Nucleon-nucleon bremsstrahlung: Anomalous magnetic moment effects
Timmermans, R.G.E.; Penninga, T.D.; Gibson, B.F.; Liou, M.K.
2006-03-15
Background: Two soft-photon amplitudes, the two-u-two-t special (TuTts) amplitude and the Low amplitude, are known to produce quantitatively similar np{gamma} cross sections, but they predict quite different pp{gamma} cross sections for those kinematic conditions in which the nucleon scattering angles are small (less than 25 deg.). Purpose: These two amplitudes have been applied to systematically investigate three different nucleon-nucleon bremsstrahlung (NN{gamma}) processes: pp{gamma},np{gamma}, and nn{gamma}. The nn{gamma} process is explored for the first time. The primary focus of this work is to investigate the contribution of the proton and the neutron anomalous magnetic moments to all three NN{gamma} processes for projectile energies above 150 MeV and for laboratory scattering angles ({theta}{sub 1} and {theta}{sub 2}) lying between 8 deg. and 40 deg.. Method: A special soft-photon expansion in which the TuTts amplitude is expanded in terms of the Low amplitude plus additional amplitudes is utilized to explore the relationship between the TuTts and Low amplitudes and the reasons why they agree and disagree. We also used the TuTts amplitude to calculate the NN{gamma} cross section with and without the anomalous magnetic moment contributions to explore the importance of that element of the electromagnetic current. Results: The TuTts amplitude describes well the available pp{gamma} cross-section data. The anomalous magnetic moment contribution is (i) significant in the pp{gamma} process when each scattering angle is less than 25 deg. but insignificant when each scattering angle is 40 deg. or greater and (ii) insignificant in the np{gamma} process for all scattering angles. The nn{gamma} cross sections for the TuTts and Low amplitudes differ substantially for the kinematics investigated. Conclusions: In general, the Low amplitude agrees well with the TuTts amplitude when anomalous magnetic moment effects are not significant, but the two amplitudes can yield
The measurement of the anomalous magnetic moment of the muon at Fermilab
Logashenko, I.
2015-06-17
The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment, E989, now under construction at Fermilab, is a fourfold improvement in precision. Furthermore, we discuss the details of the future measurement and its current status.
The Hadronic Contribution to the Anomalous Magnetic Moment of the Muon |
U.S. Department of Energy (DOE) all webpages (Extended Search)
Argonne Leadership Computing Facility Hadronic Contribution to the Anomalous Magnetic Moment of the Muon PI Name: Paul Mackenzie PI Email: mackenzie@fnal.gov Institution: Fermilab Allocation Program: ESP Year: 2015 Research Domain: Physics Tier 2 Code Development Project Numerical Methods/Algorithms Two codes are involved in this project: MILC and the Columbia Physics System (CPS). The application operates on a four-dimensional hypercubic lattice (grid) with quark data as- associated with
Leptophilic dark matter and the anomalous magnetic moment of the muon
Agrawal, Prateek; Chacko, Zackaria; Verhaaren, Christopher B.
2014-08-26
We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. In this study, we determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between the standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.
Leptophilic dark matter and the anomalous magnetic moment of the muon
Agrawal, Prateek; Chacko, Zackaria; Verhaaren, Christopher B.
2014-08-26
We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. In this study, we determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between themore » standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.« less
Electron Anomalous Magnetic Moment in Basis Light-Front Quantization Approach
Zhao, Xingbo; Honkanen, Heli; Maris, Pieter; Vary, James P.; Brodsky, Stanley J.; /SLAC
2012-02-17
We apply the Basis Light-Front Quantization (BLFQ) approach to the Hamiltonian field theory of Quantum Electrodynamics (QED) in free space. We solve for the mass eigenstates corresponding to an electron interacting with a single photon in light-front gauge. Based on the resulting non-perturbative ground state light-front amplitude we evaluate the electron anomalous magnetic moment. The numerical results from extrapolating to the infinite basis limit reproduce the perturbative Schwinger result with relative deviation less than 1.2%. We report significant improvements over previous works including the development of analytic methods for evaluating the vertex matrix elements of QED.
Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku
2015-01-07
The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.
Lattice calculation of hadronic light-by-light contribution to the muon anomalous magnetic moment
Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Lehner, Christoph
2016-01-12
The quark-connected part of the hadronic light-by-light scattering contribution to the muon’s anomalous magnetic moment is computed using lattice QCD with chiral fermions. Here we report several significant algorithmic improvements and demonstrate their effectiveness through specific calculations which show a reduction in statistical errors by more than an order of magnitude. The most realistic of these calculations is performed with a near-physical 171 MeV pion mass on a (4.6 fm)3 spatial volume using the 323×64 Iwasaki+DSDR gauge ensemble of the RBC/UKQCD Collaboration.
Photon equation of motion with application to the electron's anomalous magnetic moment
Ritchie, A B
2007-12-06
The photon equation of motion previously applied to the Lamb shift is here applied to the anomalous magnetic moment of the electron. Exact agreement is obtained with the QED result of Schwinger. The photon theory treats the radiative correction to the photon in the presence of the electron rather than its inverse as in standard QED. The result is found to be first-order in the photon-electron interaction rather than second-order as in standard QED, introducing an ease of calculation hitherto unavailable.
Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment
Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.
2014-02-24
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, aμhvp, arising from quark-connected Feynman graphs. It is based on ensembles featuring Nf=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of amore » μhvp. The final result involving an estimate of the systematic uncertainty aμhvp=6.74 (21)(18) 10-8 shows a good overall agreement with these computations.« less
Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment
Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.
2014-02-24
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a?^{hvp}, arising from quark-connected Feynman graphs. It is based on ensembles featuring N_{f}=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a ?^{hvp}. The final result involving an estimate of the systematic uncertainty a_{?}^{hvp}=6.74 (21)(18) 10^{-8} shows a good overall agreement with these computations.
Yukawa coupling and anomalous magnetic moment of the muon: An update for the LHC era
Crivellin, Andreas; Girrbach, Jennifer; Nierste, Ulrich
2011-03-01
We study the interplay between a soft muon Yukawa coupling generated radiatively with the trilinear A-terms of the minimal supersymmetric standard model (MSSM) and the anomalous magnetic moment of the muon. In the absence of a tree-level muon Yukawa coupling the lightest smuon mass is predicted to be in the range between 600 GeV and 2200 GeV at 2{sigma}, if the bino mass M{sub 1} is below 1 TeV. Therefore, a detection of a smuon (in conjunction with a sub-TeV bino) at the LHC would directly imply a nonzero muon Yukawa coupling in the MSSM superpotential. Inclusion of slepton flavor mixing could in principle lower the mass of one smuonlike slepton below 600 GeV. However, the experimental bounds on radiative lepton decays instead strengthen the lower mass bound, with larger effects for smaller M{sub 1}, We also extend the analysis to the electron case and find that a light selectron close to the current experimental search limit may prove the MSSM electron Yukawa coupling to be nonzero.
Anomalous magnetic moment contributions to NN bremsstrahlung in the soft-photon approximation
Gibson, B.F.; Penninga, T.D.; Timmermans, R.G.E.; Liou, M.K.
2005-05-06
The soft photon approximation (SPA), which is relativistic and based upon a fundamental theorem for photon emission, is applied to explore two separate nucleon-nucleon bremsstrahlung (NN{gamma}) processes: pp{gamma} and np{gamma}. They are examined together in an effort to understand the mechanism which governs photon emission from these basic two-nucleon systems. In this investigation we focus upon the effect of the anomalous magnetic moments of the proton ({kappa}p) and the neutron ({kappa}n). In our SPA calculation we use the standard Low amplitude M{sub {mu}}{sup Low} as derived by Nyman plus the more recently developed amplitude M{sub {mu}}{sup TuTts}, referred to as the two-u-two-t special (TuTts) amplitude. The amplitude M{sub {mu}}{sup TuTts} is identical to the amplitude M{sub {mu}}{sup Low} through order K0 in the soft-photon expansion. However, M{sub {mu}}{sup TuTts} includes an additional term M{sub {mu}}{sup (3)}(K{sup 1}; {kappa}) (plus higher order terms). The term M{sub {mu}}{sup (3)}(K{sup 1}; {kappa}) is of order K1 in the soft-photon expansion and it is a function of {kappa}p and {kappa}n. Using the amplitudes M{sub {mu}}{sup TuTts} and M{sub {mu}}{sup Low}, we have calculated pp{gamma} and np{gamma} cross sections as a function of photon angle {psi}{gamma} with and without contributions from {kappa}p and {kappa}n. Comparison with available pp{gamma} data has been made; in particular, the contribution from M{sub {mu}}{sup (3)}(K{sup 1}; {kappa}) has been investigated. Results will be presented and discussed which relate to the following: (i) The anomalous magnetic moment effect is significant in pp{gamma}; however, it is small in np{gamma}. That is, the two amplitudes M{sub {mu}}{sup TuTts} and M{sub {mu}}{sup Low} yield very similar np{gamma} cross sections, but they predict very different pp{gamma} cross sections. (ii) M{sub {mu}}{sup TuTts} appears to provide a better SPA than M{sub {mu}}{sup Low} in the case of pp{gamma}. Because {kappa
Ledwig, Tim; Silva, Antonio
2010-09-01
We investigate the form factors of the chiral-odd nucleon matrix element of the tensor current. In particular, we aim at the anomalous tensor magnetic form factors of the nucleon within the framework of the SU(3) and SU(2) chiral quark-soliton model. We consider 1/N{sub c} rotational corrections and linear effects of SU(3) symmetry breaking with the symmetry-conserving quantization employed. We first obtain the results of the anomalous tensor magnetic moments for the up and down quarks: {kappa}{sub T}{sup u}=3.56 and {kappa}{sub T}{sup d}=1.83, respectively. The strange anomalous tensor magnetic moment is yielded to be {kappa}{sub T}{sup s}=0.2{approx}-0.2, that is compatible with zero. We also calculate the corresponding form factors {kappa}{sub T}{sup q}(Q{sup 2}) up to a momentum transfer Q{sup 2{<=}}1 GeV{sup 2} at a renormalization scale of 0.36 GeV{sup 2}.
tan{beta}-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon
Marchetti, Schedar; Mertens, Susanne; Nierste, Ulrich; Stoeckinger, Dominik
2009-01-01
We report on a two-loop supersymmetric contribution to the magnetic moment (g-2){sub {mu}} of the muon which is enhanced by two powers of tan{beta}. This contribution arises from a shift in the relation between the muon mass and Yukawa coupling and can increase the supersymmetric contribution to (g-2){sub {mu}} sizably. As a result, if the currently observed 3{sigma} deviation between the experimental and SM theory value of (g-2){sub {mu}} is analyzed within the minimal supersymmetric standard model (MSSM), the derived constraints on the parameter space are modified significantly: If (g-2){sub {mu}} is used to determine tan{beta} as a function of the other MSSM parameters, our corrections decrease tan{beta} by roughly 10% for tan{beta}=50.
Porter, Frank C.
2015-04-29
The BABAR collaboration has an extensive program of studying hadronic cross sections in low-energy e^{+}e^{-} collisions, accessible via initial-state radiation. Our measurements allow significant improvements in the precision of the predicted value of the muon anomalous magnetic moment. These improvements are necessary for illuminating the current 3.6 sigma difference between the predicted and the experimental values. We have published results on a number of processes with two to six hadrons in the final state. We report here the results of recent studies with final states that constitute the main contribution to the hadronic cross section in the energy region between 1 and 3 GeV, as e^{+}e^{-} → K^{+}K^{-}, π^{+}π^{-}, and e^{+}e^{-} → 4 hadrons
Bonanos, Peter
1983-01-01
A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.
Hyperon polarization and magnetic moments
Lach, J.
1993-12-01
Inclusively produced hyperons with significant polarization were first observed at Fermilab about seventeen years ago. This and subsequent experiments showed that {Lambda}{degree} were produced polarized while {bar {Lambda}}{degree} had no polarization in the same kinematical region. This set the stage for many experiments which showed that most hyperons are produced polarized. Recent Fermilab experiments have showed that this phenomena is even more complex and theoretical understanding is still lacking. Nevertheless polarized hyperon beams have been an extremely useful experimental tool in measuring hyperon magnetic moments. Recently, magnetic moment precession of channeled particles in bent crystals has been observed. This opens the possibility of measuring the magnetic moments of charmed baryons.
Determination of the Neutron Magnetic Moment
DOE R&D Accomplishments [OSTI]
Greene, G. L.; Ramsey, N. F.; Mampe, W.; Pendlebury, J. M.; Smith, K.; Dress, W. B.; Miller, P. D.; Perrin, P.
1981-06-01
The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H{sub 2}O), we find ..mu..{sub n}/..mu..{sub p} = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units.
Constraining the neutrino magnetic dipole moment from white dwarf pulsations
Crsico, A.H.; Althaus, L.G.; Garca-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br
2014-08-01
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (?{sub ?}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of ?{sub ?}?<10{sup -11}?{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.
Noncommutative magnetic moment of charged particles
Adorno, T. C.; Gitman, D. M.; Shabad, A. E.; Vassilevich, D. V.
2011-10-15
It has been argued that in noncommutative field theories, the sizes of physical objects cannot be taken smaller than an ''elementary length'' related to noncommutativity parameters. By gauge covariantly extending field equations of noncommutative U(1){sub *} theory to cover the presence of external sources, we find electric and magnetic fields produced by an extended static charge. We find that such a charge, apart from being an ordinary electric monopole, is also a magnetic dipole. By writing off the existing experimental clearance in the value of the lepton magnetic moments for the present effect, we get the bound on noncommutativity at the level of 10{sup 4} TeV.
The investigation of anomalous magnetization in the Raft River...
Open Energy Information (Open El) [EERE & EIA]
investigation of anomalous magnetization in the Raft River valley, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: The...
Moment enhancement in dilute magnetic semiconductors: MnxSi1...
Office of Scientific and Technical Information (OSTI)
Moment enhancement in dilute magnetic semiconductors: MnxSi1-x with x 0.1% Citation Details In-Document Search Title: Moment enhancement in dilute magnetic semiconductors: ...
Electric quadrupole and magnetic octupole moments of the Delta
Ramalho, G.; Pena, M. T.; Gross, Franz L.
2009-07-01
Using a covariant spectator constituent quark model we predict an electric quadrupole moment -0.042 efm2 and a magnetic octupole moment -0.0035 efm3 for the Delta+ excited state of the nucleon.
Electric quadrupole and magnetic octupole moments of the Δ
Ramalho, G.; Peña, M. T.; Gross, Franz
2009-07-01
Using a covariant spectator constituent quark model we predict an electric quadrupole moment -0.042 efm2 and a magnetic octupole moment -0.0035 efm3 for the Delta+ excited state of the nucleon.
U.S. Department of Energy (DOE) all webpages (Extended Search)
impurity ion heating from Alfvénic cascade in the reversed field pinch Varun Tangri, P. W. Terry, and Gennady Fiksel Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas and Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706, USA ͑Received 15 January 2008; accepted 19 September 2008; published online 3 November 2008͒ Anomalous ion and impurity heating in reversed field pinch plasmas is addressed. Previous work ͓N.
Magnetic moments of light nuclei from lattice quantum chromodynamics
Beane, S. R.; Chang, E.; Cohen, S.; Detmold, W.; Lin, H. W.; Orginos, K.; Parreño, A.; Savage, M. J.; Tiburzi, B. C.
2014-12-16
We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to mπ ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures itsmore » dominant structure. Similarly a shell-model-like moment is found for the triton, μ3H ~ μp. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.« less
Magnetic moments of light nuclei from lattice quantum chromodynamics
Beane, S.? R.; Chang, E.; Cohen, S.; Detmold, W.; Lin, H.? W.; Orginos, K.; Parreo, A.; Savage, M.? J.; Tiburzi, B.? C.
2014-12-16
We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and ^{3}He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to m_{?} ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of ^{3}He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for the triton, ?_{3H} ~ ?_{p}. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.
Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.
2015-11-16
The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1–xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization. These peculiar electronic mechanisms are in stark contrast to the assumptions of the existing models.
Magnetic Moment Enhancement for Mn7 Cluster on Graphene
Liu, Xiaojie; Wang, Cai-Zhuang; Lin, Hai-Qing; Ho, Kai-Ming
2014-08-21
Mn7 cluster on graphene with different structural motifs and magnetic orders are investigated systematically by first-principles calculations. The calculations show that Mn7 on graphene prefers a two-layer motif and exhibits a ferrimagnetic coupling. The magnetic moment of the Mn7 cluster increases from 5.0 ?B at its free-standing state to about 6.0 ?B upon adsorption on graphene. Mn7 cluster also induces about 0.3 ?B of magnetic moment in the graphene layer, leading to an overall enhancement of 1.3 ?B magnetic moment for Mn7 on graphene. Detail electron transfer and bonding analysis have been carried out to investigate the origin of the magnetic enhancement.
Direct Measurement of the Neutral Weak Dipole Moments of the...
Office of Scientific and Technical Information (OSTI)
Visit OSTI to utilize additional information resources in energy science and technology. A ... We present direct measurements of the neutral weak anomalous magnetic dipole moment, asub ...
Magnetic moments of light nuclei from lattice quantum chromodynamics
Beane, S. R.; Chang, E.; Cohen, S.; Detmold, W.; Lin, H. W.; Orginos, K.; Parreño, A.; Savage, M. J.; Tiburzi, B. C.
2014-12-16
We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and ^{3}He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to m_{π} ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of ^{3}He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for the triton, μ_{3H} ~ μ_{p}. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.
Anomalous magnetic behavior at the graphene/Co interface
Mandal, Sumit; Saha, Shyamal K., E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2014-07-14
An intensive theoretical study on the interaction between graphene and transition metal atom has been carried out; however, its experimental verification is still lacking. To explore the theoretical prediction of antiferromagnetic coupling due to charge transfer between graphene and cobalt, epitaxial layer of cobalt is grown on graphene surface. Predicted antiferromagnetic interaction with Neel temperature (T{sub N}???32?K) which anomalously shifts to higher temperature (34?K) and becomes more prominent under application of magnetic field of 1 T is reported. Lowering of magnetoresistance as a consequence of this antiferromagnetic coupling at the interface is also observed.
Mogi, M. Yoshimi, R.; Yasuda, K.; Kozuka, Y.; Tsukazaki, A.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y.
2015-11-02
Quantum anomalous Hall effect (QAHE), which generates dissipation-less edge current without external magnetic field, is observed in magnetic-ion doped topological insulators (TIs) such as Cr- and V-doped (Bi,Sb){sub 2}Te{sub 3}. The QAHE emerges when the Fermi level is inside the magnetically induced gap around the original Dirac point of the TI surface state. Although the size of gap is reported to be about 50 meV, the observable temperature of QAHE has been limited below 300 mK. We attempt magnetic-Cr modulation doping into topological insulator (Bi,Sb){sub 2}Te{sub 3} films to increase the observable temperature of QAHE. By introducing the rich-Cr-doped thin (1 nm) layers at the vicinity of both the surfaces based on non-Cr-doped (Bi,Sb){sub 2}Te{sub 3} films, we have succeeded in observing the QAHE up to 2 K. The improvement in the observable temperature achieved by this modulation-doping appears to be originating from the suppression of the disorder in the surface state interacting with the rich magnetic moments. Such a superlattice designing of the stabilized QAHE may pave a way to dissipation-less electronics based on the higher-temperature and zero magnetic-field quantum conduction.
Magnetism of j = 1/2 moments on the fcc lattice in double perovskite...
Office of Scientific and Technical Information (OSTI)
Magnetism of j 12 moments on the fcc lattice in double perovskite Mott insulators Citation Details In-Document Search Title: Magnetism of j 12 moments on the fcc lattice in...
LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT
U.S. Department of Energy (DOE) all webpages (Extended Search)
LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT OF THE CCPIP TO CCQE CROSS SECTION RATIO A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Physics And Astronomy by Serge Ouedraogo B.S. in Physics, University of Arkansas at Little Rock, 2001 M.S., Louisiana State University, 2004 December 2008 In loving memory
Precise quantization of anomalous Hall effect near zero magnetic field
Bestwick, A. J.; Fox, E. J.; Kou, Xufeng; Pan, Lei; Wang, Kang L.; Goldhaber-Gordon, D.
2015-05-04
In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.
Taniguchi, T.; Mizusaki, S.; Okada, N.; Nagata, Y.; Mori, K.; Wuernisha, T.; Kamiyama, T.; Hiraoka, N.; Itou, M.; Sakurai, Y.; Ozawa, T. C.; Noro, Y.; Samata, H.
2007-01-01
Neutron powder diffraction and magnetic Compton scattering measurements were conducted for ferromagnetic CaRu{sub 0.85}Fe{sub 0.15}O{sub 3} at temperatures between 10 and 300 K. Anomalous volume expansion was observed in the neutron diffraction measurement below the Curie temperature (85 K), and Invar-like behavior was observed below 40 K. However, no structural phase transition was observed down to 10 K. The strong correlation between the volume expansion, {delta}V, and the square magnetization, M{sup 2}, suggests that the anomalous volume expansion is due to the magnetovolume effect that is caused by the occurrence of ferromagnetism. The magnetic Compton scattering experiments revealed the existence of a magnetic moment on Ru and the antiferromagnetic configuration of Fe and Ru moments. The formation of a ferrimagnetic order through the induction of the magnetic moment on the Ru ion is a possible reason for the anomalous volume expansion observed for CaRu{sub 0.85}Fe{sub 0.15}O{sub 3}.
Kollu, Pratap E-mail: anirmalagrace@vit.ac.in; Prathapani, Sateesh; Varaprasadarao, Eswara K.; Mallick, Sudhanshu; Bahadur, D. E-mail: anirmalagrace@vit.ac.in; Santosh, Chella; Grace, Andrews Nirmala E-mail: anirmalagrace@vit.ac.in
2014-08-04
Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fields (100?Oe and 200?Oe) are explained on the basis of surface spin disorder.
Synthesis and anomalous magnetic properties of hexagonal CoO nanoparticles
He, Xuemin; Shi, Huigang
2011-10-15
Highlights: {yields} The as-synthesized CoO nanoparticles are of pyramid configuration with hcp structure. {yields} The hexagonal CoO particles do not exhibit antiferromagnetic transition around 300 K. {yields} The CoO particles have relative large saturation magnetization and coercivity at 5 K. {yields} The shift of hysteresis loops is consistent with the result of multisublattice model. {yields} The particles contain intrinsic antiferromagnetic structure and uncompensated spins. -- Abstract: CoO nanoparticles in the 38-93 nm range have been prepared by thermal decomposition. The particles were characterized to be pyramid shape with a hexagonal close-packed structure. Their anomalous magnetic behavior includes: (i) vanishing of antiferromagnetic transition around 300 K; (ii) creation of hysteresis below a blocking temperature of 6-11 K; (iii) presence of relatively large moments and coercivities accompany with specific loop shifts at 5 K; and (iv) appearance of an additional small peak located in low field in the electron spin resonance spectrum. Further, the present results provide evidence for the existence of uncompensated surface spins. The coercivity and exchange bias decrease with increasing particle size, indicating a distinct size effect. These observations can be explained by the multisublattice model, in which the reduced coordination of surface spins causes a fundamental change in the magnetic order throughout the total CoO particle.
Daugas, J. M.; Gaudefroy, L.; Meot, V.; Morel, P.; Rosse, B.; Hass, M.; Kumar, V.; Angelique, J. C.; Simpson, G. S.; Balabanski, D. L.; Fiori, E.; Georgiev, G.; Lozeva, R.; Force, C.; Grevy, S.; Stodel, Ch.; Thomas, J. C.; Kameda, D.; Matea, I.; Singh, B. S. Nara
2008-11-11
The gyromagnetic factor of the isomeric state of {sup 43}S has been measured using the Time Dependent Perturbed Angular Distribution (TDPAD) technique. The isomer was produced and spin aligned via the fragmentation of a 60 AMeV {sup 48}Ca beam at the GANIL facility. The deduced magnetic moment confirms the 7/2{sup -} spin/parity of the isomeric state and shows, for the first time, the intruder nature of the ground state. Comparison of the experimental values with Shell Model and mean-field based calculations were performed revealing a pronounced ground state deformation and a quasi-spherical isomeric state. A new isomeric state has been observed in the {sup 42}P.
Magnetic dipole moments of {sup 57,58,59}Cu
Cocolios, T. E.; Andreyev, A. N.; Bastin, B.; Bree, N.; Buescher, J.; Elseviers, J.; Gentens, J.; Huyse, M.; Kudryavtsev, Yu.; Pauwels, D.; Bergh, P. Van den; Van Duppen, P.; Sonoda, T.
2010-01-15
In-gas-cell laser spectroscopy of the isotopes {sup 57,58,59,63,65}Cu has been performed at the LISOL facility using the 244.164-nm optical transition from the atomic ground state of copper. A detailed discussion on the hyperfine structure of {sup 63}Cu is presented. The magnetic dipole moments of the isotopes {sup 57,58,59,65}Cu are extracted based on that of {sup 63}Cu. The new value mu=+0.479(13)mu{sub N} is proposed for {sup 58}Cu, consistent with that of a pip{sub 3/2} x nup{sub 3/2} ground-state configuration. Spin assignments for the radioactive isotopes {sup 57,58,59}Cu are confirmed. The isotope shifts between the different isotopes are also given and discussed.
On the possibility of observing variations of the positron magnetic moment in crystals
Tikhomirov, V.V.
1994-12-01
An analysis of the interaction of e{sup {+-}} with a crossed field revealed that the anomalous magnetic moment {mu}{prime} must differ considerably from its Schwinger value for a field strength E, H {approx} H{sub 0} = m{sup 2}c{sup 3}/e{h_bar} = 4.41{times}10{sup 13}G in the intrinsic reference frame. Such a crossed-field strength can be attained in the intrinsic reference frame of e{sup {+-}} that move along the crystallographic axes. This is due to the fact that the field strength E along the axes is {approx} Z{times}10{sup 10}V/cm (Z is the atomic number of the crystal material), while the field strength E{prime}{approx_equal}H{prime}{approx_equal}{gamma}E in the intrinsic system of e{sup {+-}} that have an energy En {approx} 50 GeV is larger than E by a factor of {gamma} = En/m {approx} 10{sup 5}. The effect of spin rotation in bent crystals can be used to observe the variation of {mu}{prime} in a high-intensity crystal field.
Probing the magnetic moment of FePt micromagnets prepared by focused ion beam milling
Overweg, H. C.; Haan, A. M. J. den; Eerkens, H. J.; Bossoni, L.; Oosterkamp, T. H.; Alkemade, P. F. A.; La Rooij, A. L.; Spreeuw, R. J. C.
2015-08-17
We investigate the degradation of the magnetic moment of a 300 nm thick FePt film induced by Focused Ion Beam (FIB) milling. A 1 μm × 8 μm rod is milled out of a film by a FIB process and is attached to a cantilever by electron beam induced deposition. Its magnetic moment is determined by frequency-shift cantilever magnetometry. We find that the magnetic moment of the rod is μ = 1.1 ± 0.1 × 10{sup −12} Am{sup 2}, which implies that 70% of the magnetic moment is preserved during the FIB milling process. This result has important implications for atom trapping and magnetic resonance force microscopy, which are addressed in this paper.
Anomalous Hall effect in magnetic disordered alloys: Effects of spin orbital coupling
Ma, L.; Gao, W. B.; Zhou, S. M.; Shi, Z.; He, P.; Miao, J.; Jiang, Y.
2013-12-28
For disordered ternary Fe{sub 0.5}(Pd{sub 1−x}Pt{sub x}){sub 0.5} alloy films, the anomalous Hall effect obeys the conventional scaling law ρ{sub AH}=aρ{sub xx}+bρ{sub xx}{sup 2} with the longitudinal resistivity ρ{sub xx} and anomalous Hall resistivity ρ{sub AH}. Contributed by the intrinsic term and the extrinsic side-jump one, the scattering-independent anomalous Hall conductivity b increases with increasing Pt/Pd concentration. In contrast, the skew scattering parameter a is mainly influenced by the residual resistivity. The present results will facilitate the theoretical studies of the anomalous Hall effect in magnetic disordered alloys.
Hysteretic magnetoresistance and unconventional anomalous Hall effect in the frustrated magnet TmB4
Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; Canfield, Paul C.; Shastry, B. Sriram; Sengupta, Pinaki; Panagopoulos, Christos
2016-05-11
We study TmB4, a frustrated magnet on the Archimedean Shastry-Sutherland lattice, through magnetization and transport experiments. The lack of anisotropy in resistivity shows that TmB4 is an electronically three-dimensional system. The magnetoresistance (MR) is hysteretic at low temperature even though a corresponding hysteresis in magnetization is absent. The Hall resistivity shows unconventional anomalous Hall effect (AHE) and is linear above saturation despite a large MR. In conclusion, we propose that complex structures at magnetic domain walls may be responsible for the hysteretic MR and may also lead to the AHE.
Kapitza problem for the magnetic moments of synthetic antiferromagnetic systems
Dzhezherya, Yu. I.; Demishev, K. O.; Korenivskii, V. N.
2012-08-15
The dynamics of magnetization in synthetic antiferromagnetic systems with the magnetic dipole coupling in a rapidly oscillating field has been examined. It has been revealed that the system can behave similar to the Kapitza pendulum. It has been shown that an alternating magnetic field can be efficiently used to control the magnetic state of a cell of a synthetic antiferromagnet. Analytical relations have been obtained between the parameters of such an antiferromagnet and an external magnetic field at which certain quasistationary states are implemented.
Magnetic Moment Enhancement for Mn7 Cluster on Graphene (Journal...
Office of Scientific and Technical Information (OSTI)
Detail electron transfer and bonding analysis have been carried out to investigate the origin of the magnetic enhancement. Authors: Liu, Xiaojie 1 ; Wang, Cai-Zhuang 1 ; Lin,...
Magnetic-Compton-scattering study of spin moments in UFe{sub 2}
Lawson, P.K.; Cooper, M.J.; Dixon, M.A.; Timms, D.N.; Zukowski, E.; Itoh, F.; Sakurai, H.
1997-08-01
Spin moments were derived from the magnetic-Compton profile of UFe{sub 2}, which was measured using 59.38-keV circularly polarized synchrotron radiation from the Accumulation Ring Source at KEK, Japan. Although the net moment on the uranium site is no more than a tenth of a Bohr magneton, the individual spin and orbital moments, which are coupled antiparallel, are much larger and it is the spin moment that can be determined in magnetic-Compton scattering. The data have been analyzed in terms of the U 5f, Fe 3d and delocalized spin moments. The observed uranium-5f spin moment is less than half (i.e., {lt}0.25{mu}{sub B}) and the diffuse spin moment more than double (i.e., {gt}0.20{mu}{sub B}) those predicted from theory. These values compare favorably with those deduced from neutron measurements of the total magnetization. {copyright} {ital 1997} {ital The American Physical Society}
Quantum aspects of a moving magnetic quadrupole moment interacting with an electric field
Fonseca, I. C.; Bakke, K.
2015-06-15
The quantum dynamics of a moving particle with a magnetic quadrupole moment that interacts with electric and magnetic fields is introduced. By dealing with the interaction between an electric field and the magnetic quadrupole moment, it is shown that an analogue of the Coulomb potential can be generated and bound state solutions can be obtained. Besides, the influence of the Coulomb-type potential on the harmonic oscillator is investigated, where bound state solutions to both repulsive and attractive Coulomb-type potentials are achieved and the arising of a quantum effect characterized by the dependence of the harmonic oscillator frequency on the quantum numbers of the system is discussed.
First observation of magnetic moment precession of channeled particles in bent crystals
Chen, D.; Albuquerque, I.F.; Baublis, V.V.; Bondar, N.F.; Carrigan, R.A. Jr.; Cooper, P.S.; Lisheng, D.; Denisov, A.S.; Dobrovolsky, A.V.; Dubbs, T.; Endler, A.M.F.; Escobar, C.O.; Foucher, M.; Golovtsov, V.L.; Goritchev, P.A.; Gottschalk, H.; Gouffon, P.; Grachev, V.T.; Khanzadeev, A.V.; Kubantsev, M.A.; Kuropatkin, N.P.; Lach, J.; Lang Pengfei; Lebedenko, V.N.; Li Chengze; Li Yunshan; Mahon, J.R.P.; McCliment, E.; Morelos, A.; Newsom, C.; Pommot Maia, M.C.; Samsonov, V.M.; Schegelsky, V.A.; Shi Huanzhang; Smith, V.J.; Sun, C.R.; Tang Fukun; Terentyev, N.K.; Timm, S.; Tkatch, I.I.; Uvarov, L.N.; Vorobyov, A.A.; Yan Jie; Zhao Wenheng; Zheng Shuchen; Zhong Yuanyuan Institute of High Energy Physics, Beijing H. H. Wills Physics Laboratory, University of Bristol Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
1992-12-07
Spin precession of channeled particles in bent crystals has been observed for the first time. Polarized [Sigma][sup +] were channeled using bent Si crystals. These crystals provided an effective magnetic field of 45 T which resulted in a measured spin precession of 60[plus minus]17[degree]. This agrees with the prediction of 62[plus minus]2[degree] using the world average of [Sigma][sup +] magnetic moment measurements. This new technique gives a [Sigma][sup +] magnetic moment of (2.40[plus minus]0.46[plus minus]0.40)[mu][sub [ital N
Phase formation, thermal stability and magnetic moment of cobalt nitride thin films
Gupta, Rachana; Pandey, Nidhi; Tayal, Akhil; Gupta, Mukul E-mail: dr.mukul.gupta@gmail.com
2015-09-15
Cobalt nitride (Co-N) thin films prepared using a reactive magnetron sputtering process are studied in this work. During the thin film deposition process, the relative nitrogen gas flow (R{sub N{sub 2}}) was varied. As R{sub N{sub 2}} increases, Co(N), Co{sub 4}N, Co{sub 3}N and CoN phases are formed. An incremental increase in R{sub N{sub 2}}, after emergence of Co{sub 4}N phase at R{sub N{sub 2}} = 10%, results in a linear increase of the lattice constant (a) of Co{sub 4}N. For R{sub N{sub 2}} = 30%, a maximizes and becomes comparable to its theoretical value. An expansion in a of Co{sub 4}N, results in an enhancement of the magnetic moment, to the extent that it becomes even larger than pure Co. Such larger than pure metal magnetic moment for tetra-metal nitrides (M{sub 4}N) have been theoretically predicted. Incorporation of N atoms in M{sub 4}N configuration results in an expansion of a (relative to pure metal) and enhances the itinerary of conduction band electrons leading to larger than pure metal magnetic moment for M{sub 4}N compounds. Though a higher (than pure Fe) magnetic moment for Fe{sub 4}N thin films has been evidenced experimentally, higher (than pure Co) magnetic moment is evidenced in this work.
The measurement of the magnetic moment of sigma plus using channeling in bent crystals
Chen, D.
1992-01-01
The measurement of baryon magnetic moments has played an important role in determining the inner structures of baryons and constraining the quark models. The magnetic moments of the spin one-half baryons have been measured with good accuracy. The measurement of the magnetic moment of charm and beauty baryons is a challenge to experimental physics because their life-times are a factor of 1000 shorter than conventional hyperons. A new technique for measuring the magnetic moment of short-lived positively charged particles by using channeling in bent crystals has been tested in Fermilab Proton Center by using a polarized hyperon beam, specifically a [Sigma][sup +] beam. Two 4.5 cm long silicon crystals were bent by 1.6 mrad. There are eight implanted detectors on the surface of each crystal. These detectors are designed to measure the energy loss of those particles which pass through the crystal, and therefore allow selection of channeling particles. The bent crystal can provide to a relativistic channeling particle a very strong effective magnetic field. Under such a field, the author observed spin precession of the channeled [Sigma][sup +] by an angle of the order of one radian. By measuring this precession angle, the value was found for the magnetic moment of the [Sigma][sup +], 2.40 [+-] 0.46 [+-] 0.40 [mu][sub N], the uncertainties being statistical and systematical, respectively. This value is consistent with the world average value of 2.42 [+-] 0.05 [mu][sub N]. This new technique may be applied to measure the magnetic moments of short-lived positively charged particle such as [Lambda][sup +][sub c] in the future.
Prediction of magnetic moment collapse in ZrFe{sub 2} under hydrostatic pressure
Zhang, Wenxu; Zhang, Wanli
2015-04-28
Electronic structure and magnetic properties of ZrFe{sub 2} in the cubic Laves phase are investigated by calculations based on density functional theory. The magnetic moment decreases with the increase of the hydrostatic pressure in an unusual way: Two-step magnetic collapse is predicted. The first one is a continuous change from 1.53??{sub B}/Fe to 0.63??{sub B}/Fe at about 3.6?GPa, and the other is from 0.25??{sub B}/Fe to the nonmagnetic state at about 15?GPa in a first order manner under the local spin density approximation of the exchange correlation potential. A metastable state with intermediate spin moment about 0.15??{sub B}/Fe may exist before that. We understand this process by the changes of density of states during it. The magnetic moment decreases under the pressure in the vicinity of the experimental lattice constant with dlnm/dp=?0.038 GPa{sup ?1}. The spontaneous volume magnetostriction is 3.6%, which is huge enough to find potential applications in magnetostriction actuators and sensors. We suggest that the Invar effect of this compound may be understood when considering the magnetic moment variation according to the magnetostrictive model of Invar.
Magnetic moments of vector, axial, and tensor mesons in lattice QCD
Lee, Frank X.; Moerschbacher, Scott; Wilcox, Walter
2008-11-01
We present a calculation of magnetic moments for selected spin-1 mesons using the techniques of lattice QCD. This is carried out by introducing a progressively small static magnetic field on the lattice and measuring the linear response of a hadron's mass shift. The calculations are done on 24{sup 4} quenched lattices using standard Wilson actions, with {beta}=6.0 and pion mass down to 500 MeV. The results are compared to those from the form factor method.
Electromagnetic Currents and Magnetic Moments in $\\chi$EFT
Saori Pastore, Luca Girlanda, Rocco Schiavilla, Michele Viviani, Robert Wiringa
2009-09-01
A two-nucleon potential and consistent electromagnetic currents are derived in chiral effective field theory ($\\chi$EFT) at, respectively, $Q^{\\, 2}$ (or N$^2$LO) and $e\\, Q$ (or N$^3$LO), where $Q$ generically denotes the low-momentum scale and $e$ is the electric charge. Dimensional regularization is used to renormalize the pion-loop corrections. A simple expression is derived for the magnetic dipole ($M1$) operator associated with pion loops, consisting of two terms, one of which is determined, uniquely, by the isospin-dependent part of the two-pion-exchange potential. This decomposition is also carried out for the $M1$ operator arising from contact currents, in which the unique term is determined by the contact potential. Finally, the low-energy constants (LEC's) entering the N$^2$LO potential are fixed by fits to the $np$ S- and P-wave phase shifts up to 100 MeV lab energies. Three additional LEC's are needed to completely specify the $M1$ operator at N$^3$L
Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen...
Office of Scientific and Technical Information (OSTI)
Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen via inelastic neutron scattering Prev Next Title: Local-moment magnetism in superconducting FeTe0.35Se0.65 as ...
Magnetic structure of Yb2Pt2Pb: Ising moments on the Shastry-Sutherland lattice
Miiller, W.; Zaliznyak, I.; Wu, L. S.; Kim, M. S.; Orvis, T.; Simonson, J. W.; Gamza, M.; McNally, D. M.; Nelson, C. S.; Ehlers, G.; et al
2016-03-22
Neutron diffraction measurements were carried out on single crystals and powders of Yb2Pt2Pb, where Yb moments form two interpenetrating planar sublattices of orthogonal dimers, a geometry known as Shastry-Sutherland lattice, and are stacked along the c axis in a ladder geometry. Yb2Pt2Pb orders antiferromagnetically at TN=2.07K, and the magnetic structure determined from these measurements features the interleaving of two orthogonal sublattices into a 5×5×1 magnetic supercell that is based on stripes with moments perpendicular to the dimer bonds, which are along (110) and (–110). Magnetic fields applied along (110) or (–110) suppress the antiferromagnetic peaks from an individual sublattice, butmore » leave the orthogonal sublattice unaffected, evidence for the Ising character of the Yb moments in Yb2Pt2Pb that is supported by point charge calculations. Furthermore, specific heat, magnetic susceptibility, and electrical resistivity measurements concur with neutron elastic scattering results that the longitudinal critical fluctuations are gapped with ΔE≃0.07meV.« less
Magnetism of j = 1/2 moments on the fcc lattice in double perovskite Mott insulators
Aczel, Adam A [ORNL; Cook, Ashley [University of Toronto, Canada; Matern, Stephanie [University of Cologne, Germany; Hickey, Ciaran [University of Toronto, Canada; Paramekanti, Arun [University of Toronto, Canada
2015-01-01
Motivated by experiments on La2ZnIrO6 and La2MgIrO6, we study the magnetism of spin-orbit coupled jeff = 1/2 iridium moments on the three-dimensional geometrically-frustrated face-centered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. Using Luttinger-Tisza and Monte Carlo simulations, we find a rich variety of orders, including collinear A-type antiferromagnetism, collinear stripe order with moments along the {111}-direction, and incommensurate non-coplanar spirals, and determine their magnetic ordering transition temperatures. We argue that thermodynamic data on these iridates underscore the presence of a dominant Kitaev exchange, and suggest a possible resolution to the puzzle of why La2ZnIrO6, but not La2MgIrO6, exhibits 'weak' ferromagnetism.
Itinerancy enhanced quantum fluctuation of magnetic moments in iron-based superconductors
Tam, Yu -T.; Ku, W.; Yao, D. -X.
2015-09-10
We investigate the influence of itinerant carriers on dynamics and fluctuation of local moments in Fe-based superconductors, via linear spin-wave analysis of a spin-fermion model containing both itinerant and local degrees of freedom. Surprisingly against the common lore, instead of enhancing the (π,0) order, itinerant carriers with well nested Fermi surfaces is found to induce significant amount of spatial and temporal quantum fluctuation that leads to the observed small ordered moment. Interestingly, the underlying mechanism is shown to be intra-pocket nesting-associated long-range coupling, rather than the previously believed ferromagnetic double-exchange effect. This challenges the validity of ferromagnetically compensated first-neighbor coupling reported from short-range fitting to the experimental dispersion, which turns out to result instead from the ferro-orbital order that is also found instrumental in stabilizing the magnetic order.
Itinerancy enhanced quantum fluctuation of magnetic moments in iron-based superconductors
Tam, Yu -T.; Ku, W.; Yao, D. -X.
2015-09-10
We investigate the influence of itinerant carriers on dynamics and fluctuation of local moments in Fe-based superconductors, via linear spin-wave analysis of a spin-fermion model containing both itinerant and local degrees of freedom. Surprisingly against the common lore, instead of enhancing the (π,0) order, itinerant carriers with well nested Fermi surfaces is found to induce significant amount of spatial and temporal quantum fluctuation that leads to the observed small ordered moment. Interestingly, the underlying mechanism is shown to be intra-pocket nesting-associated long-range coupling, rather than the previously believed ferromagnetic double-exchange effect. This challenges the validity of ferromagnetically compensated first-neighbor couplingmore » reported from short-range fitting to the experimental dispersion, which turns out to result instead from the ferro-orbital order that is also found instrumental in stabilizing the magnetic order.« less
Atomic moments in Mn{sub 2}CoAl thin films analyzed by X-ray magnetic circular dichroism
Jamer, M. E.; Assaf, B. A.; Heiman, D.; Sterbinsky, G. E.; Arena, D. A.
2014-12-07
Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn{sub 2}CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.
Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism
Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.
2014-12-05
Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.
Multiferroicity and spiral magnetism in FeVO{sub 4} with quenched Fe orbital moments
Daoud-Aladine, A.; Chapon, L. C.; Kundys, B.; Martin, C.; Simon, C.; Radaelli, P. G.; Brown, P. J.
2009-12-01
FeVO{sub 4} has been studied by heat capacity, magnetic susceptibility, electric polarization and single-crystal neutron-diffraction experiments. The triclinic crystal structure is made of S-shaped clusters of six Fe{sup 3+} ions, linked by VO{sub 4}{sup 3-} groups. Two long-range magnetic ordering transitions occur at T{sub N1}=22 K and T{sub N2}=15 K. Both magnetic structures are incommensurate and below T{sub N2}, FeVO{sub 4} becomes weakly ferroelectric coincidentally with the loss of the collinearity of the magnetic structure in a very similar fashion than in the classical TbMnO{sub 3} multiferroic material. However we argue that the symmetry considerations and the mechanisms invoked to explain these properties in TbMnO{sub 3} do not straightforwardly apply to FeVO{sub 4}. First, the magnetic structures, even the collinear structure, are all acentric so that ferroelectricity in FeVO{sub 4} is not correlated with the fact magnetic ordering is breaking inversion symmetry. Regarding the mechanism, FeVO{sub 4} has quenched orbital moments that questions the exact role of the spin-orbit interactions.
Using baryon octet magnetic moments and masses to fix the pion cloud contribution
Franz L. Gross; Ramalho, Gilberto T. F.; Tsushima, Kazuo
2010-05-12
In this study, using SU(3) symmetry to constrain themore » $$\\pi BB'$$ couplings, assuming SU(3) breaking comes only from one-loop pion cloud contributions, and using the the covariant spectator theory to describe the photon coupling to the quark core, we show how the experimental masses and magnetic moments of the baryon octet can be used to set a model independent constraint on the strength of the pion cloud contributions to the octet, and hence the nucleon, form factors at $Q^2=0$.« less
Wang, Liang Germaschewski, K.; Hakim, Ammar H.; Bhattacharjee, A.
2015-01-15
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.
Magnetic order in the induced magnetic moment system Pr_{3}In
Fanelli, V. R.; Christianson, Andrew D; Jaime, M.; Thompson, J. D.; Lawrence, J. M.; Suzuki, H. S.
2008-01-01
Pr3In is a single ground state compound which exhibits antiferromagnetic order below 11.4 K due to the exchange induced admixture of crystalline electric field levels. Additional information regarding the complex magnetic behavior of this compound can be gained through application of magnetic fields. We report specific heat and magnetocaloric effect measurements to 15 T and magnetization measurements to 44 T on single crystal samples of Pr3In. A new magnetic phase is revealed above 1.9 T and below 11.4 K.
Covariant Spectator Theory of np scattering: Deuteron magnetic moment and form factors
Gross, Franz L.
2014-06-01
The deuteron magnetic moment is calculated using two model wave functions obtained from 2007 high precision fits to $np$ scattering data. Included in the calculation are a new class of isoscalar $np$ interaction currents which are automatically generated by the nuclear force model used in these fits. After normalizing the wave functions, nearly identical predictions are obtained: model WJC-1, with larger relativistic P-state components, gives 0.863(2), while model WJC-2 with very small $P$-state components gives 0.864(2) These are about 1\\% larger than the measured value of the moment, 0.857 n.m., giving a new prediction for the size of the $\\rho\\pi\\gamma$ exchange, and other purely transverse interaction currents that are largely unconstrained by the nuclear dynamics. The physical significance of these results is discussed, and general formulae for the deuteron form factors, expressed in terms of deuteron wave functions and a new class of interaction current wave functions, are given.
The spin and orbital contributions to the total magnetic moments of free Fe, Co, and Ni clusters
Meyer, Jennifer; Tombers, Matthias; Wüllen, Christoph van; Niedner-Schatteburg, Gereon; Peredkov, Sergey; Eberhardt, Wolfgang; Neeb, Matthias; Palutke, Steffen; Martins, Michael; Wurth, Wilfried
2015-09-14
We present size dependent spin and orbital magnetic moments of cobalt (Co{sub n}{sup +}, 8 ≤ n ≤ 22), iron (Fe{sub n}{sup +}, 7 ≤ n ≤ 17), and nickel cluster (Ni{sub n}{sup +}, 7 ≤ n ≤ 17) cations as obtained by X-ray magnetic circular dichroism (XMCD) spectroscopy of isolated clusters in the gas phase. The spin and orbital magnetic moments range between the corresponding atomic and bulk values in all three cases. We compare our findings to previous XMCD data, Stern-Gerlach data, and computational results. We discuss the application of scaling laws to the size dependent evolution of the spin and orbital magnetic moments per atom in the clusters. We find a spin scaling law “per cluster diameter,” ∼n{sup −1/3}, that interpolates between known atomic and bulk values. In remarkable contrast, the orbital moments do likewise only if the atomic asymptote is exempt. A concept of “primary” and “secondary” (induced) orbital moments is invoked for interpretation.
Using magnetic moments to study the nuclear structure of I{>=} 2 states
Torres, D. A.
2013-05-06
The experimental study of magnetic moments for nuclear states near the ground state, I{>=} 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions have been utilized to study low spin states, mostly I= 2. The use of alternative reaction channels, such as {alpha} transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I{>=} 2, using Coulomb excitation and {alpha}-transfer reactions. Recent examples of experimental results near the N= 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.
Weak hybridization and isolated localized magnetic moments in the compounds CeT2Cd20 (T = Ni, Pd)
White, B. D.; Yazici, D.; Ho, P. -C.; Kanchanavatee, N.; Pouse, N.; Fang, Y.; Breindel, A. J.; Friedman, A. J.; Maple, M. B.
2015-07-20
Here, we report the physical properties of single crystals of the compounds CeT2Cd20 (T = Ni, Pd) that were grown in a molten Cd flux. Large separations of ~6.7- 6.8 Å between Ce ions favor the localized magnetic moments that are observed in measurements of the magnetization. The strength of the Ruderman-Kittel-Kasuya- Yosida magnetic exchange interaction between the localized moments is severely limited by the large Ce-Ce separations and by weak hybridization between localized Ce 4f and itinerant electron states. Measurements of electrical resistivity performed down to 0.138 K were unable to observe evidence for the emergence of magnetic order;more » however, magnetically-ordered ground states with very low transition temperatures are still expected in these compounds despite the isolated nature of the localized magnetic moments. Such a fragile magnetic order could be highly susceptible to tuning via applied pressure, but evidence for the emergence of magnetic order has not been observed so far in our measurements up to 2.5 GPa.« less
Flambaum, V.V.; Tedesco, A.F.
2006-05-15
We calculate the dependence of the nuclear magnetic moments on the quark masses, including the spin-spin interaction effects, and obtain limits on the variation of the fine structure constant {alpha} and (m{sub q}/{lambda}{sub QCD}) using recent atomic clock experiments examining hyperfine transitions in H, Rb, Cs, Yb{sup +}, and Hg{sup +} and the optical transition in H, Hg{sup +}, and Yb{sup +}.
Magnetic dipole moments of {sup 58}Cu and {sup 59}Cu by in-source laser spectroscopy
Stone, N. J.; Koester, U.; Stone, J. Rikovska; Fedorov, D. V.; Fedoseyev, V. N.; Flanagan, K. T.; Hass, M.; Lakshmi, S.
2008-06-15
Online measurements of the magnetic dipole moments and isotope shifts of {sup 58}Cu and {sup 59}Cu by the in-source laser spectroscopy method are reported. The results for the magnetic moments are {mu} ({sup 58}Cu) =+0.52(8) {mu}{sub N},{mu}({sup 59}Cu) =+1.84(3) {mu}{sub N} and for the isotope shifts {delta}{nu}{sup 59,65}=1.72(22) GHz and {delta}{nu}{sup 58,65}=1.99(30) GHz in the transition from the 3d{sup 10}4s {sup 2}S{sub 1/2} ground state to the 3d{sup 10}4p {sup 2}P{sub 1/2} state in Cu I. The magnetic moment of {sup 58}Cu is discussed in the context of the strength of the subshell closure at {sup 56}Ni, additivity rules and large-scale shell model calculations.
Duong, Le Quy; Das, Tanmoy; Feng, Y. P.; Lin, Hsin
2015-05-07
We study the evolution of quantum anomalous Hall (QAH) effect for a Z{sub 2} topological insulator (TI) thin films in a proximity induced magnetic phase by a realistic layered k·p model with interlayer coupling. We examine three different magnetic configurations in which ferromagnetic (FM) layer(s) is added either from one side (FM-TI), from both sides (FM-TI-FM), or homogeneously distributed (magnetically doped) in a TI slab. We map out the thickness-dependent topological phase diagram under various experimental conditions. The critical magnetic exchange energy for the emergence of QAH effect in the latter two cases decreases monotonically with increasing number of quintuple layers (QLs), while it becomes surprisingly independent of the film thickness in the former case. The gap size of the emergent QAH insulator depends on the non-magnetic “parent” gap of the TI thin film and is tuned by the FM exchange energy, opening a versatile possibility to achieve room-temperature QAH insulator in various topological nanomaterials. Finally, we find that the emergent spin-texture in the QAH effect is very unconventional, non-“hedgehog” type; and it exhibits a chiral out-of-plane spin-flip texture within the same valence band which is reminiscent of dynamical “skyrmion” pattern, except our results are in the momentum space.
Saari, M. M. Sakai, K.; Kiwa, T.; Tsukada, K.; Sasayama, T.; Yoshida, T.
2015-05-07
We developed a highly sensitive AC/DC magnetometer using a high-temperature superconductor superconducting quantum interference device for the evaluation of magnetic nanoparticles in solutions. Using the developed system, we investigated the distribution of magnetic moments of iron oxide multi-core particles of 100 nm at various iron concentrations that are lower than 96 μg/ml by analyzing the measured magnetization curves. Singular value decomposition and non-regularized non-negative least-squares methods were used during the reconstruction of the distribution. Similar distributions were obtained for all concentrations, and the iron concentration could be determined from the measured magnetization curves. The measured harmonics upon the excitation of AC and DC magnetic fields curves agreed well with the harmonics simulated based on the reconstructed magnetization curves, implying that the magnetization curves of magnetic nanoparticles were successfully obtained as we will show in the article. We compared the magnetization curves between multi-core particles of 100 nm and 130 nm, composed of 12-nm iron oxide nanoparticles. A distinctive magnetic property between the 100 nm and 130 nm particles in low-concentration solutions was successfully characterized. The distribution characteristic of magnetic moments suggests that the net magnetic moment in a multi-core particle is affected by the size of the magnetic cores and their degree of aggregation. Exploration of magnetic properties with high sensitivity can be expected using the developed system.
Atomic moments in Mn_{2}CoAl thin films analyzed by X-ray magnetic circular dichroism
Jamer, M.; Sterbinsky, G.; Assaf, B.; Arena, D.; Heiman, D.
2014-12-05
Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn_{2}CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value. (auth)
Atomic moments in Mn_{2}CoAl thin films analyzed by X-ray magnetic circular dichroism
Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.
2014-12-05
Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn_{2}CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.
Oveshnikov, L. N.; Kulbachinskii, V. A.; Davydov, A. B.; Aronzon, B. A.; Rozhansky, I. V.; Averkiev, N. S.; Kugel, K. I.; Tripathi, V.
2015-11-24
In this study, the anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a potentially useful probe of electron spin polarization, especially in nanoscale systems where direct measurement is not feasible. While AHE is rather well-understood in metallic ferromagnets, much less is known about the relevance of different physical mechanisms governing AHE in insulators. As ferromagnetic insulators, but not metals, lend themselves to gatecontrol of electron spin polarization, understanding AHE in the insulating state is valuable from the point of view of spintronic applications. Among the mechanisms proposed in the literature for AHEmore » in insulators, the one related to a geometric (Berry) phase effect has been elusive in past studies. The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more careful search for geometric phase effects in AHE in the magnetic semiconductors. Here we report our experiments on the temperature and magnetic field dependences of AHE in insulating, strongly-disordered two-dimensional Mn delta-doped semiconductor heterostructures in the hopping regime. In particular, it is shown that at sufficiently low temperatures, the mechanism of AHE related to the Berry phase is favoured.« less
Oveshnikov, L. N.; Kulbachinskii, V. A.; Davydov, A. B.; Aronzon, B. A.; Rozhansky, I. V.; Averkiev, N. S.; Kugel, K. I.; Tripathi, V.
2015-11-24
In this study, the anomalous Hall effect (AHE) arises from the interplay of spin-orbit interactions and ferromagnetic order and is a potentially useful probe of electron spin polarization, especially in nanoscale systems where direct measurement is not feasible. While AHE is rather well-understood in metallic ferromagnets, much less is known about the relevance of different physical mechanisms governing AHE in insulators. As ferromagnetic insulators, but not metals, lend themselves to gatecontrol of electron spin polarization, understanding AHE in the insulating state is valuable from the point of view of spintronic applications. Among the mechanisms proposed in the literature for AHE in insulators, the one related to a geometric (Berry) phase effect has been elusive in past studies. The recent discovery of quantized AHE in magnetically doped topological insulators - essentially a Berry phase effect - provides strong additional motivation to undertake more careful search for geometric phase effects in AHE in the magnetic semiconductors. Here we report our experiments on the temperature and magnetic field dependences of AHE in insulating, strongly-disordered two-dimensional Mn delta-doped semiconductor heterostructures in the hopping regime. In particular, it is shown that at sufficiently low temperatures, the mechanism of AHE related to the Berry phase is favoured.
Magnetic Dipole Moment of {sup 57,59}Cu Measured by In-Gas-Cell Laser Spectroscopy
Cocolios, T. E.; Andreyev, A. N.; Bastin, B.; Bree, N.; Buescher, J.; Elseviers, J.; Gentens, J.; Huyse, M.; Kudryavtsev, Yu.; Pauwels, D.; Van den Bergh, P.; Van Duppen, P.; Sonoda, T.
2009-09-04
For the first time, in-gas-cell laser spectroscopy study of the {sup 57,59,63,65}Cu isotopes has been performed using the 244.164 nm optical transition from the atomic ground state of copper. The nuclear magnetic dipole moments for {sup 57,59,65}Cu relative to that of {sup 63}Cu have been extracted. The new value for {sup 57}Cu of mu({sup 57}Cu)=+2.582(7)mu{sub N} is in strong disagreement with the previous literature value but in good agreement with recent theoretical and systematic predictions.
Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; Hjörvarsson, Björgvin; Ito, Yasuo; J. Zaluzec, Nestor; Leifer, Klaus
2015-08-17
Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magnetic orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features.
Efficiency enhancement of anomalous-Doppler electron cyclotron masers with tapered magnetic field
Xie, Chao-Ran; Hou, Zhi-Ling; Kong, Ling-Bao E-mail: pkliu@pku.edu.cn; Liu, Pu-Kun E-mail: pkliu@pku.edu.cn; Du, Chao-Hai; Jin, Hai-Bo
2014-02-15
The efficiency of slow-wave electron cyclotron masers (ECM) is usually low, thus limiting the practical applications. Here, a method of tapered magnetic field is introduced for the efficiency enhancement of the slow-wave ECM. The numerical calculations show that the tapered magnetic-field method can enhance the efficiency of slow-wave ECM significantly. The effect of beam electron velocity spread on the efficiency has also been studied. Although the velocity spread reduces the efficiency, a great enhancement of efficiency can still be obtained by the tapered magnetic field method.
Lim, J.; Fabbris, G.; Haskel, D.; Schilling, J. S.
2015-05-26
In previous studies the pressure dependence of the magnetic ordering temperature T_{o} of Dy was found to exhibit a sharp increase above its volume collapse pressure of 73 GPa, appearing to reach temperatures well above ambient at 157 GPa. In a search for a second such lanthanide, electrical resistivity measurements were carried out on neighboring Tb to 141 GPa over the temperature range 3.8 - 295 K. Below Tb’s volume collapse pressure of 53 GPa, the pressure dependence T_{o}(P) mirrors that of both Dy and Gd. However, at higher pressures T_{o}(P) for Tb becomes highly anomalous. This result, together with the very strong suppression of superconductivity by dilute Tb ions in Y, suggests that extreme pressure transports Tb into an unconventional magnetic state with an anomalously high magnetic ordering temperature.
Lim, J.; Fabbris, G.; Haskel, D.; Schilling, J. S.
2015-05-26
In previous studies the pressure dependence of the magnetic ordering temperature To of Dy was found to exhibit a sharp increase above its volume collapse pressure of 73 GPa, appearing to reach temperatures well above ambient at 157 GPa. In a search for a second such lanthanide, electrical resistivity measurements were carried out on neighboring Tb to 141 GPa over the temperature range 3.8 - 295 K. Below Tb’s volume collapse pressure of 53 GPa, the pressure dependence To(P) mirrors that of both Dy and Gd. However, at higher pressures To(P) for Tb becomes highly anomalous. This result, together withmore » the very strong suppression of superconductivity by dilute Tb ions in Y, suggests that extreme pressure transports Tb into an unconventional magnetic state with an anomalously high magnetic ordering temperature.« less
Lim, J.; Fabbris, G.; Haskel, D.; Schilling, J. S.
2015-05-26
In previous studies the pressure dependence of the magnetic ordering temperature T_{o} of Dy was found to exhibit a sharp increase above its volume collapse pressure of 73 GPa, appearing to reach temperatures well above ambient at 157 GPa. In a search for a second such lanthanide, electrical resistivity measurements were carried out on neighboring Tb to 141 GPa over the temperature range 3.8 - 295 K. Below Tbs volume collapse pressure of 53 GPa, the pressure dependence T_{o}(P) mirrors that of both Dy and Gd. However, at higher pressures T_{o}(P) for Tb becomes highly anomalous. This result, together with the very strong suppression of superconductivity by dilute Tb ions in Y, suggests that extreme pressure transports Tb into an unconventional magnetic state with an anomalously high magnetic ordering temperature.
Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; Hjörvarsson, Björgvin; Ito, Yasuo; J. Zaluzec, Nestor; Leifer, Klaus
2015-08-17
Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magneticmore » orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features.« less
Direct evidence of anomalous interfacial magnetization in metamagnetic Pd doped FeRh thin films
Bennett, S. P.; Ambaye, H.; Lee, H.; LeClair, P.; Mankey, G. J.; Lauter, V.
2015-03-16
Palladium doped iron rhodium is a magnetic material of significant interest for it’s close to room temperature magnetostructural phase transition from antiferromagnetic (AF) to ferromagnetic (FM) ordering. Here we report on the peculiarities of the magnetization distribution in thin films of FeRh(Pd) probed by Polarized Neutron Reflectometry. Remarkably, we’ve found thin interfacial regions with strong magnetization that have unique thermomagnetic properties as compared to the rest of the system. These regions exist at the top and bottom interfaces of the films while the central regions behave similarly to the bulk with a clear AF-FM order transition. Further we explore themore » impact of an additional Pt interlayer introduced in the middle of the FeRh(Pd) film and reveal that it serves to replicate the strong interfacial magnetization found at the top and bottom interfaces. In conclusion, these results are of great value both in understanding the fundamental physics of such an order transition, and in considering FeRh(Pd) for magnetic media and spintronics applications.« less
Ram, Abhay K.; Dasgupta, Brahmananda; Krishnamurthy, V.; Mitra, Dhrubaditya
2014-07-15
The cosmic magnetic fields in regions of low plasma pressure and large currents, such as in interstellar space and gaseous nebulae, are force-free in the sense that the Lorentz force vanishes. The three-dimensional Arnold-Beltrami-Childress (ABC) field is an example of a force-free, helical magnetic field. In fluid dynamics, ABC flows are steady state solutions of the Euler equation. The ABC magnetic field lines exhibit a complex and varied structure that is a mix of regular and chaotic trajectories in phase space. The characteristic features of field line trajectories are illustrated through the phase space distribution of finite-distance and asymptotic-distance Lyapunov exponents. In regions of chaotic trajectories, an ensemble-averaged variance of the distance between field lines reveals anomalous diffusion—in fact, superdiffusion—of the field lines. The motion of charged particles in the force-free ABC magnetic fields is different from the flow of passive scalars in ABC flows. The particles do not necessarily follow the field lines and display a variety of dynamical behavior depending on their energy, and their initial pitch-angle. There is an overlap, in space, of the regions in which the field lines and the particle orbits are chaotic. The time evolution of an ensemble of particles, in such regions, can be divided into three categories. For short times, the motion of the particles is essentially ballistic; the ensemble-averaged, mean square displacement is approximately proportional to t{sup 2}, where t is the time of evolution. The intermediate time region is defined by a decay of the velocity autocorrelation function—this being a measure of the time after which the collective dynamics is independent of the initial conditions. For longer times, the particles undergo superdiffusion—the mean square displacement is proportional to t{sup α}, where α > 1, and is weakly dependent on the energy of the particles. These super-diffusive characteristics
White, B. D.; Yazici, D.; Ho, P. -C.; Kanchanavatee, N.; Pouse, N.; Fang, Y.; Breindel, A. J.; Friedman, A. J.; Maple, M. B.
2015-07-20
Here, we report the physical properties of single crystals of the compounds CeT_{2}Cd_{20} (T = Ni, Pd) that were grown in a molten Cd flux. Large separations of ~6.7- 6.8 Å between Ce ions favor the localized magnetic moments that are observed in measurements of the magnetization. The strength of the Ruderman-Kittel-Kasuya- Yosida magnetic exchange interaction between the localized moments is severely limited by the large Ce-Ce separations and by weak hybridization between localized Ce 4f and itinerant electron states. Measurements of electrical resistivity performed down to 0.138 K were unable to observe evidence for the emergence of magnetic order; however, magnetically-ordered ground states with very low transition temperatures are still expected in these compounds despite the isolated nature of the localized magnetic moments. Such a fragile magnetic order could be highly susceptible to tuning via applied pressure, but evidence for the emergence of magnetic order has not been observed so far in our measurements up to 2.5 GPa.
Anomalous Dynamical Line Shapes in a Quantum Magnet at Finite Temperature
Tennant D. A.; James A.; Lake, B.; Essler, F.H.L.; Notbohm, S.; Mikeska, H.-J.; Fielden, J.; Kogerler,, P.; Canfield, P.C.; Telling, M.T.F.
2012-01-04
The effect of thermal fluctuations on the dynamics of a gapped quantum magnet is studied using inelastic neutron scattering on copper nitrate, a model material for the spin-1/2, one-dimensional (1D) bond alternating Heisenberg chain. A large, highly deuterated, single-crystal sample of copper nitrate is produced using a solution growth method and measurements are made using the high-resolution backscattering spectrometer OSIRIS at the ISIS Facility. Theoretical calculations and numerical analysis are combined to interpret the physical origin of the thermal effects observed in the magnetic spectra. The primary observations are (1) a thermally induced central peak due to intraband scattering, which is similar to Villain scattering familiar from soliton systems in 1D, and (2) the one-magnon quasiparticle pole is seen to develop with temperature into an asymmetric continuum of scattering. We relate this asymmetric line broadening to a thermal strongly correlated state caused by hard-core constraints and quasiparticle interactions. These findings are a counter example to recent assertions of the universality of line broadening in 1D systems and are applicable to a broad range of quantum systems.
Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO_{4}
Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; Vaknin, David
2015-07-06
We report significant details of the magnetic structure and spin dynamics of LiFePO_{4} obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.
Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4
Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; Andersen, Niels H.; Li, Jiying; Le, Manh Duc; Laver, Mark; Niedermayer, Christof; Klemke, Bastian; Lefmann, Kim; et al
2015-07-06
We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, we showmore » that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.« less
Vilmercati, Paolo; Fedorov, Alexei; Bondino, Federica; Offi, Francesco; Panaccione, Giancarlo; Lacovig, Paolo; Simonelli, Laura; McGuire, Michael A.; Sefat, Athena S. M.; Mandrus, David; et al
2012-06-15
A direct and element-specific measurement of the local Fe spin moment has been provided by analyzing the Fe 3s core level photoemission spectra in the parent and optimally doped CeFeAsO₁₋xFx (x = 0, 0.11) and Sr(Fe₁₋xCox)2As2 (x = 0, 0.10) pnictides. The rapid time scales of the photoemission process allowed the detection of large local spin moments fluctuating on a 10⁻¹⁵ s time scale in the paramagnetic, antiferromagnetic, and superconducting phases, indicative of the occurrence of ubiquitous strong Hund's magnetic correlations. The magnitude of the spin moment is found to vary significantly among different families, 1.3μB in CeFeAsO and 2.1μBmore » in SrFe₂As₂. Surprisingly, the spin moment is found to decrease considerably in the optimally doped samples, 0.9μB in CeFeAsO₀.₈₉F₀.₁₁ and 1.3μB in Sr(Fe₀.₉Co₀.₁)₂As₂. The strong variation of the spin moment against doping and material type indicates that the spin moments and the motion of itinerant electrons are influenced reciprocally in a self-consistent fashion, reflecting the strong competition between the antiferromagnetic superexchange interaction among the spin moments and the kinetic energy gain of the itinerant electrons in the presence of a strong Hund's coupling. By describing the evolution of the magnetic correlations concomitant with the appearance of superconductivity, these results constitute a fundamental step toward attaining a correct description of the microscopic mechanisms shaping the electronic properties in the pnictides, including magnetism and high-temperature superconductivity.« less
Weyssow, B.
2004-03-15
A complete description of a system in equilibrium is provided by the Grand Canonical Distribution. But, systems are generally not in statistical equilibrium. We shall consider the case of an ideal gaz of charged particles. The linear theory of transport determines the 3 x 1 matrix of dissipative fluxes [circumflex]J{sub r} namely, the electric current and the electronic and ionic heat fluxes, in terms of a 3 x 1 matrix of thermodynamic forces [circumflex]X defined by the electric field and the gradient of the densities and temperatures. The components of the 3 x 3 matrix of tensors [circumflex]L{sub rs} of the linear flux-force relations [circumflex]J{sub r} [summation]{sub s=1}{sup 9}[circumflex]L{sub rs}[circumflex]X define the set of transport coefficients. They are evaluated for an ion-electron magnetized plasma in the framework of the statistical mechanics of charged particles starting from the Landau kinetic equation.
Electromagnetic currents and magnetic moments in chiral effective field theory ({chi}EFT)
Pastore, S.; Girlanda, L.; Schiavilla, R.; Viviani, M.; Wiringa, R. B.
2009-09-15
A two-nucleon potential and consistent electromagnetic currents are derived in chiral effective field theory ({chi}EFT) at, respectively, Q{sup 2} (or N{sup 2}LO) and eQ (or N{sup 3}LO), where Q generically denotes the low-momentum scale and e is the electric charge. Dimensional regularization is used to renormalize the pion-loop corrections. A simple expression is derived for the magnetic dipole (M1) operator associated with pion loops, consisting of two terms, one of which is determined, uniquely, by the isospin-dependent part of the two-pion-exchange potential. This decomposition is also carried out for the M1 operator arising from contact currents, in which the unique term is determined by the contact potential. Finally, the low-energy constants entering the N{sup 2}LO potential are fixed by fits to the np S- and P-wave phase shifts up to 100 MeV laboratory energies.
Evarts, Eric R.; Rippard, William H.; Pufall, Matthew R.; Heindl, Ranko
2014-05-26
In a small fraction of magnetic-tunnel-junction-based magnetic random-access memory devices with in-plane free layers, the write-error rates (WERs) are higher than expected on the basis of the macrospin or quasi-uniform magnetization reversal models. In devices with increased WERs, the product of effective resistance and area, tunneling magnetoresistance, and coercivity do not deviate from typical device properties. However, the field-swept, spin-torque, ferromagnetic resonance (FS-ST-FMR) spectra with an applied DC bias current deviate significantly for such devices. With a DC bias of 300 mV (producing 9.9 × 10{sup 6} A/cm{sup 2}) or greater, these anomalous devices show an increase in the fraction of the power present in FS-ST-FMR modes corresponding to higher-order excitations of the free-layer magnetization. As much as 70% of the power is contained in higher-order modes compared to ≈20% in typical devices. Additionally, a shift in the uniform-mode resonant field that is correlated with the magnitude of the WER anomaly is detected at DC biases greater than 300 mV. These differences in the anomalous devices indicate a change in the micromagnetic resonant mode structure at high applied bias.
Berryman, J. S.; Crawford, H. L.; Mantica, P. F.; Stoker, J. B.; Minamisono, K.; Grinyer, G. F.; Rogers, W. F.; Brown, B. A.; Towner, I. S.
2009-06-15
The nuclear magnetic moment of the ground state of {sup 55}Ni (I{sup {pi}}=3/2{sup -}, T{sub 1/2}=204 ms) has been deduced to be |{mu}({sup 55}Ni)|=(0.976{+-}0.026) {mu}{sub N} using the {beta}-ray detecting nuclear magnetic resonance technique. Results of a shell model calculation in the full fp shell model space with the GXPF1 interaction reproduce the experimental value. Together with the known magnetic moment of the mirror partner {sup 55}Co, the isoscalar spin expectation value was extracted as <{sigma}{sigma}{sub z}>=0.91{+-}0.07. The <{sigma}{sigma}{sub z}> shows a trend similar to that established in the sd shell. The present theoretical interpretations of both {mu}({sup 55}Ni) and <{sigma}{sigma}{sub z}> for the T=1/2, A=55 mirror partners support the softness of the {sup 56}Ni core.
Anomalous-viscosity current drive
Stix, T.H.; Ono, M.
1986-04-25
The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.
Ruiz-Zepeda, F.; Ma, C.; Bahena Uribe, D.; Cantu-Valle, J.; Wang, H.; Xu, Xing; Yacaman, M. J.; Ponce, A.; Chen, C.; Lorenz, B.; Jacobson, A. J.; Chu, P. C. W.
2014-01-14
A giant magnetoresistance effect (?46% at 20?K under 7?T) and anomalous magnetic properties were found in a highly epitaxial double perovskite LaBaCo{sub 2}O{sub 5.5+?} (LBCO) thin film on (001) MgO. Aberration-corrected Electron Microscopy and related analytical techniques were employed to understand the nature of these unusual physical properties. The as-grown film is epitaxial with the c-axis of the LBCO structure lying in the film plane and with an interface relationship given by (100){sub LBCO} || (001){sub MgO} and [001]{sub LBCO} || [100]{sub MgO} or [010]{sub MgO}. Orderly oxygen vacancies were observed by line profile electron energy loss spectroscopy and by atomic resolution imaging. Especially, oxygen vacancy and nanodomain structures were found to have a crucial effect on the electronic transport and magnetic properties.
Ito, K.; Lee, G. H.; Harada, K.; Suzuno, M.; Suemasu, T.; Takeda, Y.; Saitoh, Y.; Ye, M.; Kimura, A.; Akinaga, H.
2011-03-07
10-nm-thick {gamma}{sup '}-Fe{sub 4}N films were grown epitaxially on LaAlO{sub 3}(001) and MgO(001) substrates by molecular beam epitaxy using solid Fe and a radio-frequency NH{sub 3} plasma. The lattice mismatch of these substrates to {gamma}{sup '}-Fe{sub 4}N is 0% and 11%, respectively. Spin and orbital magnetic moments of these {gamma}{sup '}-Fe{sub 4}N epitaxial films were deduced by x-ray magnetic circular dichroism measurements at 300 K. The total magnetic moments are almost the same for the two substrates, that is, 2.44{+-}0.06 {mu}{sub B} and 2.47{+-}0.06 {mu}{sub B}, respectively. These values are very close to those predicted theoretically, and distinctively larger than that for {alpha}-Fe.
Hyodo, Kazushige Sakuma, Akimasa; Kota, Yohei
2014-05-07
We studied quantitative relationship between the intrinsic anomalous Hall conductivity (σ{sub xy}) and the uniaxial magnetic anisotropy constant (K{sub u}) of bct-Fe{sub 50}Co{sub 50} using first-principles calculation because these quantities originate from spin-orbit interaction. We found that the obtained σ{sub xy} and K{sub u} with changing the axial ratio c/a (1≤c/a≤√(2)) exhibit similar behavior mainly arising from the common band mixing of the minority-spin d{sub xy} and d{sub x{sup 2}−y{sup 2}} states near the Fermi level which is sensitive to c/a.
Fickian dispersion is anomalous
Cushman, John H.; O’Malley, Dan
2015-06-22
The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.
Fickian dispersion is anomalous
Cushman, John H.; O’Malley, Dan
2015-06-22
The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less
Gabrielse, Gerald [Harvard University, Cambridge, Massachusetts, United States
2009-09-01
Remarkably, the famous UW measurement of the electron magnetic moment has stood since 1987. With QED theory, this measurement has determined the accepted value of the fine structure constant. This colloquium is about a new Harvard measurement of these fundamental constants. The new measurement has an uncertainty that is about six times smaller, and it shifts the values by 1.7 standard deviations. One electron suspended in a Penning trap is used for the new measurement, like in the old measurement. What is different is that the lowest quantum levels of the spin and cyclotron motion are resolved, and the cyclotron as well as spin frequencies are determined using quantum jump spectroscopy. In addition, a 0.1 mK Penning trap that is also a cylindrical microwave cavity is used to control the radiation field, to suppress spontaneous emission by more than a factor of 100, to control cavity shifts, and to eliminate the blackbody photons that otherwise stimulate excitations from the cyclotron ground state. Finally, great signal-to-noise for one-quantum transitions is obtained using electronic feedback to realize the first one-particle self-excited oscillator. The new methods may also allow a million times improved measurement of the 500 times small antiproton magnetic moment.
Anomalous - viscosity current drive
Stix, Thomas H.; Ono, Masayuki
1988-01-01
An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.
The charmonium dissociation in an ''anomalous wind''
Sadofyev, Andrey V.; Yin, Yi
2016-01-11
We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries "anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the "anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the "anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and it qualitative difference between anomalous effects on the charmoniummore » color screening length which are model-dependent and those on the heavy quark drag force which are fixed by the second law of thermodynamics. As a result, we speculate on the possible charmonium dissociation induced by the chiral anomaly in heavy ion collisions.« less
Huang, Zhaocong; Chen, Qian; Zhai, Ya E-mail: jlwang@seu.edu.cn; Wang, Jinlan E-mail: jlwang@seu.edu.cn; Xu, Yongbing; Wang, Baoping
2015-05-04
The magnetic and transport properties of half metallic Fe{sub 3}O{sub 4}, which are sensitive to the stoichiometry, are the key issue for applications in spintronics. An anomalous enlargement of the saturation magnetic moment is found in a relatively thick sample of epitaxial Fe{sub 3}O{sub 4} film by post-growth oxidation method. The investigation of the thickness dependence of magnetic moment suggests that the enhanced magnetism moment may come from the existence of oxygen vacancies. First-principles calculations reveal that with oxygen vacancies in Fe{sub 3}O{sub 4} crystal the spin of Fe ions in the tetrahedron site near the vacancy is much easier to switch parallel to the Fe ions in the octahedron site by temperature disturbance, supported by the temperature dependence of magnetic moment of Fe{sub 3}O{sub 4} films in experiment.
Deconfinement to quark matter in neutron stars - The influence of strong magnetic fields
Dexheimer, V.; Negreiros, R.; Schramm, S.; Hempel, M.
2013-03-25
We use an extended version of the hadronic SU(3) non-linear realization of the sigma model that also includes quarks to study hybrid stars. Within this approach, the degrees of freedom change naturally as the temperature/density increases. Different prescriptions of charge neutrality, local and global, are tested and the influence of strong magnetic fields and the anomalous magnetic moment on the particle population is discussed.
Xue, L. C.; Lang, L. L.; Li, Z. Z.; Qi, W. H.; Tang, G. D. Wu, L. Q.; Xu, J.
2015-09-15
Powder samples of the spinel ferrites M{sub x}Ni{sub 0.7−x}Fe{sub 2.3}O{sub 4} (M = Cr, Co and 0.0 ≤ x ≤ 0.3) and Cr{sub x}Ni{sub 0.7}Fe{sub 2.3−x}O{sub 4} (0.0 ≤ x ≤ 0.3) were synthesized using the chemical co-precipitation method. The XRD spectra confirmed that the samples had a single-phase cubic spinel structure. Magnetic measurements showed that the magnetic moments (μ{sub exp}) per formula both at 10 K and 300 K increased with Co substitution, while the values of μ{sub exp} decreased with Cr substitution. Applying the assumption that the magnetic moments of Cr{sup 2+} and Cr{sup 3+} lie antiparallel to those of the divalent and trivalent Fe, Co, and Ni cations in the same sublattice of spinel ferrites, these interesting behaviors could be easily interpreted. The cation distributions of the three series of samples were estimated successfully by fitting the dependences of μ{sub exp}, measured at 10 K, on the doping level x, using a quantum-mechanical potential barrier model earlier proposed by our group. The results obtained for the Cr cation distributions at the (A) and [B] sites are very close to those obtained elsewhere using neutron diffraction.
Eliazar, Iddo; Klafter, Joseph
2011-09-15
Brownian motion is widely considered the quintessential model of diffusion processes-the most elemental random transport processes in Science and Engineering. Yet so, examples of diffusion processes displaying highly non-Brownian statistics-commonly termed 'Anomalous Diffusion' processes-are omnipresent both in the natural sciences and in engineered systems. The scientific interest in Anomalous Diffusion and its applications is growing exponentially in the recent years. In this Paper we review the key statistics of Anomalous Diffusion processes: sub-diffusion and super-diffusion, long-range dependence and the Joseph effect, Levy statistics and the Noah effect, and 1/f noise. We further present a theoretical model-generalizing the Einstein-Smoluchowski diffusion model-which provides a unified explanation for the prevalence of Anomalous Diffusion statistics. Our model shows that what is commonly perceived as 'anomalous' is in effect ubiquitous. - Highlights: > The article provides an overview of Anomalous Diffusion (AD) statistics. > The Einstein-Smoluchowski diffusion model is extended and generalized. > The generalized model universally generates AD statistics. > A unified 'universal macroscopic explanation' for AD statistics is established. > AD statistics are shown to be fundamentally connected to robustness.
Sarkar, Sumanta; Jana, Rajkumar; Siva, Ramesh; Banerjee, Swastika; Pati, Swapan K.; Balasubramanian, Mahalingam; Peter, Sebastian C.
2015-10-27
Here, a new compound, Eu3Ir2In15 has been synthesized using indium as an active metal flux. The compound crystallizes in tetragonal P4/mbm space group with lattice parameters, a = 14.8580(4) Å, b = 14.8580(4) Å, c = 4.3901(2) Å. It was further characterized by SEM-EDX studies. The temperature dependent magnetic susceptibility suggests that Eu in this compound is exclusively in divalent state. The effective magnetic moment (μeff) of this compound is 7.35 μB/Eu ion with paramagnetic Curie temperature (θp) of -28 K suggesting antiferromagnetic interaction. The mixed valent nature of Eu observed in magnetic measurements was confirmed by XANES measurements. Themore » compound undergoes demagnetization at a low magnetic field (10 Oe), which is quite unusual for Eu based intermetallic compounds. Temperature dependent resistivity studies reveal that the compound is metallic in nature. A comparative study was made between Eu3Ir2In15 and hypothetical vacancy variant Eu5Ir4In10 which also crystallizes in the same crystal structure However our computational studies along with control experiments suggest that the latter is thermodynamically less feasible compared to the former and hence we proposed that it is highly unlikely that a RE5T4X10 would exist with X as a group 13 elements.« less
Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.
2015-03-14
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton’s law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Library and Files as part of its archive documenting the early years of the agency . . . Sam Moment worked for the Bonneville Power Administration from 1940 to 1954. He specialized...
Lesseux, G. G. Urbano, R. R.; Iwamoto, W.; Garca-Flores, A. F.; Rettori, C.
2014-05-07
The Electron Spin Resonance (ESR) of diluted Er{sup 3+} magnetic ions in Au nanoparticles (NPs) is reported. The NPs were synthesized by reducing chloro triphenyl-phosphine gold(I) and erbium(III) trifluoroacetate. The Er{sup 3+} g-value along with the observed hyperfine splitting indicate that the Er{sup 3+} impurities are in a local cubic symmetry. Furthermore, the Er{sup 3+} ESR spectra show that the exchange interaction between the 4f and the conduction electrons (ce) is absent or negligible in Au{sub 1x}Er{sub x} NPs, in contrast to the ESR results in bulk Au{sub 1x}Er{sub x}. Therefore, the nature of this interaction needs to be reexamined at the nano scale range.
Zhao, R. B.; Zhao, D. W.; Li, G. K.; Ma, L. E-mail: houdenglu@mail.hebtu.edu.cn; Zhen, C. M.; Hou, D. L. E-mail: houdenglu@mail.hebtu.edu.cn; Wang, W. H.; Liu, E. K.; Chen, J. L.; Wu, G. H.
2014-12-08
The magnetic configuration of Mn{sub 2}NiAl ribbon has been investigated. In contrast to Ni{sub 2}MnAl, the compound Mn{sub 2}NiAl with considerable disorder does exhibit ferromagnetism and, due to exchange interaction competition, both ferromagnetic and antiferromagnetic moment orientations can coexist between nearest neighbor Mn atoms. This is unexpected in Heusler alloys. Regarding the mechanism of the martensitic transformation in Mn{sub 50}Ni{sub 50−x}Al{sub x}, it is found that increasing the Al content results in an unusual change in the lattice constant, a decrease of the transformation entropy change, and enhancement of the calculated electron localization. These results indicate that the p-d covalent hybridization between Mn (or Ni) and Al atoms gradually increases at the expense of the d-d hybridization between Ni and Mn atoms. This leads to an increased stability of the austenite phase and a decrease of the martensitic transformation temperature. For 11 ≤ x ≤ 14, Mn{sub 50}Ni{sub 50−x}Al{sub x} ferromagnetic shape memory alloys are obtained.
Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.
2016-06-07
A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.
Pinpointing the Magnetic Moments of Nuclear Matter
U.S. Department of Energy (DOE) all webpages (Extended Search)
Energy Pinpointing Clean Energy Financing Programs Just Got Easier Pinpointing Clean Energy Financing Programs Just Got Easier June 2, 2016 - 11:00am Addthis Pinpointing Clean Energy Financing Programs Just Got Easier John J. MacWilliams John J. MacWilliams Associate Deputy Secretary Get the Guide Find the latest edition of "Federal Financing Programs for Clean Energy" here. Not long ago, we let our "fingers do the walking" when searching for categories of businesses in
Pinpointing the Magnetic Moments of Nuclear Matter
U.S. Department of Energy (DOE) all webpages (Extended Search)
... these nuclei at unphysically large quark masses are remarkably ... Project Title: Hadron-Hadron Interactions with Lattice QCD NERSC Resources Used: Edison DOE Program ...
Anomalous Hall effect in YIG|Pt bilayers
Meyer, Sibylle Schlitz, Richard; Geprägs, Stephan; Opel, Matthias; Huebl, Hans; Goennenwein, Sebastian T. B.; Gross, Rudolf
2015-03-30
We measure the ordinary and the anomalous Hall effect in a set of yttrium iron garnet|platinum (YIG|Pt) bilayers via magnetization orientation dependent magnetoresistance experiments. Our data show that the presence of the ferrimagnetic insulator YIG leads to an anomalous Hall effect like voltage in Pt, which is sensitive to both Pt thickness and temperature. Interpretation of the experimental findings in terms of the spin Hall anomalous Hall effect indicates that the imaginary part of the spin mixing conductance G{sub i} plays a crucial role in YIG|Pt bilayers. In particular, our data suggest a sign change in G{sub i} between 10 K and 300 K. Additionally, we report a higher order Hall effect contribution, which appears in thin Pt films on YIG at low temperatures.
No-Drag Frame for Anomalous Chiral Fluid
Stephanov, Mikhail A.; Yee, Ho-Ung
2016-03-24
For an anomalous fluid carrying dissipationless chiral magnetic and/or vortical currents we show that there is a frame in which a stationary obstacle experiences no drag, but energy and charge currents do not vanish, resembling superfluidity. Unlike ordinary superfluid flow, the anomalous chiral currents can transport entropy in this frame. Moreover, we show that the second law of thermodynamics completely determines the amounts of these anomalous nondissipative currents in the “no-drag frame” as polynomials in temperature and chemical potential with known anomaly coefficients. These general results are illustrated and confirmed by a calculation in the chiral kinetic theory and inmore » the quark-gluon plasma at high temperature.« less
Constraints on anomalous top quark couplings at the LHC
Rizzo, T.G.
1996-09-01
Measurements of distributions associated with the pair production of top quarks at the LHC can be used to constrain (or observe) the anomalous chromomagnetic dipole moment(k) of the top. For example, using either the tt(bar) invariant mass or the Pt distribution of top we find that sensitivities to ; k; of order 0.05 are obtainable with 100 /fb of integrated luminosity. This is similar in magnitude to what can be obtained at a 500 GeV NLC with an integrated luminosity of 50 /fb through an examination of the e(+)e(-) right arrow tt(bar)g process.
Impurity-induced moments in underdoped cuprates
Khaliullin, G.; Kilian, R.; Krivenko, S.; Fulde, P.
1997-11-01
We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potential approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. {copyright} {ital 1997} {ital The American Physical Society}
Direct Imaging of Asymmetric Magnetization Reversal
U.S. Department of Energy (DOE) all webpages (Extended Search)
material like iron is itself a tiny magnet represented by a magnetic moment. If the atomic moments are pointing in random directions, they cancel each other out. So, to bring...
Ultrahigh sensitivity of anomalous Hall effect sensor based on Cr-doped
Office of Scientific and Technical Information (OSTI)
Bi2Te3 topological insulator thin films (Journal Article) | SciTech Connect Ultrahigh sensitivity of anomalous Hall effect sensor based on Cr-doped Bi2Te3 topological insulator thin films Citation Details In-Document Search This content will become publicly available on July 1, 2017 Title: Ultrahigh sensitivity of anomalous Hall effect sensor based on Cr-doped Bi2Te3 topological insulator thin films Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological
Quantum anomalous Hall effect in topological insulator memory
Jalil, Mansoor B. A.; Tan, S. G.; Siu, Z. B.
2015-05-07
We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity σ{sup xy} of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of σ{sup xy} and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing σ{sup xy} as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.
44th Annual Anomalous Absorption Conference
Beg, Farhat
2014-03-03
Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I. Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded
Hofacker, H.B.
1958-09-23
This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.
Scattering universality classes of side jump in the anomalous...
Office of Scientific and Technical Information (OSTI)
Scattering universality classes of side jump in the anomalous Hall effect Citation Details In-Document Search Title: Scattering universality classes of side jump in the anomalous ...
Anomalous spin precession and spin Hall effect in semiconductor...
Office of Scientific and Technical Information (OSTI)
SciTech Connect Search Results Journal Article: Anomalous spin precession and spin Hall effect in semiconductor quantum wells Citation Details In-Document Search Title: Anomalous ...
Microscopic theory of quantum anomalous Hall effect in graphene...
Office of Scientific and Technical Information (OSTI)
Microscopic theory of quantum anomalous Hall effect in graphene Citation Details In-Document Search Title: Microscopic theory of quantum anomalous Hall effect in graphene Authors: ...
Anomalous Behavior of the Homogeneous Ice Nucleation Rate in...
Office of Scientific and Technical Information (OSTI)
Published Article: Anomalous Behavior of the Homogeneous Ice Nucleation Rate in "No-Man's Land" Prev Next Title: Anomalous Behavior of the Homogeneous Ice Nucleation Rate in ...
Sarkar, Sumanta; Jana, Rajkumar; Siva, Ramesh; Banerjee, Swastika; Pati, Swapan K.; Balasubramanian, Mahalingam; Peter, Sebastian C.
2015-10-27
Here, a new compound, Eu_{3}Ir_{2}In_{15} has been synthesized using indium as an active metal flux. The compound crystallizes in tetragonal P4/mbm space group with lattice parameters, a = 14.8580(4) Å, b = 14.8580(4) Å, c = 4.3901(2) Å. It was further characterized by SEM-EDX studies. The temperature dependent magnetic susceptibility suggests that Eu in this compound is exclusively in divalent state. The effective magnetic moment (μ_{eff}) of this compound is 7.35 μ_{B}/Eu ion with paramagnetic Curie temperature (θ_{p}) of -28 K suggesting antiferromagnetic interaction. The mixed valent nature of Eu observed in magnetic measurements was confirmed by XANES measurements. The compound undergoes demagnetization at a low magnetic field (10 Oe), which is quite unusual for Eu based intermetallic compounds. Temperature dependent resistivity studies reveal that the compound is metallic in nature. A comparative study was made between Eu_{3}Ir_{2}In_{15} and hypothetical vacancy variant Eu_{5}Ir_{4}In_{10} which also crystallizes in the same crystal structure However our computational studies along with control experiments suggest that the latter is thermodynamically less feasible compared to the former and hence we proposed that it is highly unlikely that a RE_{5}T_{4}X_{10} would exist with X as a group 13 elements.
Nuclear Quadrupole Moments and Nuclear Shell Structure
DOE R&D Accomplishments [OSTI]
Townes, C. H.; Foley, H. M.; Low, W.
1950-06-23
Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.
Magnetic polarizability of the nucleon
Ragusa, S.
1996-01-01
We derive an expression for the magnetic polarizability of the nucleon, as related to sums of products of its electromagnetic transition moments involving the electric and magnetic dipoles and mean-square radii, as well as the electric quadrupole moment. Two sum rules emerge from the calculation. {copyright} {ital 1995 The American Physical Society.}
Reduced Lorenz models for anomalous transport and profile resilience
Rypdal, K.; Garcia, O. E.
2007-02-15
The physical basis for the Lorenz equations for convective cells in stratified fluids, and for magnetized plasmas imbedded in curved magnetic fields, are reexamined with emphasis on anomalous transport. It is shown that the Galerkin truncation leading to the Lorenz equations for the closed boundary problem is incompatible with finite fluxes through the system in the limit of vanishing diffusion. An alternative formulation leading to the Lorenz equations is proposed, invoking open boundaries and the notion of convective streamers and their back-reaction on the profile gradient, giving rise to resilience of the profile. Particular emphasis is put on the diffusionless limit, where these equations reduce to a simple dynamical system depending only on one single forcing parameter. This model is studied numerically, stressing experimentally observable signatures, and some of the perils of dimension-reducing approximations are discussed.
Structural, magnetic, and transport properties of Fe-doped CoTiSb epitaxial thin films
Sun, N. Y.; Zhang, Y. Q.; Che, W. R.; Shan, R.; Qin, J.
2015-11-07
Epitaxial intrinsic and Fe-doped CoTiSb thin films with C1{sub b} structure were grown on MgO(100) substrates by magnetron sputtering. The semiconducting-like behavior in both intrinsic and Fe-doped thin films was demonstrated by temperature dependence of longitudinal resistivity. The Fe-doped CoTiSb films with a wide range of doping concentrations can maintain semiconducting-like and magnetic properties simultaneously, while the semiconducting behavior is weakening with the increasing Fe concentration. For 21 at. % Fe-doped film, low lattice magnetic moment (around 0.65 μ{sub B}) and high resistivity (larger than 800 μΩ cm) are beneficial to its application as a magnetic electrode in spintronic devices. Anomalous Hall effect of 21 at. % Fe-doped film was also investigated and its behaviors can be treated well by recent-reported anomalous Hall scaling including the contribution of spin-phonon skew scattering.
ARM: 1290-MHz Radar Wind Profiler, precipitation moments data...
Office of Scientific and Technical Information (OSTI)
1290-MHz Radar Wind Profiler, precipitation moments data Title: ARM: 1290-MHz Radar Wind Profiler, precipitation moments data 1290-MHz Radar Wind Profiler, precipitation moments ...
Parametric probability distributions for anomalous change detection
Theiler, James P; Foy, Bernard R; Wohlberg, Brendt E; Scovel, James C
2010-01-01
The problem of anomalous change detection arises when two (or possibly more) images are taken of the same scene, but at different times. The aim is to discount the 'pervasive differences' that occur thoughout the imagery, due to the inevitably different conditions under which the images were taken (caused, for instance, by differences in illumination, atmospheric conditions, sensor calibration, or misregistration), and to focus instead on the 'anomalous changes' that actually take place in the scene. In general, anomalous change detection algorithms attempt to model these normal or pervasive differences, based on data taken directly from the imagery, and then identify as anomalous those pixels for which the model does not hold. For many algorithms, these models are expressed in terms of probability distributions, and there is a class of such algorithms that assume the distributions are Gaussian. By considering a broader class of distributions, however, a new class of anomalous change detection algorithms can be developed. We consider several parametric families of such distributions, derive the associated change detection algorithms, and compare the performance with standard algorithms that are based on Gaussian distributions. We find that it is often possible to significantly outperform these standard algorithms, even using relatively simple non-Gaussian models.
ARM - Evaluation Product - Corrected Precipitation Radar Moments...
U.S. Department of Energy (DOE) all webpages (Extended Search)
ProductsCorrected Precipitation Radar Moments in Antenna Coordinates Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would...
70 proud moments in BPA's 70 years
U.S. Department of Energy (DOE) all webpages (Extended Search)
computer program that can represent and evaluate fleeting moments of power system behavior. Previous programs had captured only continuing and stable conditions, not the transient...
Tuning giant anomalous Hall resistance ratio in perpendicular Hall balance
Zhang, J. Y.; Yang, G.; Wang, S. G. E-mail: ghyu@mater.ustb.edu.cn; Liu, J. L.; Wang, R. M.; Amsellem, E.; Kohn, A.; Yu, G. H. E-mail: ghyu@mater.ustb.edu.cn
2015-04-13
Anomalous Hall effect at room temperature in perpendicular Hall balance with a core structure of [Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4} has been tuned by functional CoO layers, where [Pt/Co]{sub 4} multilayers exhibit perpendicular magnetic anisotropy. A giant Hall resistance ratio up to 69 900% and saturation Hall resistance (R{sub S}{sup P}) up to 2590 mΩ were obtained in CoO/[Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4}/CoO system, which is 302% and 146% larger than that in the structure without CoO layers, respectively. Transmission electron microscopy shows highly textured [Co/Pt]{sub 4} multilayers and oxide layers with local epitaxial relations, indicating that the crystallographic structure has significant influence on spin dependent transport properties.
Search for anomalous production of events with a high energy...
Office of Scientific and Technical Information (OSTI)
for anomalous production of events with a high energy lepton and photon at the Tevatron Citation Details In-Document Search Title: Search for anomalous production of events with ...
Total least squares for anomalous change detection
Theiler, James P; Matsekh, Anna M
2010-01-01
A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.
Magnetic order and lattice anomalies in the J{sub 1}-J{sub 2} model system VOMoO{sub 4}
Bombardi, A.; Chapon, L.C.; Margiolaki, I.; Mazzoli, C.; Gonthier, S.; Duc, F.; Radaelli, P.G.
2005-06-01
High-resolution x-ray and neutron powder-diffraction measurements were performed on polycrystalline VOMoO{sub 4}. Below {approx_equal}40 K the system orders in a simple Neel antiferromagnetic state (propagation vector k-vector=0), indicating a dominant role of the nearest-neighbor interactions. The order is three dimensional but the reduced saturated magnetic moment m of 0.41 (1) {mu}{sub B}/V{sup 4+} at 2 K indicates strongly two-dimensional character and enhanced quantum fluctuations. On cooling, there is no evidence of a reduction of the crystal symmetry. However, neutron diffraction indicates an anomalous evolution of the lattice parameters, which can be related to the onset of magnetic correlations.
Anomalous density for Bose gases at finite temperature
Boudjemaa, A.; Benarous, M.
2011-10-15
We analyze the behavior of the anomalous density as function of the radial distance at different temperatures in a variational framework. We show that the temperature dependence of the anomalous density agrees with the Hartree-Fock-Bogoliubov (HFB) calculations. Comparisons between the normal and anomalous fractions at low temperature show that the latter remains higher and, consequently, the neglect of the anomalous density may destabilize the condensate. These results are compatible with those of Yukalov. Surprisingly, the study of the anomalous density in terms of the interaction parameter shows that the dip in the central density is destroyed for sufficiently weak interactions. We explain this effect.
Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells
Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.
Secretary Chu and the 'Sputnik Moment'
U.S. Secretary of Energy Steven Chu speaks about China and the Sputnik Moment in US energy Policy at the National Press Club. Remarks followed by Q&A.
ARM - Evaluation Product - Precipitation Radar Moments Mapped...
U.S. Department of Energy (DOE) all webpages (Extended Search)
We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Precipitation Radar Moments Mapped to a Cartesian Grid The Scanning...
Toroidal Dipole Moment of a Massless Neutrino
Cabral-Rosetti, L. G.; Mondragon, M.; Perez, E. Reyes
2009-04-20
We obtain the toroidal dipole moment of a massless neutrino {tau}{sub v{sub I}}{sup M} using the results for the anapole moment of a massless Dirac neutrino a{sub v{sub I}}{sup D}, which was obtained in the context of the Standard Model of the electroweak interactions (SM)SU(2){sub L} x U(1){sub Y}.
Method for identifying anomalous terrestrial heat flows
Del Grande, Nancy Kerr
1977-01-25
A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.
Moment enhancement in dilute magnetic semiconductors: MnxSi1...
Office of Scientific and Technical Information (OSTI)
Authors: Shaughnessy, M ; Fong, C Y ; Snow, R ; Liu, K ; Pask, J E ; Yang, L H Publication Date: 2009-03-12 OSTI Identifier: 965070 Report Number(s): LLNL-JRNL-411279 Journal ID: ...
Stabilizing and increasing the magnetic moment of half-metals...
Office of Scientific and Technical Information (OSTI)
Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal ... Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email ...
Anomalous Charge Transport in Disordered Organic Semiconductors
Muniandy, S. V.; Woon, K. L.; Choo, K. Y.
2011-03-30
Anomalous charge carrier transport in disordered organic semiconductors is studied using fractional differential equations. The connection between index of fractional derivative and dispersion exponent is examined from the perspective of fractional Fokker-Planck equation and its link to the continuous time random walk formalism. The fractional model is used to describe the bi-scaling power-laws observed in the time-of flight photo-current transient data for two different types of organic semiconductors.
Metal-to-insulator switching in quantum anomalous Hall states
Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; et al
2015-10-07
After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr0.12Bi0.26Sb0.62)2Te3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through themore » angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.« less
Metal-to-insulator switching in quantum anomalous Hall states
Kou, Xufeng; Pan, Lei; Wang, Jing; Fan, Yabin; Choi, Eun Sang; Lee, Wei -Li; Nie, Tianxiao; Murata, Koichi; Shao, Qiming; Zhang, Shou -Cheng; Wang, Kang L.
2015-10-07
After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr_{0.12}Bi_{0.26}Sb_{0.62})_{2}Te_{3} film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phase diagram is confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.
CFD Combustion Modeling with Conditional Moment Closure using...
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry CFD Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry A method is ...
Momentive Performance Materials Inc MPM | Open Energy Information
Open Energy Information (Open El) [EERE & EIA]
Momentive Performance Materials Inc MPM Jump to: navigation, search Name: Momentive Performance Materials Inc (MPM) Place: Albany, New York Zip: 12211 Product: New York-based...
Xu, X. Q.; Dudson, B.; Snyder, P. B.; Umansky, M. V.; Wilson, H.
2010-10-22
A minimum set of equations based on the peeling-ballooning (P-B) model with nonideal physics effects (diamagnetic drift, E×B drift, resistivity, and anomalous electron viscosity) is found to simulate pedestal collapse when using the new BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Nonlinear simulations of P-B modes demonstrate that the P-B modes trigger magnetic reconnection, which leads to the pedestal collapse. With the addition of a model of the anomalous electron viscosity under the assumption that the electron viscosity is comparable to the anomalous electron thermal diffusivity, it is found from simulations using a realisticmore » high-Lundquist number that the pedestal collapse is limited to the edge region and the edge localized mode (ELM) size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs.« less
TIMING NOISE IN PULSARS AND MAGNETARS AND THE MAGNETOSPHERIC MOMENT OF INERTIA
Tsang, David; Gourgouliatos, Konstantinos N. E-mail: kostasg@physics.mcgill.ca
2013-08-10
We examine timing noise in both magnetars and regular pulsars, and find that there exists a component of the timing noise ({sigma}{sub TN}) with strong magnetic field dependence ({sigma}{sub TN}{approx}B{sub o}{sup 2}{Omega}T{sup 3/2}) above B{sub o} {approx} 10{sup 12.5} G. The dependence of the timing noise floor on the magnetic field is also reflected in the smallest observable glitch size. We find that magnetospheric torque variation cannot explain this component of timing noise. We calculate the moment of inertia of the magnetic field outside of a neutron star and show that this timing noise component may be due to variation of this moment of inertia, and could be evidence of rapid global magnetospheric variability.
First moments of nucleon generalized parton distributions
Wang, P.; Thomas, A. W.
2010-06-01
We extrapolate the first moments of the generalized parton distributions using heavy baryon chiral perturbation theory. The calculation is based on the one loop level with the finite range regularization. The description of the lattice data is satisfactory, and the extrapolated moments at physical pion mass are consistent with the results obtained with dimensional regularization, although the extrapolation in the momentum transfer to t=0 does show sensitivity to form factor effects, which lie outside the realm of chiral perturbation theory. We discuss the significance of the results in the light of modern experiments as well as QCD inspired models.
Nuclear moments of inertia at high spin
Deleplanque, M.A.
1982-10-01
The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in ..gamma..-..gamma.. correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum ..gamma..-ray spectra of rotational nuclei up to high frequencies. The evolution of ..gamma..-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei.
Spin and orbital moments in actinide compounds (invited)
Lebech, B. ); Wulff, M.; Lander, G.H. )
1991-04-15
The extended spatial distribution of both the transition-metal 3{ital d} electrons and the actinide 5{ital f} electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single-electron band-structure calculations, is that the orbital moments of the actinide 5{ital f} electrons are considerably reduced from the values anticipated by a simple application of Hund's rules. To test these ideas, and thus to obtain a measure of the hybridization, we have performed a series of neutron scattering experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe{sub 2}, NpCo{sub 2}, and PuFe{sub 2} and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced as compared to the free-ion expectations. In addition there is qualitative agreement with theory, although the latter predicts values of both components that are larger than those found by experiment. Because {bold L} and {bold S} are opposed in the light actinides, and {ital L} is usually greater than {ital S}, the reduction of {ital L} can result in a situation for which {ital L}{minus}{ital S}{congruent}0. This almost occurs in UFe{sub 2}. However, neutrons are capable of observing the individual components at finite wave vector ({bold Q}), although the total component (observed at {bold Q}={bold 0}) may indeed be close to zero.
Anomalous Dimensions and Non-Gaussianity (Journal Article) |...
Office of Scientific and Technical Information (OSTI)
Title: Anomalous Dimensions and Non-Gaussianity Authors: Green, Daniel ; Lewandowski, ... Sponsoring Org: US DOE Office of Science (DOE SC);High Energy Physics (HEP);National ...
Anomalous Zeeman response of the coexisting superconducting and...
Office of Scientific and Technical Information (OSTI)
s -wave pairing in ferropnictide superconductors Title: Anomalous Zeeman response of ... s -wave pairing in ferropnictide superconductors Authors: Ghaemi, Pouyan ; Vishwanath, ...
Evidence for an anomalous quantum state of protons in nanoconfined...
Office of Scientific and Technical Information (OSTI)
of protons in nanoconfined water Citation Details In-Document Search Title: Evidence for an anomalous quantum state of protons in nanoconfined water Deep inelastic neutron ...
Phase-space jets drive transport and anomalous resistivity (Journal...
Office of Scientific and Technical Information (OSTI)
transport and anomalous resistivity In the presence of wave dissipation, phase-space structures spontaneously emerge in nonlinear Vlasov dynamics. These structures include not only...
Anomalous shear wave attenuation in the shallow crust beneath...
Open Energy Information (Open El) [EERE & EIA]
volcanic region, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Anomalous shear wave attenuation in the shallow crust beneath the...
Surface magnetism of Gd(0001): Evidence of ferromagnetic coupling to bulk
Mulhollan, G.A.; Garrison, K.; Erskine, J.L. )
1992-11-30
Previous polarized electron experiments and recent {ital ab} {ital initio} calculations suggest that the surface layer magnetic moments of Gd(0001) are antiferromagnetically coupled to the bulk magnetic moments. Spin-polarized photoemission data are presented which show that the spin polarization of the magnetic surface state and the surface 4{ital f} states of Gd(0001) are coupled ferromagnetically to the bulk magnetic moment.
The electric dipole moment of cobalt monoxide, CoO
Zhuang, Xiujuan; Steimle, Timothy C.
2014-03-28
A number of low-rotational lines of the E{sup 4}?{sub 7/2}???X{sup 4}?{sub 7/2} (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h{sub 7/2}, and the electron quadrupole parameter, eQq{sub 0}, for the E{sup 4}?{sub 7/2}(? = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, ?{sup -vector}{sub el}, for the X{sup 4}?{sub 7/2} (? = 0) and E{sup 4}?{sub 7/2} (? = 1) states were determined to be 4.18 0.05 D and 3.28 0.05 D, respectively, from the analysis of the observed Stark spectra of F? = 7???F? = 6 branch feature in the Q(7/2) line and the F? = 8???F? = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.
The influence of Nd dopants on spin and orbital moments in Nd-doped permalloy thin films
Luo, Chen Zhang, Wen E-mail: yazhai@seu.edu.cn; Zhai, Ya E-mail: yazhai@seu.edu.cn; Wong, P. K. J.; You, Biao; Du, Jun; Zhai, Hongru
2014-08-25
Magnetic properties of Nd{sub X}-Ni{sub 80}Fe{sub 20(1?X)} thin films have been investigated using x-ray absorption spectroscopy and x-ray magnetic circular dichroism (XMCD) at room temperature. With the Nd concentration increasing, the ratio of orbital-to-spin moment of Ni and Fe increases significantly, indicating that the spin-orbit coupling in permalloy thin films is enhanced due to the Nd impurities. The spin and orbital moments have been obtained by the sum rules analysis, which shows that the Nd impurities lead to a strong dispersion of spin moments of Fe and Ni while have no effect on orbital moments in Nd-doped permalloy thin films. Element-specific XMCD hysteresis loops suggest an antiferromagnetic coupling between the magnetic moments of Nd and permalloy at room temperature. The static magnetic properties have been studied by vibrating sample magnetometer for comparison, which shows a nice agreement with the XMCD results.
Investigation into the semimagic nature of the tin isotopes through electromagnetic moments
Allmond, J. M.; Stuchbery, A. E.; Galindo-Uribarri, A.; Padilla-Rodal, E.; Radford, D. C.; Batchelder, J. C.; Bingham, C. R.; Howard, M. E.; Liang, J. F.; Manning, B.; Pain, S. D.; Stone, N. J.; Varner, R. L.; Yu, C. -H.
2015-10-19
A complete set of electromagnetic moments, B(E2;0^{+}_{1} 2^{+}_{1}), Q(2^{+}_{1}), and g(2^{+}_{1}), have been measured from Coulomb excitation of semi-magic ^{112,114,116,118,120,122,124}Sn (Z = 50) on natural carbon and titanium targets. The magnitude of the B(E2) values, measured to a precision of ~4%, disagree with a recent lifetime study [Phys. Lett. B 695, 110 (2011)] that employed the Doppler- shift attenuation method. The B(E2) values show an overall enhancement compared with recent theoretical calculations and a clear asymmetry about midshell, contrary to naive expectations. A new static electric quadrupole moment, Q(2^{+}_{1}), has been measured for ^{114}Sn. The static quadrupole moments are generally consistent with zero but reveal an enhancement near midshell; this had not been previously observed. The magnetic dipole moments are consistent with previous measurements and show a near monotonic decrease in value with neutron number. The current theory calculations fail to reproduce the electromagnetic moments of the tin isotopes. The role of 2p-2h and 4p-4h intruders, which are lowest in energy at mid shell and outside of current model spaces, needs to be investigated in the future.
Investigation into the semimagic nature of the tin isotopes through electromagnetic moments
Allmond, J. M.; Stuchbery, A. E.; Galindo-Uribarri, A.; Padilla-Rodal, E.; Radford, D. C.; Batchelder, J. C.; Bingham, C. R.; Howard, M. E.; Liang, J. F.; Manning, B.; et al
2015-10-19
A complete set of electromagnetic moments, B(E2;0+1 2+1), Q(2+1), and g(2+1), have been measured from Coulomb excitation of semi-magic 112,114,116,118,120,122,124Sn (Z = 50) on natural carbon and titanium targets. The magnitude of the B(E2) values, measured to a precision of ~4%, disagree with a recent lifetime study [Phys. Lett. B 695, 110 (2011)] that employed the Doppler- shift attenuation method. The B(E2) values show an overall enhancement compared with recent theoretical calculations and a clear asymmetry about midshell, contrary to naive expectations. A new static electric quadrupole moment, Q(2+1), has been measured for 114Sn. The static quadrupole moments are generallymore » consistent with zero but reveal an enhancement near midshell; this had not been previously observed. The magnetic dipole moments are consistent with previous measurements and show a near monotonic decrease in value with neutron number. The current theory calculations fail to reproduce the electromagnetic moments of the tin isotopes. The role of 2p-2h and 4p-4h intruders, which are lowest in energy at mid shell and outside of current model spaces, needs to be investigated in the future.« less
Electric dipole moment of light nuclei
Afnan, Iraj R.; Gibson, Benjamin F.
2010-07-27
We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.
Electric dipole moment of light nuclei
Gibson, Benjamin; Afnan, I R
2010-01-01
We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.
Anomalous expansion of the copper-apical-oxygen distance in supercondu...
Office of Scientific and Technical Information (OSTI)
Anomalous expansion of the copper-apical-oxygen distance in superconducting cuprate bilayers Citation Details In-Document Search Title: Anomalous expansion of the copper-apical-oxy...
The MOMENT to search for CP violation
Blennow, Mattias; Coloma, Pilar; Fernández-Martinez, Enrique
2016-03-30
In this letter, we analyze for the first time the physics reach in terms of sensitivity to leptonic CP violation of the proposed MuOn-decay MEdium baseline NeuTrino beam (MOMENT) experiment, a novel neutrino oscillation facility that would operate with neutrinos from muon decay. Apart from obtaining a sufficiently intense flux, the bottlenecks to the physics reach of this experiment will be achieving a high enough suppression of the atmospheric background and, particularly, attaining a sufficient level of charge identification. We thus present our results as a function of these two factors. We consider a very massive Gd-doped Water Cherenkov detector.more » We also find that MOMENT will be competitive with other currently planned future oscillation experiments if a charge identification of at least 80 % can be achieved at the same time that the atmospheric background can be suppressed by at least a factor of ten. We also find a large synergy of MOMENT with the current generation of neutrino oscillation experiments, T2K and NOvA, which significantly enhances its final sensitivity.« less
The MOMENT to search for CP violation
Blennow, Mattias; Coloma, Pilar; Fernández-Martinez, Enrique
2015-11-09
In this letter, we analyze for the first time the physics reach in terms of sensitivity to leptonic CP violation of the proposed MuOn-decay MEdium baseline NeuTrino beam (MOMENT) experiment, a novel neutrino oscillation facility that would operate with neutrinos from muon decay. Apart from obtaining a sufficiently intense flux, the bottlenecks to the physics reach of this experiment will be achieving a high enough suppression of the atmospheric background and, particularly, attaining a sufficient level of charge identification. We thus present our results as a function of these two factors. We consider a very massive Gd-doped Water Cherenkov detector. We also find that MOMENT will be competitive with other currently planned future oscillation experiments if a charge identification of at least 80 % can be achieved at the same time that the atmospheric background can be suppressed by at least a factor of ten. We also find a large synergy of MOMENT with the current generation of neutrino oscillation experiments, T2K and NOvA, which significantly enhances its final sensitivity.
Spin and orbital moments of nanoscale Fe{sub 3}O{sub 4} epitaxial thin film on MgO/GaAs(100)
Liu, W. Q.; Xu, Y. B. E-mail: rzhang@nju.edu.cn; Wong, P. K. J.; Maltby, N. J.; Li, S. P.; Wang, X. F.; Zhang, R. E-mail: rzhang@nju.edu.cn; Du, J.; You, B.; Wu, J.; Bencok, P.
2014-04-07
Nanoscale Fe{sub 3}O{sub 4} epitaxial thin film has been synthesized on MgO/GaAs(100) spintronic heterostructure, and studied with X-ray magnetic circular dichroism. We have observed a total magnetic moment (m{sub l+s}) of (3.32 ± 0.1)μ{sub B}/f.u., retaining 83% of the bulk value. Unquenched orbital moment (m{sub l}) of (0.47 ± 0.05)μ{sub B}/f.u. has been confirmed by carefully applying the sum rule. The results offer direct experimental evidence of the bulk-like total magnetic moment and a large orbital moment in the nanoscale fully epitaxial Fe{sub 3}O{sub 4}/MgO/GaAs(100) heterostructure, which is significant for spintronics applications.
Spin-orbit coupled jeff=1/2 iridium moments on the geometrically frustrated fcc lattice
Cook, A. M.; Matern, S.; Hickey, C.; Aczel, A. A.; Paramekanti, A.
2015-07-01
Motivated by experiments on La2ZnIrO6 and La2MgIrO6, we study the magnetism of spin-orbit coupled jeff = 1/2 iridium moments on the three-dimensional geometrically-frustrated face-centered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. Using Luttinger-Tisza and Monte Carlo simulations, we find a rich variety of orders, including collinear A-type antiferromagnetism, collinear stripe order with moments along the {111}-direction, and incommensurate non-coplanar spirals, and determine their magnetic ordering transition temperatures. We argue that thermodynamic data on these iridates underscore the presence of a dominant Kitaev exchange, and suggest a possible resolution to the puzzle of why La2ZnIrO6,more » but not La2MgIrO6, exhibits 'weak' ferromagnetism.« less
ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in...
Office of Scientific and Technical Information (OSTI)
915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Title: ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode 915-MHz Radar Wind ...
Merged and corrected 915 MHz Radar Wind Profiler moments (Dataset...
Office of Scientific and Technical Information (OSTI)
Merged and corrected 915 MHz Radar Wind Profiler moments Title: Merged and corrected 915 MHz Radar Wind Profiler moments The radar wind profiler (RWP) present at the SGP central ...
Community Reflects on Pivotal Moment in History with B Reactor...
Office of Environmental Management (EM)
Reflects on Pivotal Moment in History with B Reactor Community Reflects on Pivotal Moment in History with B Reactor September 29, 2014 - 12:00pm Addthis David Klaus, Deputy Under ...
Electric dipole moments (EDM) of ionic atoms
Oshima, Sachiko
2010-03-15
Recent investigations show that the second-order perturbation calculations of electric dipole moments (EDM) from the finite nuclear size as well as the relativistic effects are all canceled out by the third-order perturbation effects and that this is due to electron screening. To derive the nucleon EDM from the nucleus, we propose to measure the EDM of an ionic system. In this case, it is shown that the nucleon EDM can survive by the reduction factor of 1/Z for the ionic system with one electron stripped off.
Diagnosing Anomalous Network Performance with Confidence
Settlemyer, Bradley W; Hodson, Stephen W; Kuehn, Jeffery A; Poole, Stephen W
2011-04-01
Variability in network performance is a major obstacle in effectively analyzing the throughput of modern high performance computer systems. High performance interconnec- tion networks offer excellent best-case network latencies; how- ever, highly parallel applications running on parallel machines typically require consistently high levels of performance to adequately leverage the massive amounts of available computing power. Performance analysts have usually quantified network performance using traditional summary statistics that assume the observational data is sampled from a normal distribution. In our examinations of network performance, we have found this method of analysis often provides too little data to under- stand anomalous network performance. Our tool, Confidence, instead uses an empirically derived probability distribution to characterize network performance. In this paper we describe several instances where the Confidence toolkit allowed us to understand and diagnose network performance anomalies that we could not adequately explore with the simple summary statis- tics provided by traditional measurement tools. In particular, we examine a multi-modal performance scenario encountered with an Infiniband interconnection network and we explore the performance repeatability on the custom Cray SeaStar2 interconnection network after a set of software and driver updates.
Berkolaiko, G.; Kuipers, J.
2013-12-15
Electronic transport through chaotic quantum dots exhibits universal behaviour which can be understood through the semiclassical approximation. Within the approximation, calculation of transport moments reduces to codifying classical correlations between scattering trajectories. These can be represented as ribbon graphs and we develop an algorithmic combinatorial method to generate all such graphs with a given genus. This provides an expansion of the linear transport moments for systems both with and without time reversal symmetry. The computational implementation is then able to progress several orders further than previous semiclassical formulae as well as those derived from an asymptotic expansion of random matrix results. The patterns observed also suggest a general form for the higher orders.
Quantum transport, anomalous dephasing, and spin-orbit coupling...
U.S. Department of Energy (DOE) all webpages (Extended Search)
Quantum transport, anomalous dephasing, and spin-orbit coupling in an open ballistic bismuth nanocavity Home Author: B. Hackens, J. P. Minet, S. Faniel, G. Farhi, C. Gustin, J. P....
Understanding the anomalous dispersion of doubly-ionized carbon...
Office of Scientific and Technical Information (OSTI)
of doubly-ionized carbon plasmas near 47 nm Citation Details In-Document Search Title: Understanding the anomalous dispersion of doubly-ionized carbon plasmas near 47 nm Over ...
Apparatus for responding to an anomalous change in downhole pressure
Hall, David R.; Fox, Joe; Wilde, Tyson; Barlow, Jonathan S.
2010-04-13
A method of responding to an anomalous change in downhole pressure in a bore hole comprises detecting the anomalous change in downhole pressure, sending a signal along the segmented electromagnetic transmission path, receiving the signal, and performing a automated response. The anomalous change in downhole pressure is detected at a first location along a segmented electromagnetic transmission path, and the segmented electromagnetic transmission path is integrated into the tool string. The signal is received by at least one receiver in communication with the segmented electromagnetic transmission path. The automated response is performed along the tool string. Disclosed is an apparatus for responding to an anomalous change in downhole pressure in a downhole tool string, comprising a segmented electromagnetic transmission path connecting one or more receivers and at least one pressure sensor.
NLO BFKL and anomalous dimensions of light-ray operators
Balitsky, Ian
2013-05-01
This presentation covers: Regge limit in the coordinate space; BFKL representation of 4-point correlation function in N = 4 SYM; light-ray operators; DGLAP representation of 4-point correlation function; and anomalous dimensions from DGAP vs BFKL representations.
CP violating anomalous top-quark couplings at the LHC
Gupta, Sudhir Kumar; Mete, Alaettin Serhan; Valencia, G.
2009-08-01
We study the T odd correlations induced by CP violating anomalous top-quark couplings at both production and decay level in the process gg{yields}tt{yields}(b{mu}{sup +}{nu}{sub {mu}})(b{mu}{sup -}{nu}{sub {mu}}). We consider several counting asymmetries at the parton level and find the ones with the most sensitivity to each of these anomalous couplings at the LHC.
Simulation framework for spatio-spectral anomalous change detection
Theiler, James P; Harvey, Neal R; Porter, Reid B; Wohlberg, Brendt E
2009-01-01
The authors describe the development of a simulation framework for anomalous change detection that considers both the spatial and spectral aspects of the imagery. A purely spectral framework has previously been introduced, but the extension to spatio-spectral requires attention to a variety of new issues, and requires more careful modeling of the anomalous changes. Using this extended framework, they evaluate the utility of spatial image processing operators to enhance change detection sensitivity in (simulated) remote sensing imagery.
Method for processing seismic data to identify anomalous absorption zones
Taner, M. Turhan
2006-01-03
A method is disclosed for identifying zones anomalously absorptive of seismic energy. The method includes jointly time-frequency decomposing seismic traces, low frequency bandpass filtering the decomposed traces to determine a general trend of mean frequency and bandwidth of the seismic traces, and high frequency bandpass filtering the decomposed traces to determine local variations in the mean frequency and bandwidth of the seismic traces. Anomalous zones are determined where there is difference between the general trend and the local variations.
Structural and magnetic stability of Fe{sub 2}NiSi
Gupta, Dinesh C. Bhat, Idris Hamid Chauhan, Mamta
2014-04-24
Full-potential ab-initio calculations in the stable F-43m phase have been performed to investigate the structural and magnetic properties of Fe{sub 2}NiSi inverse Heusler alloys. The spin magnetic moment distributions show that present material is ferromagnetic in stable F-43m phase. Further, spin resolved electronic structure calculations show that the discrepancy in magnetic moments of Fe-I and Fe-II depend upon the hybridization of Fe with the main group element. It is found that the main group electron concentration is predominantly responsible in establishing the magnetic properties, formation of magnetic moments and the magnetic order for present alloy.
Magnetic and dielectric behavior in YMn{sub 1?x}Fe{sub x}O{sub 3} (x???0.5)
Sharma, Neetika; Das, A. Mishra, S. K.; Meena, S. S.; Prajapat, C. L.; Singh, M. R.
2014-06-07
The role of doping Fe on the structural, magnetic, and dielectric properties of frustrated antiferromagnet YMn{sub 1?x}Fe{sub x}O{sub 3} (x ? 0.5) has been investigated. The neutron diffraction analysis shows that the structure of these polycrystalline samples changes from hexagonal phase (space group P6{sub 3}cm) to orthorhombic phase (space group Pnma) for x?>?0.2. The frustration parameter decreases with Fe substitution. All the compounds are antiferromagnetic, and the magnetic structure is described as a mixture of ?3 and ?4 irreducible representation (IR) in the hexagonal phase, and the ratio of these two IRs is found to vary with Fe doping (x???0.2). A continuous spin reorientation as a function of temperature is observed in these samples. The magnetic ground state in the orthorhombic phase of the higher doped samples (x???0.3) is explained by taking ?1 (G{sub x}C{sub y}A{sub z}) representation of Pnma setting. In YMnO{sub 3} suppression of dielectric constant ?? is observed below T{sub N} indicative of magnetoelectric coupling. This anomalous behavior reduces in Fe doped samples. The dielectric constant is found to be correlated with the magnetic moment (M) obtained from neutron diffraction experiments and follows a M{sup 2} behavior close to T{sub N} in agreement with Landau theory.
Kikuchi, N. Furuta, M.; Okamoto, S.; Kitakami, O.; Shimatsu, T.
2014-12-15
Anomalous Hall effect (AHE) based ferromagnetic resonance (FMR) measurements were carried out on perpendicularly magnetized Co/Pt multilayer single dots of 0.4–3 μm in diameter. The resonance behavior was measured by detecting the decrease of perpendicular magnetization component due to magnetization precession. Resonance behavior was observed as a clear decrease of Hall voltages, and the obtained resonance fields were consistent with the results of vector-network-analyzer FMR. Spin-waves with cylindrical symmetry became significant by decreasing the dot diameter, and quantized multiple resonances were observed in the dot of 0.4 μm in diameter. The AHE based FMR proposed here is a powerful method to approach magnetization dynamics including spin waves and non-linear behavior excited in a finite nanostructure.
Search for: All records | SciTech Connect
Office of Scientific and Technical Information (OSTI)
... for the muon anomalous magnetic moment Porter, Frank C. The BABAR collaboration has an ... CP Violation and the Determination of the CKM Matrix Porter, Frank ; Caltech Full Text ...
Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12
Xu, Gang; Lian, Biao; Zhang, Shou -Cheng
2015-10-27
In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs2Mn3F12 kagome lattice and on the (001) surface of a Cs2LiMn3F12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding model based on the in-plane ddσ antibondingmore » states is constructed to understand the topological band structures of the system.« less
Search for the Neutron Electric Dipole Moment
Plaster, Brad
2010-08-04
Searches for the neutron electric dipole moment (EDM) are motivated by their highly suppressed Standard Model value. The observation of a non-zero signal in the next generation of experiments would point unambiguously to the existence of new physics beyond the Standard Model. Several ongoing efforts worldwide hold the potential for an up to two-orders-of-magnitude improvement beyond the current upper limit on the neutron EDM of 2.9x10{sup -6} e-cm. In this talk, I review the basic measurement principles of neutron EDM searches, then discuss a new experiment to be carried out in the United States at the Spallation Neutron Source with ultracold neutrons and an in-situ '3He''co-magnetometer'.
Magnetic measurements on ??CS{sub 2}U{sub 4}O{sub 12}
Kanrar, Buddhadev Misra, N. L.; Sastry, P. U.; Dube, V.; Ravikumar, G.
2014-04-24
Magnetic and XRD measurements on ??CS{sub 2}U{sub 4}O{sub 12} having uranium in mixed valent states of U (V) and U (VI) have been made. The study reveals that the compound undergoes an antiferromagnetic transition below 25K and an anomalous magnetic behavior was seen around 75K. This anomalous behavior indicates towards a structural phase transition. However, the low temperature XRD could not confirm this observation.
Probing top-Z dipole moments at the LHC and ILC
Röntsch, Raoul; Schulze, Markus
2015-08-11
We investigate the weak electric and magnetic dipole moments of top quark-Z boson interactions at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). Their vanishingly small magnitude in the Standard Model makes these couplings ideal for probing New Physics interactions and for exploring the role of top quarks in electroweak symmetry breaking. In our analysis, we consider the production of two top quarks in association with a Z boson at the LHC, and top quark pairs mediated by neutral gauge bosons at the ILC. These processes yield direct sensitivity to top quark-Z boson interactions and complement indirect constraints from electroweak precision data. Our computation is accurate to next-to-leading order in QCD, we include the full decay chain of top quarks and the Z boson, and account for theoretical uncertainties in our constraints. Furthermore, we find that LHC experiments will soon be able to probe weak dipole moments for the first time.
On the moment of inertia of a quantum harmonic oscillator
Khamzin, A. A. Sitdikov, A. S.; Nikitin, A. S.; Roganov, D. A.
2013-04-15
An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.
CFD Combustion Modeling with Conditional Moment Closure using Tabulated
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Chemistry | Department of Energy Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry CFD Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry A method is presented that allows for efficient conditional moment closure combustion simulations through the use of a progress variable based parameterization of the combustion chemistry. p-15_borg.pdf (228.78 KB) More Documents & Publications Advanced CFD Models for High Efficiency Compression
Heiba, Zein K.; Taif University, Faculty of Science, Physics Department ; Mohamed, Mohamed Bakr; Fuess, H.
2012-12-15
Graphical abstract: Display Omitted Highlights: ? Er{sub 2?x}Mn{sub x}O{sub 3} (0.0 ? x ? 0.20) prepared by solgel method. ? The change in lattice parameter is not linear with x due to the change in crystallite size with doping. ? Anomalous concentration dependence is found in magnetic susceptibility. ? The effective magnetic moment ?{sub eff} is found to decrease with composition parameter x. ? Superexchange interactions between Er ions depending on the amount of Mn or Er in different sites. -- Abstract: The manganese doped rare earth oxides Er{sub 2?x}Mn{sub x} O{sub 3} (0.0 ? x ? 0.20) were synthesized by a solgel process and analyzed by X-ray diffraction using Rietveld refinement methods. A single phase solid solution is formed up to x = 0.15 while for x ? 0.2 a manganese oxide phase appears in the diffraction pattern. Preferential cationic distribution between the non-equivalent sites 8b and 24d of space group Ia3{sup } is found for all samples but to a different extent. The octahedral volume and average bond length of Er{sub 1}-O for 8b site decrease while both octahedral volume and bond length of Er{sub 2}-O for 24d site increase. Magnetization measurements were done in the temperature range 5300 K. The effective magnetic moment ?{sub eff} is found to decrease with composition parameter x, except for sample x = 0.05 where the magnetization is enhanced. The Curie-Weiss paramagnetic temperatures indicate antiferromagnetic interaction.
Neutron Electric Dipole Moments from Beyond the Standard Model...
Office of Scientific and Technical Information (OSTI)
Electric Dipole Moments from Beyond the Standard Model Physics Bhattacharya, Tanmoy Los Alamos National Laboratory Los Alamos National Laboratory; Cirigliano, Vincenzo Los...
Separating Cloud and Drizzle Radar Moments during Precipitation...
Office of Scientific and Technical Information (OSTI)
Onset using Doppler Spectra Citation Details In-Document Search Title: Separating Cloud and Drizzle Radar Moments during Precipitation Onset using Doppler Spectra Authors: ...
Neutron Electric Dipole Moments from Beyond the Standard Model...
Office of Scientific and Technical Information (OSTI)
Beyond the Standard Model Physics Citation Details In-Document Search Title: Neutron Electric Dipole Moments from Beyond the Standard Model Physics Authors: Bhattacharya, Tanmoy ...
Neutron Electric Dipole Moments from Beyond the Standard Model...
Office of Scientific and Technical Information (OSTI)
Beyond the Standard Model Physics Citation Details In-Document Search Title: Neutron Electric Dipole Moments from Beyond the Standard Model Physics You are accessing a ...
Comment on Pion-nucleon bremsstrahlung and. Delta. electromagnetic moments''
Weyrauch, M. )
1989-11-01
We analyze the definition of the electromagnetic moments of the dressed'' {Delta} introduced by Heller, Kumano, Martinez, and Moniz with respect to gauge invariance.
Magnetic Systems Mimic Granular Materials | U.S. DOE Office of...
... magnetic x-ray photon correlation spectroscopy" that uses coherent x-ray beams (similar to laser light) whose energy is tuned to resonantly interact with atomic magnetic moments. ...
The search for permanent electric dipole moments
Kirch, Klaus
2013-02-13
Permanent electric dipole moments (EDMs) of fundamental systems with spin - particles, nuclei, atoms or molecules violate parity and time reversal invariance. Invoking the CPT theorem, time reversal violation implies CP violation. Although CP-violation is implemented in the standard electro-weak theory, EDM generated this way remain undetectably small. However, this CP-violation also appears to fail explaining the observed baryon asymmetry of our universe. Extensions of the standard theory usually include new sources of CP violation and often predict sizeable EDMs. EDM searches in different systems are complementary and various efforts worldwide are underway and no finite value has been established yet. The prototype of an EDM search is the pursuit of the EDM of the neutron. It has the longest history and at the same time is at the forefront of present research. The talk aims at giving an overview of the field with emphasis on our efforts within an international collaboration at PSI, nedm.web.psi.ch.
Moment Closures on Two-Dimensional Cartesian Grids
Garrett, Charles K.
2015-07-31
Some moment methods for kinetic equations are complicated and take time to develop. Over the course of a couple years, this software was developed to test different closures on standard test problems in the literature. With this software, researchers in the field of moment closures will be able to rapidly test new methods.
Proximity-induced magnetism in transition-metal substituted graphene
Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian -Xin; Balatsky, Alexander V.; Haraldsen, Jason T.
2015-08-03
We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.
Cancellation of orbital and spin magnetism in UFe/sub 2/
Wulff, M.; Lander, G.H.; Lebech, B.; Delapalme, A.
1989-03-01
Polarized-neutron measurements have shown that the orbital and spin magnetic moments, which individually have a value of approx.0.23..mu../sub B/, almost completely cancel on the U sublattice in the ordered Laves phase UFe/sub 2/. This confirms a recent theoretical predicton and raises the possibility of ''magnetic'' compounds with zero total moment.
Local spin torque induced by electron electric dipole moment in the YbF molecule
Fukuda, Masahiro; Senami, Masato; Ogiso, Yoji; Tachibana, Akitomo
2014-10-06
In this study, we show the modification of the equation of motion of the electronic spin, which is derived by the quantum electron spin vorticity principle, by the effect of the electron electric dipole moment (EDM). To investigate the new contribution to spin torque by EDM, using first principle calculations, we visualize distributions of the local spin angular momentum density and local spin torque density of the YbF molecule on which the static electric field and magnetic field are applied at t = 0.
Anomalous fast ion losses at high β on the tokamak fusion test...
Office of Scientific and Technical Information (OSTI)
Anomalous fast ion losses at high on the tokamak fusion test reactor Citation Details In-Document Search Title: Anomalous fast ion losses at high on the tokamak fusion test ...
Quantum anomalous Hall effect in single-layer and bilayer graphene...
Office of Scientific and Technical Information (OSTI)
Quantum anomalous Hall effect in single-layer and bilayer graphene Citation Details In-Document Search Title: Quantum anomalous Hall effect in single-layer and bilayer graphene ...
Terwilliger, Thomas C.; Bunkóczi, Gábor; Hung, Li-Wei; Zwart, Peter H.; Smith, Janet L.; Akey, David L.; Adams, Paul D.
2016-03-01
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, we describe algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment. A simple theoretical framework [Terwilliger et al.(2016),Acta Cryst.D72, 346–358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. Thephenix.plan_sad_experimenttool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimatemore » the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. Thephenix.scale_and_mergetool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and thephenix.anomalous_signaltool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing.« less
Exact linearized Coulomb collision operator in the moment expansion
Ji, Jeong -Young; Held, Eric D.
2006-10-05
In the moment expansion, the Rosenbluth potentials, the linearized Coulomb collision operators, and the moments of the collision operators are analytically calculated for any moment. The explicit calculation of Rosenbluth potentials converts the integro-differential form of the Coulomb collision operator into a differential operator, which enables one to express the collision operator in a simple closed form for any arbitrary mass and temperature ratios. In addition, it is shown that gyrophase averaging the collision operator acting on arbitrary distribution functions is the same as the collision operator acting on the corresponding gyrophase averaged distribution functions. The moments of the collisionmore » operator are linear combinations of the fluid moments with collision coefficients parametrized by mass and temperature ratios. Furthermore, useful forms involving the small mass-ratio approximation are easily found since the collision operators and their moments are expressed in terms of the mass ratio. As an application, the general moment equations are explicitly written and the higher order heat flux equation is derived.« less
Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing
Terwilliger, Thomas C.; Bunkóczi, Gábor; Hung, Li-Wei; Zwart, Peter H.; Smith, Janet L.; Akey, David L.; Adams, Paul D.
2016-03-01
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. We present a simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined.more » In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. In conclusion, this means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.« less
Kanai, Shun; Tsujikawa, Masahito; Shirai, Masafumi; Miura, Yoshio; Matsukura, Fumihiro Ohno, Hideo
2014-12-01
We study the spin and orbital magnetic moments in Ta/Co{sub 0.4}Fe{sub 0.4}B{sub 0.2}/MgO by x-ray magnetic circular dichroism measurements as well as first-principles calculations, in order to clarify the origin of the perpendicular magnetic anisotropy. Both experimental and theoretical results show that orbital magnetic moment of Fe is more anisotropic than that of Co with respect to the magnetization direction. The anisotropy is larger for thinner CoFeB, indicating that Fe atoms at the interface with MgO contribute more than Co to the observed perpendicular magnetic anisotropy.
Evaluation of Double-moment Microphysical Parameterization with...
U.S. Department of Energy (DOE) all webpages (Extended Search)
model?" Because of the lack of data with detailed MCS cloud components, a detailed evaluation of double-moment schemes has not yet been undertaken. During April and May of 2011,...
Neutron Electric Dipole Moments from Beyond the Standard Model Physics
Office of Scientific and Technical Information (OSTI)
(Conference) | SciTech Connect Conference: Neutron Electric Dipole Moments from Beyond the Standard Model Physics Citation Details In-Document Search Title: Neutron Electric Dipole Moments from Beyond the Standard Model Physics Authors: Bhattacharya, Tanmoy [1] ; Cirigliano, Vincenzo [1] ; Gupta, Rajan [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-11-18 OSTI Identifier: 1107163 Report Number(s): LA-UR-13-28859 DOE Contract Number: AC52-06NA25396
Searching for the corner seismic moment in worldwide data
Felgueiras, Miguel; Santos, Rui; Martins, João Paulo
2015-12-31
In this paper the existence of the corner frequency value for the seismic moment distribution is investigated, analysing worldwide data. Pareto based distributions, usually considered as the most suitable to this type of data, are fitted to the most recent data, available in a global earthquake catalog. Despite the undeniable finite nature of the seismic moment data, we conclude that no corner frequency can be established considering the available data set.
Forces and moments on a slender, cavitating body
Hailey, C.E.; Clark, E.L.; Buffington, R.J.
1988-01-01
Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with this code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.
Shen, Xi; Shigematsu, Kei; Chikamatsu, Akira Fukumura, Tomoteru; Hirose, Yasushi; Hasegawa, Tetsuya
2014-08-18
We report the electrical transport properties of ferrimagnetic Mn{sub 4}N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn{sub 4}N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16 MJ/m{sup 3}, which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125 μΩ cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.
Effective field theory: A modern approach to anomalous couplings
Degrande, Cline; Centre for Particle Physics and Phenomenology , Universit Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve ; Greiner, Nicolas; Max-Planck-Institut fr Physik, Fhringer Ring 6, 80805 Mnchen ; Kilian, Wolfgang; University of Siegen, Fachbereich Physik, D-57068 Siegen ; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen; Centre for Particle Physics and Phenomenology , Universit Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve
2013-08-15
We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: We discuss the advantages of effective field theories compared to anomalous couplings. We show that one need not be concerned with unitarity violation at high energy. We discuss the application of effective field theory to weak boson physics.
ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Wind and Moment...
Office of Scientific and Technical Information (OSTI)
Wind and Moment Averages Title: ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Wind and Moment Averages 1290-MHz Beam-Steered Radar Wind Profiler: Wind and Moment Averages ...
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hussein, Khalid
2012-02-01
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Archuleta Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1σ and 2σ were considered ASTER modeled warm surface exposures (thermal anomalies). Spatial Domain: Extent: Top: 4144825.235807 m Left: 285446.256851 m Right: 350577.338852 m Bottom: 4096962.250137 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hussein, Khalid
2012-02-01
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Routt Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1σ and 2σ were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359411.975000 m Bottom: 4447521.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hussein, Khalid
2012-02-01
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Garfield Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1σ and 2σ were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4442180.552290 m Left: 268655.053363 m Right: 359915.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hussein, Khalid
2012-02-01
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hussein, Khalid
2012-02-01
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hussein, Khalid
2012-02-01
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1σ and 2σ above the mean, as opposed to the greater than 2σ temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO
Bieron, Jacek; Gaigalas, Gediminas; Gaidamauskas, Erikas; Fritzsche, Stephan; Indelicato, Paul; Joensson, Per
2009-07-15
The multiconfiguration Dirac-Hartree-Fock theory has been employed to calculate the electric dipole moment of the 7s6d {sup 3}D{sub 2} state of radium induced by the nuclear Schiff moment. The results are dominated by valence and core-valence electron correlation effects. We show that the correlation effects can be evaluated in a converged series of multiconfiguration expansions.
On The Anomalous Fast Ion Energy Diffusion in Toroidal Plasmas Due to Cavity Modes
N.N. Gorelenkov, N.J. Fisch and E. Fredrickson
2010-03-09
An enormous wave-particle diffusion coefficient along paths suitable for alpha channeling had been deduced in mode converted ion Bernstein wave experiments on Tokamak Fusion Test Reactor (TFTR) the only plausible explanation advanced for such a large diffusion coefficient was the excitation of internal cavity modes which induce particle diffusion along identical diffusion paths, but at much higher rates. Although such a mode was conjectured, it was never observed. However, recent detailed observations of high frequency compressional Alfven eigenmodes (CAEs) on the National Spherical torus Experiment (NSTX) indirectly support the existence of the related conjectured modes on TFTR. The eigenmodes responsible for the high frequency magnetic activity can be identified as CAEs through the polarization of the observed magnetic field oscillations in NSTX and through a comparison with the theoretically derived freuency dispersion relation. Here, we show how these recent observations of high frequency CAEs lend support to this explanation of the long-standing puzzle of anomalous fast ion energy diffusion on TFTR. The support of the conjecure that these internal modes could have caused the remarkable ion energy diffusion on TFTR carries significant and favorable implications for the possibilities in achieving the alpha channeling effect with small injected power in a tokamak reactor.
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism
U.S. Department of Energy (DOE) all webpages (Extended Search)
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism
U.S. Department of Energy (DOE) all webpages (Extended Search)
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism
U.S. Department of Energy (DOE) all webpages (Extended Search)
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism
U.S. Department of Energy (DOE) all webpages (Extended Search)
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism
U.S. Department of Energy (DOE) all webpages (Extended Search)
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and
Intrinsic quantum anomalous Hall effect in the kagome lattice Cs_{2}LiMn_{3}F_{12}
Xu, Gang; Lian, Biao; Zhang, Shou -Cheng
2015-10-27
In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs_{2}Mn_{3}F_{12} kagome lattice and on the (001) surface of a Cs_{2}LiMn_{3}F_{12} single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding model based on the in-plane ddσ antibonding states is constructed to understand the topological band structures of the system.
Anomalous Hall effect in epitaxial ferrimagnetic anti-perovskite Mn{sub 4−x}Dy{sub x}N films
Meng, M.; Wu, S. X. Zhou, W. Q.; Ren, L. Z.; Wang, Y. J.; Wang, G. L.; Li, S. W.
2015-08-07
Anomalous Hall effect (AHE) has been studied for ferrimagnetic antiperovskite Mn{sub 4−x}Dy{sub x}N films grown by molecular-beam epitaxy. The introduction of Dy changes the AHE dramatically, even changes its sign, while the variations in magnetization are negligible. Two sign reversals of the AHE (negative-positive-negative) are ascribed to the variation of charge carriers as a result of Fermi surface reconstruction. We further demonstrate that the AHE current J{sub AH} is dissipationless (independent of the scattering rate), by confirming that anomalous Hall conductivity, σ{sub AH}, is proportional to the carrier density n at 5 K. Our study may provide a route to further utilize antiperovskite manganese nitrides in spintronics.
Minimizing magnetic fields for precision experiments
Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.
2015-06-21
An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.
Platinum dendritic nanoparticles with magnetic behavior
Li, Wenxian; Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue; Tian, Dongliang
2014-07-21
Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ?4?nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.
Filament capturing with the multimaterial moment-of-fluid method*
Jemison, Matthew; Sussman, Mark; Shashkov, Mikhail
2015-01-15
A novel method for capturing two-dimensional, thin, under-resolved material configurations, known as “filaments,” is presented in the context of interface reconstruction. This technique uses a partitioning procedure to detect disconnected regions of material in the advective preimage of a cell (indicative of a filament) and makes use of the existing functionality of the Multimaterial Moment-of-Fluid interface reconstruction method to accurately capture the under-resolved feature, while exactly conserving volume. An algorithm for Adaptive Mesh Refinement in the presence of filaments is developed so that refinement is introduced only near the tips of filaments and where the Moment-of-Fluid reconstruction error is still large. Comparison to the standard Moment-of-Fluid method is made. As a result, it is demonstrated that using filament capturing at a given resolution yields gains in accuracy comparable to introducing an additional level of mesh refinement at significantly lower cost.
Electric dipole moments from flavored CP violation in supersymmetry
Calibbi, L.; Perez, J. Jones; Vives, O.
2008-10-01
The so-called supersymmetric flavor and CP problems are deeply related to the origin of flavor and hence to the origin of the standard model Yukawa couplings themselves. We show that realistic SU(3) flavor symmetries with spontaneous CP violation reproducing correctly the standard model Yukawa matrices can simultaneously solve both problems without ad hoc modifications of the supersymmetric model. We analyze the leptonic electric dipole moments and lepton flavor violation processes in these models. We show that the electron electric dipole moment and the decay {mu}{yields}e{gamma} are naturally within reach of the proposed experiments if the sfermion masses are measurable at the LHC.
A Peek Inside the Earliest Moments of the Universe
U.S. Department of Energy (DOE) all webpages (Extended Search)
A Peek Inside the Earliest Moments of the Universe A Peek Inside the Earliest Moments of the Universe LQCD Calculations Help Physicists Probe Big Bang Nucleosynthesis July 5, 2016 Contact: Kathy Kincade, kkincade@lbl.gov, +1 510 495 2124 musun The MuSun experiment at the Paul Scherrer Institute is measuring the rate for muon capture on the deuteron to better than 1.5% precision. This process is the simplest weak interaction on a nucleus that can be measured to a high degree of precision. The Big
Anomalous diffusion and Tsallis statistics in an optical lattice
Lutz, Eric
2003-05-01
We point out a connection between anomalous transport in an optical lattice and Tsallis' generalized statistics. Specifically, we show that the momentum equation for the semiclassical Wigner function which describes atomic motion in the optical potential, belongs to a class of transport equations recently studied by Borland [Phys. Lett. A 245, 67 (1998)]. The important property of these ordinary linear Fokker-Planck equations is that their stationary solutions are exactly given by Tsallis distributions. An analytical expression of the Tsallis index q in terms of the microscopic parameters of the quantum-optical problem is given and the spatial coherence of the atomic wave packets is discussed.
A fractional Fokker-Planck model for anomalous diffusion
Anderson, Johan; Kim, Eun-jin; Moradi, Sara
2014-12-15
In this paper, we present a study of anomalous diffusion using a Fokker-Planck description with fractional velocity derivatives. The distribution functions are found using numerical means for varying degree of fractionality of the stable Lévy distribution. The statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy in terms of Tsallis statistical mechanics. We find that the ratio of the generalized entropy and expectation is increasing with decreasing fractionality towards the well known so-called sub-diffusive domain, indicating a self-organising behavior.
Crowding and Anomalous Capacitance at an ElectrodeIonic Liquid...
Office of Scientific and Technical Information (OSTI)
Crowding and Anomalous Capacitance at an ElectrodeIonic Liquid Interface Observed Using Operando X-ray Scattering Citation Details In-Document Search Title: Crowding and ...
Probing top-Z dipole moments at the LHC and ILC
Röntsch, Raoul; Schulze, Markus
2015-08-11
We investigate the weak electric and magnetic dipole moments of top quark-Z boson interactions at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). Their vanishingly small magnitude in the Standard Model makes these couplings ideal for probing New Physics interactions and for exploring the role of top quarks in electroweak symmetry breaking. In our analysis, we consider the production of two top quarks in association with a Z boson at the LHC, and top quark pairs mediated by neutral gauge bosons at the ILC. These processes yield direct sensitivity to top quark-Z boson interactions and complement indirectmore » constraints from electroweak precision data. Our computation is accurate to next-to-leading order in QCD, we include the full decay chain of top quarks and the Z boson, and account for theoretical uncertainties in our constraints. Furthermore, we find that LHC experiments will soon be able to probe weak dipole moments for the first time.« less
Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai
2015-11-05
As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.
Ng, Jonathan; Huang, Yi-Min; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai
2015-11-15
As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Recently, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.
Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai
2015-11-05
As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment modelmore » with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.« less
Controlled Phase and Tunable Magnetism in Ordered Iron Oxide...
Office of Scientific and Technical Information (OSTI)
... at 80 K and the non-hysteretic curve at 150 K. E 0.0 T10 K Magnetic field (kOe) dM... to the tube direction at 10 K. (b) Magnetic moment as a function of the temperature. ...
Is the Energy Race our new "Sputnik" Moment? | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Is the Energy Race our new "Sputnik" Moment? Is the Energy Race our new "Sputnik" Moment? A report that analyzes the "Sputnik" moment and how it correlates to today's energy race. Is the Energy Race our new "Sputnik" Moment? (6.4 MB) More Documents & Publications Is the Energy Race our new "Sputnik" Moment? Chu_NationalPressClub112910.pdf Energizing American Competitiveness in Solar Technologies
Eslami, L., E-mail: Leslami@iust.ac.ir; Faizabadi, E. [School of Physics, Iran University of Science and Technology, Tehran 16846 (Iran, Islamic Republic of)
2014-05-28
The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.
Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young; Kim, Dong-Jun; Park, Byong-Guk
2015-05-07
The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE{sub 011} resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage V{sub ISHE} for the stacking order of the bilayer can separate the pure V{sub ISHE} and the anomalous Hall effect (AHE) voltage V{sub AHE} utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θ{sub ISH}, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θ{sub ISH} values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable V{sub ISHE} value in bilayer systems are large θ{sub ISH} and low resistivity.
Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures
Alegria, L. D.; Petta, J. R.; Ji, H.; Cava, R. J.; Yao, N.; Clarke, J. J.
2014-08-04
We demonstrate the van der Waals epitaxy of the topological insulator compound Bi{sub 2}Te{sub 3} on the ferromagnetic insulator Cr{sub 2}Ge{sub 2}Te{sub 6}. The layers are oriented with (001)Bi{sub 2}Te{sub 3}||(001)Cr{sub 2}Ge{sub 2}Te{sub 6} and (110)Bi{sub 2}Te{sub 3}||(100)Cr{sub 2}Ge{sub 2}Te{sub 6}. Cross-sectional transmission electron microscopy indicates the formation of a sharp interface. At low temperatures, bilayers consisting of Bi{sub 2}Te{sub 3} on Cr{sub 2}Ge{sub 2}Te{sub 6} exhibit a large anomalous Hall effect (AHE). Tilted field studies of the AHE indicate that the easy axis lies along the c-axis of the heterostructure, consistent with magnetization measurements in bulk Cr{sub 2}Ge{sub 2}Te{sub 6}. The 61 K Curie temperature of Cr{sub 2}Ge{sub 2}Te{sub 6} and the use of near-stoichiometric materials may lead to the development of spintronic devices based on the AHE.
Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Grossbard, Neil
2010-06-15
Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper, which is intended as a sequel, it is concluded from FAST satellite data that the electrostatic ion-cyclotron turbulence that appears is due to the operation of an electron, bump-on-tail-driven ion-cyclotron instability for downward currents in the long-range potential region of the Earth's magnetosphere. Approximate closed-form expressions for the anomalous momentum and energy transfer rates for the ion-cyclotron turbulence are obtained. The turbulent, inhomogeneous, nonuniformly magnetized, multimoment fluid theory given above, in the limit of a turbulent, homogeneous, uniformly magnetized, quasisteady plasma, yields the well-known formula for the anomalous resistivity given by Gary and Paul [Phys. Rev. Lett. 26, 1097 (1971)] and Tange and Ichimaru [J. Phys. Soc. Jpn. 36, 1437 (1974)].
High-field magnetization processes in actinide intermetallics (invited)
Franse, J.J.M.; de Boer, F.R.; de Chatel, P.F.; Frings, P.H.; Menovsky, A.A. )
1991-04-15
In magnetically ordered intermetallics of uranium with {ital d} transition elements, the magnetic moment on the uranium site is often limited to values below 0.1{mu}{sub {ital B}}, with, in some cases, extremely large magnetic anisotropies. Several approaches are followed for explaining these small uranium moments: opposite directions and almost compensation of the spin and orbital moments, reduction of the uranium 5{ital f} moment by strong hybridization effects between the 5{ital f} and conduction electrons, and very weak itinerant magnetism of the 5{ital f} electrons. In the Laves-phase compounds UFe{sub 2} and UNi{sub 2}, the magnetic data have been explained in terms of opposite spin and orbital moments on the uranium sites. In the heavy-fermion compounds UPt{sub 3} and URu{sub 2}Si{sub 2}, on the contrary, a Kondo approach is followed, although coherence effects largely complicate a proper description. The experimental evidence for these different approaches will be reviewed.
Seymour, P.
1986-01-01
This book deals with the cosmic magnetism in a non-mathematical way. It uses Faraday's very powerful and highly pictorial concept of lines of magnetic force and their associated physical properties to explain the structure and behavior of magnetic fields in extraterrestrial objects. Contents include: forces of nature; magnetic field of earth; solar and interplanetary magnetic fields; magnetic fields in the solar system; stars and pulsars; and magnetic fields of the milky way and other galaxies.
Electronic and magnetic properties of Fe and Mn doped two dimensional hexagonal germanium sheets
Soni, Himadri R. Jha, Prafulla K.
2014-04-24
Using first principles density functional theory calculations, the present paper reports systematic total energy calculations of the electronic properties such as density of states and magnetic moment of pristine and iron and manganese doped two dimensional hexagonal germanium sheets.
Sensor fusion and nonlinear prediction for anomalous event detection
Hernandez, J.V.; Moore, K.R.; Elphic, R.C.
1995-03-07
The authors consider the problem of using the information from various time series, each one characterizing a different physical quantity, to predict the future state of the system and, based on that information, to detect and classify anomalous events. They stress the application of principal components analysis (PCA) to analyze and combine data from different sensors. They construct both linear and nonlinear predictors. In particular, for linear prediction the authors use the least-mean-square (LMS) algorithm and for nonlinear prediction they use both backpropagation (BP) networks and fuzzy predictors (FP). As an application, they consider the prediction of gamma counts from past values of electron and gamma counts recorded by the instruments of a high altitude satellite.
Higgs-Higgsino-gaugino induced two loop electric dipole moments
Li Yingchuan; Profumo, Stefano; Ramsey-Musolf, Michael
2008-10-01
We compute the complete set of Higgs-mediated chargino-neutralino two-loop contributions to the electric dipole moments of the electron and neutron in the minimal supersymmetric standard model (MSSM). We study the dependence of these contributions on the parameters that govern CP-violation in the MSSM gauge-gaugino-Higgs-Higgsino sector. We find that contributions mediated by the exchange of WH{sup {+-}} and ZA{sup 0} pairs, where H{sup {+-}} and A{sup 0} are the charged and CP-odd Higgs scalars, respectively, are comparable to or dominate over those mediated by the exchange of neutral gauge bosons and CP-even Higgs scalars. We also emphasize that the result of this complete set of diagrams is essential for the full quantitative study of a number of phenomenological issues, such as electric dipole moment searches and their implications for electroweak baryogenesis.
Exploration of Artificial Frustrated Magnets
Samarth, Nitin; Schiffer, Peter
2015-02-17
This program encompasses experimental and theoretical studies of arrays of nanometer-scale magnets known as “artificial frustrated magnets”. These magnets are small and closely spaced, so that their behavior as a collective group is complex and reveals insights into how such collections of interacting objects behave as a group. In particular, the placement of the magnets is such that the interactions between them are “frustrated”, in that they compete with each other. These systems are analogs to a class of magnetic materials in which the lattice geometry frustrates interactions between individual atomic moments, and in which a wide range of novel physical phenomena have been recently observed. The advantage to studying the arrays is that they are both designable and resolvable: i.e., the experiments can control all aspects of the array geometry, and can also observe how individual elements of the arrays behave. This research program demonstrated a number of phenomena including the role of multiple collective interactions, the feasibility of using systems with their magnetism aligned perpendicular to the plane of the array, the importance of disorder in the arrays, and the possibility of using high temperatures to adjust the magnet orientations. All of these phenomena, and others explored in this program, add to the body of knowledge around collective magnetic behavior and magnetism in general. Aside from building scientific knowledge in an important technological area, with relevance to computing and memory, the program also gave critical support to the education of students working on the experiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2010-07-13
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2009-11-10
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2007-12-11
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2010-06-29
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2009-10-27
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Gravitational radiation from magnetically funneled supernova fallback onto a magnetar
Melatos, A.; Priymak, M., E-mail: amelatos@unimelb.edu.au, E-mail: m.priymak@pgrad.unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)
2014-10-20
Protomagnetars spun up to millisecond rotation periods by supernova fallback are predicted to radiate gravitational waves via hydrodynamic instabilities for ?10{sup 2} s before possibly collapsing to form a black hole. It is shown that magnetic funneling of the accretion flow (1) creates a magnetically confined polar mountain, which boosts the gravitational wave signal, and (2) 'buries' the magnetic dipole moment, delaying the propeller phase and assisting black hole formation.
Filament capturing with the multimaterial moment-of-fluid method*
Jemison, Matthew; Sussman, Mark; Shashkov, Mikhail
2015-01-15
A novel method for capturing two-dimensional, thin, under-resolved material configurations, known as “filaments,” is presented in the context of interface reconstruction. This technique uses a partitioning procedure to detect disconnected regions of material in the advective preimage of a cell (indicative of a filament) and makes use of the existing functionality of the Multimaterial Moment-of-Fluid interface reconstruction method to accurately capture the under-resolved feature, while exactly conserving volume. An algorithm for Adaptive Mesh Refinement in the presence of filaments is developed so that refinement is introduced only near the tips of filaments and where the Moment-of-Fluid reconstruction error is stillmore » large. Comparison to the standard Moment-of-Fluid method is made. As a result, it is demonstrated that using filament capturing at a given resolution yields gains in accuracy comparable to introducing an additional level of mesh refinement at significantly lower cost.« less
Seismic moment summation for historical earthquakes in Italy - tectonic implications
Westaway, R. )
1992-10-01
Tectonic deformation rates in and around the Apennine mountains of Italy are studied using seismic moments estimated from macroseismic effects of historical earthquakes. Northeastward extension in the northern Apennines (north of about 42.5 deg N) accompanies shortening along their northeast flank. Since the seventeenth century, the sparce seismicity in these two zones has included no earthquake with magnitude greater than 6.5 or seismic moment above about 6x10 exp 18 N m. Their spatially averaged deformation rates are only about 0.3 mm/yr, but are equal, such that the extention and shortening balance with no relative motion between their external surroundings. In contrast, the numerous historical earthquakes in the central and southern Apennines with magnitude about 7 and seismic moment about 20x10 exp 18 N m require northeastward relative velocity across the deforming zone up to about 5 mm/yr, matching the expected relative motion of their surroundings. The northern Apennines thus show different senses and rates of deformation from localities farther south, and are thus tectonically distinct at present, in contrast with previous interpretations. 82 refs.
Magnetic dipole interactions in crystals
Johnston, David
2016-01-13
The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ˆ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ → i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices,more » 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ˆ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c/a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120 ° AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB 4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic
Giant spontaneous Hall effect in zero-moment Mn{sub 2}Ru{sub x}Ga
Thiyagarajah, Naganivetha; Lau, Yong-Chang; Betto, Davide; Borisov, Kiril; Coey, J. M. D.; Stamenov, Plamen; Rode, Karsten
2015-03-23
Spin-dependent transport properties of Mn{sub 2}Ru{sub x}Ga thin-films are studied as function of the Ru concentration and the substrate-induced strain. The large spontaneous Hall angle of 7.7% twenty times bigger than in other 3d metals is a signature of its half-metallicity. The compensation temperature where the magnetization of the two inequivalent antiferromagnetically coupled Mn sublattices cancel can be tuned by varying x or the biaxial strain. This zero-moment half metal is free from demagnetizing forces and creates no stray field, effectively removing two obstacles to integrating magnetic elements in densely packed, nanometer-scale memory elements, and millimeter-wave generators.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Household magnets Chances are very good that you have experimented with magnets. People have been fascinated with magnetism for thousands of years. As familiar to us as they may be, magnets still have some surprises for us. Here is a small collection of some of our favorite magnet experiments. What happens when we break a magnet in half? Radio Shack sells cheap ceramic magnets in several shapes. Get a ring shaped magnet and break it with pliers or a tap with a hammer. Try to put it back
Electronic and magnetic properties of small rhodium clusters
Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng
2015-04-24
We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.
A review of high magnetic moment thin films for microscale and...
Office of Scientific and Technical Information (OSTI)
Publication Date: 2016-02-17 OSTI Identifier: 1238297 Type: Publisher's Accepted Manuscript Journal Name: Applied Physics Reviews Additional Journal Information: Journal Volume: 3; ...
X-ray Detection of Transient Magnetic Moments Induced by a Spin...
Office of Scientific and Technical Information (OSTI)
GrantContract Number: AC02-76SF00515 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: 115; Journal ...
Magnetic structure of Yb 2 Pt 2 Pb : Ising moments on theShastry...
Office of Scientific and Technical Information (OSTI)
Authors: Miiller, W. ; Wu, L. S. ; Kim, M. S. ; Orvis, T. ; Simonson, J. W. ; Gama, M. ; McNally, D. M. ; Nelson, C. S. ; Ehlers, G. ; Podlesnyak, A. ; Helton, J. S. ; Zhao, Y. ; ...
X-ray detection of transient magnetic moments induced by a spin...
Office of Scientific and Technical Information (OSTI)
Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for pages...
Anomalous electronic structure and magnetoresistance in TaAs2
Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; Scott, B.; Wakeham, N.; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Ronning, F.
2016-06-07
We report that the change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. In conclusion, density functional calculations find that TaAs2 is a new topological semimetal [Z2 invariant (0;111)] withoutmore » Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.« less
Galanakis, I. [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France)] [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France); Ostanin, S. [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France)] [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France); Alouani, M. [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France)] [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France); Dreysse, H. [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France)] [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS), 23 rue du Loess, 67037 Strasbourg Cedex, (France); Wills, J. M. [Center for Materials Science and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)] [Center for Materials Science and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)
2000-01-01
A detailed theoretical study of magnetic and structural properties of Fe{sub 0.5}Pd{sub 0.5} ordered face-centered tetragonal (fct) alloy, using both the local spin density approximation (LSDA) and the generalized gradient approximation (GGA), is presented. The total energy surface as a function of the lattice parameters a and c shows a long valley where stable structures may exist. Our calculation using the GGA predicts a magnetic phase transition from perpendicular to parallel magnetization as a function of the lattice parameter, whereas LSDA favors always the [001] magnetization axis for all values of the lattice parameters. The spin and orbital magnetic moments and x-ray magnetic circular dichroism spectra are calculated for the easy [001] and the hard [100] magnetization axis and for three sets of experimental lattice parameters, and are compared to the available experimental results on these films. A supercell calculation for a 4 monolayer Fe{sub 0.5}Pd{sub 0.5} thin film produced similar results. While the spin magnetic moments are in fair agreement with experiment, the orbital magnetic moments are considerably underestimated. To improve the agreement with experiment we included an atomic orbital polarization term; however, the computed orbital moments scarcely changed. (c) 2000 The American Physical Society.
X-ray magnetic circular dichroism at the U M{sub 4,5} absorption edges of UFe{sub 2}
Finazzi, M.; Sainctavit, P.; Dias, A.; Kappler, J.; Krill, G.; Sanchez, J.; Dalmas de Reotier, P.; Yaouanc, A.; Rogalev, A.; Goulon, J.
1997-02-01
We present an x-ray magnetic circular dichroism study performed at the U M{sub 4,5} edges on UFe{sub 2}, a ferromagnet with almost itinerant 5f electrons. The analysis of the branching ratio of the U M{sub 4,5} edges confirms the fact that the occupation number of the 5f states in UFe{sub 2} is lower than in other compounds where the f electrons are more localized. Magnetic circular dichroism effects are observed consistently with the presence of an orbital 5f magnetic moment which aligns parallel to the total magnetic moment. In agreement with a polarized neutron study, we find a nearly perfect cancellation of the U-5f spin and orbital magnetic moments, which results in a vanishing small total U-5f magnetic moment. Results are discussed in comparison with atomic multiplet calculations. {copyright} {ital 1997} {ital The American Physical Society}
Moments of the neutron g₂ structure function at intermediate Q²
Solvignon-Slifer, Patricia H.
2015-07-15
We present new experimental results of the ³He spin structure function g₂ in the resonance region at Q² values between 1.2 and 3.0 (GeV/c)². Spin dependent moments of the neutron were then extracted.Our main result, the inelastic contribution to the neutron d₂ matrix element, was found to be small (Q²) = 2.4 (GeV/c)² and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for ³He neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low x unmeasured region.
Kohn, Gabriel; Hicho, George; Swartzendruber, Lydon
1997-01-01
A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment.
Kohn, G.; Hicho, G.; Swartzendruber, L.
1997-04-08
A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment. 7 figs.
Anomalous ion heating and superthermal electrons in the MST reversed-field pinch
Hokin, S.; Almagri, A.; Assadi, S.; Cekic, M.; Chapman, B.; Chartas, G.; Crocker, N.; Cudzinovic, M.; Den Hartog, D.J.; Dexter, R.; Fiksel, G.; Fonck, R.; Henry, J.; Holly, D.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Sprott, C.; Stoneking, M.; Watts, C.
1992-09-01
Anomalous ion heating and superthermal electron populations have been studied in the MST reversed-field pinch. The ion heating is much stronger than that given by classical electron-ion friction, and is particularly strong during dynamo bursts. The heating displays a marked density dependence: in a 350-kA discharge with a maximum {bar n} = 0.9 {times} 10{sup 13} cm{sup {minus} 3}, T{sub i} rises sharply as {bar n} drops below 0.4 {times} 10{sub 13} cm{sup {minus}3} late in the discharge. Superthermal electrons are produced in the core, with temperatures of T{sub eh}, = 350--700 eV while the bulk core temperature is T{sub e}o = 130--230 eV. The fraction of superthermal electrons decreases with increasing density, from 40% at {bar n} = 0.5 {times} 10{sup 13} cm{sup {minus}3} to 8% at {bar n} = 1.9 {times} 10{sup 13} cm{sup {minus}3} at I = 350 kA. However, data with similar plasma parameters but higher oxygen impurity content had a lower T{sub eh} and higher hot fraction. The edge superthermal electron distribution is well fit by a drifted bi-Maxwellian distribution with T{sub {parallel}} {approximately} T{sub e0} and relative drift speed v{sub d}/v{sub th} = 0.4. With the assumption that the parallel heat flux measured with a pyroelectric probe is carried by superthermal electrons, the measured electron current is consistent with T{sub {perpendicular}} {approximately} T{sub ea} {approximately} T{sub e0}/3 and accounts for over half of the total edge parallel current measured with magnetic probes.
Is the acceleration of anomalous cosmic rays affected by the geometry of the termination shock?
Senanayake, U. K.; Florinski, V. E-mail: vaf0001@uah.edu
2013-12-01
Historically, anomalous cosmic rays (ACRs) were thought to be accelerated at the solar-wind termination shock (TS) by the diffusive shock acceleration process. When Voyager 1 crossed the TS in 2004, the measured ACR spectra did not match the theoretical prediction of a continuous power law, and the source of the high-energy ACRs was not observed. When the Voyager 2 crossed the TS in 2007, it produced similar results. Several possible explanations have since appeared in the literature, but we follow the suggestion that ACRs are still accelerated at the shock, only away from the Voyager crossing points. To investigate this hypothesis closer, we study ACR acceleration using a three-dimensional, non-spherical model of the heliosphere that is axisymmetric with respect to the interstellar flow direction. We then compare the results with those obtained for a spherical TS. A semi-analytic model of the plasma and magnetic field backgrounds is developed to permit an investigation over a wide range of parameters under controlled conditions. The model is applied to helium ACRs, whose phase-space trajectories are stochastically integrated backward in time until a pre-specified, low-energy boundary, taken to be 0.5 MeV n{sup 1} (the so-called injection energy), is reached. Our results show that ACR acceleration is quite efficient on the heliotail-facing part of the TS. For small values of the perpendicular diffusion coefficient, our model yields a positive intensity gradient between the TS and about midway through the heliosheath, in agreement with the Voyager observations.
Anomalously High B-Values In The South Flank Of Kilauea Volcano...
Open Energy Information (Open El) [EERE & EIA]
down rift. The anomalously high b-values at the center of the South Flank, several kilometers away from the rift, may be explained by unusually high pore pressure throughout the...
Maccione, Luca; Liberati, Stefano; Mattingly, David M. E-mail: liberati@sissa.it
2013-03-01
Recently there has been a renewed activity in the physics of violations of Lorentz invariance in the neutrino sector. Flavor dependent Lorentz violation, which generically changes the pattern of neutrino oscillations, is extremely tightly constrained by oscillation experiments. Flavor independent Lorentz violation, which does not introduce new oscillation phenomena, is much more weakly constrained with constraints coming from time of flight and anomalous threshold analyses. We use a simplified rotationally invariant model to investigate the effects of finite baselines and energy dependent dispersion on anomalous reaction rates in long baseline experiments and show numerically that anomalous reactions do not necessarily cut off the spectrum quite as sharply as currently assumed. We also present a revised analysis of how anomalous reactions can be used to cast constraints from the observed atmospheric high energy neutrinos and the expected cosmogenic ones.
Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system (Journal
Office of Scientific and Technical Information (OSTI)
Article) | SciTech Connect Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system Citation Details In-Document Search Title: Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is
Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects
Pankin, Alexei Y.; Kritz, Arnold H.
2011-07-19
Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.
Impact of anomalous dispersion on the interferometer measurements of plasmas
Nilsen, J; Johnson, W R; Iglesias, C A; Scofield, J H
2004-12-16
For many decades optical interferometers have been used to measure the electron density of plasmas. During the last ten years X-ray lasers in the wavelength range 14 to 47 nm have enabled researchers to use interferometers to probe even higher density plasmas. The data analysis assumes that the index of refraction is due only to the free electrons, which makes the index of refraction less than one and the electron density proportional to the number of fringe shifts. Recent experiments in Al plasmas observed plasmas with an index of refraction greater than one and made us question the validity of the usual formula for calculating the index of refraction. Recent calculations showed how the anomalous dispersion from the bound electrons can dominate the index of refraction in many types of plasma and make the index greater than one or enhance the index such that one would greatly overestimate the electron density of the plasma using interferometers. In this work we calculate the index of refraction of C, Al, Ti, and Pd plasmas for photon energies from 0 to 100 eV (12.4 nm) using a new average-atom code. The results show large variations from the free electron approximation under many different plasma conditions. We validate the average-atom code against the more detailed OPAL code for carbon and aluminum plasmas. During the next decade X-ray free electron lasers and other sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential.
Reply to "Comment on `Axion Induced Oscillating Electric Dipole Moments' "
Hill, Christopher T.
2015-10-19
A recent paper of Flambaum, Roberts and Stadnik, [1], claims there is no induced oscillating electric dipole moment (OEDM), eg, for the electron, arising from the oscillating cosmic axion background via the anomaly. This claim is based upon the assumption that electric dipoles always be defined by their coupling to static (constant in time) electric fields. The relevant Feynman diagram, as computed by [1], then becomes a total divergence, and vanishes in momentum space. However, an OEDM does arise from the anomaly, coupled to time dependent electric fields. It shares the decoupling properties with the anomaly. The full action, in an arbitrary gauge, was computed in [2], [3]. It is nonvanishing with a time dependent outgoing photon, and yields physics, eg, electric dipole radiation of an electron immersed in a cosmic axion field.
Nuclear electric dipole moment of {sup 3}He
Stetcu, I.; Friar, J. L.; Hayes, A. C.; Liu, C.-P.; Navratil, P.
2009-01-28
In the no-core shell model (NCSM) framework, we calculate the {sup 3}He electric dipole moment (EDM) generated by parity- and time-reversal violation in the nucleon-nucleon interaction. While the results are somehow sensitive to the interaction model chosen for the strong two- and three-body interactions, we demonstrate the pion-exchange dominance to the EDM of {sup 3}He, if the coupling constants for {pi}, {rho} and {omega}-exchanges are of comparable magnitude, as expected. Finally, our results suggest that a measurement of {sup 3}He EDM would be complementary to the currently planned neutron and deuteron experiments, and would constitute a powerful constraint to the models of the pion P- and T-violating interactions.
Covariant spectator theory of np scattering: Deuteron quadrupole moment
Gross, Franz
2015-01-26
The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore » XEFT predictions to order N3LO.« less
Covariant spectator theory of np scattering: Deuteron quadrupole moment
Gross, Franz
2015-01-26
The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently from _{X}EFT predictions to order N^{3}LO.
Moment mapping of body-centered-cubic Fe{sub x}Mn{sub 1−x} alloy films on MgO(001)
Idzerda, Y. U. Bhatkar, H.; Arenholz, E.
2015-05-07
The alloy composition and elemental magnetic moments of bcc single crystal films of compositionally graded Fe{sub x}Mn{sub 1−x} films (20 nm thick films with 0.8 ≤ x ≤ 0.9) grown on MgO(001) are spatially mapped using X-ray absorption spectroscopy and magnetic circular dichroism. Electron diffraction measurements on single composition samples confirmed that the structure of Fe{sub x}Mn{sub 1−x} films remained epitaxial and in the bcc phase from 0.65 ≤ x ≤ 1, but rotated 45° with respect to the MgO(001) surface net. This is beyond the bulk bcc stability limit of x = 0.88. The Fe moment is found to gradually reduce with increasing Mn content with a very abrupt decline at x = 0.85, a slightly higher composition than observed in the bulk. Surprisingly, the Mn exhibits a very small net moment (<0.1 μ{sub B}) at all compositions, suggesting a complex Mn spin structure.
Proximity-induced magnetism in transition-metal substituted graphene
Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian -Xin; Balatsky, Alexander V.; Haraldsen, Jason T.
2015-08-03
We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, wheremore » the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.« less
Convergence of statistical moments of particle density time series in scrape-off layer plasmas
Kube, R. Garcia, O. E.
2015-01-15
Particle density fluctuations in the scrape-off layer of magnetically confined plasmas, as measured by gas-puff imaging or Langmuir probes, are modeled as the realization of a stochastic process in which a superposition of pulses with a fixed shape, an exponential distribution of waiting times, and amplitudes represents the radial motion of blob-like structures. With an analytic formulation of the process at hand, we derive expressions for the mean squared error on estimators of sample mean and sample variance as a function of sample length, sampling frequency, and the parameters of the stochastic process. Employing that the probability distribution function of a particularly relevant stochastic process is given by the gamma distribution, we derive estimators for sample skewness and kurtosis and expressions for the mean squared error on these estimators. Numerically, generated synthetic time series are used to verify the proposed estimators, the sample length dependency of their mean squared errors, and their performance. We find that estimators for sample skewness and kurtosis based on the gamma distribution are more precise and more accurate than common estimators based on the method of moments.
Adsorption-induced magnetic properties and metallic behavior of graphene
Zhou, Yungang; Zu, Xiaotao T.; Gao, Fei; Lv, H. F.; Xiao, Haiyan J.
2009-09-21
Magnetic properties and electronic structures of graphene with Cl, S, and P adsorption have been investigated using ab initio calculations. The adsorption of Cl leads to Fermi level shifting to valence band, which results in metallic graphene. A band gap of 0.6 eV emerges in a S-absorbed graphene, leading to the semiconducting graphene. The unpaired electrons in the absorbed P atom is polarized and thus, exhibits a magnetic moment of 0.86 μB, while no magnetic moment has been observed after Cl and S adsorption. This demonstrates that the magnetic properties and conductive behavior of graphene can be modified via atom adsorption. Specially, P-absorbed graphene may be useful for spintronic applications, such as tunneling magnetoresistance.
Granovskii, A. B. Prudnikov, V. N.; Kazakov, A. P.; Zhukov, A. P.; Dubenko, I. S.
2012-11-15
The magnetization, the electrical resistivity, the magnetoresistance, and the Hall resistivity of Ni{sub 50}Mn{sub 35}In{sub 15-x}Si{sub x} (x = 1.0, 3.0, 4.0) Heusler alloys are studied at T = 80-320 K. The martensitic transformation in these alloys occurs at T = 220-280 K from the high-temperature ferromagnetic austenite phase into the low-temperature martensite phase having a substantially lower magnetization. A method is proposed to determine the normal and anomalous Hall effect coefficients in the presence of magnetoresistance and a possible magnetization dependence of these coefficients. The resistivity of the alloys increases jumpwise during the martensitic transformation, reaches 150-200 {mu}{Omega} cm, and is almost temperature-independent. The normal Hall effect coefficient is negative, is higher than that of nickel by an order of magnitude at T = 80 K, decreases monotonically with increasing temperature, approaches zero in austenite, and does not undergo sharp changes in the vicinity of the martensitic transformation. At x = 3, a normal Hall effect nonlinear in magnetization is detected in the immediate vicinity of the martensitic transformation. The temperature dependences of the anomalous Hall effect coefficient in both martensite and austenite and, especially, in the vicinity of the martensitic transformation cannot be described in terms of the skew scattering, the side jump, and the Karplus-Lutinger mechanisms from the anomalous Hall effect theory. The possible causes of this behavior of the magnetotransport properties in Heusler alloys are discussed.
Shell model estimate of electric dipole moment in medium and heavy nuclei
Yoshinaga, Naotaka; Higashiyama, Koji
2011-05-06
The nuclear electric dipole moment (EDM) and the nuclear Schiff moment for the lowest 1/2{sup +} state of {sup 129}Xe are investigated in terms of the nuclear shell model. We estimate the upper limit for the EDM of neutral {sup 129}Xe atom using the Schiff moment. We also estimate the upper limit of the nuclear EDM, which may be directly measured through ionic atoms.
Is the Energy Race our new "Sputnik" Moment? | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Is the Energy Race our new "Sputnik" Moment? Is the Energy Race our new "Sputnik" Moment? National Press Club Washington, D.C. 29 November, 2010 Chu_NationalPressClub112910.ppt (5.67 MB) More Documents & Publications Is the Energy Race our new "Sputnik" Moment? Chu_NationalPressClub112910.pdf US-China clean energy report
Persistent Fe moments in the normal state of the pressure-induced...
Office of Scientific and Technical Information (OSTI)
Persistent Fe moments in the normal state of the pressure-induced superconductor ... Resource Relation: Journal Name: Physical Review B, vol. 90, no. 14, October 13, 2014, pp. ...
Kraus, Jr., Robert H.; Zhou, Feng; Nolan, John P
2007-06-19
The present invention is directed to processes of separating, analyzing and/or collecting selected species within a target sample by use of magnetic microspheres including magnetic particles, the magnetic microspheres adapted for attachment to a receptor agent that can subsequently bind to selected species within the target sample. The magnetic microspheres can be sorted into a number of distinct populations, each population with a specific range of magnetic moments and different receptor agents can be attached to each distinct population of magnetic microsphere.
Manipulating effective spin orbit coupling based on proximity effect in magnetic bilayers
Zhang, Y. Q.; Sun, N. Y.; Che, W. R.; Zhang, J. W.; Shan, R.; Li, X. L.; Zhu, Z. G. Su, G.
2015-08-24
A proximity effect of spin orbit coupling (SOC) is proposed in nonmagnetic metal/ferromagnet (NM/FM) bilayers by extending the Crépieux-Bruno (CB) theory. We demonstrate that over 1000% enhancement of the SOC strength can be realized based on this effect (Pt/FM bilayers) and it brings greatly enhanced anomalous Hall effect and anomalous Nernst effect. This work could help maximize the performance of magnetic transport property for the spintronics device using NM/FM as the key structure.
Measurement of the Magnet Blocks for SSRF Insertion Devices
He Yongzhou; Zhang Jidong; Zhou Qiaogen; Qian Zhenmei; Li Yang
2010-06-23
Two in-vacuum undulators IVU25s and one elliptically polarized undulator EPU100 have been developed for SSRF. Two IVU25s with the same hybrid design contain about 640 Sm{sub 2}Co{sub 17} magnet blocks and the dimension of blocks is 65 Wx25 Hx9 D. The EPU100 of the APPLE-II type contains about 690 NdFeB magnet blocks with the dimension of 35 Wx35 Hx25 D. This paper describes the magnetic measurements of these magnet blocks with the Helmholtz coil measurement system for IVU25 magnet blocks and the Hall probe measurement system for EPU100 magnet blocks. The measured maximum magnetic moment deviation and the maximum angle deviation are less than {+-}1.0% and 1.1 deg. respectively both for Sm{sub 2}Co{sub 17} blocks and NdFeB blocks and satisfy the specifications of undulators.
Magnetization reversal in TmCrO{sub 3}
Yoshii, Kenji
2012-11-15
Highlights: ► We observed two magnetization reversals in TmCrO{sub 3}. ► The reversal at 28 K is attributed to antiparallel coupling between Cr{sup 3+} and Tm{sup 3+}. ► The other reversal originates from spin reorientation. ► Magnetocaloric effect is observed at the spin reorientation temperature. ► Characteristic magnetization switching is demonstrated. -- Abstract: The perovskite chromite TmCrO{sub 3} shows magnetization reversal at two temperatures. The reversal at ∼28 K is attributed to the antiparallel coupling between Tm{sup 3+} and Cr{sup 3+} moments, while that at the lower temperature (∼6–7 K) is rooted in a rotation of the magnetic moments. Magnetocaloric measurements offer a relatively large entropy change (∼4–5 J kg{sup −1} K{sup −1}) at the lower temperature. The reversal at ∼28 K is accompanied by a sign change of an exchange-bias-like field. The absence of the training effect suggests that this behavior is rooted in unidirectional magnetic anisotropy. The existence of the two magnetization reversals offers the characteristic switching of magnetization. For example, the magnetization is flipped without changing the direction of the applied magnetic field.
Model dependence of the {sup 2}H electric dipole moment
Afnan, I. R.; Gibson, B. F.
2010-12-15
Background: Direct measurement of the electric dipole moment (EDM) of the neutron is in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the {sup 3}P{sub 1} channel, the latter being sensitive to the off-shell behavior of the {sup 3}P{sub 1} amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short-range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the {sup 2}H EDM until such time as a measurement better than 10% is obtained.
Electronic structure and magnetic behavior of UMn/sub 2/ and UFe/sub 2/
Boring, A.M.; Albers, R.C.; Schadler, G.H.; Lawson, A.C.; Weinberger, P.; Christensen, N.E.
1987-10-01
The electronic structure of UMn/sub 2/ and UFe/sub 2/ has been determined using the first-principles self-consistent spin-polarized scalar-relativistic linear muffin-tin-orbital method. The calculations were performed at several lattice spacings for these materials in the C15 (cubic Laves phase) crystal structure. In agreement with experimental data it is found that UMn/sub 2/ is almost nonmagnetic (small moments on the sites) whereas in UFe/sub 2/ both U and Fe sites have appreciable moments. Furthermore, the magnetism in these systems is determined by exchange splitting and not by charge-transfer effects. The calculated moments in UFe/sub 2/ are larger at the U sites than those seen experimentally. The total moment in UFe/sub 2/ is somewhat insensitive to changes in lattice spacing (over the limited range determined) while the moments on individual sites are very sensitive to this variation.
Malik, V.; Goodwill, J.; Mallapragada, S.; Prozorov, T.; Prozorov, R.
2014-11-13
The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to themore » theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.« less
Malik, V.; Goodwill, J.; Mallapragada, S.; Prozorov, T.; Prozorov, R.
2014-11-13
The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to the theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.
Origin of the Anomalous Long Lifetime of 14C | Argonne Leadership Computing
U.S. Department of Energy (DOE) all webpages (Extended Search)
Facility Origin of the Anomalous Long Lifetime of 14C Authors: Maris, P., Vary, J.P., Navratil, P., Ormand, W.E., Nam, H., Dean, D.J. We report the microscopic origins of the anomalously suppressed beta decay of 14C to 14N using the ab initio no-core shell model with the Hamiltonian from the chiral effective field theory including three-nucleon force terms. The three-nucleon force induces unexpectedly large cancellations within the p shell between contributions to beta decay, which reduce
Enhanced anomalous photo-absorption from TiO{sub 2} nanostructures
Solanki, Vanaraj; Majumder, Subrata; Mishra, Indrani; Varma, Shikha; Dash, P.; Singh, C.; Kanjilal, D.
2014-03-28
Two dimensional nanostructures have been created on the rutile TiO{sub 2} (110) surfaces via ion irradiation technique. Enhanced anomalous photo- absorption response is displayed, where nanostructures of 15?nm diameter with 0.5?nm height, and not the smaller nanostructures with larger surface area, delineate highest absorbance. Comprehensive investigations of oxygen vacancy states, on ion- irradiated surfaces, display a remarkable result that the number of vacancies saturates for higher fluences. A competition between the number of vacancy sites on the nanostructure in conjunction with its size is responsible for the observed anomalous photo-absorption.
Kerns, John A.; Stone, Roger R.; Fabyan, Joseph
1987-01-01
A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.
Kerns, J.A.; Stone, R.R.; Fabyan, J.
1987-10-06
A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.
Electric Dipole Moments in Radioactive Nuclei, Tests of Time Reversal Symmetry
Auerbach, N.
2010-11-24
The research of radioactive nuclei opens new possibilities to study fundamental symmetries, such as time reversal and reflection symmetry. Such nuclei often provide conditions to check in an optimal way certain symmetries and the violation of such symmetries. We will discuss the possibility of obtaining improved limits on violation of time reversal symmetry using pear shaped radioactive nuclei. An effective method to test time reversal invariance in the non-strange sector is to measure parity and time reversal violating (T-P-odd) electromagnetic moments, (such as the static electric dipole moment). Parity and time reversal violating components in the nuclear force may produce P-T-odd moments in nuclei which in turn induce such moments in atoms. We will discuss the possibility that in some reflection asymmetric, heavy nuclei (which are radioactive) these moments are enhanced by several orders of magnitude. Present and future experiments, which will test this idea, will be mentioned.
Role of fourth-order phase-space moments in collective modes of trapped Fermi gases
Chiacchiera, Silvia; Lepers, Thomas; Davesne, Dany; Urban, Michael
2011-10-15
We study the transition from hydrodynamic to collisionless behavior in collective modes of ultracold trapped Fermi gases. To that end, we solve the Boltzmann equation for the trapped Fermi gas via the moments method. We showed previously that it is necessary to go beyond second-order moments if one wants to reproduce the results of a numerical solution of the Boltzmann equation. Here, we will give the detailed description of the method including fourth-order moments. We apply this method to the case of realistic parameters, and compare the results for the radial quadrupole and scissors modes at unitarity to experimental data obtained by the Innsbruck group. It turns out that the inclusion of fourth-order moments clearly improves the agreement with the experimental data. In particular, the fourth-order moments reduce the effect of collisions and therefore partially compensate the effect of the enhanced in-medium cross section at low temperatures.
Ding, Z. F.; Sun, B.; Huo, W. G.
2015-06-15
In a low-pressure radio-frequency (13.56 MHz), inductively coupled argon plasma generated by a normal cylindrical rf coil, electric field, current density, and absorbed power density is calculated from magnetic field measured with a phase-resolved magnetic probe. The anomalous skin effect (ASE) for the cylindrical rf coil is compared to those previously reported for the planar and re-entrant cylindrical rf coils. Physical reasons for our observed characteristics of ASE are presented. With the increasing discharge power, the size and the number of negative and positive power absorption regions evolve into several distinct patterns. For the low discharge power (at 156.9 W), there is one area of positive and one area of negative power absorption in the radial direction. For the medium discharge power (279 W–683.5 W), there are two areas of negative and two areas of positive power absorption. For the even higher discharge power (above 803.5 W), the number of areas is the same as that of the medium discharge power, but the size of the inner positive and negative power absorption areas is approximately doubled and halved, respectively, while the outer positive and negative power absorption areas slightly shrinks. The evolution of positive and negative power absorption regions is explained as a result of electron thermal diffusion and the energy conversion between rf current and electric field. The spatial decays of electric field and current density are also elucidated by linking them with the positive and negative power absorption pattern.
Vas'kov, V. V.; Ryabova, N. A.
2010-02-15
Strong anomalous absorption of a high-power radio wave by small-scale plasma inhomogeneities in the Earth's ionosphere can lead to the formation of self-consistent channels (solitons) in which the wave propagates along the magnetic field, but has a soliton-like intensity distribution across the field. The structure of a cylindrical soliton as a function of the wave intensity at the soliton axis is analyzed. Averaged density perturbations leading to wave focusing were calculated using the model proposed earlier by Vas'kov and Gurevich (Geomagn. Aeron. 16, 1112 (1976)), in which an averaged electron heating source was used. It is shown that, under conditions of strong electron recombination, the radii of individual solitons do not exceed 650 m.
Anomalous transport theory for the reversed field pinch
Terry, P.W.; Hegna, C.C; Sovinec, C.R.
1996-09-01
Physically motivated transport models with predictive capabilities and significance beyond the reversed field pinch (RFP) are presented. It is shown that the ambipolar constrained electron heat loss observed in MST can be quantitatively modeled by taking account of the clumping in parallel streaming electrons and the resultant self-consistent interaction with collective modes; that the discrete dynamo process is a relaxation oscillation whose dependence on the tearing instability and profile relaxation physics leads to amplitude and period scaling predictions consistent with experiment; that the Lundquist number scaling in relaxed plasmas driven by magnetic turbulence has a weak S{sup {minus}1/4} scaling; and that radial E{times}B shear flow can lead to large reductions in the edge particle flux with little change in the heat flux, as observed in the RFP and tokamak. 24 refs.
Magnetic vortex crystal formation in the antidot complement of square artificial spin ice
Araujo, C. I. L. de Silva, R. C.; Ribeiro, I. R. B.; Nascimento, F. S.; Felix, J. F.; Ferreira, S. O.; Moura-Melo, W. A.; Pereira, A. R.; Ml, L. A. S.
2014-03-03
We have studied ferromagnetic nickel thin films patterned with square lattices of elongated antidots that are negative analogues of square artificial spin ice. Micromagnetic simulations and direct current magnetic moment measurements reveal in-plane anisotropy of the magnetic hysteresis loops, and the formation of a dense array of magnetic vortices with random polarization and chirality. These multiply-connected antidot arrays could be superior to lattices of disconnected nanodisks for investigations of vortex switching by applied electric current.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2006-10-31
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2006-04-11
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2013-06-11
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Magnetic filtration process, magnetic filtering material, and...
Office of Scientific and Technical Information (OSTI)
The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically ...
Kerns, J.A.; Stone, R.R.; Fabyan, J.
1985-02-12
A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.
The magnetic structure of EuCu2Sb2
Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; Johnston, D. C.; Flacau, R.
2015-05-06
Antiferromagnetic ordering of EuCu2Sb2 which forms in the tetragonal CaBe2Ge2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mössbauer spectroscopy. The room temperature 151Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (Bhf) reaches 28.7(2) T at 2.1 K, indicating a full Eu2+ magnetic moment. Bhf(T) follows a smoothmore » $$S=\\frac{7}{2}$$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μB which is the full free-ion moment expected for the Eu2+ ion with $$S=\\frac{7}{2}$$ and a spectroscopic splitting factor of g = 2.« less
Studies of [ital WW] and [ital WZ] production and limits on anomalous [ital WW[gamma
Grinstein, S.; Mostafa, M.; Piegaia, R. ); Alves, G.A.; Carvalho, W.; da Motta, H.; Santoro, A. ); Lima, J.G.; Oguri, V. ); Mao, H.S. ); Gomez, B.; Mooney, P.; Negret, J.P. ); Hoeneisen, B. ); Parua, N. ); Ducros, Y. ); Beri, S.B.; Bhatnagar, V.; Kohli, J.M.; Singh, J.B. ); Shivpuri, R.K. ); Acharya, B.S.; Banerjee, S.; Dugad, S.R.; Gupta, A.; Krishnaswamy, M.R.; Mondal, N.K.; Narasimham, V.S.; Shankar, H.C. (Tata Inst.
1999-10-01
Evidence of anomalous WW and WZ production was sought in p[bar p] collisions at a center-of-mass energy of [radical] (s) =1.8 hthinsp;TeV. The final states WW(WZ)[r arrow][mu][nu] jet jet+X, WZ[r arrow][mu][nu]ee+X and WZ[r arrow]e[nu]ee+X were studied using a data sample corresponding to an integrated luminosity of approximately 90 hthinsp;pb[sup [minus]1]. No evidence of anomalous diboson production was found. Limits were set on anomalous WW[gamma] and WWZ couplings and were combined with our previous results. The combined 95[percent] confidence level anomalous coupling limits for [Lambda]=2 hthinsp;TeV are [minus]0.25[le][Delta][kappa][le]0.39 ([lambda]=0) and [minus]0.18[le][lambda][le]0.19 ([Delta][kappa]=0), assuming the WW[gamma] couplings are equal to the WWZ couplings. [copyright] [ital 1999] [ital The American Physical Society
Matsui, Hiroshi; Matsunaga, Tadashi
2010-11-16
A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.
Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates
Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; et al
2016-01-28
Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. We find Its zero-field magnetization produces distinctive magnetic self-interaction effects, includingmore » liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth’s magnetic field.« less
Orbital magnetism of mesoscopic metals; Beyond the perturbation theory
Serota, R.A. (Cincinnati Univ., OH (United States). Dept. of Physics)
1992-10-10
In this paper, the authors extend the authors' investigation of orbital magnetic response of mesoscopic metallic systems to the limit of temperature and inelastic level broadening being comparable or less than the average interlevel spacing. The authors address the role of level repulsion and derive a level density correlation function which interpolates between the perturbation result and the Wigner-Dyson statistics. The authors plot out the magnetic field dependence of the sample magnetic moment for the entire range of experimentally relevant temperatures. The authors briefly discuss the relationship of our results to quantum chaos.
McGuire, Michael A.; Parker, David S.
2015-10-22
Crystallographic and magnetic properties of Fe5PB2, Fe4CoPB2, Fe4MnPB2, Fe5SiB2, Fe4CoSiB2, and Fe4MnSiB2 are reported. All adopt the tetragonal Cr5B3 structure-type and are ferromagnetic at room temperature with easy axis of magnetization along the c-axis. The spin reorientation in Fe5SiB2 is observed as an anomaly in the magnetization near 170 K, and is suppressed by substitution of Co or Mn for Fe. The silicides are found to generally have larger magnetic moments than the phosphides, but the data suggests smaller magnetic anisotropy in the silicides. Cobalt substitution reduces the Curie temperatures by more than 100 K and ordered magnetic moments bymore » 16-20%, while manganese substitution has a much smaller effect. This suggests Mn moments align ferromagnetically with the Fe and that Co does not have an ordered moment in these structures. Anisotropic thermal expansion is observed in Fe5PB2 and Fe5SiB2, with negative thermal expansion seen along the c-axis of Fe5SiB2. First principles calculations of the magnetic properties of Fe5SiB2 and Fe4MnSiB2 are reported. The results, including the magnetic moment and anisotropy, and are in good agreement with experiment.« less
Anomalous dielectric relaxation of water confined in graphite oxide
Yu, Ji; Tian, Yuchen; Gu, Min; Tang, Tong B.
2015-09-28
Nonmonotonic thermal dependence of dielectric relaxation of water has been observed in hydrated graphite oxide (GO). Graphite oxide prepared via Hummers method then imbued with specific water contents were characterized, with {sup 13}C and {sup 1}H nuclear magnetic resonance spectroscopies, X-ray photoelectron spectroscopy, ambient- and variable-temperature X-ray diffractometries, as well as thermogravimetric analysis. Pressed pellets provided with either conducting or blocking electrodes yielded dielectric loss, which was shown to originate from dielectric relaxation of the confined water. Three relaxation processes were observed in impedance spectroscopy. Our previous work has identified two different types of water in GO, namely, intercalated water and water in inter-grain voids. P{sub 1} expresses the reorientation of water confined inside inter-grain voids, and P{sub 2}, the rotation of intercalated water molecules confined in interlayers. The present work reveals a new process P{sub 3}, which also relates to intercalated water. It slows down with temperature, and this apparent anomaly is explained by the decrease in water content and consequent narrowing of interlayer spacing in graphite oxide, as confirmed by characterization techniques. The present study should contribute to our understanding of surface water dynamics.
Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins, antiphase, and domain boundaries
Khan, Suffian N. [Ames Laboratory; Alam, Aftab [Ames Laboratory; Johnson, Duane D. [Ames Laboratory
2013-11-27
In BaFe2As2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity. We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22210 m Jm?2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundariesmaking a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should be considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower assessed ordered moments from longer spatial and/or time averaging and should be considered directly.
Phonon and magnetic structure in δ-plutonium from density-functional theory
Söderlind, Per; Zhou, F.; Landa, A.; Klepeis, J. E.
2015-10-30
We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure and (ii) the disordered-local-moment (DLM) method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, However, the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments.
Fryberger, D.
1984-12-01
In this talk on magnetic monopoles, first the author briefly reviews some historical background; then, the author describes what several different types of monopoles might look like; and finally the author discusses the experimental situation. 81 references.
U.S. Department of Energy (DOE) all webpages (Extended Search)
March 8, 2016 Small piles of rare earth elements In the United States, rare-earth elements used in strong magnets, such as neodymium and samarium, are scarce due to limits on ...
Post, R.F.; Taylor, C.E.
1963-05-21
A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)
Curvature of a cantilever beam subjected to an equi-biaxial bending moment
Krulevitch, P.; Johnson, G.C.
1998-04-28
Results from a finite element analysis of a cantilever beam subjected to an equi-biaxial bending moment demonstrate that the biaxial modulus E/(I-v) must be used even for narrow beams.
Multi-Moment ADER-Taylor Methods for Systems of Conservation...
Office of Scientific and Technical Information (OSTI)
ADER-Taylor Methods for Systems of Conservation Laws With Source Terms in One Dimension Citation Details In-Document Search Title: Multi-Moment ADER-Taylor Methods for ...
Persistent Fe moments in the normal state of the pressure-induced...
Office of Scientific and Technical Information (OSTI)
the normal state of the pressure-induced superconductor Ca0.67Sr0.33Fe2As2 Citation Details In-Document Search Title: Persistent Fe moments in the normal state of the ...
The screening of 4f moments and delocalization in the compressed...
Office of Scientific and Technical Information (OSTI)
in the compressed light rare earths Citation Details In-Document Search Title: The screening of 4f moments and delocalization in the compressed light rare earths You are ...
Characterization and Simulation of Transient Vibrations Using Band Limited Temporal Moments
Smallwood, David O.
1994-01-01
A method is described to characterize shocks (transient time histories) in terms of the Fourier energy spectrum and the temporal moments of the shock passed through a contiguous set of band pass filters. The product model is then used to generate of a random process as simulations that in the mean will have the same energy and moments as the characterization of the transient event.
Axion Induced Oscillating Electric Dipole Moment of the Electron
Hill, Christopher T.
2015-08-17
The axion electromagnetic anomaly induces an oscillating electric dipole for the electron of frequency ma and strength ~ 10^{-32} e-cm, two orders of magnitude above the nucleon, and within four orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ?_{t}a(t) ? m_{a} ? 0. The general form of the action involves a local contact interaction and a nonlocal contribution that enforces the decoupling limit. We derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgis heavy quark formalism adapted to the heavy electron (heavy compared to m_{a}). We compute the electric dipole radiation emitted by stationary electrons, and we discuss a number of experimental configurations that may yield detectable signals. Phased array radiators with N^{2} unit cell magnetic elements may have advantages over resonant cavities that exploit large Q, since we can design toward N^{2} >> Q.
Axion Induced Oscillating Electric Dipole Moment of the Electron
Hill, Christopher T.
2015-07-24
The axion electromagnetic anomaly induces an oscillating electric dipole for the electron of frequency ma and strength ~ 10^{-32} e-cm, two orders of magnitude above the nucleon, and within four orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, δ_{t}a(t) ∝ m_{a} → 0. The general form of the action involves a local contact interaction and a nonlocal contribution that enforces the decoupling limit. We derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (heavy compared to m_{a}). We compute the electric dipole radiation emitted by stationary electrons, and we discuss a number of experimental configurations that may yield detectable signals. Phased array radiators with N^{2} unit cell magnetic elements may have advantages over resonant cavities that exploit large Q, since we can design toward N^{2} >> Q.
Axion Induced Oscillating Electric Dipole Moment of the Electron
Hill, Christopher T.
2016-01-12
A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10-32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ta(t) ∝ mα → 0. The analysis is subtle, and we find the general form of the action involves a local contact interaction and a nonlocalmore » contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (me >> ma). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less
Experimental estimation of dynamic plastic bending moments by plastic hinge models
Sogo, T.; Ujihashi, S.; Matsumoto, H.; Adachi, T.
1995-12-31
In the present paper, the experimental estimation of dynamic plastic bending moments for metallic materials is investigated. The three-point bending, test under impact and static loads is applied to aluminum alloy (JIS A6063S) and mild steel (JIS SS400). It is confirmed that tile dynamic bending deformations in three-point bending test can be modeled as a plastic hinge, tile experimental results show that the consumed energies of the specimens are proportional to the bending angles. The ratio of the consumed energy to the bending angle is approximately equal to the plastic bending moment. In the case of aluminum alloy, the dynamic plastic bending moments for the different average bending angular velocities coincide with the static plastic bending moments. On the other hand, in the case of mild steel, the dynamic plastic bending moments are proportional to the average bending angular velocities. As a result, we confirm that the present method based on the plastic hinge model and the consumed energy is efficient for determining tile dynamic plastic bending moment.
Alternating magnetic anisotropy of Li2(Li1–xTx)N (T = Mn, Fe, Co, and Ni)
Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.
2015-05-11
Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1–xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T = Mn → Fe → Co → Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.more » As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.« less
Alternating magnetic anisotropy of Li 2 ( Li 1 - x T x ) N ( T = Mn , Fe , Co , and Ni )
Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.
2015-05-01
Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li?(Li1-xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane?easy axis?easy plane?easy axis when progressing from T = Mn ? Fe ? Co ? Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.moreThe calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.less
Alternating magnetic anisotropy of Li2(Li1xTx)N(T=Mn,Fe,Co,andNi)
Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.
2015-05-11
Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane?easy axis?easy plane?easy axis when progressing from T = Mn ? Fe ? Co ? Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.moreAs a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.less
Measurement of the anomalous like-sign dimuon charge asymmetry with 9 fb? of pp? collisions
Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Aoki, M.; Arov, M.; Askew, A.; sman, B.; Atramentov, O.; Avila, C.; BackusMayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besanon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Prez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chen, G.; Chevalier-Thry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; De, K.; de Jong, S. J.; De La Cruz-Burelo, E.; Dliot, F.; Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grnendahl, S.; Grnewald, M. W.; Guillemin, T.; Guo, F.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hubacek, Z.; Huske, N.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffr, M.; Jamin, D.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, M.; Johnston, D.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kirby, M. H.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magaa-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martnez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Muanza, G. S.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Novaes, S. F.; Nunnemann, T.; Obrant, G.; Orduna, J.; Osman, N.; Osta, J.; Otero y Garzn, G. J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, K.; Peters, Y.; Petridis, K.; Petrillo, G.; Ptroff, P.; Piegaia, R.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Polozov, P.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Protopopescu, S.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Safronov, G.; Sajot, G.; Salcido, P.; Snchez-Hernndez, A.; Sanders, M. P.; Sanghi, B.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schliephake, T.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Sirotenko, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.
2011-09-16
We present an updated measurement of the anomalous like-sign dimuon charge asymmetry A^{b}_{sl} for semileptonic b-hadron decays in 9.0 fb? of pp? collisions recorded with the D0 detector at a center-of-mass energy of ?s=1.96 TeV at the Fermilab Tevatron collider. We obtain A^{b}_{sl}=(-0.7870.172(stat)0.093(syst))%. This result differs by 3.9 standard deviations from the prediction of the standard model and provides evidence for anomalously large CP violation in semileptonic neutral B decay. The dependence of the asymmetry on the muon impact parameter is consistent with the hypothesis that it originates from semileptonic b-hadron decays.
Liu Xueming
2011-08-15
The soliton formation and evolution are numerically and experimentally investigated in passively-mode-locked lasers where pulses encounter ultralong anomalous-dispersion fibers. The pulse formation and evolution in lasers are determined by two balances, namely, nonlinearity and anomalous-dispersion balance and intracavity filtering and self-amplitude modulation balance. It is numerically found that a higher-energy soliton can be split into identical lower-energy multisolitons with exactly the same physical properties. Simulation results show that the separation of neighboring solitons is variational in the temporal domain. The temporal and spectral characteristics of solitons have large variations throughout the laser cavity, qualitatively distinct from the steady state of conventional solitons. The experimental observations confirm the theoretical predictions.
Chemical reaction at ferromagnet/oxide interface and its influence on anomalous Hall effect
Liu, Yi-Wei; Teng, Jiao E-mail: ghyu@mater.ustb.edu.cn; Zhang, Jing-Yan; Liu, Yang; Chen, Xi; Li, Xu-Jing; Feng, Chun; Wang, Hai-Cheng; Li, Ming-Hua; Yu, Guang-Hua E-mail: ghyu@mater.ustb.edu.cn; Wu, Zheng-Long
2014-09-08
Chemical reactions at the ferromagnet/oxide interface in [Pt/Fe]{sub 3}/MgO and [Pt/Fe]{sub 3}/SiO{sub 2} multilayers before and after annealing were investigated by X-ray photoelectron spectroscopy. The results show that Fe atoms at the Fe/MgO interface were completely oxidized in the as-grown state and significantly deoxidized after vacuum annealing. However, only some of the Fe atoms at the Fe/SiO{sub 2} interface were oxidized and rarely deoxidized after annealing. The anomalous Hall effect was modified by this interfacial chemical reaction. The saturation anomalous Hall resistance (R{sub xy}) was greatly increased in the [Pt/Fe]{sub 3}/MgO multilayers after annealing and was 350% higher than that in the as-deposited film, while R{sub xy} of the [Pt/Fe]{sub 3}/SiO{sub 2} multilayer only increased 10% after annealing.
Engineering the quantum anomalous Hall effect in graphene with uniaxial strains
Diniz, G. S. Guassi, M. R.; Qu, F.
2013-12-28
We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of the exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency.
Determination of the polarization state of x rays with the help of anomalous transmission
Schulze, K. S. Uschmann, I.; Frster, E.; Marx, B.; Paulus, G. G.; Sthlker, T.
2014-04-14
Besides intensity and direction, the polarization of an electromagnetic wave provides characteristic information on the crossed medium. Here, we present two methods for the determination of the polarization state of x rays by polarizers based on anomalous transmission (Borrmann effect). Using a polarizer-analyzer setup, we have measured a polarization purity of less than 1.5??10{sup ?5}, three orders of magnitude better than obtained in earlier work. Using the analyzer crystal in multiple-beam case with slightly detuned azimuth, we show how the first three Stokes parameters can be determined with a single angular scan. Thus, polarization analyzers based on anomalous transmission make it possible to detect changes of the polarization in a range from degrees down to arcseconds.
Electronic and magnetic properties of Si substituted Fe3Ge
Shanavas, Kavungal Veedu; McGuire, Michael A.; Parker, David S.
2015-09-23
Using first principles calculations we studied the effect of Si substitution in the hexagonal Fe3Ge. We find the low temperature magnetic anisotropy in this system to be planar and originating mostly from the spin-orbit coupling in Fe-d states. Reduction of the unitcell volume reduces the in-plane magnetic anisotropy, eventually turning it positive which reorients the magnetic moments to the axial direction. We find that substituting Ge with the smaller Si ions also reduces the anisotropy, potentially enhancing the region of stability of the axial magnetization, which is beneficial for magnetic applications. Thus our experimental measurements on samples of Fe3Ge1–xSix confirmmore » these predictions and show that substitution of about 6% of the Ge with Si increases by approximately 35 K the temperature range over which anisotropy is uniaxial.« less
Anomalous {gamma} {r_arrow} 3{pi} amplitude in a bound-state approach
Bojan Bistrovic; Dubravko Klabucar
2000-01-01
The form factor for the anomalous process {gamma}{pi}{sup +} {r_arrow} pi{sub +}{pi}{sup 0}, which is presently being measured at CEBAF, is calculated in the Schwinger-Dyson approach in conjunction with an impulse approximation. The form factors obtained by the author are compared with the ones predicted by the simple constituent quark loop model, vector meson dominance and chiral perturbation theory, as well as the scarce already available data.
Effect of entropy on anomalous transport in electron-temperature-gradient-modes
Yaqub Khan, M.; Iqbal, J.; Ul Haq, A.
2014-05-15
Due to the interconnection of entropy with temperature and density of plasma, it would be interesting to investigate plasma related phenomena with respect to entropy. By employing Braginskii transport equations, it is proved that entropy is proportional to a function of potential and distribution function of entropy is re-defined, ∇S–drift in obtained. New dispersion relation is derived; it is found that the anomalous transport depends on the gradient of the entropy.
A spin-filter made of quantum anomalous Hall insulator nanowires
Wu, Jiansheng
2014-07-28
Topological end states (TES) in quantum anomalous Hall insulator nanowires can induce tunneling within the gap. Such TES are spin polarized, thus the induced current is spin polarized as well, which can be used to construct a spin-filter applied in spintronics. An interferometry device is designed to control the polarized current as well. The advantage and finite size effect on this system are discussed.
COMMENTS ON ANOMALOUS EFFECTS IN CHARGING OF PD POWDERS WITH HIGH DENSITY HYDROGEN ISOTOPES
Shanahan, K.
2009-10-01
In Kitamura, et al, Pd-containing materials are exposed to isotopes of hydrogen and anomalous results obtained. These are claimed to be a replication of another experiment conducted by Arata and Zhang. Erroneous basic assumptions are pointed out herein that alter the derived conclusions significantly. The final conclusion is that the reported results are likely normal chemistry combined with noise. Thus the claim to have proven that cold fusion is occurring in these systems is both premature and unlikely.
Critical review of theoretical models for anomalous effects in deuterated metals
Chechin, V.A.; Tsarev, V.A. ); Rabinowitz, M. ); Kim, Y.E. )
1994-03-01
The authors briefly summarize the reported anomalous effects in deuterated metals at ambient temperature commonly known as [open quotes]cold fusion[close quotes] (CF) with an emphasis on the latest experiments, as well as the theoretical basis for the opposition to interpreting them as cold fusion. Then they critically examine more than 25 theoretical models for CF, including unusual nuclear and exotic chemical hypotheses. They conclude that they do not explain the data.
Fundamental Scientific Problems in Magnetic Recording
Schulthess, T.C.; Miller, M.K.
2007-06-27
Magnetic data storage technology is presently leading the high tech industry in advancing device integration--doubling the storage density every 12 months. To continue these advancements and to achieve terra bit per inch squared recording densities, new approaches to store and access data will be needed in about 3-5 years. In this project, collaboration between Oak Ridge National Laboratory (ORNL), Center for Materials for Information Technology (MINT) at University of Alabama (UA), Imago Scientific Instruments, and Seagate Technologies, was undertaken to address the fundamental scientific problems confronted by the industry in meeting the upcoming challenges. The areas that were the focus of this study were to: (1) develop atom probe tomography for atomic scale imaging of magnetic heterostructures used in magnetic data storage technology; (2) develop a first principles based tools for the study of exchange bias aimed at finding new anti-ferromagnetic materials to reduce the thickness of the pinning layer in the read head; (3) develop high moment magnetic materials and tools to study magnetic switching in nanostructures aimed at developing improved writers of high anisotropy magnetic storage media.
Maddy, J.A.
1999-07-01
The purpose of this paper is to verify West Virginia's Wet/Dry test's prediction that Advanced Pollution Instrumentation's (API) ozone monitors, when using a heated metal scrubber in lieu of a standard MnO{sub 2} scrubber, would be made insensitive to sampling conditions which provoke anomalous behavior. Field trials involving two identical API model 400 ozone monitors, a Horiba APOA 360 ozone monitor, MnO{sub 2} scrubbers and API's optional heated metal scrubber would determine this. The heated metal scrubber succeeded in effectively eliminating the anomalous behavior. Evaluation results further verify the accuracy of West Virginia's Wet/Dry test. During the evaluation, a serendipitous event led to observations that confirmed previous observations by The Commonwealth of Virginia's monitoring staff, linking contamination of UV monitors' optics with anomalous behavior. Also, a partial summation of observations concerning ultraviolet ozone monitors' anomalous behavior, drawn from several sources, illustrates its complex nature.
The apparent anomalous, weak, long-range acceleration of Pioneer 10 and 11
Anderson, J.D.; Lau, E.L.; Turyshev, S.G.; Laing, P.A.; Liu, A.S.; Nieto, M.M.
1999-07-01
Recently the authors reported that radio Doppler data generated by NASA`s Deep Space Network (DSN) with the Pioneer 10 and 11 spacecraft indicate an apparent anomalous, constant, spacecraft acceleration with a magnitude {approximately}8.5 {times} 10{sup {minus}8} cm s{sup {minus}2}, directed towards the Sun. Analysis of similar Doppler and ranging data from the Galileo and Ulysses spacecraft yielded ambiguous results for the anomalous acceleration, but the analysis was useful in that it ruled out the possibility of a systematic error in the DSN Doppler system that could easily be mistaken as a spacecraft acceleration. Here they present some new results, including a critique of the suggestion that the anomalous acceleration could be caused by collimated thermal emission. Based on upgraded JPL software for the Pioneer 10 orbit determination, and on a new data interval from January 1987 to July 1998, their best estimate of the average Pioneer 10 acceleration directed towards the Sun is 7.20 {sup {minus}} 0.11 {times} 10{sup {minus}8} cm s{sup {minus}2}.
Theiler, James P; Scovel, James C
2008-01-01
The detection of actual changes in a pair of images is confounded by the inadvertent but pervasive differences that inevitably arise whenever two pictures are taken of the same scene, but at different times and under different conditions. These differences include effects due to illumination, calibration, misregistration, etc. If the actual changes are assumed to be rare, then one can 'learn' what the pervasive differences are, and can identify the deviations from this pattern as the anomalous changes. A recently proposed framework for anomalous change detection recasts the problem as one of binary classification between pixel pairs in the data and pixel pairs that are independently chosen from the two images. When an elliptically-contoured (EC) distribution is assumed for the data, then analytical expressions can be derived for the measure of anomalousness of change. However, these expression are only available for a limited class of EC distributions. By replacing independent pixel pairs with uncorrelated pixel pairs, an approximate solution can be found for a much broader class of EC distributions. The performance of this approximation is investigated analytically and empirically, and includes experiments comparing the detection of real changes in real data.
Fingerprints of anomalous primordial Universe on the abundance of large scale structures
Baghram, Shant; Abolhasani, Ali Akbar; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: abolhasani@ipm.ir E-mail: MohammadHossein.Namjoo@utdallas.edu
2014-12-01
We study the predictions of anomalous inflationary models on the abundance of structures in large scale structure observations. The anomalous features encoded in primordial curvature perturbation power spectrum are (a): localized feature in momentum space, (b): hemispherical asymmetry and (c): statistical anisotropies. We present a model-independent expression relating the number density of structures to the changes in the matter density variance. Models with localized feature can alleviate the tension between observations and numerical simulations of cold dark matter structures on galactic scales as a possible solution to the missing satellite problem. In models with hemispherical asymmetry we show that the abundance of structures becomes asymmetric depending on the direction of observation to sky. In addition, we study the effects of scale-dependent dipole amplitude on the abundance of structures. Using the quasars data and adopting the power-law scaling k{sup n{sub A}-1} for the amplitude of dipole we find the upper bound n{sub A}<0.6 for the spectral index of the dipole asymmetry. In all cases there is a critical mass scale M{sub c} in which for M
The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion
Guo, Ran; Du, Jiulin
2015-08-15
We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.
Wolf, S.A.; Huang, C.Y.; Lacoe, R.C.; Chaikin, P.M.; Fuller, W.W.; Luo, H.L.; Wudl, F.
1983-01-01
Both the Chevrel phase compound EuMo/sub 6/S/sub 8/ and the organic material, (TMTSF)/sub 2/FSO/sub 3/ are superconducting only under moderate pressure. In both instances the absence of superconductivity at ambient pressure is directly attributed to a low temperature structural distortion that introduces a gap over all or part of the Fermi surface. The role of pressure is to suppress the transition and thus allow the electrons to condense into the superconducting state. In EuMo/sub 6/S/sub 8/, details of the pressure dependence of both the structural and superconducting transition have been explained on the basis of a competition between a charge density wave-type state and superconductivity. In the case of (TMTSF)/sub 2/FSO/sub 3/ an anion ordering giving rise to a metal-insulator transition is responsible for suppressing superconductivity. The critical magnetic fields of EuMo/sub 6/S/sub 8/ are extremely anomalous and are related to the magnetism of the Eu as well as the structure of the compound.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Shortwave Transport in the Cloudy Atmosphere by Anomalous/Lévy Diffusion: New Diagnostics Using FORTÉ Lightning Data A. B. Davis Los Alamos National Laboratory Space & Remote Sensing Sciences Group Los Alamos, New Mexico D. M. Suszcynsky Los Alamos National Laboratory Space & Atmospheric Sciences Group Los Alamos, New Mexico A. Marshak National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Introduction Anomalous photon diffusion can be described
Modified Magnetic Ground State in Nimn (2) O (4) Thin Films
Nelson-Cheeseman, B.B.; Chopdekar, R.V.; Iwata, J.M.; Toney, M.F.; Arenholz, E.; Suzuki, Y.; /SLAC
2012-08-23
The authors demonstrate the stabilization of a magnetic ground state in epitaxial NiMn{sub 2}O{sub 4} (NMO) thin films not observed in their bulk counterpart. Bulk NMO exhibits a magnetic transition from a paramagnetic phase to a collinear ferrimagnetic moment configuration below 110 K and to a canted moment configuration below 70 K. By contrast, as-grown NMO films exhibit a single magnetic transition at 60 K and annealed films exhibit the magnetic behavior found in bulk. Cation inversion and epitaxial strain are ruled out as possible causes for the new magnetic ground state in the as-grown films. However, a decrease in the octahedral Mn{sup 4+}:Mn{sup 3+} concentration is observed and likely disrupts the double exchange that produces the magnetic state at intermediate temperatures. X-ray magnetic circular dichroism and bulk magnetometry indicate a canted ferrimagnetic state in all samples at low T. Together these results suggest that the collinear ferrimagnetic state observed in bulk NMO at intermediate temperatures is suppressed in the as grown NMO thin films due to a decrease in octahedral Mn{sup 4+}, while the canted moment ferrimagnetic ordering is preserved below 60 K.
Saito, Kotaro Ono, Kanta; Ueno, Tetsuro; Yano, Masao; Shoji, Tetsuya; Sakuma, Noritsugu; Manabe, Akira; Kato, Akira; Harada, Masashi; Keiderling, Uwe
2015-05-07
The magnetization reversal process of Nd-Fe-B nanocrystalline magnets infiltrated with Nd-Cu alloy was examined using small-angle neutron scattering (SANS). The magnetic-field dependence of SANS intensity revealed a qualitative difference between Nd-Cu-infiltrated samples and as-deformed samples. Insufficient magnetic isolation along the direction perpendicular to the nominal c-axis is expected from comparable SANS intensities for different ranges of q values along this direction. For small q values near the coercivity field, Nd-Cu-infiltrated samples show a noticeable reduction in SANS intensity along the nominal c-axis, which is parallel to the external magnetic field. This indicates less spatial fluctuation of magnetic moments in Nd-Cu-infiltrated samples, owing to magnetically isolated Nd{sub 2}Fe{sub 14}B grains.
Ikeyama, Taeko; Hiroi, Masanori; Nemoto, Yuuichi; Nogi, Yasuyuki
2008-06-15
A confinement field is disturbed by magnetohydrodynamic (MHD) motions of a field-reversed configuration (FRC) plasma in a cylindrical conductor. The effect of the conductor should be included to obtain a spatial structure of the disturbed field with a good precision. For this purpose, a toroidal current in the plasma and an eddy current on a conducting wall are replaced by magnetic dipole and image magnetic dipole moments, respectively. Typical spatial structures of the disturbed field are calculated by using the dipole moments for such MHD motions as radial shift, internal tilt, external tilt, and n=2 mode deformation. Then, analytic formulas for estimating the shift distance, tilt angle, and deformation rate of the MHD motions from magnetic probe signals are derived. It is estimated from the calculations by using the dipole moments that the analytic formulas include an approximately 40% error. Two kinds of experiment are carried out to investigate the reliability of the calculations. First, a magnetic field produced by a circular current is measured in an aluminum pipe to confirm the replacement of the eddy current with the image magnetic dipole moments. The measured fields coincide well with the calculated values including the image magnetic dipole moments. Second, magnetic probe signals measured from the FRC plasma are substituted into the analytic formulas to obtain shift distance and deformation rate. The experimental results are compared to the MHD motions measured by using a radiation from the plasma. If the error included in the analytic formulas and the difference between the magnetic and optical structures in the plasma are considered, the results of the radiation measurement support well those of the magnetic analysis.
CaMn2Al10: Itinerant Mn magnetism on the verge of magnetic order
Steinke, L.; Simonson, J. W.; Yin, W. -G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.
2015-07-24
We report the discovery of CaMn2Al10, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83μB/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010]/χ[001] ≈ 3.5. A strong power-lawmore » divergence χ(T) ~ T–1.2 below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature TC ~ 0. Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.« less
U.S. Department of Energy (DOE) all webpages (Extended Search)
Underlying the magnetocaloric effect is the idea that magnetism is the result of the ... with the magnetic field, the magnetic entropy (disorder) of the system decreases; if ...
U.S. Department of Energy (DOE) all webpages (Extended Search)
... Underlying the magnetocaloric effect is the idea that magnetism is the result of the ... with the magnetic field, the magnetic entropy (disorder) of the system decreases; if ...
Howells, B.; Edmonds, K. W.; Campion, R. P.; Gallagher, B. L.
2014-07-07
We report on a study of the temperature-dependence of current-induced effective magnetic fields due to spin-orbit interactions in the diluted ferromagnetic semiconductor (Ga,Mn)As. Contributions from the effective fields as well as from the anomalous Nernst effect are evident in the difference between transverse resistance measurements as a function of an external magnetic field for opposite orientations of the applied current. We separately extract these contributions by fitting to a model of coherently rotating magnetization. The component of the effective field with Dresselhaus symmetry is substantially enhanced with increasing temperature, while no significant temperature-dependence is observed for the component with Rashba symmetry.
Probing CP Violation with the Electric Dipole Moment of Atomic Mercury
Latha, K. V. P.; Das, B. P.; Angom, D.; Mukherjee, D.
2009-08-21
The electric dipole moment of atomic {sup 199}Hg induced by the nuclear Schiff moment and the tensor-pseudotensor electron-nucleus interactions are calculated. For this, we develop and employ a novel method based on the relativistic coupled-cluster theory. The results of our theoretical calculations, combined with the latest experimental result of the {sup 199}Hg electric dipole moment, provide new bounds on the T reversal or CP violation parameters theta{sub QCD}, the tensor-pseudotensor coupling constant C{sub T}, and (d-tilde{sub u}-d-tilde{sub d}). This is the most accurate calculation of these parameters to date. We highlight the crucial role of electron correlation effects in their interplay with the P, T violating interactions. Our results demonstrate substantial changes in the results of earlier calculations of these parameters which can be attributed to the more accurate inclusion of important correlation effects.
First Passage Moments of Finite-State Semi-Markov Processes
Warr, Richard; Cordeiro, James
2014-03-31
In this paper, we discuss the computation of first-passage moments of a regular time-homogeneous semi-Markov process (SMP) with a finite state space to certain of its states that possess the property of universal accessibility (UA). A UA state is one which is accessible from any other state of the SMP, but which may or may not connect back to one or more other states. An important characteristic of UA is that it is the state-level version of the oft-invoked process-level property of irreducibility. We adapt existing results for irreducible SMPs to the derivation of an analytical matrix expression for the first passage moments to a single UA state of the SMP. In addition, consistent point estimators for these first passage moments, together with relevant R code, are provided.
Magnetic design calculation and FRC formation modeling for the field reversed experiment liner
Dorf, L. A.; Intrator, T. P.; Renneke, R.; Hsu, S. C.; Wurden, G. A.; Awe, T.; Siemon, R.; Semenov, V. E.
2008-10-01
Integrated magnetic modeling and design are important to meet the requirements for (1) formation, (2) translation, and (3) compression of a field reversed configuration (FRC) for magnetized target fusion. Off-the-shelf solutions do not exist for many generic design issues. A predictive capability for time-dependent magnetic diffusion in realistically complicated geometry is essential in designing the experiment. An eddy-current code was developed and used to compute the mutual inductances between driven magnetic coils and passive magnetic shields (flux excluder plates) to calculate the self-consistent axisymmetric magnetic fields during the first two stages. The plasma in the formation stage was modeled as an immobile solid cylinder with selectable constant resistivity and magnetic flux that was free to readjust itself. It was concluded that (1) use of experimentally obtained anomalously large plasma resistivity in magnetic diffusion simulations is sufficient to predict magnetic reconnection and FRC formation, (2) comparison of predicted and experimentally observed timescales for FRC Ohmic decay shows good agreement, and (3) for the typical range of resistivities, the magnetic null radius decay rate scales linearly with resistivity. The last result can be used to predict the rate of change in magnetic flux outside of the separatrix (equal to the back-emf loop voltage), and thus estimate a minimum {theta}-coil loop voltage required to form an FRC.
Magnetic properties of Ni40+xMn39-xSn21 (x=0, 2, 4, 6 and 8 at.%) Heusler alloys
Lazpita, P.; Lograsso, T.; Schlagel, D. L.
2014-01-27
The low electron concentration region (e/a < 7.75) of the magnetic phase diagram of the off-stoichiometric NiMnSn Heusler alloys was investigated in detail by DSC and magnetization measurements of the Ni40+xMn39?xSn21(x = 0, 2, 4, 6 and 8 at.%) alloys. The alloys show a stable austenitic phase without any martensitic transformation down to 5 K even after heat treatment. The Curie temperature exhibits a broad maximum over a large composition range. The evolution of the magnetic moment with the electron concentration fits the data of previous studies and confirms the peak-like dependence in the extended range of e/a values predicted by ab initio calculations. The explored part of the moment versus e/a curve can be explained in terms of a localized magnetic moment model and full atomic order in the alloys.
Search for the Neutron Electric Dipole Moment at the SNS at Oak Ridge
Kolarkar, Ameya
2010-02-10
The possible existence of a non-zero electric dipole moment (EDM) of the neutron is of fundamental interest for our understanding of the nature of electro-weak and strong interactions. The experimental search for this moment has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. A new experiment being developed at the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory seeks to lower the current EDM limit of the neutron by a factor of 50 to 100 over the present upper limit of 2.9x10{sup -26} e cm.
Verification of the history-score moment equations for weight-window variance reduction
Solomon, Clell J; Sood, Avneet; Booth, Thomas E; Shultis, J. Kenneth
2010-12-06
The history-score moment equations that describe the moments of a Monte Carlo score distribution have been extended to weight-window variance reduction, The resulting equations have been solved deterministically to calculate the population variance of the Monte Carlo score distribution for a single tally, Results for one- and two-dimensional one-group problems are presented that predict the population variances to less than 1% deviation from the Monte Carlo for one-dimensional problems and between 1- 2% for two-dimensional problems,
President Obama in North Carolina: "Our Generation's Sputnik Moment is
Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)
Now" | Department of Energy in North Carolina: "Our Generation's Sputnik Moment is Now" President Obama in North Carolina: "Our Generation's Sputnik Moment is Now" December 6, 2010 - 4:53pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Ed. Note cross posted from the White House Blog. As America fights to recover from the economic catastrophe that began almost three years ago, it's important to remember that America had already been
Quadrupole moments of some doubly-even molibden nuclei and the onset of collectivity
Turkan, N.; Ibis, I.; Maras, I.
2012-07-15
A good description of the quadrupole moments is obtained by investigating {sup 94,96,98,100,102,104,106,108}Mo isotopes in terms of the interacting boson model. After the positiveparity states and electromagnetic-transition rates B(E2) of even-mass Mo nuclei were calculated it was seen that there is a good agreement between the obtained results and some previous experimental data. At the end of the quadrupole moment calculations it was proved that the results agree well with the previous experimental data.
Structure symmetry determination and magnetic evolution in Sr2Ir1–xRhxO4
Ye, Feng; Wang, Xiaoping; Hoffmann, Christina; Wang, Jinchen; Chi, Songxue; Matsuda, Masaaki; Chakoumakos, Bryan C.; Fernandez-Baca, Jaime A.; Cao, Gang
2015-11-23
We use single-crystal neutron diffraction to determine the crystal structure symmetry and to study the magnetic evolution in the rhodium doped iridates Sr2Ir1–xRhxO4 (0 ≤ x ≤ 0.16). Throughout this doping range, the crystal structure retains a tetragonal symmetry (space group I41/a) with two distinct magnetic Ir sites in the unit cell forming staggered IrO6 rotation. Upon Rh doping, the magnetic order is suppressed and the magnetic moment of Ir4+ is reduced from 0.21 μB/Ir for x = 0 to 0.18 μB/Ir for x = 0.12. As a result, the magnetic structure at x = 0.12 is different from thatmore » of the parent compound while the moments remain in the basal plane.« less
Masaaki Yamada, Russell Kulsrud and Hantao Ji
2009-09-17
We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.
Induce magnetism into silicene by embedding transition-metal atoms
Sun, Xiaotian; Wang, Lu E-mail: yyli@suda.edu.cn; Lin, Haiping; Hou, Tingjun; Li, Youyong E-mail: yyli@suda.edu.cn
2015-06-01
Embedding transition-metal (TM) atoms into nonmagnetic nanomaterials is an efficient way to induce magnetism. Using first-principles calculations, we systematically investigated the structural stability and magnetic properties of TM atoms from Sc to Zn embedded into silicene with single vacancy (SV) and double vacancies (DV). The binding energies for different TM atoms correlate with the TM d-shell electrons. Sc, Ti, and Co show the largest binding energies of as high as 6 eV, while Zn has the lowest binding energy of about 2 eV. The magnetic moment of silicene can be modulated by embedding TM atoms from V to Co, which mainly comes from the 3d orbitals of TM along with partly contributions from the neighboring Si atoms. Fe atom on SV and Mn atom on DV have the largest magnetic moment of more than 3 μB. In addition, we find that doping of N or C atoms on the vacancy site could greatly enhance the magnetism of the systems. Our results provide a promising approach to design silicene-based nanoelectronics and spintronics device.
Large scale magnetic fields and coherent structures in nonuniform unmagnetized plasma
Jucker, Martin; Andrushchenko, Zhanna N.; Pavlenko, Vladimir P.
2006-07-15
The properties of streamers and zonal magnetic structures in magnetic electron drift mode turbulence are investigated. The stability of such large scale structures is investigated in the kinetic and the hydrodynamic regime, for which an instability criterion similar to the Lighthill criterion for modulational instability is found. Furthermore, these large scale flows can undergo further nonlinear evolution after initial linear growth, which can lead to the formation of long-lived coherent structures consisting of self-bound wave packets between the surfaces of two different flow velocities with an expected modification of the anomalous electron transport properties.
Magnetic and transport properties of Mn{sub 2}CoAl oriented films
Jamer, Michelle E.; Assaf, Badih A.; Devakul, Trithep; Heiman, Don
2013-09-30
The structure, magnetic, and transport properties of thin films of the Heusler ferrimagnet Mn{sub 2}CoAl have been investigated for properties related to spin gapless semiconductors. Oriented films were grown by molecular beam epitaxy on GaAs substrates and the structure was found to transform from tetragonal to cubic for increasing annealing temperature. The anomalous Hall resistivity is found to be proportional to the square of the longitudinal resistivity and magnetization expected for a topological Berry curvature origin. A delicate balance of the spin-polarized carrier type when coupled with voltage gate-tuning could significantly impact advanced electronic devices.
Is the baryon asymmetry of the Universe related to galactic magnetic fields?
Semikoz, V. B.; Sokoloff, D. D.; Valle, J. W. F.
2009-10-15
A tiny hypermagnetic field generated before the electroweak phase transition (EWPT) associated to the generation of elementary particle masses can polarize the early Universe hot plasma at huge redshifts z > or approx. 10{sup 15}. The anomalous violation of the right-handed electron current characteristic of the EWPT converts the lepton asymmetry into a baryon asymmetry. Under reasonable approximations, the magnetic field strength inferred by requiring such 'leptogenic' origin for the observed baryon asymmetry of the Universe matches the large-scale cosmological magnetic field strengths estimated from current astronomical observations.
Detection of Anomalous Gamma-Ray Spectra for On-Site Inspection
Seifert, Carolyn E.; Myjak, Mitchell J.; Pfund, David M.
2009-05-29
This work aims to solve some of the technical and logistical challenges inherent in performing On Site Inspection activities under the authority of the Comprehensive Nuclear-Test-Ban Treaty. Inspectors require equipment that can reliably identify the radionuclide signatures of nuclear test explosions amid a background of environmental contamination. Detection of these radiation anomalies by mobile search teams in the air or on the ground can narrow the search field and target specific areas for more detailed inspection or sampling. The need to protect confidential information of the inspected State Party, especially regarding past nuclear testing activities, suggests that full access to measured gamma-ray spectra should be limited. Spectral blinding techniques---in which only a fraction of the information derived from the spectra is displayed and stored---have the potential to meet the needs of both the OSI team and the State Party. In this paper, we describe one such algorithm that we have developed for identifying anomalous spectra from handheld, mobile, or aerial sensors. The algorithm avoids potential sensitivities by reducing the gamma-ray spectrum into a single number that is displayed and stored. A high value indicates that the spectrum is anomalous. The proposed technique does not rely on identifying specific radionuclides, operates well in the presence of high background variability, and can be configured to ignore specific spectral components. In previous work, the algorithm has proven very effective in classifying gamma-ray spectra as anomalous or not, even with poor statistical information. We performed a limited simulation of an airborne search scenario to demonstrate the potential algorithm for OSI missions. The technique successfully detected an injected source of interest whose count rate was an order of magnitude below background levels. We also configured the algorithm to ignore 137Cs as irrelevant to the mission. The resulting alarm metrics were
Decaying neutralino dark matter in anomalous U(1){sub H} models
Sierra, D. Aristizabal; Restrepo, D.; Zapata, Oscar
2009-09-01
In supersymmetric models extended with an anomalous U(1){sub H} different R-parity violating couplings can yield an unstable neutralino. We show that in this context astrophysical and cosmological constraints on neutralino decaying dark matter forbid bilinear R-parity breaking neutralino decays and lead to a class of purely trilinear R-parity violating scenarios in which the neutralino is stable on cosmological scales. We have found that among the resulting models some of them become suitable to explain the observed anomalies in cosmic-ray electron/positron fluxes.
Anomalous complete opaqueness in a sparse array of gold nanoparticle chains
Bai Benfeng; Li Xiaowei; Vartiainen, Ismo; Lehmuskero, Anni; Turunen, Jari; Kuittinen, Markku; Vahimaa, Pasi; Kang Guoguo
2011-08-22
We report on an anomalous polarization-switching extinction effect in a sparse array of gold nanoparticle chains: under normal incidence of light, the array is almost transparent for one polarization; whereas it is fully opaque (with nearly zero transmittance) for the orthogonal polarization within a narrow band, even though the nanoparticles cover only a tiny fraction (say, 3.5%) of the transparent substrate surface. We reveal that the strong polarization-dependent short-range dipolar coupling and long-range radiative coupling of gold nanoparticles in this highly asymmetric array is responsible for this extraordinary effect.
Search for Anomalous Production of Events with Two Photons and Additional Energetic Objects at CDF
Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR
2009-10-01
The authors present results of a search for anomalous production of two photons together with an electron, muon, {tau} lepton, missing transverse energy, or jets using p{bar p} collision data from 1.1-2.0 fb{sup -1} of integrated luminosity collected by the Collider Detector at Fermilab (CDF). The event yields and kinematic distributions are examined for signs for new physics without favoring a specific model of new physics. The results are consistent with the standard model expectations. The search employs several new analysis techniques that significantly reduce instrumental backgrounds in channels with an electron and missing transverse energy.
Smetanina, E O; Kompanets, V O; Chekalin, Sergei V; Kandidov, V P
2012-10-31
We report the results of investigation of femtosecond laser pulse filamentation in fused silica by varying the wavelength in the range from 800 to 2300 nm. It is shown that in the case of the anomalous group-velocity dispersion, a sequence of 'light bullets' with a high spatial and temporal localisation of the light field is formed along the filament. The relation of the formation and propagation of light bullets with the formation of an isolated anti-Stokes wing of the supercontinuum spectrum is established. (nonlinear optical phenomena)
Anomalous deflection of a charged-particle beam by bent crystals
Taratin, A.M.; Vorobev, S.A.
1986-05-01
Using computer simulations of particle trajectory, a deflection of part of the beam in the direction opposite to the curvature is discovered for charged particles passing through a bent crystal. The passage of a proton beam of energy E(0) = 1 GeV through a curved silicon single crystal is considered, and only particles that move through the single crystal in a quasi-channel mode are deflected. It is suggested that the observed anomalous deflection can be used to deflect beams of high energy charged particles through angles that are tens of times greater than the critical angle for channeling, with application to experimental nuclear physics. 6 references.
Real-time detection and classification of anomalous events in streaming data
Ferragut, Erik M.; Goodall, John R.; Iannacone, Michael D.; Laska, Jason A.; Harrison, Lane T.
2016-04-19
A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The events can be displayed to a user in user-defined groupings in an animated fashion. The system can include a plurality of anomaly detectors that together implement an algorithm to identify low probability events and detect atypical traffic patterns. The atypical traffic patterns can then be classified as being of interest or not. In one particular example, in a network environment, the classification can be whether the network traffic is malicious or not.
Anomalous photoconductive behavior of a single InAs nanowire photodetector
Li, Junshuai; Yan, Xin; Sun, Fukuan; Zhang, Xia Ren, Xiaomin
2015-12-28
We report on a bare InAs nanowire photodetector which exhibits an anomalous photoconductive behavior. Under low-power illumination, the current is smaller than the dark current, and monotonously decreases as the excitation power increases. When the excitation power is high enough, the current starts to increase normally. The phenomenon is attributed to different electron mobilities in the “core” and “shell” of a relatively thick nanowire originating from the surface effect, which result in a quickly dropped “core current” and slowly increased “shell current” under illumination.
GROUND LEVEL INVESTIGATION OF ANOMALOUS RADIATION LEVELS IN NIAGARA FALLS, NEW YORK
Office of Legacy Management (LM)
GROUND LEVEL INVESTIGATION OF ANOMALOUS RADIATION LEVELS IN NIAGARA FALLS, NEW YORK W. D. Cottrell, D. J. Christian, and F. F. Haywood ,d ;v ~ !;);;J;$ '9;) -i, - 'L." ; i--j -7,) ;3 i, Work performed by Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37630 O&J. 2,7 +, / 7&y' March 1979 \ operated by UNION CARBIDE CORPORATIOII for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites- Remedial Action Program
Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields
Zhivun, Elena; Wickenbrock, Arne; Patton, Brian; Budker, Dmitry
2014-11-10
We demonstrate an all-optical {sup 133}Cs scalar magnetometer, operating in nonzero magnetic field, in which the magnetic resonance is driven by an effective oscillating magnetic field provided by the AC Stark shift of an intensity-modulated laser beam. We achieve a projected shot-noise-limited sensitivity of 1.7fT/√(Hz) and measure a technical noise floor of 40fT/√(Hz). These results are essentially identical to a coil-driven scalar magnetometer using the same setup. This all-optical scheme offers advantages over traditional coil-driven magnetometers for use in arrays and in magnetically sensitive fundamental physics experiments, e.g., searches for a permanent electric dipole moment of the neutron.
Zobov, V. E. Lundin, A. A.
2006-12-15
The time evolution of multispin correlations (the growth of the number of correlated spins as a function of time) can be observed directly using the multiple-quantum nuclear magnetic resonance spectroscopy of solids. A quantity related to this number, namely, the second moment
Alternating magnetic anisotropy of Li_{2}(Li_{1x}T_{x})N (T = Mn, Fe, Co, and Ni)
Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.
2015-05-11
Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li_{2}(Li_{1x}T_{x})N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane?easy axis?easy plane?easy axis when progressing from T = Mn ? Fe ? Co ? Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model. As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.
Alternating magnetic anisotropy of Li_{2}(Li_{1–x}T_{x})N (T = Mn, Fe, Co, and Ni)
Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.
2015-05-11
Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li_{2}(Li_{1–x}T_{x})N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T = Mn → Fe → Co → Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model. As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.
Anomalous fast ion losses at high β on the tokamak fusion test reactor
Fredrickson, E. D.; Bell, M. G.; Budny, R. V.; Darrow, D. S.; White, R.
2015-03-15
This paper describes experiments carried out on the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] to investigate the dependence of β-limiting disruption characteristics on toroidal field strength. The hard disruptions found at the β-limit in high field plasmas were not found at low field, even for β's 50% higher than the empirical β-limit of β{sub n} ≈ 2 at high field. Comparisons of experimentally measured β's to TRANSP simulations suggest anomalous loss of up to half of the beam fast ions in the highest β, low field shots. The anomalous transport responsible for the fast ion losses may at the same time broaden the pressure profile. Toroidal Alfvén eigenmodes, fishbone instabilities, and Geodesic Acoustic Modes are investigated as possible causes of the enhanced losses. Here, we present the first observations of high frequency fishbones [F. Zonca et al., Nucl. Fusion 49, 085009 (2009)] on TFTR. The interpretation of Axi-symmetric Beam-driven Modes as Geodesic Acoustic Modes and their possible correlation with transport barrier formation are also presented.
Satti, John A. (Naperville, IL)
1980-01-01
A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.
Chell, Jeremy; Zimm, Carl B.
2006-12-12
A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.
Guo, H. Y.; Hoffman, A. L.; Milroy, R. D.
2007-11-15
Greatly reduced recycling and impurity ingestion in the Translation, Confinement, and Sustainment--Upgrade (TCSU) device has allowed much higher plasma temperatures to be achieved in the field reversed configurations (FRC) under rotating magnetic field (RMF) formation and sustainment. The hotter plasmas have higher magnetic fields and much higher diamagnetic electron rotation rates so that the important ratio of average electron rotation frequency to RMF frequency, called {zeta}, approaches unity, for the first time, in TCSU. A large fraction of the RMF power is absorbed by an as yet unexplained (anomalous) mechanism directly proportional to the square of the RMF magnitude. It becomes of relatively lesser significance as the FRC current increases, and simple resistive heating begins to dominate, but the anomalous absorption is useful for initial plasma heating. Measurements of total absorbed power, and comparisons of applied RMF torque to torque on the electrons due to electron-ion friction under high-{zeta} operation, over a range of temperatures and fields, have allowed the separation of the classical Ohmic and anomalous heating to be inferred, and cross-field plasma resistivities to be calculated.
An itinerant antiferromagnetic metal without magnetic constituents
Svanidze, E.; Wang, Jiakui K.; Besara, T.; Liu, L.; Huang, Q.; Siegrist, T.; Frandsen, B.; Lynn, J. W.; Nevidomskyy, Andriy H.; Gamża, Monika B.; et al
2015-07-13
The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemedmore » crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. In conclusion, this itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.« less
An itinerant antiferromagnetic metal without magnetic constituents
Svanidze, E.; Wang, Jiakui K.; Besara, T.; Liu, L.; Huang, Q.; Siegrist, T.; Frandsen, B.; Lynn, J. W.; Nevidomskyy, Andriy H.; Gamża, Monika B.; Aronson, M. C.; Uemura, Y. J.; Morosan, E.
2015-07-13
The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn_{2} and Sc_{3}In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. In conclusion, this itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant–electron systems.
Basics and prospective of magnetic Heusler compounds
Felser, Claudia Wollmann, Lukas; Chadov, Stanislav; Fecher, Gerhard H.; Parkin, Stuart S. P.
2015-04-01
Heusler compounds are a remarkable class of materials with more than 1000 members and a wide range of extraordinary multi-functionalities including halfmetallic high-temperature ferri- and ferromagnets, multi-ferroics, shape memory alloys, and tunable topological insulators with a high potential for spintronics, energy technologies, and magneto-caloric applications. The tunability of this class of materials is exceptional and nearly every functionality can be designed. Co{sub 2}-Heusler compounds show high spin polarization in tunnel junction devices and spin-resolved photoemission. Manganese-rich Heusler compounds attract much interest in the context of spin transfer torque, spin Hall effect, and rare earth free hard magnets. Most Mn{sub 2}-Heusler compounds crystallize in the inverse structure and are characterized by antiparallel coupling of magnetic moments on Mn atoms; the ferrimagnetic order and the lack of inversion symmetry lead to the emergence of new properties that are absent in ferromagnetic centrosymmetric Heusler structures, such as non-collinear magnetism, topological Hall effect, and skyrmions. Tetragonal Heusler compounds with large magneto crystalline anisotropy can be easily designed by positioning the Fermi energy at the van Hove singularity in one of the spin channels. Here, we give a comprehensive overview and a prospective on the magnetic properties of Heusler materials.
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2008-10-21
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2003-12-16
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-10-10
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2007-02-20
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-03-21
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-02-07
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Measurement of magnetic fluctuation-induced heat transport in tokamaks and RFP
Fiksel, G.; Hartog, D.D.; Cekic, M.; Prager, S.C.
1996-08-01
It has long been recognized that fluctuations in the magnetic field are a potent mechanism for the anomalous transport of energy in confined plasmas. The energy transport process originates from particle motion along magnetic fields, which have a fluctuating component in the radial direction (perpendicular to the confining equilibrium magnetic surfaces). A key feature is that the transport can be large even if the fluctuation amplitude is small. If the fluctuations are resonant with the equilibrium magnetic field (i.e., the fluctuation amplitude is constant along an equilibrium field line) then a small fluctuation can introduce stochasticity to the field line trajectories. Particles following the chaotically wandering field lines can rapidly carry energy across the plasma.
Anomalous QCD contribution to the Debye screening in an external field via holography
Gorsky, A.; Kopnin, P. N.; Krikun, A.
2011-03-15
In this paper we discuss the QCD contribution to the Abelian Debye and magnetic screening masses in a deconfined QCD plasma at finite temperature in the presence of an external magnetic field B. We use a holographic AdS/QCD setup in an AdS Schwarzschild black hole background and show that the electric screening mass has a form similar to the one-loop result in QED. Moreover, we calculate the corrections due to the magnetic field to all orders of B and demonstrate that in the case when the magnetic field is large the Debye mass grows linearly with B, while the magnetic screening mass vanishes. The whole effect of the magnetic field turns out to stem from the Chern-Simons action. We also discuss the zero temperature case in the chiral perturbation theory.
A High-Order Finite-Volume Algorithm for Fokker-Planck Collisions in Magnetized Plasmas
Xiong, Z; Cohen, R H; Rognlien, T D; Xu, X Q
2007-04-18
A high-order finite volume algorithm is developed for the Fokker-Planck Operator (FPO) describing Coulomb collisions in strongly magnetized plasmas. The algorithm is based on a general fourth-order reconstruction scheme for an unstructured grid in the velocity space spanned by parallel velocity and magnetic moment. The method provides density conservation and high-order-accurate evaluation of the FPO independent of the choice of the velocity coordinates. As an example, a linearized FPO in constant-of-motion coordinates, i.e. the total energy and the magnetic moment, is developed using the present algorithm combined with a cut-cell merging procedure. Numerical tests include the Spitzer thermalization problem and the return to isotropy for distributions initialized with velocity space loss cones. Utilization of the method for a nonlinear FPO is straightforward but requires evaluation of the Rosenbluth potentials.
Electronic structure and magnetic properties of disordered Co{sub 2}FeAl Heusler alloy
Jain, Vishal Jain, Vivek Sudheesh, V. D. Lakshmi, N. Venugopalan, K.
2014-04-24
The effects of disorder on the magnetic properties of Co{sub 2}FeAl alloy are reported. X-ray diffraction exhibit A2-type disordered structure. Room temperature Mössbauer studies show the presence of two sextets with hyperfine field values of 31T and 30T along with a nonmagnetic singlet. The electronic structure of ordered and disordered Co{sub 2}FeAl alloys, investigated by means of the KKR Green's-function method shows that the magnetic moment of the ordered structure is 5.08μ{sub B} and is 5.10μ{sub B} when disordered. However, a much higher magnetic moment of 5.74μ{sub B} is observed experimentally.
Electronic structural and magnetic properties of Mn{sub 5}Ge{sub 3} clusters
Yuan, H. K.; Chen, H. Kuang, A. L.; Tian, C. L.; Wang, J. Z.
2013-11-28
Theoretical understanding of the stability, ferromagnetism, and spin polarization of Mn{sub 5}Ge{sub 3} clusters has been performed by using the density functional theory with generalized gradient approximation for exchange and correlation. The magnetic moments and magnetic anisotropy energy (MAE) have been calculated for both bulk and clusters, and the enhanced magnetic moment as well as the enlarged MAE have been identified in clusters. The most attractive achievement is that Mn{sub 5}Ge{sub 3} clusters show a fine half-metallic character with large energy scales. The present results may have important implications for potential applications of small Mn{sub 5}Ge{sub 3} clusters as both emerging spintronics and next-generation data-storage technologies.
Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations
Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai -Zhuang; Ho, Kai -Ming
2015-06-23
The structures and magnetic properties of Co-Zr-B alloys near the composition of Co_{5}Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co_{11}Zr_{2}” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co_{5}Zr phase and larger than that of the low-temperature Co_{5.25}Zr phase. As a result, our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.
Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations
Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai -Zhuang; Ho, Kai -Ming
2015-06-23
The structures and magnetic properties of Co-Zr-B alloys near the composition of Co5Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co11Zr2” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that themore » magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co5Zr phase and larger than that of the low-temperature Co5.25Zr phase. As a result, our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.« less
The magnetic structure of EuCu_{2}Sb_{2}
Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; Johnston, D. C.; Flacau, R.
2015-05-06
Antiferromagnetic ordering of EuCu_{2}Sb_{2} which forms in the tetragonal CaBe_{2}Ge_{2}-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and ^{151}Eu Mssbauer spectroscopy. The room temperature ^{151}Eu isomer shift of 12.8(1) mm/s shows the Eu to be divalent, while the ^{151}Eu hyperfine magnetic field (B_{hf}) reaches 28.7(2) T at 2.1 K, indicating a full Eu^{2+} magnetic moment. B_{hf}(T) follows a smooth $S=\\frac{7}{2}$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) ?_{B} which is the full free-ion moment expected for the Eu^{2+} ion with $S=\\frac{7}{2}$ and a spectroscopic splitting factor of g = 2.
The magnetic structure of EuCu_{2}Sb_{2}
Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; Johnston, D. C.; Flacau, R.
2015-05-06
Antiferromagnetic ordering of EuCu_{2}Sb_{2} which forms in the tetragonal CaBe_{2}Ge_{2}-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and ^{151}Eu Mössbauer spectroscopy. The room temperature ^{151}Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the ^{151}Eu hyperfine magnetic field (B_{hf}) reaches 28.7(2) T at 2.1 K, indicating a full Eu^{2+} magnetic moment. B_{hf}(T) follows a smooth $S=\\frac{7}{2}$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μ_{B} which is the full free-ion moment expected for the Eu^{2+} ion with $S=\\frac{7}{2}$ and a spectroscopic splitting factor of g = 2.
Casadei, Cecilia
2012-05-09
The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr{sub 8} antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr{sup 3+} ion with diamagnetic Cd{sup 2+} (Cr{sub 7}Cd) and with Ni{sup 2+} (Cr{sub 7}Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both {sup 53}Cr-NMR and {sup 19}F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant {sup 19}F - M{sup +} where M{sup +} = Cr{sup 3+}, Ni{sup 2+} in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.
U.S. Department of Energy (DOE) all webpages (Extended Search)
Now which is stronger, gravity or magnetism? What is going on? How do flexible refrigerator magnets work? Get two of these magnets, they are often the size of a business card....
Magnetism in Non-Traditional Materials
Menon, Madhu
2013-09-17
We performed a systematic microscopic investigation of two completely dissimilar materials (namely, ZnO and rhombohedral-C{sub 60} polymers) exhibiting ferromagnetism in the presence of defects, and showed that this new phenomena has a common origin and the mechanism responsible can be used as a powerful tool for inducing and tailoring magnetic features in systems which are not magnetic otherwise. Based on our findings we proposed a general recipe for developing ferromagnetism in new materials of great technological interest. Our results support the role of complimentary pairs of defects in inducing magnetism in otherwise non-magnetic materials belonging to two widely differing classes with no apparent correlation between them. In both classes, ferromagnetism is found to be enhanced when the two kinds of defects form structures (pathways) of alternating effective donor and acceptor crystal sites leading to the development of electron charge and spin density like waves. Using ab initio density functional theory calculations we predicted the existence of a new class of carbon cages formed via hybrid connection between planar graphene sheets and carbon nanotubes. The resulting novel structure has the appearance of ?nano-drum? and offers the exciting prospect of integrating useful device properties of both graphene as well as the nanotube into a single unit with tunable electronic properties. Creation of a hexagonal hole in the graphene portion of this structure results in significant magnetic moments for the edge atoms. The structure appears to be capable of sustaining ferrimagnetic state with the assistance of topological defects. The charge and spin distributions obtained in our calculations for the nano-drums are in striking contrast to those in planar graphene nanoribbons with a central hole. In this case, the central hole appears as the complimentary defect to those of the ribbon edges. Similar situation is found in case of the nano-drum in which the
Shape and edge dependent electronic and magnetic properties of silicene nano-flakes
Mohan, Brij Pooja,; Ahluwalia, P. K.; Kumar, Ashok
2015-06-24
We performed first-principle study of the geometric, electronic and magnetic properties of arm-chair and zigzag edge silicene nano-flakes of triangular and hexagonal shapes. Electronic properties of silicene nano-flakes show strong dependence on their edge structure and shape. The considered nanostructures shows energy gap ranging ∼ 0.4 – 1.0 eV. Zigzag edged triangular nano-flake is magnetic and semiconducting in nature with 4.0 µ{sub B} magnetic moment and ∼ 0.4 eV energy gap.
Magnetism in undoped ZnS studied from density functional theory
Xiao, Wen-Zhi E-mail: llwang@hun.edu.cn; Rong, Qing-Yan; Xiao, Gang; Wang, Ling-ling E-mail: llwang@hun.edu.cn; Meng, Bo
2014-06-07
The magnetic property induced by the native defects in ZnS bulk, thin film, and quantum dots are investigated comprehensively based on density functional theory within the generalized gradient approximation + Hubbard U (GGA?+?U) approach. We find the origin of magnetism is closely related to the introduction of hole into ZnS systems. The relative localization of S-3p orbitals is another key to resulting in unpaired p-electron, due to Hund's rule. For almost all the ZnS systems under study, the magnetic moment arises from the S-dangling bonds generated by Zn vacancies. The charge-neutral Zn vacancy, Zn vacancy in 1? charge sate, and S vacancy in the 1+ charge sate produce a local magnetic moment of 2.0, 1.0, and 1.0??{sub B}, respectively. The Zn vacancy in the neutral and 1? charge sates are the important cause for the ferromagnetism in ZnS bulk, with a Curie temperature (T{sub C}) above room temperature. For ZnS thin film with clean (111) surfaces, the spins on each surface are ferromagnetically coupled but antiferromagnetically coupled between two surfaces, which is attributable to the internal electric field between the two polar (111) surfaces of the thin film. Only surface Zn vacancies can yield local magnetic moment for ZnS thin film and quantum dot, which is ascribed to the surface effect. Interactions between magnetic moments on S-3p states induced by hole-doping are responsible for the ferromagnetism observed experimentally in various ZnS samples.
Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins, antiphase, and domain boundaries
Khan, S. N. [Ames Laboratory] [Ames Laboratory; Alam, A. [Ames Laboratory] [Ames Laboratory; Johnson, Duane D. [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign
2013-01-01
In BaFe2As2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity.We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22 210 m Jm 2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries making a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should be considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower
Magnetic order and electronic structure of 5d3 double perovskite Sr2ScOsO6
Calder, Stuart A; Morrow, Ryan; Taylor, Alice E; Lumsden, Mark D; Woodward, Patrick; Christianson, Andrew D; Singh, David J
2015-01-01
The magnetic susceptibility, crystal and magnetic structures, and electronic structure of double perovskite Sr2ScOsO6 are reported. Using both neutron and x-ray powder diffraction we find that the crystal structure is monoclinic P21/n from 3.5 to 300 K. Magnetization measurements indicate an antiferromagnetic transition at TN=92 K, one of the highest transition temperatures of any double perovskite hosting only one magnetic ion. Type I antiferromagnetic order is determined by neutron powder diffraction, with an Os moment of only 1.6(1) muB, close to half the spin-only value for a crystal field split 5d electron state with t2g^3 ground state. Density functional calculations show that this reduction is largely the result of strong Os-O hybridization, with spin-orbit coupling responsible for only a ~0.1 muB reduction in the moment.
THIRD MOMENTS AND THE ROLE OF ANISOTROPY FROM VELOCITY SHEAR IN THE SOLAR WIND
Stawarz, Joshua E.; Vasquez, Bernard J.; Smith, Charles W.; Forman, Miriam A.; Klewicki, Joseph E-mail: Bernie.Vasquez@unh.edu E-mail: Miriam.Forman@sunysb.edu
2011-07-20
We have extended the recent analyses of magnetohydrodynamic third moments as they relate to the turbulent energy cascade in the solar wind to consider the effects of large-scale shear flows. Moments from a large set of Advanced Composition Explorer data have been taken, and chosen data intervals are characterized by the rate of change in the solar wind speed. Mean dissipation rates are obtained in accordance with the predictions of homogeneous shear-driven turbulence. Agreement with predictions is best made for rarefaction intervals where the solar wind speed is decreasing with time. For decreasing speed intervals, we find that the dissipation rates increase with increasing shear magnitude and that the shear-induced fluctuation anisotropy is consistent with a relatively small amount.
Willert, Jeffrey Park, H.
2014-11-01
In this article we explore the possibility of replacing Standard Monte Carlo (SMC) transport sweeps within a Moment-Based Accelerated Thermal Radiative Transfer (TRT) algorithm with a Residual Monte Carlo (RMC) formulation. Previous Moment-Based Accelerated TRT implementations have encountered trouble when stochastic noise from SMC transport sweeps accumulates over several iterations and pollutes the low-order system. With RMC we hope to significantly lower the build-up of statistical error at a much lower cost. First, we display encouraging results for a zero-dimensional test problem. Then, we demonstrate that we can achieve a lower degree of error in two one-dimensional test problems by employing an RMC transport sweep with multiple orders of magnitude fewer particles per sweep. We find that by reformulating the high-order problem, we can compute more accurate solutions at a fraction of the cost.
Chakrabarti, Sudipto; Pal, Amlan J.
2014-01-06
We form a monolayer of magnetic organic molecules and immobilize their moments pointing either upwards or downwards with respect to the substrate through an electrostatic-binding process. Such a monolayer is probed with a scanning tunneling microscope tip, which is also magnetized with the magnetization vector pointing towards (or away from) apex of the tip. From spin-polarized tunneling current, we show that the current was higher when magnetization vectors of the tip and molecules were parallel as compared to that when they were anti-parallel. We show that for tunneling of spin-polarized electrons, aligned organic molecular magnets can act as a valve.
Measurement of the Moments of the Hadronic Invariant Mass Distribution in Semileptonic Beta Decays
Acosta, D.; The CDF Collaboration TITLE=Measuremen
2005-03-13
Using 180 pb{sup -1} of data collected with the CDF II detector at the Tevatron, we measure the first two moments of the hadronic invariant mass-squared distribution in charmed semileptonic B decays. From these we determine the non-perturbative Heavy Quark Effective Theory parameters {Lambda} and {lambda}{sub 1} used to relate the B meson semileptonic branching ratio to the CKM matrix element |V{sub cb}|.
Fedorov, Dmitry A.; Varganov, Sergey A.; Derevianko, Andrei
2014-05-14
We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X{sup 1}?{sup +} electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-? basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-? quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm{sup ?1} for LiNa and by no more than 114 cm{sup ?1} for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm{sup ?1}, and the discrepancies for the anharmonic correction are less than 0.1 cm{sup ?1}. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrdinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.
Torque for electron spin induced by electron permanent electric dipole moment
Senami, Masato E-mail: akitomo@scl.kyoto-u.ac.jp; Fukuda, Masahiro E-mail: akitomo@scl.kyoto-u.ac.jp; Ogiso, Yoji E-mail: akitomo@scl.kyoto-u.ac.jp; Tachibana, Akitomo E-mail: akitomo@scl.kyoto-u.ac.jp
2014-10-06
The spin torque of the electron is studied in relation to the electric dipole moment (EDM) of the electron. The spin dynamics is known to be given by the spin torque and the zeta force in quantum field theory. The effect of the EDM on the torque of the spin brings a new term in the equation of motion of the spin. We study this effect for a solution of the Dirac equation with electromagnetic field.
Multi-material incompressible flow simulation using the moment-of-fluid method
Garimella, R V; Schofield, S P; Lowrie, R B; Swartz, B K; Christon, M A; Dyadechko, V
2009-01-01
The Moment-of-Fluid interface reconstruction technique is implemented in a second order accurate, unstructured finite element variable density incompressible Navier-Stokes solver. For flows with multiple materials, MOF significantly outperforms existing first and second order interface reconstruction techniques. For two material flows, the performance of MOF is similar to other interface reconstruction techniques. For strongly driven bouyant flows, the errors in the flow solution dominate and all the interface reconstruction techniques perform similarly.
Magnetization of neutron matter
Bigdeli, M.
2011-09-21
In this paper, we compute magnetization of neutron matter at strong magnetic field using the lowest order constrained variational (LOCV) technique.
A novel precision measurement of muon g - 2 and EDM at J-PARC
Saito, Naohito; Collaboration: J-PARC g-2 /EDM Collaboration
2012-07-27
We propose a new experiment to measure the muon anomalous magnetic moment g - 2 and electric dipole moment with a novel technique called ultra-slow muon beam at J-PARC. Precision measurement of these dipole moments plays an important role in fundamental physics to search for a new physics beynd standard model. The concept of the experiment and its current status is described.
Anomalous pressure dependence of thermal conductivities of large mass ratio compounds
Lindsay, Lucas R; Broido, David; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom
2015-01-01
The lattice thermal conductivities ( ) of binary compound materials are examined as a function of hydrostatic pressure, P, using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of . This anomalous P dependence of arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with small mass ratios. This work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.
Anomalous behavior of the Pd/D system. Final report, June 1989-August 1993
Szpak, S.J.; Mosier-Boss, P.A.
1995-09-01
In a news conference on 23 March 1989, Martin Fleischmann and Stanley Pons announced that nuclear events could be initiated by the electrochemical compression of deuterium into a palladium lattice. When researchers around the world tried to reproduce the effects described by Pons and Fleischmann in their laboratories, the results were mixed. The nature of the announcement and the Irreproducibility of the effect divided the scientific community into believers and skeptics, indicating religious fervor rather than scientific reasoning. Shortly after the Fleischmann-Pons announcement, a program at NRaD investigated anomalous effects in the Pd/D system. The NRaD program investigated the Pd/D system using standard electrochemical techniques to determine conditions for achieving high Pd/D loadings. Metallurgical aspects of the Pd/D system and the effect of additives were also examined. Tritium content in the gas/liquid phases and radiation emissions were monitored during electrolysis. This report summarizes the investigation results.
Sydorenko, D.; Kaganovich, I. D.; Chen, L.; Ventzek, P. L. G.
2015-12-15
Generation of anomalously energetic suprathermal electrons was observed in simulation of a high-voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. The energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The waves with short wavelength near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons in similar discharges.
Search for anomalous production of multiple leptons in association with $W$ and $Z$ bosons at CDF
Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M
2012-02-01
This paper presents a search for anomalous production of multiple low-energy leptons in association with a W or Z boson using events collected at the CDF experiment corresponding to 5.1 fb{sup -1} of integrated luminosity. This search is sensitive to a wide range of topologies with low-momentum leptons, including those with the leptons near one another. The observed rates of production of additional electrons and muons are compared with the standard model predictions. No indications of phenomena beyond the standard model are found. A 95% confidence level limit is presented on the production cross section for a benchmark model of supersymmetric hidden-valley Higgs production. Particle identification efficiencies are also provided to enable the calculation of limits on additional models.
Extrinsic anomalous Hall effect in epitaxial Mn{sub 4}N films
Meng, M.; Wu, S. X. Ren, L. Z.; Zhou, W. Q.; Wang, Y. J.; Wang, G. L.; Li, S. W.
2015-01-19
Anomalous Hall effect (AHE) in ferrimagnetic Mn{sub 4}N epitaxial films grown by molecular-beam epitaxy is investigated. The longitudinal conductivity σ{sub xx} is within the superclean regime, indicating Mn{sub 4}N is a highly conducting material. We further demonstrate that the AHE signal in 40-nm-thick films is mainly due to the extrinsic contributions based on the analysis fitted by ρ{sub AH}=a′ρ{sub xx0}+bρ{sub xx}{sup 2} and σ{sub AH}∝σ{sub xx}. Our study not only provide a strategy for further theoretical work on antiperovskite manganese nitrides but also shed promising light on utilizing their extrinsic AHE to fabricate spintronic devices.
Anomalous pressure dependence of thermal conductivities of large mass ratio compounds
Lindsay, Lucas R; Broido, David; Carrete, Jesus; Mingo, Natalio; Reinecke, Tom
2015-01-01
The lattice thermal conductivities ( ) of binary compound materials are examined as a function of hydrostatic pressure, P, using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of . This anomalous P dependence of arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with small massmore » ratios. This work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.« less
On the explanation and calculation of anomalous reflood hydrodynamics in large PWR cores
Rodriguez, S.E.
1985-01-01
Reflood hydrodynamics from large-scale (1:20) test facilities in Japan have yielded apparently anomalous behavior relative to FLECHT tests. Namely, even at reflooding rates below one inch per second, very large liquid volume fractions (10-15%) exist above the quench fronts shortly after flood begins; thus cladding temperature excursions are terminated early in the reflood phase. This paper discusses an explanation for this behavior: liquid films on the core's unheated rods. The experimental findings are shown to be correctly simulated with a new four-field (vapor, films, droplets) version of the best-estimate TRAC-PF1 computer code, TRAC-FF. These experimental and analytical findings have important implications for PWR large-break LOCA licensing.
Moment-Based Probability Modeling and Extreme Response Estimation, The FITS Routine Version 1.2
MANUEL,LANCE; KASHEF,TINA; WINTERSTEIN,STEVEN R.
1999-11-01
This report documents the use of the FITS routine, which provides automated fits of various analytical, commonly used probability models from input data. It is intended to complement the previously distributed FITTING routine documented in RMS Report 14 (Winterstein et al., 1994), which implements relatively complex four-moment distribution models whose parameters are fit with numerical optimization routines. Although these four-moment fits can be quite useful and faithful to the observed data, their complexity can make them difficult to automate within standard fitting algorithms. In contrast, FITS provides more robust (lower moment) fits of simpler, more conventional distribution forms. For each database of interest, the routine estimates the distribution of annual maximum response based on the data values and the duration, T, over which they were recorded. To focus on the upper tails of interest, the user can also supply an arbitrary lower-bound threshold, {chi}{sub low}, above which a shifted distribution model--exponential or Weibull--is fit.
Pigarov, A Y; West, W; Soukhanovskii, V; Rognlien, T; Maingi, R; Lipschultz, B; Krasheninnikov, S; LaBombard, B
2003-11-25
Fast intermittent transport has been observed in the scrape-off layer (SOL) of major tokamaks including Alcator C-Mod, DIII-D, and NSTX. This kind of transport is not diffusive but rather convective. It strongly increases plasma flux to the chamber walls and enhances the recycling of neutral particles in the main chamber. We discuss anomalous cross-field convection (ACFC) model for impurity and main plasma ions and its relation to intermittent transport events, i.e. plasma density blobs and holes in the SOL. Along with plasma diffusivity coefficients, our transport model introduces time-independent anomalous cross-field convective velocity. In the discharge modelling, diffusivity coefficients and ACFC velocity profiles are adjusted to match a set of representative experimental data. We use this model in the edge plasma physics code UEDGE to simulate the multi-fluid two-dimensional transport for these three tokamaks. We present simulation results suggesting the dominance of anomalous convection in the far SOL transport. These results are consistent with the hypothesis that the chamber wall is an important source of impurities and that different impurity charge states have different directions of anomalous convective velocity.
Grinstein, S.; Mostafa, M.; Piegaia, R.; Alves, G.A.; Carvalho, W.; da Motta, H.; Santoro, A.; Lima, J.G.; Oguri, V.; Mao, H.S.; Gomez, B.; Mooney, P.; Negret, J.P.; Hoeneisen, B.; Parua, N.; Ducros, Y.; Shivpuri, R.K.; Acharya, B.S.; Banerjee, S.; Dugad, S.R.; Gupta, A.; Krishnaswamy, M.R.; Mondal, N.K.; Narasimham, V.S.; Shankar, H.C.; Park, Y.M.; Choi, S.; Kim, S.K.; Castilla-Valdez, H.; Gonzalez Solis, J.L.; Hernandez-Montoya, R.; Magana-Mendoza, L.; Sanchez-Hernandez, A.; Pawlik, B.; Akimov, V.; Gavrilov, V.; Kuleshov, S.; Belyaev, A.; Dudko, L.V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Manankov, V.; Merkin, M.; Shabalina, E.; Abramov, V.; Babintsev, V.V.; Bezzubov, V.A.; Bojko, N.I.; Burtovoi, V.S.; Chekulaev, S.V.; Denisov, S.P.; Dyshkant, A.; Eroshin, O.V.; Evdokimov, V.N.; Galyaev, A.N.; Goncharov, P.I.; Gurzhiev, S.N.; Kostritskiy, A.V.; Kozelov, A.V.; Kozlovsky, E.A.; Mayorov, A.A.; Bertram, I.
1999-10-01
Evidence of anomalous WW and WZ production was sought in p{bar p} collisions at a center-of-mass energy of {radical} (s) =1.8&hthinsp;TeV. The final states WW(WZ){r_arrow}{mu}{nu} jet jet+X, WZ{r_arrow}{mu}{nu}ee+X and WZ{r_arrow}e{nu}ee+X were studied using a data sample corresponding to an integrated luminosity of approximately 90&hthinsp;pb{sup {minus}1}. No evidence of anomalous diboson production was found. Limits were set on anomalous WW{gamma} and WWZ couplings and were combined with our previous results. The combined 95{percent} confidence level anomalous coupling limits for {Lambda}=2&hthinsp;TeV are {minus}0.25{le}{Delta}{kappa}{le}0.39 ({lambda}=0) and {minus}0.18{le}{lambda}{le}0.19 ({Delta}{kappa}=0), assuming the WW{gamma} couplings are equal to the WWZ couplings. {copyright} {ital 1999} {ital The American Physical Society}
Zolotovskii, Igor' O; Korobko, D A; Okhotnikov, Oleg G; Sysolyatin, A A; Fotiadi, A A
2012-09-30
We examine conditions for the formation and amplification of frequency-modulated soliton-like pulses in longitudinally inhomogeneous, anomalous group velocity dispersion fibres. The group velocity dispersion profiles necessary for the existence and amplification of such pulses in active fibres are identified and the pulse duration and chirp are determined as functions of propagation distance. (optical fibres, lasers and amplifiers. properties and applications)
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hussein, Khalid
2012-02-01
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Archuleta Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4144691.792023 m Left: 285531.662851 m Right: 348694.182686 m Bottom: 4097005.210304 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hussein, Khalid
2012-02-01
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hussein, Khalid
2012-02-01
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Garfield Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4441550.552290 m Left: 271445.053363 m Right: 359825.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hussein, Khalid
2012-02-01
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Hussein, Khalid
2012-02-01
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Routt Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2σ were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359681.975000 m Bottom: 4447251.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS
X-ray magnetic circular dichroism study of epitaxial magnetite ultrathin film on MgO(100)
Liu, W. Q.; Xu, Y. B. E-mail: rzhang@nju.edu.cn; Song, M. Y.; Lin, J. G.; Maltby, N. J.; Li, S. P.; Samant, M. G.; Parkin, S. S. P.; Bencok, P.; Steadman, Paul; Dobrynin, Alexey; Zhang, R. E-mail: rzhang@nju.edu.cn
2015-05-07
The spin and orbital magnetic moments of the Fe{sub 3}O{sub 4} epitaxial ultrathin film synthesized by plasma assisted simultaneous oxidization on MgO(100) have been studied with X-ray magnetic circular dichroism. The ultrathin film retains a rather large total magnetic moment, i.e., (2.73 ± 0.15) μ{sub B}/f.u., which is ∼70% of that for the bulk-like Fe{sub 3}O{sub 4}. A significant unquenched orbital moment up to 0.54 ± 0.05 μ{sub B}/f.u. was observed, which could come from the symmetry breaking at the Fe{sub 3}O{sub 4}/MgO interface. Such sizable orbital moment will add capacities to the Fe{sub 3}O{sub 4}-based spintronics devices in the magnetization reversal by the electric field.
McCann, J.A.; Jones, R.H.
1961-08-15
A magnetic densitometer for locating defects and metallic inclusions in materials is described. The apparatus consists of two primary coils connected in series opposition and adapted te be placed in inductive relation to the material under test, a source of constant frequency alternating current coupled across the primary coil combination, a pick-up coil disposed in symmetrical inductive relationship with said primary coils, a phase-shifter coupled to the output of the energizing source. The output of the phase-shifter is coupled in series with the pick-up coil. An amplifier is provided selective to the third harmonic of the energizing source frequency. The series combination of the pick-up coil and the phase-shifter output are connected across the input of the amplifier, and an amplitude comparitor is coupled to the output of the amplifier and the energizing source for comparing the instantaneous amplitude of the amplifier output and the instantaneous output of the energizing source and producing an output proportional to the difference in amplitude. A recorder is coupled to the output of the amplitude comparison means to give an indication of the amplitude difference, thereby providing a permanent presentation of the character of the changes in characteristics exhibited by the material under test. (AEC)
Nanoscale Magnetic Structure of Ferromagnet/Antiferromagnet Manganite Multilayers
Niebieskikwiat, D.; Hueso, L. E.; Borchers, J. A.; Mathur, N. D.; Salamon, M. B.
2007-12-14
We use polarized neutron reflectometry and dc magnetometry to obtain a comprehensive picture of the magnetic structure of a series of La{sub 2/3}Sr{sub 1/3}MnO{sub 3}/Pr{sub 2/3}Ca{sub 1/3}MnO{sub 3} (LSMO/PCMO) superlattices, with varying thickness of the antiferromagnetic (AFM) PCMO layers (0{<=}t{sub A}{<=}7.6 nm). While LSMO presents a few magnetically frustrated monolayers at the interfaces with PCMO, in the latter a magnetic contribution due to ferromagnetic (FM) inclusions within the AFM matrix is maximized at t{sub A}{approx}3 nm. This enhancement of FM moment occurs at the matching between layer thickness and cluster size, implying the possibility of tuning phase separation by imposing appropriate geometrical constraints which favor the accommodation of FM nanoclusters within the ''non-FM'' material.
CaMn_{2}Al_{10}: Itinerant Mn magnetism on the verge of magnetic order
Steinke, L.; Simonson, J. W.; Yin, W. -G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.
2015-07-24
We report the discovery of CaMn_{2}Al_{10}, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83_{μB}/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ_{[010]}/χ_{[001]} ≈ 3.5. A strong power-law divergence χ(T) ~ T^{–1.2} below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature T_{C} ~ 0. Our experiments indicate that CaMn_{2}Al_{10} is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.
Structure symmetry determination and magnetic evolution in Sr_{2}Ir_{1–x}Rh_{x}O_{4}
Ye, Feng; Wang, Xiaoping; Hoffmann, Christina; Wang, Jinchen; Chi, Songxue; Matsuda, Masaaki; Chakoumakos, Bryan C.; Fernandez-Baca, Jaime A.; Cao, Gang
2015-11-23
We use single-crystal neutron diffraction to determine the crystal structure symmetry and to study the magnetic evolution in the rhodium doped iridates Sr_{2}Ir_{1–x}Rh_{x}O_{4} (0 ≤ x ≤ 0.16). Throughout this doping range, the crystal structure retains a tetragonal symmetry (space group I4_{1}/a) with two distinct magnetic Ir sites in the unit cell forming staggered IrO_{6} rotation. Upon Rh doping, the magnetic order is suppressed and the magnetic moment of Ir4+ is reduced from 0.21 μ_{B}/Ir for x = 0 to 0.18 μ_{B}/Ir for x = 0.12. As a result, the magnetic structure at x = 0.12 is different from that of the parent compound while the moments remain in the basal plane.
Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.
2016-07-05
A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
McElfresh, Michael W.;
2004-12-30
The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.
Electronic structure and magnetic properties of RuFe{sub 3}N nitride
Santos, A.V. dos; Kuhnen, C.A.
2009-11-15
Self-consistent band structure calculations were performed on nitride RuFe{sub 3}N in order to investigate its magnetic and ground state properties. The Linear Muffin-Tin Orbital (LMTO) method was employed and calculations were performed at several lattice parameters so as to obtain the RuFe{sub 3}N equilibrium volume. Nonmagnetic and ferromagnetic LMTO calculations have shown that the RuFe{sub 3}N stable stage is ferromagnetic with constant lattice equilibrium of 7.2502 atomic units (a.u.). At equilibrium volume the LMTO calculations have given magnetic moments of 1.25 and 1.63 mu{sub B} at Ru and Fe sites, respectively, and no magnetic moment at N sites. The analysis of states density at equilibrium volume as well as the results for charge transfer illustrates why this ruthenium nitride is ferromagnetic. The LMTO calculations anticipate that the magnetic moment, the hyperfine field (the Fermi contact) and the isomer shift show a strong dependence on the lattice spacing. - Graphical Abstract: Total energy curves, versus lattice spacing for the RuFe{sub 3}N nitride. It is observed an energy difference between ferromagnetic and paramagnetic states, which provides high critic pressure.
Magnetism in LithiumOxygen Discharge Product
Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil
2013-05-13
Nonaqueous lithiumoxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithiumoxygen batteries. We demonstrate that the major discharge product formed in the lithiumoxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.
Recycling Magnets | Jefferson Lab
U.S. Department of Energy (DOE) all webpages (Extended Search)
Recycling Magnets Recycling Magnets July 15, 2013 The cost of a nuclear or particle physics experiment can be enormous, several hundred million dollars for the Large Hadron Collider Experiments, ATLAS and CMS at CERN, several tens of millions of dollars for an experiment like our GlueX experiment in Hall D, being built as part of our upgrade project. Among the expensive components of many experiments is a large magnet or sometimes more than one magnet. Sometimes the magnets have interesting
Zhu, S.; Cai, Y.; Rote, D. M.; Chen, S. S.
1998-01-01
Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.
Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets
2010-10-01
Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.
Electronic and magnetic properties of Si substituted Fe_{3}Ge
Shanavas, Kavungal Veedu; McGuire, Michael A.; Parker, David S.
2015-09-23
Using first principles calculations we studied the effect of Si substitution in the hexagonal Fe_{3}Ge. We find the low temperature magnetic anisotropy in this system to be planar and originating mostly from the spin-orbit coupling in Fe-d states. Reduction of the unitcell volume reduces the in-plane magnetic anisotropy, eventually turning it positive which reorients the magnetic moments to the axial direction. We find that substituting Ge with the smaller Si ions also reduces the anisotropy, potentially enhancing the region of stability of the axial magnetization, which is beneficial for magnetic applications. Thus our experimental measurements on samples of Fe_{3}Ge_{1–x}Si_{x} confirm these predictions and show that substitution of about 6% of the Ge with Si increases by approximately 35 K the temperature range over which anisotropy is uniaxial.
Improved Limit on the Permanent Electric Dipole Moment of {sup 199}Hg
Griffith, W. C.; Swallows, M. D.; Loftus, T. H.; Romalis, M. V.; Heckel, B. R.; Fortson, E. N.
2009-03-13
We report the results of a new experimental search for a permanent electric dipole moment of {sup 199}Hg utilizing a stack of four vapor cells. We find d({sup 199}Hg)=(0.49{+-}1.29{sub stat}{+-}0.76{sub syst})x10{sup -29} e cm, and interpret this as a new upper bound, |d({sup 199}Hg)|<3.1x10{sup -29} e cm (95% C.L.). This result improves our previous {sup 199}Hg limit by a factor of 7, and can be used to set new constraints on CP violation in physics beyond the standard model.
Experimental Evaluation of Beam to Diamond Box Column Connection with Through Plate in Moment Frames
Keshavarzi, Farhad; Torabian, Shahabeddin; Imanpour, Ali; Mirghaderi, Rasoul
2008-07-08
Moment resisting frames with built up section have very enhanced features due to high bending stiffness and strength characteristics in two principal axes and access to column faces for beam to column easy connections. But due to proper transfer of beam stresses to column faces there were always some specific controvertibly issues that how to make the load transfer through and in plane manner in order to mobilize the forces in column faces. Using diamond column instead of box column provide possibility to mobilize the load transfer mechanism in column faces. This section as a column has considerable benefit such as high plastic to elastic section modulus ratio which is an effective factor for force controlled components. Typical connection has no chance to be applied with diamond column.This paper elucidates the seismic behavior of through-plates moment connections to diamond box columns for use in steel moment resisting frames. This connection has a lot of economical benefits such as no need to horizontal continuity plates and satisfying the weak beam--strong column criteria in the connection region. They might serve as panel zone plates as well. According to high shear demand in panel zone of beam to column joint one should use the doublers plates in order to decrease the shear strength demand in this sensitive part of structure but these plates have no possibility to mobilize the load transfer mechanism in column web and transfer them to column flanges. In this type of connection, column faces have effective role in order to decrease the demands on through plate and they are impressive factors for improving the performance of the connection.Experimental analysis was conducted to elucidate the seismic behavior of this connection. The results of Experimental analysis established the effectiveness of the through plate in mitigating local stress concentrations and forming the plastic hinge zone in the beam away from the beam to column interface. The moment
Method of multi-dimensional moment analysis for the characterization of signal peaks
Pfeifer, Kent B; Yelton, William G; Kerr, Dayle R; Bouchier, Francis A
2012-10-23
A method of multi-dimensional moment analysis for the characterization of signal peaks can be used to optimize the operation of an analytical system. With a two-dimensional Peclet analysis, the quality and signal fidelity of peaks in a two-dimensional experimental space can be analyzed and scored. This method is particularly useful in determining optimum operational parameters for an analytical system which requires the automated analysis of large numbers of analyte data peaks. For example, the method can be used to optimize analytical systems including an ion mobility spectrometer that uses a temperature stepped desorption technique for the detection of explosive mixtures.
Das, B. K. Hazarika, P.; Chakraborty, M.; Bandyopadhyay, M.
2014-07-15
A study on the transport of charged particles across a magnetic filter field has been carried out in a double plasma device (DPD) and presented in this manuscript. The DPD is virtually divided into two parts viz. source and target regions by a transverse magnetic field (TMF) which is constructed by inserting strontium ferrite magnets into two stainless steel rectangular tubes. Plasma electrons are magnetized but ions are unmagnetized inside the TMF region. Negative voltages are applied to the TMF tubes in order to reduce the loss of electrons towards them. Plasma is produced in the source region by filament discharge method and allowed to flow towards the target region through this negatively biased TMF. It is observed that in the target region, plasma density can be increased and electron temperature decreased with the help of negatively biased TMF. This observation is beneficial for negative ion source development. Plasma diffusion across the negatively biased TMF follows Bohm or anomalous diffusion process when negative bias voltage is very less. At higher negative bias, diffusion coefficient starts deviating from the Bohm diffusion value, associated with enhanced plasma flow in the target region.
Anomalous temperature dependence of flow stress in a Fe{sub 3}Al alloy
Song, J.H.; Ha, T.K.; Chang, Y.W.
2000-01-01
Iron aluminides have attracted much interest since 1930s when the excellent corrosion resistance was noted in alloys with the composition of more than about 18 at.% Al. These alloys have relatively low material cost, due to the reduced usage of strategic elements like Cr, Mo and Ni, and a lower density than stainless steels. Their tensile strength is also comparable to those of ferritic and austenitic steels. These advantages have led the iron aluminide alloys being considered for many applications in industries needing sulfidation and oxidation resistance (1). However, the poor ductility at ambient temperatures and an abrupt drop in strength above 600 C have limited these alloys for structural applications. In the past years, extensive efforts have been devoted to understanding and improving the metallurgical properties of iron aluminides with the aim of producing more strong, ductile, and corrosion-resistant materials for structural applications. These studies have resulted in significant contributions to the understanding of the fabrication and mechanical properties of iron aluminides. Deformation behavior in iron aluminides is now known to depend on composition, temperature, and the presence or absence of ordered structures. Recent studies have demonstrated that improved engineering ductility of 10--15% can be achieved in wrought Fe{sub 3}Al-based iron aluminide alloys, through the control of composition and microstructure. The effect of strain rate on the deformation behavior of Fe{sub 3}Al alloys, especially on the anomalous temperature dependence of strength is of interest recently and more systematic investigation is now necessitated. Load relaxation test has been generally regarded as a very effective technique to measure the strain rate sensitivity over a wider range of strain rates with very little microstructural changes and has been applied to the plasticity of various rate-sensitive materials. In the present study, the iron aluminide alloys with 27
Kondo-type transport through a quantum dot under magnetic fields
Dong, Bing; Lei, X. L.
2001-06-15
In this paper, we investigate the Kondo correlation effects on linear and nonlinear transport in a quantum dot connected to reservoirs under finite magnetic fields, using the slave-boson mean field approach suggested by Kotliar and Ruckenstein [Phys. Rev. Lett. >57, 1362 (1986)]. A brief comparison between the present formulation and other slave-boson formulation is presented to justify this approach. The numerical results show that the linear conductance near electron-hole symmetry is suppressed by the application of the magnetic fields, but an anomalous enhancement is predicted in the nonsymmetry regime. The effect of external magnetic fields on the nonlinear differential conductances is discussed for the Kondo system. A significant reduction of the peak splitting is observed due to the strong Kondo correlation, which agrees well with experimental data.
Strain and localization effects in InGaAs(N) quantum wells: Tuning the magnetic response
Lopes-Oliveira, V. Herval, L. K. S.; Orsi Gordo, V.; Cesar, D. F.; Godoy, M. P. F. de; Galvão Gobato, Y.; Henini, M.; Khatab, A.; Sadeghi, M.; Wang, S.; Schmidbauer, M.
2014-12-21
We investigated effects of localization and strain on the optical and magneto-optical properties of diluted nitrogen III–V quantum wells theoretically and experimentally. High-resolution x-ray diffraction, photoluminescence (PL), and magneto-PL measurements under high magnetic fields up to 15 T were performed at low temperatures. Bir-Pikus Hamiltonian formalism was used to study the influence of strain, confinement, and localization effects. The circularly polarized magneto-PL was interpreted considering localization aspects in the valence band ground state. An anomalous behavior of the electron-hole pair magnetic shift was observed at low magnetic fields, ascribed to the increase in the exciton reduced mass due to the negative effective mass of the valence band ground state.
Magnetic switch coupling to synchronize magnetic modulators
Reed, K.W.; Kiekel, P.
1999-04-27
Apparatus for synchronizing the output pulses from a pair of magnetic switches is disclosed. An electrically conductive loop is provided between the pair of switches with the loop having windings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself. 13 figs.
Magnetic switch coupling to synchronize magnetic modulators
Reed, Kim W.; Kiekel, Paul
1999-01-01
Apparatus for synchronizing the output pulses from a pair of magnetic switches. An electrically conductive loop is provided between the pair of switches with the loop having windlings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself.
Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)
2006-11-14
A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.
Tuning magnetism of monolayer MoS{sub 2} by doping vacancy and applying strain
Zheng, Huiling; Yang, Baishun; Han, Ruilin; Du, Xiaobo; Yan, Yu; Wang, Dingdi
2014-03-31
In view of important role of inducing and manipulating the magnetism in two-dimensional materials for the development of low-dimensional spintronic devices, the influences of strain on electronic structure and magnetic properties of commonly observed vacancies doped monolayer MoS{sub 2} are investigated using first-principles calculations. It is shown that unstrained V{sub S}, V{sub S2}, and V{sub MoS3} doped monolayer MoS{sub 2} systems are nonmagnetic, while the ground state of unstrained V{sub MoS6} doped system is magnetic and the magnetic moment is contributed mainly by six Mo atoms around V{sub MoS6}. In particular, tensile strain can induce magnetic moments in V{sub S}, V{sub S2}, and V{sub MoS3} doped monolayer MoS{sub 2} due to the breaking of Mo–Mo metallic bonds around the vacancies, while the magnetization induced by V{sub MoS6} can be effectively manipulated by equibiaxial strain due to the change of Mo–Mo metallic bonds around V{sub MoS6} under strains.
Zheng, Rui; Ni, Jun; Chen, Ying
2015-12-28
We have investigated the magnetic properties of silicene doped with Cr and Fe atoms under isotropic and uniaxial tensile strain by the first-principles calculations. We find that Cr and Fe doped silicenes show strain-tunable magnetism. (1) The magnetism of Cr and Fe doped silicenes exhibits sharp transitions from low spin states to high spin states by a small isotropic tensile strain. Specially for Fe doped silicene, a nearly nonmagnetic state changes to a high magnetic state by a small isotropic tensile strain. (2) The magnetic moments of Fe doped silicene also show a sharp jump to ∼2 μ{sub B} at a small threshold of the uniaxial strain, and the magnetic moments of Cr doped silicene increase gradually to ∼4 μ{sub B} with the increase of uniaxial strain. (3) The electronic and magnetic properties of Cr and Fe doped silicenes are sensitive to the magnitude and direction of the external strain. The highly tunable magnetism may be applied in the spintronic devices.
Upper limit to magnetism in LaAIO_{3}/SrTiO_{3} heterostructures
Fitzsimmons, Michael R.; Hengartner, N. W.; Singh, S.; Zhernenkov, M.; Bruno, F. Y.; Santamaria, J.; Brinkman, A.; Huijben, M.; Molegraaf, H.; de la Venta, J.; Schuller, Ivan K.
2012-02-27
In 2004 Ohtomo and Hwang reported unusually high conductivity in LaAl0_{3} and SrTi0_{3} bilayer samples. Since then, metallic conduction, superconductivity, magnetism, and coexistence of superconductivity and ferromagnetism have been attributed to LaAl0_{3}/SrTi0_{3} interfaces. Very recently, two studies have reported large magnetic moments attributed to interfaces from measurement techniques that are unable to distinguish between interfacial and bulk magnetism. Consequently, it is imperative to perform magnetic measurements that by being intrinsically sensitive to interface magnetism are impervious to experimental artifacts suffered by bulk measurements. Using polarized neutron reflectometry we measured the neutron spin dependent reflectivity from four LaAl0_{3}/SrTi0_{3} superlattices. Our results indicate the upper limit for the magnetization averaged over the lateral dimensions of the sample induced by an 11 T magnetic field at 1.7 K is less than 2 G. SQUID magnetometry of the neutron superlattice samples sporadically finds an enhanced moment (consistent with past reports), possibly due to experimental artifacts. These observations set important restrictions on theories which imply a strongly enhanced magnetism at the interface between LaAI0_{3} and SrTi0_{3}.
Zhao, Shijun; Kang, Wei; Xue, Jianming
2014-03-31
Tuning the electronic and magnetic properties of a material through strain engineering is an effective strategy to enhance the performance of electronic and spintronic devices. In this paper, first-principles calculations based on density functional theory are carried out to investigate the electronic and magnetic properties of M{sub 2}C(M = Hf, Nb, Sc, Ta, Ti, V, Zr, known as MXenes) subjected to biaxial symmetric mechanical strains. At the strain-free state, all these MXenes exhibit no spontaneous magnetism except for Ti{sub 2}C and Zr{sub 2}C which show a magnetic moment of 1.92 and 1.25 μ{sub B}/unit, respectively. As the tensile strain increases, the magnetic moments of MXenes are greatly enhanced and a transition from nonmagnetism to ferromagnetism is observed for those nonmagnetic MXenes at zero strains. The most distinct transition is found in Hf{sub 2}C, in which the magnetic moment is elevated to 1.5 μ{sub B}/unit at a strain of 1.80%. We further show that the magnetic properties of Hf{sub 2}C are attributed to the band shift mainly composed of Hf(5d) states.
5f Magnetism--Specific Features And Boundaries
Havela, Ladislav; Maskova, Silvie; Adamska, Anna; Pesicka, J.; Andreev, Alexander V.; Shick, Alexander; Gouder, Thomas; Kim-Ngan, N.-H.; Balogh, Adam G.
2011-06-30
Magnetism of light actinides exhibits fascinating and potentially useful features. One of them is a giant anisotropy of the two-ion type, apparent mostly in U-based systems. Here we demonstrate on the example of U{sub 2}Ni{sub 2}Sn and its hydride the anisotropy switches over the direction of U moments on a very fine scale. The study of amorphous sputter deposited UFe{sub x} films reveals how the Curie temperature can be tuned so as to exceed the room temperature.
Tamper resistant magnetic stripes
Naylor, Richard Brian; Sharp, Donald J.
1999-01-01
This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180.degree. opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40.degree. C., is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable time limits.
Measurement of the anomalous like-sign dimuon charge asymmetry with 9 fb⁻¹ of pp̄ collisions
Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; et al
2011-09-16
We present an updated measurement of the anomalous like-sign dimuon charge asymmetry Absl for semileptonic b-hadron decays in 9.0 fb⁻¹ of pp̄ collisions recorded with the D0 detector at a center-of-mass energy of √s=1.96 TeV at the Fermilab Tevatron collider. We obtain Absl=(-0.787±0.172(stat)±0.093(syst))%. This result differs by 3.9 standard deviations from the prediction of the standard model and provides evidence for anomalously large CP violation in semileptonic neutral B decay. The dependence of the asymmetry on the muon impact parameter is consistent with the hypothesis that it originates from semileptonic b-hadron decays.
Structural, magnetic, and transport properties of sputtered hexagonal MnNiGa thin films
Li, Yueqing; Liu, E. K.; Wu, G. H.; Wang, Wenhong; Liu, Zhongyuan
2014-12-14
We report on a systematical study of the structure, magnetism, and magnetotransport behavior of the hexagonal MnNiGa films deposited on thermally oxidized Si (001) substrates by magnetron sputtering. X-ray diffractions reveal that all the films deposited at different temperatures crystallized in hexagonal Ni{sub 2}In-type structure (space group P6{sub 3}/mmc). Scanning electron microscopy observations show that the surface morphology of the films varies with deposition temperature, and energy dispersive spectroscopy analysis shows compositions of the films remain nearly unchanged, independent of the deposition temperature. Magnetic measurements indicate that all films are ferromagnetic and exhibit a magnetic anisotropy behavior. The magnetoresistance (MR) exhibits a negative temperature- and field-dependent behavior. The possible origin of the negative MR is discussed. Furthermore, we found that the Hall effect is dominated by an anomalous Hall effect (AHE) only due to skew scattering independent of the deposition temperature of films. Moreover, the anomalous Hall resistivity presents a non-monotonously temperature-dependent behavior.
HORIZONTAL BRANCH MORPHOLOGY AND MULTIPLE STELLAR POPULATIONS IN THE ANOMALOUS GLOBULAR CLUSTER M 22
Marino, A. F.; Milone, A. P.; Lind, K. E-mail: milone@iac.es
2013-05-01
M 22 is an anomalous globular cluster that hosts two groups of stars with different metallicity and s-element abundance. The star-to-star light-element variations in both groups, with the presence of individual Na-O and C-N anticorrelations, demonstrates that this Milky Way satellite has experienced a complex star formation history. We have analyzed FLAMES/UVES spectra for seven stars covering a small color interval on the reddest horizontal branch (HB) portion of this cluster and investigated possible relations between the chemical composition of a star and its location along the HB. Our chemical abundance analysis takes into account effects introduced by deviations from the local thermodynamic equilibrium (NLTE effects), which are significant for the measured spectral lines in the atmospheric parameters range spanned by our stars. We find that all the analyzed stars are barium-poor and sodium-poor, thus supporting the idea that the position of a star along the HB is strictly related to the chemical composition, and that the HB morphology is influenced by the presence of different stellar populations.
A Wolcott; V Doyeux; C Nelson; R Gearba; K Lei; K Yager; A dolocan; K Williams; D Nguyen; X Zhu
2011-12-31
The formation of solid thin films from colloidal semiconductor quantum dots (QDs) is often accompanied by red shifts in excitonic transitions, but the mechanisms responsible for the red shifts are under debate. We quantitatively address this issue using optical absorption spectroscopy of two-dimensional (2D) and three-dimensional (3D) arrays of PbSe QDs with controlled inter-QD distance, which was determined by the length of alkanedithiol linking molecules. With decreasing inter-QD distance, the first and second exciton absorption peaks show increasing red shifts. Using thin films consisting of large and isolated QDs embedded in a matrix of small QDs, we determine that a dominant contribution to the observed red shift is due to changes in polarization of the dielectric environment surrounding each QD ({approx}88%), while electronic or transition dipole coupling plays a lesser role. However, the observed red shifts are more than 1 order of magnitude larger than theoretical predictions based on the dielectric polarization effect for spherical QDs. We attribute this anomalously large polarization effect to deviations of the exciton wave functions from eigenfunctions of the idealized spherical quantum well model.
Lee, Hyunbok; Lee, Jeihyun; Yi, Yeonjin; Cho, Sang Wan; Kim, Jeong Won
2015-01-21
Metal phthalocyanines (MPcs) are well known as an efficient hole injection layer (HIL) in organic devices. They possess a low ionization energy, and so the low-lying highest occupied molecular orbital (HOMO) gives a small hole injection barrier from an anode in organic light-emitting diodes. However, in this study, we show that the hole injection characteristics of MPc are not only determined by the HOMO position but also significantly affected by the wave function distribution of the HOMO. We show that even with the HOMO level of a manganese phthalocyanine (MnPc) HIL located between the Fermi level of an indium tin oxide anode and the HOMO level of a N,N?-bis(1-naphthyl)-N,N?-diphenyl-1,1?-biphenyl-4,4?-diamine hole transport layer the device performance with the MnPc HIL is rather deteriorated. This anomalous hole injection deterioration is due to the contracted HOMO wave function, which leads to small intermolecular electronic coupling. The origin of this contraction is the significant contribution of the Mn d-orbital to the MnPc HOMO.
Resonant cavity mode dependence of anomalous and inverse spin Hall effect
Kim, Sang-Il; Seo, Min-Su; Park, Seung-young
2014-05-07
The direct current electric voltage induced by the Inverse Spin Hall Effect (ISHE) and Anomalous Hall Effect (AHE) was investigated in the TE{sub 011} and TE{sub 102} cavities. The ISHE and AHE components were distinguishable through the fitting of the voltage spectrum. The unwanted AHE was minimized by placing the DUT (Device Under Test) at the center of both the TE{sub 011} and TE{sub 102} cavities. The voltage of ISHE in the TE{sub 011} cavity was larger than that in the TE{sub 102} cavity due to the higher quality factor of the former. Despite optimized centering, AHE voltage from TE{sub 011} cavity was also higher. The reason was attributed to the E-field distribution inside the cavity. In the case of the TE{sub 011} cavity, the DUT was easily exposed to the E-field in all directions. Therefore, the parasitic AHE voltage in the TE{sub 102} cavity was less sensitive than that in the TE{sub 011} cavity to decentering problem.
Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2
Das, Pranab Kumar; Di Sante, D.; Vobornik, I.; Fujii, J.; Okuda, T.; Bruyer, E.; Gyenis, A.; Feldman, B. E.; Tao, J.; Ciancio, R.; et al
2016-02-29
The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. We report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbitalmore » degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we also reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.« less
Optimization and large scale computation of an entropy-based moment closure
Hauck, Cory D.; Hill, Judith C.; Garrett, C. Kristopher
2015-09-10
We present computational advances and results in the implementation of an entropy-based moment closure, MN, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as PN, but the computational cost is generally much higher and often prohibitive. Several optimizations are introduced to improve the performance of entropy-based algorithms over previous implementations. These optimizations include the use of GPU acceleration and the exploitation of the mathematical properties of spherical harmonics, which are used asmore » test functions in the moment formulation. To test the emerging high-performance computing paradigm of communication bound simulations, we present timing results at the largest computational scales currently available. Lastly, these results show, in particular, load balancing issues in scaling the MN algorithm that do not appear for the PN algorithm. We also observe that in weak scaling tests, the ratio in time to solution of MN to PN decreases.« less
Optimization and large scale computation of an entropy-based moment closure
Hauck, Cory D.; Hill, Judith C.; Garrett, C. Kristopher
2015-09-10
We present computational advances and results in the implementation of an entropy-based moment closure, M_{N}, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as P_{N}, but the computational cost is generally much higher and often prohibitive. Several optimizations are introduced to improve the performance of entropy-based algorithms over previous implementations. These optimizations include the use of GPU acceleration and the exploitation of the mathematical properties of spherical harmonics, which are used as test functions in the moment formulation. To test the emerging high-performance computing paradigm of communication bound simulations, we present timing results at the largest computational scales currently available. Lastly, these results show, in particular, load balancing issues in scaling the M_{N} algorithm that do not appear for the P_{N} algorithm. We also observe that in weak scaling tests, the ratio in time to solution of M_{N} to P_{N} decreases.
Constraining parity violation in gravity with measurements of neutron-star moments of inertia
Yunes, Nicolas; Psaltis, Dimitrios; Oezel, Feryal; Loeb, Abraham
2010-03-15
Neutron stars are sensitive laboratories for testing general relativity, especially when considering deviations where velocities are relativistic and gravitational fields are strong. One such deviation is described by dynamical, Chern-Simons modified gravity, where the Einstein-Hilbert action is modified through the addition of the gravitational parity-violating Pontryagin density coupled to a field. This four-dimensional effective theory arises naturally both in perturbative and nonperturbative string theory, loop quantum gravity, and generic effective field theory expansions. We calculate here Chern-Simons modifications to the properties and gravitational fields of slowly spinning neutron stars. We find that the Chern-Simons correction affects only the gravitomagnetic sector of the metric to leading order, thus introducing modifications to the moment-of-inertia but not to the mass-radius relation. We show that an observational determination of the moment-of-inertia to an accuracy of 10%, as is expected from near-future observations of the double pulsar, will place a constraint on the Chern-Simons coupling constant of {xi}{sup 1/4} < or approx. 5 km, which is at least three-orders of magnitude stronger than the previous strongest bound.