National Library of Energy BETA

Sample records for alabama land recycling

  1. Alabama

    Energy Information Administration (EIA) (indexed site)

    Alabama

  2. Alabama - Compare - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Alabama Alabama

  3. Alabama - Rankings - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Alabama Alabama

  4. Alabama - Search - U.S. Energy Information Administration (EIA)

    Energy Information Administration (EIA) (indexed site)

    Alabama Alabama

  5. SEP Success Story: Local Program Helps Alabama Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ZF North America used Alabama E3 funding to create a recycling program that saves more ... ZF North America used Alabama E3 funding to create a recycling program that saves more ...

  6. Recycling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recycling Recycling Reducing our impact requires big and small behavioral changes, from printing pages double-sided to separating metals during multi-million-dollar building projects. April 12, 2012 LANL's progress toward recycling goals: 2008 - 2012. LANL's progress toward recycling goals. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email In FY 2012, our overall recycling rate was 81 percent. Recycling goals Engaging in

  7. Recycling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    recycle LANL innovates recycling paths for various materials. Aerosol cans Asphalt Batteries Cardboard Concrete Light bulbs Metal Pallets Paper Tires Toner cartridges Vegetation...

  8. Recycle

    SciTech Connect

    1988-10-01

    ;Contents: The Problem; What`s In Our Trash; Where Does Trash Go; Where Does Our Trash Go; The Solution; What Is Recycling; Why Should We Recycle; A National Goal of 25%; What Can We Recycle; What Do We Do With Our Recyclables.

  9. recycling

    National Nuclear Security Administration (NNSA)

    6%2A en Y-12's rough roads smoothed over with 23,000 tons of recycled asphalt http:nnsa.energy.govblogy%E2%80%9112%E2%80%99s-rough-roads-smoothed-over-23000-tons-recycled-asph...

  10. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Electricfil Corporation, located in Elkmont, Alabama, used E3 funding to implement energy-efficient lighting upgrades, start a recycling program for waste within the facility and ...

  11. Calhoun County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Glencoe, Alabama Hobson City, Alabama Jacksonville, Alabama Ohatchee, Alabama Oxford, Alabama Piedmont, Alabama Saks, Alabama Southside, Alabama Weaver, Alabama West...

  12. Etowah County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Gadsden, Alabama Glencoe, Alabama Hokes Bluff, Alabama Mountainboro, Alabama Rainbow City, Alabama Reece City, Alabama Ridgeville, Alabama Sardis City, Alabama Southside,...

  13. Shelby County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Calera, Alabama Chelsea, Alabama Columbiana, Alabama Harpersville, Alabama Helena, Alabama Hoover, Alabama Indian Springs Village, Alabama Lake Purdy, Alabama Leeds,...

  14. Baldwin County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bay Minette, Alabama Daphne, Alabama Elberta, Alabama Fairhope, Alabama Foley, Alabama Gulf Shores, Alabama Loxley, Alabama Magnolia Springs, Alabama Orange Beach, Alabama Point...

  15. Madison County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Huntsville, Alabama Madison, Alabama Meridianville, Alabama Moores Mill, Alabama New Hope, Alabama New Market, Alabama Owens Cross Roads, Alabama Redstone Arsenal, Alabama...

  16. Cullman County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Cullman, Alabama Dodge City, Alabama Fairview, Alabama Garden City, Alabama Good Hope, Alabama Hanceville, Alabama Holly Pond, Alabama South Vinemont, Alabama West Point,...

  17. Limestone County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Ardmore, Alabama Athens, Alabama Decatur, Alabama Elkmont, Alabama Huntsville, Alabama Lester, Alabama Madison, Alabama Mooresville, Alabama Retrieved from "http:en.openei.orgw...

  18. Jefferson County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Polymet Alloys Inc WBRC Places in Jefferson County, Alabama Adamsville, Alabama Argo, Alabama Bessemer, Alabama Birmingham, Alabama Brighton, Alabama Brookside, Alabama...

  19. Covington County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Horn Hill, Alabama Libertyville, Alabama Lockhart, Alabama Onycha, Alabama Opp, Alabama Red Level, Alabama River Falls, Alabama Sanford, Alabama Retrieved from "http:...

  20. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Increase Profits | Department of Energy Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8, 2014 - 11:30am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than $100,000 a year in trash pickup and landfill fees. Pictured here are workers in the Tuscaloosa location, which provides Mercedes with complete axle systems. |

  1. SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reduce Waste and Increase Profits | Department of Energy Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8, 2014 - 10:06am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than $100,000 a year in trash pickup and landfill fees. Pictured here are workers in the Tuscaloosa location, which provides

  2. Lamar County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Number 3 Climate Zone Subtype A. Places in Lamar County, Alabama Beaverton, Alabama Detroit, Alabama Kennedy, Alabama Millport, Alabama Sulligent, Alabama Vernon, Alabama...

  3. Monroe County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Pine Pulp Biomass Facility Places in Monroe County, Alabama Beatrice, Alabama Excel, Alabama Frisco City, Alabama Monroeville, Alabama Vredenburgh, Alabama Retrieved from...

  4. Blount County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Nectar, Alabama Oneonta, Alabama Rosa, Alabama Smoke Rise, Alabama Snead, Alabama Susan Moore, Alabama Retrieved from "http:en.openei.orgwindex.php?titleBlountCounty,Alabama...

  5. Geneva County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Geneva, Alabama Hartford, Alabama Malvern, Alabama Samson, Alabama Slocomb, Alabama Taylor, Alabama Retrieved from "http:en.openei.orgwindex.php?titleGenevaCounty,Alabama...

  6. Barbour County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    in Barbour County, Alabama Bakerhill, Alabama Blue Springs, Alabama Clayton, Alabama Clio, Alabama Eufaula, Alabama Louisville, Alabama Retrieved from "http:en.openei.orgw...

  7. Fayette County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    County, Alabama Belk, Alabama Berry, Alabama Fayette, Alabama Glen Allen, Alabama Gu-Win, Alabama Winfield, Alabama Retrieved from "http:en.openei.orgw...

  8. Houston County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Solar Hot Water and Power LLC Places in Houston County, Alabama Ashford, Alabama Avon, Alabama Columbia, Alabama Cottonwood, Alabama Cowarts, Alabama Dothan, Alabama Gordon,...

  9. Alabama Power Co (Alabama) EIA Revenue and Sales - February 2009...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for February...

  10. Alabama Power Co (Alabama) EIA Revenue and Sales - September...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for September...

  11. Alabama Power Co (Alabama) EIA Revenue and Sales - October 2008...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for October...

  12. Alabama Power Co (Alabama) EIA Revenue and Sales - November 2008...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for November...

  13. Alabama Power Co (Alabama) EIA Revenue and Sales - January 2009...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for January...

  14. Alabama Power Co (Alabama) EIA Revenue and Sales - January 2008...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for January...

  15. Alabama Power Co (Alabama) EIA Revenue and Sales - December 2008...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for December...

  16. Talladega County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Zone Number 3 Climate Zone Subtype A. Places in Talladega County, Alabama Bon Air, Alabama Childersburg, Alabama Lincoln, Alabama Mignon, Alabama Munford, Alabama...

  17. Sumter County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Sumter County, Alabama Cuba, Alabama Emelle, Alabama Epes, Alabama Gainesville, Alabama Geiger, Alabama Livingston,...

  18. Pickens County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Gordo, Alabama McMullen, Alabama Memphis, Alabama Pickensville, Alabama Reform, Alabama Retrieved from "http:en.openei.orgwindex.php?titlePickensCounty,Alabam...

  19. Clarke County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    in Clarke County, Alabama Coffeeville, Alabama Fulton, Alabama Grove Hill, Alabama Jackson, Alabama Thomasville, Alabama Retrieved from "http:en.openei.orgw...

  20. St. Clair County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Zone Number 3 Climate Zone Subtype A. Places in St. Clair County, Alabama Argo, Alabama Ashville, Alabama Leeds, Alabama Margaret, Alabama Moody, Alabama Odenville,...

  1. Lauderdale County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lauderdale County, Alabama Anderson, Alabama Florence, Alabama Killen, Alabama Lexington, Alabama Rogersville, Alabama...

  2. Winston County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Arley, Alabama Double Springs, Alabama Haleyville, Alabama Lynn, Alabama Natural Bridge, Alabama Nauvoo, Alabama Retrieved from "http:en.openei.orgwindex.php?titleWinsto...

  3. Bibb County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Bibb County, Alabama Brent, Alabama Centreville, Alabama Vance, Alabama West Blocton, Alabama Woodstock, Alabama...

  4. Wilcox County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Zone Subtype A. Places in Wilcox County, Alabama Camden, Alabama Oak Hill, Alabama Pine Apple, Alabama Pine Hill, Alabama Yellow Bluff, Alabama Retrieved from "http:...

  5. Franklin County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Subtype A. Places in Franklin County, Alabama Hodges, Alabama Phil Campbell, Alabama Red Bay, Alabama Russellville, Alabama Vina, Alabama Retrieved from "http:en.openei.org...

  6. Choctaw County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Climate Zone Number 3 Climate Zone Subtype A. Places in Choctaw County, Alabama Butler, Alabama Gilbertown, Alabama Lisman, Alabama Needham, Alabama Pennington, Alabama...

  7. Lowndes County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Gordonville, Alabama Hayneville, Alabama Lowndesboro, Alabama Mosses, Alabama White Hall, Alabama Retrieved from "http:en.openei.orgwindex.php?titleLowndesCounty,Alabama...

  8. Colbert County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Number 3 Climate Zone Subtype A. Places in Colbert County, Alabama Cherokee, Alabama Leighton, Alabama Littleville, Alabama Muscle Shoals, Alabama Sheffield, Alabama Tuscumbia,...

  9. ,"Alabama Natural Gas Summary"

    Energy Information Administration (EIA) (indexed site)

    Prices" "Sourcekey","N3050AL3","N3010AL3","N3020AL3","N3035AL3","N3045AL3" "Date","Natural Gas Citygate Price in Alabama (Dollars per Thousand Cubic Feet)","Alabama Price of ...

  10. Alabama Offshore Natural Gas Processed in Alabama (Million Cubic...

    Annual Energy Outlook

    Processed in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  11. Alabama Power Co (Alabama) EIA Revenue and Sales - May 2008 ...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for May 2008....

  12. Alabama Power Co (Alabama) EIA Revenue and Sales - April 2008...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for April 2008....

  13. Alabama Power Co (Alabama) EIA Revenue and Sales - August 2008...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for August 2008....

  14. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2008...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for March 2008....

  15. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2009...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for March 2009....

  16. Alabama Power Co (Alabama) EIA Revenue and Sales - June 2008...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for June 2008....

  17. Alabama Power Co (Alabama) EIA Revenue and Sales - July 2008...

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama Power Co (Alabama) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for July 2008....

  18. Alabama Power Co (Alabama) EIA Revenue and Sales - February 2008...

    OpenEI (Open Energy Information) [EERE & EIA]

    Power Co (Alabama) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for February 2008....

  19. Alabama Power- UESC Activities

    Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  20. Alabama/Incentives | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Program No Alabama Gas Corporation - Residential Natural Gas Rebate Program (Alabama) Utility Rebate Program Yes Alabama Power - Residential Heat Pump and Weatherization Loan...

  1. Alabama -- SEP Data Dashboard | Department of Energy

    Energy Saver

    Data Dashboard Alabama -- SEP Data Dashboard The data dashboard for Alabama -- SEP, a partner in the Better Buildings Neighborhood Program. Alabama -- SEP Data Dashboard (300.54 ...

  2. Chemical Recycling | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Chemical Recycling Chemical Recycling

  3. Save Energy Now Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alabama Save Energy Now Alabama Map highlighting Alabama With a variety of energy-intensive industries, such as chemicals, metals, pulp, and paper located within the state, Alabama ranks eighth among states as the largest industrial energy user. Due to this high concentration of industry, the Alabama Department of Economic and Community Affairs (ADECA) formed a team, including the Alabama Technology Network (ATN) and the Alabama Industrial Assessment Center (AIAC), to inform industrial

  4. Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Onshore Natural Gas Processed in Alabama (Million Cubic Feet) Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 100,491 33,921 35,487 31,116 31,198 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed Alabama Onshore

  5. Birmingham, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Recovery Act Smart Grid Projects in Birmingham, Alabama Southern Company Services, Inc. Smart Grid Project Registered Energy Companies in Birmingham, Alabama Polymet Alloys Inc...

  6. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    state, county, city, or district. For more information, please visit the High School Coach page. Alabama Region High School Regional Alabama Alabama High School Regional Science...

  7. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    for your school's state, county, city, or district. For more information, please visit the Middle School Coach page. Alabama Regions Middle School Regional Alabama Alabama...

  8. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summary of Reported Data Alabama -- SEP Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Alabama -- SEP. PDF icon Alabama Summary ...

  9. South Alabama Electric Cooperative- Residential Energy Efficiency Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    South Alabama Electric Cooperative (SAEC) is a part owner of Alabama Electric Cooperative which has a generation facility in Andalusia, Alabama. The Energy Resources Conservation Loan (ERC) helps...

  10. Alabama Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ...,734","13,170",34.7,"Alabama Power Co" "2 Plants 5 Reactors","5,043","37,941",100.0 "Note: ...

  11. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update

    Alabama Alabama W 13.59 W 63.63 21.4% 3,612 W 100.0% Alabama Georgia W 19.58 W 82.89 23.6% 538 W 99.9% Alabama Illinois W - - - - - - - Alabama Kentucky - W - W W W - W Alabama...

  12. North Alabama Electric Coop | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Place: Alabama Phone Number: (256) 437-2281 or 800-572-2900 Website: www.naecoop.com Facebook: https:www.facebook.compagesNorth-Alabama-Electric-Cooperative159082070791105...

  13. Headland, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Headland is a city in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  14. Haleburg, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Haleburg is a town in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  15. Dothan, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is a stub. You can help OpenEI by expanding it. Dothan is a city in Dale County and Henry County and Houston County, Alabama. It falls under Alabama's 2nd congressional...

  16. Abbeville, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Abbeville is a city in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  17. Newville, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Map This article is a stub. You can help OpenEI by expanding it. Newville is a town in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  18. Avon, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Avon is a town in Houston County, Alabama. It falls under Alabama's 2nd congressional...

  19. South Alabama Electric Cooperative - Residential Energy Efficiency...

    Energy.gov [DOE] (indexed site)

    < Back Eligibility Residential Savings Category Geothermal Heat Pumps Heat Pumps Building Insulation Windows Doors Program Info Sector Name Utility Administrator South Alabama...

  20. ,"Alabama Natural Gas LNG Storage Additions (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  1. ,"Alabama Natural Gas LNG Storage Withdrawals (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. Alabama Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update

    Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New ...

  3. Clean Cities: Alabama Clean Fuels coalition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the United States. Bentley actively strives to lead efforts to build an alternative fuel industry in Alabama and leverages public-private partnerships to accomplish this goal....

  4. Alabama Residential Energy Code Field Study

    Energy.gov [DOE]

    Lead Performer: Institute for Market Transformation – Washington, DCPartners: Alabama Center for Excellence in Clean Energy Technology, Calhoun Community College – Decatur, ALDOE Total Funding: ...

  5. Taylor, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylor,Alabama&oldid25085...

  6. Alabama/Wind Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  7. Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biodiesel Fuels Education in Alabama to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Facebook Tweet about Alternative Fuels Data ...

  8. ,"Alabama (with State Offshore) Shale Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic ... Contents","Data 1: Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic ...

  9. ,"Alabama--State Offshore Natural Gas Marketed Production (MMcf...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Alabama--State Offshore Natural Gas Marketed Production ... to Contents","Data 1: Alabama--State Offshore Natural Gas Marketed Production (MMcf)" ...

  10. ,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Gross Withdrawals ... AM" "Back to Contents","Data 1: Federal Offshore--Alabama Natural Gas Gross Withdrawals ...

  11. ,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana and Alabama Natural Gas ...

  12. ,"Alabama (with State Offshore) Natural Gas Plant Liquids, Expected...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Expected ... Contents","Data 1: Alabama (with State Offshore) Natural Gas Plant Liquids, Expected ...

  13. ,"Alabama (with State Offshore) Natural Gas Liquids Lease Condensate...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, ... Contents","Data 1: Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, ...

  14. ,"Federal Offshore--Alabama Natural Gas Marketed Production ...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Marketed Production ... AM" "Back to Contents","Data 1: Federal Offshore--Alabama Natural Gas Marketed Production ...

  15. ,"Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Alabama--State Offshore Natural Gas Gross Withdrawals ... to Contents","Data 1: Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)" ...

  16. City of Huntsville, Alabama (Utility Company) | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Huntsville, Alabama (Utility Company) (Redirected from Huntsville Utilities) Jump to: navigation, search Name: Huntsville City of Place: Alabama Phone Number: 1-866-478-8845 or...

  17. SEP Success Story: Local Program Helps Alabama Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, ...

  18. Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important ...

  19. Alabama Oil and Gas Board | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Oil and Gas Board Jump to: navigation, search Logo: Alabama Oil and Gas Board Name: Alabama Oil and Gas Board Abbreviation: OGB Address: 420 Hackberry Lane Place: Tuscaloosa,...

  20. City of Bessemer Utilities, Alabama | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bessemer Utilities, Alabama Jump to: navigation, search Name: City of Bessemer Utilities Place: Alabama Phone Number: (205) 481-4333 Website: www.bessemerutilities.com Outage...

  1. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Natural Gas Reserves ...

  2. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated...

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated ...

  3. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  4. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  5. Gulf of Mexico Federal Offshore - Louisiana and AlabamaAssociated...

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved ...

  6. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  7. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociate...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  8. Alabama SEP Final Technical Report

    SciTech Connect

    Grimes, Elizabeth M.

    2014-06-30

    Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplace elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an

  9. Alabama Nuclear Profile - Power Plants

    Energy Information Administration (EIA) (indexed site)

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Browns Ferry Unit 1, Unit 2, Unit 3","3,309","24,771",65.3,"Tennessee Valley Authority" "Joseph M Farley Unit 1, Unit 2","1,734","13,170",34.7,"Alabama Power

  10. Solar LED Light Pilot Project Illuminates the Way in Alabama

    Energy.gov [DOE]

    The community of Boaz, Alabama, saves money by retrofitting streetlights with new lighting technology.

  11. Final Technical Report. Upgrades to Alabama Power Company Hydroelectric Developments

    SciTech Connect

    Crew, James F.; Johnson, Herbie N.

    2015-03-31

    From 2010 to 2014, Alabama Power Company (“Alabama Power”) performed upgrades on four units at three of the hydropower developments it operates in east-central Alabama under licenses issued by the Federal Energy Regulatory Commission (“FERC”). These three hydropower developments are located on the Coosa River in Coosa, Chilton, and Elmore counties in east-central Alabama.

  12. ,"Alabama Natural Gas Gross Withdrawals and Production"

    Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"10072016 7:57:21 AM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AL2","N9011AL2","N9012AL2","NGME...

  13. ,"Alabama Natural Gas Gross Withdrawals and Production"

    Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"10072016 7:57:22 AM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AL2","N9011AL2","N9012AL2","NGME...

  14. ,"Alabama Natural Gas Consumption by End Use"

    Energy Information Administration (EIA) (indexed site)

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas ...

  15. ALABAMA GETS WISE ABOUT SELLING UPGRADES

    Energy.gov [DOE]

    With goal of sharing knowledge about each state’s efforts, the Alabama Department of Economic and Community Affairs (ADECA) teamed up with the National Association of State Energy Offices (NASEO)...

  16. AlabamaSAVES Revolving Loan Program

    Energy.gov [DOE]

    NOTE: Starting July 1, 2016, the AlabamaSAVES program will transition into a participating loan program. The program will continue to receive applications for the current program until March 31,...

  17. ,"Alabama Natural Gas Gross Withdrawals and Production"

    Energy Information Administration (EIA) (indexed site)

    ,,"(202) 586-8800",,,"08292016 11:11:28 AM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AL2","N9011AL2","N9012AL2","NGME...

  18. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    Annual Energy Outlook

    federal and Indian lands by statearea, FY 2003-14 trillion Btu State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Alabama 75 57 51 47 40 42 60 88 86 71 46 29 Alaska ...

  19. Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update

    Base Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 880 880 880 880 880 880 880 880 880 880 880 880 1996 880 650 650 650 880 1,071 1,083 1,088 1,190 1,190 1,190 1,190 1997 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1998 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1999 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190

  20. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect

    Not Available

    1990-05-01

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  1. ,"Alabama Natural Gas Gross Withdrawals from Shale Gas (Million...

    Energy Information Administration (EIA) (indexed site)

    7:59:58 AM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSALMMCF" "Date","Alabama Natural Gas ...

  2. City of Tuskegee, Alabama (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Tuskegee, Alabama (Utility Company) Jump to: navigation, search Name: City of Tuskegee Place: Alabama Phone Number: (334) 720-0799 or (334) 720-0700 Website: www.yourubt.com...

  3. Alternative Fuels Data Center: Alabama City Leads With Biodiesel...

    Alternative Fuels and Advanced Vehicles Data Center

    Alabama City Leads With Biodiesel and Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Facebook Tweet about ...

  4. Domestic Coal Distribution 2009 Q1 by Origin State: Alabama

    Energy Information Administration (EIA) (indexed site)

    Q1 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  5. Domestic Coal Distribution 2009 Q1 by Destination State: Alabama

    Energy Information Administration (EIA) (indexed site)

    4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons)...

  6. Domestic Coal Distribution 2009 Q2 by Origin State: Alabama

    Energy Information Administration (EIA) (indexed site)

    Q2 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  7. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    Energy Information Administration (EIA) (indexed site)

    61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons)...

  8. ,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    Energy Information Administration (EIA) (indexed site)

    Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana and Alabama Natural Gas Plant ...

  9. City of Huntsville, Alabama (Utility Company) | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    Huntsville, Alabama (Utility Company) Jump to: navigation, search Name: Huntsville City of Place: Alabama Phone Number: 1-866-478-8845 or 256-535-1200 Website: www.hsvutil.org...

  10. City of Muscle Shoals, Alabama (Utility Company) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    Shoals, Alabama (Utility Company) Jump to: navigation, search Name: City of Muscle Shoals Place: Alabama Phone Number: (256) 386-9293 Website: www.mseb.net Outage Hotline: (256)...

  11. Energy Upgrades to Alabama Trauma Center Help Improve Patient Care

    Office of Energy Efficiency and Renewable Energy (EERE)

    In Alabama, a Recovery Act grant is helping a hospital save energy while providing better care to its patients.

  12. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summary of Reported Data Alabama -- SEP Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Alabama -- SEP. Alabama Summary of Reported Data (2.13 MB) More Documents & Publications Virginia -- SEP Summary of Reported Data NYSERDA Summary of Reported Data Michigan -- SEP Summary of Reported Data

  13. Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina System)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina System) Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina System) Proposed rate adjustment for the Georgia-Alabama-South Carolina System of Projects (253.36 KB) More Documents & Publications CX-001068: Categorical Exclusion Determination SOCO-4-E Wholesale Power Rate Schedule Regulation-1

  14. Super recycled water: quenching computers

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Super recycled water: quenching computers Super recycled water: quenching computers New facility and methods support conserving water and creating recycled products. Using reverse ...

  15. Recycling Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recycling Programs Recycling Programs The Office of Administration manages many recycling activities at DOE Headquarters that significantly impact energy and the environment. The ...

  16. Energy Secretary Bodman Tours Alabama Red Cross Facility and Attends

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Day of Prayer and Remembrance Service with Governor Riley | Department of Energy Tours Alabama Red Cross Facility and Attends National Day of Prayer and Remembrance Service with Governor Riley Energy Secretary Bodman Tours Alabama Red Cross Facility and Attends National Day of Prayer and Remembrance Service with Governor Riley September 16, 2005 - 10:24am Addthis MONTGOMERY, AL - Today, Secretary of Energy Samuel W. Bodman traveled to Montgomery, Alabama, to commemorate a National

  17. Recycling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recycling Recycling In support of the Department's goal of implementing environmental sustainability practices across the complex, all DOE employees and contractors should incorporate the three "R's" of wise resource use as a core principle of their daily activities: reduce, reuse, and recycle. The Department's recycling program at Headquarters earns monetary credits from the GSA which is then credited to the Sheila Jo Watkins Memorial Child Development Centers for tuition assistance

  18. Alabama Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Alabama Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 152,151 100.0 Total

  19. Alabama Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total Storage

  20. Alabama Underground Natural Gas Storage Capacity

    Energy Information Administration (EIA) (indexed site)

    Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region East Region South Central Region Midwest Region Mountain Region Pacific Region Period: Monthly Annual Download Series History Download

  1. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  2. Alabama (with State Offshore) Natural Gas Plant Liquids, Expected...

    Energy Information Administration (EIA) (indexed site)

    Plant Liquids, Expected Future Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0...

  3. Alternative Fuels Data Center: Alabama Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center

    alternative fuels Fuel Public Private Biodiesel (B20 and above) 3 2 Compressed Natural ... Video thumbnail for Biodiesel Fuels Education in Alabama Biodiesel Fuels Education in ...

  4. ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy

    Energy Saver

    To develop the infrastructure and workforce capacity for an effective residential energy ... Develop and maintain partnerships, both big and small. AlabamaWISE was born from a ...

  5. Chambers County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Chambers County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9028048, -85.354965 Show Map Loading map... "minzoom":false,"mappi...

  6. Alabama Recovery Act State Memo | Department of Energy

    Energy Saver

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are ...

  7. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  8. Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  9. Alabama--State Offshore Natural Gas Withdrawals from Gas Wells...

    Energy Information Administration (EIA) (indexed site)

    Withdrawals from Gas Wells (Million Cubic Feet) Alabama--State Offshore Natural Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  10. Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million...

    Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  11. Alabama--State Offshore Natural Gas Gross Withdrawals (Million...

    Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals (Million Cubic Feet) Alabama--State Offshore Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  12. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    Energy Information Administration (EIA) (indexed site)

    Plant Liquids, Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade ...

  13. Clay County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.279527, -85.8486236 Show Map Loading map... "minzoom":false,"mappingservice":"googl...

  14. Alabama Pine Pulp Biomass Facility | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleAlabamaPinePulpBiomassFacility&oldid397129" Feedback Contact needs updating Image needs updating...

  15. Washington County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Washington County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3422346, -88.2461183 Show Map Loading map......

  16. Walker County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Walker County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8563605, -87.3016132 Show Map Loading map... "minzoom":false,"mappin...

  17. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    Gasoline and Diesel Fuel Update

    Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

  18. Perry County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Perry County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.598888, -87.3016132 Show Map Loading map... "minzoom":false,"mappings...

  19. ,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves (Billion Cubic ...

  20. Alabama Crude Oil + Lease Condensate Proved Reserves (Million...

    Energy Information Administration (EIA) (indexed site)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  1. Alabama Family Staying Nice and Cozy This Fall

    Energy.gov [DOE]

    Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now.

  2. Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed...

    Energy Information Administration (EIA) (indexed site)

    Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves ... Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana ...

  3. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...

    Energy Information Administration (EIA) (indexed site)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Gulf of Mexico Federal ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease ...

  4. Recycling Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Recycling Programs Recycling Programs The Office of Administration manages many recycling activities at DOE Headquarters that significantly impact energy and the environment. The Department of Energy Headquarters has instituted several recycling programs, starting with standard, solid waste recycling in 1991, and has expanded to include carperting, batteries, and toner cartridges. Follow this link for a detailed listing of the products that DOE Headquarters recycles, and where to recycle them.

  5. Reservoir characterization of the Smackover Formation in southwest Alabama

    SciTech Connect

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  6. Alabama Renewable Electric Power Industry Statistics

    Energy Information Administration (EIA) (indexed site)

    Alabama" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",32417,100 "Total Net Summer Renewable Capacity",3855,11.9 " Geothermal","-","-" " Hydro Conventional",3272,10.1 "

  7. Alabama Coalbed Methane Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Production (Billion Cubic Feet) Alabama Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23 1990's 36 68 89 103 108 109 98 111 123 108 2000's 109 111 117 98 121 113 114 114 107 105 2010's 102 98 91 62 78 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane

  8. Benchmarking survey for recycling.

    SciTech Connect

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  9. Recycle My Fridge

    Energy.gov [DOE]

    The Illinois Municipal Electricity Agency (IMEA), a nonprofit organization representing 33 Illinois municipal and co-op electricity providers, administers the Illinois Recycle My Fridge program in...

  10. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  11. Recycling, Source Reduction,

    Energy Information Administration (EIA) (indexed site)

    ... Recovery and Electricity Generation" "(d)","Relative to National Average Landfill" "GREENHOUSE GAS EFFECTS OF RECYCLING, SOURCE REDUCING, AND COMPOSTING VARIOUS WASTE MATERIALS ...

  12. Alabama Institute for Deaf and Blind Biodiesel Project Green

    SciTech Connect

    Edmiston, Jessica L

    2012-09-28

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  13. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent...

    Gasoline and Diesel Fuel Update

    Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  14. City of Evergreen, Alabama (Utility Company) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Evergreen Place: Alabama Phone Number: 251-578-1574 Website: www.evergreenal.orgindex.php Outage Hotline: 251-578-1574 References: EIA Form EIA-861 Final Data File for 2010 -...

  15. Alabama Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook

    Expected Future Production (Billion Cubic Feet) Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  16. Alabama Natural Gas Underground Storage Volume (Million Cubic...

    Annual Energy Outlook

    Underground Storage Volume (Million Cubic Feet) Alabama Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 1,379 ...

  17. Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields...

    Energy Information Administration (EIA) (indexed site)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  18. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    Energy Information Administration (EIA) (indexed site)

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  19. Federal Offshore--Alabama Natural Gas Marketed Production (Million...

    Energy Information Administration (EIA) (indexed site)

    Marketed Production (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  20. Alabama--State Offshore Natural Gas Marketed Production (Million...

    Energy Information Administration (EIA) (indexed site)

    Marketed Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  1. Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    Energy Information Administration (EIA) (indexed site)

    Input Supplemental Fuels (Million Cubic Feet) Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. Jackson County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Alabama. Its FIPS County Code is 071. It is classified as...

  3. Alabama (with State Offshore) Shale Proved Reserves (Billion...

    Energy Information Administration (EIA) (indexed site)

    Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  4. Alabama (with State Offshore) Shale Production (Billion Cubic...

    Gasoline and Diesel Fuel Update

    Alabama (with State Offshore) Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 - No Data...

  5. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update

    81.4% Illinois Alabama W W W W W W W W Illinois Florida W W W W W W W W Transportation cost per short ton (nominal) Shipments with transportation rates over total shipments...

  6. Marion County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Marion County is a county in Alabama. Its FIPS County Code is 093. It is classified as ASHRAE...

  7. Lee County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lee County is a county in Alabama. Its FIPS County Code is 081. It is classified as ASHRAE...

  8. Butler County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler County is a county in Alabama. Its FIPS County Code is 013. It is classified as ASHRAE...

  9. Henry County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Henry County is a county in Alabama. Its FIPS County Code is 067. It is classified as ASHRAE...

  10. Two Alabama Elementary Schools Get Cool with New HVAC Units

    Energy.gov [DOE]

    Addison Elementary School and Double Springs Elementary School in northwestern Alabama were warm. Some classrooms just didn’t cool fast enough. The buildings, which were built almost 20 years ago, were in need of new HVAC units.

  11. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  12. Montgomery County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Alabama. Its FIPS County Code is 101. It is classified as...

  13. Pike County, Alabama: Energy Resources | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike County is a county in Alabama. Its FIPS County Code is 109. It is classified as ASHRAE...

  14. Alabama Power- Residential Heat Pump and Weatherization Loan Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Alabama Power offers low-interest loans to residential customers to purchase and install new heat pumps and a variety of weatherization measures. The loans require no money down and can be used to...

  15. Managing Storm Aftermath in Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Managing Storm Aftermath in Alabama Managing Storm Aftermath in Alabama June 18, 2010 - 3:19pm Addthis Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Lindsay Gsell Warm, humid climate and proximity to the Gulf of Mexico produce turbulent weather patterns that regularly bring tornadoes and hurricanes to Montgomery,

  16. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  17. Recycle plastics into feedstocks

    SciTech Connect

    Kastner, H.; Kaminsky, W.

    1995-05-01

    Thermal cracking of mixed-plastics wastes with a fluidized-bed reactor can be a viable and cost-effective means to meet mandatory recycling laws. Strict worldwide environmental statutes require the hydrocarbon processing industry (HPI) to develop and implement product applications and technologies that reuse post-consumer mixed-plastics waste. Recycling or reuse of plastics waste has a broad definition. Recycling entails more than mechanical regranulation and remelting of polymers for film and molding applications. A European consortium of academia and refiners have investigated if it is possible and profitable to thermally crack plastics into feedstocks for refining and petrochemical applications. Development and demonstration of pyrolysis methods show promising possibilities of converting landfill garbage into valuable feedstocks such as ethylene, propylene, BTX, etc. Fluidized-bed reactor technologies offer HPI operators a possible avenue to meet recycling laws, conserve raw materials and yield a profit. The paper describes thermal cracking for feedstocks and pyrolysis of polyolefins.

  18. Research and Services at the Alabama A&M University Research...

    Office of Environmental Management (EM)

    Research and Services at the Alabama A&M University Research Institute Research and Services at the Alabama A&M University Research Institute An overview of services and research...

  19. Alabama Natural Gas Processed (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet) Alabama Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 57,208 1970's 0 0 0 0 0 0 25,517 31,610 32,806 1980's 38,572 41,914 38,810 42,181 45,662 48,382 49,341 52,511 55,939 1990's 58,136 76,739 126,910 132,222 136,195 118,688 112,868 114,411 107,334 309,492 2000's 372,136 285,953 290,164 237,377 263,426 255,157 287,278 257,443 253,028 248,232 2010's 242,444 230,546 87,269 89,258 80,590

  20. Bayshore Recycling Solar Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bayshore Recycling Solar Project Jump to: navigation, search Name Bayshore Recycling Solar Project Facility Bayshore Recycling Solar Project Sector Solar Facility Type Roof-mount...

  1. Who owns the recyclables

    SciTech Connect

    Parker, B.

    1994-05-01

    On March 31, the California Supreme Court decided the much awaited Rancho Mirage'' case (Waste Management of the Desert, Inc., and the City of Rancho Mirage v. Palm Springs Recycling Center, Inc.), and held that the California Integrated Waste Management Act of 1989 does not allow an exclusive franchise for the collection of recyclables not discarded by their owner.'' This ends a three-year slugfest between secondary materials processors in the state and municipalities and their franchised garbage haulers who also collect and process recyclables as part of their exclusive arrangement. Central to this nationally-watched litigation is a most fundamental question in waste management: at what point in time do articles in the solid waste stream become actual or potentially valuable secondary materials

  2. EECBG Success Story: New Choctaw Nation Recycling Center Posts Quick Results

    Energy.gov [DOE]

    The Choctaw Nation in Oklahoma used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling center and improve stewardship of the land and environment. Learn more.

  3. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect

    Schatz, Joe

    2013-03-31

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from “Proof of Concept” to true deployment through the activity described in this Final Report. This Project – Integrated Distribution Management Systems in Alabama – advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  4. Heavy liquid beneficiation developed for Alabama tar sands

    SciTech Connect

    Not Available

    1986-12-01

    The tar sand deposits in the State of Alabama contain about 1.8 billion barrels of measured and more than 4 billion barrels of speculative in-place bitumen. A comprehensive research program is in progress for the separation of bitumen from these deposits. In general, Alabama tar sands are oil wetted, low grade and highly viscous in nature. In view of these facts, a beneficiation strategy has been developed to recover bitumen enriched concentrate which can be used as a feed material for further processing. Heavy liquid separation tests and results are discussed. A 77% zinc bromide solution, specific gravity of 2.4, was used for the tests. 2 figures.

  5. Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 237 3 0 264 0 431 253 379 21 0 2010's 148 383 21 183 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Alabama Dry Natural Gas

  6. Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 140 1 6 246 29 419 188 302 10 2 2010's 263 573 11 357 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Alabama Dry Natural Gas Proved Reserves Dry

  7. Alabama Natural Gas Number of Oil Wells (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Oil Wells (Number of Elements) Alabama Natural Gas Number of Oil Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 346 367 402 436 414 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Number of Gas Producing Oil Wells Number of Gas Producing Oil Wells (Summary) Alabama Natural Gas Sum

  8. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 100,663 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

  9. Alabama Working Natural Gas Underground Storage Capacity (Million Cubic

    Gasoline and Diesel Fuel Update

    0 1 2 2 15 1996-2014 Lease Condensate (million bbls) 0 0 0 0 1 0 1998-2014 Total Gas (billion cu ft) 126 162 102 40 73 36 1996-2014 Nonassociated Gas (billion cu ft) 126 162 101 38 71 26 1996-2014 Associated Gas (billion cu ft) 0 0 1 2 2 1 (Million Cubic Feet)

    Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  10. SEP Success Story: Alabama Institute for Deaf and Blind to Launch Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Project | Department of Energy Alabama Institute for Deaf and Blind to Launch Lighting Project SEP Success Story: Alabama Institute for Deaf and Blind to Launch Lighting Project August 20, 2010 - 9:44am Addthis The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its campuses.| Photo courtesy of Alabama Institute for Deaf and Blind The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its campuses.| Photo

  11. EECBG Success Story: Alabama Justice Center Expands its Solar Capabilities

    Energy.gov [DOE]

    At the T.K. Davis Justice Center in Opelika, Alabama, the county is making an effort to reduce costs and help the environment by installing renewable energy projects, including solar panels on the center’s roof and on poles around the property, thanks to funding from an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  12. Sustainable recycling of municipal solid waste in developing countries

    SciTech Connect

    Troschinetz, Alexis M. Mihelcic, James R.

    2009-02-15

    This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors.

  13. Nuclear recycling | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear recycling Pyroprocessing facilities 1 of 8 Pyroprocessing facilities Frances Dozier conducts pyroprocessing research inside a glovebox at Argonne National Laboratory. ...

  14. recycling | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    recycling | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  15. Emulsified industrial oils recycling

    SciTech Connect

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  16. Recycler barrier RF buckets

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  17. Alabama Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Million Barrels) Alabama Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2010's 12 2 6 -12 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves

  18. Alabama Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Million Barrels) Alabama Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions

  19. Alabama Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Sales (Million Barrels) Alabama Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 3 11 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales

  20. Microsoft Word - DOE-ID-13-048 Alabama EC B3-6.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for the Development of Renewable Biopolymer-Based Adsorbents for the Extraction of Uranium from Seawater and Testing Under Marine Conditions - University of Alabama SECTION B. ...

  1. SEP Success Story: Alabama Institute for Deaf and Blind to Launch...

    Energy.gov [DOE] (indexed site)

    SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits SEP Success Story: Launching Green Entrepreneurship in New Hampshire The ...

  2. http://nevadarecycles.gov/main/recyclables.htm

    National Nuclear Security Administration (NNSA)

    in Nevada National Recycling Web Resources Earth911.com provides a listing of recycling resources to help you find a way to reuse or recycle much of your solid waste items. ...

  3. Garbage project on recycling behavior

    SciTech Connect

    McGuire, R.H.; Hughes, W.W.; Rathje, W.L.

    1982-02-01

    Results are presented of a study undertaken to determine the factors which are most effective in motivating different socio-economic groups to change their recycling behaviors and participate in recycling programs. Four types of data were collected and analyzed in Tucson: (1) purchase data from local recyclers, (2) traditional interview-survey data on recycling behavior, (3) long-term and short-term household refuse data, and (4) combined interview-garbage data. Findings reveal that disposal patterns for newspapers and aluminum cans are tuse data, and (4) combined interview-garbage data. Findings reveal that disposal patterns for newspapers and aluminum cans are the same across census tracts with significantly different socio-economic characteristics. Further, analysis of interview and garbage data matched by household reaffirm that what people say about recycling and how they dispose of recyclable materials are two different things. Thus, interview reports of newspaper recycling correlate with higher income informants, but their interview reports do not correlate with what is thrown into their garbage cans. Money is concluded to be the most powerful incentive toward recycling.

  4. Is recycling worth the trouble

    SciTech Connect

    Boltz, C.M.

    1995-03-01

    A panel of waste industry experts met recently at a Washington, DC, conference to discuss and debate the costs, benefits, and economics of recycling solid waste. The nearly unanimous conclusion from some of the speakers--that recycling, as it is implemented today, has costs that far outweigh its benefits--is evidence of a growing backlash among solid waste officials against a recycling movement they feel has been grossly over-inflated by environmental groups as a solution to a non-existent problem known as the garbage crisis. The public should not place such a strong emphasis on recycling as a cure-all for environmental problems, according to the panel of four waste management policy analysts at The State of Garbage'' session held in mid-January at the 1995 US/Canadian Federation Solid Waste Management Conference. Moreover, some panel members said, recycling should take place only if it makes economic sense.

  5. LANL exceeds Early Recovery Act recycling goals

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have...

  6. Future Bottlenecks for Industrial Water Recycling. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Future Bottlenecks for Industrial Water Recycling. Citation Details In-Document Search Title: Future Bottlenecks for Industrial Water Recycling. Authors: Brady, Patrick V....

  7. Xcel Energy - Appliance Recycling Rebate Program | Department...

    Energy.gov [DOE] (indexed site)

    Program Rebate Amount 40appliance Summary The Appliance Recycling Program offers free pick up and recycling of old, inefficient, working refrigerators and freezers....

  8. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  9. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, clean coal combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered allowable under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  10. Coal liquefaction with preasphaltene recycle

    DOEpatents

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  11. Integrated steel producers race the recycling clock

    SciTech Connect

    McManus, G.J.

    1996-01-01

    When classed as waste, the leftover oxides of blast furnaces and oxygen furnaces must go into landfill. That is an expensive option. Assuming there is space and permission for land disposal, this may be only a temporary solution. Finally, there is an economic incentive to replace some amount of scrap with the iron units in waste. The various factors have brought a concerted recycling push. With increased use of galvanized scrap, a growing portion of the waste is zinc coated. Unlike electric furnace dust, the waste from blast furnaces and oxygen furnaces doesn`t have enough zinc to be classed as hazardous. In theory, repeated cycling will concentrate the zinc but there is uncertainty about what actually happens. There are ways to remove zinc from waste, however, favorable economics have tended to require high concentrations of zinc. New processes and conditions could change the economic equation. The ultimate answer to recycling could be a facility specifically designed for converting waste into usable metal.

  12. Reservoir characterization of the Smackover Formation in southwest Alabama. Final report

    SciTech Connect

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  13. Empirical investigation of optimal severance taxation in Alabama. Volume II

    SciTech Connect

    Leathers, C.G.; Zumpano, L.V.

    1980-10-01

    The research develops a theoretical and empirical foundation for the analysis of severance taxation in Alabama. Primary emphasis was directed to delineating an optimal severance tax structure for the state of Alabama and, in the process, assess the economic and fiscal consequences of current severance tax usage. The legal and economic basis and justification for severance taxation, the amounts and distribution of severance tax revenues currently generated, the administration of the tax, and severance tax practices prevailing in other states were compared in Volume I. These data, findings, and quantitative analyses were used to ascertain the fiscal and economic effects of changes in the structure and utilization of severance taxation in Alabama. The actual and potential productivity of severance taxation in Alamama is discussed. The analysis estimates the state's severance tax revenue capacity relative to the nation and to regional neighbors. The analysis is followed by an intrastate fiscal examination of the state and local tax system. In the process, the relative revenue contribution of severance taxes to state and local revenues is quantified, as well as comparing the revenue capacity and utilization of severance taxes to other state and local levies. An examination is made of the question of who actually pays the severance taxes by an analysis of the shifting and incidence characteristics of taxes on natural resources. Serious doubt is raised that states can, under normal economic circumstances, export a large portion of the severance tax burden to out-of-state users. According to the analytical results of the study, profit margins will be affected; therefore, higher severance taxes should only be imposed after rational assessment of the consequences on business incentives and employment in the extractive inudstries, especially coal.

  14. Progress reported in PET recycling

    SciTech Connect

    Not Available

    1989-06-01

    The Goodyear Polyester Division has demonstrated its ability to break down polyethylene terephthalate (PET) from recycled plastic soft drink bottles and remanufacture the material into PET suitable for containers. Most people are familiar with PET in the form of lightweight, shatter resistant beverage bottles. About 20 percent of these beverage containers currently are being recycled. The recycled PET is currently used in many applications such as carpeting, pillow stuffing, sleeping bag filling, insulation for water heaters and non-food containers. This is the first step of Goodyear's increased efforts to recycle PET from containers into a material suitable for food packing. The project is extremely complex, involving sophisticated understanding of the chemical reactions involved, PET production and the technology testing protocols necessary to design a process that addresses all the technical, safety, and regulatory concerns. The research conducted so far indicated that additional processing beyond simply cleaning the shredded material, called flake, will be required to assure a quality polymer.

  15. ,"Alabama Dry Natural Gas Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"6/30/1977" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File Name:","ng_enr_dry_dcu_sal_a.xls"

  16. ,"Alabama Natural Gas Percentage Total Commercial Deliveries (%)"

    Energy Information Administration (EIA) (indexed site)

    Commercial Deliveries (%)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Percentage Total Commercial Deliveries (%)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  17. ,"Alabama Natural Gas Percentage Total Industrial Deliveries (%)"

    Energy Information Administration (EIA) (indexed site)

    Industrial Deliveries (%)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Percentage Total Industrial Deliveries (%)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  18. ,"Alabama Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 2 2000's 2 4 1 2 2 2 0 0 0 0 2010's 0 1 2 2 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  20. Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 -12 -27 1980's 30 42 1990's 197 605 159 -644 27 -45 -44 -31 5 -17 2000's -56 36 72 -36 34 -27 -11 12 -71 46 2010's 32 -49 112 -274 502 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  1. Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 42 46 1980's 64 85 1990's 104 146 256 281 391 360 373 376 394 376 2000's 359 345 365 350 327 300 287 274 257 254 2010's 223 218 214 175 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  2. Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 50 42 44 1980's 64 12 1990's 1,014 229 35 378 80 118 177 34 19 1 2000's 175 169 289 315 131 85 146 123 59 20 2010's 28 3 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  3. Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Decreases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 45 41 1980's 116 89 1990's 938 207 191 159 2,128 286 97 54 313 140 2000's 69 218 155 122 155 60 208 35 732 328 2010's 173 157 254 75 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  4. Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18 35 129 1980's 69 119 1990's 759 773 545 44 2,101 481 502 348 309 215 2000's 74 78 130 588 162 135 234 163 283 99 2010's 206 455 99 67 140 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  5. Alabama Natural Gas LNG Storage Additions (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Additions (Million Cubic Feet) Alabama Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 655 908 754 353 838 512 581 465 607 512 1990's 893 511 501 612 944 524 979 960 501 564 2000's 729 504 871 655 509 493 704 868 1,003 1,676 2010's 946 754 562 822 1,664 1,356 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016

  6. Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 185 30 66 -580 459 -459 132 -46 164 -422 1990's 456 -19 239 215 448 -164 -303 425 32 -219 2000's -285 -136 298 -47 19 114 -7 -209 -73 178 2010's -21 -75 -22 63 -206 226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  7. Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 470 878 688 933 379 971 449 511 444 934 1990's 437 530 262 396 497 688 1,282 535 469 783 2000's 1,014 641 573 607 528 606 698 1,078 1,076 1,498 2010's 968 829 583 759 1,869 1,130 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  8. Alabama Renewable Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",7252,4136,6136,12535,8704 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",3865,3784,3324,3035,2365 "MSW Biogenic/Landfill

  9. Alabama Total Electric Power Industry Net Generation, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97827,101561,97376,87580,102762 " Coal",78109,77994,74605,55609,63050 " Petroleum",180,157,204,219,200 " Natural Gas",19407,23232,22363,31617,39235 " Other Gases",131,178,204,135,277 "Nuclear",31911,34325,38993,39716,37941 "Renewables",11136,7937,9493,15585,11081 "Pumped

  10. Alabama (with State Offshore) Coalbed Methane Proved Reserves Acquisitions

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Alabama (with State Offshore) Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 151 219 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Acquisitions

  11. Alabama (with State Offshore) Coalbed Methane Proved Reserves Adjustments

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Alabama (with State Offshore) Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 61 -45 21 -166 641 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Adjustments

  12. Alabama (with State Offshore) Coalbed Methane Proved Reserves Extensions

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Extensions (Billion Cubic Feet) Alabama (with State Offshore) Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 21 2010's 29 3 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Extensions

  13. Alabama (with State Offshore) Coalbed Methane Proved Reserves Revision

    Energy Information Administration (EIA) (indexed site)

    Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Alabama (with State Offshore) Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 316 2010's 51 86 150 54 40 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves

  14. Alabama (with State Offshore) Coalbed Methane Proved Reserves Revision

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Alabama (with State Offshore) Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 2010's 134 23 16 33 42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves

  15. Alabama (with State Offshore) Coalbed Methane Proved Reserves Sales

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Sales (Billion Cubic Feet) Alabama (with State Offshore) Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 266 104 0 344 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Reserves Sales

  16. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Reserves Based Production (Million Barrels) Based Production (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 12 12 12 11 12 12 11 10 11 12 1990's 10 10 10 8 8 8 7 6 4 4 2000's 5 4 4 3 2 3 2 2 2 2 2010's 2 2 2 2 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Million Barrels) in Nonproducing Reservoirs (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6 5 2000's 5 4 4 3 3 2 0 1 0 0 2010's 0 0 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  18. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Million Barrels) Adjustments (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2010's 0 3 1 -2 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease

  19. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves Decreases (Million Barrels) Decreases (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate

  20. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves Increases (Million Barrels) Increases (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 2010's 4 1 1 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease Condensate

  1. Alabama (with State Offshore) Natural Gas Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Alabama (with State Offshore) Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 456 363 479 173 2000's 174 208 191 286 371 163 245 225 177 126 2010's 162 102 40 73 36 - = No Data Reported; -- = Not Applicable;

  2. Alabama (with State Offshore) Nonassociated Natural Gas, Reserves in

    Energy Information Administration (EIA) (indexed site)

    Nonproducing Reservoirs, Wet (Billion Cubic Feet) Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Alabama (with State Offshore) Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 452 359 477 172 2000's 172 200 189 284 369 161 244 225 177 126 2010's 162 101 38 71 26 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Alabama (with State Offshore) Shale Proved Reserves Revision Decreases

    Energy Information Administration (EIA) (indexed site)

    (Billion Cubic Feet) Revision Decreases (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Reserves Revision Decreases

  4. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6 1980's 5 5 1990's 5 4 8 11 12 12 10 10 8 7 2000's 6 4 4 5 5 5 4 4 3 5 2010's 6 8 17 9 17 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  5. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 10 1 0 0 0 0 0 1 1 0 2010's 0 20 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  6. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 2 1990's 0 0 1 5 6 -10 2 -1 3 0 2000's 1 -4 4 3 3 -4 1 -1 0 5 2010's 13 3 57 -65 20 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  7. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 2 1 1990's 0 2 0 4 2 4 2 0 0 0 2000's 0 1 2 0 1 3 0 0 0 0 2010's 0 0 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  8. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 1 1990's 2 6 3 1 2 3 3 2 8 3 2000's 2 1 1 0 0 1 8 1 0 1 2010's 4 0 6 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  9. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 13 5 1990's 3 4 16 19 14 9 3 5 11 9 2000's 1 3 7 3 1 4 4 12 1 11 2010's 6 2 18 20 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  10. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 1 5 0 0 0 4 5 0 0 2010's 2 9 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  11. Alabama Crude Oil + Lease Condensate Estimated Production from Reserves

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Estimated Production from Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 7 2010's 7 8 10 10 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate

  12. Alabama Crude Oil + Lease Condensate New Reservoir Discoveries in Old

    Energy Information Administration (EIA) (indexed site)

    Fields (Million Barrels) New Reservoir Discoveries in Old Fields (Million Barrels) Alabama Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  13. Alabama Crude Oil + Lease Condensate Reserves Acquisitions (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Acquisitions (Million Barrels) Alabama Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 20 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Acquisitions

  14. Alabama Crude Oil + Lease Condensate Reserves New Field Discoveries

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) New Field Discoveries (Million Barrels) Alabama Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 1 1 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate New Field Discoveries

  15. Alabama Crude Oil + Lease Condensate Reserves Revision Decreases (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Decreases (Million Barrels) Alabama Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's 5 1 2 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Revision Decreases, Wet After Lease

  16. Alabama Crude Oil + Lease Condensate Reserves Revision Increases (Million

    Energy Information Administration (EIA) (indexed site)

    Barrels) Increases (Million Barrels) Alabama Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 2010's 9 2 10 13 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Revision Increases

  17. Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Energy Information Administration (EIA) (indexed site)

    Liquids, Proved Reserves (Million Barrels) Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 213 1980's 226 192 193 216 200 182 177 166 166 168 1990's 170 145 171 158 142 120 119 93 81 107 2000's 150 64 57 60 50 61 56 53 106 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  18. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Estimated

    Energy Information Administration (EIA) (indexed site)

    Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 44 1980's 63 85 1990's 104 147 254 276 385 354 367 372 391 380 2000's 365 345 365 347 325 298 286 273 262 256 2010's 225 218 204 174 167 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Alabama Nonassociated Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 71 1980's 0 8 1990's 0 0 1 0 0 131 0 14 0 0 2000's 0 0 2 4 0 0 7 17 1 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Alabama Nonassociated Natural Gas, Wet After Lease Separation, New Field

    Energy Information Administration (EIA) (indexed site)

    Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 1 5 1990's 434 33 94 0 0 0 0 0 10 0 2000's 0 43 0 0 3 0 0 0 2 0 2010's 1 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  1. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 246 2 0 270 0 439 259 385 20 0 2010's 153 378 22 191 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  2. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 1980's 38 32 1990's 202 598 173 -639 22 -39 -42 -47 1 31 2000's -23 -35 63 -45 28 -21 -3 2 -7 42 2010's 47 -48 47 -195 498 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 46 1980's 66 11 1990's 1,019 227 35 376 78 114 175 34 19 1 2000's 184 173 291 321 132 84 150 125 61 21 2010's 29 3 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  4. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 44 1980's 124 93 1990's 942 205 192 164 2,130 290 94 54 308 139 2000's 68 224 156 125 157 60 205 35 747 336 2010's 176 163 256 79 43 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  5. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 135 1980's 61 121 1990's 762 772 546 29 2,091 482 504 346 301 210 2000's 78 77 126 595 163 133 234 153 287 90 2010's 208 470 84 50 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  6. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 149 1 1 251 30 427 188 303 11 2 2010's 270 586 11 373 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  7. Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    Energy Information Administration (EIA) (indexed site)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 2 2000's 2 4 1 2 2 2 0 0 0 0 2010's 0 1 2 2 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  8. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves (Million Barrels) (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 182 1980's 193 167 158 166 152 143 139 132 130 130 1990's 122 110 118 103 91 72 67 59 50 50 2000's 46 32 29 27 21 30 15 21 14 16 2010's 18 19 18 14 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Energy Information Administration (EIA) (indexed site)

    Proved Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 100 46 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  10. Recent two-stage coal liquefaction results from Wilsonville, Alabama

    SciTech Connect

    Rao, A.K.; Udani, L.H.; Nalitham, R.V.

    1985-01-01

    This paper presents results from two recent runs conducted at the Advanced Coal Liquefaction R and D facility of Wilsonville, Alabama. The first run was an extended demonstration of sub-bituminous coal liquefaction using an integrated two-stage liquefaction (ITSL) process. The second run employed a bituminous coal in a reconfigured two-stage process (RITLS) wherein the undeashed products from the first stage were hydrotreated prior to separation of coal ash. Good operability and satisfactory yield structure were demonstrated in both the runs.

  11. Alabama Institute for Deaf and Blind to Launch Lighting Project

    Energy.gov [DOE]

    For over a century, students at the Alabama Institute for Deaf and Blind (AIDB) have proudly displayed the school colors—blue and red—in the hallways, classrooms and dorm rooms. But this school year, they’re “Going Green.” The 152-year-old institute is replacing almost 2,900 lights in 19 buildings across its Talladega, Ala., campuses with energy-efficient fixtures, an upgrade expected to save the institute over $20,000 a year on utility bills.

  12. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate, Proved Reserves Acquisitions (Million Barrels) Acquisitions (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2010's 10 23 11 6 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  13. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate, Proved Reserves Adjustments (Million Barrels) Adjustments (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -4 2010's 3 0 -3 -1 18 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  14. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate, Proved Reserves Decreases (Million Barrels) Decreases (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 31 2010's 28 26 43 14 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  15. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate, Proved Reserves Extensions (Million Barrels) Extensions (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5 2010's 4 2 1 5 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  16. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate, Proved Reserves Increases (Million Barrels) Increases (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 40 2010's 44 30 30 23 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  17. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate, Proved Reserves New Reservoir in Old Fields (Million Barrels) New Reservoir in Old Fields (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves New Reservoir in Old Fields (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5 2010's 1 1 0 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  18. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate, Proved Reserves Sales (Million Barrels) Sales (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 5 2010's 13 8 7 18 10 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  19. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate, Reserves Based Production (Million Barrels) Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34 28 27 29 32 1990's 33 34 35 35 37 40 49 59 57 61 2000's 76 60 60 53 49 39 37 40 28 28 2010's 28 24 20 14 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate, Reserves New Field Discoveries (Million Barrels) New Field Discoveries (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 2 2 0 2 8 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  1. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) in Nonproducing Reservoirs (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 278 180 2000's 218 178 157 118 112 95 101 85 89 66 2010's 60 57 39 47 42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  2. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 432 1990's 502 497 471 508 536 554 581 697 763 906 2000's 842

  3. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 38 1990's 96 48 1 238 515 139 131 750 75 374 2000's 199 1,112 118 442 17 104 27 4 93 25 2010's 6 524 65 54

  4. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 114 1990's 146 157 200 87 105 544 275 123 125 200

  5. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 654 137 50 384 182 81 234 219 68 12 2010's 222 49 279 263 80 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -73 1990's 56 -41 -380 -202 55 28 29 188 104 1 2000's 41 -7 -7 4 2 0 0 0 8 7 2010's -14 -21 -94 -94 135 - = No Data

  7. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 111 1990's 95 216 95 181 179 191 186 186 187 64 2000's 261 333 201 204 146 40 60 133 280 90 2010's 54 32 146 166 80 -

  8. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 415 1990's 633 955 405 609 658 509 522 550 867 2,208 2000's 770 537 696 1,155 925 517 827 304 282 442

  9. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,685 1990's 866 1,059 512 746 752 564 589 695 786 1,863 2000's 792 1,266 555 501 615 301 384 514 383

  10. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    Energy Information Administration (EIA) (indexed site)

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 612 156 51 276 235 81 320 156 48 20 2010's 74 66 201 294 109 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    Energy Information Administration (EIA) (indexed site)

    Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,853 1990's 3,066 2,835 2,821 2,875 2,969 2,867 3,171 3,287 3,054 2,923 2000's 2,905 2,928

  12. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    Energy Information Administration (EIA) (indexed site)

    Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 539 1990's 969 155 207 149 883 632 495 797 523 734 2000's 1,083 401 801 404 197 532 58 309 195 25 2010's 65 66 3 34 96 - = No Data

  13. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    Energy Information Administration (EIA) (indexed site)

    Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 921 1990's 721 390 649 946 1,376 869 1,191 1,056 786 729 2000's 684 809 542 638

  14. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    Energy Information Administration (EIA) (indexed site)

    Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,666 1,319 511 1,220 1,032 566 1,150 804 481 152 2010's 594 355 496 118 305 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  15. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    Energy Information Administration (EIA) (indexed site)

    Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 105 1990's 529 299 -353 43 167 163 214 -365 533 -80 2000's -188 -58 117 137 -7 1 -10 1 -11 -3 2010's -25 72 -296 111 499 - = No Data Reported;

  16. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    Energy Information Administration (EIA) (indexed site)

    Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 931 1990's 448 602 383 909 1,089 1,022 1,202 1,089 681 443 2000's 1,179 783 692 527 999 523 487 410 350 189 2010's 139 53 106 18 90 - = No Data

  17. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    Energy Information Administration (EIA) (indexed site)

    Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,576 1,190 377 1,321 794 657 1,261 674 587 108 2010's 697 243 339 597 202 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Alabama Natural Gas Gross Withdrawals (Million Cubic Feet per Day)

    Gasoline and Diesel Fuel Update

    Gross Withdrawals (Million Cubic Feet per Day) Alabama Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 850 862 874 869 858 823 817 832 816 829 815 822 2007 815 808 802 769 774 767 768 815 805 794 792 814 2008 785 794 775 748 783 770 747 743 693 760 749 753 2009 689 749 740 724 730 727 726 704 686 637 622 686 2010 664 670 700 684 683 677 631 628 603 684 669 620 2011 644 651 648 639 581 626 627 629 522 546 501 575 2012 627 629

  19. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  20. What can recycling in thermal reactors accomplish?

    SciTech Connect

    Piet, Steven J.; Matthern, Gretchen E.; Jacobson, Jacob J.

    2007-07-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives. (authors)

  1. A Ceramic membrane to Recycle Caustic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Ceramic membrane to Recycle Caustic A Ceramic membrane to Recycle Caustic PDF icon A Ceramic membrane to Recycle Caustic More Documents & Publications Caustic Recovery Technology ...

  2. Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 117,738 96,587 95,078 116,683 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: Natural Gas Processed Gulf of Mexico-Alabama

  3. Process to recycle shredder residue

    DOEpatents

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.

    2001-01-01

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  4. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    Energy Information Administration (EIA) (indexed site)

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.25 4.12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  5. Alabama Natural Gas % of Total Residential Deliveries (Percent)

    Energy Information Administration (EIA) (indexed site)

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.04 1.03 1.02 1.08 0.97 1.03 0.90 2000's 0.95 1.03 0.95 0.92 0.90 0.87 0.87 0.75 0.77 0.75 2010's 0.88 0.78 0.66 0.72 0.77 0.71 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring

  6. Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent)

    Energy Information Administration (EIA) (indexed site)

    Vehicle Fuel Deliveries (Percent) Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.44 0.20 0.15 0.08 0.71 0.57 0.57 2000's 0.57 0.52 0.52 0.52 0.52 0.67 0.47 0.36 0.32 0.29 2010's 0.37 0.64 0.64 0.63 1.07 1.07 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring

  7. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 191,605 218,023 349,380 356,598 361,068 409,091 392,320 376,435 2000's 361,289 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,829 64,184 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,600 4,154 4,227 4,139 5,314 5,021 4,277 1990's 6,171 4,907 8,391 8,912 9,381 10,468 10,492 7,020 7,650 9,954 2000's 10,410 9,593 9,521 11,470 11,809 11,291 12,045 11,345 11,136 10,460 2010's 10,163 10,367 12,389 12,456 9,429 8,762 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,847 67,746 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  10. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 3,300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    Energy Information Administration (EIA) (indexed site)

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,900 768,568 - = No Data Reported; -- = Not Applicable;

  12. Alabama Natural Gas Percentage Total Commercial Deliveries (Percent)

    Energy Information Administration (EIA) (indexed site)

    Commercial Deliveries (Percent) Alabama Natural Gas Percentage Total Commercial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.90 0.88 0.87 0.92 1.01 0.86 0.91 2000's 0.80 0.87 0.80 0.80 0.85 0.84 0.86 0.78 0.80 0.78 2010's 0.87 0.80 0.74 0.77 0.79 0.78 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016

  13. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,689 19,948 22,109 2000's 22,626 19,978 21,760 18,917 15,911 14,982 14,879 15,690 16,413 18,849 2010's 22,124 23,091 25,349 22,166 18,789 18,433 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date:

  14. Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,129 1,178 1,249 1,303 1,564 1,634 1,875 1990's 3,710 3,720 4,477 4,453 3,747 3,806 2,827 2,468 2,391 5,336 2000's 5,377 3,491 4,148 3,293 3,914 3,740 6,028 6,269 6,858 6,470 2010's 6,441 6,939 6,616 6,804 6,462 6,436 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  15. Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Energy Information Administration (EIA) (indexed site)

    Feet) Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497 233 233 260 302 338 556 1,148 1,075 886 485 1996 431 364 202 356 493 971 1,164 1,553 1,891 2,008 1,879 1,119 1997 588 404 429 559 830 923 966 1,253 1,515 1,766 1,523 1,523 1998 773 585 337 582 727 1,350 1,341 1,540 1,139 1,752 1,753 1,615 1999 802 688 376 513 983 1,193 1,428 1,509 1,911 1,834 1,968 1,779 2000

  16. Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Energy Information Administration (EIA) (indexed site)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 693 1980's 682 683 1990's 4,184 5,460 5,870 5,212 4,898 4,930 5,100 5,013 4,643 4,365 2000's 4,269 3,958 3,922 4,345 4,159 4,006 3,963 4,036 3,379 2,948 2010's 2,724 2,570 2,304 1,670 2,121 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Energy Information Administration (EIA) (indexed site)

    Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 680 1980's 659 658 1990's 4,159 5,437 5,840 5,166 4,842 4,886 5,062 4,983 4,615 4,338 2000's 4,241 3,931 3,891 4,313 4,127 3,977 3,945 4,016 3,360 2,919 2010's 2,686 2,522 2,204 1,624 1,980 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Federal Offshore--Louisiana and Alabama Nonassociated Natural Gas, Reserves

    Energy Information Administration (EIA) (indexed site)

    in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Federal Offshore--Louisiana and Alabama Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,835 6,809 6,602 6,267 2000's 7,209 6,889 5,935 5,329 5,114 5,235 4,877 4,139 3,588 2,660 2010's 2,367 1,975 1,515 1,238 1,308 - = No Data

  19. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    Energy Information Administration (EIA) (indexed site)

    Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decreases (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,049 1990's 2,046 2,760 1,803 1,534 1,721 2,012 1,824 1,751 2,762 3,434 2000's 2,065 2,423 1,724 1,843 2,376 1,443 1,445 1,172

  20. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    Energy Information Administration (EIA) (indexed site)

    Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Increases (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,887 1990's 2,703 3,140 2,164 2,174 2,220 2,246 2,241 2,075 2,479 4,054 2000's 2,522 1,473 1,349 1,415 1,483 1,149 1,274 963 886

  1. Howard Waste Recycling Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Waste Recycling Ltd Jump to: navigation, search Name: Howard Waste Recycling Ltd Place: London, England, United Kingdom Zip: N18 3PU Sector: Biomass Product: London-based project...

  2. Recycling of used perfluorosulfonic acid membranes

    DOEpatents

    Grot, Stephen; Grot, Walther

    2007-08-14

    A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

  3. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama

    SciTech Connect

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

  4. Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery

    Energy.gov [DOE]

    Field testing the potential for combining geologic carbon dioxide storage with enhanced methane recovery is underway at a site in Alabama by a U.S. Department of Energy team of regional partners.

  5. M.; /Bern U.; Auty, D.J.; /Alabama U.; Barbeau, P.S.; /Stanford...

    Office of Scientific and Technical Information (OSTI)

    Neutrinoless Double-Beta Decay in 136Xe with EXO-200 Auger, M.; Bern U.; Auty, D.J.; Alabama U.; Barbeau, P.S.; Stanford U., Phys. Dept.; Beauchamp, E.; Laurentian U.;...

  6. Alabama High School Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC)

    Alabama High School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Alabama High School Regional Science Bowl

  7. Alabama Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC)

    (SC) Alabama Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Alabama Regional Middle School

  8. Improving Reuse & Recycling | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Improving Reuse & Recycling series of images of recycling: trash heap, light bulbs, circuit boards diagram for focus area three, improving reuse and recycling (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses of the leaders.)

  9. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema

    Ryan Ott

    2013-06-05

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  10. An industry response to recycle 2000

    SciTech Connect

    Motl, G.P.; Loiselle, V.

    1996-06-01

    The US DOE is expected to issue a policy early this year articulating DOE`s position on the recycle of DOE radioactive scrap metal. In anticipation of this `Recycle 2000` initiative, the nuclear industry has formed a new trade association called the Association of Radioactive Metal Recyclers (ARMR). This article describes the Recycle 2000 initiative, provides some background on the ARMR and its membership, and identifies industry views on the actions to be taken and issues to be resolved in Recycle 2000 is to become a reality.

  11. Vanadium recycling for fusion reactors

    SciTech Connect

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ``hands-on`` refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided.

  12. Slag recycling of irradiated vanadium

    SciTech Connect

    Gorman, P.K.

    1995-04-05

    An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium.

  13. Terry Land

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    terry land Terry Land Terry Land follows the path of opportunity You came to the Lab as a postdoc after you got your PhD in physical chemistry from UC Irvine. What was your first research project? I was hired to do surface science-which was my background-and to work on high explosives which had never even contemplated working on. I had a lab set up in the basement of the biology building for these experiments. I also worked part time at the Sandia Combustion Research Facility while waiting for

  14. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  15. Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per

    Energy Information Administration (EIA) (indexed site)

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.20 1970's 0.20 0.22 0.23 0.26 0.29 0.32 0.47 0.72 1.10 1.32 1980's 1.84 2.59 3.00 3.10 3.15 3.12 3.11 2.37 2.30 2.60 1990's 2.17 3.02 2.24 2.34 2.13 1.93 2.63 2.95 2.55 2.21 2000's 3.13 4.90 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  16. Alabama Natural Gas Plant Liquids Production (Million Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Liquids Production (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 236 1970's 225 281 243 199 501 694 661 933 1,967 4,845 1980's 4,371 4,484 4,727 4,709 5,123 5,236 4,836 4,887 4,774 5,022 1990's 4,939 4,997 5,490 5,589 5,647 5,273 5,361 4,637 4,263 18,079 2000's 24,086 13,754 14,826 11,293 15,133 13,759 21,065 19,831 17,222 17,232 2010's 19,059 17,271 7,133 7,675 7,044

  17. Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    Wellhead Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.13 1970's 0.14 0.15 0.35 0.38 0.74 0.87 0.99 1.47 1.50 2.04 1980's 3.19 4.77 3.44 4.28 3.73 3.71 2.89 2.97 2.65 2.72 1990's 2.75 2.33 2.29 2.46 2.17 1.82 2.62 2.67 2.21 2.32 2000's 3.99 4.23 3.48 5.93 6.66 9.28 7.57 7.44 9.65 4.32 2010's 4.46 - = No Data Reported; -- = Not Applicable;

  18. INEEL Lead Recycling in a Moratorium Environment

    SciTech Connect

    Kooda, K. E.; Galloway, K.; McCray, C. W.; Aitken, D. W.

    2003-02-26

    Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

  19. INEEL Lead Recycling in a Moratorium Environment

    SciTech Connect

    Kooda, Kevin Evan; Mc Cray, Casey William; Aitken, Darren William; Galloway, Kelly

    2003-02-01

    Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

  20. Nylon Carpet Recycling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Nylon Carpet Recycling Nylon Carpet Recycling New Process Recovers and Reuses Nylon from Waste Carpeting Saving Energy and Costs With a desire to keep materials out of the landfill, Shaw Industries, Inc., has incorporated a novel process developed by Honeywell International, Inc., and DSM Chemicals North America, Inc., into the largest Nylon-6 carpet recycling facility in the United States. The recovery process not only reduces the amount of carpet-based material destined for landfill, but

  1. Recycled Energy Development | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Recycled Energy Development Place: Westmont, Illinois Zip: 60559 Product: RED acquires industrial utility plants and then builds and installs waste energy capture...

  2. Recommendation 221: Recommendation Regarding Recycling of Metals...

    Office of Environmental Management (EM)

    recycling program to address radiologically contaminated metals and equipment for free-release. PDF icon Recommendation 221 PDF icon Responseto221.pdf More Documents &...

  3. Request for Information on Photovoltaic Module Recycling

    Energy.gov [DOE]

    The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

  4. Energy return on investment of used nuclear fuel recycling

    Energy Science and Technology Software Center

    2011-08-31

    N-EROI calculates energy return on investment (EROI) for recycling of used nublear fuel in four scenarios: one-pass recycle in light water reactors; two-pass recycle in light water reactors; mulit-pass recycle in burner fast reactora; one-pass recycle in breeder fast reactors.

  5. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update

    (Million Cubic Feet) Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,442 6,574 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 10/31/2016 Next Release Date: 11/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of Mexico-Alaba

  6. Integrated Recycling Test Fuel Fabrication

    SciTech Connect

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  7. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema

    Spangenberger, Jeff; Jody, Sam;

    2013-04-19

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  8. Argonne National Laboratory's Recycling Pilot Plant

    SciTech Connect

    Spangenberger, Jeff; Jody, Sam;

    2009-01-01

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  9. Preconceptual Design Description for Caustic Recycle Facility

    SciTech Connect

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

    2008-04-12

    The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

  10. Solid waste recycling programs at Rocky Flats

    SciTech Connect

    Millette, R.L.; Blackman, T.E.; Shepard, M.D.

    1994-12-31

    The Rocky Flats (RFP) recycling programs for solid waste materials have been in place for over ten years. Within the last three years, the programs were centralized under the direction of the Rocky Flats Waste Minimization department, with the assistance of various plant organizations (e.g., Trucking, Building Services, Regulated Waste Operations, property Utilization and Disposal and Security). Waste Minimization designs collection and transportation systems for recyclable materials and evaluates recycling markets for opportunities to add new commodities to the existing programs. The Waste Minimization department also promotes employee participation in the Rocky Flats Recycling Programs, and collects all recycling data for publication. A description of the program status as of January 1994 is given.

  11. Bioflame Mid UK Recycling JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Bioflame & Mid-UK Recycling JV Place: England, United Kingdom Product: Joint Venture between Bioflame and Mid-UK Recycling References: Bioflame & Mid-UK...

  12. Massive Hanford Test Reactor Removed - Plutonium Recycle Test...

    Office of Environmental Management (EM)

    Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed ...

  13. Tribune carries magnet recycling story | The Ames Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Tribune carries magnet recycling story Ames Tribune staff writer Julie Ferrell talked recently with Ames Laboratory researcher Ikenna Nlebedim about his work in recycling...

  14. How Can We Enable EV Battery Recycling? | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    How Can We Enable EV Battery Recycling? Title How Can We Enable EV Battery Recycling? Publication Type Presentation Year of Publication 2015 Authors Gaines, LL Abstract...

  15. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  16. The Future of Automobile Battery Recycling | Argonne National...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Future of Automobile Battery Recycling Title The Future of Automobile Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract...

  17. Enabling Future Li-Ion Battery Recycling | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Future Li-Ion Battery Recycling Title Enabling Future Li-Ion Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract Presentation made...

  18. Energy Return on Investment - Fuel Recycle (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy Return on Investment - Fuel Recycle Citation Details In-Document Search Title: Energy Return on Investment - Fuel Recycle This report provides a ...

  19. FY 2009 Progress Report for Lightweighting Materials - 11. Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1. Recycling FY 2009 Progress Report for Lightweighting Materials - 11. Recycling The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction ...

  20. FY 2008 Progress Report for Lightweighting Materials - 11. Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1. Recycling FY 2008 Progress Report for Lightweighting Materials - 11. Recycling Lightweighting Materials focuses on the development and validation of advanced materials and ...

  1. China Recycling Energy Corp CREG | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Recycling Energy Corp CREG Jump to: navigation, search Name: China Recycling Energy Corp (CREG) Place: Reno, Nevada Zip: 89511 Product: A US-incorporated company that develops...

  2. Energy Information Administration (EIA) (indexed site)

    Alabama Alabama

  3. Issues in recycling galvanized scrap

    SciTech Connect

    Koros, P.J.; Hellickson, D.A.; Dudek, F.J.

    1995-02-10

    The quality of the steel used for most galvanizing (and tinplate) applications makes scrap derived from their production and use a premier solid charge material for steelmaking. In 1989 the AISI created a Task Force to define the issues and to recommend technologically and economically sound approaches to assure continued, unhindered recyclability of the growing volume of galvanized scrap. The AISI program addressed the treatment of full-sized industrial bales of scrap. The current, on-going MRI (US)--Argonne National Laboratory program is focused on ``loose`` scrap from industrial and post-consumer sources. Results from these programs, issues of scrap management from source to steel melting, the choices for handling zinc in iron and steelmaking and the benefits/costs for removal of zinc (and lead) from scrap prior to melting in BOF and foundry operations are reviewed in this paper.

  4. Heterogeneous Recycling in Fast Reactors

    SciTech Connect

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  5. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    SciTech Connect

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  6. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review

    SciTech Connect

    Wang, Ruixue; Xu, Zhenming

    2014-08-15

    Highlights: • NMFs from WEEE were treated by incineration or land filling in the past. • Environmental risks such as heavy metals and BFRs will be the major problems during the NMFs recycling processes. • Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glasses are reviewed. • More environmental impact assessment should be carried out to evaluate the environmental risks of the recycling products. - Abstract: The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite

  7. Evaluation of enhanced recovery operations in Smackover fields of southwest Alabama. Draft topical report on Subtasks 5 and 6

    SciTech Connect

    Hall, D.R.

    1992-06-01

    This report contains detailed geologic and engineering information on enhanced-recovery techniques used in unitized Smackover fields in Alabama. The report also makes recommendations on the applicability of these enhanced-recovery techniques to fields that are not now undergoing enhanced recovery. Eleven Smackover fields in Alabama have been unitized. Three fields were unitized specifically to allow the drilling of a strategically placed well to recover uncontacted oil. Two fields in Alabama are undergoing waterflood projects. Five fields are undergoing gas-injection programs to increase the ultimate recovery of hydrocarbons. Silas and Choctaw Ridge fields were unitized but no enhanced-recovery operations have been implemented.

  8. Lithium-Ion Battery Recycling Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lithium-Ion Battery Recycling Facilities Lithium-Ion Battery Recycling Facilities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt020_es_coy_2012_p.pdf (1.72 MB) More Documents & Publications Lithium-Ion Battery Recycling Facilities Recycling Hybrid and Elecectric Vehicle Batteries EA-1722: Final Environmental Assessment

  9. Design and Optimization of Photovoltaics Recycling Infrastructure

    SciTech Connect

    Choi, J.K.; Fthenakis, V.

    2010-10-01

    With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.

  10. BWR Assembly Optimization for Minor Actinide Recycling

    SciTech Connect

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  11. Renewable, Recycled and Conserved Energy Objective | Department...

    Energy.gov [DOE] (indexed site)

    an objective that 10% of all retail electricity sales in the state be obtained from renewable and recycled energy by 2015. In March 2009, this policy was modified by allowing...

  12. Evaluation of radioactive scrap metal recycling

    SciTech Connect

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  13. Loveland Water & Power- Refrigerator Recycling Program

    Energy.gov [DOE]

    Loveland Water & Power is providing an incentive for customers to recycle older, working refrigerators. Interested customers can call the utility to arrange a time to pick up the old...

  14. Enhanced Photon Recycling in Multijunction Solar Cells

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ferreira, X. Li, E. Yablonovitch, a nd J .A. R ogers, " Device A rchitectures f or E nhanced Photon Recycling in Thin---Film MulQjuncQon Solar Cells." Adv. Energy M ater. (2014). ...

  15. Waste tire recycling by pyrolysis

    SciTech Connect

    Not Available

    1992-10-01

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  16. rare earth recycling | Critical Materials Institute

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    recycling Electronic Waste: DOD is Recovering Materials but Several Factors May Hinder Near-Term Expansion of These Efforts File: Author: U.S. Government Accountability Office Publication Year: 2016 Read more about Electronic Waste: DOD is Recovering Materials but Several Factors May Hinder Near-Term Expansion of These Efforts Meet CMI Researcher David Reed CMI researcher David Reed is the principal investigator for the CMI project bioleaching for recovery of recycled rare earth elements. CMI

  17. Land Use and Land Cover Change

    SciTech Connect

    Brown, Daniel; Polsky, Colin; Bolstad, Paul V.; Brody, Samuel D.; Hulse, David; Kroh, Roger; Loveland, Thomas; Thomson, Allison M.

    2014-05-01

    A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.

  18. Economic Feasibility of Recycling Photovoltaic Modules

    SciTech Connect

    Choi, J.K.; Fthenakis, V.

    2010-12-01

    The market for photovoltaic (PV) electricity generation has boomed over the last decade, and its expansion is expected to continue with the development of new technologies. Taking into consideration the usage of valuable resources and the generation of emissions in the life cycle of photovoltaic technologies dictates proactive planning for a sound PV recycling infrastructure to ensure its sustainability. PV is expected to be a 'green' technology, and properly planning for recycling will offer the opportunity to make it a 'double-green' technology - that is, enhancing life cycle environmental quality. In addition, economic feasibility and a sufficient level of value-added opportunity must be ensured, to stimulate a recycling industry. In this article, we survey mathematical models of the infrastructure of recycling processes of other products and identify the challenges for setting up an efficient one for PV. Then we present an operational model for an actual recycling process of a thin-film PV technology. We found that for the case examined with our model, some of the scenarios indicate profitable recycling, whereas in other scenarios it is unprofitable. Scenario SC4, which represents the most favorable scenario by considering the lower bounds of all costs and the upper bound of all revenues, produces a monthly profit of $107,000, whereas the least favorable scenario incurs a monthly loss of $151,000. Our intent is to extend the model as a foundation for developing a framework for building a generalized model for current-PV and future-PV technologies.

  19. Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

    Alternative Fuels and Advanced Vehicles Data Center

    for Solar Power Yellowstone Park Recycles Vehicle Batteries for Solar Power to someone by E-mail Share Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Facebook Tweet about Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Twitter Bookmark Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Google Bookmark Alternative Fuels Data Center: Yellowstone Park Recycles

  20. FY 2009 Progress Report for Lightweighting Materials - 11. Recycling |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 1. Recycling FY 2009 Progress Report for Lightweighting Materials - 11. Recycling The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability. 11_recycling.pdf (473.73 KB) More Documents & Publications FY 2008 Progress Report for Lightweighting Materials - 11. Recycling Post-Shred Materials Recovery Technology Development and Demonstration Recycling

  1. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    SciTech Connect

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first major recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream

  2. Waste tire recycling by pyrolysis

    SciTech Connect

    Not Available

    1992-10-01

    This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  3. Computerized economic and statistical investigation of the Alabama liquid asphalt market for public entities

    SciTech Connect

    Morgan, J.E. Jr.

    1986-01-01

    This study outlines the development of an economic data base and techniques utilized in identifying noncompetitive practices in the sealed bid market for liquid asphalt products purchased by public entities in the State of Alabama. It describes the organization of data and methods for displaying salient characteristics of market conduct and performance. Likely areas of anticompetitive activity are identified from an examination of conditional factors influencing collusion in a market and of circumstantial evidence of collusive behavior of the vendors. Methods of detecting and analyzing suspicious behavior are indicated and applied to selected data. The conclusion reached was that collusion was present in the Alabama liquid asphalt market during 1971-1978. An antitrust action was initiated by the State. Damages were calculated from the data base using a GLM regression model. An out-of-court settlement was negotiated by the defendant vendors.

  4. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate Estimated Production from Reserves (Million Barrels) Estimated Production from Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 522 2010's 518 432 387 398 449 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  5. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate Reserves Acquisitions (Million Barrels) Acquisitions (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 14 2010's 102 52 245 216 73 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  6. Geologic framework of the Jurassic (Oxfordian) Smackover Formation the Alabama coastal waters area

    SciTech Connect

    Tew, B.H.; Mancini, E.A. ); Mink R.M.; Mann, S.D. ); Mancini, E.A.

    1993-09-01

    The Jurassic (Oxfordian) Smackover Formation is a prolific hydrocarbon-producing geologic unit in the onshore Gulf of Mexico area, including southwest Alabama. However, no Smackover strata containing commercial accumulations of oil or gas have thus far been discovered in the Alabama state coastal waters area (ACW). This study of the regional geologic framework of the Smackover Formation was done to characterize the unit in the ACW and to compare strata in the ACW with productive Smackover intervals in the onshore area. In the study area, the Smackover Formation was deposited on a highly modified carbonate associated with pre-Smackover topographic features. In the onshore Alabama, north of the Wiggins arch complex, an inner ramp developed in the area of the Mississippi interior salt basin and the Manila and Conecuh embayments. South of the Wiggins arch complex in extreme southern onshore Alabama and in the ACW, an outer ramp formed that was characterized by a much thicker Smackover section. In the outer ramp setting, four lithofacies associations are recognized: lower, middle, and upper outer ramp lithofacies (ORL) and the coastal dolostone lithofacies. The coastal dolostone lithofacies accounts for most of the reservoir-grade porosity in the outer ramp setting. The lower, middle, and upper ORL, for the most part, are nonporous. Volumetrically, intercrystalline porosity is the most important pore type in the coastal dolostone lithofacies. Numerous data in the ACW area indicate that halokinesis has created structural conditions favorable for accumulation and entrapment of oil and gas in the outer ramp lithofacies of the Smackover. Prolific hydrocarbon source rocks are present in the ACW, as evidenced by the significant natural gas accumulations in the Norphlet Formation. To date, however, reservoir quality rocks of the coastal dolostone lithofacies coincident with favorable structural conditions have not been encountered in the ACW.

  7. Plutonium Recycle Test Reactor 309 B-Roll | Department of Energy

    Energy Saver

    Plutonium Recycle Test Reactor 309 B-Roll Plutonium Recycle Test Reactor 309 B-Roll Addthis Description Plutonium Recycle Test Reactor 309 B-Roll

  8. Energy implications of glass-container recycling

    SciTech Connect

    Gaines, L L; Mintz, M M

    1994-03-01

    This report addresses the question of whether glass-container recycling actually saves energy. Glass-container production in 1991 was 10{sup 7} tons, with cullet making up about 30% of the input to manufacture. Two-thirds of the cullet is postconsumer waste; the remainder is in-house scrap (rejects). Most of the glass recycled is made into new containers. Total primary energy consumption includes direct process-energy use by the industry (adjusted to account for the efficiency of fuel production) plus fuel and raw-material transportation and production energies; the grand total for 1991 is estimated to be about 168 {times} 10{sup 12} Btu. The total primary energy use decreases as the percent of glass recycled rises, but the maximum energy saved is only about 13%. If distance to the landfill is kept fixed and that to the recovery facility multiplied by about eight, to 100 mi, a break-even point is reached, and recycling saves no energy. Previous work has shown that to save energy when using glass bottles, reuse is the clear choice. Recycling of glass does not save much energy or valuable raw material and does not reduce air or water pollution significantly. The most important impacts are the small reduction of waste sent to the landfill and increased production rates at glass plants.

  9. TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Area TRIDEC Land TRIDEC Land Transfer REQUEST Transfer REQUEST 300 Acres 300 Acres Additional Lands Additional Lands Identified for Identified for EA Analysis EA Analysis 2,772...

  10. Scrap uranium recycling via electron beam melting

    SciTech Connect

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  11. New developments in RTR fuel recycling

    SciTech Connect

    Lelievre, F.; Brueziere, J.; Domingo, X.; Valery, J.F.; Leroy, J.F.; Tribout-Maurizi, A.

    2013-07-01

    As most utilities in the world, Research and Test Reactors (RTR) operators are currently facing two challenges regarding the fuel, in order to comply with local safety and waste management requirements as well as global non-proliferation obligation: - How to manage used fuel today, and - How fuel design changes that are currently under development will influence used fuel management. AREVA-La-Hague plant has a large experience in used fuel recycling, including traditional RTR fuel (UAl). Based on that experience and deep knowledge of RTR fuel manufacturing, AREVA is currently examining possible options to cope with both challenges. This paper describes the current experience of AREVA-La-Hague in UAl used fuels recycling and its plan to propose recycling for various types of fuels such as U{sub 3}Si{sub 2} fuel or UMo fuel on an industrial scale. (authors)

  12. Characterization of DWPF recycle condensate materials

    SciTech Connect

    Bannochie, C. J.; Adamson, D. J.; King, W. D.

    2015-04-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to understand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF the Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here.

  13. Land Management - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Land Management About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us Land Management Email Email Page | Print Print Page |Text Increase Font Size...

  14. Methanation process utilizing split cold gas recycle

    DOEpatents

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  15. The value of recycling on water conservation.

    SciTech Connect

    Ludi-Herrera, Katlyn D.

    2013-07-01

    Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, ceiling tiles, compost, and plastic. It will be discussed the use of water in the process of manufacturing these materials and the amount of water that is used. The way that water is conserved will be reviewed. From the stand point of SNL it will be discussed the amount of material that has been accumulated from 2010 to the first two quarters of 2013 and how much water this material has saved.

  16. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    Energy Information Administration (EIA) (indexed site)

    1 Table 10. Sales of natural gas plant liquids production from federal and Indian lands by state/area, FY 2003-14 million barrels State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Alabama 0 0 0 0 1 1 1 1 1 1 1 1 Alaska 0 0 0 0 0 0 0 0 - - - 0 Arizona - - - - - - 0 0 0 0 - - Arkansas - - - - - - - - - - - - California 0 0 0 0 0 0 0 0 0 0 0 0 Colorado 1 1 1 1 1 3 5 8 9 11 6 7 Florida - - - - - - - - - - - - Illinois - - - - - - - - - - - - Indiana - - - - - - - - - - - - Kansas 0 0

  17. Packaging, Transportation and Recycling of NPP Condenser Modules - 12262

    SciTech Connect

    Polley, G.M.

    2012-07-01

    Perma-Fix was awarded contract from Energy Northwest for the packaging, transportation and disposition of the condenser modules, water boxes and miscellaneous metal, combustibles and water generated during the 2011 condenser replacement outage at the Columbia Generating Station. The work scope was to package the water boxes and condenser modules as they were removed from the facility and transfer them to the Perma-Fix Northwest facility for processing, recycle of metals and disposition. The condenser components were oversized and overweight (the condenser modules weighed ∼102,058 kg [225,000 lb]) which required special equipment for loading and transport. Additional debris waste was packaged in inter-modals and IP-1 boxes for transport. A waste management plan was developed to minimize the generation of virtually any waste requiring landfill disposal. The Perma-Fix Northwest facility was modified to accommodate the ∼15 m [50-ft] long condenser modules and equipment was designed and manufactured to complete the disassembly, decontamination and release survey. The condenser modules are currently undergoing processing for free release to a local metal recycler. Over three millions pounds of metal will be recycled and over 95% of the waste generated during this outage will not require land disposal. There were several elements of this project that needed to be addressed during the preparation for this outage and the subsequent packaging, transportation and processing. - Staffing the project to support 24/7 generation of large components and other wastes. - The design and manufacture of the soft-sided shipping containers for the condenser modules that measured ∼15 m X 4 m X 3 m [50 ft X 13 ft X 10 ft] and weighed ∼102,058 kg [225,000 lbs] - Developing a methodology for loading the modules into the shipping containers. - Obtaining a transport vehicle for the modules. - Designing and modifying the processing facility. - Movement of the modules at the processing

  18. Breakout Session: Getting in the Loop: PV Hardware Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT ...

  19. London Waste and Recycling Board | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Waste and Recycling Board Jump to: navigation, search Name: London Waste and Recycling Board Place: London, England, United Kingdom Zip: SE1 0AL Sector: Services Product: UK-based...

  20. Advanced recycling and research complexes: A second strategic use for installations on the base closure list

    SciTech Connect

    Walter, D.W.; Kuusinen, T.L.; Beck, J.E.

    1993-05-01

    Obstacles currently facing the solid waste recycling industry are often related to a lack of public and investor confidence, issues of profitability and liability, and insufficient consumer identification with products made from recycled materials. Resolution of these issues may not be possible without major changes in the way the solid waste recycling business is structured. At the same time, we are faced with opportunities which will not likely recur in our lifetimes: access to educated, well trained work forces; and large tracts of land that are contiguous with metropolitan areas and are developed for heavy industry and transportation. Military installations are being converted to civilian use just in time to serve as important a role in our national resource conservation policy. The future of recycling in North America converges with the future of selected bases on the closure list and takes the form of converting these bases into Advanced Recycling and Research Complexes. The premise is simple: use these strategically-located facilities as industrial parks where a broad range of secondary wastes are separated, refined, or converted and made into new products on site. The wastes would include municipal solid waste (MSW), demolition waste, landscape trimmings, used tires, scrap metal, agricultural waste, food processing waste, and other non-hazardous materials. The park would consist of separation and conversion facilities, research and product standards laboratories, and industries that convert the materials into products and fuels. Energy conversion systems using some waste streams as fuel could be located at the park to supplement energy demands of the industrial operations. The strategic co-location of the resource providers and user industries would minimize transportation costs.

  1. Sandia National Laboratories: Due Diligence on Lead Acid Battery Recycling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US Geological Survey estimated that 95% of lead in the United States is recycled, primarily from used lead acid batteries. A broader 2009 European study estimated that globally about 52% of lead is recycled, and a 2008 Asian study estimated a global recycle rate of 68%. Unfortunately, many incidents over the past decade

  2. Material Recycle and Recovery | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Recycle and ... Material Recycle and Recovery Y-12 recycles and recovers enriched uranium from retired weapons and other excess or salvage materials, including some retired fuel elements and nuclear materials from other countries. This mission ensures that excess materials from Y-12 and other parts of the world are processed to a safer form for long-term storage or reuse. Recycled material is used for such things as feedstock for the Naval Reactors Program or for research reactors that produce

  3. GNEP Element:Demonstrate More Proliferation-Resistant Recycling |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy GNEP Element:Demonstrate More Proliferation-Resistant Recycling GNEP Element:Demonstrate More Proliferation-Resistant Recycling An article describing GNEP element of recycling. GNEP Element:Demonstrate More Proliferation-Resistant Recycling (478.08 KB) More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet -

  4. Nuclear fuel recycling in 4 minutes | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear fuel recycling in 4 minutes Share Topic Energy Energy sources Nuclear energy Nuclear fuel cycle Reactors

  5. Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling October 5, 2015 - 12:16pm Addthis Ryan Davis and Sandia National Laboratories colleagues have developed a method to recycle critical and costly algae cultivation nutrients phosphate and nitrogen. Photo by Dino Vournas. Ryan Davis and Sandia National Laboratories colleagues have developed a method to recycle critical and costly algae

  6. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    SciTech Connect

    FTHENAKIS,V.

    2001-01-29

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  7. Selective purge for hydrogenation reactor recycle loop

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  8. Woody biomass production in waste recycling systems

    SciTech Connect

    Rockwood, D.L.; Snyder, G.H.; Sprinkle, R.R.

    1994-12-31

    Combining woody biomass production with waste recycling offers many mutual advantages, including increased tree growth and nutrient and water reclamation. Three biomass/recycling studies collectively involving Eucalyptus amplifolia, E. camaldulensis, and E. grandis, rapidly growing species potentially tolerant of high water and nutrient levels, are (1) evaluating general potential for water/nutrient recycling systems to enhance woody biomass production and to recycle water and nutrients, (2) documenting Eucalyptus growth, water use, and nutrient uptake patterns, and (3) identifying Eucalyptus superior for water and nutrient uptake in central and southern Florida. In a 1992-93 study assessing the three Eucalyptus species planted on the outside berms of sewage effluent holding ponds, position on the berms (top to bottom) and genotypes influenced tree size. The potential of the trees to reduce effluent levels in the ponds was assessed. In a stormwater holding pond planted in 1993, these Eucalyptus genotypes varied significantly for tree size but not for survival. E. camaldulensis appears generally superior when flooded with industrial stormwater. Potential sizes of ponds needed for different stormwater applications were estimated. Prolonged flooding of 4- and 5-year-old E. camaldulensis with agricultural irrigation runoff has had no observable effects on tree growth or survival. Younger E. camaldulensis, E. amplifolia, and E. grandis were assessed for water use and nutrient uptake during a Summer 1994 flooding.

  9. Transverse instability at the recycler ring

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2004-10-01

    Sporadic transverse instabilities have been observed at the Fermilab Recycler Ring leading to increase in transverse emittances and beam loss. The driving source of these instabilities has been attributed to the resistive-wall impedance with space-charge playing an important role in suppressing Landau damping. Growth rates of the instabilities are computed. Remaining problems are discussed.

  10. WINCO Metal Recycle annual report, FY 1993

    SciTech Connect

    Bechtold, T.E.

    1993-12-01

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

  11. A cost-benefit analysis of landfill mining and material recycling in China

    SciTech Connect

    Zhou, Chuanbin Gong, Zhe; Hu, Junsong; Cao, Aixin; Liang, Hanwen

    2015-01-15

    Highlights: • Assessing the economic feasibility of landfill mining. • We applied a cost-benefit analysis model for landfill mining. • Four material cycling and energy recovery scenarios were designed. • We used net present value to evaluate the cost-benefit efficiency. - Abstract: Landfill mining is an environmentally-friendly technology that combines the concepts of material recycling and sustainable waste management, and it has received a great deal of worldwide attention because of its significant environmental and economic potential in material recycling, energy recovery, land reclamation and pollution prevention. This work applied a cost-benefit analysis model for assessing the economic feasibility, which is important for promoting landfill mining. The model includes eight indicators of costs and nine indicators of benefits. Four landfill mining scenarios were designed and analyzed based on field data. The economic feasibility of landfill mining was then evaluated by the indicator of net present value (NPV). According to our case study of a typical old landfill mining project in China (Yingchun landfill), rental of excavation and hauling equipment, waste processing and material transportation were the top three costs of landfill mining, accounting for 88.2% of the total cost, and the average cost per unit of stored waste was 12.7 USD ton{sup −1}. The top three benefits of landfill mining were electricity generation by incineration, land reclamation and recycling soil-like materials. The NPV analysis of the four different scenarios indicated that the Yingchun landfill mining project could obtain a net positive benefit varying from 1.92 million USD to 16.63 million USD. However, the NPV was sensitive to the mode of land reuse, the availability of energy recovery facilities and the possibility of obtaining financial support by avoiding post-closure care.

  12. ,"Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"6/30/1989" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  14. ,"Alabama Crude Oil plus Lease Condensate Proved Reserves"

    Energy Information Administration (EIA) (indexed site)

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"6/30/2009" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Acquisitions (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Adjustments (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Estimated Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  18. ,"Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Extensions (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    New Field Discoveries (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. ,"Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Decreases (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Increases (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  2. ,"Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Sales (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File Name:","rngr15sal_1a.xls"

  3. ,"Alabama Lease Condensate Proved Reserves, Reserve Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"Alabama Natural Gas Input Supplemental Fuels (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1400_sal_2a.xls"

  5. ,"Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1350_sal_2a.xls"

  6. ,"Alabama Natural Gas Lease Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1840_sal_2a.xls"

  7. ,"Alabama Natural Gas Plant Fuel Consumption (MMcf)"

    Energy Information Administration (EIA) (indexed site)

    Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1850_sal_2a.xls"

  8. ,"Alabama Natural Gas Plant Liquids Production (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Liquids Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  9. ,"Alabama Natural Gas Processed (Million Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Processed (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Processed (Million Cubic Feet)",1,"Annual",2015 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File Name:","na1180_sal_2a.xls"

  10. ,"Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016" ,"Excel File

  11. ,"Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    Energy Information Administration (EIA) (indexed site)

    Gas Proved Reserves, Wet After Lease Separation" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2014,"6/30/1979" ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"Alabama Shale Gas Proved Reserves, Reserves Changes, and Production"

    Energy Information Administration (EIA) (indexed site)

    Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"6/30/2007" ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Proved Nonproducing Reserves"

    Energy Information Administration (EIA) (indexed site)

    Proved Nonproducing Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Proved Nonproducing Reserves",5,"Annual",2014,"6/30/1996" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  14. Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    Energy Information Administration (EIA) (indexed site)

    New Field Discoveries (Billion Cubic Feet) Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 40 4 13 1980's 1 5 1990's 433 35 95 0 1 0 0 0 10 0 2000's 0 42 0 0 3 0 0 0 2 0 2010's 3 2 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: New

  15. Alabama Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3271,3272,3272,3272,3272 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",581,574,593,591,583 "MSW/Landfill

  16. Alabama Total Electric Power Industry Net Summer Capacity, by Energy Source

    Energy Information Administration (EIA) (indexed site)

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21804,21784,22372,22540,23519 " Coal",11557,11544,11506,11486,11441 " Petroleum",43,43,43,43,43 " Natural Gas",10104,10098,10724,10912,11936 " Other Gases",100,100,100,100,100 "Nuclear",5008,4985,4985,4985,5043 "Renewables",3852,3846,3865,3863,3855 "Pumped Storage","-","-","-","-","-"

  17. Alabama (with State Offshore) Associated-Dissolved Natural Gas, Reserves in

    Energy Information Administration (EIA) (indexed site)

    Nonproducing Reservoirs, Wet (Billion Cubic Feet) Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Alabama (with State Offshore) Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4 4 2 1 2000's 2 8 2 2 2 2 1 0 0 0 2010's 0 1 2 2 10 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Field Discoveries (Billion Cubic Feet) Field Discoveries (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 1990's 1 2 1 0 2 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 2 2 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  19. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 1990's 4 0 0 0 0 0 0 0 0 0 2000's 0 2 2 0 0 0 0 0 0 0 2010's 0 0 0 0 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  20. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    Energy Information Administration (EIA) (indexed site)

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196

  1. ,"Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    Energy Information Administration (EIA) (indexed site)

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  2. ,"Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    Energy Information Administration (EIA) (indexed site)

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"Alabama Share of Total U.S. Natural Gas Delivered to Consumers"

    Energy Information Administration (EIA) (indexed site)

    Share of Total U.S. Natural Gas Delivered to Consumers" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Share of Total U.S. Natural Gas Delivered to Consumers",5,"Annual",2015,"6/30/1993" ,"Release Date:","10/31/2016" ,"Next Release Date:","11/30/2016"

  4. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate New Reservoir Discoveries in Old Fields (Million Barrels) New Reservoir Discoveries in Old Fields (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 57 2010's 134 2 20 150 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  5. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate Reserves Adjustments (Million Barrels) Adjustments (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2010's -3 -2 -93 -265 139 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  6. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate Reserves Extensions (Million Barrels) Extensions (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 158 2010's 61 29 113 143 82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  7. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate Reserves New Field Discoveries (Million Barrels) New Field Discoveries (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 34 2010's 10 410 7 181 140 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  8. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate Reserves Revision Decreases (Million Barrels) Decreases (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 174 2010's 183 1,354 760 322 812 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  9. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate Reserves Revision Increases (Million Barrels) Increases (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 616 2010's 790 1,861 1,077 567 648 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  10. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Energy Information Administration (EIA) (indexed site)

    Condensate Reserves Sales (Million Barrels) Sales (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 20 2010's 54 42 187 283 67 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  11. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas

    Energy Information Administration (EIA) (indexed site)

    Reserves Acquisitions (Billion Cubic Feet) Acquisitions (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2,247 1,415 543 1,563 1,177 628 1,341 991 532 159 2010's 785 385 734 363 364 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  12. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas

    Energy Information Administration (EIA) (indexed site)

    Reserves Adjustments (Billion Cubic Feet) Adjustments (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 90 1990's 631 188 -698 -174 230 291 256 -390 598 -202 2000's -232 40 26 261 -85 21 -37 -16 10 2 2010's -106 -28 -429 76 548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  13. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas

    Energy Information Administration (EIA) (indexed site)

    Reserves Extensions (Billion Cubic Feet) Extensions (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,023 1990's 534 802 470 1,070 1,245 1,198 1,369 1,246 847 493 2000's 1,393 1,085 864 713 1,110 546 530 525 610 270 2010's 186 81 239 175 161 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas

    Energy Information Administration (EIA) (indexed site)

    Reserves New Field Discoveries (Billion Cubic Feet) New Field Discoveries (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 567 1990's 1,047 199 206 379 1,373 760 619 1,511 583 1,077 2000's 1,234 1,471 889 824 208 618 82 304 279 48 2010's 68 562 64 84 378 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas

    Energy Information Administration (EIA) (indexed site)

    Reserves Sales (Billion Cubic Feet) Sales (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2,118 1,309 415 1,557 998 716 1,532 803 616 124 2010's 741 295 511 850 294 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  16. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas New

    Energy Information Administration (EIA) (indexed site)

    Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,016 1990's 852 536 837 1,014 1,459 1,397 1,447 1,151 890 905 2000's 827 1,180 799 724 514 375 343 330 379 223 2010's 213 76 48 56 68 - = No Data Reported; -- =

  17. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant

    Energy Information Administration (EIA) (indexed site)

    Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 614 566 532 512 575 1990's 519 545 472 490 500 496 621 785 776 833 2000's 921 785 783 598 615 603 575 528 464 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  18. Model institutional infrastructures for recycling of photovoltaic modules

    SciTech Connect

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

  19. Argonne explains nuclear recycling in 4 minutes

    SciTech Connect

    2012-01-01

    Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

  20. Argonne explains nuclear recycling in 4 minutes

    ScienceCinema

    None

    2016-07-12

    Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

  1. Probe for contamination detection in recyclable materials

    DOEpatents

    Taleyarkhan, Rusi

    2003-08-05

    A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.

  2. Ferrite insertion at Recycler Flying Wire System

    SciTech Connect

    K.Y. Ng

    2004-02-27

    Ferrite rods are installed inside the flying-wire cavity of the Recycler Ring and at entrance and exit beam pipes in order to absorb high-frequency electromagnetic waves excited by the beam. However, these rods may also deteriorate the vacuum pressure of the ring. An investigation is made to analyze the necessity of the ferrite rods at the entrance and exit beam pipes.

  3. Quality assurance for radon exposure chambers at the National Air and Radiation Environmental Laboratory, Montgomery, Alabama

    SciTech Connect

    Semler, M.O.; Sensintaffar, E.L.

    1993-12-31

    The Office of Radiation and Indoor Air, U.S. Environmental Protection Agency (EPA), operates six radon exposure chambers in its two laboratories, the National Air and Radiation Environmental Laboratory (NAREL) in Montgomery, Alabama, and the Las Vegas Facility, Las Vegas, Nevada. These radon exposure chambers are used to calibrate and test portable radon measuring instruments, test commercial suppliers of radon measurement services through the Radon Measurement Proficiency Program, and expose passive measurement devices to known radon concentrations as part of a quality assurance plan for federal and state studies measuring indoor radon concentrations. Both laboratories participate in national and international intercomparisons for the measurement of radon and are presently working with the National Institute of Standards and Technology (NIST) to receive a certificate of traceability for radon measurements. NAREL has developed an estimate of the total error in its calibration of each chamber`s continuous monitors as part of an internal quality assurance program. This paper discusses the continuous monitors and their calibration for the three chambers located in Montgomery, Alabama, as well as the results of the authors intercomparisons and total error analysis.

  4. Expanded recycling at Los Alamos National Laboratory

    SciTech Connect

    Betschart, J.F.; Malinauskas, L.; Burns, M.

    1996-07-01

    The Pollution Prevention Program Office has increased recycling activities, reuse, and options to reduce the solid waste streams through streamlining efforts that applied best management practices. The program has prioritized efforts based on volume and economic considerations and has greatly increased Los Alamos National Laboratory`s (LANL`s) recycle volumes. The Pollution Prevention Program established and chairs a Solid Waste Management Solutions Group to specifically address and solve problems in nonradioactive, Resource Conservation and Recovery Act (RCRA), state-regulated, and sanitary and industrial waste streams (henceforth referred to as sanitary waste in this paper). By identifying materials with recycling potential, identifying best management practices and pathways to return materials for reuse, and introducing the concept and practice of {open_quotes}asset management,{open_quotes} the Group will divert much of the current waste stream from disposal. This Group is developing procedures, agreements, and contracts to stage, collect, sort, segregate, transport and process materials, and is also garnering support for the program through the involvement of upper management, facility managers, and generators.

  5. Regional cooperative marketing of recyclable materials

    SciTech Connect

    Prete, P.J. )

    1993-01-01

    This paper discusses cooperative marketing and its role in recycling programs. The first section of the paper presents a snapshot of cooperative marketing, describes trends, and analyzes driving forces. The maturing recycling industry is examined to speculate on why cooperative marketing is emerging at this time, in certain areas, and in specific subsets of the industry. The second section provides analytical tools to help waste management personnel evaluate cooperative marketing alternatives. Criteria are presented to help evaluate programs to determine if and when cooperative marketing is practical and advantageous for rural, low budget, or new programs. Situations driven by special problems with local recyclable materials markets will be discussed. The last section focuses on steps for putting cooperative marketing programs in place. Attendees are given insight that should enable them to initiate the process of pursuing cooperative marketing. Strategies addressed range from developing program objectives compatible with other community programs and arranging necessary communications, to assessing markets, determining resource needs, predicting material quantities, and optimizing materials supplies to meet market requirements.

  6. Recycling efficiency: The shape of things to come

    SciTech Connect

    Miller, C.

    1995-09-01

    In the mid-`70s, curbside recycling was easy. Virtually all the programs collected only newspaper at the curbside. They were placed in a rack beneath the garbage truck or in a trailer behind the truck. Of course, the rack might fill up too soon, but that was a minor problem, usually resolved by offloading sites for the newspaper. Today, curbside recycling is much more complicated. Curbside programs can collect a bewildering array of materials, including plastics, mixed paper, and even textiles. The simple rack is in the Smithsonian, replaced by highly sophisticated vehicles. Some can automatically collect recyclables without the driver ever getting out of the cab. Simplicity, it seems, has given way to complexity as recycling rates have skyrocketed. The recycling industry has been buffeted recently by a slew of anti-recycling articles in the popular press, yet, ironically, it has been enjoying the best markets has blunted the anti-recyclers. However, bull markets are not forever. Recyclers cannot afford to adopt a ``What, me worry?`` attitude towards the business of recycling. As collectors become increasingly skilled in collecting recyclables, they can translating these skills into more efficient programs.

  7. Archaeology on Lab Land

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Archaeology on Lab Land Archaeology on Lab Land People have lived in this area for more than 5,000 years. Lab archaeologists are studying and preserving the ancient human occupation of the Pajarito Plateau. Archaeology on Lab Land exhibit Environmental Research & Monitoring Visit our exhibit and find out how Los Alamos researchers are studying our rich cultural diversity. READ MORE Nake'muu archaeological site Unique Archaeology The thousands of Ancestral Pueblo sites identified on Lab land

  8. Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Princeton Plasma Physics Lab Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato Existing experiments indicate that low recycling of exhausted particles can improve the energy confinement in tokamaks, very likely by preventing the cooling of the plasma edge and thereby causing a reduction in the level of plasma turbulence. This can reduce the size of a tokamak fusion reactor, making the latter a more viable source of energy. The necessary conditions for low recycling can

  9. Pollution Prevention, Waste Reduction, and Recycling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pollution Prevention, Waste Reduction, and Recycling Pollution Prevention, Waste Reduction, and Recycling The purpose of pollution prevention and waste reduction as stated in the Departments Strategic Sustainability Performance Plan is to "prevent or reduce pollution at the source whenever feasible. Pollutants and wastes that cannot be prevented through source reduction will be diverted from entering the waste stream through environmentally safe and cost-effective reuse or recycling to the

  10. Way to recycle, BES Technologies | Y-12 National Security Complex

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Program / Way to recycle, BES ... Way to recycle, BES Technologies Posted: July 29, 2015 - 10:31am At right, Brian Quinley, Chief Operations Officer for BES Technologies, LLC, gives Rep. John Duncan a tour of the laundry facility at East Tennessee Technology Park. BES Technologies, LLC, a service-disabled veteran-owned small business, has reached a major milestone by recycling 1 million gallons of radiological waste water through its laundry operations located at the East Tennessee Technology

  11. Models Help Pinpoint Material for Better Nuclear Fuel Recycling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Models Help Pinpoint Material for Better Nuclear Fuel Recycling Models Help Pinpoint Material for Better Nuclear Fuel Recycling Sifting 125,000 Candidates Yields Ideal Candidate for Xenon, Krypton Recovery June 13, 2016 Contact: Jon Bashor, jbashor@lbl.gov, +1 510.486.5849 SBMOF-1 illlustration A new material, dubbed SBMOF-1 illustrated here, could be used to separate xenon and krypton gases from the waste produced in recycling spent nuclear fuels using less energy than conventional methods. The

  12. CMI Course Inventory: Recycling/Industrial Engineering | Critical Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Institute Course Inventory: Recycling/Industrial Engineering Recycling/Industrial Engineering Of the six CMI Team members that are educational institutions, one offers courses in Recycling/Industrial Engineering: Iowa State University. CMI Education and Outreach group at Colorado School of Mines developed an inventory of courses offered by CMI Team members that are related to rare earths and critical materials. Other courses are available in these areas: Geology Engineering/Geochemistry

  13. Pennsylvania to require statewide recycling of solid wastes

    SciTech Connect

    Not Available

    1988-11-01

    The new law, requiring trash recycling in 407 communities affecting 7.8 million Pennsylvanians, is a key component of the Casey administration's comprehensive environmental clean up plant. The new recycling law requires municipalities with more than 10,000 residents to start curb-side recycling programs within two years. Communities with 5000 to 10,000 residents must start recycling in three years. The goal is to reduce the state's volume of solid waste by 25 percent by 1997. Nine million tons of trash are generated each year in Pennsylvania, with 95 percent of it landfilled and only one percent recycled. Much of the state's solid waste must be transported over increasing distances at increasing costs to be disposed of. Average trash disposal costs have increased 150 percent in the past three years. The new law requires communities to recycle three of eight materials, including glass, colored glass, aluminum, steel and bimetallic cans, high-grade office paper, newsprint, corrugated paper and plastics. All communities must recycle leaf waste. The legislation shifts responsibility for planning solid waste disposal from municipalities to counties, reimbursing counties 80 percent of the cost of developing comprehensive recycling plans and 50 percent of the cost of hiring a recycling coordinator. The program will be self-supporting through a $2-per-ton fee on all garbage going to landfills and resource recovery.

  14. Recycling and computerized garbage tracking cut city's costs

    SciTech Connect

    Norris, J.L. )

    1994-02-01

    This article describes Athens, Ohio efforts to encourage recycling and minimizing of landfilled garbage by a sliding rate system for garbage collection that accommodates the highly transient nature of this college community. Residential waste going to the landfill has been reduced by as much as 50 percent. Recycling is scheduled the same day as garbage collection. Recycling crews sort all items and package them for sale. Yard wastes are also recycled and are co-mingled with digested municipal sludge generated at the waste-water treatment plant and applied on agricultural fields as a soil conditioner.

  15. ORNL Licenses Rare Earth Magnet Recycling Process to Momentum...

    Office of Environmental Management (EM)

    ORNL Licenses Rare Earth Magnet Recycling Process to Momentum Technologies ORNL Licenses ... Dallas-based Momentum Technologies is focused on extraction of rare earth elements and ...

  16. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT...

    Office of Scientific and Technical Information (OSTI)

    IN LIGHT WATER REACTORS USING HYDRIDE FUEL Citation Details In-Document Search Title: FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING ...

  17. Future Bottlenecks for Industrial Water Recycling. Brady, Patrick...

    Office of Scientific and Technical Information (OSTI)

    Future Bottlenecks for Industrial Water Recycling. Brady, Patrick V. Abstract Not Provided Sandia National Laboratories USDOE National Nuclear Security Administration (NNSA) United...

  18. Models Help Pinpoint Material for Better Nuclear Fuel Recycling

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Researchers are investigating a new material that might help in nuclear fuel recycling and waste reduction by capturing certain gases released during reprocessing. Conventional ...

  19. Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    William Eleazer, PE Brown and Caldwell Project Design Manager St. Petersburg, FL: Vehicle Use of Recycled Natural Gas Derived from Wastewater Biosolids U.S Department of Energy - ...

  20. DOE, Washington Closure complete recycling project at Hanford...

    Energy Saver

    About 400,000 saved by recycling electrical substation components in 300 Area RICHLAND, ... The work involved removing an electrical substation in the 300 Area, a former industrial ...