National Library of Energy BETA

Sample records for analytical development wet

  1. SRL online Analytical Development

    SciTech Connect

    Jenkins, C.W.

    1991-12-31

    The Savannah River Site is operated by the Westinghouse Savannah River Co. for the Department of Energy to produce special nuclear materials for defense. R&D support for site programs is provided by the Savannah River Laboratory, which I represent. The site is known primarily for its nuclear reactors, but actually three fourths of the efforts at the site are devoted to fuel/target fabrication, fuel/target reprocessing, and waste management. All of these operations rely heavily on chemical processes. The site is therefore a large chemical plant. There are then many potential applications for process analytical chemistry at SRS. The Savannah River Laboratory (SRL) has an Analytical Development Section of roughly 65 personnel that perform analyses for R&D efforts at the lab, act as backup to the site Analytical Laboratories Department and develop analytical methods and instruments. I manage a subgroup of the Analytical Development Section called the Process Control & Analyzer Development Group. The Prime mission of this group is to develop online/at-line analytical systems for site applications.

  2. SRL online Analytical Development

    SciTech Connect

    Jenkins, C.W.

    1991-01-01

    The Savannah River Site is operated by the Westinghouse Savannah River Co. for the Department of Energy to produce special nuclear materials for defense. R D support for site programs is provided by the Savannah River Laboratory, which I represent. The site is known primarily for its nuclear reactors, but actually three fourths of the efforts at the site are devoted to fuel/target fabrication, fuel/target reprocessing, and waste management. All of these operations rely heavily on chemical processes. The site is therefore a large chemical plant. There are then many potential applications for process analytical chemistry at SRS. The Savannah River Laboratory (SRL) has an Analytical Development Section of roughly 65 personnel that perform analyses for R D efforts at the lab, act as backup to the site Analytical Laboratories Department and develop analytical methods and instruments. I manage a subgroup of the Analytical Development Section called the Process Control Analyzer Development Group. The Prime mission of this group is to develop online/at-line analytical systems for site applications.

  3. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results ...

  4. Development studies of a novel wet oxidation process

    SciTech Connect

    Rogers, T.W.; Dhooge, P.M.

    1995-10-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. The objective of this project is to develop a novel catalytic wet oxidation process for the treatment of multi-component wastes. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials.

  5. Development of a Wet Logistics System for Bulk Corn Stover

    Energy.gov [DOE] (indexed site)

    a Wet Logistics System for Bulk Corn Stover March 25, 2015 Lynn M. Wendt, William A. Smith, Austin Murphy, and Ian J. Bonner Idaho National Laboratory This presentation does not ...

  6. Analytical Tool Development for Aftertreatment Sub-Systems Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tool Development for Aftertreatment Sub-Systems Integration Analytical Tool Development for Aftertreatment Sub-Systems Integration 2003 DEER Conference Presentation: Detroit Diesel ...

  7. 100-B/C Target Analyte List Development for Soil

    SciTech Connect

    R.W. Ovink

    2010-03-18

    This report documents the process used to identify source area target analytes in support of the 100-B/C remedial investigation/feasibility study addendum to DOE/RL-2008-46. This report also establishes the analyte exclusion criteria applicable for 100-B/C use and the analytical methods needed to analyze the target analytes.

  8. Development of data sets for the validation of analytical instrumentation

    SciTech Connect

    Ellison, S.L.R.; Cox, M.G.; Forbes, A.B.; Butler, B.P.

    1994-05-01

    Analytical chemistry makes use of a wide range of basic statistical operations, including means; standard deviations; significance tests based on assumed distributions; and linear, polynomial, and multivariate regression. The effects of limited numerical precision, poor choice of algorithm, and extreme dynamic range of these common statistical operations are discussed. The effects of incorrect choice of algorithm on calculations of basic statistical parameters and calibration lines are illustrated by examples. Some approaches to validation of such software are considered. The preparation of reference data sets for testing statistical software is discussed. The use of {open_quote}null space{close_quote} methods for producing reference data sets is described, and an example is given. These data sets have well-characterized properties and can be used to test the accuracy of basic statistical procedures. Specific properties that are controlled include the numerical precision required to represent the sets exactly and the analytically correct answers. A further property of some of the data sets under development is the predictability of the deviation from the expected results from poor choice of algorithm. 6 refs., 6 figs., 6 tabs.

  9. 100-K Target Analyte List Development for Soil

    SciTech Connect

    Ovink, R.

    2012-09-18

    This report documents the process used to identify source area target analytes in support of the 100-K Area remedial investigation/feasibility study (RI/FS) addendum to the Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan (DOE/RL-2008-46, Rev. 0).

  10. 100-F Target Analyte List Development for Soil

    SciTech Connect

    Ovink, R.

    2012-09-18

    This report documents the process used to identify source area target analytes in support of the 100-F Area remedial investigation/feasibility study (RI/FS) addendum to the Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan (DOE/RL-2008-46, Rev. 0).

  11. A new analytic-adaptive model for EGS assessment, development and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    management support | Department of Energy A new analytic-adaptive model for EGS assessment, development and management support A new analytic-adaptive model for EGS assessment, development and management support This project will develop an in depth model of EGS systems that will allow engineers, practitioners, and researchers to more accurately predict how new fluid technologies would work in a reservoir. chemistry_danko_analytic_adaptive_model.pdf (509.88 KB) More Documents &

  12. Flammable gas safety program. Analytical methods development: FY 1994 progress report

    SciTech Connect

    Campbell, J.A.; Clauss, S.; Grant, K.; Hoopes, V.; Lerner, B.; Lucke, R.; Mong, G.; Rau, J.; Wahl, K.; Steele, R.

    1994-09-01

    This report describes the status of developing analytical methods to account for the organic components in Hanford waste tanks, with particular focus on tanks assigned to the Flammable Gas Watch List. The methods that have been developed are illustrated by their application to samples obtained from Tank 241-SY-101 (Tank 101-SY).

  13. Development and implementation of an analytical quality assurance plan at the Hanford site

    SciTech Connect

    Kuhl-Klinger, K.J.; Taylor, C.D.; Kawabata, K.K.

    1995-08-01

    The Hanford Analytical Services Quality Assurance Plan (HASQAP) provides a uniform standard for onsite and offsite laboratories performing analytical work in support of Hanford Site environmental cleanup initiatives. The Hanford Site is a nuclear site that originated during World War 11 and has a legacy of environmental clean up issues. In early 1993, the need for and feasibility of developing a quality assurance plan to direct all analytical activities performed to support environmental cleanup initiatives set forth in the Hanford Federal Facility Agreement and Consent Order were discussed. Several group discussions were held and from them came the HASQAP. This document will become the quality assurance guidance document in a Federal Facility Agreement and Consent Order. This paper presents the mechanics involved in developing a quality assurance plan for this scope of activity, including the approach taken to resolve the variability of quality control requirements driven by numerous regulations. It further describes the consensus building process and how the goal of uniting onsite and offsite laboratories as well as inorganic, organic, and radioanalytic disciplines under a common understanding of basic quality control concepts was achieved.

  14. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 1, Executive summary

    SciTech Connect

    Smith, Kevin; Beeghly, Joel H.

    2000-11-30

    About 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the solids for compaction in a landfill also consumes fly ash that otherwise may be marketable. This Executive Summary describes efforts to dewater the magnesium hydroxide and gypsum slurries and then process the solids into a more user friendly and higher value form. To eliminate the cost of solids disposal in its first generation Thiosorbic® system, the Dravo Lime Company developed the ThioClear® process that utilizes a magnesium based absorber liquor to remove S02 with minimal suspended solids. Magnesium enhanced lime is added to an oxidized bleed stream of thickener overflow (TOF) to produce magnesium hydroxide [Mg(OH)2] and gypsum (CaS04 • 2H20), as by-products. This process was demonstrated at the 3 to 5 MW closed loop FGD system pilot plant at the Miami Fort Station of Cinergy, near Cincinnati, Ohio with the help of OCDO Grant Agreement CDO/D-91-6. A similar process strictly for'recovery and reuse of Mg(OH)2 began operation at the Zimmer Station of Cinergy in late 1994 that can produce 900 pounds of Mg(OH)2 per hour and 2,600 pounds of gypsum per hour. This by-product plant, called the Zimmer Slipstream Magnesium Hydroxide Recovery Project Demonstration, was conducted with the help of OCDO Grant Agreement CDO/D-921-004. Full scale ThioClear® plants began operating in 1997 at the 130 MW Applied Energy Services plant, in Monaca, PA, and in year 2000 at the 1,330 MW Allegheny Energy Pleasants Station at St. Marys, WV.

  15. Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass Feedstocks

    SciTech Connect

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Butner, Scott S.; Zacher, Alan H.; Engelhard, Mark H.; Young, James S.; McCready, David E.

    2004-07-01

    Through the use of a metal catalyst, gasification of wet biomass can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In the pressurized-water environment (20 MPa) near-total conversion of the organic structure of biomass to gases has been accomplished in the presence of a ruthenium metal catalyst. The process is essentially steam reforming as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high-levels of methane, as dictated by thermodynamic equilibrium. Biomass trace components cause processing difficulties using the fixed catalyst bed tubular reactor system. Results are described for both bench-scale and scaled-up reactor systems.

  16. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    SciTech Connect

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  17. 100-N Area Decision Unit Target Analyte List Development for Soil

    SciTech Connect

    Ovink, R.

    2012-09-18

    This report documents the process used to identify source area target analytes in support of the 100-N Area remedial investigation/feasibility study (RI/FS) addendum to the Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan (DOE/RL-2008-46, Rev. 0).

  18. Sampling and analytical methods development at the HGP-a generator facility

    SciTech Connect

    Thomas, D.M.

    1982-10-01

    During shakedown operations for the HGP-A generator plant sampling and analytical problems were encountered during the process chemistry monitoring effort. Acid-preservation of brine for cation analysis required the use of nitrous oxideacetylene flame for accurate A-A analysis of calcium. Analysis of gases for carbonate and sulfide was by specific ion electrode and alkalinity titration, respectively. Sulfide caused substantial interferences with the alkalinity method and corrections for sulfide were required. Sulfide also interfered with chloride analyses in the steam phase requiring removal of the sulfide by boiling. Analysis of dissolved silica in the brine was complicated by the presence of colloidal silica which produced erratic analytical results. An accurate evaluation of the hydrogen sulfide abatement system was possible only when the hydrogen sulfide concentrations in the treated and untreated steam were compared with a second component in the steam phase that was unaffected by caustic injection.

  19. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 3, Product development of gypsum, Phase 1

    SciTech Connect

    Smith, Kevin; Beeghly, Joel H.

    2000-11-30

    In the way of background information about 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. The first generation process begun in 1973, called the Thiosorbic® Process, was a technical breakthrough that offered significantly improved operating and performance characteristics compared with competing FGD technologies. The process is described as Flow Diagram "A" in Figure 1. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the sludge solids for compunction in a landfill also consumes fly ash that otherwise may be marketable.

  20. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 2, Product development of magnesium hydroxide, Phase 1

    SciTech Connect

    Smith, Kevin; Beeghly, Joel H.

    2000-11-30

    In the way of background information about 30 electric utility units with a combined total of 15,000 MW utilize magnesium enhanced lime flue gas desulfurization (FGD) systems. The first generation process begun in 1973, called the Thiosorbic® Process, was a technical breakthrough that offered significantly improved operating and performance characteristics compared with competing FGD technologies. The process is described as Flow Diagram "A" in figure 1. A disadvantage of this and other inhibited or natural oxidation wet FGD systems is the capital and operating cost associated with landfill disposal of the calcium sulfite based solids. Fixation to stabilize the sludge solids for compaction in a landfill also consumes fly ash that otherwise may be marketable.

  1. Analytical strategic environmental assessment (ANSEA) developing a new approach to SEA

    SciTech Connect

    Dalkmann, Holger; Herrera, Rodrigo Jiliberto; Bongardt, Daniel

    2004-05-01

    The objective of analytical strategic environmental assessment (ANSEA) is to provide a decision-centred approach to the SEA process. The ANSEA project evolved from the realisation that, in many cases, SEA, as currently practised, is not able to ensure an appropriate integration of environmental values. The focus of SEA is on predicting impacts, but the tool takes no account of the decision-making processes it is trying to influence. At strategic decision-making levels, in turn, it is often difficult to predict impacts with the necessary exactitude. The decision-making sciences could teach some valuable lessons here. Instead of focusing on the quantitative prediction of environmental consequences, the ANSEA approach concentrates on the integration of environmental objectives into decision-making processes. Thus, the ANSEA approach provides a framework for analysing and assessing the decision-making processes of policies, plans and programmes (PPP). To enhance environmental integration into the decision-making process, decision windows (DW) can be identified. The approach is designed to be objective and transparent to ensure that environmental considerations are taken into account, or--from an ex-post perspective--to allow an evaluation of how far environmental considerations have been integrated into the decision-making process under assessment. The paper describes the concepts and the framework of the ANSEA approach and discusses its relation to SEA and the EC Directive.

  2. IN-SITU XRD OF OPERATING LSFC CATHODES: DEVELOPMENT OF A NEW ANALYTICAL CAPABILITY

    SciTech Connect

    Hardy, John S.; Templeton, Jared W.; Stevenson, Jeffry W.

    2012-11-19

    A solid oxide fuel cell (SOFC) research capability has been developed that facilitates measuring the electrochemical performance of an operating SOFC while simultaneously performing x-ray diffraction on its cathode. The evolution of this research tools development is discussed together with a description of the instrumentation used for in-situ x-ray diffraction (XRD) measurements of operating SOFC cathodes. The challenges that were overcome in the process of developing this capability, which included seals and cathode current collectors, are described together with the solutions that are presently being applied to mitigate them.

  3. An analytical framework for capacity development in EIA - The case of Yemen

    SciTech Connect

    Loon, Louise van; Driessen, Peter P.J.; Kolhoff, Arend; Runhaar, Hens A.C.

    2010-02-15

    Most countries worldwide nowadays apply Environmental Assessment (EA) as an ex ante tool to evaluate environmental impacts of policies, plans, programmes, and projects. However, the application and performance of EA differ significantly. Scientific analysis of how EA performs mainly focuses on two levels: the micro (or project) level and the macro (or system) level. Macro level analysis usually focuses on institutions for EA and the organisation of stakeholder interaction in EA. This article proposes a more comprehensive framework for analysing EA systems that combines other approaches with a capacity approach and an explicit consideration of the context in which EA systems are developed and performed. In order to illustrate the value of our framework, we apply it to the Republic of Yemen, where over the last decades many EA capacity development programmes have been executed; however, EA performance has not substantially improved. The Yemen case study illustrates that the capacity development approach allows an understanding of the historical process, the stakeholders, the knowledge component, and the material and technical aspects of EA, but perhaps more important is a systemic understanding of the outcomes: problems are not isolated, but influence and even maintain each other. In addition, by taking into account the context characteristics, our framework allows for the assessment of the feasibility of capacity development programmes that aim at improving EA system performance.

  4. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Madhava Syamlal; Maxwell Osawe; Stephen Zitney; Lewis Collins; David Sloan; Woodrow Fiveland; Frank Joop; Philip Simon; K. Joseph Cleetus

    2005-04-01

    To accelerate the development of advanced power plants, DOE's Vision 21 program identified the need for an integrated suite of software tools that could be used to simulate and visualize new plant concepts. Existing process simulation software did not meet this objective of virtual-plant simulation. Sophisticated models of many individual equipment items are available; however, a seamless coupling capability that would integrate the advanced equipment (component) models to the process (system) simulation software remained to be developed. The inability to use models in an integrated manner causes knowledge loss (e.g., knowledge captured in detailed equipment models is usually not available in process simulation) and modeling inconsistencies (e.g., physical properties and reaction kinetics data in different models are not the same). A team consisting of Fluent Inc., ALSTOM Power Inc., Aspen Technology Inc., Intergraph Corporation, and West Virginia University, in collaboration with the National Energy Technology Laboratory (NETL), addressed this challenge in a project performed over the period from October 2000 through December 2004. In this project the integration of the cycle analysis software was based on widely used commercial software: Aspen Plus{reg_sign} for process simulation and FLUENT{reg_sign} for computational fluid dynamics (CFD) modeling of equipment items. The integration software was designed to also include custom (in-house, proprietary, legacy) equipment models that often encapsulate the experience from the many years of designing and operating the equipment. The team adopted CAPE-OPEN (CO) interfaces, the de facto international standard for communication among process models, for exchanging information between software. The software developed in this project is the first demonstration of the use of CO interfaces to link CFD and custom equipment models with process simulators. New interface requirements identified during this project were

  5. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Madhava Syamlal, Ph.D.

    2002-04-01

    A software review meeting was held at Fluent Inc. in Lebanon, NH on January 31-February 1, 2002. The team reviewed the current status of the software and its compliance with the software requirements (Task 2). Work on a fuel cell based power-plant flow sheet that incorporates a reformer CFD model was started. This test case includes more features (multiple ports, temperature dependent properties) than the mixing tank test case developed earlier and will be used for the further testing of the software (Task 2). The software development plan was finalized (Task 2.7). The design and implementation of a CFD database was commenced. The CFD database would store various models that a process analyst can use in the flowsheet model (Task 2.8). The COM-CORBA Bridge was upgraded to use the recently published version 0.9.3 CAPE-OPEN specifications. Work on transferring reaction kinetics data from Aspen Plus to Fluent was started (Task 2.11). The requirements for extending CAPE-OPEN interfaces in Aspen Plus to transfer temperature dependent properties to Fluent was written and communicated to the Aspen Tech developer of CAPE-OPEN interfaces (Task 2.12). A prototype of low-order model based on the Multiple Regression technique was written. A low-order model is required to speed up the calculations with the integrated model (Task 2.19). The Berkshire Power (Agawam, MA) combined-cycle power plant was selected as the Demonstration Case 2 (Task 3.2). A CFD model of the furnace in Demonstration Case 1 was developed. The furnace model will be incorporated into the flowsheet model already developed for this case (Task 4.1). A new hire joined the Fluent development team for this project. The project management plan was revised based on the software development plan. A presentation on the project status was made at the Clearwater Conference, March 4-7, 2002. The final manuscript for ESCAPE-12 conference was submitted (Task 7.0).

  6. DEVELOPMENT OF ANALYTICAL METHODS FOR DETERMINING SUPPRESSOR CONCENTRATION IN THE MCU NEXT GENERATION SOLVENT (NGS)

    SciTech Connect

    Taylor-Pashow, K.; Fondeur, F.; White, T.; Diprete, D.; Milliken, C.

    2013-07-31

    Savannah River National Laboratory (SRNL) was tasked with identifying and developing at least one, but preferably two methods for quantifying the suppressor in the Next Generation Solvent (NGS) system. The suppressor is a guanidine derivative, N,N',N"-tris(3,7-dimethyloctyl)guanidine (TiDG). A list of 10 possible methods was generated, and screening experiments were performed for 8 of the 10 methods. After completion of the screening experiments, the non-aqueous acid-base titration was determined to be the most promising, and was selected for further development as the primary method. {sup 1}H NMR also showed promising results from the screening experiments, and this method was selected for further development as the secondary method. Other methods, including {sup 36}Cl radiocounting and ion chromatography, also showed promise; however, due to the similarity to the primary method (titration) and the inability to differentiate between TiDG and TOA (tri-n-ocytlamine) in the blended solvent, {sup 1}H NMR was selected over these methods. Analysis of radioactive samples obtained from real waste ESS (extraction, scrub, strip) testing using the titration method showed good results. Based on these results, the titration method was selected as the method of choice for TiDG measurement. {sup 1}H NMR has been selected as the secondary (back-up) method, and additional work is planned to further develop this method and to verify the method using radioactive samples. Procedures for analyzing radioactive samples of both pure NGS and blended solvent were developed and issued for the both methods.

  7. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Madhava Syamlal, Ph.D.

    2002-12-31

    A software design review meeting was conducted (Task 2.0). A CFD Viewer was developed, to allow the process analyst to view CFD results from the process simulator (Task 2.14). Work on developing a CO wrapper for the INDVU code was continued (Task 2.15). The model-edit GUI was modified to allow the user to specify a solution strategy. Enhancements were made to the solution strategy implementation (Task 2.16). Testing of the integrated software was continued and several bug fixes and enhancements were made: ability to expose CFD parameters to the process analyst and support for velocity and pressure inlet boundary conditions (Task 2.21). Work on preparing the release version progressed: Version 0.3 of V21 Controller was released, a global configuration dialog was implemented, and a code review process was initiated (Task 2.24). The calibration of the tube bank CFD model for the RP&L case was completed. While integrating the tube bank CFD model into the flow sheet model, several development requirements were identified and communicated to the developers. The requirements of porting V21 Controller and Configuration Wizard to FLUENT 6.1, turning off the transfer of temperature dependent properties, exposing CFD parameters in Aspen Plus and supporting velocity boundary conditions have been implemented (Task 4.1). An initial grid for the HRSG component has been prepared (Task 4.2). A web-based advisory board meeting was conducted on December 18, 2003 (Task 5.0). Project personnel attended and gave presentations at the Aspen World Conference, October 28-30, 2002; AIChE Annual Meeting, November 8, 2002; and the Vision 21 Simulation meeting at Iowa State University, November 19-20, 2002 (Task 7.0).

  8. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Maxwell Osawe; Madhava Syamlal; Krishna Thotapalli; Stephen Zitney

    2003-07-30

    This is the eleventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40954. The goal of the project is to develop and demonstrate a software framework to enable virtual simulation of Vision 21 plants. During the last quarter much progress was made in software development. The CO wrapper for the integration of Alstom Power proprietary code INDVU was upgraded to CO V1.0.0 and was successfully integrated with an Aspen Plus flowsheet. The V21-Controller and the Fluent CO wrapper were upgraded to CO V.1.0.0, and the testing and debugging of the upgraded V21-Controller was completed. Two Aspen Plus analysis tools (sensitivity analysis and optimization) were successfully tested in an integrated simulation. Extensive testing of the integrated software was continued. A list of suggested enhancements was given to the software development team. Work on software documentation was started. Work on preparing the release version progressed: Several enhancements were made in the V21-Controller and the Fluent Configuration Wizard GUIs. Work to add persistence functionality to the V21-Controller was started. During the last quarter good progress was made in software demonstration. Demo Case 1 simulations were completed. This case, a conventional steam cycle with a CFD model representing the boiler module, was successfully demonstrated at 9 distinct load points from 33 MW to 19 MW. Much progress was made with Demo Case 2. Work on adding a CO wrapper to the HRSGSIM code was completed, and integrated simulations with the HRSGSIM code were conducted. The CFD heat exchanger model for Demo Case 2 was calibrated with HRSGSIM results. An Advisory Board meeting was held in Manchester, NH on May 6 during the Fluent Users Group Meeting. The preparation of the project final report was started.

  9. A New Analytic-Adaptive Model for EGS Assessment, Development and Management Support

    SciTech Connect

    Danko, George L

    2014-05-29

    To increase understanding of the energy extraction capacity of Enhanced Geothermal System(s) (EGS), a numerical model development and application project is completed. The general objective of the project is to develop and apply a new, data-coupled Thermal-Hydrological-Mechanical-Chemical (T-H-M-C) model in which the four internal components can be freely selected from existing simulation software without merging and cross-combining a diverse set of computational codes. Eight tasks are completed during the project period. The results are reported in five publications, an MS thesis, twelve quarterly, and two annual reports to DOE. Two US patents have also been issued during the project period, with one patent application originated prior to the start of the project. The Multiphase Physical Transport Modeling Method and Modeling System (U.S. Patent 8,396,693 B2, 2013), a key element in the GHE sub-model solution, is successfully used for EGS studies. The Geothermal Energy Extraction System and Method" invention (U.S. Patent 8,430,166 B2, 2013) originates from the time of project performance, describing a new fluid flow control solution. The new, coupled T-H-M-C numerical model will help analyzing and designing new, efficient EGS systems.

  10. A New Analytic-Adaptive Model for EGS Assessment, Development and Management Support

    SciTech Connect

    Danko, George L

    2014-05-29

    To increase understanding of the energy extraction capacity of Enhanced Geothermal System(s) (EGS), a numerical model development and application project is completed. The general objective of the project is to develop and apply a new, data-coupled Thermal-Hydrological-Mechanical-Chemical (T-H-M-C) model in which the four internal components can be freely selected from existing simulation software without merging and cross-combining a diverse set of computational codes. Eight tasks are completed during the project period. The results are reported in five publications, an MS thesis, twelve quarterly, and two annual reports to DOE. Two US patents have also been issued during the project period, with one patent application originated prior to the start of the project. The “Multiphase Physical Transport Modeling Method and Modeling System” (U.S. Patent 8,396,693 B2, 2013), a key element in the GHE sub-model solution, is successfully used for EGS studies. The “Geothermal Energy Extraction System and Method" invention (U.S. Patent 8,430,166 B2, 2013) originates from the time of project performance, describing a new fluid flow control solution. The new, coupled T-H-M-C numerical model will help analyzing and designing new, efficient EGS systems.

  11. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Galen Richards, Ph.D.; David Sloan, Ph.D.; Woodrow Fiveland, Ph.D.

    2002-08-31

    The goal of this DOE Vision-21 project work scope is to develop an integrated suite of software tools that can be used to simulate and visualize advanced plant concepts. Existing process simulation software does not meet the DOE's objective of ''virtual simulation'' which is needed to evaluate complex cycles. The overall intent of the DOE is to improve predictive tools for cycle analysis, and to improve the component models that are used in turn to simulate the cycle. Advanced component models are available; however, a generic coupling capability that will link the advanced component models to the cycle simulation software remains to be developed. In the current project, the coupling of the cycle analysis and cycle component simulation software will be based on an existing suite of programs. The challenge is to develop a general-purpose software and communications link between the cycle analysis software Aspen Plus{reg_sign} (marketed by Aspen Technology, Inc.), and specialized component modeling packages, as exemplified by industrial proprietary codes (utilized by ALSTOM Power Inc.) and the FLUENT{trademark} CFD code (provided by Fluent Inc). ALSTOM Power has a task responsibility to select and run a combined cycle test case (designated as Demonstration Case 2) to demonstrate the feasibility of the linkage concept. This report summarizes and documents the unit selected to represent Case 2, a 250 MW, natural gas-fired, combined cycle power plant. An analogous document for Demonstration Case 1 was previously submitted on April 30, 2001. Sufficient information is available from the plant to adequately benchmark the model. Hence, the proposed unit is deemed to be well suited as a demonstration case. However, as the combined cycle plant selected for this study contains recent technology, sensitivity to the commercial implications of this study prevents the release of the plant name and limits the quantity of operating/design information that can be presented. These

  12. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Madhava Syamlal, Ph.D.

    2001-07-10

    The training of a new project team member was completed (Task 2.1). The Software Requirements Document was written (Task 2.3). It was determined that the CAPE-OPEN interfaces are sufficient for the communication between Fluent and V21 Controller (Task 2.4). The AspenPlus-Fluent prototype on allyl/triacetone alcohol production was further developed to assist the GUI and software design tasks. The prototype was also used to analyze the sensitivity of a process simulation result with respect to a parameter in a CFD model embedded in the process simulation. Thus the integration of process simulation and CFD provides additional process insights and enables the engineer to optimize overall process performance (e.g., product purity and yield) with respect to important CFD design and operation parameters (e.g., CSTR shaft speed). A top-level design of the V21 Controller was developed and discussed. A draft version of the Software Design Document was written (Task 2.5/2.6). A preliminary software development plan was outlined. At first the V21 Controller will be developed and tested in two parts--a part that communicates with Fluent and a part that communicates with Aspen Plus. Then the two parts will be combined and tested with the allyl/triacetone alcohol flow sheet simulation. Much progress was made in writing the code for the two parts (Task 2.7). A requirement for pre-configured models was identified and added to the software requirements document (Task 2.9). Alstom Power's INDVU code was ported to the PC platform and calibrated. Aspen Plus model of the RP&L unit was improved to reflect the latest information received on the unit. Thus the preparation for linking INDVU code with the Aspen Plus model of RP&L unit is complete (Task 2.14). A report describing Demo Case 1 was written and submitted to DOE for review and approval (Task 3.1). The first Advisory Board meeting was held at the Fluent Users Group Meeting on June 6th. At the Advisory Board meeting, the project was

  13. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Madhava Syamlal, Ph.D.

    2002-07-01

    A software design review meeting was held May 2-3 in Lebanon, NH. The work on integrating a reformer model based on CFD with a fuel cell flow sheet was completed (Task 2.0). The CFD database design was completed and the database API's finalized. A file -based CFD database was implemented and tested (Task 2.8). The task COM-CORBA Bridge-I was completed. The bridge now has CO interfaces for transferring reaction kinetics information from Aspen Plus to Fluent (Task 2.11). The capability for transferring temperature-dependent physical properties from Aspen Plus to Fluent was implemented (Task 2.12). Work on ''Model Selection'' GUI was completed. This GUI allows the process analyst to select models from the CFD database. Work on ''Model Edit'' GUI was started (Task 2.13). A version of Aspen Plus with the capability for using CO parameters in ''design spec'' analysis has become available. With this version being available, work on adding CO wrapper to INDVU code has been started (Task 2.15). A preliminary design for the Solution Strategy class was developed (Task 2.16). The requirements for transferring pressure data between Aspen Plus and Fluent were defined. The ability to include two CFD models in a flow sheet was successfully tested. The capability to handle multiple inlets and outlets in a CO block was tested (Task 2.17). A preliminary version of the Configuration Wizard, which helps a user to make any Fluent model readable from a process simulator, was developed and tested (Task 2.18). Work on constructing a flow sheet model for Demo Case 2 was started. The work on documenting Demo Case 2 is nearing completion (Task 3.2). A Fluent heat exchanger model was installed and tested. Work on calibrating the heat exchanger model was started (Task 4.1). An advisory board meeting was held in conjunction with the Fluent Users Group Meeting on Monday, June 10, 2002. The meeting minutes and presentations for the advisory board meeting have been posted on the project website

  14. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Madhava Syamlal, Ph.D.

    2001-01-23

    To complete project planning, various project groups conducted several meetings and teleconferences. As a result a draft project management plan was written and circulated. The plan will be finalized in a project kick off meeting to be held on January 16, 2001 in Lebanon, NH, which will be attended by all project participants (Task 1.0). Various project personnel have been trained in the use of Fluent and Aspen Plus, which completes all the training tasks except for Aspen Plus and IDL training for Alstom Power (Task 2.1). A preliminary version of User Requirements Document (preURD) was written. This document will be sent to key users of Aspen Plus and FLUENT and their responses will be collected in January (Task 2.3). A prototype of Fluent integration with Aspen Plus was constructed for understanding the required software design. The development of a general architecture for the integrated software suite has been started (Task 2.6). Invitation letters for participation in an Advisory Board were sent out to several Vision 21 contractors. Their responses will be used to form an Advisory Board in January (Task 5.0). Fluent has awarded subcontracts to Alstom Power, CERC, and Aspen Tech and negotiations with Intergraph are underway. Aspen Plus and FLUENT were installed on a computer at CERC. The design of a project web site was completed, and the site setup was started (Task 7.0).

  15. WET SOLIDS FLOW ENHANCEMENT

    SciTech Connect

    Unknown

    2001-03-25

    The yield locus, tensile strength and fracture mechanisms of wet granular materials were studied. The yield locus of a wet material was shifted to the left of that of the dry specimen by a constant value equal to the compressive isostatic stress due to pendular bridges. for materials with straight yield loci, the shift was computed from the uniaxial tensile strength, either measured in a tensile strength tester or calculated from the correlation, and the angle of internal friction of the material. The predicted shift in the yield loci due to different moisture contents compare well with the measured shift in the yield loci of glass beads, crushed limestone, super D catalyst and Leslie coal. Measurement of the void fraction during the shear testing was critical to obtain the correct tensile strength theoretically or experimentally.

  16. Development of analytical techniques to study H2s poisoning of PEMFCs and components

    SciTech Connect

    Brosha, Eric L; Rockward, Tommy; Uribe, Francisco A; Garzon, Fernando H

    2008-01-01

    Polymer electrolyte membrane fuel cells are sensitive to impurities that may be present in either the oxidizer or fuel. H{sub 2}S, even at the ppb level, will have a dramatic and adverse affect on fuel cell performance. Not only is it important to know a particular material's affinity to adsorb H{sub 2}S, when considering materials for PEMFC applications, issues such as permeation and crossover rates also become extremely important Several experimental methods have been developed to quantify H{sub 2}S adsorption onto surfaces and to quantify H{sub 2}S permeation through Nafion(reg.) membranes using readily available and inexpensive Ag/AgS ion probes. In addition to calculating the H{sub 2}S uptake on commonly used XC-72 carbon supports and PtlXC-72 catalysts, the H{sub 2}S permeability through dry and humidified Nafion(reg.) PEMFC membranes was also studied using these specialized techniques. In each ion probe experiment performed, a sulfide anti-oxidant buffer solution was used to trap and concentrate trace quantities of H{sub 2}S during the course of the measurement. Crossover experiments were conducted for up to 24 hours in order to achieve sulfide ion concentrations high enough to be precisely determined by subsequent titration with Pb(NO{sub 3}){sub 2}. By using these techniques, we have confirmed H{sub 2}S crossover in Nafion(reg.) membranes and have calculated preliminary rates of H{sub 2}S crossover.

  17. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect

    Madhava Syamlal, Ph.D.

    2001-10-20

    DOE Vision 21 project requirements for the support of Global CAPE-OPEN Reaction Kinetics interfaces in Aspen Plus 12 was written (Task 2.4). The software design document was written and posted on the project web site. Intergraph started work on a proof of concept demo of the physical domain software (Task 2.6). The COM-side (Aspen Plus) and CORBA-side (Fluent) pieces of the Vision 21 controller code were written and independently verified. The two pieces of the code were then combined. Debugging of the combined code is underway (Task 2.7). Papers on fuel cell processes were read in preparation for developing an example based on a fuel cell process (Task 2.8). The INDVU code has been used to replace the boiler component in the Aspen Plus flowsheet of the RP&L power plant. The INDVU code receives information from Aspen Plus and iterates on the split backpass LTSH bypass and excess air quantities until the stipulated superheat outlet temperature is satisfied. The combined INDVU-Aspen Plus model has been run for several load conditions (Task 2.14). Work on identifying a second demonstration case involving an advanced power cycle has been started (Task 3.2). Plans for the second Advisory Board meeting in November were made (Task 5.0). Intergraph subcontract was signed and work on a physical domain software demo was started. A second teleconference with Norsk Hydro was conducted to discuss Global CAPE-OPEN standards and issues related to COM-CORBA Bridge (Task 7.0).

  18. Optical wet steam monitor

    DOEpatents

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  19. Optical wet steam monitor

    DOEpatents

    Maxey, Lonnie C.; Simpson, Marc L.

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  20. Quality assurance programs developed and implemented by the US Department of Energy`s Analytical Services Program for environmental restoration and waste management activities

    SciTech Connect

    Lillian, D.; Bottrell, D.

    1993-12-31

    The U.S. Department of Energy`s (DOE`s) Office of Environmental Restoration and Waste Management (EM) has been tasked with addressing environmental contamination and waste problems facing the Department. A key element of any environmental restoration or waste management program is environmental data. An effective and efficient sampling and analysis program is required to generate credible environmental data. The bases for DOE`s EM Analytical Services Program (ASP) are contained in the charter and commitments in Secretary of Energy Notice SEN-13-89, EM program policies and requirements, and commitments to Congress and the Office of Inspector General (IG). The Congressional commitment by DOE to develop and implement an ASP was in response to concerns raised by the Chairman of the Congressional Environment, Energy, and Natural Resources Subcommittee, and the Chairman of the Congressional Oversight and Investigations Subcommittee of the Committee on Energy and Commerce, regarding the production of analytical data. The development and implementation of an ASP also satisfies the IG`s audit report recommendations on environmental analytical support, including development and implementation of a national strategy for acquisition of quality sampling and analytical services. These recommendations were endorsed in Departmental positions, which further emphasize the importance of the ASP to EM`s programs. In September 1990, EM formed the Laboratory Management Division (LMD) in the Office of Technology Development to provide the programmatic direction needed to establish and operate an EM-wide ASP program. In January 1992, LMD issued the {open_quotes}Analytical Services Program Five-Year Plan.{close_quotes} This document described LMD`s strategy to ensure the production of timely, cost-effective, and credible environmental data. This presentation describes the overall LMD Analytical Services Program and, specifically, the various QA programs.

  1. Analytical Chemistry Laboratory Progress Report for FY 1994

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  2. Analytical Technology

    SciTech Connect

    Goheen, Steven C.

    2001-07-01

    Characterizing environmental samples has been exhaustively addressed in the literature for most analytes of environmental concern. One of the weak areas of environmental analytical chemistry is that of radionuclides and samples contaminated with radionuclides. The analysis of samples containing high levels of radionuclides can be far more complex than that of non-radioactive samples. This chapter addresses the analysis of samples with a wide range of radioactivity. The other areas of characterization examined in this chapter are the hazardous components of mixed waste, and special analytes often associated with radioactive materials. Characterizing mixed waste is often similar to characterizing waste components in non-radioactive materials. The largest differences are in associated safety precautions to minimize exposure to dangerous levels of radioactivity. One must attempt to keep radiological dose as low as reasonably achievable (ALARA). This chapter outlines recommended procedures to safely and accurately characterize regulated components of radioactive samples.

  3. Does surface roughness amplify wetting?

    SciTech Connect

    Malijevský, Alexandr

    2014-11-14

    Any solid surface is intrinsically rough on the microscopic scale. In this paper, we study the effect of this roughness on the wetting properties of hydrophilic substrates. Macroscopic arguments, such as those leading to the well-known Wenzel's law, predict that surface roughness should amplify the wetting properties of such adsorbents. We use a fundamental measure density functional theory to demonstrate the opposite effect from roughness for microscopically corrugated surfaces, i.e., wetting is hindered. Based on three independent analyses we show that microscopic surface corrugation increases the wetting temperature or even makes the surface hydrophobic. Since for macroscopically corrugated surfaces the solid texture does indeed amplify wetting there must exist a crossover between two length-scale regimes that are distinguished by opposite response on surface roughening. This demonstrates how deceptive can be efforts to extend the thermodynamical laws beyond their macroscopic territory.

  4. Bearing Analytics

    Energy.gov [DOE]

    Bearing Analytics is a leading-edge equipment monitoring company aimed at pioneering a new era in industrial bearing condition monitoring. Our objective is to consolidate the needs of customers, environment, and manufacturers to improve asset management and energy efficiency capabilities one bearing at a time.

  5. DATABASE AND ANALYTICAL TOOL DEVELOPMENT FOR THE MANAGEMENT OF DATA DERIVED FROM US DOE (NETL) FUNDED FINE PARTICULATE (PM 2.5) RESEARCH

    SciTech Connect

    Robinson P. Khosah; Charles G. Crawford

    2006-02-11

    Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project is being conducted in two phases. Phase One includes the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. Phase Two, which is currently underway, involves the development of a platform for on-line data analysis. Phase Two includes the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now into its forty-second month of development activities.

  6. Database and Analytical Tool Development for the Management of Data Derived from US DOE (NETL) Funded Fine Particulate (PM2.5) Research

    SciTech Connect

    Robinson P. Khosah; Frank T. Alex

    2007-02-11

    Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project is being conducted in two phases. Phase One includes the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. Phase Two, which is currently underway, involves the development of a platform for on-line data analysis. Phase Two includes the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now into its forty-eighth month of development activities.

  7. DATABASE AND ANALYTICAL TOOL DEVELOPMENT FOR THE MANAGEMENT OF DATA DERIVED FROM US DOE (NETL) FUNDED FINE PARTICULATE (PM2.5) RESEARCH

    SciTech Connect

    Robinson P. Khosah; Charles G. Crawford

    2003-03-13

    Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project is being conducted in two phases. Phase 1, which is currently in progress and will take twelve months to complete, will include the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. In Phase 2, which will be completed in the second year of the project, a platform for on-line data analysis will be developed. Phase 2 will include the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now into its sixth month of Phase 1

  8. DATABASE AND ANALYTICAL TOOL DEVELOPMENT FOR THE MANAGEMENT OF DATA DERIVED FROM US DOE (NETL) FUNDED FINE PARTICULATE (PM2.5) RESEARCH

    SciTech Connect

    Robinson P. Khosah; Charles G. Crawford

    2003-09-01

    Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project is being conducted in two phases. Phase 1, which is currently in progress and will take twelve months to complete, will include the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. In Phase 2, which will be completed in the second year of the project, a platform for on-line data analysis will be developed. Phase 2 will include the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now into its eleventh month of Phase 1

  9. Database and Analytical Tool Development for the Management of Data Derived from US DOE (NETL) Funded Fine Particulate (PM2.5) Research

    SciTech Connect

    Robinson Khosah

    2007-07-31

    Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project was conducted in two phases. Phase One included the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. Phase Two involved the development of a platform for on-line data analysis. Phase Two included the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now technically completed.

  10. Industrial Analytics Corporation

    SciTech Connect

    Industrial Analytics Corporation

    2004-01-30

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  11. Competitive Wetting in Active Brazes

    DOE PAGES [OSTI]

    Chandross, Michael Evan

    2014-05-01

    We found that the wetting and spreading of molten filler materials (pure Al, pure Ag, and AgAl alloys) on a Kovar ™ (001) substrate was studied with molecular dynamics simulations. A suite of different simulations was used to understand the effects on spreading rates due to alloying as well as reactions with the substrate. Moreover, the important conclusion is that the presence of Al in the alloy enhances the spreading of Ag, while the Ag inhibits the spreading of Al.

  12. Coal combustion by wet oxidation

    SciTech Connect

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  13. Analytical Services - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contracting Wastren Advantage, Inc. Analytical Services Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Analytical Services HASQARD Focus Group Bechtel National, Inc. Washington River Protection Solutions Analytical Services Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Analytical laboratory analyses

  14. Final Report: Wetted Cathodes for Low-Temperature Aluminum Smelting

    SciTech Connect

    Brown, Craig W

    2002-09-30

    A low-temperature aluminum smelting process being developed differs from the Hall-Heroult process in several significant ways. The low-temperature process employs a more acidic electrolyte than cryolite, an alumina slurry, oxygen-generating metal anodes, and vertically suspended electrodes. Wetted and drained vertical cathodes are crucial to the new process. Such cathodes represent a significant portion of the capital costs projected for the new technology. Although studies exist of wetted cathode technology with Hall-Heoult cells, the differences make such a study desirable with the new process.

  15. Carbon nanotube fiber spun from wetted ribbon

    DOEpatents

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  16. Analytic Power LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Power LLC Place: Woburn, Massachusetts Zip: 01801 Region: Greater Boston Area Sector: Hydrogen Product: Fuel cell developer Website: www.analytic-power.com Coordinates:...

  17. Scientific Achievement Analytical Transmission Electron Microscopy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analytical Transmission Electron Microscopy (TEM) method was developed to determine thickness and wrinkles in electron beam sensitive 2-dimensional (2D) MFI nanosheets....

  18. Multimedia Analysis plus Visual Analytics = Multimedia Analytics

    SciTech Connect

    Chinchor, Nancy; Thomas, James J.; Wong, Pak C.; Christel, Michael; Ribarsky, Martin W.

    2010-10-01

    Multimedia analysis has focused on images, video, and to some extent audio and has made progress in single channels excluding text. Visual analytics has focused on the user interaction with data during the analytic process plus the fundamental mathematics and has continued to treat text as did its precursor, information visualization. The general problem we address in this tutorial is the combining of multimedia analysis and visual analytics to deal with multimedia information gathered from different sources, with different goals or objectives, and containing all media types and combinations in common usage.

  19. Florida Natural Gas, Wet After Lease Separation Proved Reserves...

    Gasoline and Diesel Fuel Update

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Florida Natural Gas, ... Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Florida Natural Gas ...

  20. ,"Florida Nonassociated Natural Gas, Wet After Lease Separation...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Florida Nonassociated Natural Gas, Wet After ... 7:28:27 AM" "Back to Contents","Data 1: Florida Nonassociated Natural Gas, Wet After ...

  1. ,"West Virginia Associated-Dissolved Natural Gas, Wet After Lease...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","West Virginia Associated-Dissolved Natural Gas, Wet ... PM" "Back to Contents","Data 1: West Virginia Associated-Dissolved Natural Gas, Wet ...

  2. ,"Louisiana State Offshore Nonassociated Natural Gas, Wet After...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Louisiana State Offshore Nonassociated Natural Gas, Wet After ... to Contents","Data 1: Louisiana State Offshore Nonassociated Natural Gas, Wet After ...

  3. Louisiana State Offshore Natural Gas, Wet After Lease Separation...

    Energy Information Administration (EIA) (indexed site)

    Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion ... Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore ...

  4. ,"Texas State Offshore Natural Gas, Wet After Lease Separation...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Texas State Offshore Natural Gas, Wet After Lease Separation ... "Back to Contents","Data 1: Texas State Offshore Natural Gas, Wet After Lease Separation ...

  5. ,"Louisiana State Offshore Natural Gas, Wet After Lease Separation...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Louisiana State Offshore Natural Gas, Wet After Lease Separation ... to Contents","Data 1: Louisiana State Offshore Natural Gas, Wet After Lease Separation ...

  6. ,"Texas State Offshore Nonassociated Natural Gas, Wet After Lease...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Texas State Offshore Nonassociated Natural Gas, Wet After ... "Back to Contents","Data 1: Texas State Offshore Nonassociated Natural Gas, Wet After ...

  7. ,"Texas State Offshore Associated-Dissolved Natural Gas, Wet...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Texas State Offshore Associated-Dissolved Natural Gas, Wet ... "Back to Contents","Data 1: Texas State Offshore Associated-Dissolved Natural Gas, Wet ...

  8. MHK Technologies/WET NZ | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to the MHK database homepage WET NZ.jpg Technology Profile Primary Organization Wave Energy Technology New Zealand WET NZ Technology Resource Click here Wave Technology...

  9. ARM: AOS Wet Nephelometer 1 Minute Averages (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: AOS Wet Nephelometer 1 Minute Averages AOS Wet Nephelometer 1 Minute Averages Authors: Scott Smith ; Cynthia Salwen ; Janek Uin ; Gunnar Senum ; Stephen Springston ; ...

  10. New Mexico Associated-Dissolved Natural Gas, Wet After Lease...

    Gasoline and Diesel Fuel Update

    New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves ... Wet After Lease Separation, as of Dec. 31 New Mexico Associated-Dissolved Natural Gas ...

  11. New Mexico Nonassociated Natural Gas, Wet After Lease Separation...

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves (Billion Cubic Feet) New Mexico Nonassociated Natural Gas, Wet After ... Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 New ...

  12. New Mexico Natural Gas, Wet After Lease Separation Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico Natural ... Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 New Mexico Natural ...

  13. New York Nonassociated Natural Gas, Wet After Lease Separation...

    Gasoline and Diesel Fuel Update

    Proved Reserves (Billion Cubic Feet) New York Nonassociated Natural Gas, Wet After ... Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 New ...

  14. Louisiana - North Nonassociated Natural Gas, Wet After Lease...

    Energy Information Administration (EIA) (indexed site)

    North Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Nonassociated Natural Gas, Wet After Lease Separation, Proved ...

  15. ,"North Dakota Nonassociated Natural Gas, Wet After Lease Separation...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","North Dakota Nonassociated Natural Gas, Wet ... 9:32:06 AM" "Back to Contents","Data 1: North Dakota Nonassociated Natural Gas, Wet ...

  16. Louisiana - North Associated-Dissolved Natural Gas, Wet After...

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet ... Wet After Lease Separation, as of Dec. 31 North Louisiana Associated-Dissolved Natural Gas ...

  17. ,"Louisiana - North Nonassociated Natural Gas, Wet After Lease...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Louisiana - North Nonassociated Natural Gas, Wet After Lease ... "Back to Contents","Data 1: Louisiana - North Nonassociated Natural Gas, Wet After Lease ...

  18. North Dakota Nonassociated Natural Gas, Wet After Lease Separation...

    Energy Information Administration (EIA) (indexed site)

    North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves ... Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North ...

  19. ,"Louisiana - North Natural Gas, Wet After Lease Separation Proved...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Louisiana - North Natural Gas, Wet After Lease Separation ... "Back to Contents","Data 1: Louisiana - North Natural Gas, Wet After Lease Separation ...

  20. North Dakota Natural Gas, Wet After Lease Separation Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) North Dakota Natural ... Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North Dakota ...

  1. ,"Louisiana - North Associated-Dissolved Natural Gas, Wet After...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Louisiana - North Associated-Dissolved Natural Gas, Wet ... "Back to Contents","Data 1: Louisiana - North Associated-Dissolved Natural Gas, Wet ...

  2. North Dakota Associated-Dissolved Natural Gas, Wet After Lease...

    Energy Information Administration (EIA) (indexed site)

    North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves ... Wet After Lease Separation, as of Dec. 31 North Dakota Associated-Dissolved Natural Gas ...

  3. Louisiana - North Natural Gas, Wet After Lease Separation Proved...

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Louisiana - North Natural Gas, Wet After Lease Separation ... Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North Louisiana ...

  4. New Mexico - East Natural Gas, Wet After Lease Separation Proved...

    Energy Information Administration (EIA) (indexed site)

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico - East Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade ...

  5. New Mexico - West Associated-Dissolved Natural Gas, Wet After...

    Energy Information Administration (EIA) (indexed site)

    West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease ...

  6. New Mexico - East Nonassociated Natural Gas, Wet After Lease...

    Energy Information Administration (EIA) (indexed site)

    East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, Proved ...

  7. New Mexico - East Associated-Dissolved Natural Gas, Wet After...

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Associated-Dissolved Natural Gas, Wet After Lease Separation, ...

  8. New Mexico - West Natural Gas, Wet After Lease Separation Proved...

    Energy Information Administration (EIA) (indexed site)

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico - West Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade ...

  9. Wetting of a Chemically Heterogeneous Surface

    SciTech Connect

    Frink, L.J.D.; Salinger, A.G.

    1998-11-20

    Theories for inhomogeneous fluids have focused in recent years on wetting, capillary conden- sation, and solvation forces for model systems where the surface(s) is(are) smooth homogeneous parallel plates, cylinders, or spherical drops. Unfortunately natural systems are more likely to be hetaogeneous both in surt%ce shape and surface chemistry. In this paper we discuss the conse- quences of chemical heterogeneity on wetting. Specifically, a 2-dimensional implementation of a nonlocal density functional theory is solved for a striped surface model. Both the strength and range of the heterogeneity are varied. Contact angles are calculated, and phase transitions (both the wetting transition and a local layering transition) are located. The wetting properties of the surface ase shown to be strongly dependent on the nature of the surface heterogeneity. In addition highly ordered nanoscopic phases are found, and the operational limits for formation of ordered or crystalline phases of nanoscopic extent are discussed.

  10. Reducing the atmospheric impact of wet slaking

    SciTech Connect

    B.D. Zubitskii; G.V. Ushakov; B.G. Tryasunov; A.G.Ushakov

    2009-05-15

    Means of reducing the atmospheric emissions due to the wet slaking of coke are considered. One option, investigated here, is to remove residual active silt and organic compounds from the biologically purified wastewater sent for slaking, by coagulation and flocculation.

  11. National Ignition Facility wet weather construction plan

    SciTech Connect

    Kugler, A N

    1998-01-01

    This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

  12. Wet/dry cooling tower and method

    DOEpatents

    Glicksman, Leon R.; Rohsenow, Warren R.

    1981-01-01

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  13. Guide to Savannah River Laboratory Analytical Services Group

    SciTech Connect

    Not Available

    1990-04-01

    The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary.

  14. Wetting state on hydrophilic and hydrophobic micro-textured surfaces: Thermodynamic analysis and X-ray visualization

    SciTech Connect

    Yu, Dong In; Kwak, Ho Jae; Doh, Seung Woo; Park, Hyun Sun Kiyofumi, Moriyama; Kang, Hie Chan; Ahn, Ho Seon; Kim, Moo Hwan

    2015-04-27

    In this study, the wetting state on hydrophobic and hydrophilic micro-textured surfaces was investigated. High spatial resolution synchrotron X-ray radiography was used to overcome the limitations in visualization in previous research and clearly visualize the wetting state for each droplet under quantified surface conditions. Based on thermodynamic characteristics, a theoretical model for wetting state depending on the chemical composition (intrinsic contact angle) and geometrical morphology (roughness ratio) of the surfaces was developed.

  15. Challenges and Opportunities for Wet-Waste Feedstocks - Resource

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Assessment | Department of Energy Challenges and Opportunities for Wet-Waste Feedstocks - Resource Assessment Challenges and Opportunities for Wet-Waste Feedstocks - Resource Assessment Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels from Wet-Waste Feedstocks Challenges and Opportunities for Wet-Waste Feedstocks - Resource Assessment Corinne Drennan, Energy & Environment Directorate, Pacific Northwest National Laboratory

  16. FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS

    SciTech Connect

    D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

    2003-05-07

    Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

  17. Membrane-based wet electrostatic precipitation

    SciTech Connect

    David J. Bayless; Liming Shi; Gregory Kremer; Ben J. Stuart; James Reynolds; John Caine

    2005-06-01

    Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or waterbased) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at First Energy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with {approximately}15% less collecting area. 15 refs., 7 figs., 6 tabs.

  18. Wetted foam liquid fuel ICF target experiments

    DOE PAGES [OSTI]

    Olson, R. E.; Leeper, R. J.; Yi, S. A.; Kline, J. L.; Zylstra, A. B.; Peterson, R. R.; Shah, R.; Braun, T.; Biener, J.; Kozioziemski, B. J.; et al

    2016-05-01

    Here, we are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR~15), but willmore » become less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation.« less

  19. Wet powder seal for gas containment

    DOEpatents

    Stang, L.G.

    1979-08-29

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  20. Wet powder seal for gas containment

    DOEpatents

    Stang, Louis G.

    1982-01-01

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  1. Analytical laboratory quality audits

    SciTech Connect

    Kelley, William D.

    2001-06-11

    Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

  2. Controllable underwater anisotropic oil-wetting

    SciTech Connect

    Yong, Jiale; Chen, Feng Yang, Qing; Farooq, Umar; Bian, Hao; Du, Guangqing; Hou, Xun

    2014-08-18

    This Letter demonstrates a simple method to achieve underwater anisotropic oil-wetting using silicon surfaces with a microgroove array produced by femtosecond laser ablation. The oil contact angles along the direction perpendicular to the grooves are consistently larger than those parallel to the microgroove arrays in water because the oil droplet is restricted by the energy barrier that exists between the non-irradiated domain and the trapped water in the laser-ablated microgrooves. This underwater anisotropic oil-wetting is able to be controlled, and the anisotropy can be tuned from 0° to ∼20° by adjusting the period of the microgroove arrays.

  3. Extreme Scale Visual Analytics

    SciTech Connect

    Steed, Chad A; Potok, Thomas E; Pullum, Laura L; Ramanathan, Arvind; Shipman, Galen M; Thornton, Peter E; Potok, Thomas E

    2013-01-01

    Given the scale and complexity of today s data, visual analytics is rapidly becoming a necessity rather than an option for comprehensive exploratory analysis. In this paper, we provide an overview of three applications of visual analytics for addressing the challenges of analyzing climate, text streams, and biosurveilance data. These systems feature varying levels of interaction and high performance computing technology integration to permit exploratory analysis of large and complex data of global significance.

  4. Coal combustion by wet oxidation. Wet oxidation of coal for energy production: test plan and partial results. Interim report

    SciTech Connect

    Bettinger, J.A.

    1980-07-10

    A test plan has been developed which will provide the data necessary to carry out design and economic studies of a steam generating facility, employing the wet oxidation of coal as a heat source. It is obvious, from the literature search and preliminary testing, that the higher the reaction temperature, the more complete the combustion of coal. However, operation at elevated temperatures and pressures present difficult design problems, and the necessary equipment is costly. Operation under these conditions can only be justified by the higher economic value of high pressure and temperature steam. With a reduction in temperature from 550/sup 0/F (228/sup 0/C) to 450/sup 0/F (232/sup 0/C), the operating pressure is reduced by more than half, thus holding down the overall cost of the system. For this reason, our plan is to study both the enhancement of low temperature wet oxidation of coal, and the higher operating regions. The coal selected for the first portion of this test is an Eastern Appalachian high-volatile-A Bituminous type, from the Upper Clarion seam in Pennsylvania. This coal was selected as being a typical high sulfur, eastern coal. The wet oxidation of coal to produce low pressure steam is a process suited for a high sulfur, low grade, coal. It is not intended that wet oxidation be used in all applications with all types of coals, as it does not appear to be competitive, economically, with conventional combustion, therefore the testing will focus on using high sulfur, low grade coals. In the later portion of testing all the available coals will be tested. In addition, a sample of Minnesota peat will be tested to determine if it also can be used in the process.

  5. WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES

    SciTech Connect

    Jill S. Buckley; Norman R. Morrow; Chris Palmer; Purnendu K. Dasgupta

    2003-02-01

    The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting the onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying

  6. Renewable Analytics | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Analytics Jump to: navigation, search Name: Renewable Analytics Place: San Francisco, California Zip: 94104 Product: San francisco-based provider of public market trading...

  7. Web Applications for Data Analytics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Web Applications for Data Web Applications for Data Analytics Description and Overview NERSC is providing, on an experimental basis, web-based applications for data analytics. This ...

  8. Deriving value from wet and gaseous waste streams.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deriving value from wet and gaseous waste streams. Assessing the real value of "higher value products" Setting realistic assumption and avoid common pitfalls Luca Zullo VerdeNero LLC luca.zullo@verdenero.com 651-270-6478 My technology works great and my feedstock is a no value waste! Thermodynamics and process economics are not very different Reactants Products G1 G2 $2 $1 G<0 $>0 Ea Project development and capital cost It is never too early to think about economics! Feedstock

  9. Heat Transfer Characteristics of the Wet Thermal Insulator with Multi-layer

    SciTech Connect

    Jong-Won Kim; Goon-Cherl Park; Tae-Wan Kim; Doo-Jeong Lee

    2006-07-01

    SMART developed in KAERI is an integral type nuclear cogeneration reactor. SMART uses a nitrogen-filled gas pressurizer so that the steam partial pressure should be minimized and the pressurizer should be under low temperature condition. To sustain the low temperature condition, the wet thermal insulator and pressurizer cooler are installed in the pressurizer. Since the performance of wet thermal insulator is an important parameter to determine the size of the pressurizer cooler, it is important to evaluate the insulation performance of the wet thermal insulator. The wet thermal insulators with 20 layers are installed in SMART. In the design of SMART, the empirical correlation by Adamovich was used to estimate the thermal resistance of the wet thermal insulator. However, the experimental condition and results are not clear so that this correlation should be verified. To analyze the heat transfer characteristics of the multi-layer wet thermal insulator, natural convective heat transport through horizontal and vertical water-filled layers is investigated. Experiments and numerical analyses have been performed to evaluate the heat transfer rates through multi-layer and verify Adamovich correlation. In addition, a new multi-layer correlation was obtained. (authors)

  10. Indian Centre for Wind Energy Technology C WET | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Centre for Wind Energy Technology C WET Jump to: navigation, search Name: Indian Centre for Wind Energy Technology (C-WET) Place: Chennai, India Zip: 601 302 Sector: Wind energy...

  11. ,"Florida Natural Gas, Wet After Lease Separation Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Florida Natural Gas, Wet After Lease Separation ... 7:27:34 AM" "Back to Contents","Data 1: Florida Natural Gas, Wet After Lease Separation ...

  12. ,"Florida Associated-Dissolved Natural Gas, Wet After Lease Separation...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Florida Associated-Dissolved Natural Gas, Wet ... 7:29:19 AM" "Back to Contents","Data 1: Florida Associated-Dissolved Natural Gas, Wet ...

  13. ,"U.S. Federal Offshore Nonassociated Natural Gas, Wet After...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","U.S. Federal Offshore Nonassociated Natural Gas, Wet After ... "Back to Contents","Data 1: U.S. Federal Offshore Nonassociated Natural Gas, Wet After ...

  14. Wet Chemical Compositional and Near IR Spectra Data Sets for...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Find More Like This Return to Search Wet Chemical Compositional and Near IR Spectra Data ... Wet chemical compositional data and NIR spectra exist for the following types of biomass ...

  15. ,"New Mexico - West Natural Gas, Wet After Lease Separation Proved...

    Energy Information Administration (EIA) (indexed site)

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico - West Natural Gas, Wet After Lease ... 8:56:27 AM" "Back to Contents","Data 1: New Mexico - West Natural Gas, Wet After Lease ...

  16. New York Natural Gas, Wet After Lease Separation Proved Reserves...

    Annual Energy Outlook

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New York Natural Gas, ... Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 New York Natural ...

  17. ,"New Mexico Nonassociated Natural Gas, Wet After Lease Separation...

    Energy Information Administration (EIA) (indexed site)

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Nonassociated Natural Gas, Wet After ... 8:57:57 AM" "Back to Contents","Data 1: New Mexico Nonassociated Natural Gas, Wet After ...

  18. ,"New York Nonassociated Natural Gas, Wet After Lease Separation...

    Energy Information Administration (EIA) (indexed site)

    ...","Frequency","Latest Data for" ,"Data 1","New York Nonassociated Natural Gas, Wet After ... 8:57:57 AM" "Back to Contents","Data 1: New York Nonassociated Natural Gas, Wet After ...

  19. ,"New York Natural Gas, Wet After Lease Separation Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    ...","Frequency","Latest Data for" ,"Data 1","New York Natural Gas, Wet After Lease ... 8:56:32 AM" "Back to Contents","Data 1: New York Natural Gas, Wet After Lease ...

  20. ,"New York Associated-Dissolved Natural Gas, Wet After Lease...

    Energy Information Administration (EIA) (indexed site)

    ...","Frequency","Latest Data for" ,"Data 1","New York Associated-Dissolved Natural Gas, Wet ... 8:59:18 AM" "Back to Contents","Data 1: New York Associated-Dissolved Natural Gas, Wet ...

  1. ,"New Mexico Natural Gas, Wet After Lease Separation Proved Reserves...

    Energy Information Administration (EIA) (indexed site)

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas, Wet After Lease ... 8:56:31 AM" "Back to Contents","Data 1: New Mexico Natural Gas, Wet After Lease ...

  2. ,"New Mexico - East Natural Gas, Wet After Lease Separation Proved...

    Energy Information Administration (EIA) (indexed site)

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico - East Natural Gas, Wet After Lease ... 8:56:26 AM" "Back to Contents","Data 1: New Mexico - East Natural Gas, Wet After Lease ...

  3. ,"North Dakota Natural Gas, Wet After Lease Separation Proved...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","North Dakota Natural Gas, Wet After Lease ... 9:30:28 AM" "Back to Contents","Data 1: North Dakota Natural Gas, Wet After Lease ...

  4. ,"Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet After...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet ...

  5. Analytical chemistry and measurement science; (What DOE has done for analytical chemistry)

    SciTech Connect

    Shults, W.D. . Analytical Chemistry Div.)

    1989-11-01

    Over the past forty years, analytical scientists within the Department of Energy (DOE) complex have had impact on the field of analytical chemistry. This paper suggests six research/development areas that either originated within or were brought to maturity with the DOE laboratories. These areas have lead to new subdisciplines or to new ways of doing business.

  6. Analytical Chemistry and Measurement Science: (What Has DOE Done for Analytical Chemistry?)

    DOE R&D Accomplishments

    Shults, W. D.

    1989-04-01

    Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or were brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business.

  7. Y-12 to Resume Wet Chemistry Operations | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) to Resume Wet Chemistry Operations March 14, 2003 PDF icon 3-14-03

  8. Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Tank 48H Treatment Project (TTP) | Department of Energy Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Wet Air Oxidation. Technology Maturation Plan (TMP) Wet Air Oxidation (WAO)

  9. Hydrothermal Processing of Wet Wastes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrothermal Processing of Wet Wastes Hydrothermal Processing of Wet Wastes Breakout Session 3A-Conversion Technologies III: Energy from Our Waste (Will we Be Rich in Fuel or Knee Deep in Trash by 2025?) Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation oyler_biomass_2014.pdf (1.18 MB) More Documents & Publications Excellence in Bioenergy Innovation-A Presentation of 2015 R&D 100 Award Winning Projects Challenges and Opportunities for Wet-Waste

  10. Analytical Services Management System

    Energy Science and Technology Software Center

    2005-03-30

    Analytical Services Management System (ASMS) provides sample management services. Sample management includes sample planning for analytical requests, sample tracking for shipping and receiving by the laboratory, receipt of the analytical data deliverable, processing the deliverable and payment of the laboratory conducting the analyses. ASMS is a web based application that provides the ability to manage these activities at multiple locations for different customers. ASMS provides for the assignment of single to multiple samples for standardmore » chemical and radiochemical analyses. ASMS is a flexible system which allows the users to request analyses by line item code. Line item codes are selected based on the Basic Ordering Agreement (BOA) format for contracting with participating laboratories. ASMS also allows contracting with non-BOA laboratories using a similar line item code contracting format for their services. ASMS allows sample and analysis tracking from sample planning and collection in the field through sample shipment, laboratory sample receipt, laboratory analysis and submittal of the requested analyses, electronic data transfer, and payment of the laboratories for the completed analyses. The software when in operation contains business sensitive material that is used as a principal portion of the Kaiser Analytical Management Services business model. The software version provided is the most recent version, however the copy of the application does not contain business sensitive data from the associated Oracle tables such as contract information or price per line item code.« less

  11. Analytical Services Management System

    SciTech Connect

    Church, Shane; Nigbor, Mike; Hillman, Daniel

    2005-03-30

    Analytical Services Management System (ASMS) provides sample management services. Sample management includes sample planning for analytical requests, sample tracking for shipping and receiving by the laboratory, receipt of the analytical data deliverable, processing the deliverable and payment of the laboratory conducting the analyses. ASMS is a web based application that provides the ability to manage these activities at multiple locations for different customers. ASMS provides for the assignment of single to multiple samples for standard chemical and radiochemical analyses. ASMS is a flexible system which allows the users to request analyses by line item code. Line item codes are selected based on the Basic Ordering Agreement (BOA) format for contracting with participating laboratories. ASMS also allows contracting with non-BOA laboratories using a similar line item code contracting format for their services. ASMS allows sample and analysis tracking from sample planning and collection in the field through sample shipment, laboratory sample receipt, laboratory analysis and submittal of the requested analyses, electronic data transfer, and payment of the laboratories for the completed analyses. The software when in operation contains business sensitive material that is used as a principal portion of the Kaiser Analytical Management Services business model. The software version provided is the most recent version, however the copy of the application does not contain business sensitive data from the associated Oracle tables such as contract information or price per line item code.

  12. Controlling wet abrasion in power plants

    SciTech Connect

    Schumacher, W.J.

    1997-09-01

    Maintenance departments in many industries are continually battling the daily fires that run costs up and productivity down. Many plants have equipment that must operate under wet sliding conditions which can lead to accelerated wear of the equipment. Electric power generating plants, for example, have ongoing maintenance concerns for piping, chutes, hoppers, heat exchangers, and valves. Pulp and paper plants have heavy maintenance on: plate screens, conical bottoms of blow tanks, chutes, and augers. Coal handling equipment is often subjected to wet sliding conditions. Utility and coal prep plants can have serious flow problems if an improper structural or wear material is selected. Vibrating screens, chutes, surge bin feeders, conical distributors, screw conveyors, and cyclones are some of the components that must resist the ravages of corrosion and wear. This paper will address many of the issues that affect the life of plant components under wet sliding conditions. Environmental effects and material effects will be examined. Since the material of construction is most times the easier to change, the paper will concentrate on this subject. Such factors as: hardness, surface roughness, corrodent, and material of construction will be explored. Both controlled laboratory studies and real world service evaluations will be presented.

  13. Wetting properties of molecularly rough surfaces

    SciTech Connect

    Svoboda, Martin; Lísal, Martin; Malijevský, Alexandr

    2015-09-14

    We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties by measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.

  14. Notes on the efficacy of wet versus dry screening of fly ash

    SciTech Connect

    Valentim, B.; Hower, J.C.; Flores, D.; Guedes, A.

    2008-08-15

    The methodology used to obtain fly ash subsamples of different sizes is generally based on wet or dry sieving methods. However, the worth of such methods is not certain if the methodology applied is not mentioned in the analytical procedure. After performing a fly ash mechanical dry, sieving, the authors compared those results with the ones obtained by laser diffraction on the same samples and found unacceptable discrepancies. A preliminary, study of a wet sieving analysis carried out on an economizer fly ash sample showed that this method was more effective than the dry sieving. The importance of standardizing the way samples are handled, pretreated and presented to the instrument of analysis are suggested and interlaboratory reproducibility trials are needed to create a common standard methodology to obtain large amounts of fly ash size fraction subsamples.

  15. Vehicle Technologies Office: Transportation System Analytical Tools |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Modeling, Testing, Data & Results » Vehicle Technologies Office: Transportation System Analytical Tools Vehicle Technologies Office: Transportation System Analytical Tools The Vehicle Technologies Office (VTO) has supported the development of a number of software packages and online tools to model individual vehicles and the overall transportation system. Most of these tools are available for free or a nominal charge. Modeling tools that simulate entire vehicles and

  16. Development of a Computer-based Benchmarking and Analytical Tool. Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    SciTech Connect

    Xu, Tengfang; Flapper, Joris; Ke, Jing; Kramer, Klaas; Sathaye, Jayant

    2012-02-01

    The overall goal of the project is to develop a computer-based benchmarking and energy and water savings tool (BEST-Dairy) for use in the California dairy industry – including four dairy processes – cheese, fluid milk, butter, and milk powder.

  17. Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review

    DOE PAGES [OSTI]

    Dong, Tao; Knoshaug, Eric P.; Pienkos, Philip T.; Laurens, Lieve M. L.

    2016-06-15

    Biological lipids derived from oleaginous microorganisms are promising precursors for renewable biofuel productions. Direct lipid extraction from wet cell-biomass is favored because it eliminates the need for costly dehydration. However, the development of a practical and scalable process for extracting lipids from wet cell-biomass is far from ready to be commercialized, instead, requiring intensive research and development to understand the lipid accessibility, mechanisms in mass transfer and establish robust lipid extraction approaches that are practical for industrial applications. Furthermore, this paper aims to present a critical review on lipid recovery in the context of biofuel productions with special attention tomore » cell disruption and lipid mass transfer to support extraction from wet biomass.« less

  18. Hanford analytical services quality assurance requirements documents

    SciTech Connect

    Hyatt, J.E.

    1997-09-25

    Hanford Analytical Services Quality Assurance Requirements Document (HASQARD) is issued by the Analytical Services, Program of the Waste Management Division, US Department of Energy (US DOE), Richland Operations Office (DOE-RL). The HASQARD establishes quality requirements in response to DOE Order 5700.6C (DOE 1991b). The HASQARD is designed to meet the needs of DOE-RL for maintaining a consistent level of quality for sampling and field and laboratory analytical services provided by contractor and commercial field and laboratory analytical operations. The HASQARD serves as the quality basis for all sampling and field/laboratory analytical services provided to DOE-RL through the Analytical Services Program of the Waste Management Division in support of Hanford Site environmental cleanup efforts. This includes work performed by contractor and commercial laboratories and covers radiological and nonradiological analyses. The HASQARD applies to field sampling, field analysis, and research and development activities that support work conducted under the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement and regulatory permit applications and applicable permit requirements described in subsections of this volume. The HASQARD applies to work done to support process chemistry analysis (e.g., ongoing site waste treatment and characterization operations) and research and development projects related to Hanford Site environmental cleanup activities. This ensures a uniform quality umbrella to analytical site activities predicated on the concepts contained in the HASQARD. Using HASQARD will ensure data of known quality and technical defensibility of the methods used to obtain that data. The HASQARD is made up of four volumes: Volume 1, Administrative Requirements; Volume 2, Sampling Technical Requirements; Volume 3, Field Analytical Technical Requirements; and Volume 4, Laboratory Technical Requirements. Volume 1 describes the administrative requirements

  19. Power generation characteristics of tubular type SOFC by wet process

    SciTech Connect

    Tajiri, H.; Nakayama, T.; Kuroishi, M.

    1996-12-31

    The development of a practical solid oxide fuel cell requires improvement of a cell performance and a cell manufacturing technology suitable for the mass production. In particular tubular type SOFC is thought to be superior in its reliability because its configuration can avoid the high temperature sealing and reduce the thermal stress resulting from the contact between cells. The authors have fabricated a tubular cell with an air electrode support by a wet processing technique, which is suitable for mass production in improving a power density. To enhance the power output of the module, the Integrated Tubular-Type (ITT) cell has been developed. This paper reports the performance of the single cells with various active anode areas and the bundle with series-connected 9-ITT cells with an active anode area of 840 cm{sup 2}.

  20. Performance of dehumidifying heat exchangers with and without wetting coatings

    SciTech Connect

    Hong, K.; Webb, R.L.

    1999-11-01

    Limited previous work has shown that use of special hydrophilic coatings will provide lower air pressure drop in finned tube heat exchangers operated under dehumidifying conditions. However, no detailed work has been reported on the effect of different coating types, or different fin surface geometries on the wet pressure drop. In this study, wind tunnel tests were performed on three different fin geometries (wavy, lanced, and louver) under wet and dry conditions. All dehumidification tests were done for fully wet surface conditions. For each geometry, the tests were performed on uncoated and coated heat exchangers. For all three fin geometries, the wet-to-dry pressure drop ratio was 1.2 at 2.5 m/s frontal air velocity. The coatings have no influence on the wet or dry heat transfer coefficient. However, the wet surface heat transfer coefficient was 10 to 30% less than the dry heat transfer coefficient, depending on the particular fin geometry. The effect of the fin press oil on wet pressure drop was also studied. If the oil contains a surfactant, good temporary wetting can be obtained on an uncoated surface; however, this effect is quickly degraded as the oil is washed from the surface during wet operation. This work also provides a critical assessment of data reduction methods for wet surface operation, including calculation of the fin efficiency.

  1. Public Interest Energy Research (PIER) Program Development of a Computer-based Benchmarking and Analytical Tool. Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    SciTech Connect

    Xu, Tengfang; Flapper, Joris; Ke, Jing; Kramer, Klaas; Sathaye, Jayant

    2012-02-01

    The overall goal of the project is to develop a computer-based benchmarking and energy and water savings tool (BEST-Dairy) for use in the California dairy industry - including four dairy processes - cheese, fluid milk, butter, and milk powder. BEST-Dairy tool developed in this project provides three options for the user to benchmark each of the dairy product included in the tool, with each option differentiated based on specific detail level of process or plant, i.e., 1) plant level; 2) process-group level, and 3) process-step level. For each detail level, the tool accounts for differences in production and other variables affecting energy use in dairy processes. The dairy products include cheese, fluid milk, butter, milk powder, etc. The BEST-Dairy tool can be applied to a wide range of dairy facilities to provide energy and water savings estimates, which are based upon the comparisons with the best available reference cases that were established through reviewing information from international and national samples. We have performed and completed alpha- and beta-testing (field testing) of the BEST-Dairy tool, through which feedback from voluntary users in the U.S. dairy industry was gathered to validate and improve the tool's functionality. BEST-Dairy v1.2 was formally published in May 2011, and has been made available for free downloads from the internet (i.e., http://best-dairy.lbl.gov). A user's manual has been developed and published as the companion documentation for use with the BEST-Dairy tool. In addition, we also carried out technology transfer activities by engaging the dairy industry in the process of tool development and testing, including field testing, technical presentations, and technical assistance throughout the project. To date, users from more than ten countries in addition to those in the U.S. have downloaded the BEST-Dairy from the LBNL website. It is expected that the use of BEST-Dairy tool will advance understanding of energy and water

  2. OCIO Technology Summit: Data Analytics

    Energy.gov [DOE]

    The Energy Department’s Office of the Chief Information Officer hosted a Data Analytics Technology Summit to showcase how the agency is using data analytics to make better data-driven decisions, provide value, and ultimately create mission impact.

  3. Data & Analytics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Data Management Data Analytics Data Transfer Workflow Tools Science Gateways Data Visualization Job Logs & Statistics Training & Tutorials Software Policies User Surveys NERSC Users Group Help Staff Blogs Request Repository Mailing List Need Help? Out-of-hours Status and Password help Call operations: 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting and questions http://help.nersc.gov

  4. Spark Distributed Analytic Framework

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Apache Spark Spark Distributed Analytic Framework Description and Overview Apache Spark(tm) is a fast and general engine for large-scale data processing. How to Use Spark Because of its high memory and I/O bandwidth requirements, we recommend you run your spark jobs on Cori. Follow the steps below to use spark, note that the order of the commands matters. DO NOT load the spark module until you are inside a batch job. Interactive mode Submit an interactive batch job with at least 2 nodes: salloc

  5. Sandia National Laboratories: Data Analytics

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Pathfinder Airborne ISR Systems What is SAR? Areas of Expertise Images VideoSAR Publications Facebook Twitter YouTube Flickr RSS Top Areas of Expertise Capabilities Hardware Modes & Frequency Bands of Operation Platforms Missions Tasking, Processing, Exploitation & Dissemination (TPED) Data Analytics Pathfinder Airborne ISR Systems Data Analytics Data Analytics Sandia National Laboratories: Synthetic Apperature Radar (SAR): SAR Hardware PANTHER - Pattern ANalytics To support

  6. Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation

    SciTech Connect

    Armstrong, Ryan T.; Wildenschild, Dorthe

    2012-10-24

    Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.

  7. Cavitation as a Mechanism to Enhance Wetting in a Mercury Thermal Convection Loop

    SciTech Connect

    Pawel, SJ

    2001-07-17

    Type 316L stainless steel was statically tested under cavitation conditions via an ultrasonic transducer externally mounted on a tube filled with ambient mercury. During the preliminary exposure (24 h, 20 kHz, 1.5 MPa), cavitation resulted in apparent wetting of the specimens by mercury as well as general surface roughening and wastage similar to erosion damage. Subsequently, a thermal convection loop identical to those used previously to study thermal gradient mass transfer was modified to include an externally-mounted donut-shaped transducer in order to similarly produce cavitation and wetting at temperatures prototypic of those expected in the SNS target. However, a series of attempts to develop cavitation and wetting on 316L specimens in the thermal convection loop was unsuccessful.

  8. ARM: AOS Wet Nephelometer 1 Minute Averages (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Wet Nephelometer 1 Minute Averages Title: ARM: AOS Wet Nephelometer 1 Minute Averages AOS Wet Nephelometer 1 Minute Averages Authors: Scott Smith ; Cynthia Salwen ; Janek Uin ; Gunnar Senum ; Stephen Springston ; Anne Jefferson Publication Date: 2013-12-11 OSTI Identifier: 1259232 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US); Sponsoring

  9. Wet Gasification of Ethanol Residue: A Preliminary Assessment

    SciTech Connect

    Brown, Michael D.; Elliott, Douglas C.

    2008-09-22

    A preliminary technoeconomic assessment has been made of several options for the application of catalytic hydrothermal gasification (wet gasification) to ethanol processing residues.

  10. Florida Nonassociated Natural Gas, Wet After Lease Separation...

    Energy Information Administration (EIA) (indexed site)

    Florida Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... After Lease Separation, as of Dec. 31 Florida Nonassociated Natural Gas Proved ...

  11. Florida Associated-Dissolved Natural Gas, Wet After Lease Separation...

    Gasoline and Diesel Fuel Update

    Proved Reserves (Billion Cubic Feet) Florida Associated-Dissolved Natural Gas, Wet ... After Lease Separation, as of Dec. 31 Florida Associated-Dissolved Natural Gas Proved ...

  12. Louisiana State Offshore Nonassociated Natural Gas, Wet After...

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After ... Separation, as of Dec. 31 LA, State Offshore Nonassociated Natural Gas Proved ...

  13. Louisiana State Offshore Associated-Dissolved Natural Gas, Wet...

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet ... Separation, as of Dec. 31 LA, State Offshore Associated-Dissolved Natural Gas Proved ...

  14. Observation of Ordered Structures in Counterion Layers near Wet...

    Office of Scientific and Technical Information (OSTI)

    Title: Observation of Ordered Structures in Counterion Layers near Wet Charged Surfaces: A Potential Mechanism for Charge Inversion Authors: Miller, Mitchell ; Chu, Miaoqi ; Lin, ...

  15. Challenges and Opportunities for Wet-Waste Feedstocks - Resource...

    Office of Environmental Management (EM)

    Challenges and Opportunities for Wet-Waste Feedstocks - Resource Assessment Breakout Session 2-C: Biogas and Beyond: Challenges and Opportunities for Advanced Biofuels from ...

  16. W.E.T. Automotive Systems | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    E.T. Automotive Systems Jump to: navigation, search Name: W.E.T. Automotive Systems Place: Odelzhausen, Germany Information About Partnership with NREL Partnership with NREL Yes...

  17. VERDE Analytic Modules

    Energy Science and Technology Software Center

    2008-01-15

    The Verde Analytic Modules permit the user to ingest openly available data feeds about phenomenology (storm tracks, wind, precipitation, earthquake, wildfires, and similar natural and manmade power grid disruptions and forecast power outages, restoration times, customers outaged, and key facilities that will lose power. Damage areas are predicted using historic damage criteria of the affected area. The modules use a cellular automata approach to estimating the distribution circuits assigned to geo-located substations. Population estimates servedmore » within the service areas are located within 1 km grid cells and converted to customer counts by conversion through demographic estimation of households and commercial firms within the population cells. Restoration times are estimated by agent-based simulation of restoration crews working according to utility published prioritization calibrated by historic performance.« less

  18. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    SciTech Connect

    Youmans-Mcdonald, L.

    2011-02-18

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  19. Kinetics of wet sodium vapor complex plasma

    SciTech Connect

    Mishra, S. K., E-mail: nishfeb@rediffmail.com [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

    2014-04-15

    In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

  20. Graph Analytics for Signature Discovery

    SciTech Connect

    Hogan, Emilie A.; Johnson, John R.; Halappanavar, Mahantesh; Lo, Chaomei

    2013-06-01

    Within large amounts of seemingly unstructured data it can be diffcult to find signatures of events. In our work we transform unstructured data into a graph representation. By doing this we expose underlying structure in the data and can take advantage of existing graph analytics capabilities, as well as develop new capabilities. Currently we focus on applications in cybersecurity and communication domains. Within cybersecurity we aim to find signatures for perpetrators using the pass-the-hash attack, and in communications we look for emails or phone calls going up or down a chain of command. In both of these areas, and in many others, the signature we look for is a path with certain temporal properties. In this paper we discuss our methodology for finding these temporal paths within large graphs.

  1. Appendix C, Analytical Data | Department of Energy

    Energy Saver

    C, Analytical Data Appendix C, Analytical Data Docket No. EO-05-01: Appendix C, Analytical Data from Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating ...

  2. Existing technology transfer report: analytical capabilities. Appendix B. Volume 3

    SciTech Connect

    Tewari, K.C.

    1984-06-01

    The overall objective of the on-going analytical efforts was to develop in-house expertise and analytical capability for the analysis of coal and coal-derived products in support of SRC-I process technology. The approach taken and work accomplished involved: identification of test methods and associated equipment; review and implementation of analytical facility plan; evaluation of existing instrumentation; evaluation and purchase of new instruments; training of laboratory personnel; validation or development of analytical methods; development of standard product work-up methods and development of analytical protocol for detailed characterization of SRC-I solid and liquid products. This volume contains Appendix B with the following attachments: solvent separation procedure A; Wilsonville solvent separation procedure, distillation separation procedure; solvent separation modified Wilsonville Procedure W; statistical comparison of 3 solvent separation procedures; methods development for column chromatography, and application of gas chromatography to characterization of a hydrogen donor solvent; and high performance liquid chromatographic procedure.

  3. A round robin evaluation of the corrosiveness of wet residential insulation by electrochemical measurements

    SciTech Connect

    Stansbury, E.E. , Knoxville, TN )

    1991-10-01

    The results of a round cabin evaluation of the use of an electrochemical method of calculating the corrosion rate of low carbon steel in environments related to cellulosic building insulations are reported. Environments included the leachate from a wet cellulosic insulation and solutions based on pure and commercial grades of borax, ammonium sulfate and aluminum sulfate. The pH values of these environments were in the range of 2.5 to 9.5. Electrochemical measurements were made using a direct reading corrosion rate instrument. The calculated corrosion rates were compared with those determined directly by weight loss measurements. Electrochemical measurements were made over a period of 48 hours and weight loss exposures were for two weeks. Poor agreement was observed for the corrosion rates determined electrochemically and the values were consistently larger than those based on weight loss. Reasons proposed for these results included the complex nature of the corrosion product deposits and the control these deposits have on oxygen diffusion to the metal interface. Both factors influence the validity of the calculation of the corrosion rate by the direct reading instrument. It was concluded that development of a viable electrochemical method of general applicability to the evaluation of the corrosiveness of wet residential building thermal insulations were doubtful. Because of the controlling influence of dissolved oxygen on the corrosion rate in the insulation leachate, an alternate evaluation method is proposed in which a thin steel specimen is partially immersed in wet insulation for three weeks. The corrosiveness of the wet insulation is evaluated in terms of the severity of attack near the metal-air-wet insulation interface. With thin metal specimens, complete penetration along the interface is proposed as a pass/fail criterion. An environment of sterile cotton wet with distilled water is proposed as a comparative standard. 9 refs., 2 figs., 3 tabs.

  4. Analytical Chemistry Laboratory progress report for FY 1991

    SciTech Connect

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

    1991-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  5. Road Transportable Analytical Laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1995-10-01

    The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs.

  6. Spatiotemporal dynamics of wetted soils across a polar desert landscape

    SciTech Connect

    Langford, Zachary L.; Gooseff, Michael N.; Lampkin, Derrick J.

    2014-10-30

    Liquid water is scarce across the landscape of the McMurdo Dry Valleys (MDV), Antarctica, a 3800 km2 ice-free region, and is chiefly associated with soils that are adjacent to streams and lakes (i.e. wetted margins) during the annual thaw season. However, isolated wetted soils have been observed at locations distal from water bodies. The source of water for the isolated patches of wet soil is potentially generated by a combination of infiltration from melting snowpacks, melting of pore ice at the ice table, and melting of buried segregation ice formed during winter freezing. In this paper, high resolution remote sensing data gathered several times per summer in the MDV region were used to determine the spatial and temporal distribution of wet soils. The spatial consistency with which the wet soils occurred was assessed for the 2009–10 to 2011–12 summers. The remote sensing analyses reveal that cumulative area and number of wet soil patches varies among summers. The 2010–11 summer provided the most wetted soil area (10.21 km2) and 2009–10 covered the least (5.38 km2). Finally, these data suggest that wet soils are a significant component of the MDV cold desert land system and may become more prevalent as regional climate changes.

  7. Method for wetting a boron alloy to graphite

    DOEpatents

    Storms, E.K.

    1987-08-21

    A method is provided for wetting a graphite substrate and spreading a a boron alloy over the substrate. The wetted substrate may be in the form of a needle for an effective ion emission source. The method may also be used to wet a graphite substrate for subsequent joining with another graphite substrate or other metal, or to form a protective coating over a graphite substrate. A noneutectic alloy of boron is formed with a metal selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt) with excess boron, i.e., and atomic percentage of boron effective to precipitate boron at a wetting temperature of less than the liquid-phase boundary temperature of the alloy. The alloy is applied to the substrate and the graphite substrate is then heated to the wetting temperature and maintained at the wetting temperature for a time effective for the alloy to wet and spread over the substrate. The excess boron is evenly dispersed in the alloy and is readily available to promote the wetting and spreading action of the alloy. 1 fig.

  8. Hanford transuranic analytical capability

    SciTech Connect

    McVey, C.B.

    1995-02-24

    With the current DOE focus on ER/WM programs, an increase in the quantity of waste samples that requires detailed analysis is forecasted. One of the prime areas of growth is the demand for DOE environmental protocol analyses of TRU waste samples. Currently there is no laboratory capacity to support analysis of TRU waste samples in excess of 200 nCi/gm. This study recommends that an interim solution be undertaken to provide these services. By adding two glove boxes in room 11A of 222S the interim waste analytical needs can be met for a period of four to five years or until a front end facility is erected at or near the 222-S facility. The yearly average of samples is projected to be approximately 600 samples. The figure has changed significantly due to budget changes and has been downgraded from 10,000 samples to the 600 level. Until these budget and sample projection changes become firmer, a long term option is not recommended at this time. A revision to this document is recommended by March 1996 to review the long term option and sample projections.

  9. Ecologic Analytics | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Analytics Place: Bloomington, Minnesota Zip: 55425 Product: Minnesota-based meter data management company. Coordinates: 42.883574, -90.926122 Show Map Loading map......

  10. Analytical Modeling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    & Analytical Models Website - University of Washington, Department of Economic Business and Geography Page Area Activity Start Date Activity End Date Reference Material...

  11. Existing technology transfer report: analytical capabilities. Volume 1

    SciTech Connect

    Tewari, K.C.

    1984-06-01

    The overall objective of the on-going analytical efforts was to develop in-house expertise and analytical capability for the analysis of coal and coal-derived products in support of SRC-I process technology. The approach taken and work accomplished involved: identification of test methods and associated equipment; review and implementation of analytical facility plan; evaluation of existing instrumentation; evaluation and purchase of new instruments; training of laboratory personnel; validation or development of analytical methods; development of standard product work-up methods; and development of analytical protocol for detailed characterization of SRC-I solid and liquid products. Expertise in analytical chemistry was developed by organizing historical knowledge and assimilating new knowledge as it became available from inside and outside research facilities and the chemical literature. The data were then used to define analytical methods, instrumentation, space, staff needed to create a functional coal analysis laboratory. This report summarizes the direction and progress of the analytical development efforts during the period 1974 to 1980. 2 references, 5 figures.

  12. Analytical Chemistry Laboratory | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analytical Chemistry Laboratory Argonne's Analytical Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. PDF icon Analytical_Chemistry_Laboratory_fact_sheet

  13. Recovery of Uranium from Wet Phosphoric Acid by Solvent Extraction Processes

    SciTech Connect

    Beltrami, Denis; Cote, Gérard; Mokhtari, Hamid; Courtaud, Bruno; Moyer, Bruce A.; Chagnes, Alexandre

    2014-11-17

    Between 1951 and 1991, we developed about 17 processes to recover uranium from wet phosphoric acid (WPA), but the viability of these processes was subject to the variation of the uranium price market. Nowadays, uranium from WPA appears to be attractive due to the increase of the global uranium demand resulting from the emergence of developing countries. Moreover, the increasing demand provides impetus for a new look at the applicable technology with a view to improvements as well as altogether new approaches. This paper gives an overview on extraction processes developed in the past to recover uranium from wet phosphoric acid (WPA) as well as the physicochemistry involved in these processes. Recent advances concerning the development of new extraction systems are also reported and discussed.

  14. Recovery of Uranium from Wet Phosphoric Acid by Solvent Extraction Processes

    DOE PAGES [OSTI]

    Beltrami, Denis; Cote, Gérard; Mokhtari, Hamid; Courtaud, Bruno; Moyer, Bruce A.; Chagnes, Alexandre

    2014-11-17

    Between 1951 and 1991, we developed about 17 processes to recover uranium from wet phosphoric acid (WPA), but the viability of these processes was subject to the variation of the uranium price market. Nowadays, uranium from WPA appears to be attractive due to the increase of the global uranium demand resulting from the emergence of developing countries. Moreover, the increasing demand provides impetus for a new look at the applicable technology with a view to improvements as well as altogether new approaches. This paper gives an overview on extraction processes developed in the past to recover uranium from wet phosphoricmore » acid (WPA) as well as the physicochemistry involved in these processes. Recent advances concerning the development of new extraction systems are also reported and discussed.« less

  15. Recovery of Uranium from Wet Phosphoric Acid by Solvent Extraction Processes

    SciTech Connect

    Beltrami, Denis; Cote, Grard; Mokhtari, Hamid; Courtaud, Bruno; Moyer, Bruce A; Chagnes, Alexandre

    2014-01-01

    Between 1951 and 1991, about 17 processes were developed to recover uranium from wet phosphoric acid (WPA), but the viability of these processes was subject to the variation of the uranium price market. Nowadays, uranium from WPA appears to be attractive due to the increase of the global uranium demand resulting from the emergence of developing countries. The increasing demand provides impetus for a new look at the applicable technology with a view to improvements as well as altogether new approaches. This paper gives an overview on extraction processes developed in the past to recover uranium from wet phosphoric acid (WPA) as well as the physicochemistry involved in these processes. Recent advances concerning the development of new extraction systems are also reported and discussed.

  16. SUSS PM 5 Analytic Probe

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SUSS PM 5 Analytic Probe analytic.jpg (63416 bytes) CAMD refurbished a Suss microprobe station to perform resist adhesion test. The apparatus is equipped with a 10 lb. linear motor, two microprobes and a CCD camera for observation. Capabilities: Capable of removing PMMA bonded sheets from Si Fine probing of microstructures Back to Equipment

  17. Selenium Speciation and Management in Wet FGD Systems

    SciTech Connect

    Searcy, K; Richardson, M; Blythe, G; Wallschlaeger, D; Chu, P; Dene, C

    2012-02-29

    This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, trace metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more

  18. Heat removal (wetting, heat transfer, T/H, secondary circuit, code validation etc.)

    SciTech Connect

    Dury, T.; Siman-Tov, M.

    1996-06-01

    This working group provided a comprehensive list of feasibility and uncertainty issues. Most of the issues seem to fall into the `needed but can be worked out` category. They feel these can be worked out as the project develops. A few issues can be considered critical or feasibility issues (that must be proven to be feasible). Those include: (1) Thermal shock and its mitigation (>1 MW); how to inject the He bubbles (if used) - back pressure into He lines - mercury traces in He lines; how to maintain proper bubble distribution and size (static and dynamic; if used); vibrations and fatigue (dynamic); possibility of cavitation from thermal shock. (2) Wetting and/or non-wetting of mercury on containment walls with or without gases and its effect on heat transfer (and materials). (3) Prediction capabilities in the CFD code; bubbles behavior in mercury (if used) - cross stream turbulence (ESS only) - wetting/non-wetting effects. (4) Cooling of beam `windows`; concentration of local heat deposition at center, especially if beam is of parabolic profile.

  19. Enhanced NO{sub x} removal in wet scrubbers using metal chelates. Final report, Volume 1

    SciTech Connect

    Smith, K.; Lani, B.; Berisko, D.; Schultz, C.; Carlson, W.; Benson, L.B.

    1992-12-01

    Successful pilot plant tests of simultaneous removal of S0{sub 2} and NO{sub x} in a wet lime flue gas desulfurization system were concluded in December. The tests, at up to 1.5 MW(e) capacity, were conducted by the Cincinnati Gas and Electric Company and Dravo Lime Company for the US Department of Energy at a pilot facility at the Miami Fort station of CG&E near Cincinnati, Ohio. The pilot plant scrubbed a slipstream of flue gas from Unit 7, a 530 MW coal-fired electric generating unit. Tests were conducted in three phases between April and December. The technology tested was wet scrubbing with Thiosorbic{reg_sign} magnesium-enhanced lime for S0{sub 2} removal and simultaneous NO scrubbing with ferrous EDTA, a metal chelate. Magnesium-enhanced lime-based wet scrubbing is used at 20 full-scale high-sulfur coal-fired electric generating units with a combined capacity of 8500 NW. Ferrous EDTA reacts with nitric oxide, NO, which comprises about 95% of NO{sub x} from coal-fired boilers. In this report, although not precise, NO and NO{sub x} are used interchangably. A major objective of the tests was to combine NO{sub x} removal using ferrous EDTA, a developing technology, with SO{sub 2} removal using wet lime FGD, already in wide commercial use. If successful, this could allow wide application of this NO{sub x} removal technology.

  20. Update On Aquatic Toxicity/Whole Effluent Toxicity (WET) Issues, 2005

    SciTech Connect

    Specht, Winona L

    2005-07-01

    This paper summarizes recent changes in the field of aquatic toxicity/Whole Effluent Toxicity (WET) testing. There are been numerous legal challenges to the validity of WET testing, both at the federal and state levels, but to date, the regulators have prevailed and WET testing is used as a regulatory tool to ensure that the biota of receiving streams are protected. The most recent ruling at the federal level was on December 10, 2004, when a federal appeals court in the District of Columbia upheld the validity of WET testing. At the state level, at the urging of the South Carolina Manufacturers Alliance, the state legislature passed a law (the South Carolina Aquatic Life Protection Act) in 2004 that requires the South Carolina Department of Health and Environmental Control (DHEC) to evaluate the accuracy and precision of the WET test. As a result, SCDHEC removed WET test limits from several NPDES permits. EPA took issue with the impact of the legislation and SCDHEC's actions, and as a result, EPA has taken over several NPDES permits from SCDHEC and threatened to revoke the state's delegated NPDES permit program. A new Act was signed into law in March 2005, which does not exclude the use of chronic toxicity testing for regulatory compliance. As a result, EPA has turned over the issuance of NPDES permits back to SCDHEC. In December 2004, the U.S. EPA issued the Draft National WET Implementation Guidance document for review and comment. The guidance contains recommendations on the determination of ''reasonable potential'' for toxicity. The EPA's ECOTOX database is a valuable resource of toxicity data for many chemicals. For those cases in which there are no toxicity data or very limited data available, the EPA has developed two models, the Interspecies Correlation Estimation (ICE) and the Acute to Chronic Estimation (ACE), for predicting toxicity. Active areas of research include assessing the uptake of heavy metals via multiple routes of exposure, the development of

  1. Reduction of Water Use in Wet FGD Systems

    SciTech Connect

    David Rencher

    2008-06-30

    Cooperative Agreement DE-FC26-06NT42726 was established in January 2006, and is current through Amendment 2, April 2006. The current reporting period, April 1, 2008 through June 30, 2008, is the eighth progress-reporting period for the project. However, this report will be the final report (instead of a quarterly report) because this project is being terminated. Efforts to bring this project to a close over the past several months focused on internal project discussions, and subsequent communications with NETL, regarding the inherent difficulty with completing this project as originally scoped, and the option of performing an engineering study to accomplish some of the chief project objectives. However, NETL decided that the engineering study did indeed constitute a significant scope deviation from the original concepts, and that pursuit of this option was not recommended. These discussions are summarized in the Results and Discussion, and the Conclusion sections. The objective of this project by a team lead by URS Group was to demonstrate the use of regenerative heat exchange to reduce flue gas temperature and minimize evaporative water consumption in wet flue gas desulphurization (FGD) systems on coal-fired boilers. Furthermore, the project intended to demonstrate that regenerative heat exchange to cool flue gas upstream of the electrostatic precipitator (ESP) and reheat flue gas downstream of the FGD system would result in the following benefits to air pollution control (APC) systems on coal-fired power plants: (1) Improve ESP performance due to reduced gas volume and improved ash resistivity characteristics, (2) Control SO3 emissions through condensation on the fly ash, and (3) Avoid the need to install wet stacks or to provide flue gas reheat. Finally, operation at cooler flue gas temperatures offered the potential benefit of increasing mercury (Hg) removal across the ESP and FGD systems. This project planned to conduct pilot-scale tests of regenerative heat

  2. New York Associated-Dissolved Natural Gas, Wet After Lease Separation...

    Energy Information Administration (EIA) (indexed site)

    New York Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves ... Wet After Lease Separation, as of Dec. 31 New York Associated-Dissolved Natural Gas ...

  3. MHK Technologies/WET EnGen | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Test of Wave Energy Technologies Moored Floating WET EnGen: Regular and Irregular Waves. TR-2009-13, Fraser Winsor and Emile Baddour, June 2009. Date Submitted 1082010 << Return...

  4. Crude Oil and Lease Condensate Wet Natural Gas

    Energy Information Administration (EIA) (indexed site)

    U.S. proved reserves, and reserves changes, 2013-2014 Crude Oil and Lease Condensate Wet Natural Gas billion barrels trillion cubic feet U.S. proved reserves at December 31, 2013...

  5. ,"Crude Oil and Lease Condensate","Wet Natural Gas"

    Energy Information Administration (EIA) (indexed site)

    U.S. proved reserves, and reserves changes, 2013-2014" ,"Crude Oil and Lease Condensate","Wet Natural Gas" ,"billion barrels","trillion cubic feet" "U.S. proved reserves at...

  6. Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet After...

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Texas Natural Gas Reserves Summary as of ...

  7. New Mexico - West Nonassociated Natural Gas, Wet After Lease...

    Energy Information Administration (EIA) (indexed site)

    New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  8. Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Associated-Dissolved Natural Gas Estimated Production, Wet After Lease Separation Nebraska Associated-Dissolved Natural Gas Proved Reserves, Wet After

  9. Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Associated-Dissolved Natural Gas Reserves Adjustments, Wet After Lease

  10. Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Nonassociated Natural Gas Reserves Adjustments, Wet After Lease Separation

  11. Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Nebraska Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation Natural Gas

  12. Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Nebraska

  13. Functionalized magnetic nanoparticle analyte sensor

    DOEpatents

    Yantasee, Wassana; Warner, Maryin G; Warner, Cynthia L; Addleman, Raymond S; Fryxell, Glen E; Timchalk, Charles; Toloczko, Mychailo B

    2014-03-25

    A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.

  14. Analytical Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Information Resources » Analytical Tools Analytical Tools The Bioenergy Technologies Office and its national lab partners provide a variety of online tools to help analyze data and facilitate decision making. This page links to several of them and includes a widget that calculates the potential volume of ethanol produced from biomass feedstocks. Knowledge Discovery Framework (KDF): The Bioenergy Knowledge Discovery Framework (KDF) facilitates informed decision making by providing a means to

  15. Computaional Modeling of the Stability of Crevice Corrosion of Wetted SS316L

    SciTech Connect

    F. Cui; F.J. Presuel-Moreno; R.G. Kelly

    2006-04-17

    The stability of localized corrosion sites on SS 316L exposed to atmospheric conditions was studied computationally. The localized corrosion system was decoupled computationally by considering the wetted cathode and the crevice anode separately and linking them via a constant potential boundary condition at the mouth of the crevice. The potential of interest for stability was the repassivation potential. The limitations on the ability of the cathode that are inherent due to the restricted geometry were assessed in terms of the dependence on physical and electrochemical parameters. Physical parameters studied include temperature, electrolyte layer thickness, solution conductivity, and the size of the cathode, as well as the crevice gap for the anode. The current demand of the crevice was determined considering a constant crevice solution composition that simulates the critical crevice solution as described in the literature. An analysis of variance showed that the solution conductivity and the length of the cathode were the most important parameters in determining the total cathodic current capacity of the external surface. A semi-analytical equation was derived for the total current from a restricted geometry held at a constant potential at one end. The equation was able to reproduce all the model computation results both for the wetted external cathode and the crevice and give good explanation on the effects of physicochemical and kinetic parameters.

  16. Web Analytics and Statistics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Web Analytics and Statistics Web Analytics and Statistics EERE uses Google Analytics to capture statistics on its websites. These statistics help website managers measure and report on users, sessions, most visited pages, and more. The Web Template Coordinator can provide you with EERE's username and password and answer questions about your site statistics. Adding Google Analytics to EERE Websites In order for Google Analytics to capture statistics on a site, Google Analytics code has to be

  17. Experimental and analytical study of rotating cavitation

    SciTech Connect

    Kamijo, Kenjiro; Shimura, Takashi; Tsujimoto, Yoshinobu [National Aerospace Lab., Miyagi (Japan). Kakuda Research Center

    1994-12-31

    This paper describes experimental and analytical results of rotating cavitation. There are four major sections in this paper. The first section presents the main characteristics of rotating cavitation which was found in the inducer test using a water tunnel. The second section describes the rotating cavitation which occurred in the development test of an LE-7 liquid oxygen pump for the H-II rocket. Also described in this section is how the rotating cavitation was suppressed. The rotating cavitation was the cause of both super synchronous shaft vibration and an unstable head coefficient curve. The third section presents how the theory of rotating cavitation was developed. The final section shows the measured cavitation compliance and mass flow gain factor of the LE-7 pump inducer for comparison of the experimental and analytical results of the rotating cavitation of the LE-7 pump inducer. Almost all the information presented in this paper has already been reported by Kamijo et al. (1977, 1980, 1993, 1993) and by Shimura (1993). In the present paper, the authors attempt to combine and give a clear overview of the experimental and analytical results described in the previous papers to systematically show their experience and findings on rotating cavitation.

  18. Superhydrophobic analyte concentration utilizing colloid-pillar...

    Office of Scientific and Technical Information (OSTI)

    Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates Citation Details In-Document Search Title: Superhydrophobic analyte concentration utilizing ...

  19. Surveillance of LWR spent fuel in wet storage. Final report, October 1984

    SciTech Connect

    Bailey, W.J.; Johnson, A.B. Jr.

    1984-10-01

    Battelle, Pacific Northwest Laboratories established a surveillance program for EPRI that documents the integrity of spent light-water reactor fuel and structural materials (spent fuel storage pool liners, racks, piping, etc.) during wet storage. The program involves providing an update on the overall performance of spent fuel in wet storage, monitoring Licensee Event Reports (LERs) for pertinent significant occurrences, identifying lead spent fuel assemblies that are of particular interest to EPRI, monitoring developments in fuel design and performance and assessing their influence on spent fuel storage characteristics, and identifying specific actions or programs that may be needed to maintain the viability of wet storage of spent fuel for extended periods. Experience to date indicates that wet storage is a well-developed technology with no associated major technological problems. Spent fuel storage pools are operated without substantial risk to the public or the plant personnel. A list of lead spent fuel assemblies is presented. Pertinent occurrences from LERs are listed. Very few fuel assemblies have suffered major mechanical damage as a result of handling operations at spent fuel storage pools. Experience to date with handling operations at spent fuel storage pools indicates that failed fuel rods and inadvertent fracturing of fuel rods can be accommodated. Minor problems have occurred with spent fuel storage pool components such as liners, racks, and piping. Surveillance continues to be needed on: (1) possible effects on handling and storage of spent fuel from extended burnup, hydrogen injection at boiling water reactors, and rod consolidation operations; (2) extended pool exposure of neutron-absorbing materials; (3) cracking of spent fuel storage pool piping at pressurized water reactors; and (4) control of impurities in spent fuel pool waters. 120 references, 13 figures, 10 tables.

  20. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect

    Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

    2010-12-31

    This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed

  1. Analytical Chemistry Laboratory, progress report for FY 1993

    SciTech Connect

    Not Available

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  2. Analytical Spectroscopy - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Analytical Spectroscopy Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary The use of lasers has become increasingly widespread, especially for manufacturing products and material analysis. Recently, laser desorption (LD) techniques for mass spectrometry have attracted attention because it produces intact molecular ions, avoids surface charging issues, and allows tuning of

  3. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, John F.

    1998-01-01

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1-5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric.

  4. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, J.F.

    1998-09-22

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1--5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric. 5 figs.

  5. Michigan Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Michigan Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 217 87 74 53 2000's 337 485 527 663 497 421 460 686 618 556 2010's 314 147 95 63 49 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  6. Miscellaneous States Natural Gas Wet After Lease Separation, Reserves in

    Energy Information Administration (EIA) (indexed site)

    Nonproducing Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Miscellaneous States Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 17 3 3 1 2000's 0 0 15 40 27 28 29 65 54 102 2010's 62 120 92 48 42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  7. Mississippi (with State Offshore) Natural Gas Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Mississippi (with State Offshore) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 60 70 126 156 2000's 144 120 111 103 83 110 149 206 243 257 2010's 207 220 127 143 204 - = No Data Reported; -- = Not

  8. Montana Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Montana Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 96 43 92 110 2000's 90 104 117 206 199 110 176 151 161 127 2010's 146 81 124 80 125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  9. Montana Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Montana Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 94 41 89 89 2000's 76 93 92 175 158 85 152 128 137 104 2010's 91 50 48 30 29 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  10. Alabama (with State Offshore) Natural Gas Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Alabama (with State Offshore) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 456 363 479 173 2000's 174 208 191 286 371 163 245 225 177 126 2010's 162 102 40 73 36 - = No Data Reported; -- = Not Applicable;

  11. Alaska (with Total Offshore) Natural Gas Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Alaska (with Total Offshore) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 130 314 567 793 2000's 718 620 599 716 681 556 346 338 258 193 2010's 246 351 1,243 1,093 1,190 - = No Data Reported; -- = Not

  12. Arkansas Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Arkansas Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 156 146 99 195 2000's 221 257 264 253 325 420 623 1,047 2,183 5,872 2010's 7,274 5,919 3,520 4,844 4,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. California (with State Offshore) Natural Gas Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) California (with State Offshore) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 156 233 431 288 2000's 358 518 414 376 624 1,050 770 641 267 460 2010's 441 395 360 248 303 - = No Data Reported; -- = Not

  14. California - Coastal Region Onshore Natural Gas, Wet After Lease Separation

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 395 1980's 330 325 384 405 284 277 275 255 232 238 1990's 232 231 215 201 205 163 168 176 118 233 2000's 244 185 197 174 196 277 214 212 151 169 2010's 180 173 305 284 277 - = No Data Reported;

  15. California - Los Angeles Basin Onshore Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 207 163 104 115 163 188 149 155 158 141 1990's 110 120 103 108 108 115 112 146 154 174 2000's 204 195 218 196 184 186 161 154 81 91 2010's 92 102 98 90 84 - = No Data

  16. California State Offshore Natural Gas, Wet After Lease Separation Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 234 1980's 166 256 254 243 235 1990's 194 60 63 65 63 59 49 56 44 77 2000's 91 85 91 83 87 90 90 83 57 57 2010's 66 82 66 75 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  17. Miscellaneous States Natural Gas, Wet After Lease Separation Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Miscellaneous States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 156 1980's 180 193 74 81 77 77 136 66 84 87 1990's 72 76 93 96 67 69 68 44 39 67 2000's 42 83 100 134 110 132 139 241 272 349 2010's 363 393 233 188 185 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  18. North Dakota Natural Gas Wet After Lease Separation, Reserves in

    Energy Information Administration (EIA) (indexed site)

    Nonproducing Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) North Dakota Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 128 119 87 81 2000's 61 57 63 34 36 54 46 72 117 510 2010's 920 1,324 2,360 3,619 3,559 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Ohio Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Ohio Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20 6 43 211 2000's 97 105 122 112 103 132 123 128 110 68 2010's 19 54 252 1,072 3,504 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  20. Ohio Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Ohio Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19 6 38 142 2000's 75 102 107 98 92 124 115 125 110 67 2010's 14 50 246 1,015 3,498 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  1. Pennsylvania Natural Gas Wet After Lease Separation, Reserves in

    Energy Information Administration (EIA) (indexed site)

    Nonproducing Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Pennsylvania Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 57 24 236 216 2000's 227 374 466 333 448 456 639 714 696 2,282 2010's 5,472 13,069 17,236 21,500 24,089 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  2. West Virginia Natural Gas Wet After Lease Separation, Reserves in

    Energy Information Administration (EIA) (indexed site)

    Nonproducing Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) West Virginia Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 202 379 440 428 2000's 310 202 353 295 510 587 923 1,010 923 818 2010's 926 1,579 2,532 6,549 17,221 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Federal Offshore--California Natural Gas Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Federal Offshore--California Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 110 66 65 68 2000's 113 158 166 181 107 98 146 91 32 36 2010's 35 42 46 16 14 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Florida Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Florida Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 0 2000's 0 0 0 0 0 0 0 98 0 0 2010's 0 4 0 14 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  5. Florida Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Florida Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 4 0 14 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  6. Illinois Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Illinois Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 2 2000's 1 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  7. Indiana Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Indiana Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 0 2000's 2 6 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  8. Indiana Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Indiana Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 0 2000's 2 6 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  9. Kansas Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Kansas Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 185 146 117 99 2000's 94 116 112 145 59 166 146 150 168 132 2010's 236 283 277 486 764 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  10. Kansas Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Kansas Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 178 144 108 92 2000's 93 112 109 139 54 161 144 148 159 128 2010's 235 244 218 314 489 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  11. Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Associated-Dissolved Natural Gas Reserves Sales, Wet After Lease Separation

  12. Kentucky Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Kentucky Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 124 137 183 226 2000's 387 56 117 111 107 113 286 232 271 149 2010's 106 75 6 3 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  13. Texas State Offshore Natural Gas, Wet After Lease Separation Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,112 1,073 739 634 564 610 1990's 461 477 350 337 230 313 293 290 350 419 2000's 400 468 436 456 321 265 305 261 220 164 2010's 131 118 94 59 42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  14. Analytical Chemistry Laboratory. Progress report for FY 1996

    SciTech Connect

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  15. Molecular dynamics of wetting layer formation and forced water invasion in angular nanopores with mixed wettability

    SciTech Connect

    Sedghi, Mohammad Piri, Mohammad; Goual, Lamia

    2014-11-21

    The depletion of conventional hydrocarbon reservoirs has prompted the oil and gas industry to search for unconventional resources such as shale gas/oil reservoirs. In shale rocks, considerable amounts of hydrocarbon reside in nanoscale pore spaces. As a result, understanding the multiphase flow of wetting and non-wetting phases in nanopores is important to improve oil and gas recovery from these formations. This study was designed to investigate the threshold capillary pressure of oil and water displacements in a capillary dominated regime inside nanoscale pores using nonequilibrium molecular dynamics (NEMD) simulations. The pores have the same cross-sectional area and volume but different cross-sectional shapes. Oil and water particles were represented with a coarse grained model and the NEMD simulations were conducted by assigning external pressure on an impermeable piston. Threshold capillary pressures were determined for the drainage process (water replaced by oil) in different pores. The molecular dynamics results are in close agreements with calculations using the Mayer-Stowe-Princen (MS-P) method which has been developed on the premise of energy balance in thermodynamic equilibrium. After the drainage simulations, a change in wall particles’ wettability from water-wet to oil-wet was implemented based on the final configuration of oil and water inside the pore. Waterflooding simulations were then carried out at the threshold capillary pressure. The results show that the oil layer formed between water in the corner and in the center of the pore is not stable and collapses as the simulation continues. This is in line with the predictions from the MS-P method.

  16. Manufacture of SOFC electrodes by wet powder spraying

    SciTech Connect

    Wilkenhoener, R.; Mallener, W.; Buchkremer, H.P.

    1996-12-31

    The reproducible and commercial manufacturing of electrodes with enhanced electrochemical performance is of central importance for a successful technical realization of Solid Oxide Fuel Cell (SOFC) systems. The route of electrode fabrication for the SOFC by Wet Powder Spraying (WPS) is presented. Stabilized suspensions of the powder materials for the electrodes were sprayed onto a substrate by employing a spray gun. After drying of the layers, binder removal and sintering are performed in one step. The major advantage of this process is its applicability for a large variety of materials and its flexibility with regard to layer shape and thickness. Above all, flat or curved substrates of any size can be coated, thus opening up the possibility of {open_quotes}up-scaling{close_quotes} SOFC technology. Electrodes with an enhanced electrochemical performance were developed by gradually optimizing the different process steps. For example an optimized SOFC cathode of the composition La{sub 0.65}Sr{sub 0.3}MnO{sub 3} with 40% 8YSZ showed a mean overpotential of about -50 mV at a current density of -0.8 A/cm{sup 2}, with a standard deviation amounting to 16 mV (950{degrees}C, air). Such optimized electrodes can be manufactured with a high degree of reproducibility, as a result of employing a computer-controlled X-Y system for moving the spray gun. Several hundred sintered composites, comprising the substrate anode and the electrolyte, of 100x 100 mm{sup 2} were coated with the cathode by WPS and used for stack integration. The largest manufactured electrodes were 240x240 mm{sup 2}, and data concerning their thickness homogeneity and electrochemical performance are given.

  17. Statistically qualified neuro-analytic failure detection method and system

    DOEpatents

    Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.

    2002-03-02

    An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.

  18. Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Revision Decreases (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Associated-Dissolved Natural Gas Reserves Revision Decreases, Wet After Lease

  19. Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Associated-Dissolved Natural Gas Reserves Sales, Wet After Lease Separation

  20. Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Nonassociated Natural Gas Reserves Sales, Wet After Lease Separation

  1. Subcritical water extraction of lipids from wet algal biomass

    DOEpatents

    Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar

    2016-05-03

    Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.

  2. Analyte detection using an active assay

    DOEpatents

    Morozov, Victor; Bailey, Charles L.; Evanskey, Melissa R.

    2010-11-02

    Analytes using an active assay may be detected by introducing an analyte solution containing a plurality of analytes to a lacquered membrane. The lacquered membrane may be a membrane having at least one surface treated with a layer of polymers. The lacquered membrane may be semi-permeable to nonanalytes. The layer of polymers may include cross-linked polymers. A plurality of probe molecules may be arrayed and immobilized on the lacquered membrane. An external force may be applied to the analyte solution to move the analytes towards the lacquered membrane. Movement may cause some or all of the analytes to bind to the lacquered membrane. In cases where probe molecules are presented, some or all of the analytes may bind to probe molecules. The direction of the external force may be reversed to remove unbound or weakly bound analytes. Bound analytes may be detected using known detection types.

  3. Analytical techniques for ambient sulfate aerosols

    SciTech Connect

    Johnson, S.A.; Graczyk, D.G.; Kumar, R.; Cunningham, P.T.

    1981-06-01

    Work done to further develop the infrared spectroscopic analytical method for the analysis of atmospheric aerosol particles, as well as some exploratory work on a new procedure for determining proton acidity in aerosol samples is described. Earlier work had led to the successful use of infrared (ir) spectrophotometry for the analysis of nitrate, ammonium, and neutral and acidic sulfates in aerosol samples collected by an impactor on a Mylar-film substrate. In this work, a filter-extraction method was developed to prepare filter-collected aerosol samples for ir analysis. A study was made comparing the ir analytical results on filter-collected samples with impactor-collected samples. Also, the infrared analytical technique was compared in field studies with light-scattering techniques for aerosol analysis. A highly sensitive instrument for aerosol analysis using attenuated total internal reflection (ATR) infrared spectroscopy was designed, built, and tested. This instrument provides a measurement sensitivity much greater (by a factor of 6 for SO/sub 4//sup 2 -/) than that obtainable using the KBr-pellet method. This instrument collect size- and time-resolved samples and is potentially capable of providing automated, near real-time aerosol analysis. Exploratory work on a novel approach to the determination of proton acidity in filter- or impactor-collected aerosol samples is also described. In this technique, the acidic sample is reacted with an access of a tagged, vapor-phase base. The unreacted base is flushed off and the amount of the tag retained by the sample is a direct measure of the proton acidity of the sample. The base was tagged with Ge, which can be conveniently determined by the x-ray fluorescence technique.

  4. SociAL Sensor Analytics: Measuring Phenomenology at Scale

    SciTech Connect

    Corley, Courtney D.; Dowling, Chase P.; Rose, Stuart J.; McKenzie, Taylor K.

    2013-06-04

    The objective of this paper is to present a system for interrogating immense social media streams through analytical methodologies that characterize topics and events critical to tactical and strategic planning. First, we propose a conceptual framework for interpreting social media as a sensor network. Time-series models and topic clustering algorithms are used to implement this concept into a functioning analytical system. Next, we address two scientific challenges: 1) to understand, quantify, and baseline phenomenology of social media at scale, and 2) to develop analytical methodologies to detect and investigate events of interest. This paper then documents computational methods and reports experimental findings that address these challenges. Ultimately, the ability to process billions of social media posts per week over a period of years enables the identification of patterns and predictors of tactical and strategic concerns at an unprecedented rate through SociAL Sensor Analytics (SALSA).

  5. Hanford analytical sample projections FY 1998--FY 2002

    SciTech Connect

    Joyce, S.M.

    1998-02-12

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management, and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

  6. Better Buildings Launches Smart Energy Analytics Campaign

    Energy.gov [DOE]

    As part of Smart Cities Week, the White House recently announced a new Energy Department-led Smart Energy Analytics Campaign to encourage the use of cost-effective, energy-saving building analytics...

  7. Advanced Analytics | GE Global Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    GE Predictivity(tm) Industrial Internet Solutions Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Predictivity(tm) Industrial Internet Solutions As a key player in GE's commitment to advance the Industrial Internet, the GE Software Center is at work helping industrial organizations use data, analytics, data

  8. ,"U.S. Federal Offshore Natural Gas, Wet After Lease Separation...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","U.S. Federal Offshore Natural Gas, Wet After Lease Separation ... "Back to Contents","Data 1: U.S. Federal Offshore Natural Gas, Wet After Lease Separation ...

  9. ,"U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet ... "Back to Contents","Data 1: U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet ...

  10. Analytical Resources > Research > The Energy Materials Center...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Differential Electrochemical Mass Spectroscopy (DEMS) Electron Microscopy X-Ray Diffraction Analytical Resources Differential Electrochemical Mass Spectroscopy (DEMS) Electron...

  11. Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 693 1980's 682 683 1990's 4,184 5,460 5,870 5,212 4,898 4,930 5,100 5,013 4,643 4,365 2000's 4,269 3,958 3,922 4,345 4,159 4,006 3,963 4,036 3,379 2,948 2010's 2,724 2,570 2,304 1,670 2,121 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Alaska Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alaska Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32,275 1980's 33,395 33,049 35,002 34,291 34,476 34,223 33,355 33,715 9,179 9,019 1990's 9,393 9,653 9,725 9,986 9,813 9,575 9,296 10,673 10,043 9,855 2000's 9,331 8,901 8,533 8,348 8,473 8,237 10,333 12,022 7,766 9,183 2010's 8,917 9,511 9,667

  13. Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,725 1980's 1,796 1,821 1,974 2,081 2,240 2,032 2,011 2,018 2,000 1,782 1990's 1,739 1,672 1,752 1,555 1,610 1,566 1,472 1,479 1,332 1,546 2000's 1,584 1,619 1,654 1,666 1,837 1,967 2,271 3,306 5,628 10,872 2010's 14,181 16,374 11,039 13,524

  14. California - San Joaquin Basin Onshore Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,037 1980's 4,434 4,230 4,058 3,964 3,808 3,716 3,404 3,229 3,033 2,899 1990's 2,775 2,703 2,511 2,425 2,130 2,018 1,864 2,012 2,016 2,021 2000's 2,413 2,298 2,190 2,116 2,306

  15. California Federal Offshore Natural Gas, Wet After Lease Separation Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 322 1980's 414 1,337 1,466 1,570 1,519 1990's 1,469 1,174 1,136 1,123 1,187 1,289 1,266 556 489 536 2000's 576 540 515 511 459 825 811 805 705 740 2010's 725 711 652 264 243 - = No Data Reported; -- = Not

  16. California Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,842 1980's 5,137 4,084 3,893 3,666 3,513 1990's 3,311 3,114 2,892 2,799 2,506 2,355 2,193 2,390 2,332 2,505 2000's 2,952 2,763 2,696 2,569 2,773 3,384 2,935 2,879 2,538 2,926 2010's 2,785 3,042 2,119 2,023 2,260 - = No Data Reported; -- =

  17. Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,838 1980's 3,170 3,228 3,551 3,373 3,140 3,095 3,198 3,131 3,749 4,526 1990's 4,759 6,011 6,463 6,979 7,036 7,592 8,064 7,160 8,208 9,372 2000's 10,837 12,949 14,348 15,893 15,249 17,122 17,682 22,480 24,169 24,081 2010's 25,372 26,151 21,674

  18. Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,824 1980's 10,065 10,443 10,128 10,183 9,981 9,844 11,093 11,089 10,530 10,509 1990's 10,004 9,946 10,302 9,872 9,705 9,093 8,145 7,328 6,862 6,248 2000's 5,682 5,460 5,329 5,143 5,003 4,598 4,197 4,248 3,795 3,500 2010's 3,937 3,747 3,557

  19. Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 504 1980's 536 561 592 600 647 806 883 940 957 1,015 1990's 1,047 1,187 1,126 1,036 1,025 1,102 1,046 1,429 1,295 1,530 2000's 1,837 1,950 1,999 1,971 1,982 2,240 2,369 2,588 2,846 2,919 2010's 2,785 2,128 1,515 1,794 1,753 - = No Data Reported;

  20. Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,580 1980's 13,407 13,049 12,153 11,553 10,650 10,120 9,416 9,024 8,969 8,934 1990's 8,492 7,846 7,019 6,219 6,558 6,166 6,105 6,137 5,966 5,858 2000's 5,447 5,341 4,395 3,874 3,557 3,478 3,473 3,463 2,916

  1. Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,676 13,334 12,852 12,620 12,912 1990's 12,151 11,363 10,227 9,541 10,145 9,891 10,077 10,036 9,480 9,646 2000's 9,512 10,040 9,190 9,538 9,792 10,679 10,710 10,292 11,816 20,970 2010's 29,517 30,545 22,135 20,389 23,258 - = No Data Reported;

  2. Mississippi Natural Gas, Wet After Lease Separation Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Mississippi Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,511 1980's 1,776 2,042 1,803 1,603 1,496 1,364 1,304 1,223 1,146 1,108 1990's 1,129 1,061 873 800 653 667 634 583 662 681 2000's 620 663 746 748 692 758 816 958 1,035 922 2010's 858 868 612 600 563 - = No Data Reported; -- = Not

  3. Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 837 1980's 1,308 1,336 870 921 825 884 823 801 834 889 1990's 920 848 875 684 727 792 806 769 789 851 2000's 892 907 914 1,068 1,002 998 1,069 1,067 1,014 993 2010's 959 792 616 590 686 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,545 1980's 13,908 15,507 17,140 17,261 17,102 17,078 17,779 17,703 17,450 16,733 1990's 16,967 15,518 14,732 14,099 14,323 14,295 13,952 14,311 14,517 13,490 2000's 14,543 14,366 15,753 16,231 17,200 18,146 18,535 20,184 22,113 24,207 2010's

  5. Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,516 1980's 951 1,265 1,430 1,882 1,576 1,618 1,562 1,650 2,074 1,644 1990's 1,722 1,631 1,533 1,722 1,806 1,488 1,702 1,861 1,848 1,780 2000's 1,740 1,782 2,225 2,497 2,371 2,793 3,064 3,377 3,594 7,018 2010's 14,068 26,719 36,543

  6. Wyoming Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Wyoming Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,007 3,803 4,124 3,136 2000's 4,461 5,860 5,216 5,381 5,547 7,911 7,387 11,600 12,655 12,839 2010's 11,628 11,304 7,961 8,938 8,710 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Wyoming Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Wyoming Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,983 3,709 4,089 3,075 2000's 4,363 5,817 5,185 5,361 5,524 7,847 7,359 11,533 12,598 12,812 2010's 11,593 11,256 7,745 8,658 8,298 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  8. Oklahoma Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Oklahoma Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,228 1,326 1,602 1,741 2000's 1,484 2,929 3,206 3,658 3,880 4,526 4,948 6,080 7,053 8,161 2010's 10,288 10,965 11,828 9,688 13,996 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Texas (with State Offshore) Natural Gas Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Texas (with State Offshore) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,729 6,466 7,052 8,502 2000's 10,518 12,858 12,678 11,603 13,915 18,202 23,187 26,547 28,514 31,336 2010's 36,190 37,479 35,178

  10. Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 365 441 669 1,278 2000's 1,567 1,578 1,202 983 1,263 1,457 2,118 2,439 2,799 2,110 2010's 3,476 3,646 3,573 3,100 2,837 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 258 347 595 1,177 2000's 1,377 1,423 1,002 840 1,136 1,379 1,978 2,272 2,670 1,739 2010's 3,125 3,230 2,955 2,621 2,460 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Colorado Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Colorado Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 897 674 1,631 1,985 2000's 2,958 3,962 3,781 3,945 4,409 4,990 6,685 9,146 10,839 8,188 2010's 7,527 6,794 6,386 8,732 8,523 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  13. Louisiana (with State Offshore) Natural Gas Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Louisiana (with State Offshore) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,706 3,308 3,345 3,426 2000's 3,228 4,316 3,661 3,927 3,806 3,821 4,354 4,339 5,487 13,125 2010's 19,326 15,162 9,995 8,913

  14. Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,803 46,620 44,319 42,192 41,404 41,554 1990's 41,411 39,288 38,141 37,847 39,020 39,736 41,592 41,108 40,793 43,350 2000's 45,419 46,462 47,491 48,717 53,275 60,178 65,805 76,357 81,843 85,034 2010's 94,287 104,454 93,475 97,921 105,955 - = No

  15. Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 2,446 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 2,579 2,373 2,800 - = No Data Reported; -- = Not Applicable; NA =

  16. West Virginia Natural Gas, Wet After Lease Separation Proved Reserves

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) West Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,669 1980's 2,559 1,944 2,252 2,324 2,246 2,177 2,272 2,360 2,440 2,342 1990's 2,329 2,672 2,491 2,598 2,702 2,588 2,793 2,946 2,968 3,040 2000's 3,062 2,825 3,498 3,399 3,509 4,572 4,654 4,881 5,266 6,090 2010's 7,163 10,532

  17. Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,834 1980's 9,413 9,659 10,155 10,728 11,014 11,229 10,393 10,572 10,903 11,276 1990's 10,433 10,433 11,305 11,387 11,351 12,712 13,084 14,321 14,371 14,809 2000's 17,211 19,399 21,531 22,716 23,640 24,722 24,463 30,896 32,399 36,748 2010's

  18. Wetting and free surface flow modeling for potting and encapsulation.

    SciTech Connect

    Brooks, Carlton, F.; Brooks, Michael J.; Graham, Alan Lyman; Noble, David F. ); Notz, Patrick K.; Hopkins, Matthew Morgan; Castaneda, Jaime N.; Mahoney, Leo James; Baer, Thomas A.; Berchtold, Kathryn; Adolf, Douglas Brian; Wilkes, Edward Dean; Rao, Rekha Ranjana; Givler, Richard C.; Sun, Amy Cha-Tien; Cote, Raymond O.; Mondy, Lisa Ann; Grillet, Anne Mary; Kraynik, Andrew Michael

    2007-06-01

    As part of an effort to reduce costs and improve quality control in encapsulation and potting processes the Technology Initiative Project ''Defect Free Manufacturing and Assembly'' has completed a computational modeling study of flows representative of those seen in these processes. Flow solutions are obtained using a coupled, finite-element-based, numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. In addition, two commercially available codes, ProCAST and MOLDFLOW, are also used on geometries representing encapsulation processes at the Kansas City Plant. Visual observations of the flow in several geometries are recorded in the laboratory and compared to the models. Wetting properties for the materials in these experiments are measured using a unique flowthrough goniometer.

  19. Deriving Value from Wet and Gaseous Waste Streams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Deriving Value from Wet and Gaseous Waste Streams Deriving Value from Wet and Gaseous Waste Streams Breakout Session 3A: Deriving Value from Wet and Gaseous Waste Streams Deriving Value from Wet and Gaseous Waste Streams Luca Zullo, Principal, Verde Nero zullo_bioenergy_2016.pdf (1.29 MB) More Documents & Publications Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols CX-011101: Categorical Exclusion Determination

  20. Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Revision Increases (Billion Cubic Feet) Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Associated-Dissolved Natural Gas Reserves Revision

  1. Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Nonassociated Natural Gas Estimated

  2. Nebraska Nonassociated Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Nonassociated Natural Gas New Reservoir Discoveries in Old Fields, Wet After Lease Separation

  3. Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Nonassociated Natural Gas Reserves Revision Decreases

  4. Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) No Data Available For This Series - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Nonassociated Natural Gas Reserves Revision Increases

  5. Wet-steam erosion of steam turbine disks and shafts

    SciTech Connect

    Averkina, N. V.; Zheleznyak, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.; Shishkin, V. I.

    2011-01-15

    A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

  6. Catalytic gasification of wet biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Matsumura, Yukihiko; Xu, Xiaodong

    1995-12-31

    Wet biomass (water hyacinth, banana trees, cattails, green algae, kelp, etc.) grows rapidly and abundantly around the world. As a biomass crop, aquatic species are particularly attractive because their cultivation does not compete with land-based agricultural activities designed to produce food for consumption or export. However, wet biomass is not regarded as a promising feed for conventional thermochemical conversion processes because the cost associated with drying it is too high. This research seeks to address this problem by employing water as the gasification medium. Prior work has shown that low concentrations of glucose (a model compound for whole biomass) can be completely gasified in supercritical water at 600{degrees}C and 34.5 Wa after a 30 s reaction time. Higher concentrations of glucose (up to 22% by weight in water) resulted in incomplete conversion under these conditions. The gas contained hydrogen, carbon dioxide, carbon monoxide, methane, ethane, propane, and traces of other hydrocarbons. The carbon monoxide and hydrocarbons are easily converted to hydrogen by commercial technology available in most refineries. This prior work utilized capillary tube reactors with no catalyst. A larger reactor system was fabricated and the heterogeneous catalytic gasification of glucose and wet biomass slurry of higher concentration was studied to attain higher conversions.

  7. Mercury removal in utility wet scrubber using a chelating agent

    DOEpatents

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  8. Hydrologic Behavior of Two Engineered Barriers Following Extreme Wetting

    SciTech Connect

    Porro, I.

    2000-09-30

    Many engineered barriers are expected to function for hundreds of years or longer. Over the course of time, it is likely that some barriers will experience infiltration to the point of breakthrough. This study compares the recovery from breakthrough of two storage- evapotranspiration type engineered barriers. Replicates of test plots comprising thick soil and capillary/biobarrier covers were wetted to breakthrough in 1997. Test plots were kept cleared of vegetation to maximize hydrologic stress during recovery. Following cessation of drainage resulting from the wetting irrigations, water storage levels in all plots were at elevated levels compared to pre-irrigation levels. As a result, infiltration of melting snow during the subsequent spring overloaded the storage capacity and produced drainage in all plots. Relatively rapid melting of accumulated snowfall produced the most significant infiltration events each year during the study. Capillary barriers yielded less total drainage than thick soil barriers. By limiting drainage, capillary barriers increased water storage in the upper portions of the test plots, which led to increased evaporation from the capillary barrier plots compared to thick soil plots. Increased evaporation in the capillary barrier plots allowed more water to infiltrate in the second season following the wetting tests without triggering drainage. All thick soil plots again yielded drainage in the second season. Within two years of intentionally induced breakthrough, evaporation alone (without transpiration) restored the capability of the capillary barrier covers to function as intended, although water storage in these covers remained at elevated levels.

  9. Advanced emissions control development project. Phase I final report appendices, November 1, 1993--February 29, 1996

    SciTech Connect

    Farthing, G.A.

    1996-06-01

    Appendices are presented on the Advanced Emissions Control Development Project on the following: wet scrubber sampling and analysis; DBA/lime chemical analysis; limestone forced oxidation chemical analysis; benchmarking on baghouse conditions, electrostatic precipitators, and wet scrubber conditions.

  10. Wetting kinetics of water nano-droplet containing non-surfactant nanoparticles: A molecular dynamics study

    SciTech Connect

    Lu, Gui; Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104 ; Hu, Han; Sun, Ying E-mail: ysun@coe.drexel.edu; Duan, Yuanyuan E-mail: ysun@coe.drexel.edu

    2013-12-16

    In this Letter, dynamic wetting of water nano-droplets containing non-surfactant gold nanoparticles on a gold substrate is examined via molecular dynamics simulations. The results show that the addition of non-surfactant nanoparticles hinders the nano-second droplet wetting process, attributed to the increases in both surface tension of the nanofluid and friction between nanofluid and substrate. The droplet wetting kinetics decreases with increasing nanoparticle loading and water-particle interaction energy. The observed wetting suppression and the absence of nanoparticle ordering near the contact line of nano-sized droplets differ from the wetting behaviors reported from nanofluid droplets of micron size or larger.

  11. SASSI Analytical Methods Compared with SHAKE Results | Department...

    Office of Environmental Management (EM)

    Analytical Methods Compared with SHAKE Results SASSI Analytical Methods Compared with SHAKE Results SASSI Analytical Methods Compared with SHAKE Results Structural Mechanics - SRS...

  12. Guidance for the Design and Adoption of Analytic Tools.

    SciTech Connect

    Bandlow, Alisa

    2015-12-01

    The goal is to make software developers aware of common issues that can impede the adoption of analytic tools. This paper provides a summary of guidelines, lessons learned and existing research to explain what is currently known about what analysts want and how to better understand what tools they do and don't need.

  13. Louisiana - North Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Louisiana - North Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 138 23 228 283 588 70 57 2,091 917 82 2010's 598 4,948 276 964 2,277 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  14. Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,884 1980's 1,721 1,553 1,359 1,195 1,219 1,067 1,074 996 1,044 1,029 1990's 989 964 942 942 929 882 925 862 827 894 2000's 887 876 797 728 750 611

  15. Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, New Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 171 1980's 195 629 122 87 25 11 6 5 24 9 1990's 0 72 78 3 26 24 10 5 36 24 2000's 21 18 49 7 4 6 11 0 36 4 2010's 1 49 4 0 32 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  16. Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 270 1980's 389 397 329 259 250 312 141 281 213 150 1990's 188 50 101 80 547 197 411 321 264 309 2000's 308 511 187 165 80 141 151 101 61 56

  17. Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 340 484 405 142 230 192 498 278 138 36 2010's 205 356 91 255 239 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  18. Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 107 1980's 419 138 -178 151 326 -331 105 -31 361 24 1990's 60 19 -59 319 375 -209 447 22 -91 191 2000's -253 197 53 126 73 21 127 112 -84 98 2010's -42 -32 187 -118 298 - = No Data Reported; -- = Not

  19. Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 459 1980's 668 542 486 498 416 313 582 261 282 296 1990's 546 240 139 112 322 510 279 520 500 130 2000's 221 345 285 302 365 345 321 299 209 231 2010's 266 78 214 119 218 - = No Data Reported; -- = Not

  20. Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 325 339 360 202 260 90 338 150 138 32 2010's 55 579 36 85 184 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  1. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 301 330 276 220 220 1990's 191 177 205 141 149 155 152 165 170 163 2000's 142 138 97 90 75 75 64 64 107 113 2010's 108 99 107 105 109 - = No Data Reported; -- = Not

  2. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 80 131 37 61 34 34 49 96 6 18 2010's 69 76 22 62 92 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  3. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17 -70 -57 7 69 1990's -27 -70 -44 -53 100 35 -43 73 -9 41 2000's -45 43 -24 8 -1 56 -3 15 54 59 2010's -282 -39 159 -39 99 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  4. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 34 32 18 59 1990's 34 36 27 25 42 31 150 104 35 65 2000's 28 49 37 39 51 19 27 20 30 67 2010's 26 29 114 155 59 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 291 258 265 413 316 1990's 266 199 198 240 123 118 125 206 387 285 2000's 248 155 195 142 153 79 62 94 137 299 2010's 171 144 196 169 212 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 326 291 288 238 350 1990's 256 244 187 155 173 211 173 150 382 380 2000's 199 126 123 111 145 116 93 135 302 116 2010's 144 225 159 183 134 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 77 88 19 79 42 44 70 36 19 16 2010's 88 90 19 4 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  8. Louisiana Nonassociated Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 511 202 295 298 171 1990's 243 54 104 85 604 247 437 415 298 365 2000's 369 563 255 246 119 191 189 131 208 1,550 2010's 268 167 12 8 59 - = No Data Reported; -- = Not

  9. Louisiana Nonassociated Natural Gas, Wet After Lease Separation, New Field

    Energy Information Administration (EIA) (indexed site)

    Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 770 7 16 24 17 1990's 3 72 78 3 26 66 12 5 43 46 2000's 36 26 69 12 13 6 29 0 195 259 2010's 49 49 4 18 57 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  10. Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 702 782 669 464 572 355 713 1,589 1,300 87 2010's 792 5,509 267 1,382 4,471 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  11. Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 266 226 251 507 266 1990's 67 83 -188 604 491 -81 620 -44 -278 556 2000's -193 238 139 270 -12 100 98 201 -150 244 2010's -411 165 469 49 441 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  12. Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 539 423 591 559 912 187 449 2,307 1,067 114 2010's 658 5,528 337 1,053 2,461 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  13. Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 391 159 176 174 170 1990's 126 111 103 116 119 130 163 136 113 101 2000's 110 140 109 113 88 63 79 81 60 45 2010's 53 42 70 55 42 - = No Data Reported;

  14. Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, New Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 97 0 10 0 8 1990's 0 0 0 0 0 9 0 0 7 22 2000's 9 8 11 0 4 0 18 0 0 0 2010's 0 0 0 17 25 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 92 7 13 55 10 1990's 24 1 0 2 42 50 25 92 34 51 2000's 49 29 44 75 28 39 34 29 0 0 2010's 0 0 0 0 8 - = No Data Reported; -- = Not

  16. Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 83 164 17 81 58 22 25 52 5 0 2010's 23 144 0 0 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  17. Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 30 -27 291 8 61 1990's -115 123 -70 162 23 -23 27 28 -58 181 2000's 61 2 -3 31 -66 30 -11 9 -3 -8 2010's 115 53 158 -57 -34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  18. Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 27 37 13 45 37 1990's 15 108 1 42 6 14 26 25 5 25 2000's 59 55 38 25 24 28 75 19 22 15 2010's 2 13 4 0 18 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  19. Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 252 252 123 291 3,303 1990's 110 168 139 83 120 151 85 103 99 207 2000's 100 77 240 71 114 41 48 84 69 40 2010's 64 12 209 19 41 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  20. Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 128 104 90 141 3,397 1990's 82 110 127 91 199 125 82 81 84 97 2000's 76 55 46 66 103 49 56 63 38 45 2010's 46 34 65 59 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  1. Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 76 61 3 74 64 27 54 66 12 0 2010's 5 1 25 4 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  2. Lower 48 States Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Lower 48 States Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 18,226 13,756 10,172 10,638 12,571 10,156 25,122 14,615 7,910 3,477 2010's 10,879 45,818 5,941 8,359 23,671 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 52 1980's 66 62 67 70 67 73 70 73 61 54 1990's 53 49 44 36 41 38 36 35 31 32 2000's 39 26 28 29 18 17 18 17 16 5 2010's 6 5 10 15 14 - = No Data Reported; -- = Not

  4. Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 0 23 148 0 0 3 24 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  5. Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -21 1980's 179 -99 -10 143 -105 -19 -48 36 -27 0 1990's 17 38 -30 -6 51 10 9 -25 6 -28 2000's 33 -12 19 19 3 -9 0 1 5 -28 2010's 4 2 -8 39 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 23 19 53 19 23 15 4 3 1 7 1990's 1 15 0 5 8 1 1 13 2 1 2000's 3 3 7 0 3 2 0 0 7 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  7. Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 64 1980's 42 46 98 79 66 88 58 38 27 54 1990's 31 42 28 23 21 24 17 53 76 50 2000's 27 41 33 43 69 24 5 3 34 105 2010's 13 12 8 4 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  8. Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 41 1980's 33 54 76 90 149 61 55 59 27 41 1990's 42 67 17 36 32 18 64 34 46 107 2000's 18 22 79 83 5 8 61 2 7 39 2010's 10 6 35 8 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 13 2 12 123 0 0 3 20 0 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  10. Michigan Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 96 1980's 111 94 81 69 81 69 68 68 76 85 1990's 76 114 110 111 115 130 179 192 215 208 2000's 300 218 218 195 194 198 183 170 145 151 2010's 151 137 130 120 112 - = No Data Reported; -- =

  11. Michigan Nonassociated Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 5 0 0 4 154 60 1 76 1990's 24 0 3 0 0 0 0 0 0 0 2000's 0 3 0 2 31 0 5 0 1 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  12. Michigan Nonassociated Natural Gas, Wet After Lease Separation, New Field

    Energy Information Administration (EIA) (indexed site)

    Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 41 1980's 13 11 11 15 16 27 65 94 95 32 1990's 42 17 7 0 0 9 78 0 6 0 2000's 15 50 8 0 0 11 0 0 4 0 2010's 2 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  13. Michigan Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 664 2 49 244 15 91 24 1,235 10 17 2010's 725 410 0 11 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  14. Michigan Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -26 1980's 144 -91 21 87 -54 -1 24 -7 -105 46 1990's -21 193 134 100 101 321 580 199 94 44 2000's 165 687 60 50 -90 1 112 -48 -24 -286 2010's 254 3 -97 -103 -52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. Michigan Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 20 20 6 8 7 6 84 275 50 45 1990's 42 6 31 18 8 34 17 39 10 1 2000's 143 61 286 75 88 54 88 30 14 16 2010's 1 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Michigan Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 55 1980's 37 64 61 31 47 55 28 132 256 251 1990's 150 285 233 190 29 303 139 74 218 441 2000's 152 493 248 197 298 142 290 210 407 307 2010's 372 260 1,073 137 85 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  17. Michigan Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 90 1980's 38 44 86 38 49 44 59 115 232 205 1990's 50 228 139 135 167 65 403 225 506 532 2000's 410 246 311 225 204 136 406 791 140 334 2010's 255 207 515 387 292 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  18. Michigan Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 473 23 24 82 14 106 45 1,041 0 0 2010's 539 654 0 11 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  19. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 5 1 3 4 2 4 4 2 3 3 1990's 4 2 2 2 3 10 5 2 1 2 2000's 2 2 1 1 1 11 1 1 0 13 2010's 1 8 1 2 2 - = No Data Reported; -- = Not Applicable; NA

  20. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, New Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 6 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  3. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 16 -20 18 6 -17 15 22 -27 16 13 1990's -13 -7 -3 1 5 27 1 11 -22 5 2000's -31 4 1 -5 -1 7 4 -13 -2 42 2010's -70 66 -97 -5 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 3 0 0 0 0 1 0 1 0 0 1990's 1 3 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 10 0 10 0 0 2010's 2 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  5. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 3 1 0 0 3 2 0 0 0 1990's 2 3 0 2 0 0 3 26 1 7 2000's 4 2 0 0 3 4 0 0 4 13 2010's 0 9 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 3 2 1 2 2 2 0 0 2 1 1990's 1 1 2 1 0 4 3 20 10 41 2000's 3 0 1 0 3 0 2 0 0 53 2010's 1 46 1 19 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    Energy Information Administration (EIA) (indexed site)

    Separation, Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  8. Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 13 14 4 4 5 7 2 5 7 4 1990's 3 5 4 8 8 2 1 1 2 1 2000's 4 4 5 9 8 7 8 13 19 17 2010's 15 14 12 11 9 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    New Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 0 21 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 4 14 0 38 8 0 2010's 0 0 0 0 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  10. Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 1 2 7 0 7 7 0 13 5 10 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 2 0 0 0 8 0 0 2010's 0 0 2 0 0 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 4 1 2 0 6 31 21 0 2010's 0 46 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  12. Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 23 1980's 6 12 -9 6 5 -11 42 -53 13 -20 1990's 3 13 -12 5 -4 -20 -4 -29 5 23 2000's 8 7 2 5 0 17 -12 14 -12 26 2010's -5 2 -12 5 -3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 21 1980's 9 12 0 3 0 3 2 0 0 0 1990's 0 0 0 1 0 0 0 0 0 0 2000's 2 37 12 35 17 2 29 48 41 94 2010's 127 16 5 6 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 5 4 22 3 9 3 0 1 11 0 1990's 3 4 0 5 22 2 0 0 0 31 2000's 0 2 1 0 40 14 18 14 33 107 2010's 121 42 38 58 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 1980's 6 6 12 1 15 0 1 4 3 6 1990's 5 8 36 12 3 5 8 3 6 0 2000's 4 3 4 6 5 8 9 12 41 12 2010's 110 28 18 8 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  16. Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2 0 4 18 10 0 2010's 14 100 14 0 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  17. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 1980's 10 9 14 10 13 12 14 12 10 12 1990's 11 14 12 16 10 6 7 8 7 6 2000's 6 4 5 8 3 3 3 5 6 8 2010's 7 8 9 6 8 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    New Field Discoveries (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 0 3 0 5 1 8 0 1 0 0 1990's 15 0 0 0 1 0 0 0 0 0 2000's 0 0 1 0 0 0 0 0 2 2 2010's 0 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 1 1 0 0 1990's 0 0 7 0 0 1 0 0 0 0 2000's 0 0 0 0 0 0 2 0 1 0 2010's 0 0 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 11 2 9 1 5 0 0 9 0 0 2010's 2 0 3 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  1. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -66 1980's 6 -6 6 -2 2 2 0 -1 0 31 1990's 7 10 -4 -13 19 -12 20 0 -6 -6 2000's -1 -3 5 -1 -2 1 0 2 11 22 2010's 11 37 -3 -14 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 7 1 3 1 4 3 3 3 13 11 1990's 2 1 0 0 1 0 9 12 0 0 2000's 4 2 3 0 0 1 7 0 0 0 2010's 0 0 4 3 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  3. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5 1980's 5 9 7 5 6 23 60 7 7 18 1990's 36 29 24 10 31 6 15 8 12 14 2000's 7 7 5 4 2 2 1 1 10 20 2010's 12 17 8 8 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 15 1980's 8 13 20 17 46 13 31 10 14 22 1990's 44 14 10 7 10 7 13 8 21 10 2000's 6 4 6 8 3 4 1 6 17 7 2010's 10 13 13 6 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  5. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 3 7 2 8 1 5 2 0 10 2010's 6 0 1 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  6. Mississippi Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 146 1980's 161 187 185 150 169 140 151 166 172 144 1990's 130 129 97 95 73 85 81 85 72 74 2000's 73 90 94 85 90 83 81 95 104 93 2010's 81 67 56 56 47 - = No Data Reported; -- =

  7. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 360 42 15 4 16 2 0 0 20 25 1990's 6 12 5 10 3 14 0 0 0 0 2000's 1 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 1980's 50 31 24 8 20 11 4 2 9 29 1990's 19 8 2 3 8 1 1 2 0 8 2000's 1 19 27 28 7 3 4 1 2 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 25 28 24 28 3 54 29 70 4 2 2010's 11 10 107 91 80 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  10. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 55 1980's 23 405 19 14 5 4 51 5 1 -13 1990's 71 97 -97 81 -17 45 -7 -18 -12 40 2000's -22 55 76 -26 21 6 -23 33 1 6 2010's -8 75 67 44 -29 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 65 1980's 96 72 39 30 45 77 68 29 18 46 1990's 19 10 9 2 1 30 34 36 110 11 2000's 49 41 52 81 27 74 112 147 156 133 2010's 33 24 0 2 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  12. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 119 1980's 146 152 366 275 188 153 155 89 79 175 1990's 106 122 98 99 104 41 74 48 100 106 2000's 32 36 71 37 53 25 39 49 87 232 2010's 59 140 294 68 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  13. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 56 1980's 37 62 207 163 130 76 162 143 116 160 1990's 121 74 111 57 45 66 74 58 157 156 2000's 78 66 83 59 46 53 94 48 92 85 2010's 67 93 79 33 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  14. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 92 31 21 40 10 16 39 22 2 7 2010's 25 11 159 39 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  15. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6 1980's 11 14 10 12 10 11 11 11 13 8 1990's 9 7 8 6 7 7 6 5 5 6 2000's 6 7 8 7 9 15 19 21 27 35 2010's 24 19 22 25 25 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 4 6 4 2 2 17 26 42 3 2010's 30 45 4 4 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  17. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 34 -32 -9 26 -17 9 0 -4 -1 -29 1990's 14 -18 3 -8 6 1 -3 -5 1 4 2000's 1 4 8 -8 -4 0 1 1 7 84 2010's -38 -33 -3 -5 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 1980's 21 13 5 6 3 1 2 2 1 1 1990's 1 1 1 0 1 0 1 1 6 3 2000's 5 15 14 25 16 39 22 18 9 5 2010's 41 14 38 37 79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 13 20 15 18 19 8 10 8 8 10 1990's 7 4 8 5 6 3 1 4 7 28 2000's 10 9 14 3 12 14 19 32 17 65 2010's 31 34 20 43 49 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11 1980's 26 12 18 17 10 21 25 19 25 13 1990's 19 8 7 11 8 7 7 4 14 42 2000's 9 12 7 7 26 20 51 60 11 126 2010's 40 32 26 51 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 5 8 0 1 1 19 28 47 3 2010's 29 45 4 4 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  2. Montana Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 42 1980's 51 74 36 39 38 41 31 32 47 36 1990's 40 42 46 44 43 45 47 51 46 35 2000's 62 67 70 79 86 86 100 92 88 80 2010's 70 57 45 39 35 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Montana Nonassociated Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 1 4 4 5 9 19 8 0 0 4 1990's 10 3 5 0 0 1 1 0 0 0 2000's 41 4 0 0 6 14 28 1 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. Montana Nonassociated Natural Gas, Wet After Lease Separation, New Field

    Energy Information Administration (EIA) (indexed site)

    Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 7 0 2 1 0 0 4 0 0 1 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 1 0 0 1 0 20 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  5. Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 56 0 325 1 7 0 13 55 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  6. Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -68 1980's 550 56 -430 51 -58 52 -67 -22 77 -73 1990's 14 -12 56 -151 137 -5 20 36 -13 42 2000's 10 48 49 -21 -55 8 12 10 -10 56 2010's 16 -25 46 11 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 40 1980's 24 47 29 25 36 2 5 1 0 128 1990's 39 17 15 0 0 0 1 21 0 12 2000's 53 22 83 122 116 92 123 64 67 28 2010's 47 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  8. Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 80 1980's 179 63 83 63 61 33 22 8 25 16 1990's 25 30 13 6 71 11 11 130 37 28 2000's 125 82 96 23 113 109 60 43 40 148 2010's 70 65 175 8 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 35 1980's 48 91 56 44 47 46 35 40 24 80 1990's 15 12 15 18 18 127 52 96 106 56 2000's 121 70 34 39 47 44 15 34 30 8 2010's 65 12 6 65 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 52 2 227 1 5 1 13 45 0 2010's 12 0 27 70 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Nonassociated

  11. Nebraska Natural Gas Wet After Lease Separation, Reserves in Nonproducing

    Energy Information Administration (EIA) (indexed site)

    Reservoirs (Billion Cubic Feet) Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 0 2000's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Total Gas

  12. New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 400 1980's 341 365 355 304 318 293 202 254 236 278 1990's 286 272 298 306 295 239 246 253 275 327 2000's 294 352 354 328 338 367 340 334 340 325 2010's 265 228 208 220 187

  13. New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    New Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 96 1980's 60 74 69 17 25 4 1 0 0 11 1990's 20 6 3 2 0 5 2 0 1 2 2000's 8 20 5 3 14 5 39 22 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 41 1980's 4 12 32 8 12 22 4 10 11 24 1990's 3 14 2 29 8 6 4 4 2 6 2000's 5 16 9 16 3 2 0 11 1 3 2010's 1 2 4 0 0 - = No Data Reported; -- = Not Applicable; NA =

  15. New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 338 103 80 184 371 554 112 123 180 186 2010's 150 148 52 286 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  16. New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 370 1980's -309 141 15 -34 -81 -3 -145 126 3 92 1990's 193 -100 70 31 29 -37 -3 9 -3 104 2000's -108 46 51 37 9 42 110 56 -12 149 2010's -49 -92 31 -97 111 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  17. New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 297 1980's 300 359 277 164 151 155 47 61 76 84 1990's 147 93 14 89 128 67 88 175 225 94 2000's 666 435 246 403 294 333 312 356 381 116 2010's 94 218 164 170 80 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  18. New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 269 1980's 270 333 417 240 225 299 221 157 182 201 1990's 220 255 205 147 148 162 127 128 290 251 2000's 230 349 1,000 895 322 329 408 308 324 406 2010's 225 301 515 296 322 - = No Data Reported; -- = Not

  19. New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 260 1980's 188 223 333 272 339 298 265 365 457 369 1990's 302 297 289 214 209 217 246 275 340 558 2000's 461 311 1,095 345 407 288 332 307 330 298 2010's 339 237 253 343 463 - = No Data Reported; -- = Not

  20. New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 200 185 71 192 166 436 121 205 112 100 2010's 91 121 100 510 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  1. New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    New Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 8 47 0 0 1 1 0 1 0 29 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 1 0 0 0 5 0 0 0 1 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  2. New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 16 41 5 7 8 3 0 0 31 40 1990's 1 0 12 8 0 0 0 0 0 22 2000's 1 14 0 0 0 1 147 0 1 0 2010's 0 7 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not

  3. New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 524 189 913 647 938 617 6,278 161 5 66 2010's 0 844 5 326 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  4. New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 1980's 28 714 -803 -54 -41 49 119 54 92 205 1990's 171 721 401 -265 -559 247 161 -884 60 253 2000's -86 -111 125 -6 -32 6 49 73 -14 263 2010's 120 179 49 42 310 - = No Data Reported; -- = Not Applicable; NA = Not

  5. New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 334 1980's 384 484 182 132 127 129 73 64 1,147 318 1990's 1,554 493 387 285 476 514 442 485 584 486 2000's 1,266 772 930 976 908 610 446 168 110 130 2010's 150 222 103 7 56 - = No Data Reported; -- = Not Applicable; NA = Not

  6. New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 273 116 904 458 443 470 6,278 297 202 145 2010's 13 841 0 224 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  7. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6 1980's 5 5 1990's 5 4 8 11 12 12 10 10 8 7 2000's 6 4 4 5 5 5 4 4 3 5 2010's 6 8 17 9 17 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  8. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 10 1 0 0 0 0 0 1 1 0 2010's 0 20 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  9. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 2 1990's 0 0 1 5 6 -10 2 -1 3 0 2000's 1 -4 4 3 3 -4 1 -1 0 5 2010's 13 3 57 -65 20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  10. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 2 1 1990's 0 2 0 4 2 4 2 0 0 0 2000's 0 1 2 0 1 3 0 0 0 0 2010's 0 0 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  11. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 1 1990's 2 6 3 1 2 3 3 2 8 3 2000's 2 1 1 0 0 1 8 1 0 1 2010's 4 0 6 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  12. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 13 5 1990's 3 4 16 19 14 9 3 5 11 9 2000's 1 3 7 3 1 4 4 12 1 11 2010's 6 2 18 20 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  13. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 1 5 0 0 0 4 5 0 0 2010's 2 9 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  14. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 44 1980's 63 85 1990's 104 147 254 276 385 354 367 372 391 380 2000's 365 345 365 347 325 298 286 273 262 256 2010's 225 218 204 174 167 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Alabama Nonassociated Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 71 1980's 0 8 1990's 0 0 1 0 0 131 0 14 0 0 2000's 0 0 2 4 0 0 7 17 1 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. Alabama Nonassociated Natural Gas, Wet After Lease Separation, New Field

    Energy Information Administration (EIA) (indexed site)

    Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 1 5 1990's 434 33 94 0 0 0 0 0 10 0 2000's 0 43 0 0 3 0 0 0 2 0 2010's 1 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  17. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 246 2 0 270 0 439 259 385 20 0 2010's 153 378 22 191 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  18. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 38 32 1990's 202 598 173 -639 22 -39 -42 -47 1 31 2000's -23 -35 63 -45 28 -21 -3 2 -7 42 2010's 47 -48 47 -195 498 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 46 1980's 66 11 1990's 1,019 227 35 376 78 114 175 34 19 1 2000's 184 173 291 321 132 84 150 125 61 21 2010's 29 3 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  20. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 44 1980's 124 93 1990's 942 205 192 164 2,130 290 94 54 308 139 2000's 68 224 156 125 157 60 205 35 747 336 2010's 176 163 256 79 43 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  1. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 135 1980's 61 121 1990's 762 772 546 29 2,091 482 504 346 301 210 2000's 78 77 126 595 163 133 234 153 287 90 2010's 208 470 84 50 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  2. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 149 1 1 251 30 427 188 303 11 2 2010's 270 586 11 373 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  3. Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 52 1980's 52 55 74 80 135 113 149 172 219 211 1990's 184 171 199 212 253 236 235 270 314 263 2000's 312 253 262 276 275 258 218 227 207 225 2010's 174 176 172 181 204 - = No

  4. Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,573 0 0 0 0 19 0 1 0 0 2010's 0 51 0 1 161 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  5. Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 13 97 11 -3 -5 465 0 -1 101 6 1990's -26 0 77 -29 25 -339 3 106 -149 145 2000's -145 0 0 -1 1 0 -1 1 -1 1 2010's -1 -1 -2 1 -1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 311 0 0 1 1 72 2 46 10 127 1990's 53 17 51 8 0 3 6 14 1 2 2000's 1,976 20 0 0 33 1 4 6 0 0 2010's 2 3 14 17 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 123 1980's 13 10 22 606 339 201 71 67 25,117 79 1990's 40 129 19 67 19 36 107 6 48 3,530 2000's 1,869 133 42 19 155 26 111 10 3,954 5 2010's 260 79 198 2,120 553 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 719 1980's 1,091 77 2,223 282 426 513 19 21 762 83 1990's 926 84 84 71 240 386 87 1,792 65 3,577 2000's 77 171 84 187 589 179 2,850 2,098 37 1,696 2010's 236 843 495 38 179 - = No Data Reported; -- = Not

  9. Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Alaska Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,741 0 0 0 0 22 0 3 0 1 2010's 0 2 0 0 167 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  10. Alaska Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 161 181 188 193 189 200 179 179 184 192 1990's 158 184 219 184 201 195 211 207 204 202 2000's 198 213 200 204 206 213 192 164 149 136 2010's 145 152 129 108 101 - = No Data

  11. Alaska Nonassociated Natural Gas, Wet After Lease Separation, New Field

    Energy Information Administration (EIA) (indexed site)

    Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 15 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 53 2000's 0 56 0 20 0 22 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  12. Alaska Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir

    Energy Information Administration (EIA) (indexed site)

    Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 4 0 0 0 0 10 0 0 0 1990's 0 40 0 8 0 0 0 0 0 23 2000's 13 4 4 1 26 10 2 0 5 0 2010's 0 3 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  13. Alaska Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 825 0 13 0 0 79 0 5 0 0 2010's 0 171 0 271 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  14. Alaska Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -50 1980's 22 -310 1 0 1 -451 23 0 54 -14 1990's -291 1 201 81 28 -76 66 -1 -14 -1 2000's 145 -1 1 0 -1 -1 -49 1 -1 1 2010's -2 -1 -1 1 -24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. Alaska Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 6 0 0 0 0 0 0 23 29 1990's 2 0 4 19 5 39 0 0 1 0 2000's 0 40 62 81 108 61 46 22 18 2 2010's 13 1 30 74 138 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  16. Alaska Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 1980's 91 51 0 136 56 354 689 1 13 57 1990's 59 112 2 43 32 18 64 93 77 45 2000's 249 206 77 215 53 129 267 103 153 103 2010's 195 128 142 301 137 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  17. Alaska Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 77 2 24 481 16 166 701 47 145 1990's 151 713 94 609 34 234 115 42 105 50 2000's 224 65 58 241 49 116 32 70 149 191 2010's 392 95 263 114 89 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  18. Alaska Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 842 0 13 0 0 74 0 8 0 4 2010's 132 34 2 92 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Nonassociated

  19. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11 1980's 28 28 9 11 11 4 7 6 6 6 1990's 13 21 25 21 19 22 23 17 13 5 2000's 4 3 5 5 4 3 5 4 3 4 2010's 4 6 9 9 10 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 2 1 0 27 0 0 0 0 2010's 0 0 0 0 79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  1. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 0 0 4 1 1 -26 -2 3 15 -2 1990's -70 91 23 -17 11 25 14 -19 -3 -1 2000's -1 -1 4 2 -1 -3 3 -7 3 12 2010's -3 24 38 -23 -20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 2 1 3 16 3 1 2 1 1 0 1990's 0 1 0 0 0 2 1 0 0 0 2000's 0 0 0 0 0 1 0 0 0 0 2010's 4 0 11 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  3. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 1980's 0 2 12 3 7 11 18 11 4 10 1990's 4 5 4 8 5 6 25 7 17 20 2000's 1 1 1 2 0 1 2 7 28 0 2010's 0 13 9 4 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  4. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 54 19 4 17 9 8 18 8 5 6 1990's 8 3 3 6 5 20 18 10 15 29 2000's 4 1 10 3 7 1 2 11 3 5 2010's 12 50 5 88 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  5. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 5 2 0 0 16 0 0 0 5 2010's 0 38 0 0 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  6. Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 91 1980's 90 94 150 196 178 173 119 124 154 161 1990's 152 152 180 167 167 160 178 173 157 159 2000's 150 157 153 161 166 171 183 265 454 694 2010's 948 1,074 1,143 1,132 1,133 - = No Data

  7. Arkansas Nonassociated Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 1980's 25 1 24 8 14 16 24 29 27 13 1990's 9 6 6 1 1 0 27 15 36 12 2000's 16 11 8 0 18 31 33 27 41 36 2010's 27 23 11 1 2 - = No Data Reported; -- = Not Applicable; NA =

  8. Arkansas Nonassociated Natural Gas, Wet After Lease Separation, New Field

    Energy Information Administration (EIA) (indexed site)

    Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 5 18 7 4 2 13 0 0 0 0 1990's 2 0 1 0 1 0 2 0 0 1 2000's 0 0 24 0 3 4 7 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  9. Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 343 5 78 81 52 3 5 280 5 36 2010's 807 6,882 6 9 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  10. Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 17 1980's -8 36 85 -20 89 -100 65 26 101 -48 1990's 162 15 160 -45 84 39 18 0 3 -47 2000's -2 28 25 17 13 11 -31 -22 -67 -8 2010's -31 705 -778 -53 18 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 49 1980's 90 75 105 155 161 168 246 222 229 279 1990's 114 191 171 115 91 87 83 94 638 357 2000's 48 87 106 132 91 141 112 139 161 621 2010's 301 311 6,603 280 1,095 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  12. Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 46 1980's 64 43 83 165 138 98 163 210 115 197 1990's 93 160 179 92 142 88 79 196 582 734 2000's 204 127 104 146 193 121 99 310 1,247 1,907 2010's 1,060 581 1,749 472 157 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 337 3 64 63 24 15 4 298 19 49 2010's 393 6,724 1 4 239 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  14. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    Energy Information Administration (EIA) (indexed site)

    After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 27 1980's 26 30 34 32 28 28 26 24 22 24 1990's 25 22 19 14 12 9 9 11 13 10 2000's 10 13 12 11 10 18 9 12 11 12 2010's 12

  15. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    Energy Information Administration (EIA) (indexed site)

    After Lease Separation, New Field Discoveries (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 1 3 1 29 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  16. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    Energy Information Administration (EIA) (indexed site)

    After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 5 2 11 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 1 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No

  17. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    Energy Information Administration (EIA) (indexed site)

    After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 23 0 5 2 7 1 60 6 6 0 2010's 0 0 0 1 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  18. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    Energy Information Administration (EIA) (indexed site)

    After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 47 1980's -31 10 44 -2 -42 -4 -4 -17 -5 8 1990's 6 18 -11 -59 4 -15 15 10 6 -3 2000's -1 3 2 6 -4 73 -64 2 1 2 2010's 2 15 2 -8 3 - = No Data Reported; -- = Not Applicable;

  19. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    Energy Information Administration (EIA) (indexed site)

    After Lease Separation, Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 3 11 23 7 13 10 1 2 1 5 1990's 16 1 0 1 1 1 1 16 0 56 2000's 0 0 3 0 3 6 5 0 0 0 2010's 0 1 1 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    Energy Information Administration (EIA) (indexed site)

    After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 49 1980's 38 29 26 27 81 20 22 15 24 14 1990's 36 32 11 6 8 24 5 16 54 10 2000's 15 64 4 31 10 13 12 22 72 14 2010's 17 31 17 15 23 - = No Data Reported; -- =

  1. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    Energy Information Administration (EIA) (indexed site)

    After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 60 1980's 44 33 41 44 50 40 58 36 27 38 1990's 34 27 17 17 25 11 9 9 48 84 2000's 14 15 21 12 32 32 29 33 21 42 2010's 38 21 157 14 24 - = No Data Reported; -- =

  2. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    Energy Information Administration (EIA) (indexed site)

    After Lease Separation, Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 3 2 3 0 70 4 6 0 2010's 1 0 0 1 56 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  3. California - Coastal Region Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 3 3 2 4 2 2 1 2 2 1 1990's 0 0 2 4 5 6 5 6 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not

  4. California - Coastal Region Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, New Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 1 2 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. California - Coastal Region Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 1 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; --

  6. California - Coastal Region Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  7. California - Coastal Region Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's -10 2 -3 -1 -29 0 -1 1 1 -6 1990's -1 1 15 39 1 4 -4 9 -46 0 2000's 0 0 0 -1 0 -1 0 0 0 1 2010's 0 0 0 0 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  8. California - Coastal Region Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5 1980's 0 0 6 0 0 0 0 0 0 0 1990's 0 0 0 2 0 0 0 0 0 0 2000's 0 0 0 0 6 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. California - Coastal Region Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 10 5 3 5 2 3 7 1 1 0 1990's 0 2 5 1 11 13 5 6 0 2 2000's 0 0 0 0 0 0 0 5 0 1 2010's 0 1 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. California - Coastal Region Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 10 0 0 0 0 2 0 1990's 0 8 0 11 9 9 8 2 1 0 2000's 0 0 0 2 1 1 0 0 0 0 2010's 1 0 1 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. California - Coastal Region Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) California - Coastal Region Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 2 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  12. California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 1 1990's 0 0 0 0 0 0 0 1 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not

  13. California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Nonassociated Natural Gas Reserves Acquisitions, Wet After Lease Separation

  14. California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 0 -1 0 0 2 -3 0 -1 0 1990's 0 0 5 0 0 0 0 3 0 -1 2000's 0 0 -1 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 1 1 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 1 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  16. California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 1 0 0 0 0 0 0 0 0 0 1990's 0 0 2 3 0 0 0 0 3 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  17. California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 1 1 1990's 0 0 0 0 0 0 0 1 0 0 2000's 1 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  18. California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Nonassociated Natural Gas Reserves Sales, Wet After Lease Separation

  19. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 155 1980's 148 189 157 169 199 181 174 147 141 112 1990's 116 140 128 102 92 91 75 57 50 41 2000's 79 93 87 86 76 84 87 99 86 78

  20. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, New Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 3 36 23 9 5 12 2 1 8 13 1990's 2 2 23 15 0 0 0 0 0 0 2000's 5 0 0 5 0 0 0 0 0 1 2010's 1 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  1. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 6 34 4 29 14 1 0 0 4 8 1990's 31 11 9 14 8 15 17 9 1 3 2000's 5 2 5 0 5 3 1 1 7 0 2010's 0 0 9 0 0 - = No Data

  2. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 63 16 36 4 109 239 47 234 23 25 2010's 0 44 93 0 164 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  3. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -33 1980's 18 28 128 7 62 -82 0 -47 45 -29 1990's 0 59 -5 59 50 31 -107 -21 -1 28 2000's 72 9 34 -21 45 -3 -11 28 3 1 2010's -3 -12 58 -20 19 - = No Data Reported; -- = Not

  4. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 40 1980's 60 63 85 117 91 215 58 24 29 22 1990's 53 7 21 36 58 18 3 11 4 3 2000's 19 123 10 36 17 84 165 13 7 4 2010's 0 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not

  5. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 102 1980's 70 194 160 94 196 118 217 87 112 74 1990's 82 52 113 83 73 65 39 22 99 174 2000's 38 42 58 27 62 60 49 180 128 59 2010's 84 31 120 73 70 - = No Data Reported;

  6. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 100 1980's 68 67 104 64 205 257 87 54 57 58 1990's 41 97 81 37 44 27 82 38 72 72 2000's 369 78 61 65 83 65 65 80 111 96 2010's 47 116 84 115 112 - = No Data Reported; -- =

  7. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4 5 47 15 115 211 152 165 1 0 2010's 2 47 303 0 164 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  8. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 198 1980's 149 206 208 204 206 1990's 188 180 165 155 157 130 147 158 204 230 2000's 212 253 216 190 182 196 180 163 163 171 2010's 186 260 155 157 147 - = No Data

  9. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    New Field Discoveries (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 1 0 0 3 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 2 0 0 0 0 0 0 0 0 0 2010's 0 0 4 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  10. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 7 0 2 2 3 1990's 3 0 5 1 0 0 1 1 12 0 2000's 0 0 0 0 0 0 0 0 9 0 2010's 0 0 1 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 72 5 13 46 45 17 219 9 8 58 2010's 0 11 4 65 1,068 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  12. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12 1980's -9 63 -25 -38 11 1990's -25 73 -29 8 -134 -13 0 25 -74 98 2000's -160 16 27 -14 -11 73 -62 6 1 6 2010's 7 929 -580 -33 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 17 1980's 15 25 16 12 8 1990's 18 2 8 23 7 14 13 61 43 65 2000's 97 93 86 21 84 51 21 4 100 470 2010's 12 74 8 5 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 148 1980's 229 124 50 61 57 1990's 68 194 52 55 85 34 30 28 243 153 2000's 89 222 73 152 98 76 391 102 388 139 2010's 389 1,927 452 38 187 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 578 1980's 748 135 268 169 202 1990's 153 112 113 67 85 84 127 336 525 491 2000's 387 87 145 247 378 711 96 292 164 177 2010's 525 1,424 485 161 547 - = No Data Reported; -- = Not Applicable; NA = Not

  16. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 49 2 4 48 20 1 133 8 7 4 2010's 1 1 0 76 1,079 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  17. California Federal Offshore Associated-Dissolved Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5 1980's 5 24 21 19 24 1990's 25 30 34 34 38 40 42 36 35 37 2000's 41 40 43 45 46 33 35 39 35 36 2010's 28 31 22 21 21 - = No Data

  18. California Federal Offshore Associated-Dissolved Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, New Field Discoveries (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 15 0 0 0 0 1990's 0 3 0 0 0 0 0 1 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. California Federal Offshore Associated-Dissolved Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 5 0 2000's 0 0 0 0 0 0 1 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not

  20. California Federal Offshore Associated-Dissolved Natural Gas, Wet After

    Energy Information Administration (EIA) (indexed site)

    Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 13 0 0 0 95 0 0 3 0 0 2010's 0 0 12 11 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: