SciTech Connect

    1999-08-01

    OFFICE OF GEOTHERMAL TECHNOLOGIES Geothermal Heat Pumps for Federal Buildings The U.S. Government spends approximately $8 billion annually on its energy needs. To reduce energy use in Federal buildings, President Bill Clinton issued Executive Order 13123 in June 1999, which calls for a 35% reduction in Federal energy use from 1985 levels by 2010. Geothermal heat pumps--when installed in virtually any type of building--can help accomplish this goal with energy savings of up to 40%. Geothermal he.

  11. #AskEnergySaver: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heating #AskEnergySaver: Home Heating October 29, 2014 - 12:56pm Addthis This month our experts answered your #AskEnergySaver questions on home heating. | Image courtesy of Sarah Gerrity, Energy Department. This month our experts answered your #AskEnergySaver questions on home heating. | Image courtesy of Sarah Gerrity, Energy Department. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs Looking for more ways to save energy? Check out Energy Saver for

  12. U.S. Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,022 1,024 1,027 1,032 1,037 2003-2015 Total Consumption 1,023 1,022 1,024 1,027 1,032 1,037 2003-2015 Electric Power 1,022 1,021 1,022 1,025 1,029 1,035 2003-2015 Other Sectors 1,023 1,022 1,025 1,028 1,033 1,037 2003-2015

  13. Alabama Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,016 1,016 1,016 1,016 1,017 1,016 1,016 1,017 1,018 1,018 2014 1,018 1,017 1,019 1,021 1,024 1,025 1,026 ...

  14. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,038 1,037 2010's 1,034 1,036 1,040 1,049 1,047 1,047

  15. Massachusetts Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,033 1,032 1,033 1,035 1,032 1,033 1,034 1,036 1,038 1,033 1,030 2014 1,035 1,032 1,031 1,030 1,030 1,031 1,030 ...

  16. Arkansas Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,016 1,016 1,016 1,017 1,018 1,016 1,016 1,014 1,012 1,012 1,015 2014 1,017 1,015 1,015 1,018 1,017 1,019 1,021 ...

  17. District of Columbia Heat Content of Natural Gas Deliveries to...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,025 1,021 1,014 1,014 1,025 1,034 1,037 1,043 1,041 1,047 1,048 2014 1,041 1,035 1,031 1,038 1,035 1,038 1,038 ...

  18. Rhode Island Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,026 1,022 1,023 2010's 1,017 1,020 1,031 1,032 1,029 1,028

  19. Michigan Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,021 1,022 1,026 1,020 1,022 1,024 1,021 1,019 1,019 1,017 1,019 2014 1,019 1,021 1,021 1,017 1,020 1,019 1,015 ...

  20. Wyoming Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,043 1,040 1,041 1,042 1,043 1,045 1,040 1,040 1,041 1,038 1,035 1,030 2014 1,034 1,032 1,030 1,031 1,029 1,026 1,025 ...

  1. Vermont Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,014 1,016 1,016 1,021 1,016 1,015 1,011 1,012 1,014 1,015 1,014 2014 1,013 1,009 1,015 1,014 1,026 1,031 1,011 ...

  2. North Carolina Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,027 1,023 2010's 1,015 1,011 1,011 1,013 1,018 1,034

  3. Wyoming Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,036 1,031 1,031 2010's 1,031 1,034 1,034 1,041 1,042 1,056

  4. Louisiana Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,013 1,015 1,015 1,015 1,016 1,016 1,017 1,017 1,016 1,018 1,019 2014 1,017 1,016 1,018 1,021 1,028 1,025 1,029 ...

  5. Arkansas Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,014 1,015 1,016 2010's 1,012 1,017 1,015 1,015 1,024 1,028

  6. Missouri Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,014 1,013 1,014 1,013 1,017 1,015 1,016 1,019 1,013 1,014 2014 1,013 1,013 1,014 1,014 1,011 1,016 1,016 ...

  7. New Mexico Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,025 1,028 2010's 1,021 1,022 1,024 1,030 1,035 1,041

  8. Kentucky Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,027 1,035 1,036 2010's 1,030 1,027 1,030 1,028 1,028 1,025

  9. Connecticut Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,019 1,018 1,019 2010's 1,022 1,026 1,031 1,030 1,020 1,027

  10. Washington Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,030 1,030 2010's 1,032 1,029 1,028 1,030 1,043 1,065

  11. Indiana Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,022 1,013 1,015 2010's 1,012 1,012 1,012 1,015 1,021 1,036

  12. Washington Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,027 1,026 1,026 1,030 1,032 1,037 1,032 1,033 1,038 1,035 1,030 1,034 2014 1,035 1,037 1,041 1,042 1,045 1,050 1,049 ...

  13. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,046 1,045 1,067

  14. Oklahoma Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,034 1,033 2010's 1,032 1,032 1,030 1,036 1,040 1,047

  15. Massachusetts Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,021 1,032 2010's 1,035 1,033 1,035 1,033 1,031

  16. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,015 1,025 1,029

  17. Florida Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,029 1,025 2010's 1,019 1,015 1,015 1,016 1,021

  18. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025 ...

  19. Indiana Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,012 1,013 1,015 1,019 1,020 1,019 1,021 1,020 1,018 1,015 1,014 2014 1,016 1,017 1,019 1,019 1,023 1,023 1,025 ...

  20. Missouri Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,020 1,008 1,007 2010's 1,007 1,010 1,012 1,014 1,015 1,023

  1. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,016 1,038

  2. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021

  3. Mississippi Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,014 1,015 1,018 1,018 1,021 1,022 1,025 1,020 1,020 2014 1,019 1,014 1,019 1,026 1,030 1,034 1,035 ...

  4. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012 1,002 1,002

  5. Alabama Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,025 1,026 2010's 1,018 1,018 1,016 1,017

  6. Georgia Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,026 1,027 2010's 1,022 1,018 1,015 1,016 1,022 1,028

  7. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,030 1,028 1,026

  8. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005 ...

  9. Wisconsin Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,028 1,026 1,025 1,030 1,027 1,026 1,026 1,023 1,026 1,027 1,027 1,027 2014 1,031 1,033 1,035 1,032 1,033 1,032 1,029 ...

  10. North Dakota Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,046 1,042 1,055 2010's 1,055 1,073 1,065 1,082 1,064 1,054

  11. South Dakota Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,003 1,003 1,002 2010's 1,005 1,005 1,018 1,023 1,035 1,051

  12. Maryland Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,041 1,037 1,032 1,027 1,037 1,042 1,060 1,056 1,062 1,059 1,061 1,059 2014 1,053 1,048 1,045 1,049 1,047 1,052 1,051 ...

  13. Arizona Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,029 1,023 1,021 1,030 1,027 1,025 1,028 1,025 1,023 1,022 1,024 1,024 2014 1,024 1,025 1,026 1,031 1,028 1,028 1,030 ...

  14. Wisconsin Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,014 1,014 1,014 2010's 1,010 1,014 1,019 1,025 1,032 1,039

  15. District of Columbia Heat Content of Natural Gas Deliveries to...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,027 1,028 1,035 2010's 1,014 1,016 1,029 1,048 1,037 1,044

  16. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,047 1,041 1,044

  17. South Carolina Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,034 1,034 2010's 1,026 1,026 1,023 1,019 1,024 1,030

  18. Tennessee Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,012 1,016 1,019 1,018 1,021 1,023 1,028 1,028 1,025 1,024 1,022 2014 1,020 1,020 1,021 1,027 1,032 1,031 1,032 ...

  19. Maryland Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,038 1,035 1,037 2010's 1,027 1,027 1,037 1,051 1,050 1,055

  20. Montana Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,017 1,016 1,011 2010's 1,012 1,016 1,025 1,028 1,026 1,029

  1. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033 ...

  2. Minnesota Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,019 1,023 1,029 2010's 1,010 1,010 1,019 1,015 1,033 1,041

  3. Georgia Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,014 1,015 1,016 1,015 1,014 1,015 1,016 1,019 1,017 1,016 1,017 1,017 2014 1,018 1,018 1,018 1,018 1,021 1,022 1,023 ...

  4. Vermont Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,001 1,005 1,005 2010's 1,007 1,008 1,012 1,015 1,016 1,026

  5. Oklahoma Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,040 1,037 1,038 1,039 1,041 1,043 1,044 1,042 1,042 1,044 1,043 1,042 2014 1,036 1,036 1,039 1,037 1,040 1,043 1,042 ...

  6. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,002 1,001 1,001 1,001 1,002 1,003 1,003 1,002 1,002 1,001 1,001 1,000 2014 1,002 1,004 1,001 1,002 1,001 1,001 1,001 ...

  7. Kentucky Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,022 1,023 1,025 1,026 1,027 1,028 1,030 1,031 1,028 1,028 1,033 2014 1,029 1,024 1,026 1,028 1,031 1,037 1,034 ...

  8. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029 ...

  9. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,056 1,055 1,057 1,043 983 983 983 983 983 983 983 983 2014 947 946 947 947 947 947 951 978 990 968 974 962 2015 968 954 ...

  10. Delaware Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,033 1,030 2010's 1,023 1,025 1,027 1,043 1,054 1,050

  11. Montana Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,044 1,040 1,032 1,034 1,034 1,044 1,048 1,043 1,047 1,041 1,032 1,031 2014 1,034 1,030 1,030 1,027 1,032 1,030 1,038 ...

  12. New York Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,032 1,031 1,031 1,031 1,034 1,035 1,034 1,033 1,034 1,034 1,033 1,032 2014 1,032 1,031 1,032 1,031 1,031 1,031 1,031 ...

  13. Louisiana Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,034 1,035 1,029 2010's 1,024 1,019 1,015 1,014 1,030 1,03

  14. Connecticut Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,018 1,025 1,011 1,022 1,028 1,024 1,032 1,028 1,030 1,030 1,026 1,024 2014 1,015 1,015 1,016 1,019 1,020 1,022 1,022 ...

  15. Nebraska Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,031 1,032 1,033 1,036 1,035 1,029 1,032 1,038 1,040 1,041 1,036 2014 1,034 1,034 1,037 1,043 1,043 1,047 1,051 ...

  16. Colorado Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,032 1,030 1,033 1,040 1,051 1,056 1,057 1,058 1,037 1,032 1,033 2014 1,030 1,036 1,038 1,041 1,051 1,050 1,048 ...

  17. Illinois Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,015 1,015 1,014 1,015 1,015 1,016 1,017 1,019 1,018 2014 1,020 1,020 1,020 1,020 1,020 1,020 1,022 ...

  18. West Virginia Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,074 1,073 1,082 2010's 1,076 1,083 1,080 1,083 1,073 1,08

  19. Tennessee Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,038 1,037 1,028 2010's 1,023 1,014 1,014 1,021 1,026 1,027

  20. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043 ...

  1. Minnesota Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,020 1,021 1,020 1,021 1,026 1,030 1,028 1,029 1,028 1,029 1,029 1,027 2014 1,031 1,027 1,033 1,034 1,038 1,042 1,042 ...

  2. Delaware Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,049 1,046 1,048 1,041 1,049 1,058 1,054 1,065 1,064 1,067 1,057 2014 1,052 1,048 1,048 1,051 1,045 1,049 1,063 ...

  3. Michigan Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,021 1,023 1,021 2010's 1,016 1,014 1,017 1,017 1,021 1,031

  4. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,015 1,025 1,037

  5. Virginia Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,038 1,032 1,033 1,028 1,030 1,039 1,043 1,038 1,043 1,042 1,046 1,045 2014 1,044 1,040 1,039 1,041 1,038 1,040 1,041 ...

  6. West Virginia Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,071 1,071 1,070 1,083 1,088 1,099 1,099 1,119 1,082 1,097 1,086 1,079 2014 1,073 1,073 1,065 1,111 1,094 1,095 1,099 ...

  7. New York Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,023 1,021 1,021 2010's 1,022 1,025 1,031 1,033 1,031

  8. New Jersey Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,035 1,033 1,029 2010's 1,026 1,026 1,029 1,045 1,042 1,046

  9. Colorado Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,020 1,019 2010's 1,019 1,032 1,039 1,042 1,043 1,058

  10. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,043 1,040 2010's 1,040 1,048 1,046 983 958 981

  11. Nebraska Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,011 1,012 2010's 1,004 1,011 1,019 1,031 1,039 1,055

  12. New Jersey Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,043 1,043 1,043 1,042 1,043 1,046 1,044 1,042 1,045 1,047 1,048 1,050 2014 1,050 1,047 1,045 1,040 1,035 1,037 1,040 ...

  13. New Hampshire Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,044 1,040 1,035 2010's 1,037 1,040 1,032 1,030 1,032

  14. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,027 1,030 1,033

  15. Virginia Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,035 1,038 1,036 2010's 1,028 1,027 1,034 1,040 1,041 1,053

  16. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038 ...

  17. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053 ...

  18. Mississippi Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,026 1,019 2010's 1,014 1,010 1,012 1,016 1,029 1,031

  19. Arizona Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,023 1,027 1,021 2010's 1,016 1,015 1,021 1,025 1,029 1,039

  20. Illinois Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,015 1,014 1,013 2010's 1,008 1,011 1,011 1,016 1,021 1,029

  1. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031 ...

  2. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,030 1,029...

  3. ,"New Hampshire Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnhm.xls" ...

  4. ,"South Dakota Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcussdm.xls" ...

  5. ,"New Jersey Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnjm.xls" ...

  6. ,"Rhode Island Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusrim.xls" ...

  7. ,"South Carolina Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusscm.xls" ...

  8. ,"New York Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusnym.xls" ...

  9. Florida Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,029 1,025 2010's 1,019 1,015 1,015 1,016 1,022 1,024

  10. Florida Heat Content of Natural Gas Deliveries to Consumers ...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,016 1,015 1,016 1,015 1,016 1,015 1,016 1,016 1,017 1,017 1,018 1,018 2014 1,018 1,018 1,018 1,019 1,019 1,019 1,022 ...

  11. New Jersey Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,026 1,026 1,029 1,044 1,042 1,045 2007-2015

  12. New Jersey Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,042 1,039 1,037 1,037 1,038 1,039 2013-2016

  13. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033 ...

  14. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,033 1,034 1,043

  15. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,043 1,040 2010's 1,040 1,048 1,046 983 958...

  16. North Carolina Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,023 1,015 1,011 1,011 1,013 1,018 2007-2014...

  17. North Carolina Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    May-15 Jun-15 Jul-15 Aug-15 Sep-15 Oct-15 View History Delivered to Consumers 1,035 1,033 1,038 1,037 1,038 1,040 2013-2015...

  18. North Carolina Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,027 1,023 2010's 1,015 1,011 1,011 1,013 1,018...

  19. Heat Content of Natural Gas Delivered to Consumers

    Energy Information Administration (EIA) (indexed site)

    Total Consumption Electric Power Other Sectors Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 1,023 1,022 1,024 1,027 1,032 1,037 2003-2015 Alabama 1,018 1,018 1,016 1,017 1,024 1,030 2007-2015 Alaska 1,005 1,013 1,012 1,001 1,001 1,001 2007-2015 Arizona 1,016 1,015 1,021 1,025 1,030 1,040 2007-2015 Arkansas 1,012 1,017 1,015

  20. Heat Content of Natural Gas Delivered to Consumers

    Energy Information Administration (EIA) (indexed site)

    Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History U.S. 1,037 1,037 1,034 1,034 1,034 1,037 2012-2016 Alabama 1,030 1,028 1,028 1,026 1,029 1,031 2013-2016 Alaska 1,001 1,001 1,002 1,003 1,003 1,003 2013-2016 Arizona 1,050 1,042 1,037 1,031 1,031 1,035 2013-2016 Arkansas 1,017 1,019 1,018 1,020 1,021 1,022 2013-2016

  1. New York Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Apr-15 May-15 Jun-15 Jul-15 Aug-15 Sep-15 View History Delivered to Consumers 1,034 1,032 1,032 1,031 1,031 1,032 2013-2015...

  2. New York Heat Content of Natural Gas Deliveries to Consumers...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,023 1,021 1,021 2010's 1,022 1,025 1,031 1,033 1,031...

  3. New York Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,021 1,022 1,025 1,031 1,033 1,031 2007-2014...

  4. Virginia Heat Content of Natural Gas Deliveries to Consumers...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,035 1,038 1,036 2010's 1,028 1,027 1,034 1,040 1,041...

  5. ,"U.S. Heat Content of Natural Gas Consumed"

    Energy Information Administration (EIA) (indexed site)

    1,"Monthly","12016","01152012" ,"Release Date:","03312016" ,"Next Release Date:","04292016" ,"Excel File Name:","ngconsheatdcunusm.xls" ,"Available from Web ...

  6. Rhode Island Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,029 1,029 1,029 1,028 1,028 1,028 2013-2015...

  7. Rhode Island Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,023 1,017 1,020 1,031 1,032 1,028 2007-2014...

  8. California Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,028 1,027 2010's 1,023 1,020 1,022 1,028 1,028...

  9. North Dakota Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,055 1,073 1,065 1,069 1,086 1,086 2007-2015

  10. North Dakota Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,099 1,108 1,091 1,070 1,089 1,090 2013-2016

  11. Rhode Island Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,017 1,020 1,031 1,032 1,028 1,028 2007-2015

  12. Rhode Island Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,025 1,034 1,029 1,028 1,028 1,028 2013-2016

  13. South Carolina Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,026 1,026 1,023 1,020 1,024 1,030 2007-2015

  14. South Carolina Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,029 1,031 1,030 1,029 1,029 1,030 2013-2016

  15. South Dakota Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,005 1,005 1,018 1,031 1,041 1,054 2007-2015

  16. South Dakota Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,053 1,052 1,054 1,058 1,060 1,057 2013-2016

  17. U.S. Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,037 1,037 1,034 1,034 1,034 1,037 2012-2016

  18. West Virginia Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,076 1,083 1,080 1,076 1,090 1,097 2007-2015

  19. West Virginia Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,096 1,096 1,096 1,118 1,108 1,109 2013-2016

  20. North Carolina Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,014 1,014 1,012 1,010 1,010 1,010 1,011 1,012 1,012 1,015 1,014 2014 1,016 1,018 1,017 1,015 1,016 1,014 1,017 ...

  1. North Dakota Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,082 1,093 1,096 1,091 1,068 1,131 1,140 1,077 1,013 1,099 1,112 1,089 2014 1,087 1,084 1,074 1,077 1,083 1,079 1,078 ...

  2. Connecticut Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,019 1,018 1,019 2010's 1,022 1,026 1,031 1,030 1,020...

  3. New Mexico Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    Jun-15 Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 View History Delivered to Consumers 1,039 1,038 1,049 1,040 1,048 1,042 2013-2015...

  4. New Mexico Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,028 1,021 1,022 1,024 1,030 1,035 2007-2014...

  5. New Mexico Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,025 1,028 2010's 1,021 1,022 1,024 1,030 1,035...

  6. Maryland Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,038 1,035 1,037 2010's 1,027 1,027 1,037 1,051 1,050

  7. Alabama Heat Content of Natural Gas Deliveries to Consumers ...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,025 1,026 2010's 1,018 1,018 1,016 1,017 1,025 1,030

  8. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021 1,037

  9. Washington Heat Content of Natural Gas Deliveries to Consumers...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,030 1,030 2010's 1,032 1,029 1,028 1,030 1,043 1,06

  10. Louisiana Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,034 1,035 1,029 2010's 1,024 1,019 1,015 1,014 1,030 1,032

  11. Kentucky Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,027 1,035 1,036 2010's 1,030 1,027 1,030 1,028 1,028

  12. Delaware Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,033 1,030 2010's 1,023 1,025 1,027 1,043 1,054

  13. Massachusetts Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,021 1,032 2010's 1,035 1,033 1,035 1,033 1,031 1,030

  14. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012 1,002 1,002 1,001

  15. Missouri Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,020 1,008 1,007 2010's 1,007 1,010 1,012 1,014 1,015

  16. Oklahoma Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,034 1,033 2010's 1,032 1,032 1,030 1,036 1,040

  17. District of Columbia Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,014 1,016 1,029 1,030 1,043 1,044 2007-2015

  18. District of Columbia Heat Content of Natural Gas Consumed

    Energy Information Administration (EIA) (indexed site)

    Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 View History Delivered to Consumers 1,043 1,040 1,035 1,034 1,038 1,038 2013-2016

  19. Arizona Heat Content of Natural Gas Deliveries to Consumers ...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,023 1,027 1,021 2010's 1,016 1,015 1,021 1,025 1,029...

  20. New Hampshire Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Delivered to Consumers 1,035 1,039 1,031 1,029 1,027 1,028 2013-2016

  1. New Hampshire Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,033 1,029 1,028 1,029 1,030 1,030 1,027 1,028 1,031 1,033 1,030 1,030 2014 1,037 1,033 1,031 1,031 1,032 1,038 1,033 ...

  2. New Hampshire Heat Content of Natural Gas Deliveries to Consumers...

    Gasoline and Diesel Fuel Update

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,044 1,040 1,035 2010's 1,037 1,040 1,032 1,030 1,032 1,031

  3. New Hampshire Heat Content of Natural Gas Consumed

    Annual Energy Outlook

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,037 1,040 1,032 1,030 1,032 1,031 2007-2015

  4. New Mexico Heat Content of Natural Gas Deliveries to Consumers...

    Energy Information Administration (EIA) (indexed site)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,026 1,027 1,027 1,033 1,031 1,026 1,032 1,032 1,034 1,028 1,034 1,032 2014 1,030 1,029 1,027 1,028 1,030 1,033 1,041 ...

  5. CONTENT MODEL HOW-TO

    Energy Science and Technology Software Center

    003241MLTPL00 Content Model Guidelines https://github.com/usgin/usginspecs/wiki/Content-Model-Guidelines

  6. Multiple source heat pump

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  7. Solar heating panel

    SciTech Connect

    Ellsworth, R.L.

    1983-01-18

    A solar heating panel for collecting solar heat energy and method for making same having a heat insulative substrate with a multiplicity of grooves and structural supporting ribs formed therein covered by a thin, flexible heat conductive film to form fluid conducting channels which in turn are connected to manifolds from which fluid is directed into the channels and heated fluid is removed therefrom.

  8. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Saver

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  9. Kethcum District Heating District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  10. Midland District Heating District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  11. Pagosa Springs District Heating District Heating Low Temperature...

    OpenEI (Open Energy Information) [EERE & EIA]

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  12. Philip District Heating District Heating Low Temperature Geothermal...

    OpenEI (Open Energy Information) [EERE & EIA]

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  13. Waste Heat Management Options for Improving Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

  14. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  15. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  16. Electric Resistance Heating Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat.

  17. Concentrating solar heat collector

    SciTech Connect

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  18. Table of Contents

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    TABLE OF CONTENTS INTRODUCTION J. B. Natowitz, Director SECTION I: NUCLEAR STRUCTURE, FUNDAMENTAL INTERACTIONS AND ASTROPHYSICS SECTION II: HEAVY ION REACTIONS SECTION III: NUCLEAR...

  19. Fermilab Today - Related Content

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Related Content Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO Classifieds Director's Corner Physics in a Nutshell Frontier Science Result Tip of the Week...

  20. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  1. DOE Announces Award of a Contract to Repurchase Heating Oil for the

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Northeast Home Heating Oil Reserve | Department of Energy Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve July 23, 2008 - 2:15pm Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the award of a contract to Hess Corporation for the delivery of approximately 808,625 gallons (approximately 19,250 barrels) of home heating oil for the

  2. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  3. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  4. Total Space Heat-

    Gasoline and Diesel Fuel Update

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  5. Guide to Geothermal Heat Pumps

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    among the most effcient and comfortable heating and cooling technologies available because they use the earth's natural heat to provide heating, cooling, and often, water heating. ...

  6. RH-TRU Waste Content Codes

    SciTech Connect

    Washington TRU Solutions

    2007-07-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits

  7. Development of advanced low-temperature heat transfer fluids for district heating and cooling, final report

    SciTech Connect

    Cho, Y.I.; Lorsch, H.G.

    1991-03-31

    The feasibility of adding phase change materials (PCMS) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMS, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literature values. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. For 10% and 25% PCM/water slurries, the heat transfer enhancement was found to be approximately 18 and 30 percent above the value for water, respectively. Within the turbulent region, there is only a minor pumping penalty from the addition of up to 25% PCM to the water. Research is continuing on these fluids in order to determine their behavior in large-size loops and to arrive at optimum formulations.

  8. TABLE OF CONTENTS

    National Nuclear Security Administration (NNSA)

    AC05-00OR22800 TABLE OF CONTENTS Contents Page # TOC - i SECTION A - SOLICITATION/OFFER AND AWARD ......................................................................... A-i SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS ........................................................ B-i B.1 SERVICES BEING ACQUIRED ....................................................................................B-2 B.2 TRANSITION COST, ESTIMATED COST, MAXIMUM AVAILABLE FEE, AND AVAILABLE FEE (Modification 295,

  9. Helically coiled tube heat exchanger

    SciTech Connect

    Harris, A.M.

    1981-08-18

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle.

  10. A Multithreaded Algorithm for Network Alignment Via Approximate...

    Office of Scientific and Technical Information (OSTI)

    The best current approaches are entirely heuristic, and are iterative in nature. They generate real-valued heuristic approximations that must be rounded to find integer solutions. ...

  11. Charge-conjugation symmetric complete impulse approximation for...

    Office of Scientific and Technical Information (OSTI)

    from the spectator quark (referred to as the relativistic impulse approximation). In this study we also include the contributions from the poles of the quark which interacts with ...

  12. ANALOG QUANTUM NEURON FOR FUNCTIONS APPROXIMATION A. EZHOV; A...

    Office of Scientific and Technical Information (OSTI)

    FOR FUNCTIONS APPROXIMATION A. EZHOV; A. KHROMOV; G. BERMAN 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; IMPLEMENTATION; NERVE CELLS; WAVEGUIDES We describe a system able...

  13. How to Solve Schroedinger Problems by Approximating the Potential Function

    SciTech Connect

    Ledoux, Veerle; Van Daele, Marnix

    2010-09-30

    We give a survey over the efforts in the direction of solving the Schroedinger equation by using piecewise approximations of the potential function. Two types of approximating potentials have been considered in the literature, that is piecewise constant and piecewise linear functions. For polynomials of higher degree the approximating problem is not so easy to integrate analytically. This obstacle can be circumvented by using a perturbative approach to construct the solution of the approximating problem, leading to the so-called piecewise perturbation methods (PPM). We discuss the construction of a PPM in its most convenient form for applications and show that different PPM versions (CPM,LPM) are in fact equivalent.

  14. Quasiparticle random-phase approximation with interactions from...

    Office of Scientific and Technical Information (OSTI)

    Quasiparticle random-phase approximation with interactions from the Similarity Renormalization Group Citation Details In-Document Search Title: Quasiparticle random-phase ...

  15. Direct fired heat exchanger

    DOEpatents

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  16. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  17. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  18. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  19. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-05-05

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  20. Remote-Handled Transuranic Content Codes

    SciTech Connect

    Washington TRU Solutions

    2006-12-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits