National Library of Energy BETA

Sample records for aluminum alumina refining

  1. Alumina and Aluminum (2010 MECS)

    Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014

  2. MECS 2006 - Alumina and Aluminum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alumina and Aluminum MECS 2006 - Alumina and Aluminum Manufacturing Energy and Carbon Footprint for Alumina and Aluminum Sector (NAICS 3313) with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint Alumina and Aluminum (118.88 KB) More Documents & Publications Alumina and Aluminum (2010 MECS) MECS 2006 - Cement MECS 2006 - Glass

  3. Electrolytic Cell For Production Of Aluminum From Alumina

    DOEpatents

    Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2004-11-02

    An electrolytic cell for producing aluminum from alumina having a reservoir for collecting molten aluminum remote from the electrolysis.

  4. ITP Aluminum: Alumina Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry’s collective future and establishes a clear pathway forward.

  5. The influence of aluminum grain size on alumina nanoporous structure

    SciTech Connect

    Feil, A. F.; Costa, M. V. da; Amaral, L.; Teixeira, S. R.; Migowski, P.; Dupont, J.; Machado, G.; Peripolli, S. B.

    2010-01-15

    An approach to control the interpore distances and nanopore diameters of 150-nm-thick thin aluminum films is reported here. The Al thin films were grown by sputtering on p-type silicon substrate and anodized with a conventional anodization process in a phosphoric acid solution. It was found that interpore distance and pore diameter are related to the aluminum grain size and can be controlled by annealing. The grain contours limit the sizes of alumina cells. This mechanism is valid for grain sizes supporting only one alumina cell and consequently only one pore.

  6. New Process for Grain Refinement of Aluminum. Final Report

    SciTech Connect

    Dr. Joseph A. Megy

    2000-09-22

    A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.

  7. Electrolytic cell for production of aluminum from alumina

    DOEpatents

    Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2005-03-15

    Electrolysis of alumina dissolved in a molten salt electrolyte employing inert anode and cathodes, the anode having a box shape with slots for the cathodes.

  8. MECS 2006 - Petroleum Refining | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petroleum Refining MECS 2006 - Petroleum Refining Manufacturing Energy and Carbon Footprint for Petroleum Refining (NAICS 324110) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint Petroleum Refining (123.98 KB) More Documents & Publications Petroleum Refining (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  9. Particle denuded zones in alumina reinforced aluminum matrix composite weldments

    SciTech Connect

    Chidambaram, A.; Bhole, S.D.

    1996-08-01

    The Welding Institute of Canada (WIC), Ontario, has been studying the weldability of different DURALCAN MMC`s. Research on alumina reinforced (20 vol.%) 6061 Al alloy GTA welds showed satisfactory tensile and yield strengths (0.2% Proof Stress) but the welds failed to pass the bend test requirements with fracture taking place in the relatively brittle heat affected zone (HAZ). Further, the welds were characterized by a region which was devoid of reinforcement particles adjacent to the fusion lines. The present study was undertaken to try and explain the formation of this particle denuded zone (PDZ) at the fusion lines.

  10. Manufacturing Energy and Carbon Footprint - Sector: Alumina and Aluminum (NAICS 3313), October 2012 (MECS 2006)

    Energy.gov [DOE] (indexed site)

    Alumina and Aluminum (NAICS 3313) Process Energy Electricity and Steam Generation Losses Process Losses 5 Nonprocess Losses 603 134 Steam Distribution Losses 3 7 Nonprocess Energy 118 Electricity Generation Steam Generation 603 3 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 16 250 152 Generation and Transmission Losses Generation and Transmission Losses 1 329 Onsite Generation 265 255 18 273 481 4 13 0.3 29.0 29.3 1.0 1.0 5.0 33.0 1.6 36 6.3 35.6 0.3 Fuel Total

  11. Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation

    SciTech Connect

    Schempp, Philipp [BAM, Germany; Tang, Z. [BIAS, Germany; Cross, Carl E. [Los Alamos National Laboratory; Seefeld, T. [BIAS, Germany; Pittner, A. [BAM, Germany; Rethmeier, M. [BAM, Germany

    2012-06-28

    The goals are: (1) Establish how much Ti/B grain refiner is need to completely refine aluminum weld metal for different alloys and different welding conditions; (2) Characterize how alloy composition and solidification parameters affect weld metal grain refinement; and (3) Apply relevant theory to understand observed behavior. Conclusions are: (1) additions of Ti/B grain refiner to weld metal in Alloys 1050, 5083, and 6082 resulted in significant grain refinement; (2) grain refinement was more effective in GTAW than LBW, resulting in finer grains at lower Ti content - reason is limited time available for equiaxed grain growth in LBW (inability to occlude columnar grain growth); (3) welding travel speed did not markedly affect grain size within GTAW and LBW clusters; and (4) application of Hunt CET analysis showed experimental G to be on the order of the critical G{sub CET}; G{sub CET} was consistently higher for GTAW than for LBW.

  12. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    SciTech Connect

    Babu, N. Kishore; Cross, Carl E.

    2012-06-28

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

  13. Method And Reactor For Production Of Aluminum By Carbothermic Reduction Of Alumina

    DOEpatents

    Aune, Jan Arthur; Johansen, Kai

    2004-10-19

    A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.

  14. Aluminum doped zirconia nanopowders: Wet-chemical synthesis and structural analysis by Rietveld refinement

    SciTech Connect

    Srdic, Vladimir V. Rakic, Srdan; Cvejic, Zeljka

    2008-10-02

    Alumina/zirconia nanopowders, with up to 20 mol% Al{sub 2}O{sub 3}, were prepared by wet-chemical synthesis technique, using controlled hydrolysis of alkoxides. The as-synthesized powders are amorphous, have very high specific surface area and the corresponding particle size smaller than 4 nm. Amorphous powders with 0, 10 and 20 mol% Al{sub 2}O{sub 3} crystallize at 460, 692 and 749 deg. C, respectively, as a single-phase tetragonal zirconia, without any traces of alumina phases. Rietvled refinement of X-ray diffraction data, used for the detailed structural analysis of annealed nanopowders, showed that the high-temperature zirconia phase is stabilized due to the formation of ZrO{sub 2}/Al{sub 2}O{sub 3} solid solutions. High solubility of alumina in the tetragonal zirconia (up to 28.6 at% Al{sup 3+}) and stabilization of tetragonal zirconia solid solution up to high temperature (as high as 1150 deg. C) were also confirmed.

  15. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap Through Combined Refining and Solid Oxide Membrane (SOM) Electrolysis Processes

    SciTech Connect

    Guan, Xiaofei; Zink, Peter; Pal, Uday

    2012-03-11

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process is employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.

  16. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap through Combined Refining and Solid Oxide Membrane Electrolysis Processes

    SciTech Connect

    Xiaofei Guan; Peter A. Zink; Uday B. Pal; Adam C. Powell

    2012-01-01

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.

  17. Refining of solid ferrous scrap intermingled with copper by using molten aluminum

    SciTech Connect

    Iwase, M.

    1996-12-31

    A new approach for the removal of copper from solid ferrous scrap has been proposed by the present authors. With this process, solid ferrous scrap intermingled with pure copper is brought into contact with molten aluminum, which dissolved copper preferentially, and is recovered as {l_brace}Al + Cu{r_brace} alloys. After a duration of 30 minutes at temperatures between 963 K and 1,223 K, steel scrap is removed from the bath, resulting in being free of copper contamination.

  18. Aluminum

    Energy.gov [DOE]

    U.S. aluminum producers recognize that energy efficiency offers a competitive edge in world markets. The aluminum industry has worked with AMO to develop a range of resources that can help to increase energy efficiency and lower carbon emissions. Analytical Studies & Other Publications Manufacturing Energy and Carbon Footprints provide a mapping of energy use, energy loss, and carbon emissions for selected industry sectors. U.S. Energy Requirements for Aluminum Production, Historical Perspective, Theoretical Limits, and New Opportunities (2007)

  19. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  20. Non Invasive estimation of aluminum concentration in Hall-Heroult reduction cells

    SciTech Connect

    David Bell

    2004-03-01

    The present best practice for the preparation of primary aluminum is by electrolysis of alumina in the traditional Hall-Heroult reduction cell. The process conditions in the electrolyte of this cell required for the reduction to proceed are sufficiently harsh to have precluded the implementation of in situ sensing of the electrolyte composition, specifically the concentration of the ionized alumina. This report reveals the theoretical basis for a non-invasive method for estimation of the ionized alumina concentration which does not require the use of any sensor in direct contact with the cell electrolyte. The proposed method can in principle be applied with equal efficacy to the so-called drained cathode cell designs and to cells having any anode composition, because only knowledge of the electrolyte conduction behavior is required a priori. For an operating cell, the proposed method requires only readily available electrical measurements and the facilities to process the acquired signals. The proposed method rests on the ability to identify certain characteristics of the transients in the reduction cell terminal voltages caused by the quasiperiodic introduction of alumina. It will be shown that these voltage transients manifest measurable properties, in a statistical sense, that should permit estimation of the ionized alumina concentration with a delay of one alumina feed cycle. The next logical step following the present work, consistent with the Aluminum Technology Roadmap [1], is to experimentally verify the predictions made here; no doubt practical refinements to the proposed approach will evolve during the course of experimentation. Successful verification of the proposed estimation method will permit the design of reduction cell control algorithms based directly on the mass balance of alumina in the electrolyte. This report assumes that the reader understands certain basic concepts important to the operation of electrolytic cells, and the Hall-Heroult cell

  1. Method of making nanocrystalline alpha alumina

    DOEpatents

    Siegel, Richard W.; Hahn, Horst; Eastman, Jeffrey A.

    1992-01-01

    Method of making selected phases of nanocrystalline ceramic materials. Various methods of controlling the production of nanocrystalline alpha alumina and titanium oxygen phases are described. Control of the gas atmosphere and use of particular oxidation treatments give rise to the ability to control the particular phases provided in the aluminum/oxygen and titanium/oxygen system.

  2. Electrolyte treatment for aluminum reduction

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  3. A simple procedure to prepare spherical {alpha}-alumina powders

    SciTech Connect

    Liu Hongyu [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China); Ning Guiling [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China)], E-mail: ninggl@dlut.edu.cn; Gan Zhihong; Lin Yuan [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China)

    2009-04-02

    Spherical {alpha}-alumina powders were prepared by the controlled hydrolysis of aluminum isopropoxide in a hydrolysis system consisting of octanol and acetonitrile. Diverse solvents to dissolve reactant formed diverse hydrolysis systems and affected particle shape of {alpha}-alumina powders. The precursors crystallized to {gamma}-alumina at 1000 deg. C and converted to {alpha}-alumina at 1150 deg. C without intermediate phases. The particle morphology of precursor was retained after it crystallized to {alpha}-alumina. The heating rate influenced the particle shape and the state of agglomeration during calcination process. The thermal properties of the precursors were characterized by thermal gravimetric and differential thermal analysis. X-ray diffraction technique was used to confirm the conversion of crystalline phase of alumina powders from amorphous to {alpha}-phase. Transmission electron microscopy was used to investigate the morphologies and size of the precursors and products.

  4. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  5. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, M.A.; Guangyao Sheng.

    1993-05-04

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  6. Reuse of activated alumina

    SciTech Connect

    Hobensack, J.E.

    1991-12-31

    Activated alumina is used as a trapping media to remove trace quantities of UF{sub 6} from process vent streams. The current uranium recovery method employs concentrated nitric acid which destroys the alumina pellets and forms a sludge which is a storage and disposal problem. A recently developed technique using a distilled water rinse followed by three dilute acid rinses removes on average 97% of the uranium, and leaves the pellets intact with crush strength and surface area values comparable with new material. Trapping tests confirm the effectiveness of the recycled alumina as UF{sub 6} trapping media.

  7. Combination for electrolytic reduction of alumina

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-04-30

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  8. Rietveld Refinement

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    profile Chi-squared value 4.944 Progress so far Inverse Modeling Method 2 Fourier Method Data Model Refined Structure 40 60 80 100 120 140 160 0 1000 2000 3000 4000...

  9. ITP Petroleum Refining: Technology Roadmap for the Petroleum Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Technology Roadmap for the Petroleum Industry ITP Petroleum Refining: Technology Roadmap for the Petroleum Industry petroleumroadmap.pdf (338.1 KB) More Documents & Publications ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry ITP Aluminum: Technical Working Group on Inert Anode Technologies 2011 Strategic Plan

  10. Alumina Technology Roadmap

    SciTech Connect

    none,

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals.

  11. Functionally graded alumina-based thin film systems

    DOEpatents

    Moore, John J.; Zhong, Dalong

    2006-08-29

    The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue- and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina- or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or "interlayer" enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.

  12. Cathode for aluminum producing electrolytic cell

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  13. The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment

    SciTech Connect

    Liu, Dandan; Dai, Fangna; Tang, Zhe; Liu, Yunqi; Liu, Chenguang

    2015-05-15

    Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state {sup 27}Al nuclear magnetic resonance ({sup 27}Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m{sup 2}/g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina.

  14. Refiner Crude Oil Inputs

    Energy Information Administration (EIA) (indexed site)

    Net Inputs (Refiner and Blender) of RBOB Blending Components Net Inputs (Refiner and Blender) of CBOB Blending Components Net Inputs (Refiner and Blender) of GTAB Blending ...

  15. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  16. Bath for electrolytic reduction of alumina and method therefor

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-11-26

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode. Removing sulfur from the bath can also minimize cathode deposits. Aluminum formed on the cathode can be removed directly from the cathode.

  17. Optimized alumina coagulants for water treatment

    DOEpatents

    Nyman, May D.; Stewart, Thomas A.

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  18. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    DOEpatents

    Dawless, Robert K.; Ray, Siba P.; Hosler, Robert B.; Kozarek, Robert L.; LaCamera, Alfred F.

    2000-01-01

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  19. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  20. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, R.O.; Keller, R.; Yao, N.P.

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (A1S) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  1. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  2. Core-retention-concept assessment: alumina particle beds. [PWR; BWR

    SciTech Connect

    Fish, J.D.

    1982-01-01

    Nine tests of the particle-bed concept were conducted. The test bed was composed of thoria particles in two of the tests, alumina particles in six of the tests, and a combination of thoria and alumina in one test. Melts ranging from 2.8 kg to 25 kg were generated either by inductive heating of stainless steel slugs or by iron oxide/aluminum thermite reactions. In the former case, the melts were generated in place on top of the beds. In the latter case, the melts were dropped onto the beds from the reaction vessel. Two of the thermite tests involved sustained heating by inductive coupling to the iron phase of the melts. The thermite reaction produces a melt temperature of approximately 2700 K. With inductive heating at 1.0 W/g, melts were sustained at approximately 1700 K for up to several hours. Three of the tests, including one of the sustained thermite tests, were water cooled.

  3. Bath for electrolytic reduction of alumina and method therefor

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2001-07-10

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  4. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World alumvision.pdf (938.86 KB) ...

  5. Method for thermal processing alumina-enriched spinel single crystals

    DOEpatents

    Jantzen, C.M.

    1995-05-09

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly. 12 figs.

  6. Method for thermal processing alumina-enriched spinel single crystals

    DOEpatents

    Jantzen, Carol M.

    1995-01-01

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.

  7. Cathode for a hall-heroult type electrolytic cell for producing aluminum

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum from alumina in an electrolytic cell including using a cathode comprised of a base material having low electrical conductivity and wettable with molten aluminum to form a reaction layer having a high electrical conductivity on said base layer and a cathode bar extending from said reaction layer through said base material to conduct electrical current from said reaction layer.

  8. Aluminum low temperature smelting cell metal collection

    DOEpatents

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  9. Sol-spray preparation, particulate characteristics, and sintering of alumina powders

    SciTech Connect

    Varma, H.K.; Mani, T.V.; Damodaran, A.D.; Warrier, K.G.K.; Balachandran, U.

    1993-07-01

    Fine alumina powders of spherical morphology and narrow particle-size distribution have been synthesized by a technique that uses precipitation/peptization/spray drying of boehmite sol prepared from aluminum nitrate. The spray-dried powder was further washed with solvents of varying polarities, such as acetone, isopropanol, and tert-butanol. This post-spray-drying treatment changed the powder`s particle-size distribution, morphology, density, and compaction characteristics. Microstructure, dielectric properties, and effect of post-treatment on the boehmite-sol-derived alumina powders in reducing agglomeration are discussed.

  10. Effect of the synthetic method on the catalytic activity of alumina: Epoxidation of cyclohexene

    SciTech Connect

    Valderruten, N.E.; Peña, W.F.; Ramírez, A.E.; Rodríguez-Páez, J.E.

    2015-02-15

    Graphical abstract: Temperature influence on percent conversion and selectivity in the epoxidation of cyclohexene using commercial alumina as a catalyst. - Highlights: • Aluminum oxide was synthesized using Pechini method. • The alumina obtained showed a mix of boehmite and γ-alumina phases. • We research an economically feasible method to obtain alumina for use as a catalyst. • Alumina obtained by Pechini showed high percent conversion and/or selectivity. • The best results were 78% conversion and 78% selectivity to epoxidation reactions. - Abstract: Al{sub 2}O{sub 3} was prepared from different inorganic precursors via the Pechini method and compared with Al{sub 2}O{sub 3} prepared by the sol–gel method. Structural characterization of these materials was carried out by FTIR, X-ray diffraction (XRD), N{sub 2} adsorption at −196 °C and transmission electron microscopy (TEM). The solids were tested in the epoxidation of cyclohexene and a difference in their catalytic activities was observed. The characterization results indicate that the samples prepared by Pechini have a mixture of γ-alumina and boehmite, a condition favoring catalytic activity, whereas the sol–gel sample is less crystalline due to higher boehmite content. These results indicate that both the nature of the precursor and the method of synthesis strongly affect the catalytic activity of Al{sub 2}O{sub 3}.

  11. Attrition resistant gamma-alumina catalyst support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  12. ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining Processes |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Bandwidth for Petroleum Refining Processes ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining Processes bandwidth.pdf (1.16 MB) More Documents & Publications ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining Processes Bandwidth Study U.S. Petroleum Refining ITP Petroleum Refining: Energy and Environmental Profile of the U.S. Petroleum Refining Industry (November 2007) ITP Petroleum Refining: Profile of the Petroleum Refining Industry in

  13. Decontamination and reuse of ORGDP aluminum scrap

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

  14. Method of making highly porous, stable aluminum oxides doped with silicon

    DOEpatents

    Khosravi-Mardkhe, Maryam; Woodfield, Brian F.; Bartholomew, Calvin H.; Huang, Baiyu

    2016-03-22

    The present invention relates to a method for making high surface area and large pore volume thermally stable silica-doped alumina (aluminum oxide) catalyst support and ceramic materials. The ability of the silica-alumina to withstand high temperatures in presence or absence of water and prevent sintering allows it to maintain good activity over a long period of time in catalytic reactions. The method of preparing such materials includes adding organic silicon reagents to an organic aluminum salt such as an alkoxide in a controlled quantity as a doping agent in a solid state, solvent deficient reaction followed by calcination. Alternatively, the organic silicon compound may be added after calcination of the alumina, followed by another calcination step. This method is inexpensive and simple. The alumina catalyst support material prepared by the subject method maintains high pore volumes, pore diameters and surface areas at very high temperatures and in the presence of steam.

  15. ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bandwidth for Petroleum Refining Processes ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining Processes bandwidth.pdf (1.16 MB) More Documents & Publications ITP ...

  16. ITP Petroleum Refining: Profile of the Petroleum Refining Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Profile of the Petroleum Refining Industry in California: California Industries of the Future Program ITP Petroleum Refining: Profile of the Petroleum Refining Industry in ...

  17. Electron paramagnetic resonance studies of beta-alumina, a prototype glass

    SciTech Connect

    Kurtz, Steven Ross

    1980-01-01

    Electron paramagnetic resonance techniques are used to study single crystal Na, K, and Li beta-alumina. Color centers are introduced into this material by irradiating the samples with electrons at liquid nitrogen temperature. Using electron paramagnetic resonance and electron nuclear double resonance, the color centers generated in this manner are identified, and their location within the material is determined. For one of these centers, an F/sup +/ center, the electron spin relaxation rate is measured over the range 2 to 20/sup 0/K using the pulse saturation and recovery technique. These measurements reveal an exceptionally fast relaxation rate with anomalous temperature and microwave frequency dependence. Beta-alumina is a structurally unique system. It is partially disordered and consists of ordered blocks of aluminum oxide separated by planar disordered regions. Extensive measurements have shown that beta-alumina displays properties identical to those observed for glasses at low temperature as a result of this limited structural disorder. These glass-like properties have been explained by proposing that atomic tunneling occurs in beta-alumina at low temperature producing a system of localized two level states. A model is developed which quantitatively describes the electron spin relaxation data. The proposed relaxation mechanism couples the color center spin to the phonon induced relaxation of a nearby localized two level tunneling state. A detailed comparison shows that this model is in good agreement with earlier heat capacity, thermal conductivity, and dielectric susceptibility measurements in beta-alumina.

  18. Method for preparing Pb-. beta. ''-alumina ceramic

    DOEpatents

    Hellstrom, E.E.

    1984-08-30

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-..beta..''-alumina ceramic from Na-..beta..''-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-..beta..''-alumina ceramic that is substantially crack-free.

  19. Synthesis of high porosity, monolithic alumina aerogels

    SciTech Connect

    Poco, J F; Satcher, J H; Hrubesh, L W

    2000-09-20

    Many non-silica aerogels are notably weak and fragile in monolithic form. Particularly, few monolithic aerogels with densities less than 50kg/m3 have any significant strength. It is especially difficult to prepare uncracked monoliths of pure alumina aerogels that are robust and moisture stable. In this paper, we discuss the synthesis of strong, stable, monolithic, high porosity (>98% porous) alumina aerogels, using a two-step sol-gel process. The alumina aerogels have a polycrystalline morphology that results in enhanced physical properties. Most of the measured physical properties of the alumina aerogels are superior to those for silica aerogels for equivalent densities.

  20. Step 3: Project Refinement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3: Project Refinement 2 1 Potential 3 Refinement 4 Implementation 5 Operations & Maintenance 2 Options 3 Refinement 1/28/2016 2 3 FUNDING AND FINANCING OPTIONS Project Ownership Financing structure is highly dependent on size of the project and the capital available for a given project: * Tribe owns the project (cash purchase or debt) * Tribe hosts the project and buys the electricity (power purchase agreement) * Tribe partners with private sector and co-owns the project (uncertainties about

  1. Single-crystal structure refinement of four compounds in the Y{sub 1{minus}{ital x}}Pr{sub {ital x}}Ba{sub 2}Cu{sub 3{minus}{ital y}}Al{sub {ital y}}O{sub 7{minus}{delta}} system

    SciTech Connect

    Meden, A.; Holzinger-Schweiger, E.; Leising, G.; Pejovnik, S.; Golic, L.

    1996-12-01

    X-ray single crystal diffraction data were used for structural refinement of the title compounds with different {ital x} (0.15, 0.27, 0.49 and 0.89). Crystals were grown in alumina crucibles using self-flux method. Aluminum, which originates from the crucibles, substitutes only Cu(1), and thus induces tetragonal symmetry which was observed in all four crystals. The main structural effect of praseodymium is an increased separation of superconducting layers. Substituent concentrations ({ital x} and {ital y} in the formula) have been refined and compared with the values obtained by EDX (energy dispersive x-ray analysis) in an electron microscope. It was indicated that the refined values of Y:Pr ratio and the oxygen content are more reliable than those obtained by EDX while the refinement is less sensitive for Cu(1):Al ratio and this value is more uncertain. This is in accordance with the result of wet chemical analysis. {copyright} {ital 1996 Materials Research Society.}

  2. Measurement of Shear Strength and Interfacial Adhesion of Alumina...

    Office of Scientific and Technical Information (OSTI)

    and Interfacial Adhesion of Alumina-Epon Interfaces. Citation Details In-Document Search Title: Measurement of Shear Strength and Interfacial Adhesion of Alumina-Epon Interfaces. ...

  3. Refiners trade hydroprocessing experience

    SciTech Connect

    Not Available

    1984-04-16

    Hydrogen treating and conversion processes less severe than hydrocracking abound in most refineries and therefore were a subject of high interest at the National Petroleum Refiners Association question and answer session on refining technology. The present paper, which is the second abstract of the transcript of the most recent meeting, covers hydroprocessing and some of its mechanical, process, and catalytic aspects.

  4. Amorphous alumina thin films deposited on titanium: Interfacial chemistry and thermal oxidation barrier properties

    DOE PAGES [OSTI]

    Baggetto, Loic; Charvillat, Cedric; Thebault, Yannick; Esvan, Jerome; Lafont, Marie-Christine; Scheid, Emmanuel; Veith, Gabriel M.; Vahlas, Constantin

    2015-12-02

    Ti/Al2O3 bilayer stacks are used as model systems to investigate the role of atomic layer deposition (ALD) and chemical vapor deposition (CVD) to prepare 30-180 nm thick amorphous alumina films as protective barriers for the medium temperature oxidation (500-600⁰C) of titanium, which is employed in aeronautic applications. X-ray diffraction (XRD), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) results show that the films produced from the direct liquid injection (DLI) CVD of aluminum tri-isopropoxide (ATI) are poor oxygen barriers. The films processed using the ALD of trimethylaluminum (TMA) show good barrier properties butmore » an extensive intermixing with Ti which subsequently oxidizes. In contrast, the films prepared from dimethyl aluminum isopropoxide (DMAI) by CVD are excellent oxygen barriers and show little intermixing with Ti. Overall, these measurements correlate the effect of the alumina coating thickness, morphology, and stoichiometry resulting from the preparation method to the oxidation barrier properties, and show that compact and stoichiometric amorphous alumina films offer superior barrier properties.« less

  5. Amorphous alumina thin films deposited on titanium: Interfacial chemistry and thermal oxidation barrier properties

    SciTech Connect

    Baggetto, Loic; Charvillat, Cedric; Thebault, Yannick; Esvan, Jerome; Lafont, Marie-Christine; Scheid, Emmanuel; Veith, Gabriel M.; Vahlas, Constantin

    2015-12-02

    Ti/Al2O3 bilayer stacks are used as model systems to investigate the role of atomic layer deposition (ALD) and chemical vapor deposition (CVD) to prepare 30-180 nm thick amorphous alumina films as protective barriers for the medium temperature oxidation (500-600⁰C) of titanium, which is employed in aeronautic applications. X-ray diffraction (XRD), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) results show that the films produced from the direct liquid injection (DLI) CVD of aluminum tri-isopropoxide (ATI) are poor oxygen barriers. The films processed using the ALD of trimethylaluminum (TMA) show good barrier properties but an extensive intermixing with Ti which subsequently oxidizes. In contrast, the films prepared from dimethyl aluminum isopropoxide (DMAI) by CVD are excellent oxygen barriers and show little intermixing with Ti. Overall, these measurements correlate the effect of the alumina coating thickness, morphology, and stoichiometry resulting from the preparation method to the oxidation barrier properties, and show that compact and stoichiometric amorphous alumina films offer superior barrier properties.

  6. Low temperature aluminum reduction cell using hollow cathode

    DOEpatents

    Brown, Craig W.; Frizzle, Patrick B.

    2002-08-20

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.

  7. Alumina forming iron base superalloy

    DOEpatents

    Yamamoto, Yukinori; Muralidharan, Govindarajan; Brady, Michael P.

    2014-08-26

    An austenitic stainless steel alloy, consists essentially of, in weight percent 2.5 to 4 Al; 25 to 35 Ni; 12 to 19 Cr; at least 1, up to 4 total of at least one element selected from the group consisting of Nb and Ta; 0.5 to 3 Ti; less than 0.5 V; 0.1 to 1 of at least on element selected from the group consisting of Zr and Hf; 0.03 to 0.2 C; 0.005 to 0.1 B; and base Fe. The weight percent Fe is greater than the weight percent Ni. The alloy forms an external continuous scale including alumina, and contains coherent precipitates of .gamma.'-Ni.sub.3Al, and a stable essentially single phase FCC austenitic matrix microstructure. The austenitic matrix is essentially delta-ferrite-free and essentially BCC-phase-free.

  8. NAFTA opportunities: Petroleum refining

    SciTech Connect

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) creates a more transparent environment for the sale of refined petroleum products to Mexico, and locks in access to Canada's relatively open market for these products. Canada and Mexico are sizable United States export markets for refined petroleum products, with exports of $556 million and $864 million, respectively, in 1992. These markets represent approximately 24 percent of total U.S. exports of these goods.

  9. The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels

    DOE PAGES [OSTI]

    Yanar, N. M.; Lutz, B. S.; Garcia-Fresnillo, L.; Brady, Michael P.; Meier, G. H.

    2015-08-19

    The isothermal oxidation behavior of three alumina forming austenitic (AFA) stainless steels with varying composition was studied at 650 and 800 °C in dry air and gases which contained water vapor. The AFA alloys exhibited better oxidation resistance than a “good chromia former” at 650 °C, particularly in H2O-containing atmospheres by virtue of alumina-scale formation. Although the AFA alloys were more resistant than chromia formers, their oxidation resistance was degraded at 650 °C in the presence of water vapor. In dry air the AFA alloys formed, thin continuous alumina scales, whereas in Ar–4%H2–3%H2O the areas of continuous alumina were reducedmore » and Fe oxide-rich nodules and regions of Cr, Mn-rich oxides formed. In some regions internal oxidation of the aluminum occurred in the H2O-containing gas. The alloy OC8 had slightly better resistance than OC4 or OC5 in this atmosphere. The alumina-forming capability of the AFA alloys decreases with increasing temperature and, at 800 °C, they are borderline alumina formers, even in dry air. The oxidation resistance of all three alloys was degraded at 800 °C in atmospheres, which contained water vapor (Air–10%H2O, Ar–3%H2O and Ar–4%H2–3%H2O). The areas, which formed continuous alumina, were reduced in these atmospheres and areas of internal oxidation occurred. However, as a result of the borderline alumina-forming capability of the AFA alloys it was not possible to determine which of the H2O-containing atmospheres was more severe or to rank the alloys in terms of their performance. The experimental results indicate that the initial microstructure of the AFA alloys also plays a role in their oxidation performance. Less protective oxides formed at 800 °C when alloy OC8 was equilibrated before exposure rather than being exposed in the as-processed condition. As a result, the reason for this is the presence of different phases in the bulk of the two specimens.« less

  10. The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels

    SciTech Connect

    Yanar, N. M.; Lutz, B. S.; Garcia-Fresnillo, L.; Brady, Michael P.; Meier, G. H.

    2015-08-19

    The isothermal oxidation behavior of three alumina forming austenitic (AFA) stainless steels with varying composition was studied at 650 and 800 °C in dry air and gases which contained water vapor. The AFA alloys exhibited better oxidation resistance than a “good chromia former” at 650 °C, particularly in H2O-containing atmospheres by virtue of alumina-scale formation. Although the AFA alloys were more resistant than chromia formers, their oxidation resistance was degraded at 650 °C in the presence of water vapor. In dry air the AFA alloys formed, thin continuous alumina scales, whereas in Ar–4%H2–3%H2O the areas of continuous alumina were reduced and Fe oxide-rich nodules and regions of Cr, Mn-rich oxides formed. In some regions internal oxidation of the aluminum occurred in the H2O-containing gas. The alloy OC8 had slightly better resistance than OC4 or OC5 in this atmosphere. The alumina-forming capability of the AFA alloys decreases with increasing temperature and, at 800 °C, they are borderline alumina formers, even in dry air. The oxidation resistance of all three alloys was degraded at 800 °C in atmospheres, which contained water vapor (Air–10%H2O, Ar–3%H2O and Ar–4%H2–3%H2O). The areas, which formed continuous alumina, were reduced in these atmospheres and areas of internal oxidation occurred. However, as a result of the borderline alumina-forming capability of the AFA alloys it was not possible to determine which of the H2O-containing atmospheres was more severe or to rank the alloys in terms of their performance. The experimental results indicate that the initial microstructure of the AFA alloys also plays a role in their oxidation performance. Less protective oxides formed at 800 °C when alloy OC8 was equilibrated before exposure rather than being exposed in the as-processed condition. As a result, the reason for this is the presence of different

  11. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  12. Electronic and chemical state of aluminum from the single- (K) and double-electron excitation (KLII&III, KLI) x-ray absorption near-edge spectra of α-alumina, sodium aluminate, aqueous Al³⁺•(H₂O)₆, and aqueous Al(OH)₄⁻

    SciTech Connect

    Fulton, John L.; Govind, Niranjan; Huthwelker, Thomas; Bylaska, Eric J.; Vjunov, Aleksei; Pin, Sonia; Smurthwaite, Tricia D.

    2015-07-02

    We probe, at high energy resolution, the double electron excitation (KLII&II) x-ray absorption region that lies approximately 115 eV above the main Al K-edge (1566 eV) of α-alumina and sodium aluminate. The two solid standards, α-alumina (octahedral) and sodium aluminate (tetrahedral) are compared to aqueous species that have the same Al coordination symmetries, Al³⁺•6H₂O (octahedral) and Al(OH)₄⁻ (tetrahedral). For the octahedral species, the edge height of the KLII&III-edge is approximately 10% of the main K-edge however the edge height is much weaker (3% of K-edge height) for Al species with tetrahedral symmetry. For the α-alumina and aqueous Al³⁺•6H₂O the KLII&III spectra contain white line features and extended absorption fine structure (EXAFS) that mimics the K-edge spectra. The KLII&III-edge feature interferes with an important region of the extended-XAFS region of the spectra for the K-edge of the crystalline and aqueous standards. The K-edge spectra and K-edge positions are predicted using time-dependent density functional theory (TDDFT). The TDDFT calculations for the K-edge XANES spectra reproduce the observed transitions in the experimental spectra of the four Al species. The KLII&III and KLI onsets and their corresponding chemical shifts for the four standards are estimated using the delta self-consistent field (ΔSCF) method. Research by JLF, NG, EJB, AV, TDS was supported by U.S. Department of Energy’s (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. NG thanks Amity Andersen for help with the α-Al₂O₃ and tetrahedral sodium aluminate (NaAlO₂) clusters. All the calculations were performed using the Molecular Science Computing Capability at EMSL, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at

  13. ITP Petroleum Refining: Profile of the Petroleum Refining Industry in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    California: California Industries of the Future Program | Department of Energy Profile of the Petroleum Refining Industry in California: California Industries of the Future Program ITP Petroleum Refining: Profile of the Petroleum Refining Industry in California: California Industries of the Future Program cpi_profile.pdf (363.14 KB) More Documents & Publications ITP Petroleum Refining: Energy and Environmental Profile of the U.S. Petroleum Refining Industry (November 2007) ITP Petroleum

  14. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Aluminum Industry Roadmap for the Automotive Market (May 1999) ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) autoroadmap.pdf (481.39 KB) More ...

  15. Synthesis of High Surface Area Alumina Aerogels without the Use of Alkoxide Precursors

    SciTech Connect

    Baumann, T F; Gash, A E; Chinn, S C; Sawvel, A M; Maxwell, R S; Satcher Jr., J H

    2004-06-25

    Alumina aerogels were prepared through the addition of propylene oxide to aqueous or ethanolic solutions of hydrated aluminum salts, AlCl{sub 3} {center_dot} 6H{sub 2}O or Al(NO{sub 3}){sub 3} {center_dot} 9H{sub 2}O, followed by drying with supercritical CO{sub 2}. This technique affords low-density (60-130 kg/m{sup 3}), high surface area (600-700 m{sup 2}/g) alumina aerogel monoliths without the use of alkoxide precursors. The dried alumina aerogels were characterized using elemental analysis, high-resolution transmission electron microscopy, powder X-ray diffraction, solid state NMR, acoustic measurements and nitrogen adsorption/desorption analysis. Powder X-ray diffraction and TEM analysis indicated that the aerogel prepared from hydrated AlCl{sub 3} in water or ethanol possessed microstructures containing highly reticulated networks of pseudoboehmite fibers, 2-5 nm in diameter and of varying lengths, while the aerogels prepared from hydrated Al(NO{sub 3}){sub 3} in ethanol were amorphous with microstructures comprised of interconnected spherical particles with diameters in the 5-15 nm range. The difference in microstructure resulted in each type of aerogel displaying distinct physical and mechanical properties. In particular, the alumina aerogels with the weblike microstructure were far more mechanically robust than those with the colloidal network, based on acoustic measurements. Both types of alumina aerogels can be transformed to {gamma}-Al{sub 2}O{sub 3} through calcination at 800 C without a significant loss in surface area or monolithicity.

  16. Sorbent selection and design considerations for uranium trapping. [H-151 alumina, XF-100 alumina, F-1 alumina, sodium fluoride

    SciTech Connect

    Schultz, R.M.; Hobbs, W.E.; Norton, J.L.; Stephenson, M.J.

    1981-07-01

    The efficient removal of UF/sub 6/ from effluent streams can be accomplished through the selection of the best solid sorbent and the implementation of good design principles. Pressure losses, sorbent capacity, reaction kinetics, sorbent regeneration/uranium recovery requirements and the effects of other system components are the performance factors which are summarized. The commonly used uranium trapping materials highlighted are sodium fluoride, H-151 alumina, XF-100 alumina, and F-1 alumina. Sorbent selection and trap design have to be made on a case-by-case basis but the theoretical modeling studies and the evaluation of the performance factors presented can be used as a guide for other chemical trap applications.

  17. Optimized Alumina Coagulants for Water Purification - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    purification. By inserting a single gallium atom in the center of an aluminum oxide cluster, the stability and efficacy of the reagent is greatly improved. This stability also...

  18. Petroleum Refining | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petroleum Refining Petroleum Refining Maintaining the viability of the U.S. petroleum refining industry requires continuous improvement in productivity and energy efficiency. The U.S. refining industry has worked with AMO to provide a range of resources that can provide energy and cost savings for the industry. Analytical Studies & Other Publications Manufacturing Energy and Carbon Footprints provide a mapping of energy use, energy loss, and carbon emissions for selected industry sectors.

  19. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  20. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  1. Process for solvent refining of coal using a denitrogenated and dephenolated solvent

    DOEpatents

    Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

    1984-01-01

    A process is disclosed for the solvent refining of non-anthracitic coal at elevated temperatures and pressure in a hydrogen atmosphere using a hydrocarbon solvent which before being recycled in the solvent refining process is subjected to chemical treatment to extract substantially all nitrogenous and phenolic constituents from the solvent so as to improve the conversion of coal and the production of oil in the solvent refining process. The solvent refining process can be either thermal or catalytic. The extraction of nitrogenous compounds can be performed by acid contact such as hydrogen chloride or fluoride treatment, while phenolic extraction can be performed by caustic contact or contact with a mixture of silica and alumina.

  2. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  3. Steel refining with an electrochemical cell

    DOEpatents

    Blander, Milton; Cook, Glenn M.

    1988-01-01

    Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  4. Steel refining with an electrochemical cell

    DOEpatents

    Blander, M.; Cook, G.M.

    1988-05-17

    Apparatus is described for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom. 2 figs.

  5. Steel refining with an electrochemical cell

    DOEpatents

    Blander, M.; Cook, G.M.

    1985-05-21

    Disclosed is an apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  6. CLAMR (Compute Language Adaptive Mesh Refinement)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CLAMR (Compute Language Adaptive Mesh Refinement) CLAMR (Compute Language Adaptive Mesh Refinement) CLAMR (Compute Language Adaptive Mesh Refinement) is being developed as a DOE...

  7. Reactions of aluminum with uranium fluorides and oxyfluorides

    SciTech Connect

    Leitnaker, J.M.; Nichols, R.W.; Lankford, B.S.

    1991-12-31

    Every 30 to 40 million operating hours a destructive reaction is observed in one of the {approximately}4000 large compressors that move UF{sub 6} through the gaseous diffusion plants. Despite its infrequency, such a reaction can be costly in terms of equipment and time. Laboratory experiments reveal that the presence of moderate pressures of UF{sub 6} actually cools heated aluminum, although thermodynamic calculations indicate the potential for a 3000-4000{degrees}C temperature rise. Within a narrow and rather low (<100 torr; 1 torr = 133.322 Pa) pressure range, however, the aluminum is seen to react with sufficient heat release to soften an alumina boat. Three things must occur in order for aluminum to react vigorously with either UF{sub 6} or UO{sub 2}F{sub 2}. 1. An initiating source of heat must be provided. In the compressors, this source can be friction, permitted by disruption of the balance of the large rotating part or by creep of the aluminum during a high-temperature treatment. In the absence of this heat source, compressors have operated for 40 years in UF{sub 6} without significant reaction. 2. The film protecting the aluminum must be breached. Melting (of UF{sub 5} at 620 K or aluminum at 930 K) can cause such a breach in laboratory experiments. In contrast, holding Al samples in UF{sub 6} at 870 K for several hours produces only moderate reaction. Rubbing in the cascade can undoubtedly breach the protective film. 3. Reaction products must not build up and smother the reaction. While uranium products tend to dissolve or dissipate in molten aluminum, AIF{sub 3} shows a remarkable tendency to surround and hence protect even molten aluminum. Hence the initial temperature rise must be rapid and sufficient to move reactants into a temperature region in which products are removed from the reaction site.

  8. ITP Aluminum: Aluminum Industry Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2002, the industry created this updated Aluminum Industry Technology Roadmap to define the specific research and development priorities, performance targets, and milestones required to achieve the set vision.

  9. Refines Efficiency Improvement

    SciTech Connect

    WRI

    2002-05-15

    Refinery processes that convert heavy oils to lighter distillate fuels require heating for distillation, hydrogen addition or carbon rejection (coking). Efficiency is limited by the formation of insoluble carbon-rich coke deposits. Heat exchangers and other refinery units must be shut down for mechanical coke removal, resulting in a significant loss of output and revenue. When a residuum is heated above the temperature at which pyrolysis occurs (340 C, 650 F), there is typically an induction period before coke formation begins (Magaril and Aksenova 1968, Wiehe 1993). To avoid fouling, refiners often stop heating a residuum before coke formation begins, using arbitrary criteria. In many cases, this heating is stopped sooner than need be, resulting in less than maximum product yield. Western Research Institute (WRI) has developed innovative Coking Index concepts (patent pending) which can be used for process control by refiners to heat residua to the threshold, but not beyond the point at which coke formation begins when petroleum residua materials are heated at pyrolysis temperatures (Schabron et al. 2001). The development of this universal predictor solves a long standing problem in petroleum refining. These Coking Indexes have great potential value in improving the efficiency of distillation processes. The Coking Indexes were found to apply to residua in a universal manner, and the theoretical basis for the indexes has been established (Schabron et al. 2001a, 2001b, 2001c). For the first time, a few simple measurements indicates how close undesired coke formation is on the coke formation induction time line. The Coking Indexes can lead to new process controls that can improve refinery distillation efficiency by several percentage points. Petroleum residua consist of an ordered continuum of solvated polar materials usually referred to as asphaltenes dispersed in a lower polarity solvent phase held together by intermediate polarity materials usually referred to as

  10. Obtaining aluminas from the thermal decomposition of their different precursors: An {sup 27}Al MAS NMR and X-ray powder diffraction studies

    SciTech Connect

    Chagas, L.H.; De Carvalho, G.S.G.; San Gil, R.A.S.; Chiaro, S.S.X.; Leito, A.A.; Diniz, R.

    2014-01-01

    Graphical abstract: - Highlights: We synthesized three precursors of alumina from different methods. The calcination of the precursors generated several alumina polymorphs. XRD and NMR were used for structural investigation of the polymorphs. The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrational and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the ?-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.

  11. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    SciTech Connect

    Chuanping Li

    2004-12-19

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the {sup 17}O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles' surfaces

  12. ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bandwidth for Petroleum Refining Processes Prepared by Energetics Incorporated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Industrial ...

  13. Final Report: Wetted Cathodes for Low-Temperature Aluminum Smelting

    SciTech Connect

    Brown, Craig W

    2002-09-30

    A low-temperature aluminum smelting process being developed differs from the Hall-Heroult process in several significant ways. The low-temperature process employs a more acidic electrolyte than cryolite, an alumina slurry, oxygen-generating metal anodes, and vertically suspended electrodes. Wetted and drained vertical cathodes are crucial to the new process. Such cathodes represent a significant portion of the capital costs projected for the new technology. Although studies exist of wetted cathode technology with Hall-Heoult cells, the differences make such a study desirable with the new process.

  14. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  15. Hydrolysis of carbonyl sulfide over alumina

    SciTech Connect

    Polleck, R. E.; Ledley, R. E.; Scott, K. A.

    1985-01-01

    The reaction rate for the hydrolysis of carbonyl sulfide in liquid petroleum hydrocarbons over alumina, such as propylene, is greatly increased by maintaining water in the hydrocarbons in an amount of one mole of water per mole of carbonyl sulfide to an upper limit of about ten moles of water per mole of carbonyl sulfide or about 30% of saturation of the hydrocarbons, whichever upper limit provides the lesser amount of water.

  16. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Dr. R. G. Reddy

    2007-09-01

    The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation

  17. Method for preparing Pb-.beta."-alumina ceramic

    DOEpatents

    Hellstrom, Eric E.

    1986-01-01

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-.beta."-alumina ceramic from Na-.beta."-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-.beta."-alumina ceramic that is substantially crack-free.

  18. Midcourse Refinements of Financing Strategies

    Energy.gov [DOE]

    Better Buildings Neighborhood Program Financing Peer Exchange Call: Midcourse Refinements of Financing Strategies, Call Slides and Discussion Summary, March 29, 2012. During this webinar participants discussed how programs have adapted and refined their financing strategies based on initial implementation experience and learning.

  19. Sintering of beta-type alumina bodies using alpha-alumina encapsulation

    DOEpatents

    McEntire, Bryan J.; Virkar, Anil V.

    1981-01-01

    A method of sintering a shaped green, beta-type alumina body comprising: (A) inserting said body into an open chamber prepared by exposing the interior surface of a container consisting essentially of at least about 50 weight percent of alpha-alumina and a remainder of other refractory material to a sodium oxide or sodium oxide producing environment; (B) sealing the chamber; and heating the chamber with the shaped body encapsulated therein to a temperature and for a time necessary to sinter said body to the desired density. The encapsulation chamber prepared as described above is also claimed.

  20. Crystal structure refinement with SHELXL

    SciTech Connect

    Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Department of Structural Chemistry, Georg-August Universitt Gttingen, Tammannstrae 4, Gttingen 37077 (Germany)

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as a CIF) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  1. Parallel Adaptive Mesh Refinement

    SciTech Connect

    Diachin, L; Hornung, R; Plassmann, P; WIssink, A

    2005-03-04

    As large-scale, parallel computers have become more widely available and numerical models and algorithms have advanced, the range of physical phenomena that can be simulated has expanded dramatically. Many important science and engineering problems exhibit solutions with localized behavior where highly-detailed salient features or large gradients appear in certain regions which are separated by much larger regions where the solution is smooth. Examples include chemically-reacting flows with radiative heat transfer, high Reynolds number flows interacting with solid objects, and combustion problems where the flame front is essentially a two-dimensional sheet occupying a small part of a three-dimensional domain. Modeling such problems numerically requires approximating the governing partial differential equations on a discrete domain, or grid. Grid spacing is an important factor in determining the accuracy and cost of a computation. A fine grid may be needed to resolve key local features while a much coarser grid may suffice elsewhere. Employing a fine grid everywhere may be inefficient at best and, at worst, may make an adequately resolved simulation impractical. Moreover, the location and resolution of fine grid required for an accurate solution is a dynamic property of a problem's transient features and may not be known a priori. Adaptive mesh refinement (AMR) is a technique that can be used with both structured and unstructured meshes to adjust local grid spacing dynamically to capture solution features with an appropriate degree of resolution. Thus, computational resources can be focused where and when they are needed most to efficiently achieve an accurate solution without incurring the cost of a globally-fine grid. Figure 1.1 shows two example computations using AMR; on the left is a structured mesh calculation of a impulsively-sheared contact surface and on the right is the fuselage and volume discretization of an RAH-66 Comanche helicopter [35]. Note the

  2. Thermally conductive alumina/organic composites for photovoltaic concentrator cell isolation

    SciTech Connect

    Beavis, L.C.; Panitz, J.K.G.; Sharp, D.J.

    1988-01-01

    Electrophoretically deposited styrene-acrylate films were studied. These yield marginally useful thermal conductivities of 0.1--0.2 watts/meter-Kelvin, but have useful dielectric strengths over 2500 volts for 40 micrometer thick coatings. Thin, 25 micrometer, coatings of anodically grown Al/sub 2/O/sub 3/ films were also investigated. These films have thermal conductivities of approximately 6--8 watts/meter-Kelvin. Although these Al/sub 2/O/sub 3/ films have greater thermal conductivity than the polymer films, they exhibit porosity which typically limits their dielectric strength to less than 1000 volts. In the current study we have determined that styrene-acrylate can be electrophoretically deposited in porous anodic aluminum oxide films to form an alumina-organic composite with improved electrical breakdown strengths as well as higher thermal conductivity than styrene-acrylate films. 7 refs., 2 tabs.

  3. Porosity in plasma sprayed alumina coatings

    SciTech Connect

    Ilavsky, J.; Herman, H.; Berndt, C.C.; Goland, A.N.; Long, G.G.; Krueger, S.; Allen, A.J.

    1994-03-01

    Small-angle neutron scattering (SANS) was used to study the porosity of plasma sprayed deposits of alumina in as-sprayed and heat-treated conditions. SANS results were compared with mercury intrusion porosimetry (MIP) and water immersion techniques. Multiple small-angle neutron scattering yields a volume-weighted effective pore radius (R{sub eff}), for pores with sizes between 0.08 and 10{mu}m, the pore volume in this size region, and from the Porod region, the surface area of pores of all sizes.

  4. Process for the recovery of alumina from fly ash

    DOEpatents

    Murtha, M.J.

    1983-08-09

    An improvement in the lime-sinter process for recovering alumina from pulverized coal fly ash is disclosed. The addition of from 2 to 10 weight percent carbon and sulfur to the fly ash-calcium carbonate mixture increase alumina recovery at lower sintering temperatures.

  5. Aluminum reduction cell electrode

    DOEpatents

    Goodnow, W.H.; Payne, J.R.

    1982-09-14

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

  6. Aluminum reduction cell electrode

    DOEpatents

    Goodnow, Warren H.; Payne, John R.

    1982-01-01

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB.sub.2, for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints.

  7. Electronic structure of superconductivity refined

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electronic structure of superconductivity refined Electronic structure of superconductivity refined A team of physicists propose a new model that expands on a little understood aspect of the electronic structure in high-temperature superconductors. July 10, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  8. ALUMINUM CLADDING DISSOLUTION

    DOEpatents

    Schulz, W.W.

    1964-01-28

    This patent shows a method of moderating the chemical reaction when aluminum is dissolved in 2 to 7 molar nitric acid with a mercury catalyst. Nickelous nitrate is added as a negative promoter. (AEC)

  9. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  10. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  11. Renewable Energy Financial Instruments Guidance Tool (REFINe...

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidance Tool (REFINe) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Financial Instruments Guidance Tool (REFINe) Focus Area: Renewable Energy...

  12. ,"U.S. Refiner Petroleum Product Prices"

    Energy Information Administration (EIA) (indexed site)

    ...AEPPRLPTGNUSDPG","EMAEPPRHPTGNUSDPG" "Date","U.S. Total Gasoline Retail Sales by Refiners (Dollars per Gallon)","U.S. Aviation Gasoline Retail Sales by Refiners (Dollars ...

  13. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    SciTech Connect

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  14. ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry aluminum.pdf (1.12 MB) ...

  15. Aluminum reduction cell electrode

    DOEpatents

    Payne, John R. (Pleasanton, CA)

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces.

  16. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  17. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  18. Direct acid dissolution of aluminum and other metals from fly ash

    SciTech Connect

    Kelmers, A.D.; Egan, B.Z.; Seeley, F.G.; Campbell, G.D.

    1981-01-01

    Fly ash could provide a significant domestic source of alumina and thus supply a large part of the US needs for aluminum and possibly also several other metals. The aluminum and other metals can be solubilized from fly ash by acid dissolution methods. The aluminum may be present in any or all of three solid phases: (1) crystalline; (2) glassy amorphous; and (3) irregular, spongy amorphous. The chemistry of these phases controls the solubilization behavior. The aluminum in high-calcium western ashes is primarily found in the amorphous phases, and much of it can be solubilized by using short-time, ambient-temperature leaching. Little of the aluminum in the low-calcium eastern ashes is solubilized under ambient-temperature conditions, and only a portion can be solubilized even at reflux temperature conditions. Some of the aluminum in these eastern ashes is present as mullite, while some is found in the amorphous material. The fraction contained in mullite is relativey acid insoluble, and only partial solubilization can be achieved even under vigorous acid leach conditions.

  19. Petroleum Refining (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petroleum Refining (2010 MECS) Petroleum Refining (2010 MECS) Manufacturing Energy and Carbon Footprint for Petroleum Refining Sector (NAICS 324110) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Petroleum Refining (125.36 KB) More Documents & Publications MECS 2006 - Petroleum Refining Cement (2010 MECS) Forest Products (2010 MECS) Manufacturing Energy Sankey

  20. Scientists ignite aluminum water mix

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014 Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the compound burns like a Fourth of July sparkler. Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the

  1. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  2. ITP Aluminum: Inert Anodes Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Aluminum is one of the most versatile materials available today that can meet the demanding requirements of tomorrow's products.

  3. GRAIN REFINEMENT OF URANIUM BILLETS

    DOEpatents

    Lewis, L.

    1964-02-25

    A method of refining the grain structure of massive uranium billets without resort to forging is described. The method consists in the steps of beta- quenching the billets, annealing the quenched billets in the upper alpha temperature range, and extrusion upset of the billets to an extent sufficient to increase the cross sectional area by at least 5 per cent. (AEC)

  4. Method for refining contaminated iridium

    DOEpatents

    Heshmatpour, B.; Heestand, R.L.

    1982-08-31

    Contaminated iridium is refined by alloying it with an alloying agent selected from the group consisting of manganese and an alloy of manganese and copper, and then dissolving the alloying agent from the formed alloy to provide a purified iridium powder.

  5. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  6. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  7. Fluxless aluminum brazing

    DOEpatents

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  8. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, Thomas Richard; Golden, Timothy Christopher; Mayorga, Steven Gerard; Brzozowski, Jeffrey Richard; Taylor, Fred William

    1999-01-01

    A pressure swing adsorption process for absorbing CO.sub.2 from a gaseous mixture containing CO.sub.2 comprising introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100.degree. C. and 500.degree. C. to adsorb CO.sub.2 to provide a CO.sub.2 laden alumina adsorbent and a CO.sub.2 depleted gaseous mixture and contacting the CO.sub.2 laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO.sub.2 from the CO.sub.2 laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100.degree. C. and 600.degree. C., is not degraded by high concentrations of water under process operating conditions.

  9. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, T.R.; Golden, T.C.; Mayorga, S.G.; Brzozowski, J.R.; Taylor, F.W.

    1999-06-29

    A pressure swing adsorption process for absorbing CO[sub 2] from a gaseous mixture containing CO[sub 2] comprises introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100 C and 500 C to adsorb CO[sub 2] to provide a CO[sub 2] laden alumina adsorbent and a CO[sub 2] depleted gaseous mixture and contacting the CO[sub 2] laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO[sub 2] from the CO[sub 2] laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100 C and 600 C, is not degraded by high concentrations of water under process operating conditions. 1 fig.

  10. EFFECT OF FAST NEUTRON IRRADIATION ON SINTERED ALUMINA AND MAGNESIA...

    Office of Scientific and Technical Information (OSTI)

    IRRADIATION; LATTICES; MAGNESIUM OXIDES; MONOCRYSTALS; NEUTRON FLUX; RADIATION DOSES; RADIATION EFFECTS; SINTERED MATERIALS; TEMPERATURE; THERMAL CONDUCTIVITY ALUMINUM OXIDES

  11. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  12. Cast alumina forming austenitic stainless steels

    DOEpatents

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  13. Aluminum reduction cell electrode

    DOEpatents

    Payne, J.R.

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

  14. Reformulated Gasoline Market Affected Refiners Differently, 1995

    Reports and Publications

    1996-01-01

    This article focuses on the costs of producing reformulated gasoline (RFG) as experienced by different types of refiners and on how these refiners fared this past summer, given the prices for RFG at the refinery gate.

  15. Firing of pulverized solvent refined coal

    DOEpatents

    Derbidge, T. Craig; Mulholland, James A.; Foster, Edward P.

    1986-01-01

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  16. ALUMINUM REMOVAL FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION - LABORATORY SCALE VALIDATION ON WASTE SIMULANTS TEST REPORT

    SciTech Connect

    SAMS T; HAGERTY K

    2011-01-27

    To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH){sub 4}) as lithium hydrotalcite (Li{sub 2}CO{sub 3}.4Al(OH){sub 3}.3H{sub 2}O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

  17. Non-consumable anode and lining for aluminum electrolytic reduction cell

    DOEpatents

    Beck, Theodore R.; Brooks, Richard J.

    1994-01-01

    An oxidation resistant, non-consumable anode, for use in the electrolytic reduction of alumina to aluminum, has a composition comprising copper, nickel and iron. The anode is part of an electrolytic reduction cell comprising a vessel having an interior lined with metal which has the same composition as the anode. The electrolyte is preferably composed of a eutectic of AlF.sub.3 and either (a) NaF or (b) primarily NaF with some of the NaF replaced by an equivalent molar amount of KF or KF and LiF.

  18. Scientists ignite aluminum water mix

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of a chemical reaction - is a primary function in determining nanoaluminum combustion burn rates. "It's been long understood that nanoscale aluminum particles, 110 nanometers and...

  19. Aluminum processing energy benchmark report

    SciTech Connect

    None, None

    2007-02-01

    Substantial energy efficiency gains have been made in the aluminum industry over the past forty years, resulting in a 58 percent decrease in energy utilization.

  20. Plastic deformation and sintering of alumina under high pressure

    SciTech Connect

    Liu, Fangming; Liu, Pingping; Wang, Haikuo; Xu, Chao; Yin, Shuai; Yin, Wenwen; Li, Yong; He, Duanwei

    2013-12-21

    Plastic deformation of alumina (Al{sub 2}O{sub 3}) under high pressure was investigated by observing the shape changes of spherical particles, and the near fully dense transparent bulks were prepared at around 5.5 GPa and 900 °C. Through analyzing the deformation features, densities, and residual micro-strain of the Al{sub 2}O{sub 3} compacts prepared under high pressures and temperatures (2.0–5.5 GPa and 600–1200 °C), the effects of plastic deformation on the sintering behavior of alumina have been demonstrated. Under compression, the microscopic deviatoric stress caused by grain-to-grain contact could initiate the plastic deformation of individual particles, eliminate pores of the polycrystalline samples, and enhance the local atomic diffusion at the grain boundaries, thus produced transparent alumina bulks.

  1. ITP Petroleum Refining: Energy and Environmental Profile of the...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Environmental Profile of the U.S. Petroleum Refining Industry (November 2007) ITP Petroleum Refining: Energy and Environmental Profile of the U.S. Petroleum Refining Industry ...

  2. Grain refinement of permanent mold cast copper base alloys. Final report

    SciTech Connect

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    Grain refinement behavior of copper alloys cast in permanent molds was investigated. This is one of the least studied subjects in copper alloy castings. Grain refinement is not widely practiced for leaded copper alloys cast in sand molds. Aluminum bronzes and high strength yellow brasses, cast in sand and permanent molds, were usually fine grained due to the presence of more than 2% iron. Grain refinement of the most common permanent mold casting alloys, leaded yellow brass and its lead-free replacement EnviroBrass III, is not universally accepted due to the perceived problem of hard spots in finished castings and for the same reason these alloys contain very low amounts of iron. The yellow brasses and Cu-Si alloys are gaining popularity in North America due to their low lead content and amenability for permanent mold casting. These alloys are prone to hot tearing in permanent mold casting. Grain refinement is one of the solutions for reducing this problem. However, to use this technique it is necessary to understand the mechanism of grain refinement and other issues involved in the process. The following issues were studied during this three year project funded by the US Department of Energy and the copper casting industry: (1) Effect of alloying additions on the grain size of Cu-Zn alloys and their interaction with grain refiners; (2) Effect of two grain refining elements, boron and zirconium, on the grain size of four copper alloys, yellow brass, EnviroBrass II, silicon brass and silicon bronze and the duration of their effect (fading); (3) Prediction of grain refinement using cooling curve analysis and use of this method as an on-line quality control tool; (4) Hard spot formation in yellow brass and EnviroBrass due to grain refinement; (5) Corrosion resistance of the grain refined alloys; (6) Transfer the technology to permanent mold casting foundries; It was found that alloying elements such as tin and zinc do not change the grain size of Cu-Zn alloys

  3. Alumina over-coating on Pd nanoparticle catalysts by atomic layer deposition : enhanced stability and reactivity.

    SciTech Connect

    Feng, H.; Lu, J.; Stair, P. C.; Elam, J. W.

    2011-04-01

    ALD Alumina was utilized as a protective layer to inhibit the sintering of supported nano-sized ALD Pd catalysts in the methanol decomposition reaction carried out at elevated temperatures. The protective ALD alumina layers were synthesized on Pd nanoparticles (1-2 nm) supported on high surface area alumina substrates. Up to a certain over-coat thickness, the alumina protective layers preserved or even slightly enhanced the catalytic activity and prevented sintering of the Pd nanoparticles up to 500 C.

  4. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  5. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  6. Distribution of nickel between copper-nickel and alumina saturated iron silicate slags

    SciTech Connect

    Reddy, R.G.; Acholonu, C.C.

    1984-03-01

    The solubility of nickel in slag is determined in this article by equilibrating copper-nickel alloys with alumina-saturated iron silicate slags in an alumina crucible at 1573 K. The results showed that nickel dissolves in slag both as nickel oxide and as nickel metal. The presence of alumina is shown to increase the solubility of nickel in slags.

  7. Aluminum alloys for satellite boxes : engineering guidelines...

    Office of Scientific and Technical Information (OSTI)

    Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ... Title: Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ...

  8. A Programmable Bandwidth Aluminum Nitride Microresonator Filter...

    Office of Scientific and Technical Information (OSTI)

    A Programmable Bandwidth Aluminum Nitride Microresonator Filter. Citation Details In-Document Search Title: A Programmable Bandwidth Aluminum Nitride Microresonator Filter. Abstract ...

  9. Nanocomposite formed by titanium ion implantation into alumina

    SciTech Connect

    Spirin, R. E.; Salvadori, M. C. Teixeira, F. S.; Sgubin, L. G.; Cattani, M.; Brown, I. G.

    2014-11-14

    Composites of titanium nanoparticles in alumina were formed by ion implantation of titanium into alumina, and the surface electrical conductivity measured in situ as the implantation proceeded, thus generating curves of sheet conductivity as a function of dose. The implanted titanium self-conglomerates into nanoparticles, and the spatial dimensions of the buried nanocomposite layer can thus be estimated from the implantation depth profile. Rutherford backscattering spectrometry was performed to measure the implantation depth profile, and was in good agreement with the calculated profile. Transmission electron microscopy of the titanium-implanted alumina was used for direct visualization of the nanoparticles formed. The measured conductivity of the buried layer is explained by percolation theory. We determine that the saturation dose, φ{sub 0}, the maximum implantation dose for which the nanocomposite material still remains a composite, is φ{sub 0} = 2.2 × 10{sup 16 }cm{sup −2}, and the corresponding saturation conductivity is σ{sub 0} = 480 S/m. The percolation dose φ{sub c}, below which the nanocomposite still has basically the conductivity of the alumina matrix, was found to be φ{sub c} = 0.84 × 10{sup 16 }cm{sup −2}. The experimental results are discussed and compared with a percolation theory model.

  10. Viscosity of alumina nanoparticles dispersed in car engine coolant

    SciTech Connect

    Kole, Madhusree; Dey, T.K.

    2010-09-15

    The present paper, describes our experimental results on the viscosity of the nanofluid prepared by dispersing alumina nanoparticles (<50 nm) in commercial car coolant. The nanofluid prepared with calculated amount of oleic acid (surfactant) was tested to be stable for more than 80 days. The viscosity of the nanofluids is measured both as a function of alumina volume fraction and temperature between 10 and 50 C. While the pure base fluid display Newtonian behavior over the measured temperature, it transforms to a non-Newtonian fluid with addition of a small amount of alumina nanoparticles. Our results show that viscosity of the nanofluid increases with increasing nanoparticle concentration and decreases with increase in temperature. Most of the frequently used classical models severely under predict the measured viscosity. Volume fraction dependence of the nanofluid viscosity, however, is predicted fairly well on the basis of a recently reported theoretical model for nanofluids that takes into account the effect of Brownian motion of nanoparticles in the nanofluid. The temperature dependence of the viscosity of engine coolant based alumina nanofluids obeys the empirical correlation of the type: log ({mu}{sub nf}) = A exp(BT), proposed earlier by Namburu et al. (author)

  11. Improving the accuracy of macromolecular structure refinement

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    is challenging at low resolution. We compared refinement methods using synchrotron diffraction data of photosystem I at 7.4 resolution, starting from different initial models...

  12. Refiners Increasingly Employing Catalyst Regeneration as Alternative...

    OpenEI (Open Energy Information) [EERE & EIA]

    million by the end of 2019. Refiners Benefit from Catalyst Regeneration Technology via Price Reductions and Lower Maintenance Costs The catalyst regeneration technology is the...

  13. Right rock: Finding/refining customer expectations

    SciTech Connect

    Ashby, R.

    1997-11-01

    This report contains viewgraphs on methods of finding customer expectations of software and then refining the documentation and software to fit these expectations.

  14. Midcourse Refinements of Financing Strategies | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    March 29, 2012. During this webinar participants discussed how programs have adapted and refined their financing strategies based on initial implementation experience and learning. ...

  15. ITP Petroleum Refining: Energy and Environmental Profile of the...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Water, other oxygen-containing compounds, and ... extraction process prior to isomerization. Feeds taken from hydrofluoric acid-based ... passing the feed over a hot bed of alumina. ...

  16. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  17. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  18. Pneumatic conveying of pulverized solvent refined coal

    DOEpatents

    Lennon, Dennis R.

    1984-11-06

    A method for pneumatically conveying solvent refined coal to a burner under conditions of dilute phase pneumatic flow so as to prevent saltation of the solvent refined coal in the transport line by maintaining the transport fluid velocity above approximately 95 ft/sec.

  19. North Dakota Refining Capacity Study

    SciTech Connect

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  20. Melt processing of Bi--2212 superconductors using alumina

    DOEpatents

    Holesinger, Terry G.

    1999-01-01

    Superconducting articles and a method of forming them, where the superconducting phase of an article is Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.y (Bi-2212). Alumina is combined with Bi-2212 powder or Bi-2212 precursor powder and, in order to form an intimate mixture, the mixture is melted and rapidly cooled to form a glassy solid. The glassy solid is comminuted and the resulting powder is combined with a carrier. An alternative to melting is to form the mixture of nanophase alumina and material having a particle size of less than about 10 microns. The powder, with the carrier, is melt processed to form a superconducting article.

  1. Protective coating for alumina-silicon carbide whisker composites

    DOEpatents

    Tiegs, Terry N.

    1989-01-01

    Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.

  2. Surface modification of zirconia-alumina composite ceramics

    SciTech Connect

    Ghosh, S.K.; Chatterjee, D.K.

    1994-12-31

    Surface modification of tetragonal zirconia and {alpha}-alumina composite was accomplished by diffusion of MgO during sintering at 1500{degrees}C. {alpha}-Al{sub 2}O{sub 3} powder, 2 to 60 wt%, was thoroughly mixed with 5 wt% yttria-alloyed zirconia powder, cold pressed and sintered in contact with fine MgO powder. In the diffusion zone, {alpha}-Al{sub 2}O{sub 3} was transformed to spinel, MgAl{sub 2}O{sub 4}, and transformation of tetragonal zirconia to cubic phase depended primarily on alumina concentration. The modified surface was, therefore, a composite of spinel, tetragonal (t) and/or cubic zirconia as distinguished from the core, comprised of {alpha}-Al{sub 2}O{sub 3} and t-ZrO{sub 2}. Tribological characteristics of the modified outer surface are also reported.

  3. Measurements of prompt radiation induced conductivity of alumina and sapphire.

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, Eric F.

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  4. Conduction in alumina with atomic scale copper filaments

    SciTech Connect

    Xu, Xu; Liu, Jie; Anantram, M. P.

    2014-10-28

    The conductance of atomic scale filaments with three and seven Cu atoms in ?-alumina are calculated using ab initio density functional theory. We find that the filament with 3 Cu atoms is sufficient to increase the conductance of 1.3?nm thick alumina film by more than 10{sup 3} times in linear response. As the applied voltage increases, the current quickly saturates and differential resistance becomes negative. Compared to the filament with three Cu atoms, while the conductance of the filament with seven Cu atoms is comparable in linear response, they carry as much as twenty times larger current at large biases. The electron transport is analyzed based on local density of states, and the negative differential resistance in the seven Cu filaments occurs due to their narrow bandwidth.

  5. EVALUATION OF LOW TEMPERATURE ALUMINUM DISSOLUTION IN TANK 51

    SciTech Connect

    Pike, J

    2008-09-04

    Liquid Waste Organization (LWO) identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days, which became the baseline aluminum dissolution process. LWO initiated a project to modify a waste tank to meet these requirements. Subsequent to an alternative evaluation, LWO management identified an opportunity to perform aluminum dissolution on sludge destined for Sludge Batch 5, but within a limited window that would not allow time for any modifications for tank heating. A variation of the baseline process, dubbed Low Temperature Aluminum Dissolution (LTAD), was developed based on the constraint of available energy input in Tank 51 and the window of opportunity, but was not constrained to a minimum extent of dissolution, i.e. dissolve as much aluminum as possible within the time available. This process was intended to operate between 55 and 70 C, but for a significantly longer time than the baseline process. LTAD proceeded in parallel with the baseline project. The preliminary evaluation at the completion of LTAD focused on the material balance and extent of the aluminum dissolved. The range of values of extent of dissolution, 56% to 64%, resulted from the variation in liquid phase sample data available at the time. Additional solid phase data is available from a sample taken after LTAD to refine this range. This report provides additional detailed evaluation of the LTAD process based on analytical and field data and includes: a summary of the process chronology; a determination of an acceptable blending strategy for the aluminum-laden supernate stored in Tank 11; an update to the determination of aluminum dissolved using more complete sample results; a determination of the effect of LTAD on uranium, plutonium, and other metals; a determination of the rate of heat

  6. Proton adsorption onto alumina: extension of multisite complexation (MUSIC) theory

    SciTech Connect

    Nagashima, K.; Blum, F.D.

    1999-09-01

    The adsorption isotherm of protons onto a commercial {gamma}-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species.

  7. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide ...

  8. XPS and TPR studies of nitrided molybdena-alumina

    SciTech Connect

    Hada, Kenichiro; Nagai, Masatoshi; Omi, Shinzo

    2000-03-09

    The relationship between the surface molybdenum species and absorbed nitrogen species on nitrided 1.0-19.7% MoO{sub 3}/Al{sub 2}O{sub 3} was elucidated by XPS and temperature-programmed reduction (TPR). The MoO{sub 3}/Al{sub 2}O{sub 3} samples were nitrided by temperature-programmed reaction with NH{sub 3}. From the XPS analysis, Mo{sup 3+} and Mo{sup 4+} ions were predominant on the surface of the nitrided Mo/Al{sub 2}O{sub 3} samples. From the TPR measurement, the ammonia desorption was due to nitrogen species adsorbed on alumina. The nitrogen desorption was due to two kinds of nitrogen desorption from the structures of {gamma}-Mo{sub 2}N and {beta}-Mo{sub 2}N{sub 0.78} and four kinds of nitrogen desorption from NH{sub X} species adsorbed on MoO{sub 2}, Mo{sup 3+} ion ({gamma}-Mo{sub 2}N), Mo{sup 2}+ ion (molybdenum nitride on alumina such as highly dispersed molybdenum nitride), and alumina.

  9. Firing of pulverized solvent refined coal

    DOEpatents

    Lennon, Dennis R.; Snedden, Richard B.; Foster, Edward P.; Bellas, George T.

    1990-05-15

    A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

  10. U.S. Refining Capacity Utilization

    Reports and Publications

    1995-01-01

    This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

  11. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    SciTech Connect

    Lawler, Katherine

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  12. Hydrogen Piping Experience in Chevron Refining

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Piping Experience in Chevron Refining Ned Niccolls Materials Engineer Chevron Energy Technology Company Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Outline 2 Overall perspectives from long term use of hydrogen piping in refining. Piping specifications and practices. The (few) problem areas. Related industry work: American Petroleum Institute corrosion and materials work on high temperature hydrogen attack. Overall Perspectives 3 Few problems with hydrogen piping operating at

  13. Aluminum industry applications for OTEC

    SciTech Connect

    Jones, M.S.; Leshaw, D.; Sathyanarayana, K.; Sprouse, A.M.; Thiagarajan, V.

    1980-12-01

    The objective of the program is to study the integration issues which must be resolved to realize the market potential of ocean thermal energy conversion (OTEC) power for the aluminum industry. The study established, as a baseline, an OTEC plant with an electrical output of 100 MWe which would power an aluminum reduction plant. The reduction plant would have a nominal annual output of about 60,000 metric tons of aluminum metal. Three modes of operation were studied, viz: 1. A reduction plant on shore and a floating OTEC power plant moored offshore supplying energy by cable. 2. A reduction plant on shore and a floating OTEC power plant at sea supplying energy by means of an ''energy bridge.'' 3. A floating reduction plant on the same platform as the OTEC power plant. For the floating OTEC/aluminum plantship, three reduction processes were examined. 1. The conventional Hall process with prebaked anodes. 2. The drained cathode Hall cell process. 3. The aluminum chloride reduction process.

  14. Method to produce alumina aerogels having porosities greater than 80 percent

    DOEpatents

    Poco, John F.; Hrubesh, Lawrence W.

    2003-09-16

    A two-step method for producing monolithic alumina aerogels having porosities of greater than 80 percent. Very strong, very low density alumina aerogel monoliths are prepared using the two-step sol-gel process. The method of preparing pure alumina aerogel modifies the prior known sol method by combining the use of substoichiometric water for hydrolysis, the use of acetic acid to control hydrolysis/condensation, and high temperature supercritical drying, all of which contribute to the formation of a polycrystalline aerogel microstructure. This structure provides exceptional mechanical properties of the alumina aerogel, as well as enhanced thermal resistance and high temperature stability.

  15. Refining Bio-Oil alongside Petroleum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Refining Bio-Oil alongside Petroleum Refining Bio-Oil alongside Petroleum April 9, 2013 - 12:00am Addthis W.R. Grace, a leading provider of refining technologies, and Pacific ...

  16. A novel preparation technique for an aluminium-alumina MMC by a roll bonding process

    SciTech Connect

    Lee, W.B. . Dept. of Manufacturing Engineering); Ralph, B. . Dept. of Materials Technology); Yuen, H.C. . Dept. of Manufacturing Engineering Brunel Univ., Uxbridge, Middlesex . Dept. of Materials Technology)

    1993-09-01

    The potential of fibre reinforced metal matrix composites (MMC) has been known for many years and their common fabrication routes and the general characteristics of their properties are well documented. These manufacturing routes are usually expensive and consistent results are difficult to maintain. This paper introduces an economical process for the preparation of an aluminum matrix MMC reinforced with alumina (Al[sub 2]O[sub 3]). The process involves the formation of thin Al[sub 2]O[sub 3] films on commercially pure (CP) aluminium foil by anodizing. The bonding between layers of foil and Al[sub 2]O[sub 3] is achieved by hot rolling followed by cold rolling to further break up of the thin Al[sub 2]O[sub 3] film and disperse it into the aluminium matrix. The aim was to produce an MMC with a low volume fraction of Al[sub 2]O[sub 3] finely dispersed in the aluminium matrix. The physical and mechanical properties of this material may not be comparable with MMCs produced by conventional techniques in terms of strength and stiffness. However, its inexpensive production route coupled with an increase Young's Modulus, strength and retained good electrical conductivity may well make it a valuable alternative material to be used in electricity transmission applications. The production technique used in making this MMC can readily be adopted by any aluminium sheet rolling plant. With minimal need for equipment alterations, they can convert to produce this form of MMC in semi or fully continuous production runs with their existing rolling mills. This process will greatly reduce the cost of an MMC and at the same time maintain consistent properties.

  17. Titanium Matrix Composite Tooling Material for Aluminum Die Castings

    Energy.gov [DOE]

    In aluminum die-casting, molten aluminum is forced under high pressure into a die cavity. First a "shot" of molten aluminum is ladled into a shot sleeve and the shot of molten aluminum is forced by...

  18. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOEpatents

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  19. Rechargeable Aluminum-Ion Batteries

    SciTech Connect

    Paranthaman, Mariappan Parans; Liu, Hansan; Sun, Xiao-Guang; Dai, Sheng; Brown, Gilbert M

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  20. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1995 Annual Averages Motor...

  1. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    Day Motor Gasoline No. 2 Distillate Residual Fuel Oil 3. U.S. Refiner Retail Petroleum Product Volumes Figure Percentages of Refiner Retail Volumes 1997 Annual Averages Motor...

  2. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1997 Annual Averages Motor...

  3. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    Day Motor Gasoline No. 2 Distillate Residual Fuel Oil 3. U.S. Refiner Retail Petroleum Product Volumes Figure Percentages of Refiner Retail Volumes 1995 Annual Averages Motor...

  4. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    Day Motor Gasoline No. 2 Distillate Residual Fuel Oil 3. U.S. Refiner Retail Petroleum Product Volumes Figure Percentages of Refiner Retail Volumes 1996 Annual Averages Motor...

  5. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1996 Annual Averages Motor...

  6. ,"Aviation Gasoline Sales to End Users Refiner Sales Volumes...

    Energy Information Administration (EIA) (indexed site)

    Aviation Gasoline Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab ... Data for" ,"Data 1","Aviation Gasoline Sales to End Users Refiner ...

  7. ,"U.S. Motor Gasoline Refiner Sales Volumes"

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","U.S. Motor Gasoline Refiner Sales ... AM" "Back to Contents","Data 1: U.S. Motor Gasoline Refiner Sales Volumes" ...

  8. ITP Petroleum Refining: Impacts of Condition Assessment on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Impacts of Condition Assessment on Energy Use: Selected Applications in Chemicals Processing and Petroleum Refining ITP Petroleum Refining: Impacts of Condition Assessment on ...

  9. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE PAGES [OSTI]

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  10. Dissolution and Separation of Aluminum and Aluminosilicates

    SciTech Connect

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  11. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  12. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  13. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOEpatents

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  14. Ultrahigh-Efficiency Aluminum Production Cells

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ultrahigh-Efficiency Aluminum Production Cells Saving Energy and Reducing Carbon Emissions with Cell Redesign and Novel Electrolytes This project will develop a multipolar aluminum electrolysis cell technology with an inert anode, a wetted cathode design, a novel low-temperature electrolyte, and advanced sensors and controls. These advancements will save energy, reduce greenhouse gas emissions, cut aluminum production costs, and increase productivity. Introduction Aluminum is an indispensable

  15. Parallel tetrahedral mesh refinement with MOAB.

    SciTech Connect

    Thompson, David C.; Pebay, Philippe Pierre

    2008-12-01

    In this report, we present the novel functionality of parallel tetrahedral mesh refinement which we have implemented in MOAB. This report details work done to implement parallel, edge-based, tetrahedral refinement into MOAB. The theoretical basis for this work is contained in [PT04, PT05, TP06] while information on design, performance, and operation specific to MOAB are contained herein. As MOAB is intended mainly for use in pre-processing and simulation (as opposed to the post-processing bent of previous papers), the primary use case is different: rather than refining elements with non-linear basis functions, the goal is to increase the number of degrees of freedom in some region in order to more accurately represent the solution to some system of equations that cannot be solved analytically. Also, MOAB has a unique mesh representation which impacts the algorithm. This introduction contains a brief review of streaming edge-based tetrahedral refinement. The remainder of the report is broken into three sections: design and implementation, performance, and conclusions. Appendix A contains instructions for end users (simulation authors) on how to employ the refiner.

  16. Silicon carbide whisker-zirconia reinforced mullite and alumina ceramics

    DOEpatents

    Becher, Paul F.; Tiegs, Terry N.

    1987-01-01

    The flexural strength and/or fracture toughness of SiC whisker-reinforced composites utilizing mullite or alumina as the matrix material for the composite are increased by the addition of zirconia in a monoclinic or tetragonal phase to the matrix. The zirconia addition also provides for a lower hot-pressing temperature and increases the flexural strength and/or fracture toughness of the SiC whisker-reinforced composites over SiC whisker-reinforced composites of the similar matrix materials reinforced with similar concentrations of SiC whiskers.

  17. Secondary solvent cleanup using activated alumina: Laboratory development

    SciTech Connect

    Mailen, J.C.

    1987-01-01

    The primary cleanup of PUREX solvent removes short-chain acidic organic degradation products effectively but leaves a variety of degradation products. These materials cause problems with phase separation and retention of cations. A process using activated alumina to remove secondary degradation products received laboratory development at Oak Ridge National Laboratory using Savannah River Plant and Idaho Chemical Processing plant solvents, was further developed at Savannah River Laboratory using SRP solvent, and was tested at full scale at SRP. This paper describes the development at ORNL. 6 refs., 1 fig., 1 tab.

  18. Trends in petroleum refining process technology

    SciTech Connect

    Kowalczyk, D.

    1995-12-31

    In the 1990`s, the shift toward reformulated fuels and the unrelenting economic pressures on the petroleum refining industry have led to the ongoing development of a series of technological advances to improve fuels quality and industry operating efficiency. In this paper, ten of the most innovative and high impact recent developments in petroleum refining process technology will be highlighted. Process improvements and innovations have occurred in all facets of petroleum refining operations including fluid catalytic cracking, ether production, desulfurization, hydrocracking, gas processing, environmental control and heavy oil processing. Discussed will be the technical and economic impact of each of these new technologies on the petroleum refinery of the late 20th and early 21st century.

  19. JAPAN: Refining options and liberalization plans

    SciTech Connect

    Totto, L.; Isaak, D.T.

    1988-01-01

    The reformulation of Japan's petroleum import policy is important to Japan and to the international energy community. The technical and economic factors involved in opening the Japanese market is unknown. Assuming that foreign refiners have the technical capability to meet Japanese product specifications, the prices and volumes that will prove economical to both parties are also little known. Japanese refiners have been investigating the possibility of exporting gasoline and processing crude for China and Malaysia. The study demonstrates that under certain trade policies, Japan could become a significant product exporter. This study's purpose is to investigate the economic efficiency of alternative petroleum supply options, i.e., combining Japan's refining and product imports. An evaluation of the current import program and the technically feasible alternatives will play a major role in a new import policy. For this evaluation, a linear programming (LP) model of Japan's domestic refinery capacity and the petroleum import system was constructed. 3 figs., 23 tabs.

  20. The strategic outlook for petroleum refiners

    SciTech Connect

    Cobb, C.

    1994-12-31

    After several years of acceptable and relatively reliable profitability, refiners were plunged into uncertainty once again following passage of the Clean Air Act Amendments (CAAA) in 1990. While many of the original uncertainties that attended these regulations have since been resolved, the industry now must prepare for the new manufacturing, distributions, and transportation challenges that undoubtedly will accompany the first stages of reformulated gasoline (RFG) compliance in early 1995. This impending challenge introduces several fundamental questions: (1) How has the industry changed and adjusted to respond to anticipated future needs? (2) What strategies are refiners employing today? (3) What are industry performance expectations over the next several years?

  1. Using supercritical fluids to refine hydrocarbons

    DOEpatents

    Yarbro, Stephen Lee

    2015-06-09

    A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.

  2. Arbitrary Lagrangian Eulerian Adaptive Mesh Refinement

    Energy Science and Technology Software Center

    2009-09-29

    This is a simulation code involving an ALE (arbitrary Lagrangian-Eulerian) hydrocode with AMR (adaptive mesh refinement) and pluggable physics packages for material strength, heat conduction, radiation diffusion, and laser ray tracing developed a LLNL, UCSD, and Berkeley Lab. The code is an extension of the open source SAMRAI (Structured Adaptive Mesh Refinement Application Interface) code/library. The code can be used in laser facilities such as the National Ignition Facility. The code is alsi being appliedmore » to slurry flow (landslides).« less

  3. Removal of metals from heavy oils with phosphorus - Alumina catalysts

    SciTech Connect

    Kukes, S.G.; Parrott, S.L.; Gardner, L.E. )

    1987-04-01

    Earlier it was found that various oil-soluble phosphorous compounds were active for vanadium removal from different crude oils. The phosphorous compounds preferentially reacted with low molecular weight vanadium species in the resin fraction and therefore the highest rate of vanadium removal was observed when the asphaltene fraction was partially or completely removed. Phosphorous compounds promoted the rate of vanadium removal during hydroprocessing over alumina in a trickle bed reactor. Some metal phosphates were prepared and tested for demetallization activity. Several mixed metal phosphates, such as Cr-Zr, Ni-Zr, Cu-Zr, V-Co-Zr, Fe-Co-Zr, Ni-Co-Zr, etc., exhibited high activity for both vanadium and nickel removal. These catalysts were found to possess HDM activity and activity maintenance comparable to conventional hydrotreating catalysts available commercially. The vanadium removal selectivity of the mixed metal phosphates was similar to that of the commercial catalyst, but much lower than that observed earlier for oil soluble phosphorous compounds. Since the lack of high vanadium selectivity for the mixed metal phosphates could be due to their transition metal component, they investigated the hydroprocessing of heavy oils over aluminas impregnated with different inorganic phosphorous compounds.

  4. Development of Alumina-Forming Austenitic Stainless Steels

    SciTech Connect

    Yamamoto, Yukinori; Brady, Michael P; Santella, Michael L; Bei, Hongbin; Maziasz, Philip J; Pint, Bruce A

    2008-01-01

    Work in fiscal year 2008 focused on the development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of an excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides [1-8]. High levels of Nb additions (> 1 wt.% Nb) and/or Ni additions (25-30 wt.%), at Al levels of 2.5-4 wt.%, were found to correlate with increased upper-temperature limit for Al2O3 scale formation in air ( 900 aC) and air with 10% water vapor ( 800 aC). Creep resistance also showed a strong dependence on the level of Nb additions, and was correlated with volume fraction of MC-type carbides using thermodynamic computational tools. A trial heat of a 50 lb AFA alloy ingot was made using conventional single-melt vacuum techniques, and the alloy was successfully hot-rolled without any cracking [2]. This heat showed good weldability, using filler material of the same alloy.

  5. Decarbonization process for carbothermically produced aluminum

    DOEpatents

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  6. ITP Petroleum Refining: Energy Efficiency Roadmap for Petroleum Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    in California | Department of Energy Energy Efficiency Roadmap for Petroleum Refineries in California ITP Petroleum Refining: Energy Efficiency Roadmap for Petroleum Refineries in California refining_roadmap.pdf (1.34 MB) More Documents & Publications ITP Petroleum Refining: Profile of the Petroleum Refining Industry in California: California Industries of the Future Program ITP Petroleum Refining: Energy Efficiency Roadmap for Petroleum Refineries in California Bandwidth Study U.S.

  7. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.

    SciTech Connect

    Coker, Eric Nicholas

    2013-10-01

    The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 ÀC very little oxidation took place; at 850 ÀC oxidation occurred after an induction period, while at 950 ÀC oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 ÀC rapid passivation of the surface of the aluminum foil occurred, while at 1250 ÀC and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.

  8. Energy Bandwidth for Petroleum Refining Processes

    SciTech Connect

    none,

    2006-10-01

    The petroleum refining energy bandwidth report analyzes the most energy-intensive unit operations used in U.S. refineries: crude oil distillation, fluid catalytic cracking, catalytic hydrotreating, catalytic reforming, and alkylation. The "bandwidth" provides a snapshot of the energy losses that can potentially be recovered through best practices and technology R&D.

  9. Focus on Venezuelan heavy crude: refining margins

    SciTech Connect

    Not Available

    1984-01-25

    Of six crudes refined in the US Gulf Coast, heavy Venezuelan crude Lagunillas (15/sup 0/ API) provides the best margin per barrel. Data for end of December 1983 and the first three weeks of January show that margins on all crudes are on the rise in this market, due to a turnaround in product prices. The lighter crudes are showing the greatest increase in Gross Product Worth. This is having a modest shrinking effect on the margin differential between light and heavy crudes in this market. The domestic crude West Texas Intermediate, at 40/sup 0/ API, provides the highest GPW in this crude slate sample, over US $31 per barrel, compared to GPW of under US $28 per barrel for Lagunillas. Still, as Lagunillas cost about US $8 less than does WTI, refiners with sufficient residue conversion capacity can be earning about US $3.50 more in margin per barrel than they can with WTI. Although few refiners would be using a 15/sup 0/ API crude exclusively for any length of time, heavier oil's inclusion in modern refiners' diets is enhancing their competitive position more than any other single factor. This issue of Energy Detente presents the fuel price/tax series and industrial fuel prices for January 1984 for countries of the Western Hemisphere.

  10. The Effects of Cold Work on the Microstructure and Mechanical Properties of Intermetallic Strengthened Alumina-Forming Austenitic Stainless Steels

    SciTech Connect

    Hu, B.; Trotter, G.; Baker, Ian; Miller, M. K.; Yao, L.; Chen, S.; Cai, Z.

    2015-08-01

    In order to achieve energy conversion efficiencies of > 50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at > 973 K (700 A degrees C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reduced the grain size significantly to the nanoscale (similar to 100 nm) and the room temperature yield strength to above 1000 MPa. A solutionizing anneal at 1473 K (1200 A degrees C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting. (C) The Minerals, Metals & Materials Society and ASM International 2015

  11. The effects of cold work on the microstructure and mechanical properties of intermetallic strengthened alumina-forming austenitic stainless steels

    SciTech Connect

    Hu, Bin; Baker, Ian; Miller, Michael K.; Yao, Lan; Chen, Si; Cai, Z.; Trotter, G.

    2015-06-12

    In order to achieve energy conversion efficiencies of >50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at >973 K (700 °C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reduced the grain size significantly to the nanoscale (~100 nm) and the room temperature yield strength to above 1000 MPa. Lastly, a solutionizing anneal at 1473 K (1200 °C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting.

  12. The effects of cold work on the microstructure and mechanical properties of intermetallic strengthened alumina-forming austenitic stainless steels

    DOE PAGES [OSTI]

    Hu, Bin; Baker, Ian; Miller, Michael K.; Yao, Lan; Chen, Si; Cai, Z.; Trotter, G.

    2015-06-12

    In order to achieve energy conversion efficiencies of >50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at >973 K (700 °C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reduced themore » grain size significantly to the nanoscale (~100 nm) and the room temperature yield strength to above 1000 MPa. Lastly, a solutionizing anneal at 1473 K (1200 °C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting.« less

  13. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

    DOE PAGES [OSTI]

    Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; Malekpour, Hoda; Lake, Roger; Balandin, Alexander A.

    2015-10-28

    We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D=180-nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25-nm and 40-nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data andmore » calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D<40 nm.« less

  14. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

    SciTech Connect

    Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; Malekpour, Hoda; Lake, Roger; Balandin, Alexander A.

    2015-10-28

    We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D=180-nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25-nm and 40-nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D<40 nm.

  15. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    SciTech Connect

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.; Crum, Jarrod V.; Winschell, Abigail E.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimental basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.

  16. Production of anhydrous aluminum chloride composition

    DOEpatents

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  17. Ultrahigh-Efficiency Aluminum Production Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ultrahigh-Efficiency Aluminum Production Cells Ultrahigh-Efficiency Aluminum Production Cells ultrahi-eff_aluminum.pdf (512.14 KB) More Documents & Publications U.S. Energy Requirements for Aluminum Production WA_98_001_REYNOLDS_METALS_COMPANY_Waiver_of_Domestic_and_For.pdf ITP Aluminum: Inert Anodes Roadmap

  18. Using supercritical fluids to refine hydrocarbons

    DOEpatents

    Yarbro, Stephen Lee

    2014-11-25

    This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

  19. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  20. Could Aluminum Nitride Produce Quantum Bits?

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Home » News & Publications » News » Science News » Could Aluminum Nitride Produce Quantum Bits? Could Aluminum Nitride Produce Quantum Bits? After running simulations at NERSC researchers believe it's possible May 2, 2016 Linda Vu, lvu@lbl.gov, 510.495.2402 Graphical Abstract AlN Sci Rep no logo cropped This graphic illustrates an engineered nitrogen vacancy in aluminum nitride. Quantum computers have the potential to break common cryptography techniques, search huge datasets and

  1. Refining quadrilateral and brick element meshes

    SciTech Connect

    Schneiders, R.; Debye, J.

    1995-12-31

    We consider the problem of refining unstructured quadrilateral and brick element meshes. We present an algorithm which is a generalization of an algorithm developed by Cheng et. al. for structured quadrilateral element meshes. The problem is solved for the two-dimensional case. Concerning three dimensions we present a solution for some special cases and a general solution that introduces tetrahedral and pyramidal transition elements.

  2. Structured Adaptive Mesh Refinement Application Infrastructure

    Energy Science and Technology Software Center

    2010-07-15

    SAMRAI is an object-oriented support library for structured adaptice mesh refinement (SAMR) simulation of computational science problems, modeled by systems of partial differential equations (PDEs). SAMRAI is developed and maintained in the Center for Applied Scientific Computing (CASC) under ASCI ITS and PSE support. SAMRAI is used in a variety of application research efforts at LLNL and in academia. These applications are developed in collaboration with SAMRAI development team members.

  3. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass

    Office of Scientific and Technical Information (OSTI)

    Spectrometry measurements and production of Radioactive Ion Beams (Journal Article) | SciTech Connect Journal Article: The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams Citation Details In-Document Search This content will become publicly available on October 5, 2017 Title: The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

  4. Activated Aluminum Hydride Hydrogen Storage Compositions - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Startup America Startup America Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions ...

  5. Activated aluminum hydride hydrogen storage compositions and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal ... Return to Search Activated aluminum hydride hydrogen storage compositions and uses thereof ...

  6. High resistivity aluminum antimonide radiation detector

    DOEpatents

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick H.

    2007-12-18

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  7. Aluminum-stabilized NB3SN superconductor

    DOEpatents

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  8. Friction Stir Welding Aluminum for Lightweight Vehicles

    Energy.gov [DOE]

    In this video, a researcher from Pacific Northwest National Laboratory describes a new aluminum joining process and the industry partnership that enabled its use for mass auto production.

  9. High resistivity aluminum antimonide radiation detector

    DOEpatents

    Sherohman, John W.; Coombs, III, Arthur W.; Yee, Jick H.

    2005-05-03

    Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

  10. Genealogy of major U.S. refiners - Energy Information Administration

    Energy Information Administration (EIA) (indexed site)

    Genealogy of Major U.S. Refiners Release date: September 18, 2013 figre 1. World energy consumption, 1990-2040. The structure of the U.S. petroleum refining industry has changed ...

  11. ,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales ... "Back to Contents","Data 1: Residual Fuel Oil Sales to End Users Refiner Sales Volumes" ...

  12. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    SciTech Connect

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  13. Mechanical Properties of a Graded Alumina-Zirconia Composite Prepared by Centrifugal Slip Casting

    SciTech Connect

    Hara, Yasuyuki; Onda, Tetsuhiko; Hayakawa, Motozo

    2008-02-15

    Compositionally graded composite of alumina-20 vol%zirconia was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the alumina/zirconia ratio along the centrifugal direction; zirconia tended to accumulate in the bottom section, while alumina in the top section. Such a graded structure exhibited a considerably higher flexural strength when the alumina rich surface was subjected to a tensile stress than compositionally uniform composite of the same average composition. Fracture toughness measurement across the specimen thickness by indentation method revealed that the crack lengths along the vertical and horizontal directions were different. The anisotropy of the fracture toughness was accounted for by the variation of the residual stress across the specimen thicknesss.

  14. Reaction of Aluminum with Water to Produce Hydrogen: A Study...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reaction of Aluminum with Water to Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010. Reaction of Aluminum ...

  15. Bandwidth Study U.S. Petroleum Refining | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petroleum Refining Bandwidth Study U.S. Petroleum Refining Bandwidth Study U.S. Petroleum Refining Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas,

  16. ITP Petroleum Refining: Impacts of Condition Assessment on Energy Use:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Selected Applications in Chemicals Processing and Petroleum Refining | Department of Energy Impacts of Condition Assessment on Energy Use: Selected Applications in Chemicals Processing and Petroleum Refining ITP Petroleum Refining: Impacts of Condition Assessment on Energy Use: Selected Applications in Chemicals Processing and Petroleum Refining condition_assessment.pdf (319.56 KB) More Documents & Publications Effective Fouling Minimization Increases the Efficiency and Productivity of

  17. An investigation of the electrical behavior of thermally-sprayed aluminum oxide

    SciTech Connect

    Swindeman, C.J.; Seals, R.D.; White, R.L.; Murray, W.P.; Cooper, M.H.

    1996-09-01

    Electrical properties of plasma-sprayed aluminum oxide coatings were measured at temperatures up to 600 C. High purity (> 99.5 wt% pure Al{sub 2}O{sub 3}) alumina powders were plasma-sprayed on stainless steel substrates over a range of power levels, using two gun configurations designed to attain different spray velocities. Key electrical properties were measured to evaluate the resultant coatings as potential insulating materials for electrostatic chucks (ESCs) being developed for semiconductor manufacturing. Electrical resistivity of all coatings was measured under vacuum upon heating and cooling over a temperature range of 20 to 600 C. Dielectric constants were also measured under the same test conditions. X-ray diffraction was performed to examine phase formation in the coatings. Results show the important of powder composition and careful selection and control of spray conditions for optimizing electrical behavior in plasma-sprayed aluminum oxide, and point to the need for further studies to characterize the relationship between high temperature electrical properties, measured plasma-spray variables, and specific microstructural and compositional coating features.

  18. Tin dioxide-based ceramics as inert anodes for aluminum smelting: A laboratory study

    SciTech Connect

    Vecchio-Sadus, A.M.; Constable, D.C.; Dorin, R.; Frazer, E.J.; Fernandez, I.; Neal, G.S.; Lathabai, S.; Trigg, M.B.

    1996-10-01

    The behavior of tin dioxide-based ceramics as inert anodes was examined in a laboratory-scale aluminum smelting cell over a range of electrolyte compositions with operating temperatures between 830--975 C. Anodes of a nominal composition SnO{sub 2} (96 wt%), Sb{sub 2}O{sub 3} (2 wt%) and CuO (2 wt%), were electrolyzed for 90 min at a current density of {approximately}1 A cm{sup {minus}2}. The corrosion rate was determined from the tin and copper concentrations in the recovered electrolyte, aluminum metal and the fume. The corrosion rates were 12.5, 1.6 and 6.5 mg (Ah){sup {minus}1} in electrolytes with bath ratios 1.5 (975 C), 0.89 (903 C) and 0.74 (830 C), respectively. A four-fold increase in corrosion rate was obtained at open-circuit demonstrating the protection provided by oxygen evolution during electrolysis. A preliminary investigation of the dependence of corrosion rate on firing temperatures and additive (Sb{sub 2}O{sub 3} and CuO) concentrations was conducted using a part-factorial design experiment. Post-electrolysis examination of the anodes using scanning electron microscopy coupled with energy dispersive spectroscopy analysis revealed a depletion of copper from the anode and a build-up of an alumina-rich surface layer under certain conditions.

  19. Effects of composition on the mechanical response of alumina-filled epoxy.

    SciTech Connect

    Montgomery, Stephen Tedford

    2009-10-01

    The effect of composition on the elastic responses of alumina particle-filled epoxy composites is examined using isotropic elastic response models relating the average stresses and strains in a discretely reinforced composite material consisting of perfectly bonded and uniformly distributed particles in a solid isotropic elastic matrix. Responses for small elastic deformations and large hydrostatic and plane-strain compressions are considered. The response model for small elastic deformations depends on known elastic properties of the matrix and particles, the volume fraction of the particles, and two additional material properties that reflect the composition and microstructure of the composite material. These two material properties, called strain concentration coefficients, are characterized for eleven alumina-filled epoxy composites. It is found that while the strain concentration coefficients depend strongly on the volume fraction of alumina particles, no significant dependence on particle morphology and size is observed for the compositions examined. Additionally, an analysis of the strain concentration coefficients reveals a remarkably simple dependency on the alumina volume fraction. Responses for large hydrostatic and plane-strain compressions are obtained by generalizing the equations developed for small deformation, and letting the alumina volume fraction in the composite increase with compression. The large compression plane-strain response model is shown to predict equilibrium Hugoniot states in alumina-filled epoxy compositions remarkably well.

  20. U.S. Energy Requirements for Aluminum Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Requirements for Aluminum Production U.S. Energy Requirements for Aluminum Production Historical Perspective, Theoretical Limits, and Current Practices. U.S. Energy Requirements for Aluminum Production (February 2007) (3.04 MB) More Documents & Publications Ultrahigh-Efficiency Aluminum Production Cells ITP Aluminum: Aluminum Industry Technology Roadmap ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World

  1. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Helps Kaiser Aluminum Save Energy and Improve Productivity Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity This case study describes how a DOE energy ...

  2. Friction Stir Welding Aluminum for Lightweight Vehicles | Department...

    Office of Environmental Management (EM)

    Friction Stir Welding Aluminum for Lightweight Vehicles Friction Stir Welding Aluminum for Lightweight Vehicles Addthis Description In this video, a researcher from Pacific ...

  3. XUV Absorption by Solid Density Aluminum (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    XUV Absorption by Solid Density Aluminum Citation Details In-Document Search Title: XUV Absorption by Solid Density Aluminum An inverse bremsstrahlung model for plasmas and simple ...

  4. Composite-Reinforced Aluminum Conductor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    annealed trapezoidal-shaped conductive aluminum wires. Compared with a conventional steel core cable, the new core allows for up to 28% more conductive aluminum to be wrapped...

  5. Rechargeable Aluminum Batteries with Conducting Polymers as Positive...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Rechargeable Aluminum Batteries with Conducting Polymers as Positive Electrodes. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with ...

  6. Rechargeable aluminum batteries with conducting polymers as positive...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Rechargeable aluminum batteries with conducting polymers as positive electrodes. Citation Details In-Document Search Title: Rechargeable aluminum batteries with ...

  7. Rechargeable Aluminum Batteries with Conducting Polymers as Active...

    Office of Scientific and Technical Information (OSTI)

    Conference: Rechargeable Aluminum Batteries with Conducting Polymers as Active Cathode Materials. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with ...

  8. Reaction of Aluminum with Water to Produce Hydrogen: A Study...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use ... Alloys PROPERTIES OF THE ALUMINUM-WATER REACTIONS RELATIVE ...... 14 TO ...

  9. Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt...

    Office of Scientific and Technical Information (OSTI)

    Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt surfaces Prev Next Title: Adsorption of tris(8-hydroxyquinoline)aluminum molecules on cobalt surfaces ...

  10. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded...

    Energy Saver

    High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks 2013 DOE Hydrogen and Fuel Cells Program ...

  11. Aluminum electroplating on steel from a fused bromide electrolyte...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Return to Search Aluminum electroplating on steel from a fused bromide electrolyte Idaho ... widely used to electroplate aluminum on steel, brass, copper and other substrate ...

  12. Novel technique for increasing corrosion resistance: Aluminum Project Fact Sheet

    SciTech Connect

    NREL

    2000-02-01

    Fact sheet written for the Inventions and Innovation Program about a new nontoxic coating process that protects aluminum and aluminum alloys.

  13. SOLID STATE BONDING OF THORIUM WITH ALUMINUM

    DOEpatents

    Storchhelm, S.

    1959-12-01

    A method is described for bonding thorium and aluminum by placing clean surfaces of thorium and aluminum in contact with each other and hot pressing the metals together in a protective atmosphere at a temperature of about 375 to 575 deg C and at a pressure of at least 10 tsi to effect a bond.

  14. METHOD FOR JOINING ALUMINUM TO STAINLESS STEEL

    DOEpatents

    Lemon, L.C.

    1960-05-24

    Aluminum may be joined to stainless steel without the use of flux by tinning the aluminum with a tin solder containing 1% silver and 1% lead, tinning the stainless steel with a 50% lead 50% tin solder, and then sweating the tinned surfaces together.

  15. Aluminum/cuprous oxide thermite

    SciTech Connect

    Shapiro, A.B.; Gressmann, R.

    1982-03-03

    Thermite is a generic name applied to a class of metal-metal oxide reactants that undergo a chemical oxidation reduction reaction with the liberation of large amounts of thermal energy. If a mixture of aluminum and cuprous oxide is ignited, the thermitic reaction 2Al + 3Cu/sub 2/O ..-->.. Al/sub 2/O/sub 3/ + 6Cu will proceed at such a rapid rate (burn rate of 6 cm/s) and with the evolution of so much heat (580 cal/g) that the temperature will rise to about 2570/sup 0/C. The thermite reaction, accordingly, has been used for sabotaging or destroying military equipment, starting military fires, and welding together large sections of metal. Aluminum/cuprous oxide (Al/Cu/sub 2/O) thermite is discussed in this report with respect to these topics: reactant powder characterization; power contaminant extraction; reactant powder compaction into a consolidated pellet; initiation system; and reaction and reaction product analysis.

  16. Manganese-Aluminum-Based Magnets: Nanocrystalline t-MnAI Permanent Magnets

    SciTech Connect

    2012-01-01

    REACT Project: Dartmouth is developing specialized alloys with magnetic properties superior to the rare earths used in todays best magnets. EVs and renewable power generators typically use rare earths to turn the axles in their electric motors due to the magnetic strength of these minerals. However, rare earths are difficult and expensive to refine. Dartmouth will swap rare earths for a manganese-aluminum alloy that could demonstrate better performance and cost significantly less. The ultimate goal of this project is to develop an easily scalable process that enables the widespread use of low-cost and abundant materials for the magnets used in EVs and renewable power generators.

  17. Aluminum-based metal-air batteries

    DOEpatents

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  18. Deformable elastic network refinement for low-resolution macromolecular crystallography

    SciTech Connect

    Schröder, Gunnar F.; Levitt, Michael; Brunger, Axel T.

    2014-09-01

    An overview of applications of the deformable elastic network (DEN) refinement method is presented together with recommendations for its optimal usage. Crystals of membrane proteins and protein complexes often diffract to low resolution owing to their intrinsic molecular flexibility, heterogeneity or the mosaic spread of micro-domains. At low resolution, the building and refinement of atomic models is a more challenging task. The deformable elastic network (DEN) refinement method developed previously has been instrumental in the determinion of several structures at low resolution. Here, DEN refinement is reviewed, recommendations for its optimal usage are provided and its limitations are discussed. Representative examples of the application of DEN refinement to challenging cases of refinement at low resolution are presented. These cases include soluble as well as membrane proteins determined at limiting resolutions ranging from 3 to 7 Å. Potential extensions of the DEN refinement technique and future perspectives for the interpretation of low-resolution crystal structures are also discussed.

  19. Pollution prevention in the petroleum refining industry

    SciTech Connect

    Fromm, C.H.; White, S.L.

    1995-09-01

    Pollution prevention (P2) as applied to petroleum refining should seek opportunities to reduce waste by preventing oil/hydrocarbon loss, by decreasing consumption of auxiliary input materials, and by improving conversion of incoming impurities into useful products. This chapter will focus on P2 techniques that have found or could find applications in minimizing or eliminating reducible solid waste and wastewater from the petroleum refining process. Air emissions are not covered. The following commonly encountered wastes are considered in this chapter: oily sludges; spent caustics; spent catalysts; miscellaneous process wastes; wastewater; maintenance and materials handling wastes. Following a brief description of waste components and sources, specific P2 techniques are presented in tabular form for each of these wastestreams. None of the P2 techniques presented is discussed here in any detail--the intent is to give the reader a menu of potentially effective P2 options to consider, along with the references where a more detailed discussion may be found. Some of the options presented were advanced in the original references merely as suggestions or plans for improvement. No effort was made to verify their efficacy or applicability in this compilation.

  20. Method for fabricating cermets of alumina-chromium systems

    DOEpatents

    Morgan, Chester S.

    1983-01-01

    Cermet insulators resistant to thermal and mechanical shock are prepared from alumina-chromium systems by providing an Al.sub.2 O.sub.3 material of about 0.5 to 7.0 micron size with a solid-hydrocarbon overcoating by slurring an effective amount of said solid hydrocarbon in a solvent mixture containing said Al.sub.2 O.sub.3 and thereafter evaporating said solvent, contacting said coated Al.sub.2 O.sub.3 with a solution of chromium precursor compound, heating the resulting mixture in a reducing environment to a temperature above the decomposition temperature of said chromium precursor compound but less than the melting temperature of the Al.sub.2 O.sub.3 or chromium for sufficient duration to yield a particulate compound having chromium essentially dispersed throughout the Al.sub.2 O.sub.3, and then densifying said particulate to provide said cermet characterized by a theoretical density in excess of 96% and having 0.1 to 10.0 vol.% elemental chromium metal present therein as a dispersed phase at the boundaries of the Al.sub.2 O.sub.3 material. Cermet components prepared thereby are useful in high temperature equipment, advanced heat engines, and nuclear-related equipment applications where electrical or thermal insulators are required.

  1. Lightweight alumina refractory aggregate: Phase 3, Full-scale demonstration

    SciTech Connect

    Swansiger, T.G.; Pearson, A.

    1996-07-16

    Technical problems (higher than target fired density, and poor intermediate strength after burnout but before sintering) were addressed and solved; solution involved use of large loading of CP-5 alumina (controlled pore, rehydratable), increased loading of one of the binders, and a steam aging step. Resistance of the lightweight aggregate in a brick formulation to steel slag penetration was assessed in a preliminary test and found to be almost as good as that of T-64. Pelletized process economic feasibility study was updated, based on production levels of 10,000 and 20,000 mt/year, the most up- to-date raw material costs, and the assumption of a retrofit into the Arkansas plant tabular production facility. For the 10,000 mt/y production level, the required selling price of 35% more than the T- 64 selling price exceeds the {le}25% objective. The market survey will determine whether to proceed with the full scale demonstration that will produce at least 54.4 mt (120,000 lb) of the aggregate for incorporation into products, followed by end-user testing and evaluation.

  2. Chemical and microstructural characterization of thermally grown alumina scales

    SciTech Connect

    Natesan, K.; Richier, C.; Veal, B.W.

    1995-09-01

    An experimental program has been initiated to evaluate the chemical, microstructural, and mechanical integrity of thermally grown oxide scales to establish requirements for improved corrosion performance in terms of composition, structure, and properties. Iron aluminides of several compositions were selected for the study. Oxidation studies were conducted in air and oxygen environments at 1000{degrees}C. The results showed that the scaling kinetics followed a parabolic rate law but that the rates in early stages of oxidation were significantly greater than in later stages; the difference could be attributed to the presence of fast-growing transient iron oxides in the layer during the early stages. Further, scale failure occurred via gross spallation, scale cracking, and nodule formation and was influenced by alloy composition. Auger electron spectroscopy of Ar-exposed specimens of ternary Fe-Cr-Al alloy showed sulfur on the gas/scale side of the interface; the sulfur decreased as the exposure time increased. Raman spectroscopy and ruby fluorescence were used to examine the scale development as a function of oxidation temperature. Ruby-line shift is used to examine phase transformations in alumina and to calculate compressive strains in thermally grown scales.

  3. Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988. Fiscal year 1993 annual report

    SciTech Connect

    Not Available

    1994-09-01

    The Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988 (Act), commonly referred to as the Metals Initiative, was signed into law on November 17, 1988 (Public Law 100-680). The Act, 15 U.S.C. 5101 et seq., has tile following purposes: (1) to {open_quotes}increase the energy efficiency and enhance the competitiveness of American steel, aluminum, and copper industries{close_quotes}; and (2) to continue the research and development efforts begun under the Department of Energy (DOE) program known as the Steel Initiative. Section 8 of tile Act requires the Secretary of Energy to prepare an annual report to Congress describing the activities carried out under the Act during each fiscal year. 15 U.S.C. 5107 In addition, with respect to reports on fiscal years 1993, 1995, and 1997, Section 8 requires a complete summary of activities under the management plan and research plan from inception with an analysis of extent of their success in accomplishing the purposes of the Act. Id. The Metals Initiative is currently supporting six steel industry research and development projects: (1) Superplastic Steel Processing with Lawrence Livermore National Laboratory; (2) Direct Steelmaking with the American Iron and Steel Institute; (3) Electrochemical Dezincing of Steel Scrap with Argonne National Laboratory and Metal Recovery Industries (U.S.), Inc.; (4) Rapid Analysis of Molten Metals Using Laser Produced Plasmas with Lehigh University; (5) Direct Strip Casting using a single wheel caster with Armco, Inc.; and (6) Advanced Process Control, also with the American Iron and Steel Institute. At the close of the fiscal year, a seventh project, Waste Oxide Recycling with the American Iron and Steel Institute, was selected for inclusion in the Direct Steelmaking project. There are three projects with the aluminum industry. The first, Wettable Cathodes for Alumina Reduction Cells with the Reynolds Metals Company, continues from the prior periods.

  4. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, Cressie E.; Scott, Donald G.

    1985-01-01

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  5. Electrically conductive containment vessel for molten aluminum

    DOEpatents

    Holcombe, C.E.; Scott, D.G.

    1984-06-25

    The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.

  6. Surface modification of silicon nitride powder with aluminum

    SciTech Connect

    Han, K.R.; Lim, C.S.; Hong, M.J.; Choi, S.K.; Kwon, S.H.

    1996-02-01

    Surface modification of Si{sub 3}N{sub 4} with alumina was tried. It was achieved by simply mixing Si{sub 3}N{sub 4} powder with an alumina sol up to {approximately}2 wt% as alumina in an aqueous medium, dried, and followed by calcination at 400 C for 1 h. A TEM micrograph showed a coating layer of {approximately} 15 nm thickness. The isoelectric point of the modified Si{sub 3}N{sub 4} powder with porous alumina was at 0H 7.8, which is different from 5.8 and 8.6 for Si{sub 3}N{sub 4} and amorphous alumina, respectively.

  7. COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO

    SciTech Connect

    Collins, David C.; Xu Hao; Norman, Michael L.; Li Hui; Li Shengtai

    2010-02-01

    In this work, we present EnzoMHD, the extension of the cosmological code Enzo to include the effects of magnetic fields through the ideal magnetohydrodynamics approximation. We use a higher order Godunov method for the computation of interface fluxes. We use two constrained transport methods to compute the electric field from those interface fluxes, which simultaneously advances the induction equation and maintains the divergence of the magnetic field. A second-order divergence-free reconstruction technique is used to interpolate the magnetic fields in the block-structured adaptive mesh refinement framework already extant in Enzo. This reconstruction also preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non-cosmological test problems to demonstrate the quality of solution resulting from this combination of solvers.

  8. Visualization Tools for Adaptive Mesh Refinement Data

    SciTech Connect

    Weber, Gunther H.; Beckner, Vincent E.; Childs, Hank; Ligocki,Terry J.; Miller, Mark C.; Van Straalen, Brian; Bethel, E. Wes

    2007-05-09

    Adaptive Mesh Refinement (AMR) is a highly effective method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations that must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR as a first class data type and AMR code teams use custom built applications for AMR visualization. The Department of Energy's (DOE's) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) is currently working on extending VisIt, which is an open source visualization tool that accommodates AMR as a first-class data type. These efforts will bridge the gap between general-purpose visualization applications and highly specialized AMR visual analysis applications. Here, we give an overview of the state of the art in AMR visualization research and tools and describe how VisIt currently handles AMR data.

  9. Visualization of Scalar Adaptive Mesh Refinement Data

    SciTech Connect

    VACET; Weber, Gunther; Weber, Gunther H.; Beckner, Vince E.; Childs, Hank; Ligocki, Terry J.; Miller, Mark C.; Van Straalen, Brian; Bethel, E. Wes

    2007-12-06

    Adaptive Mesh Refinement (AMR) is a highly effective computation method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations, which must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR grids as a first class data type and AMR code teams use custom built applications for AMR visualization. The Department of Energy's (DOE's) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) is currently working on extending VisIt, which is an open source visualization tool that accommodates AMR as a first-class data type. These efforts will bridge the gap between general-purpose visualization applications and highly specialized AMR visual analysis applications. Here, we give an overview of the state of the art in AMR scalar data visualization research.

  10. ITP Aluminum: Technical Working Group on Inert Anode Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Aluminum: Technical Working Group on Inert Anode Technologies ITP Aluminum: Technical Working Group on Inert Anode Technologies inertech.pdf (8.16 MB) More Documents & Publications ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry EIS-0333: Draft Environmental Impact Statement Better Buildings Network View | September 2015

  11. Formulation and method for preparing gels comprising hydrous aluminum oxide

    DOEpatents

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  12. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    SciTech Connect

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  13. Value recovery from spent alumina-base catalyst

    DOEpatents

    Hyatt, David E.

    1987-01-01

    A process for the recovery of aluminum and at least one other metal selected from the group consisting of molybdenum, nickel and cobalt from a spent hydrogenation catalyst comprising (1) adding about 1 to 3 parts H.sub.2 SO.sub.4 to each part of spent catalyst in a reaction zone of about 20.degree. to 200.degree. C. under sulfide gas pressure between about 1 and about 35 atmospheres, (2) separating the resultant Al.sub.2 (SO.sub.4).sub.3 solution from the sulfide precipitate in the mixture, (3) oxidizing the remaining sulfide precipitate as an aqueous slurry at about 20.degree. to 200.degree. C. in an oxygen-containing atmosphere at a pressure between about 1 and about 35 atmospheres, (4) separating the slurry to obtain solid molybdic acid and a sulfate liquor containing said at least one metal, and (5) recovering said at least one metal from the sulfate liquor in marketable form.

  14. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    SciTech Connect

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  15. ITP Petroleum Refining: Energy and Environmental Profile of the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petroleum Refining Industry (November 2007) | Department of Energy and Environmental Profile of the U.S. Petroleum Refining Industry (November 2007) ITP Petroleum Refining: Energy and Environmental Profile of the U.S. Petroleum Refining Industry (November 2007) profile.pdf (1.62 MB) More Documents & Publications ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining Processes ITP Petroleum Refining: Energy and Environmental Profile of the U.S. Petroleum Refining Industry

  16. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World

    Energy.gov [DOE]

    The Aluminum Vision is intended to stimulate a wide variety of R&D activities to accelerate technology development throughout industry.

  17. ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry

    Energy.gov [DOE]

    This detailed report benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

  18. A scanning Kelvin probe analysis of aluminum and aluminum alloys

    SciTech Connect

    Hansen, D.C.; Grecsek, G.E.; Roberts, R.O.

    1999-07-01

    A scanning Kelvin probe was used to determine a correlation between work function measurements in air and corrosion potential measurements in solution of pure metals. Test panels of AA2024-T3 treated with various surface preparations and primer/coatings were also analyzed using this technique. Filiform corrosion was observed on a scribed panel that had been exposed to a humid environment, whereas on a non-scribed and non-exposed test panel, holidays in the coating were observed and clearly defined. Work function (wf) analysis yielded more noble values for areas within the scribe mark and more active values were observed for areas adjacent to the scribe mark where delamination of the coating and filiform corrosion was observed. The tips of corrosion filaments were found to be anodic in relation to the body of the filament, with areas of activity extending away from the filaments themselves. Measurements made on an aircraft access panel resulted in the detection of a potential gradient within the repair area. These results indicate that the scanning Kelvin probe is a useful non-destructive technique for the detection of delamination and disbanding of coatings, coating anomalies and corrosion susceptibility of coatings on aluminum aircraft alloys.

  19. Aqueous recovery of actinides from aluminum alloys

    SciTech Connect

    Gray, J.H.; Chostner, D.F.; Gray, L.W.

    1989-01-01

    Early in the 1980's, a joint Rocky Flats/Savannah River program was established to recover actinides from scraps and residues generated during Rocky Flats purification operations. The initial program involved pyrochemical treatment of Molten Salt Extraction (MSE) chloride salts and Electrorefining (ER) anode heel metal to form aluminum alloys suitable for aqueous processing at Savannah River. Recently Rocky Flats has expressed interest in expanding the aluminum alloy program to include treatment of chloride salt residues from a modified Molten Salt Extraction process and from the Electrorefining purification operations. Samples of the current aluminum alloy buttons were prepared at Rocky Flats and sent to Savannah River Laboratory for flowsheet development and characterization of the alloys. A summary of the scrub alloy-anode heel alloy program will be presented along with recent results from aqueous dissolution studies of the new aluminum alloys. 2 figs., 4 tabs.

  20. Study of constitution diagram aluminum-tantalum

    SciTech Connect

    Glazov, V.M.; Mal'tsev, M.V.; Chistyakov, Y.D.

    1988-10-20

    Alloys of aluminum with tantalum were for the first time obtained by aluminothermic method in 1868 by Moriniak. Later these alloys were studied in the works of Schirmeister (1915) and Brouwer (1938), moreover Brouwer established that tantalum with aluminum forms the chemical compound TaA1, which has tetragonal crystal lattice with parameters a=5.422 angstroms and c=8.536 angstroms (1). However despite the fact that alloys of aluminum with tantalum long ago are obtained already, constitution diagram of this system is not studied until recently. In connection with the application of tantalum as the modifying additive in aluminum alloys an emergency in the construction of this diagram, without the knowledge by which it is not possible to give the correct explanation of the mechanism of the very process of the modification of primary grain. For this purpose was undertaken this work. Russian translations.

  1. PROCESS OF ELECTROPLATING METALS WITH ALUMINUM

    DOEpatents

    Schickner, W.C.

    1960-04-26

    A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.

  2. Electrometallurgical treatment of aluminum-based fuels.

    SciTech Connect

    Willit, J. L.

    1998-07-29

    We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining.

  3. Secretary Bodman Tours Refinery and Calls for More Domestic Refining

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Capacity | Department of Energy Refinery and Calls for More Domestic Refining Capacity Secretary Bodman Tours Refinery and Calls for More Domestic Refining Capacity May 18, 2006 - 10:43am Addthis Highlights President Bush's Four-Point Plan to Combat High Energy Prices PORT ARTHUR, TX - Secretary of Energy Samuel W. Bodman today renewed the call for expanded oil refining capacity in the United States and discussed additional steps the Department of Energy (DOE) is taking to prepare for the

  4. REFINING PROGRAM HELPS REENERGIZE NEBRASKA UPGRADES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    REFINING PROGRAM HELPS REENERGIZE NEBRASKA UPGRADES REFINING PROGRAM HELPS REENERGIZE NEBRASKA UPGRADES REFINING PROGRAM HELPS REENERGIZE NEBRASKA UPGRADES In a state where energy costs are low and the home performance workforce had not been established, Nebraska's two largest cities-Omaha and Lincoln-took on the challenge of promoting whole home energy upgrades to homeowners, businesses, and nonprofit organizations. Using $10 million in seed funding from the U.S. Department of Energy's (DOE's)

  5. Parallel adaptive mesh refinement for electronic structure calculations

    SciTech Connect

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1996-12-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradients with multigrid preconditioning. We have parallelized our solver using an object-oriented adaptive mesh refinement framework.

  6. The Five-Step Development Process Step 3: Project Refinement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3: Project Refinement 2 1 Potential 3 Refinement 4 Implementation 5 Operations & Maintenance 2 Options 3 Refinement 3 FUNDING AND FINANCING OPTIONS Project Ownership Financing structure is highly dependent on size of the project and the capital available for a given project: * Tribe owns the project (cash purchase or debt) * Tribe hosts the project and buys the electricity (power purchase agreement) * Tribe partners with private sector and co-owns the project (uncertainties about receipt of

  7. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  8. Regeneration of Aluminum Hydride - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Regeneration of Aluminum Hydride Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Regeneration of Lithium Aluminum Hydride (919 KB) Technology Marketing Summary Alane is one of the most promising solutions to storing hydrogen for use in hydrogen fuel cells. This technology provides exceptional improvement in solving the difficult problem of economically preparing the material. Description Describes methods and materials required for the

  9. ,"U.S. Reformulated, Average Refiner Gasoline Prices"

    Energy Information Administration (EIA) (indexed site)

    ...www.eia.govdnavpetpetprirefmg2cnusepm0rdpgalm.htm" ,"Source:","Energy Information ... Reformulated Gasoline Retail Sales by Refiners (Dollars per ...

  10. ,"U.S. Conventional, Average Refiner Gasoline Prices"

    Energy Information Administration (EIA) (indexed site)

    ...www.eia.govdnavpetpetprirefmg2cnusepm0udpgalm.htm" ,"Source:","Energy Information ... Conventional Gasoline Retail Sales by Refiners (Dollars per ...

  11. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Energy Information Administration (EIA) (indexed site)

    of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1997 Table 43....

  12. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Energy Information Administration (EIA) (indexed site)

    1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) - Continued Geographic Area Month Premium All Grades Sales...

  13. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Energy Information Administration (EIA) (indexed site)

    2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) - Continued Geographic Area Month Premium All Grades Sales...

  14. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Energy Information Administration (EIA) (indexed site)

    of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1996 Table 43....

  15. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Energy Information Administration (EIA) (indexed site)

    Energy Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  16. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Energy Information Administration (EIA) (indexed site)

    250 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  17. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Energy Information Administration (EIA) (indexed site)

    Energy Information Administration Petroleum Marketing Annual 1995 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  18. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Energy Information Administration (EIA) (indexed site)

    134 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  19. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Energy Information Administration (EIA) (indexed site)

    134 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  20. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Energy Information Administration (EIA) (indexed site)

    220 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  1. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Energy Information Administration (EIA) (indexed site)

    - - - - W W - - - - - - See footnotes at end of table. 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State 292 Energy...

  2. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Energy Information Administration (EIA) (indexed site)

    250 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  3. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Energy Information Administration (EIA) (indexed site)

    220 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  4. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Energy Information Administration (EIA) (indexed site)

    Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  5. ,"U.S. Total Refiner Petroleum Product Prices"

    Energy Information Administration (EIA) (indexed site)

    NUSDPG","EMAEPPRPTGNUSDPG","EMAEPPRLPTGNUSDPG","EMAEPPRHPTGNUSDPG" "Date","U.S. Total Gasoline Retail Sales by Refiners (Dollars per Gallon)","U.S. Aviation Gasoline...

  6. Bandwidth Study U.S. Petroleum Refining | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy ...

  7. The Space-based Telescopes for Actionable Refinement of Ephemeris...

    Office of Scientific and Technical Information (OSTI)

    Title: The Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) mission Authors: Riot, V ; Devries, W ; Bauman, B ; Simms, L ; Carter, D ; Phillion, D ; Olivier, S ...

  8. The Space-Based Telescopes for Actionable Refinement of Ephemeris...

    Office of Scientific and Technical Information (OSTI)

    Title: The Space-Based Telescopes for Actionable Refinement of Ephemeris Pathfinder Mission Authors: Simms, L ; De Vries, W ; RIot, V ; Olivier, S ; Pertica, A ; Bauman, B ; ...

  9. ITP Petroleum Refining: Petroleum Technology Vision 2020 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Petroleum Technology Vision 2020 ITP Petroleum Refining: Petroleum Technology Vision 2020 techvision.pdf (684.96 KB) More Documents & Publications Manufacturing Energy and Carbon ...

  10. Refiners react to changes in the pipeline infrastructure

    SciTech Connect

    Giles, K.A.

    1997-06-01

    Petroleum pipelines have long been a critical component in the distribution of crude and refined products in the U.S. Pipelines are typically the most cost efficient mode of transportation for reasonably consistent flow rates. For obvious reasons, inland refineries and consumers are much more dependent on petroleum pipelines to provide supplies of crude and refined products than refineries and consumers located on the coasts. Significant changes in U.S. distribution patterns for crude and refined products are reshaping the pipeline infrastructure and presenting challenges and opportunities for domestic refiners. These changes are discussed.

  11. ITP Petroleum Refining: Energy Efficiency Roadmap for Petroleum...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Efficiency Roadmap for Petroleum Refineries in California ITP Petroleum Refining: Energy Efficiency Roadmap for Petroleum Refineries in California refiningroadmap.pdf (1.34 ...

  12. The Space-Based Telescopes for Actionable Refinement of Ephemeris...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The Space-Based Telescopes for Actionable Refinement of Ephemeris Pathfinder Mission Citation Details In-Document Search Title: The Space-Based Telescopes for ...

  13. Adaptive h -refinement for reduced-order models: ADAPTIVE h -refinement for reduced-order models

    DOE PAGES [OSTI]

    Carlberg, Kevin T.

    2014-11-05

    Our work presents a method to adaptively refine reduced-order models a posteriori without requiring additional full-order-model solves. The technique is analogous to mesh-adaptive h-refinement: it enriches the reduced-basis space online by ‘splitting’ a given basis vector into several vectors with disjoint support. The splitting scheme is defined by a tree structure constructed offline via recursive k-means clustering of the state variables using snapshot data. This method identifies the vectors to split online using a dual-weighted-residual approach that aims to reduce error in an output quantity of interest. The resulting method generates a hierarchy of subspaces online without requiring large-scale operationsmore » or full-order-model solves. Furthermore, it enables the reduced-order model to satisfy any prescribed error tolerance regardless of its original fidelity, as a completely refined reduced-order model is mathematically equivalent to the original full-order model. Experiments on a parameterized inviscid Burgers equation highlight the ability of the method to capture phenomena (e.g., moving shocks) not contained in the span of the original reduced basis.« less

  14. Low Temperature Aluminum Dissolution Of Sludge Waste

    SciTech Connect

    Keefer, M.T.; Hamm, B.A.; Pike, J.A. [Washington Savannah River Company, Aiken, SC (United States)

    2008-07-01

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. The sludge is currently being stabilized in the Defense Waste Processing Facility (DWPF) through a vitrification process immobilizing the waste in a borosilicate glass matrix for long-term storage in a federal repository. Without additional treatment, the existing volume of sludge would produce nearly 8000 canisters of vitrified waste. Aluminum compounds, along with other non-radioactive components, represent a significant portion of the sludge mass currently planned for vitrification processing in DWPF. Removing the aluminum from the waste stream reduces the volume of sludge requiring vitrification and improves production rates. Treating the sludge with a concentrated sodium hydroxide (caustic) solution at elevated temperatures (>90 deg. C) to remove aluminum is part of an overall sludge mass reduction effort to reduce the number of vitrified canisters, shorten the life cycle for the HLW system, and reduce the risk associated with the long term storage of radioactive wastes at SRS. A projected reduction of nearly 900 canisters will be achieved by performing aluminum dissolution on six targeted sludge batches; however, a project to develop and install equipment will not be ready for operation until 2013. The associated upgrades necessary to implement a high temperature process in existing facilities are costly and present many technical challenges. Efforts to better understand the characteristics of the sludge mass and dissolution kinetics are warranted to overcome these challenges. Opportunities to further reduce the amount of vitrified waste and increase production rates should also be pursued. Sludge staged in Tank 51 as the next sludge batch for feed to DWPF consisted

  15. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect

    Epstein, M. )

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ignition-type'' steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that triggers'' the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  16. Underwater vapor phase burning of aluminum particles and on aluminum ignition during steam explosions

    SciTech Connect

    Epstein, M.

    1991-09-01

    Recently reported experimental studies on aluminum-water steam explosions indicate that there may be a critical metal temperature at which the process changes over from a physical explosion to one which is very violent and involves the rapid liberation of chemical energy. In this report we examine the hypothesis that vapor-phase burning of aluminum is a necessary condition for the occurrence of such ``ignition-type`` steam explosions. An available two-phase stagnation flow film-boiling model is used to calculate the steam flux to the vaporizing aluminum surface. Combining this calculation with the notion that there is an upper limit to the magnitude of the metal vaporization rate at which the reaction regime must change from vapor phase to surface burning, leads to prediction of the critical metal surface temperature below which vapor phase burning is impossible. The critical temperature is predicted for both the aluminum-water pre-mixture configuration in which coarse drops of aluminum are falling freely through water and for the finely-fragmented aluminum drops in the wake of the pressure shock that ``triggers`` the explosion. Vapor phase burning is predicted to be possible during the pre-mixture phase but not very likely during the trigger phase of a steam explosion. The implications of these findings in terms of the validity of the hypothesis that ignition may begin with the vapor phase burning of aluminum is discussed. Recently postulated, alternative mechanisms of underwater aluminum ignition are also discussed.

  17. Refining and End Use Study of Coal Liquids

    SciTech Connect

    1997-10-01

    This report summarizes revisions to the design basis for the linear programing refining model that is being used in the Refining and End Use Study of Coal Liquids. This revision primarily reflects the addition of data for the upgrading of direct coal liquids.

  18. ,"Motor Gasoline Sales to End Users, Total Refiner Sales Volumes...

    Energy Information Administration (EIA) (indexed site)

    ... Refiners (Thousand Gallons per Day)","New Mexico Total Gasoline Retail Sales by Refiners ...87,16127.8,1684.4,1377.2,128.8,497.8,835.6,2030.3,1178.7,674.5,56.4,3.9,4678.6,764.1,9.3,1...

  19. ,"No. 2 Distillate Sales to End Users Refiner Sales Volumes"

    Energy Information Administration (EIA) (indexed site)

    ... Refiners (Thousand Gallons per Day)","New Mexico No 2 Distillate Retail Sales by Refiners ...57.7,6018.7,64.6,101.5,691.5,1553.8,1576.9,2030.5,4320.3,1350.4,683.2,792.4,316.4,804.3,37...

  20. Reitveld refinement study of PLZT ceramics

    SciTech Connect

    Kumar, Rakesh; Bavbande, D. V.; Bafna, V. H.; Mohan, D.; Kothiyal, G. P.; Mishra, R.

    2013-02-05

    PLZT ceramics of composition Pb{sub 0.93}La{sub 0.07}(Zr{sub 0.60}Ti{sub 0.40})O{sub 3}, have been milled for 6hrs and 24hrs were prepared by solid state synthesis route. The 6hrs milled and 24hrs milled samples are represented as PLZT-6 and PLZT-24 ceramics respectively. X-ray diffraction (XRD) pattern was recorded at room temperature. The XRD pattern has been analyzed by employing Rietveld refinement method. Phase identification shows that all the peaks observed in PLZT-6 and PLZT-24 ceramics could be indexed to P4mm space group with tetragonal symmetry. The unit cell parameters of 6hrs milled PLZT ceramics are found to be a=b=4.0781(5)A and c=4.0938(7)A and for 24hrs milled PLZT ceramics unit cell parameters are a=b=4.0679(4)A and c=4.1010(5)A . The axial ratio c/a and unit cell volume of PLZT-6 are 1.0038 and 68.09(2)A{sup 3} respectively. In PLZT-24 samples, the axial ratio c/a value is 1.0080 which is little more than that of the 6hr milled PLZT sample whereas the unit cell volume decrease to 67.88 (1) A{sup 3}. An average crystallite size was estimated by using Scherrer's formula. Dielectric properties were obtained by measuring the capacitance and tand loss using Stanford LCR meter.

  1. Silica-alumina trihydrate filled epoxy castings resistant to arced SF.sub.6

    DOEpatents

    Chenoweth, Terrence E.; Yeoman, Frederick A.

    1978-01-01

    A cured, insulating, casting composition, having a coefficient of linear thermal expansion of below about 38 .times. 10.sup.-6 in./in./.degree. C and being resistant to arced sulfur hexafluoride gas, in contact with a metal surface in a sulfur hexafluoride gas environment, is made from hydantoin epoxy resin, anhydride curing agent and a filler combination of fused silica and alumina trihydrate.

  2. Cuprous-chloride-modified nanoporous alumina membranes for ethylene-ethane separation

    SciTech Connect

    Lin, Y.S.; Wang, Y.; Ji, W.; Higgins, R.J.

    1999-06-01

    This paper reports an attempt to synthesize a CuCl-modified {gamma}-alumina membrane for separation of ethylene from ethane. CuCl was effectively coated in the 4 nm pore {gamma}-alumina top layers of disk-shaped and tubular alumina membranes by the reservoir method. Permeation of a single gas and binary mixture of ethylene and ethane was measured to characterize separation properties of the modified membranes. Pure ethylene permeance of the CuCl-modified membrane is 10--40% lower than that predicted from the pure ethane permeance by the Knudsen theory. This result is explained by a model based on the adsorbed layer of ethylene via {pi}-complexation. Such an adsorbed layer hinders the diffusion of ethylene in the nanopores of CuCl-modified {gamma}-alumina. Multiple gas permeation measurements on the CuCl-modified membranes show a separation factor for ethylene over ethane larger than the Knudsen value. This confirms a positive contribution of the surface flow of ethylene to the permeance of ethylene in the multiple gas permeation system. A maximum separation factor for ethylene over ethane of 1.4 is obtained for the CuCl-modified membrane at 60 C.

  3. Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres

    DOEpatents

    Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.

    2001-01-01

    The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

  4. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    SciTech Connect

    Lu, XC; Xia, GG; Lemmon, JP; Yang, ZG

    2010-05-01

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a beta ''-Al(2)O(3) solid electrolyte at elevated temperatures (typically 300-350 degrees C ). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement. (C) 2009 Published by Elsevier B.V.

  5. Adsorption of carbonyl sulfide from liquid hydrocarbons with activated alumina and other adsorbents

    SciTech Connect

    Liu, P.K.T. (Alcoa Separations Technology Div., Aluminum Co. of America, Warrendale, PA (US))

    1988-01-01

    Contamination of Liquid hydrocarbon streams with carbonyl sulfide (COS) is not desirable; particularly in propylene. COS may poison the down stream polymerization catalyst. Thus, it is usually required to reduce the COS concentration to an extremely low level, e.g. 1 ppm or less, for polymer grade propylene. Many technologies generally available for sulfur removal, such as scrubbing and distillation are not applicable to the removal of COS from propylene. The former is not suitable for a low level removal. With the boiling point of COS (-50{sup 0}C) very close to that of propylene (-48{sup 0}C) it is difficult to achieve a very efficient separation with distillation. Adsorption technology provides a very energy efficient process in addition to its ability of the low level removal. Adsorbents selected in this study include activated carbon, molecular sieves, zinc oxide and activated alumina. The results show that activated alumina is far superior in both adsorption capacity and rate. An adsorption mechanism with activated alumina is proposed. It is believed that adsorption of COS takes place simultaneously with the hydrolysis of COS on the alumina surface. Adsorption isotherms of COS up to 100 ppm and the effect of moisture content are also addressed in this study.

  6. Blue emission of Eu2+-doped translucent alumina

    DOE PAGES [OSTI]

    Yang, Yan; Zhang, Lihua; Kisslinger, Kim; Wei, Hua; Melcher, Charles L.; Wu, Yiquan

    2015-08-21

    Inorganic scintillators are very important in medical and industrial measuring systems in the detection and measurement of ionizing radiation. In addition to Ce3+, a widely used dopant ion in oxide scintillators, divalent Europium (Eu2+) has shown promise as a high-luminescence, fast-response luminescence center useful in the detection of ionizing radiation. In this research, aluminum oxide (Al2O3) was studied as a host material for the divalent europium ion. Polycrystalline samples of Eu2+-doped translucent Al2O3 were fabricated, and room temperature luminescence behavior was observed. Al2O3 ceramics doped with 0.1 at% Eu2+ were fabricated with a relative density of 99.75% theoretical density andmore » in-line transmittance of 22% at a wavelength of 800 nm. The ceramics were processed by a gel-casting method, followed by sintering under high vacuum. The gelling agent, a copolymer of isobutylene and maleic anhydride, is marketed under the commercial name ISOBAM, and has the advantage of simultaneously acting as both a gelling agent and as a dispersant. The microstructure and composition of the vacuum-sintered Eu2+:Al2O3 were characterized by Scanning Electric Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy-dispersive X-ray spectroscopy (EDS). The phase composition was determined by X-ray diffraction measurements (XRD) combined with Rietveld analysis. The photoluminescence behavior of the Eu2+:Al2O3 was characterized using UV light as the excitation source, which emitted blue emission at 440 nm. The radio-luminescence of Eu2+:Al2O3 was investigated by illumination with X-ray radiation, showing three emission bands at 376 nm, 575 nm and 698 nm. Furthermore, multiple level traps at different depths were detected in the Eu2+:Al2O3 by employing thermoluminescence measurements.« less

  7. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    SciTech Connect

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-04-25

    A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving

  8. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H. [Graduate School of Osaka Institute of Technology (Japan); Haga, T. [Osaka Institute of Technology, 5-16-1 Omiya Asahiku Osaka city 535-8585 (Japan); Watari, H. [Tokyo Institute of Technology, 4259 Nagatsuda Midoriku Yokohama city 226-8502 (Japan); Kumai, S. [Gunma University, 1-5-1 tenjin cho Kiryu city 376-8515 (Japan)

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  9. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  10. Lithium-aluminum-iron electrode composition

    DOEpatents

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  11. Aluminum phosphate ceramics for waste storage

    DOEpatents

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  12. Magnesium Replacement of Aluminum Cast Components in a Production...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a Production V6 ...

  13. Investigation of Aluminum Site Changes of Dehydrated Zeolite...

    Office of Scientific and Technical Information (OSTI)

    Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High Field Solid State NMR Citation Details In-Document Search Title: Investigation of Aluminum ...

  14. Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update

    Publication and Product Library

    A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the

  15. Designing aluminum sealing glasses for manufacturability

    SciTech Connect

    Kovacic, L.; Crowder, S.V.; Brow, R.K.; Bencoe, D.N.

    1993-12-31

    Manufacturability issues involved in the development of new sealing glasses include tailoring glass compositions to meet material and component requirements and determining the optimum seal processing parameters. For each of these issues, statistical analysis can be used to shorten the time between concept and product in the development of what is essentially a new manufacturing technology. We use the development of our new family of phosphate-based glasses for aluminum/stainless steel and aluminum/CuBe hermetic sealing, the ALSG family, to illustrate the statistical approach.

  16. Aluminum plasmonic metamaterials for structural color printing

    DOE PAGES [OSTI]

    Cheng, Fei; Gao, Jie; Stan, Liliana; Rosenmann, Daniel; Czaplewski, David; Yang, Xiaodong

    2015-05-26

    We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.

  17. Integrated process for the solvent refining of coal

    DOEpatents

    Garg, Diwakar

    1983-01-01

    A process is set forth for the integrated liquefaction of coal by the catalytic solvent refining of a feed coal in a first stage to liquid and solid products and the catalytic hydrogenation of the solid product in a second stage to produce additional liquid product. A fresh inexpensive, throw-away catalyst is utilized in the second stage hydrogenation of the solid product and this catalyst is recovered and recycled for catalyst duty in the solvent refining stage without any activation steps performed on the used catalyst prior to its use in the solvent refining of feed coal.

  18. Cathode Connector For Aluminum Low Temperature Smelting Cell

    DOEpatents

    Brown, Craig W.; Beck, Theodore R.; Frizzle, Patrick B.

    2003-07-16

    Cathode connector means for low temperature aluminum smelting cell for connecting titanium diboride cathode or the like to bus bars.

  19. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  20. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOEpatents

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  1. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Energy Information Administration (EIA) (indexed site)

    253.2 2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  2. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Energy Information Administration (EIA) (indexed site)

    150.0 2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  3. May 28 Webinar to Focus on Tribal Energy Project Refinement

    Energy.gov [DOE]

    Register for the Tribal Renewable Energy Project Refinement webinar, which will be held on Wednesday, May 28, 2014, from 11 a.m. to 12:30 p.m. Mountain time.

  4. ITP Aluminum: Energy Requirements for the U.S. Aluminum Industry

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... They are fabricated from highly conductive aluminum alloy and are sized for minimum overall system cost. Any voltage drop in the busbar and connector system results in energy loss. ...

  5. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations

    Energy.gov [DOE]

    This case study describes how Commonwealth Industries (now Aleris Rolled Products) conducted plant-wide energy assessments at its aluminum sheet rolling mills in Lewisport, Kentucky, and Uhrichsville, Ohio, to improve process and energy efficiency.

  6. Waste minimization for selected residuals in the petroleum refining industry

    SciTech Connect

    1996-12-01

    This technical report on residuals in the petroleum refining industry provides an industry overview, process description, and process flow diagrams. It presents residual descriptions for each of the 29 petroleum refining residuals of concern and what source reduction option exist. It reviews the data sources - RCRA Section 2007 surveys, site visits, and journal articles. It also describes major findings and evaluates the quantity and quality of waste minization information for each source.

  7. Hydrogen Piping Experience in Chevron Refining | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Piping Experience in Chevron Refining Hydrogen Piping Experience in Chevron Refining Overall Perspectives: Few problems with hydrogen piping operating at ambient to at least 800F and pressures up to at least 3000psia as long as we stay within well-defined limits hpwgw_chevronrefining_niccolls.pdf (373.32 KB) More Documents & Publications DOE Hydrogen Pipeline Working Group Workshop Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines A Review of Stress Corrosion

  8. Chemical vapor deposition of aluminum oxide

    DOEpatents

    Gordon, Roy; Kramer, Keith; Liu, Xinye

    2000-01-01

    An aluminum oxide film is deposited on a heated substrate by CVD from one or more alkylaluminum alkoxide compounds having composition R.sub.n Al.sub.2 (OR').sub.6-n, wherein R and R' are alkyl groups and n is in the range of 1 to 5.

  9. Superconducting transition temperature in anodized aluminum

    SciTech Connect

    Leemann, C.; Elliott, J.H.; Deutscher, G.; Orbach, R.; Wolf, S.A.

    1983-08-01

    We have measured the superconducting transition temperature of anodized aluminum films of grain sizes ranging from less than 100 to 3000 A. The transition temperature is 1.8 K for films of grain size 100 A and decreases monotonically with increasing grain size to 1.2 K for 3000-A grains. The effect depends only on the volume of the grains.

  10. Electrometallurgical treatment of aluminum-matrix fuels

    SciTech Connect

    Willit, J.L.; Gay, E.C.; Miller, W.E.; McPheeters, C.C.; Laidler, J.J.

    1996-08-01

    The electrometallurgical treatment process described in this paper builds on our experience in treating spent fuel from the Experimental Breeder Reactor (EBR-II). The work is also to some degree, a spin-off from applying electrometallurgical treatment to spent fuel from the Hanford single pass reactors (SPRs) and fuel and flush salt from the Molten Salt Reactor Experiment (MSRE) in treating EBR-II fuel, we recover the actinides from a uranium-zirconium fuel by electrorefining the uranium out of the chopped fuel. With SPR fuel, uranium is electrorefined out of the aluminum cladding. Both of these processes are conducted in a LiCl-KCl molten-salt electrolyte. In the case of the MSRE, which used a fluoride salt-based fuel, uranium in this salt is recovered through a series of electrochemical reductions. Recovering high-purity uranium from an aluminum-matrix fuel is more challenging than treating SPR or EBR-II fuel because the aluminum- matrix fuel is typically -90% (volume basis) aluminum.

  11. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    SciTech Connect

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  12. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    DOE PAGES [OSTI]

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  13. EERE Success Story-Refining Bio-Oil alongside Petroleum | Department...

    Office of Environmental Management (EM)

    Refining Bio-Oil alongside Petroleum EERE Success Story-Refining Bio-Oil alongside Petroleum April 9, 2013 - 12:00am Addthis W.R. Grace, a leading provider of refining ...

  14. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    SciTech Connect

    Pike, J; Jeffrey Gillam, J

    2008-12-17

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  15. Process of electrolysis and fractional crystallization for aluminum purification

    DOEpatents

    Dawless, R.K.; Bowman, K.A.; Mazgaj, R.M.; Cochran, C.N.

    1983-10-25

    A method is described for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm. 2 figs.

  16. Process of electrolysis and fractional crystallization for aluminum purification

    DOEpatents

    Dawless, Robert K.; Bowman, Kenneth A.; Mazgaj, Robert M.; Cochran, C. Norman

    1983-10-25

    A method for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm.

  17. Issues for conversion coating of aluminum alloys with hydrotalcite

    SciTech Connect

    Drewien, C.A.; Buchheit, R.G.

    1993-12-01

    Hydrotalcite coatings on aluminum alloys are being developed for corrosion protection of aluminum in aggressive saline environments. Coating bath composition, surface pretreatment, and alloying elements in aluminum all influence the performance of these coatings during salt spray testing. The coating bath, comprised of lithium carbonate, requires aging by dissolution of aluminum into the bath in order to grow corrosion resistant coatings. Coatings formed in non- aged baths do not perform well in salt spray testing. The alloying elements in aluminum alloys, especially copper, influence the coating growth and formation leading to thin coatings. The effect of the alloy elements is to limit the supply of aluminum to the coating/electrolyte interface and hinder growth of hydrotalcite upon aluminum alloys.

  18. Production of sodium-22 from proton irradiated aluminum

    DOEpatents

    Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  19. Aluminum Target Dissolution in Support of the Pu-238 Program

    SciTech Connect

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W; Felker, Leslie Kevin; Mattus, Catherine H

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  20. Fischer-Tropsch activity for non-promoted cobalt-on-alumina catalysts

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2001-01-01

    Cobalt catalysts, and processes employing these inventive catalysts, for hydrocarbon synthesis. The inventive catalyst comprises cobalt on an alumina support and is not promoted with any noble or near noble metals. In one aspect of the invention, the alumina support preferably includes a dopant in an amount effective for increasing the activity of the inventive catalyst. The dopant is preferably a titanium dopant. In another aspect of the invention, the cobalt catalyst is preferably reduced in the presence of hydrogen at a water vapor partial pressure effective to increase the activity of the cobalt catalyst for hydrocarbon synthesis. The water vapor partial pressure is preferably in the range of from 0 to about 0.1 atmospheres.

  1. Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ

    DOE PAGES [OSTI]

    Firlar, Emre; ?nar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions.moreWe discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.less

  2. Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery

    SciTech Connect

    Banerjee, A; Chandran, RB; Davidson, JH

    2015-01-22

    The present study presents an experimental study of a prototype counter-flow heat exchanger designed to recover sensible heat from inert and reactive gases flowing through a high temperature solar reactor for splitting CO2. The tube-in-tube heat exchanger is comprised of two concentric alumina tubes, each filled with reticulated porous alumina with a nominal porosity of 80% and pore density of 5 pores per inch (ppi). The RPC provides high heat transfer surface area per unit volume (917 m(-1)) with low pressure drop. Measurements include the permeability, inertial coefficient, overall heat transfer coefficient, effectiveness and pressure drop. For laminar flow and an inlet gas temperature of 1240 K, the overall heat transfer coefficients are 36-41 W m(-2) K-1. The measured performance is in good agreement with a prior CFD model of the heat exchanger. (C) 2014 Elsevier Ltd. All rights reserved.

  3. Alumina-Forming Austenitics: A New Class of Heat-Resistant Stainless Steels

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Lu, Zhao Ping; Maziasz, Philip J; Liu, Chain T; Pint, Bruce A; Santella, Michael L

    2008-01-01

    A family of alumina (Al2O3)-forming austenitic (AFA) stainless steels is under development. These alloys offer the potential for significantly higher operating temperature and environmental durability than conventional chromia (Cr2O3)-forming stainless steels, without sacrificing other critical characteristics such as cost, creep resistance, and weldability. An overview of the alloy development approach and details of the oxidation and creep resistance properties achieved to date are presented.

  4. Hydrogen Selective Thin Palladium-Copper Composite Membranes on Alumina Supports

    SciTech Connect

    Lim, Hankwon; Oyama, S. Ted

    2011-08-15

    Thin and defect-free PdCu composite membranes with high hydrogen permeances and selectivities were prepared by electroless plating of palladium and copper on porous alumina supports with pore sizes of 5 and 100 nm coated with intermediate layers. The intermediate layers on the 100 nm supports were prepared by the deposition of boehmite sols of different particle sizes, and provided a graded, uniform substrate for the formation of defect-free, ultra-thin palladium composite layers. The dependence of hydrogen flux on pressure difference was studied to understand the dominant mechanism of hydrogen transport through a PdCu composite membrane plated on an alumina support with a pore size of 5 nm. The order in hydrogen pressure was 0.98, and indicated that bulk diffusion through the PdCu layer was fast and the overall process was limited by external mass-transfer or a surface process. Scanning electron microscopy (SEM) images of the PdCu composite membrane showed a uniform substrate created after depositing one intermediate layer on top of the alumina support and a dense PdCu composite layer with no visible defects. Cross-sectional views of the membrane showed that the PdCu composite layer had a top layer thickness of 160 nm (0.16 ?m), which is much thinner than previously reported.

  5. Preparation of powders suitable for conversion to useful .beta.-aluminas

    DOEpatents

    Morgan, Peter E. D.

    1982-01-01

    A process for forming a precursor powder which, when suitably pressed and sintered forms highly pure, densified .beta.- or .beta."-alumina, comprising the steps of: (1) forming a suspension (or slurry) of Bayer-derived Al(OH).sub.3 in a water-miscible solvent; (2) adding an aqueous solution of a Mg compound, a Li compound, a Na compound or mixtures thereof to the Bayer-derived Al(OH).sub.3 suspension while agitating the mixture formed thereby, to produce a gel; (3) drying the gel at a temperature above the normal boiling point of water to produce a powder material; (4) lightly ball milling and sieving said powder material; and (5) heating the ball-milled and sieved powder material at a temperature of between 350.degree. to 900.degree. C. to form the .beta.- or .beta."-alumina precursor powder. The precursor powder, thus formed, may be subsequently isopressed at a high pressure and sintered at an elevated temperature to produce .beta.- or .beta."-alumina. BACKGROUND OF THE INVENTION

  6. Development and Exploratory Scale-Up of Alumina-Forming Austenitic (AFA) Stainless Steels

    SciTech Connect

    Brady, Michael P; Magee, John H; Yamamoto, Yukinori; Maziasz, Philip J; Santella, Michael L; Pint, Bruce A; Bei, Hongbin

    2009-01-01

    This paper presents the results of the continued development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides and intermetallic precipitates. Efforts in fiscal year 2009 focused on the characterization and understanding of long-term oxidation resistance and tensile properties as a function of alloy composition and microstructure. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2(Mo,Nb) base Laves phase precipitates were used to interpret oxidation behavior. Of particular interest was the enrichment of Cr in the austenitic matrix phase by additions of Nb, which aided the establishment and maintenance of alumina. Higher levels of Nb additions also increased the volume fraction of B2-NiAl precipitates, which served as an Al reservoir during long-term oxidation. Ageing studies of AFA alloys were conducted at 750C for times up to 2000 h. Ageing resulted in near doubling of yield strength at room temperature after only 50 h at 750C, with little further increase in yield strength out to 2000 h of ageing. Elongation was reduced on ageing; however, levels of 15-25% were retained at room temperature after 2000 h of total ageing.

  7. The Effect of Excimer Laser Treatment on the Surface Roughness and Fracture Strength of Alumina Substrates

    SciTech Connect

    Smoot, J.E.

    1998-05-13

    The microelectronics industry requires alumina substrates with exceptionally smooth surfaces and few surface defects to allow successful deposition of metallic films for reliable electronic performance. Irradiation by a 248-nm wavelength excimer laser beam (KrF) at a fluence of 125 mJ/mm{sup 2} and at various angles of incidence is shown to significantly reduce the surface roughness of alumina substrates. However, irradiation also creates a fine particulate deposit of alumina that only partially adheres to the substrate and impedes deposition of metal films. Annealing in air between 1350 C and 1450 C was found to remove the particles by sintering. As-received material showed surface roughness average (R{sub a}) mean values of 457 nm, which was reduced to 60 nm (mean) following irradiation and 71 nm (mean) following irradiation and annealing at 1350 C. Irradiation also produced a decrease in the number and severity of surface defects. The flexural strength and Weibull modulus were both increased by laser irradiation and thermal treatment. Flexural strength went from an as-received value of 450 MPa to 560 MPa following irradiation/sintering, measured at 10% probability of failure. The Weibull modulus was increased from the as-received value of about 9, to about 13 following irradiation/sintering. It was concluded that irradiation at an angle of incidence of 60{degree} from perpendicular was most effective in producing a low surface roughness.

  8. Ignition of Aluminum Particles and Clouds

    SciTech Connect

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  9. Degassing of Aluminum Alloys Using Ultrasonic Vibration

    SciTech Connect

    Meek, T. T.; Han, Q.; Xu, H.

    2006-06-01

    The research was intended to lead to a better fundamental understanding of the effect of ultrasonic energy on the degassing of liquid metals and to develop practical approaches for the ultrasonic degassing of alloys. The goals of the project described here were to evaluate core principles, establish a quantitative basis for the ultrasonic degassing of aluminum alloy melts, and demonstrate the application of ultrsaonic processing during ingot casting and foundry shape casting.

  10. Regeneration of aluminum hydride - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    268,288 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Regeneration of aluminum hydride United

  11. Aluminum-doped Zinc Oxide Nanoink

    Energy Innovation Portal

    2014-08-15

    Scientists at Berkeley Lab have developed a method for fabricating conductive aluminum-doped zinc oxide (AZO) nanocrystals that provide a lower cost, less toxic, earth-abundant alternative to the widely used transparent conductive oxide (TCO) indium tin oxide while offering comparable optical and electronic properties. TCOs are used in devices such as flat screen displays, photovoltaic cells, photochromic windows, chemical sensors, and biosensors....

  12. Aluminum doped zinc oxide for organic photovoltaics

    SciTech Connect

    Murdoch, G. B.; Hinds, S.; Sargent, E. H.; Tsang, S. W.; Mordoukhovski, L.; Lu, Z. H.

    2009-05-25

    Aluminum doped zinc oxide (AZO) was grown via magnetron sputtering as a low-cost alternative to indium tin oxide (ITO) for organic photovoltaics (OPVs). Postdeposition ozone treatment resulted in devices with lower series resistance, increased open-circuit voltage, and power conversion efficiency double that of devices fabricated on untreated AZO. Furthermore, cells fabricated using ozone treated AZO and standard ITO displayed comparable performance.

  13. On the dissolution of iridium by aluminum.

    SciTech Connect

    Hewson, John C.

    2009-08-01

    The potential for liquid aluminum to dissolve an iridium solid is examined. Substantial uncertainties exist in material properties, and the available data for the iridium solubility and iridium diffusivity are discussed. The dissolution rate is expressed in terms of the regression velocity of the solid iridium when exposed to the solvent (aluminum). The temperature has the strongest influence in the dissolution rate. This dependence comes primarily from the solubility of iridium in aluminum and secondarily from the temperature dependence of the diffusion coefficient. This dissolution mass flux is geometry dependent and results are provided for simplified geometries at constant temperatures. For situations where there is negligible convective flow, simple time-dependent diffusion solutions are provided. Correlations for mass transfer are also given for natural convection and forced convection. These estimates suggest that dissolution of iridium can be significant for temperatures well below the melting temperature of iridium, but the uncertainties in actual rates are large because of uncertainties in the physical parameters and in the details of the relevant geometries.

  14. Speciation of aluminum in acidic freshwaters

    SciTech Connect

    Campbell, P.G.C.; Bisson, M.; Bougie, R.; Tessier, A.; Villeneuve, J.P.

    1983-12-01

    The determination of the physical speciation of aluminum in water samples by filtration through polycarbonate membranes proved feasible; control experiments revealed neither contamination nor analyte loss. Treatment of sample filtrates with a fractionally loaded Chelex 100 ion-exchange resin (>75% H/sup +/-form) allows one to distinguish between different forms of aluminum on the basis of their kinetic and thermodynamic properties. Monomeric hydroxo- and fluoroaluminum complexes exchanged readily (>85% after 30 min), as did low molecular weight polynuclear species. Under similar conditions, forms of Al associated with fulvic and humic acids of natural origin exchanged much more slowly (<5% after 30 min, at an Al:dissolved organic carbon atomic ratio of approx. 1:155). Before photooxidation, the filterable aluminum present in natural waters exhibited intermediate behavior (0-50% exchange after 30 min); after UV irradiation the nonexchangeable Al fraction had practically disappeared (90-96% exchange after 30 min), suggesting that the major portion of the nonexchangeable Al initially present was associated with organic matter.

  15. Toward parallel, adaptive mesh refinement for chemically reacting flow simulations

    SciTech Connect

    Devine, K.D.; Shadid, J.N.; Salinger, A.G. Hutchinson, S.A.; Hennigan, G.L.

    1997-12-01

    Adaptive numerical methods offer greater efficiency than traditional numerical methods by concentrating computational effort in regions of the problem domain where the solution is difficult to obtain. In this paper, the authors describe progress toward adding mesh refinement to MPSalsa, a computer program developed at Sandia National laboratories to solve coupled three-dimensional fluid flow and detailed reaction chemistry systems for modeling chemically reacting flow on large-scale parallel computers. Data structures that support refinement and dynamic load-balancing are discussed. Results using uniform refinement with mesh sequencing to improve convergence to steady-state solutions are also presented. Three examples are presented: a lid driven cavity, a thermal convection flow, and a tilted chemical vapor deposition reactor.

  16. The US petroleum refining industry in the 1980's

    SciTech Connect

    Not Available

    1990-10-11

    As part of the EIA program on petroleum, The US Petroleum Refining Industry in the 1980's, presents a historical analysis of the changes that took place in the US petroleum refining industry during the 1980's. It is intended to be of interest to analysts in the petroleum industry, state and federal government officials, Congress, and the general public. The report consists of six chapters and four appendices. Included is a detailed description of the major events and factors that affected the domestic refining industry during this period. Some of the changes that took place in the 1980's are the result of events that started in the 1970's. The impact of these events on US refinery configuration, operations, economics, and company ownership are examined. 23 figs., 11 tabs.

  17. Trends in heavy oil production and refining in California

    SciTech Connect

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  18. Trends in heavy oil production and refining in California

    SciTech Connect

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  19. PROP re-refined oil engine test performance

    SciTech Connect

    Linnard, R.E.

    1980-11-01

    Using conventional, commercially-available nonproprietary (to Phillips) additive treatments, engine test programs have successfully demonstrated Phillips Re-refined Oil Process (PROP) oils' compliance with the performance requirements of MIL-L-46152A and API Services SE/CC. This paper reports on the engine testing experience with PROP refined oils as produced in a full-scale 2 MM GPY PROP plant operating with Buyer-collected used oil feedstocks. Comment is also made on the status of the first two PROP plants, one built for the state of North Carolina and the other for Mohawk Oil Company, Ltd., Vancouver B.C., Canada.

  20. High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting lm075_hovanski_2013_o.pdf (3.29 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: High Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks Vehicle Technologies Office

  1. Local residual stress monitoring of aluminum nitride MEMS using UV

    Office of Scientific and Technical Information (OSTI)

    micro-Raman spectroscopy (Journal Article) | DOE PAGES Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy This content will become publicly available on January 6, 2017 Title: Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325

  2. Energy Efficiency Improvement in the Petroleum RefiningIndustry

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina

    2005-05-01

    Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

  3. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    2. U.S. Refiner Retail Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1995 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No. 4...

  4. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    4. U.S. Refiner Wholesale Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1997 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No....

  5. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    4. U.S. Refiner Wholesale Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1995 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No....

  6. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    2. U.S. Refiner Retail Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1996 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No. 4...

  7. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    Prices J F M A M J J A S O N D 0 10 20 30 40 50 60 70 1995 Cents per Gallon Excluding Taxes Retail < or 1% Wholesale < or 1% Retail > 1% Wholesale > 1% 7. U.S. Refiner Residual...

  8. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    4. U.S. Refiner Wholesale Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1996 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No....

  9. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Energy Information Administration (EIA) (indexed site)

    2. U.S. Refiner Retail Petroleum Product Prices Figure J F M A M J J A S O N D 0 20 40 60 80 100 120 1997 Cents per Gallon Excluding Taxes Kero-jet Propane No. 1 Distillate No. 4...

  10. Decontamination of transuranic contaminated metals by melt refining

    SciTech Connect

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1983-01-01

    Melt refining of transuranic contaminated metals is a possible decontamination process with the potential advantages of producing metal for reuse and of simplifying chemical analyses. By routinely achieving the 10 nCi/g( about0.1ppm) level by melt refining, scrap metal can be removed from the transuranic waste category. (To demonstrate the effectiveness of this melt refining process, mild steel, stainless steel, nickel, and copper were contaminated with 500 ppm (..mu..g/g) PuO/sub 2/ and melted with various fluxes. The solidified slags and metals were analyzed for their plutonium contents, and corresponding partition ratios for plutonium were calculated. Some metals were double refined in order to study the effect of secondary slag treatment. The initial weight of the slags was also varied to investigate the effect of slag weight on the degree of plutonium removal. In general, all four metals could be decontaminated below 1 ppm (..mu..g/g) Pu ( about100 nCi/g) by a single slag treatment. Doubling the slag weight did not improve decontamination significantly; however, double slag treatment using 5 wt.% slag did decontaminate the metals to below 0.1 ppm (..mu..g/g) Pu (10 nCi/g).)

  11. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Energy Information Administration (EIA) (indexed site)

    71.8 W 70.5 78.9 W 76.0 83.6 W 69.2 75.2 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

  12. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Energy Information Administration (EIA) (indexed site)

    W 68.4 70.8 W W 78.6 W 85.7 81.8 W 69.3 73.8 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

  13. Process for electroslag refining of uranium and uranium alloys

    DOEpatents

    Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.

    1975-07-22

    A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)

  14. ,"Conventional Gasoline Sales to End Users, Total Refiner Sales...

    Energy Information Administration (EIA) (indexed site)

    ... Refiners (Thousand Gallons per Day)","New Mexico Conventional Gasoline Retail Sales by ...928.8,,587,12358.1,196,1145.9,128.8,497.8,,2030.3,,459.7,56.4,3.9,4678.6,764.1,9.3,1677.4,...

  15. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    High Methane Storage Capacity in Aluminum Metal-Organic Frameworks Previous Next List Felipe Gndara, Hiroyasu Furukawa, Seungkyu Lee, and Omar M. Yaghi, J. Am. Chem. Soc., 136,...

  16. Design of defect spins in piezoelectric aluminum nitride for...

    Office of Scientific and Technical Information (OSTI)

    Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum ... To date, defect qubits have only been realized in materials with strong covalent bonds. ...

  17. Aluminum-Alkaline Metal-Metal Composite Conductor - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    researchers have developed a high strength, lightweight aluminum wire for high-voltage power transmission with reduced electrical resistance for overhead electrical lines. ...

  18. Aluminum-Alkaline Metal-Metal Composite Conductor - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Researchers have developed a high strength, lightweight aluminum wire for high-voltage power transmission with reduced electrical resistance for overhead electrical lines. ...

  19. Enhancement of Aluminum Alloy Forgings Using Rapid Infrared Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and industry partners, Queen City Forging Company and Infra Red Heating Technologies LLC, have developed a process for forging aluminum parts using infrared (IR) technology. ...

  20. Aluminum Carbothermic Technology (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). ... The tasks included work on four components of the process, Stages 1 and 2 of the reactor, ...

  1. Energy and Environmental Profile of the Aluminum Industry

    SciTech Connect

    Margolis, Nancy

    1997-07-01

    This detailed report (PDF 2.5 MB) benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

  2. Aluminum-stabilized Nb[sub 3]Sn superconductor

    DOEpatents

    Scanlan, R.M.

    1988-05-10

    Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.

  3. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Kaiser Aluminum plant in Sherman, Texas, improved its annual furnace energy intensity by ... Adopted as Standard for Analyzing Plant Process Heating Systems Company-Wide ...

  4. DOE - Office of Legacy Management -- Aluminum Co of America ...

    Office of Legacy Management (LM)

    Related to Aluminum Company of America (ALCOA) PA.23-1 - DOE Letter; Williams to Jackson (ALCOA) concerning results of radiological surveys and elimination of the site from...

  5. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  6. Aluminum-stabilized Nb/sub 3/Sn superconductor

    DOEpatents

    Scanlan, R.M.

    1984-02-10

    This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  7. Joining of parts via magnetic heating of metal aluminum powders

    DOEpatents

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  8. Design of defect spins in piezoelectric aluminum nitride for...

    Office of Scientific and Technical Information (OSTI)

    Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum ... Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS electronic ...

  9. DOE - Office of Legacy Management -- Hunter Douglas Aluminum...

    Office of Legacy Management (LM)

    Designated Name: Not Designated Alternate Name: Hunter Douglas Aluminum Corporation CA.11-1 Location: 3016 Kansas Avenue , Riverside , California CA.11-1 Evaluation Year: 1995 ...

  10. Virtual Aluminum Castings An Industrial Application of Integrated...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and cost challenges. Nowhere is this more evident than in the development of designs and manufacturing processes for cast aluminum engine blocks and cylinder heads. Increasing...

  11. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  12. Aluminum-doped Zinc Oxide Nanoink - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    conductive aluminum-doped zinc oxide (AZO) nanocrystals that provide a lower cost, ... Description The optoelectronic properties of AZO nanocrystals can be tuned by controlling ...

  13. Mold Materials For Permanent Molding of Aluminum Alloys (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Mold Materials For Permanent Molding of Aluminum Alloys A test that involves ... This test has been employed to determine the relative thermal fatigue resistance of ...

  14. Microsoft PowerPoint - Aluminum Concentrations in Storm Water...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Title: Solid and Dissolved Phase Aluminum in Storm Water Runoff on the Pajarito Plateau, Poster, Individual Permit for Storm Water, NPDES Permit No. NM0030759 Author(s): ...

  15. Welding the four most popular aluminum alloys

    SciTech Connect

    Irving, B.

    1994-02-01

    The fact that business is good in aluminum welding is a sure sign that more manufacturers and fabricators are using GMA and GTA welding to build new products out of this lightweight nonferrous metal. Among the most widely specified weldable grades are Alloys 6061, 5083, 5052 and 5454. A rundown on these four alloys, including properties and selected applications, is provided. Any company working with aluminum for the first time needs to know something about these four alloys. Alloys of copper-magnesium-silicon combination, of which 6061 is one, are heat-treatable. The three 5XXX series alloys, on the other hand, are nonheat-treatable. According to P.B. Dickerson, consultant, Lower Burrell, Pa., 5083, because of its high magnesium content, is the easiest of the four alloys to arc weld. Dickerson put the cut-off point in weldability at 3.5% magnesium. To prevent cracking, he added, both 6061 and 5052 require much more filler metal than do the other two alloys. Alloy 6061 consists of 0.25Cu, 0.6Si, 1.0Mg, and 0.20Cr. The main applications for 6061 aluminum are structural, architectural, automotive, railway, marine and pipe. It has good formability, weldability, corrosion resistance and strength. Although the 6XXX series alloys are prone to hot cracking, this condition can be readily overcome by correct choice of joint design and electrode. The most popular temper for 6061 is T6, although the -T651, -T4, and -F temper are also popular. The -T651 temper is like a -T6 temper, only it has received some final stretch hardening. The -T4 temper has been solution heat-treated and quenched. The -F temper is in the as-fabricated condition.

  16. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    DOEpatents

    Gilbert, Marian; Kaun, Thomas D.

    1984-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  17. Spray-formed tooling and aluminum strip

    SciTech Connect

    McHugh, K.M.

    1995-11-01

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. De Laval nozzles offer an alternative method to the more conventional spray nozzle designs. Two applications are described: high-volume production of aluminum alloy strip, and the production of specialized tooling, such as injection molds and dies, for rapid prototyping.

  18. Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN

    SciTech Connect

    Peter, Josephine; Doloi, B.; Bhattacharyya, B.

    2011-01-17

    The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actual experimental observations.

  19. Numerical simulation of alumina spraying in argon-helium plasma jet

    SciTech Connect

    Chang, C.H.

    1992-01-01

    A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)

  20. Numerical simulation of alumina spraying in argon-helium plasma jet

    SciTech Connect

    Chang, C.H.

    1992-08-01

    A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)

  1. The role of alumina on performance of alkali-activated slag paste exposed to 50 °C

    SciTech Connect

    Jambunathan, N.; Sanjayan, J.G.; Pan, Z.; Li, G.; Liu, Y.; Korayem, A.H.; Duan, W.H.; Collins, F.

    2013-12-15

    The strength and microstructural evolution of two alkali-activated slags, with distinct alumina content, exposed to 50 °C have been investigated. These two slags are ground-granulated blast furnace slag (containing 13% (wt.) alumina) and phosphorous slag (containing 3% (wt.) alumina). They were hydrated in the presence of a combination of sodium hydroxide and sodium silicate solution at different ratios. The microstructure of the resultant slag pastes was assessed by X-ray diffraction, differential thermogravimetric analysis, and scanning electron microscopy. The results obtained from these techniques reveal the presence of hexagonal hydrates: CAH{sub 10} and C{sub 4}AH{sub 13} in all alkali-activated ground-granulated blast-furnace slag pastes (AAGBS). These hydrates are not observed in pastes formed by alkali-activated ground phosphorous slag (AAGPS). Upon exposure to 50 °C, the aforementioned hydration products of AAGBS pastes convert to C{sub 3}AH{sub 6}, leading to a rapid deterioration in the strength of the paste. In contrast, no strength loss was detected in AAGPS pastes following exposure to 50 °C. -- Highlights: •Strength of alkali-activated slag (AAS) pastes after exposure to 50 °C is studied. •AAS pastes with high alumina content lose strength after the exposure. •C{sub 4}AH{sub 13} and CAH{sub 10} form in these AAS pastes. •Conversion of these calcium alumina hydrates is associated with the strength loss. •AAS pastes with low alumina content maintain its strength after the exposure.

  2. Method of forming aluminum oxynitride material and bodies formed by such methods

    DOEpatents

    Bakas, Michael P. [Ammon, ID; Lillo, Thomas M. [Idaho Falls, ID; Chu, Henry S. [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  3. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  4. Electrolytic production of high purity aluminum using inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  5. Brazed aluminum, Plate-fin heat exchangers for OTEC

    SciTech Connect

    Foust, H.D.

    1980-12-01

    Brazed aluminum plate-fin heat exchangers have been available for special applications for over thirty years. The performance, compactness, versatility, and low cost of these heat exchangers has been unequaled by other heat exchanger configuration. The application of brazed aluminum has been highly limited because of necessary restrictions for clean non-corrosive atmospheres. Air and gas separation have provided ideal conditions for accepting brazed aluminum and in turn have benefited by the salient features of these plate-fin heat exchangers. In fact, brazed aluminum and cryogenic gas and air separation have become nearly synonymous. Brazed aluminum in its historic form could not be considered for a seawater atmosphere. However, technology presents a new look of significant importance to OTEC in terms of compactness and cost. The significant technological variation made was to include one-piece hollow extensions for the seawater passages. Crevice corrosion sites are thereby entirely eliminated and pitting corrosion attack will be controlled by an integral and sacrificial layer of a zinc-aluminum alloy. This paper on brazed aluminum plate-fin heat exchangers for OTEC will aquaint the reader with the state-of-art and variations suggested to qualify this form of aluminum for seawater use. In order to verify the desirable cost potential for OTEC, Trane teamed with Westinghouse to perform an OTEC system analysis with this heat exchanger. These results are very promising and reported in detail elsewhere.

  6. Pulsed laser weldability of aluminum alloys

    SciTech Connect

    Weeter, L.A.

    1985-01-01

    This study was undertaken to determine the weldability of six aluminum alloys (1100, 3003, 4043, 4047, 5356, and 6061) in similar alloy, dissimilar alloy, and similar alloy with a 4047 filler metal addition combinations. The Pulsed Laser Weldability Test was used to evaluate the weldability of the various alloy combinations. The Pulsed Laser Weldability Test rated the weldability of the six aluminum alloys from least crack sensitive to most crack sensitive as: 1100, 4047, 4043, 3003, 5356, 6061. The results of joining 1100, 3003, 5356, or 6061 to either 4043 or 4047 in an approximately 50% mixture revealed that all of these combinations were very crack sensitive. The addition of smaller amounts of 4047 to either 5356 or 6061 revealed the same phenomenon. 0.08, 0.13, and 0.25 millimeter thick sheets of 4047 were placed between two pieces of either 5356 or 6061 and the weldability test was performed. All of the filler metal additions made crack sensitive joints. A 0.38 mm thick sheet of 4047 was also tested between 5356 or 6061. However, this sheet was too thick for the Pulsed Laser Weldability Test to accurately evaluate.

  7. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  8. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  9. Enhancement of stability of aqueous suspension of alumina nanoparticles by femtosecond laser irradiation

    SciTech Connect

    Seo, Youngsang; Ha, Jeonghong; Kim, Dongsik; Choi, Tae-Youl; Jeong, Dae-Yong; Lee, Seung Yong

    2015-09-21

    In this work, we report substantially enhanced colloidal stability of aqueous nanoparticle suspensions by ultrashort laser pulse irradiation. A Ti:Sapphire femtosecond laser (wavelength: 800 nm; pulse duration: 50 fs at full width at half maximum) was used to modify the electrochemical properties of nanoparticle suspensions at laser fluences below the particle ablation threshold. The colloidal stability of the suspension was evaluated by zeta potential and dynamic light scattering (DLS). The DLS results along with the images from transmission electron microscopy revealed that the laser irradiation caused no distinct morphological change to the individual alumina particles, but a substantial portion of the clustered particles was fragmented by the laser pulses, decreasing the apparent size of the suspended particles. Also, X-ray photoelectron spectroscopy analysis indicates that the laser irradiation modified the surface chemistry of the alumina particles. The stabilizing capability of the proposed technique was turned out to be better than that of conventional ultrasonic treatments. The stability of the laser-treated sample with no added surfactant was maintained for up to 30 days, without requiring an additional homogenizing process such as magnetic stirring.

  10. Unlubricated sliding wear of partially stabilized zirconia, toughened alumina, and silicon nitride

    SciTech Connect

    Yust, C.S.; Carignan, F.J.

    1985-09-01

    Conditions were established for a pin-on-disc sliding configuration under which unlubricated partially stabilized zirconia and toughened alumina will slide on themselves for limited periods of time without incurring extensive macroscopic surface damage. Microscopic examination, however, reveals that unlubricated sliding at the conditions resulting in minimal macroscopic surface damage is accompanied by the formation of a fine particle debris which is agglomerated and adhered to the wear path. The majority (approx.80%) of the partially stabilized zirconia specimens tested to date have experienced severe wear during unlubricated sliding under the conditions of this test program. One half of the toughened alumina specimens experienced mild wear, the remaining half severe wear. All of the silicon nitride specimens exhibited severe wear. The silicon nitride surfaces show evidence of surface chemical reaction at longer test durations, demonstrating that the chemical influence of the environment, especially on a surface under dynamic stress conditions, must be considered. The transition between mild and severe wear can take place very rapidly. These results imply transition to unacceptable wear regimes in unlubricated sliding in relatively short time periods.

  11. Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ

    DOE PAGES [OSTI]

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions.more » We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. As a result, our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.« less

  12. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    SciTech Connect

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-08-15

    In this work an alumina-zirconia ceramic composites have been prepared with {alpha}-Al{sub 2}O{sub 3} contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest {alpha}-Al{sub 2}O{sub 3} content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  13. A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)

    SciTech Connect

    Anil Virkar

    2008-03-31

    This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, Na

  14. Method for preparing configured silicon carbide whisker-reinforced alumina ceramic articles

    DOEpatents

    Tiegs, Terry N.

    1987-01-01

    A ceramic article of alumina reinforced with silicon carbide whiskers suitable for the fabrication into articles of complex geometry are provided by pressureless sintering and hot isostatic pressing steps. In accordance with the method of the invention a mixture of 5 to 10 vol. % silicon carbide whiskers 0.5 to 5 wt. % of a sintering aid such as yttria and the balance alumina powders is ball-milled and pressureless sintered in the desired configuration in the desired configuration an inert atmosphere at a temperature of about 1800.degree. C. to provide a self-supporting configured composite of a density of at least about 94% theoretical density. The composite is then hot isostatically pressed at a temperature and pressure adequate to provide configured articles of at least about 98% of theoretical density which is sufficient to provide the article with sufficient strength and fracture toughness for use in most structural applications such as gas turbine blades, cylinders, and other components of advanced heat engines.

  15. Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: In Memory of John Stringer

    DOE PAGES [OSTI]

    Naumenko, D.; Pint, B. A.; Quadakkers, W. J.

    2016-05-06

    In memory of John Stringer (1934–2014), one of the leaders in studying the reactive element (RE) effects, this paper reviews the current status of understanding of the effect of RE dopants on high-temperature oxidation behavior, with an emphasis on recent research related to deploying alumina-forming alloys and coatings with optimal performance in commercial systems. Additionally, to the well-known interaction between indigenous sulfur and RE additions, effects have been observed with C, N, and O found in commercial alloys and coatings. While there are many similarities between alumina-forming alloys and coatings, the latter bring additional complicating factors such as the effectsmore » of O incorporation during thermal spraying MCrAlY coatings, coating roughness, and heat treatments that must be considered in optimizing the beneficial dopant addition. We can see analogies between RE effects in alloys and in the substrates beneath diffusion M–Al coatings. Recently, there has been more interest in the influence of mixed oxidant environments, since these may modify the manifestation of the RE effect. Some thoughts are provided on optimizing the RE benefit and modeling oxidation of RE-doped alloys.« less

  16. Hydrodesulfurization of dibenzothiophene catalyzed by alumina-supported ruthenium carbonyl complexes in a pressurized flow system

    SciTech Connect

    NONE

    1994-11-01

    Ruthenium sulfide has been found to be most active for hydrodesulfurization (HDS) of thiophenes as well as hydrogenation and hydrodenitrogenation among transition metal sulfides. When ruthenium sulfide is supported on alumina, silica, or zeolite with high surface area, highly dispersed ruthenium sulfide formed on the supports would increase the catalytic activity per a ruthenium atom. Several researchers have already reported HDS using supported ruthenium sulfides. In these works [Ru(NH{sub 3}){sub 6}]{sup +}, Ru{sub 3}(CO){sub 12}, RuCl{sub 3}, and Ru(III) acetate supported on alumina, zeoliate, carbon, etc., were used as catalyst precursors in HDS of thiophene, benzothiophene, or dibenzothiophene. Although these HDS reactions were performed under an atmospheric pressure, the activity of the catalysts derived from supported ruthenium in a pressurized flow system have not yet been understood. In the present study, HDS of DBT catalyzed by ruthenium catalysts is investigated in a pressurized flow reactor. 17 refs., 2 figs., 2 tabs.

  17. REFINING AND END USE STUDY OF COAL LIQUIDS

    SciTech Connect

    Unknown

    2002-01-01

    This document summarizes all of the work conducted as part of the Refining and End Use Study of Coal Liquids. There were several distinct objectives set, as the study developed over time: (1) Demonstration of a Refinery Accepting Coal Liquids; (2) Emissions Screening of Indirect Diesel; (3) Biomass Gasification F-T Modeling; and (4) Updated Gas to Liquids (GTL) Baseline Design/Economic Study.

  18. Environmental Regulations and Changes in Petroleum Refining Operations

    Gasoline and Diesel Fuel Update

    Environmental Regulations and Changes in Petroleum Refining Operations By Tancred C.M. Lidderdale Contents * Introduction * Motor Gasoline Summer Volatility (RVP) Regulations o Table 1. Summer Volatility Regulations for Motor Gasoline o Table 2. Refinery Inputs and Production of Normal Butane o Figure 1. Refinery Inputs and Production of Normal Butane o Table 3. Price Relationship Between Normal Butane and Motor Gasoline o Table 4. Market Price Premium for Low Vapor Pressure (RVP) Gasoline *

  19. Parallel Block Structured Adaptive Mesh Refinement on Graphics Processing Units

    SciTech Connect

    Beckingsale, D. A.; Gaudin, W. P.; Hornung, R. D.; Gunney, B. T.; Gamblin, T.; Herdman, J. A.; Jarvis, S. A.

    2014-11-17

    Block-structured adaptive mesh refinement is a technique that can be used when solving partial differential equations to reduce the number of zones necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a native GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an eight-node cluster, and over four thousand nodes of Oak Ridge National Laboratory’s Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and has been scaled to over four thousand GPUs using a combination of MPI and CUDA.

  20. Decontamination of steel by melt refining: A literature review

    SciTech Connect

    Ozturk, B.; Fruehan, R.J.

    1994-12-31

    It has been reported that a large amount of metal waste is produced annually by nuclear fuel processing and nuclear power plants. These metal wastes are contaminated with radioactive elements, such as uranium and plutonium. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain level. Because of high cost, it is important to develop an effective decontamination and volume reduction method for low level contaminated metals. It has been shown by some investigators that a melt refining technique can be used for the processing of the contaminated metal wastes. In this process, contaminated metal is melted wit a suitable flux. The radioactive elements are oxidized and transferred to a slag phase. In order to develop a commercial process it is important to have information on the thermodynamics and kinetics of the removal. Therefore, a literature search was carried out to evaluate the available information on the decontamination uranium and transuranic-contaminated plain steel, copper and stainless steel by melt a refining technique. Emphasis was given to the thermodynamics and kinetics of the removal. Data published in the literature indicate that it is possible to reduce the concentration of radioactive elements to a very low level by the melt refining method. 20 refs.

  1. Mesh refinement for uncertainty quantification through model reduction

    SciTech Connect

    Li, Jing Stinis, Panos

    2015-01-01

    We present a novel way of deciding when and where to refine a mesh in probability space in order to facilitate uncertainty quantification in the presence of discontinuities in random space. A discontinuity in random space makes the application of generalized polynomial chaos expansion techniques prohibitively expensive. The reason is that for discontinuous problems, the expansion converges very slowly. An alternative to using higher terms in the expansion is to divide the random space in smaller elements where a lower degree polynomial is adequate to describe the randomness. In general, the partition of the random space is a dynamic process since some areas of the random space, particularly around the discontinuity, need more refinement than others as time evolves. In the current work we propose a way to decide when and where to refine the random space mesh based on the use of a reduced model. The idea is that a good reduced model can monitor accurately, within a random space element, the cascade of activity to higher degree terms in the chaos expansion. In turn, this facilitates the efficient allocation of computational sources to the areas of random space where they are more needed. For the Kraichnan–Orszag system, the prototypical system to study discontinuities in random space, we present theoretical results which show why the proposed method is sound and numerical results which corroborate the theory.

  2. ,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes...

    Energy Information Administration (EIA) (indexed site)

    Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or ... Data for" ,"Data 1","Kerosene-Type Jet Fuel Sales to End Users Refiner Sales ...

  3. RFA-14-0001 - In the Matter of Commonwealth Oil Refining Company...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    RFA-14-0001 - In the Matter of Commonwealth Oil Refining Company, Inc.Commonwealth of Puerto Rico RFA-14-0001 - In the Matter of Commonwealth Oil Refining Company, Inc....

  4. Catalytic hydroprocessing of solvent refined coal to provide a liquid and a solid fuel

    SciTech Connect

    Dabkowski, M.J.; Heck, R.H.; Stein, T.R.

    1980-04-29

    In the hydroprocessing of blends of solvent refined coal and recycle solvent, small pore hydrotreating catalysts cause separation of a solid phase from treating blends containing high concentration of solvent refined coal.

  5. Diode laser welding of aluminum to steel

    SciTech Connect

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica [University of Rome Tor Vergata, Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (Italy)

    2011-05-04

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  6. Petroleum Refining Sector (NAICS 324110) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    69 2.4 PETROLEUM REFINING SECTOR (NAICS 324110) 2.4.1. Overview of the Petroleum Refining Manufacturing Sector Petroleum refining is a complex industry that generates a diverse slate of fuel products and petrochemicals, from gasoline to asphalt. Refining requires a range of processing steps, including distillation, cracking, reforming, and treating. Most of these processes are highly reliant on process heating and steam energy. Petroleum refineries are an essential part of the U.S. economy.

  7. Occupational employment survey, booklet of definitions. Petroleum refining, coal products, and related industries

    SciTech Connect

    Not Available

    1992-01-01

    The publication gives occupational definitions for 149 occupations in the petroleum refining, coal products, and related industries.

  8. Oxygen-exchange Pathways in Aluminum Polyoxocations

    SciTech Connect

    Rustad, James R.; Loring, J. S.; Casey, William H.

    2004-07-15

    Using molecular dynamics simulations and electronic structure methods, we postulate a mechanism to explain the complicated reactivity trends that are observed for oxygen isotope exchange reactions between sites in aluminum polyoxocations of the E-Keggin type and bulk solution. Experimentally, the molecules have four nonequivalent oxygens that differ considerably in reactivity both within a molecule, and between molecules in the series: Al13, GaAl12, and GeAl12 [MO4Al12(OH)24(H2O)12 n*(aq); with M=Al(III) for Al13, n=7; M=Ga(III) for GaAl12, n=7; M=Ge(IV) for GeAl12, n=8]. We find that a partly dissociated, metastable intermediate molecule of expanded volume is necessary for exchange of both sets of u2-OH and that the steady-state concentration of this intermediate reflects the bond strengths between the central metal and the u4-O. Thus the central metal exerts extraordinary control over reactions at hydroxyl bridges, although these are three bonds away. This mechanism not only explains the reactivity trends for oxygen isotope exchange in u2-OH and u-OH2 sites in the E-Keggin aluminum molecules, but also explains the observation that the reactivities of minerals tend to reflect the presence of highly coordinated oxygens, such as the u4-O in boehmite, a-, and y-Al2O3 and their Fe(III) analogs. The partial dissociation of these highly coordinated oxygens, coupled with simultaneous activation and displacement of neighboring metal centers, may be a fundamental process by which metals atoms undergo ligand exchanges at mineral surfaces.

  9. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    SciTech Connect

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

  10. A MODERN INTERPRETATION OF THE BARNEY DIAGRAM FOR ALUMINUM SOLUBILITY IN TANK WASTE

    SciTech Connect

    REYNOLDS JG; REYNOLDS DA

    2009-12-16

    Experimental and modeling studies of aluminum solubility in Hanford tank waste have been developed and refined for many years in efforts to resolve new issues or develop waste treatment flowsheets. The earliest of these studies was conducted by G. Scott Barney, who performed solubility studies in highly concentrated electrolyte solutions to support evaporator campaign flowsheets in the 1970's. The 'Barney Diagram', a term still widely used at Hanford today, suggested gibbsite ({gamma}-Al(OH){sub 3}) was much more soluble in tank waste than in simple sodium hydroxide solutions. These results, which were highly surprising at the time, continue to be applied to new situations where aluminum solubility in tank waste is of interest. Here, we review the history and provide a modern explanation for the large gibbsite solubility observed by Barney, an explanation based on basic research that has been performed and published in the last 30 years. This explanation has both thermodynamic and kinetic aspects. Thermodynamically, saturated salt solutions stabilize soluble aluminate species that are minor components in simple sodium hydroxide solutions. These species are the aluminate dimer and the sodium-aluminate ion-pair. Ion-pairs must be present in the Barney simulants because calculations showed that there was insufficient space between the highly concentrated ions for a water molecule. Thus, most of the ions in the simulants have to be ion-paired. Kinetics likely played a role as well. The simulants were incubated for four to seven days, and more recent data indicate that this was unlikely sufficient time to achieve equilibrium from supersaturation. These results allow us to evaluate applications of the Barney results to current and future tank waste issues or flowsheets.

  11. Process for strengthening aluminum based ceramics and material

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.

  12. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOEpatents

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  13. Environmental control technology for mining, milling, and refining thorium

    SciTech Connect

    Weakley, S.A.; Blahnik, D.E.; Young, J.K.; Bloomster, C.H.

    1980-02-01

    The purpose of this report is to evaluate, in terms of cost and effectiveness, the various environmental control technologies that would be used to control the radioactive wastes generated in the mining, milling, and refining of thorium from domestic resources. The technologies, in order to be considered for study, had to reduce the radioactivity in the waste streams to meet Atomic Energy Commission (10 CFR 20) standards for natural thorium's maximum permissible concentration (MPC) in air and water. Further regulatory standards or licensing requirements, either federal, state, or local, were not examined. The availability and cost of producing thorium from domestic resources is addressed in a companion volume. The objectives of this study were: (1) to identify the major waste streams generated during the mining, milling, and refining of reactor-grade thorium oxide from domestic resources; and (2) to determine the cost and levels of control of existing and advanced environmental control technologies for these waste streams. Six potential domestic deposits of thorium oxide, in addition to stockpiled thorium sludges, are discussed in this report. A summary of the location and characteristics of the potential domestic thorium resources and the mining, milling, and refining processes that will be needed to produce reactor-grade thorium oxide is presented in Section 2. The wastes from existing and potential domestic thorium oxide mines, mills, and refineries are identified in Section 3. Section 3 also presents the state-of-the-art technology and the costs associated with controlling the wastes from the mines, mills, and refineries. In Section 4, the available environmental control technologies for mines, mills, and refineries are assessed. Section 5 presents the cost and effectiveness estimates for the various environmental control technologies applicable to the mine, mill, and refinery for each domestic resource.

  14. Cogeneration handbook for the petroleum refining industry. [Contains glossary

    SciTech Connect

    Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the petroleum refining industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  15. Changing Trends in the Refining Industry (released in AEO2006)

    Reports and Publications

    2006-01-01

    There have been some major changes in the U.S. refining industry recently, prompted in part by a significant decline in the quality of imported crude oil and by increasing restrictions on the quality of finished products. As a result, high-quality crudes, such as the West Texas Intermediate (WTI) crude that serves as a benchmark for oil futures on the New York Mercantile Exchange (NYMEX), have been trading at record premiums to the OPEC (Organization of the Petroleum Exporting Countries) Basket price.

  16. Preliminary attempt at sintering an ultrafine alumina powder using microwaves. Master's thesis

    SciTech Connect

    Alhambra, E.M.

    1994-09-01

    A commercially available microwave oven was used to sinter ultrafine alumina powders (0.02 - 0.05 micrometers particle size) with and without CaO sintering aid. The oven was modified by inserting a thermocouple probe through the bottom housing, and thoroughly insulating the interior with insulating material. The oven was placed in a glove box and filled with argon to prevent degradation of the thermocouple, and oxidation of the powdered graphite susceptor. Heating rates of 50-75 Deg C/sec with a maximum temperature of 1575 Deg C were obtained. Limited success in sintering of the the powder compacts was achieved in this preliminary effort. The microstructures of the sintered products were examined by scanning electron microscopy. It was concluded that further work is necessary to develop this technique into one which can be used for the routine sintering of fine powdered ceramic material. A review of the literature on microwave sintering of ceramic powders is also reported.

  17. Sealing 304L to lithia-alumina-silica (LAS) glass-ceramics

    SciTech Connect

    Moddeman, W.E.; Pence, R.E.; Massey, R.T.; Cassidy, R.T.; Kramer, D.P.

    1989-12-31

    The formation of a crack-free between 300 series stainless steel and a glass-ceramic is difficult owing to the high coefficients of thermal expansion of the stainless steels. Lithia-alumina-silica (LAS) glass-ceramics were successfully developed and sealed to 304L stainless steel. These crack-free seals were fabricated by two techniques: by adjusting the parent glass composition (reducing the Al{sub 2}O{sub 3} content), or by adjusting the sealing/crystallization cycle. All seals were hermetic, with leak rates < 10{sup -8} cc/sec STP helium. CTE and alloy yield strengths are given which show the feasibility of using these materials to make feedthroughs, pyrotechnic components, etc. Metallography, SEM, and wavelength dispersive spectroscopy show the quality and integrity of the glass-ceramic/stainless steel interface. These data are compared to those on the Inconel 718/LAS-glass seal system.

  18. Oxidation Reaction Induced Structural Changes in Sub-Nanometer Platinum Supported on Alumina

    SciTech Connect

    DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; Narula, Chaitanya Kumar

    2015-06-26

    Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on ?, ?, and ?-Al2O3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. We find that sub-nanometer Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Furthermore, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.

  19. Highly fluorescent silver nanoclusters in alumina-silica composite optical fiber

    SciTech Connect

    Halder, A.; Chattopadhyay, R.; Majumder, S.; Paul, M. C.; Das, S.; Bhadra, S. K.; Bysakh, S.; Unnikrishnan, M.

    2015-01-05

    An efficient visible fluorescent optical fiber embedded with silver nanoclusters (Ag-NCs) having size ∼1 nm, uniformly distributed in alumina-silica composite core glass, is reported. Fibers are fabricated in a repetitive controlled way through modified chemical vapour deposition process associated with solution doping technique. Fibers are drawn from the transparent preforms by conventional fiber drawing process. Structural characteristics of the doped fibers are studied using transmission electron microscopy and electron probe micro analysis. The oxidation state of Ag within Ag-NCs is investigated by X-ray photo electron spectroscopy. The observed significant fluorescence of the metal clusters in fabricated fibers is correlated with electronic model. The experimentally observed size dependent absorption of the metal clusters in fabricated fibers is explained with the help of reported results calculated by ab-initio density functional theory. These optical fibers may open up an opportunity of realizing tunable wavelength fiber laser without the help of rare earth elements.

  20. Oxidation Reaction Induced Structural Changes in Sub-Nanometer Platinum Supported on Alumina

    DOE PAGES [OSTI]

    DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; Narula, Chaitanya Kumar

    2015-01-01

    Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on α, θ, and γ-Al2O3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. We find that sub-nanometermore » Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Furthermore, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.« less

  1. Stress state and nature of failure of detonation coatings based on alumina

    SciTech Connect

    Anisimov, M.I.; Galeev, I.M.; Gol`dfain, V.N.

    1995-03-01

    Detonation coatings based on alumina are used on an increasing scale in industry for increasing the corrosion and wear resistance of materials. The physicomechanical and service characteristics of coatings are determined by the stress state . In this work, investigations were carried out into the distribution of residual phase stresses in the layer and the nature of failure of coatings in combined deformation with the substrate at T = 600{degrees}C. Coatings of electrocorundum powder of 24A grade with a grain size of M40 were deposited on a substrate of KhN78 alloy. In certain cases, an intermediate layer of PN85Yu15 powder was deposited on the substrate prior to spraying. Spraying was carried out in ADK Prometei equipment using an oxygen-acetylene mixture. The thickness of the coatings was 0.4-0.5 mm.

  2. Oxidation growth stresses in an alumina-forming ferritic steel measured by creep deflection

    SciTech Connect

    Saunders, S.R.J.; Gohil, D.D.; Osgerby, S.

    1997-10-01

    Deflection tests have been used to estimate the stresses developed in the alumina layer formed during short-term oxidation of a Fe-22Cr-5Al-0.3Y Fecralloy steel at 1000{degrees}C. Elastic analysis of the deflecting specimen is inappropriate under these test conditions because of the low creep strength of the alloy. Accordingly, a recent creep analysis has been used in this work using currently determined creep properties of the alloy substrate. The results of the analysis show that for the thin oxides produced (< 1 {mu}m), the planar stress within the oxide layer is everywhere compressive. Average values are approximately 850 MPa after 0.5 hr oxidation but reduce to < 200 MPa after 6.5 hr. These values are very much less than would be expected under conditions of elastic deformation.

  3. Structure, Stoichiometry and Stability in Magnetoplumbite and {beta}-Alumina Structured Type Ceramics. Final Report

    SciTech Connect

    Cormack, A. N.

    2004-03-01

    Work has been completed on the atomistic simulation of hexa-aluminate ceramics with the magnetoplumbite and beta-alumina type structures. In this report, three aspects of the work are highlighted. One is the simulation of surface structures. The second concerns details of the interstitially mechanisms observed in molecular dynamics simulations. The novel result here is the observation that the lattice ion always leaves its Beevers-Ross site before the aBR interstitial begins to move towards the lattice site. It is also found that, as expected, the interstitial mechanism is the most common mechanism in the heavily disordered nonstoichiometric structure, as well as in the stoichiometric material. Finally, the disposition of trivalent europium in the phosphor material BAM has been elucidated.

  4. Development and characterization of joining techniques for dispersion-strengthened alumina

    SciTech Connect

    Lugscheider, E.; Broich, U.; Buerger, W.

    1997-09-01

    The suitability of active brazing technology for joining TiC-strengthened alumina (ATC) to itself and to stainless steel is evaluated. The main emphasis is put on the investigation of the microstructural and mechanical properties of the active brazed joints. Furthermore, the electrical properties are investigated by determining the specific electrical resistance of active brazed Al{sub 2}O{sub 3}/TiC joints. For fabrication of the joints two process technologies are applied: vacuum furnace brazing and induction brazing under shielding gas. Four-point bend tests revealed that some of the vacuum-brazed ATC joints reach bending strengths comparable to those of bulk ATC. The induction brazing process is shown to be applicable when ATC has to be joined to metals, as in stainless steel for example. However, mechanically tough ATC-steel joints can only be fabricated when using very ductile filler metals, which are able to compensate thermally induced stresses by plastic deformation.

  5. Process for recovery of aluminum from carbonaceous waste products

    SciTech Connect

    Kapolyi, L.

    1984-03-13

    A carbonaceous waste product, preferably containing 30 to 60% mineral substances, 35 to 55% carbonaceous materials, 5 to 20% water, and having a calorific value of 2,000 to 3,500 k cal/kg is fired to produce thermal energy and a combustion residue. The residue is adjusted, if necessary, by addition of mineral containing additives so that it contains 15 to 50% alumina, 15 to 20% silica and 13 to 45% other oxides (mainly iron oxide, manganese oxide and calcium oxide). Sufficient limestone is added to produce a mixture containing 1.8 to 2.2 moles of calcium oxide per mole of silica and 1.1 to 1.3 moles of calcium oxide per mole of alumina. The mixture is then sintered. The total energy requirements of the sintering step are supplied by the energy generated in the firing step. Useful products such as cement and cast stone can be produced from the sintered product.

  6. Gating of Permanent Molds for Aluminum Casting (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    pattern and heat flow behavior in permanent mold castings. Equipment and procedure for real time X-Ray radiography of molten aluminum flow into permanent molds have been developed. ...

  7. Electrodialysis technology for salt recovery from aluminum salt cake

    SciTech Connect

    Hryn, J. N.; Krumdick, G.; Graziano, D.; Sreenivasarao, K.

    2000-02-02

    Electrodialysis technology for recovering salt from aluminum salt cake is being developed at Argonne National Laboratory. Salt cake, a slag-like aluminum-industry waste stream, contains aluminum metal, salt (NaCl and KCl), and nonmetallics (primarily aluminum oxide). Salt cake can be recycled by digesting with water and filtering to recover the metal and oxide values. A major obstacle to widespread salt cake recycling is the cost of recovering salt from the process brine. Electrodialysis technology developed at Argonne appears to be a cost-effective approach to handling the salt brines, compared to evaporation or disposal. In Argonne's technology, the salt brine is concentrated until salt crystals are precipitated in the electrodialysis stack; the crystals are recovered downstream. The technology is being evaluated on the pilot scale using Eurodia's EUR 40-76-5 stack.

  8. Aluminum Surface Texturing by Means of Laser Interference Metallurgy...

    Office of Scientific and Technical Information (OSTI)

    laser interferometry produced by two beams of a pulsed Nd:YAG laser operating at 10Hz of frequency to clean aluminum surfaces, and meanwhile creating periodic and rough surface...

  9. Aluminum electroplating on steel from a fused bromide electrolyte

    SciTech Connect

    Prabhat K. Tripathy; Laura A. Wurth; Eric J. Dufek; Toni Y. Gutknecht; Natalie J. Gese; Paula Hahn; Steven M. Frank; Guy L. Frederickson; J. Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr–KBr–CsBr–AlBr3) was used to electro-coat aluminum on steel substrates. The electrolytewas prepared by the addition of AlBr3 into the eutectic LiBr–KBr–CsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosionresistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminumcoating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  10. Ames Lab 101: BAM (Boron-Aluminum-Magnesium)

    ScienceCinema

    Bruce Cook

    2013-06-05

    Materials scientist, Bruce Cook, discusses the super hard, low friction, and lubricious alloy know as BAM (Boron-Aluminum-Magnesium). BAM was discovered by Bruce Cook and his team a

  11. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, L.D.

    1982-03-25

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  12. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  13. Improving the Cycling Life of Aluminum and Germanium Thin Films...

    Office of Scientific and Technical Information (OSTI)

    in Li-Ion Batteries. Citation Details In-Document Search Title: Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries. ...

  14. Improving the Cycling Life of Aluminum and Germanium Thin Films...

    Office of Scientific and Technical Information (OSTI)

    Li-Ion Batteries. Citation Details In-Document Search Title: Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries. You ...

  15. Gating of Permanent Molds for ALuminum Casting (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    problems caused by improper gating are entrained aluminum oxide films and entrapped gas. ... Publication Date: 2004-03-30 OSTI Identifier: 822451 DOE Contract Number: FC36-01ID13983 ...

  16. Aluminum for bonding Si-Ge alloys to graphite

    DOEpatents

    Eggemann, Robert V.

    1976-01-13

    Improved thermoelectric device and process, comprising the high-temperature, vacuum bonding of a graphite contact and silicon-germanium thermoelectric element by the use of a low void, aluminum, metallurgical shim with low electrical resistance sandwiched therebetween.

  17. High-Temperature Aluminum Alloys | Department of Energy

    Energy.gov [DOE] (indexed site)

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm044smith2012o.pdf (4.99 MB) More Documents & Publications High-Temperature Aluminum Alloys ...

  18. HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP

    SciTech Connect

    KRUGER AA; JOSEPH I; BOWMAN BW; GAN H; KOT W; MATLACK KS; PEGG IL

    2009-08-19

    The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al{sub 2}O{sub 3} concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews

  19. Metal decontamination for waste minimization using liquid metal refining technology

    SciTech Connect

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-09-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species.

  20. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  1. Recovery of aluminum and other metal values from fly ash

    DOEpatents

    McDowell, William J.; Seeley, Forest G.

    1981-01-01

    The invention described herein relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  2. Recovery of aluminum and other metal values from fly ash

    DOEpatents

    McDowell, W.J.; Seeley, F.G.

    1979-11-01

    The invention relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  3. Fluorescent lighting with aluminum nitride phosphors

    DOEpatents

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  4. Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219

    SciTech Connect

    Feng, Xiuli, E-mail: feng.97@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Liu, Huijie, E-mail: liuhj@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Lippold, John C., E-mail: lippold.1@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States)

    2013-08-15

    Aluminum alloy 2219-T6 was friction stir processed using a novel submerged processing technique to facilitate cooling. Processing was conducted at a constant tool traverse speed of 200 mm/min and spindle rotation speeds in the range from 600 to 800 rpm. The microstructural characteristics of the base metal and processed zone, including grain structure and precipitation behavior, were studied using optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness maps were constructed on polished cross sections of as-processed samples. The effect of tool rotation speed on the microstructure and hardness of the stir zone was investigated. The average grain size of the stir zone was much smaller than that of the base metal, but the hardness was also lower due to the formation of equilibrium ? precipitates from the base metal ?? precipitates. Stir zone hardness was found to decrease with increasing rotation speed (heat input). The effect of processing conditions on strength (hardness) was rationalized based on the competition between grain refinement strengthening and softening due to precipitate overaging. - Highlights: SZ grain size (? 1 ?m) is reduced by over one order of magnitude relative to the BM. Hardness in the SZ is lower than that of the precipitation strengthened BM. Metastable ?? in the base metal transforms to equilibrium ? in the stir zone. Softening in the SZ results from a decrease of precipitation strengthening.

  5. ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS

    SciTech Connect

    Bryan, Greg L.; Turk, Matthew J.; Norman, Michael L.; Bordner, James; Xu, Hao; Kritsuk, Alexei G.; O'Shea, Brian W.; Smith, Britton; Abel, Tom; Wang, Peng; Skillman, Samuel W.; Wise, John H.; Reynolds, Daniel R.; Collins, David C.; Harkness, Robert P.; Kim, Ji-hoon; Kuhlen, Michael; Goldbaum, Nathan; Hummels, Cameron; Collaboration: Enzo Collaboration; and others

    2014-04-01

    This paper describes the open-source code Enzo, which uses block-structured adaptive mesh refinement to provide high spatial and temporal resolution for modeling astrophysical fluid flows. The code is Cartesian, can be run in one, two, and three dimensions, and supports a wide variety of physics including hydrodynamics, ideal and non-ideal magnetohydrodynamics, N-body dynamics (and, more broadly, self-gravity of fluids and particles), primordial gas chemistry, optically thin radiative cooling of primordial and metal-enriched plasmas (as well as some optically-thick cooling models), radiation transport, cosmological expansion, and models for star formation and feedback in a cosmological context. In addition to explaining the algorithms implemented, we present solutions for a wide range of test problems, demonstrate the code's parallel performance, and discuss the Enzo collaboration's code development methodology.

  6. Fuel and oxygen addition for metal smelting or refining process

    DOEpatents

    Schlichting, Mark R.

    1994-01-01

    A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.

  7. Fuel and oxygen addition for metal smelting or refining process

    DOEpatents

    Schlichting, M.R.

    1994-11-22

    A furnace for smelting iron ore and/or refining molten iron is equipped with an overhead pneumatic lance, through which a center stream of particulate coal is ejected at high velocity into a slag layer. An annular stream of nitrogen or argon enshrouds the coal stream. Oxygen is simultaneously ejected in an annular stream encircling the inert gas stream. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus to react with carbon monoxide gas rising from slag layer, thereby adding still more heat to the furnace. 7 figs.

  8. A case study of energy conservation opportunities in copper refining

    SciTech Connect

    Somers, W.E.; Hughen, M.L.; Kurylko, L.; Stone, J.R.

    1982-07-01

    A study of energy usage and distribution in a copper refinery was conducted in an attempt to determine possible cost savings in operations of the plant. The study covered those processes which were the major users of energy, namely, smelting, anode casting, electrolytic refining, steam generation and distribution, and electricity distribution. The study involved obtaining data of mass and energy flows in the refinery; identifying energy conservation opportunities (ECO's); obtaining price, operating costs, and saving potentials; for each conservation measure; and analyzing the economical viability of each conservation proposal. Potential cost savings were found to be substantial in heat recovery from slag and anode furnace hot gases, modification of the central steam supply system, control, and redistribution of electrical loads, insulation of electrolytic tanks, and changes in the atomization of oil.

  9. A comparative assessment of resource efficiency in petroleum refining

    SciTech Connect

    Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad; Cai, Hao; Wang, Michael; DiVita, Vincent B.

    2015-03-25

    Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study were incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.

  10. A comparative assessment of resource efficiency in petroleum refining

    DOE PAGES [OSTI]

    Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad; Cai, Hao; Wang, Michael; DiVita, Vincent B.

    2015-03-25

    Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.« less

  11. A Comparative Assessment of Resource Efficiency in Petroleum Refining

    SciTech Connect

    Han, Jeongwoo; Forman, G; Elgowainy, Amgad; Cai, Hao; Wang, Michael; Divita, V

    2015-10-01

    Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study were incorporated in Argonne National Laboratory's GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio. (c) 2015 Argonne National Laboratory. Published by Elsevier Ltd.

  12. Evaluation of tropical channel refinement using MPAS-A aquaplanet simulations: TROPICAL CHANNEL REFINEMENT IN MPAS-A

    DOE PAGES [OSTI]

    Martini, Matus N.; Gustafson, William I.; O'Brien, Travis A.; Ma, Po-Lun

    2015-09-01

    Climate models with variable-resolution grids offer a computationally less expensive way to provide more detailed information at regional scales and increased accuracy for processes that cannot be resolved by a coarser grid. This study uses the Model for Prediction Across Scales–Atmosphere (MPAS22A), consisting of a nonhydrostatic dynamical core and a subset of Advanced Research Weather Research and Forecasting (ARW-WRF) model atmospheric physics that have been modified to include the Community Atmosphere Model version 5 (CAM5) cloud fraction parameterization, to investigate the potential benefits of using increased resolution in an tropical channel. The simulations are performed with an idealized aquaplanet configurationmore » using two quasi-uniform grids, with 30 km and 240 km grid spacing, and two variable-resolution grids spanning the same grid spacing range; one with a narrow (20°S–20°N) and one with a wide (30°S–30°N) tropical channel refinement. Results show that increasing resolution in the tropics impacts both the tropical and extratropical circulation. Compared to the quasi-uniform coarse grid, the narrow-channel simulation exhibits stronger updrafts in the Ferrel cell as well as in the middle of the upward branch of the Hadley cell. The wider tropical channel has a closer correspondence to the 30 km quasi-uniform simulation. However, the total atmospheric poleward energy transports are similar in all simulations. The largest differences are in the low-level cloudiness. The refined channel simulations show improved tropical and extratropical precipitation relative to the global 240 km simulation when compared to the global 30 km simulation. All simulations have a single ITCZ. The relatively small differences in mean global and tropical precipitation rates among the simulations are a promising result, and the evidence points to the tropical channel being an effective method for avoiding the extraneous numerical artifacts seen in earlier

  13. Hydrogen storage in sodium aluminum hydride.

    SciTech Connect

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  14. Boron-doped back-surface fields using an aluminum-alloy process

    SciTech Connect

    Gee, J.M.; Bode, M.D.; Silva, B.L.

    1997-10-01

    Boron-doped back-surface fields (BSF`s) have potentially superior performance compared to aluminum-doped BSF`s due to the higher solid solubility of boron compared to aluminum. However, conventional boron diffusions require a long, high temperature step that is both costly and incompatible with many photovoltaic-grade crystalline-silicon materials. We examined a process that uses a relatively low-temperature aluminum-alloy process to obtain a boron-doped BSF by doping the aluminum with boron. In agreement with theoretical expectations, we found that thicker aluminum layers and higher boron doping levels improved the performance of aluminum-alloyed BSF`s.

  15. Production of anhydrous aluminum chloride composition and process for electrolysis thereof

    DOEpatents

    Vandegrift, George F.; Krumpelt, Michael; Horwitz, E. Philip

    1983-01-01

    A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  16. On the physical and chemical details of alumina atomic layer deposition: A combined experimental and numerical approach

    SciTech Connect

    Pan, Dongqing; Ma, Lulu; Xie, Yuanyuan; Yuan, Chris; Jen, Tien Chien

    2015-03-15

    Alumina thin film is typically studied as a model atomic layer deposition (ALD) process due to its high dielectric constant, high thermal stability, and good adhesion on various wafer surfaces. Despite extensive applications of alumina ALD in microelectronics industries, details on the physical and chemical processes are not yet well understood. ALD experiments are not able to shed adequate light on the detailed information regarding the transient ALD process. Most of current numerical approaches lack detailed surface reaction mechanisms, and their results are not well correlated with experimental observations. In this paper, the authors present a combined experimental and numerical study on the details of flow and surface reactions in alumina ALD using trimethylaluminum and water as precursors. Results obtained from experiments and simulations are compared and correlated. By experiments, growth rate on five samples under different deposition conditions is characterized. The deposition rate from numerical simulation agrees well with the experimental results. Details of precursor distributions in a full cycle of ALD are studied numerically to bridge between experimental observations and simulations. The 3D transient numerical model adopts surface reaction kinetics and mechanisms based on atomic-level studies to investigate the surface deposition process. Surface deposition is shown as a strictly self-limited process in our numerical studies. ALD is a complex strong-coupled fluid, thermal and chemical process, which is not only heavily dependent on the chemical kinetics and surface conditions but also on the flow and material distributions.

  17. Characteristics of alumina powders prepared by spray-drying of boehmite sol

    SciTech Connect

    Varma, H.K.; Mani, T.V.; Damodaran, A.D.; Warrier, K.G. ); Balachandran, U. . Energy Technology Div.)

    1994-06-01

    Boehmite sol prepared from aluminum nitrate has been spray-dried to obtain micrometer-size spherical particles consisting of submicrometer crystallites. The spray-dried powder was further washed with solvents of varying polarities such as acetone, 2-propanol, and 2-methyl-2-propanol. Particle-size distribution, morphology, density, compaction, and sintering characteristics of powders washed with different solvents are reported. The effect of post treatments on the boehmite-sol-derived powders toward reducing agglomeration and obtaining high-density bodies is discussed.

  18. Just the crude oil, please: The oil imports - refining capacity connection

    SciTech Connect

    Not Available

    1994-04-29

    Steep growth has brought crude oil imports converging with the amount of US crude oil production in 1993. Meanwhile, petroleum product imports into the US have been falling because, among other reasons, only a few refiners outside the US can produce refined products to the specifications of environmentally minded US legislators. As refiners have concentrated investment to produce clean fuels only in select facilities, supply and logistical challenges loom closely in the future.

  19. Impact of Environmental Compliance Costs on U.S. Refining Profitability 1995-2001

    Reports and Publications

    2003-01-01

    This report assesses the effects of pollution abatement requirements on the financial performance of U.S. petroleum refining and marketing operations during the 1995 to 2001 period. This study is a follow-up to the October 1997 publication entitled The Impact of Environmental Compliance Costs on U.S. Refining Profitability, that focused on the financial impacts of U.S. refining pollution abatement investment requirements in the 1988 to1995 period.

  20. Hermetic aluminum radio frequency interconnection and method for making

    DOEpatents

    Kilgo, Riley D.; Kovacic, Larry; Brow, Richard K.

    2000-01-01

    The present invention provides a light-weight, hermetic coaxial radio-frequency (RF) interconnection having an electrically conductive outer housing made of aluminum or an aluminum alloy, a central electrical conductor made of ferrous or non-ferrous material, and a cylinder of dielectric material comprising a low-melting-temperature, high-thermal-expansion aluminophosphate glass composition for hermetically sealing between the aluminum-alloy outer housing and the ferrous or non-ferrous center conductor. The entire RF interconnection assembly is made permanently hermetic by thermally fusing the center conductor, glass, and housing concurrently by bringing the glass to the melt point by way of exposure to an atmospheric temperature sufficient to melt the glass, less than 540.degree. C., but that does not melt the center conductor or the outer aluminum or aluminum alloy housing. The composition of the glass used is controlled to provide a suitable low dielectric constant so that an appropriate electrical characteristic impedance, for example 50 ohms, can be achieved for an electrical interconnection that performs well at high radio frequencies and also provides an interconnection maintaining a relatively small physical size.