National Library of Energy BETA

Sample records for air energy storage

  1. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  2. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  3. Compressed Air Energy Storage (CAES) | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    and stored in a reservoir, then when electricity is needed, air is heated with natural gas and expanded through a turbine. Adiabatic Adiabatic compressed air energy storage...

  4. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  5. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  6. Compressed Air Storage Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage Strategies Compressed Air Storage Strategies This tip sheet briefly discusses compressed air storage strategies. COMPRESSED AIR TIP SHEET #9 Compressed Air Storage Strategies (August 2004) (258.48 KB) More Documents & Publications Compressed Air System Control Strategies Stabilizing System Pressure Effect of Intake on Compressor Performance

  7. University of Arizona Compressed Air Energy Storage

    SciTech Connect

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  8. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    2012-11-30

    This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

  9. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    None, None

    2012-11-30

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any

  10. Fact Sheet: Isothermal Compressed Air Energy Storage (August 2013) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Isothermal Compressed Air Energy Storage (August 2013) Fact Sheet: Isothermal Compressed Air Energy Storage (August 2013) SustainX will demonstrate an isothermal compressed air energy storage (ICAES) system. The system captures the heat from compression in water and stores the captured heat until it is needed again for expansion. Storing the captured heat eliminates the need for a gas combustion turbine and improves efficiency. For more information about how OE performs

  11. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    None, None

    2012-11-30

    This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler County’s 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.

  12. COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our Renewable

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Future | Princeton Plasma Physics Lab April 30, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our Renewable Energy Future Mr. Al Cavallo Consultant Compressed air energy storage (CAES) is a proven, cost effective, environmentally acceptable technology for storing extremely large amounts of energy. Invented in the 1950s in Germany, and based on widely available gas turbine equipment, two CAES plants have been built and have

  13. COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    April 30, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our Renewable Energy Future Mr. Al Cavallo Consultant Compressed ...

  14. Dynamic and other secondary benefits of compressed air energy storage

    SciTech Connect

    Allen, R.D.; Doherty, T.J.

    1984-05-01

    Dynamic benefits of compressed air energy storage include load following, voltage regulation, provision for emergency power, and spinning reserve. Other secondary benefits include environmental acceptability and economic feasibility within the spectrum of potential energy storage methods. Geologic reservoir candidates are salt cavities, hard rock caverns and water-bearing permeable formations occurring as structural traps; the compatibility of solution-mined salt cavities with desired dynamic benefits is illustrated by positive results at Huntorf, West Germany. Air injection into and withdrawal from an aquifer has been conducted successfully at Pittsfield, Illinois. Environmental impacts are believed to be less important than corresponding impacts in rival storage technologies.

  15. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  16. Compressed air energy storage technology program. Annual report for 1979

    SciTech Connect

    Loscutoff, W.V.

    1980-06-01

    The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

  17. Bubbles Help Break Energy Storage Record for Lithium Air-Batteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Foam-base graphene keeps oxygen flowing in ...

  18. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect

    Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.; Cabe, James E.; Appriou, Delphine; McGrail, B. Peter

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  19. Geothermally Coupled Well-Based Compressed Air Energy Storage

    SciTech Connect

    Davidson, C L; Bearden, Mark D; Horner, Jacob A; Appriou, Delphine; McGrail, B Peter

    2015-12-01

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  20. Proceedings: Geotechnology workshop on compressed-air energy storage in porous media sites

    SciTech Connect

    Not Available

    1987-07-01

    The extensive experience of the natural gas industry with gas storage in underground porous media is directly applicable to the storage of air for compressed-air energy storage plants. In this workshop, natural gas industry representatives provided utility personnel with a basic understanding of the geology of porous media and strategies for developing air storage reservoirs.

  1. Compressed air energy storage technology program. Annual report for 1980

    SciTech Connect

    Kannberg, L.D.

    1981-06-01

    All of the major research funded under the Compressed Air Energy Storage Technology Program during the period March 1980 to March 1981 is described. This annual report is divided into two segments: Reservoir Stability Studies and Second-Generation Concepts Studies. The first represents research performed to establish stability criteria for CAES reservoirs while the second reports progress on research performed on second-generation CAES concepts. The report consists of project reports authored by research engineers and scientists from PNL and numerous subcontractors including universities, architect-engineering, and other private firms.

  2. SustainX Inc Isothermal Compressed Air Energy Storage Project Description

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SustainX Inc Isothermal Compressed Air Energy Storage Project Description SustainX is developing and demonstrating a modular, market-ready energy storage system that uses compressed air as the storage medium. SustainX uses a crankshaft-based drivetrain to convert electrical energy into potential energy stored as compressed air. SustainX's ICAES system captures the heat from compression in water and stores the captured heat until it is needed again for expansion. Storing the captured heat

  3. Energy Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage sterlinggroundbreaking Permalink Gallery Installation of New England's Largest Battery Energy Storage System is Underway Energy Storage, Energy Storage Systems, Grid ...

  4. Bubbles Help Break Energy Storage Record for Lithium Air-Batteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Foam-base graphene keeps oxygen flowing in batteries that holds promise for electric vehicles January 25, 2012 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Using a new approach, the team built a graphene membrane for use in lithium-air batteries, which could, one day, replace conventional batteries in electric vehicles. Resembling coral, this porous graphene material

  5. Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production

    SciTech Connect

    Bollinger, Benjamin

    2015-01-02

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  6. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    SciTech Connect

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  7. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    SciTech Connect

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  8. Energy Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage HomeEnergy Storage The National Solar Thermal Test Facility at Sandia could be used for collaborative research through the Small Business Voucher Pilot. (Photo by ...

  9. Energy Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage HomeEnergy Storage Efficiencies-Emissions2 Permalink Gallery Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network Center for Infrastructure Research ...

  10. Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

    SciTech Connect

    2010-10-01

    GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

  11. Energy Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary PowerSafety, Security & Resilience of Energy InfrastructureEnergy Storage Energy Storage Tara Camacho-Lopez 2016-11-01T19:26:52+00:00 Sandia provides advanced energy ...

  12. Energy Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  13. Porous media experience applicable to field evaluation for compressed air energy storage

    SciTech Connect

    Allen, R.D.; Gutknecht, P.J.

    1980-06-01

    A survey is presented of porous media field experience that may aid in the development of a compressed air energy storage field demonstration. Work done at PNL and experience of other groups and related industries is reviewed. An overall view of porous media experience in the underground storage of fluids is presented. CAES experience consists of site evaluation and selection processes used by groups in California, Kansas, and Indiana. Reservoir design and field evaluation of example sites are reported. The studies raised questions about compatibility with depleted oil and gas reservoirs, storage space rights, and compressed air regulations. Related experience embraces technologies of natural gas, thermal energy, and geothermal and hydrogen storage. Natural gas storage technology lends the most toward compressed air storage development, keeping in mind the respective differences between stored fluids, physical conditions, and cycling frequencies. Both fluids are injected under pressure into an aquifer to form a storage bubble confined between a suitable caprock structure and partially displaced ground water. State-of-the-art information is summarized as the necessary foundation material for field planning. Preliminary design criteria are given as recommendations for basic reservoir characteristics. These include geometric dimensions and storage matrix properties such as permeability. Suggested ranges are given for injection air temperature and reservoir pressure. The second step in developmental research is numerical modeling. Results have aided preliminary design by analyzing injection effects upon reservoir pressure, temperature and humidity profiles. Results are reported from laboratory experiments on candidate sandstones and caprocks. Conclusions are drawn, but further verification must be done in the field.

  14. Energy Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage HomeTag:Energy Storage ieee-award Permalink Gallery Two Sandia Papers Selected as "Best Papers" at the 2016 IEEE ...

  15. Sandia Energy Energy Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sandia Participates in Preparation of New Mexico Renewable Energy Storage Report http:energy.sandia.govsandia-participates-in-preparation-of-new-mexico-renewable-energy-storage-...

  16. Energy Storage

    ScienceCinema

    Paranthaman, Parans

    2016-07-12

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  17. Energy Storage

    SciTech Connect

    Paranthaman, Parans

    2014-06-03

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  18. Analytical modeling of a hydraulically-compensated compressed-air energy-storage system

    SciTech Connect

    McMonagle, C.A.; Rowe, D.S.

    1982-12-01

    A computer program was developed to calculate the dynamic response of a hydraulically-compensated compressed air energy storage (CAES) system, including the compressor, air pipe, cavern, and hydraulic compensation pipe. The model is theoretically based on the two-fluid model in which the dynamics of each phase are presented by its set of conservation equations for mass and momentum. The conservation equations define the space and time distribution of pressure, void fraction, air saturation, and phase velocities. The phases are coupled by two interface equations. The first defines the rate of generation (or dissolution) of gaseous air in water and can include the effects of supersaturation. The second defines the frictional shear coupling (drag) between the gaseous air and water as they move relative to each other. The relative motion of the air and water is, therefore, calculated and not specified by a slip or drift-velocity correlation. The total CASE system is represented by a nodal arrangement. The conservation equations are written for each nodal volume and are solved numerically. System boundary conditions include the air flow rate, atmospheric pressure at the top of the compensation pipe, and air saturation in the reservoir. Initial conditions are selected for velocity and air saturation. Uniform and constant temperature (60/sup 0/F) is assumed. The analytical model was used to investigate the dynamic response of a proposed system.Investigative calculations considered high and low water levels, and a variety of charging and operating conditions. For all cases investigated, the cavern response to air-charging, was a damped oscillation of pressure and flow. Detailed results are presented. These calculations indicate that the Champagne Effect is unlikely to cause blowout for a properly designed CAES system.

  19. Thermophysical behavior of St. Peter sandstone: application to compressed air energy storage in an aquifer

    SciTech Connect

    Erikson, R.L.

    1983-12-01

    The long-term stability of a sandstone reservoir is of primary importance to the success of compressed air energy storage (CAES) in aquifers. The purpose of this study was to: develop experimental techniques for the operation of the CAES Porous Media Flow Loop (PMFL), an apparatus designed to study the stability of porous media in subsurface geologic environments, conduct experiments in the PMFL designed to determine the effects of temperature, stress, and humidity on the stability of candidate CAES reservoir materials, provide support for the CAES field demonstration project in Pittsfield, Illinois, by characterizing the thermophysical stability of Pittsfield reservoir sandstone under simulated field conditions.

  20. Promising future energy storage systems: Nanomaterial based systems, Zn-air and electromechanical batteries

    SciTech Connect

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  1. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    SciTech Connect

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  2. Energy Storage Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy, Energy Storage, Energy Storage Systems, News, News & Events, Partnership, Renewable Energy, Research & Capabilities, Systems Analysis, Water Power Natural Energy ...

  3. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Holst, Kent; Huff, Georgianne; Schulte, Robert H.; Critelli, Nicholas

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  4. Energy Storage

    SciTech Connect

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  5. Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage Metal-Air Ionic Liquid (MAIL) Batteries

    SciTech Connect

    2009-12-21

    Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the batterys main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASUs new battery system could be both cheaper and safer than todays Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

  6. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs :

    SciTech Connect

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  7. Compressed air energy storage (CAES) environmental control concerns and program plan

    SciTech Connect

    Beckwith, M.A.; Boehm, D.W.

    1980-06-01

    This report assesses the required environmental research and recommends a program plan to assist DOD's Environmental Control Technology Division (ECT) in performing its mission of ensuring that the procedures, processes, systems, and strategies necessary to minimize any adverse environmental impacts of compressed air energy storage (CAES) are developed in a timely manner so as not to delay implementation of the technology. To do so, CAES technology and the expected major environmental concerns of the technology are described. Second, ongoing or planned research in related programs and the applicability of results from these programs to CAES environmental research are discussed. Third, the additional research and development required to provide the necessary environmental data base and resolve concerns in CAES are outlined. Finally, a program plan to carry out this research and development effort is presented.

  8. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    SciTech Connect

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage

  9. DOE Global Energy Storage Database

    DOE Data Explorer

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOEs Sandia National Laboratories, and has been operating since January 2012.

  10. DOE Global Energy Storage Database

    DOE Data Explorer

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  11. Regional conferences/workshops on small compressed-air energy storage (mini-CAES) plants: a new option. Proceedings

    SciTech Connect

    Not Available

    1986-02-01

    Small compressed-air energy storage (mini-CAES) power plants, while not entirely free of risk, have reached the demonstration or commercialization stage. At these conferences and workshope, potential suppliers of components and services for these plants presented the results of detailed studies and discussed factors important for successful installation of the technology.

  12. Petrologic and petrophysical evaluation of the Dallas Center Structure, Iowa, for compressed air energy storage in the Mount Simon Sandstone.

    SciTech Connect

    Heath, Jason E.; Bauer, Stephen J.; Broome, Scott Thomas; Dewers, Thomas A.; Rodriguez, Mark Andrew

    2013-03-01

    The Iowa Stored Energy Plant Agency selected a geologic structure at Dallas Center, Iowa, for evaluation of subsurface compressed air energy storage. The site was rejected due to lower-than-expected and heterogeneous permeability of the target reservoir, lower-than-desired porosity, and small reservoir volume. In an initial feasibility study, permeability and porosity distributions of flow units for the nearby Redfield gas storage field were applied as analogue values for numerical modeling of the Dallas Center Structure. These reservoir data, coupled with an optimistic reservoir volume, produced favorable results. However, it was determined that the Dallas Center Structure cannot be simplified to four zones of high, uniform permeabilities. Updated modeling using field and core data for the site provided unfavorable results for air fill-up. This report presents Sandia National Laboratories' petrologic and petrophysical analysis of the Dallas Center Structure that aids in understanding why the site was not suitable for gas storage.

  13. High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

    SciTech Connect

    2010-10-01

    GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demandthe most costly kind of power for utilitiesand with much more versatile performance.

  14. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    SciTech Connect

    Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

    2012-02-01

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be

  15. Siting-selection study for the Soyland Power Cooperative, Inc. , compressed-air energy-storage system (CAES)

    SciTech Connect

    Not Available

    1982-01-01

    A method used for siting a compressed air energy storage (CAES) system using geotechnical and environmental criteria is explained using the siting of a proposed 220 MW water-compensated CAES plant in Illinois as an example. Information is included on the identification and comparative ranking of 28 geotechnically and environmental sites in Illinois, the examination of fatal flaws, e.g., mitigation, intensive studies, costly studies, permit denials, at 7 sites; and the selection of 3 sites for further geological surveying. (LCL)

  16. Energy Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  17. Energy Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  18. Energy Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  19. Materials for Energy Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for Energy Storage - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  20. Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Development Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated...

  1. electric energy storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  2. energy storage development

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  3. energy storage deployment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  4. Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's <a href="http://arpa-e.energy.gov/">Advanced Research Projects Agency-Energy (ARPA-E)</a>, energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. <a href="http://energy.gov/articles/energy-storage-key-reliable-clean-electricity-supply">Learn more</a>. Energy storage

  5. Energy Storage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size. Benefits Make Renewable Energy Viable Allow for intermittent energy...

  6. Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment

    SciTech Connect

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

  7. Energy Storage | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Leading the charge in energy storage R&D Argonne National Laboratory is a global leader in the development of advanced energy storage technologies and has a portfolio of more than 125 patented advanced cathode, anode, electrolyte and additive components for lithium-ion, llithium-air, lithium-sulfur, sodium-ion, and flow batteries. Employing some of the most respected and cited battery researchers in the world, Argonne is the U.S. Department of Energy's lead laboratory for

  8. Underground Energy Storage Program. 1983 annual summary

    SciTech Connect

    Kannberg, L.D.

    1984-06-01

    The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

  9. NREL: Energy Storage - Energy Storage Systems Evaluation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed that extreme climates can have a dramatic impact on batteries and energy storage systems. Graph with numerous plots showing battery capacity and resistance with drive time data spanning a two-year period. An NREL algorithm is being used to extract battery state-of-health information and degradation trends from BMW Mini-E

  10. National Energy Storage Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Grid Energy Storage Strategy Offered by the Energy Storage Subcommittee of the Electricity Advisory Committee Executive Summary Since 2008, there has been substantial progress in the development of electric storage technologies and greater clarity around their role in renewable resource integration, ancillary service markets, time arbitrage, capital deferral as well as other applications and services. These developments, coupled with the increased deployment of storage technologies

  11. NREL: Energy Storage - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage News Keep up-to-date with NREL energy storage activities, research, and developments. November 4, 2016 NREL Technologies Honored at R&D 100 Awards Ceremony Research teams honored for advances in residential buildings, energy storage testing and power inverters November 1, 2016 NREL Issued Patent for Award-Winning Isothermal Battery Calorimeters The National Renewable Energy Laboratory (NREL) was recently issued a patent for its R&D 100 Award-winning Isothermal Battery

  12. Energy Storage Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Storage Program Overview State Energy Advisory Board to EERE (STEAB) Mtg April 8, 2008 Georgianne H. Peek, PE Sandia National Laboratories 505-844-9855, ghpeek@sandia.gov www.sandia.gov/ess Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE AC04-94AL85000. DOE Energy Storage Program Mission: Develop advanced electricity storage and PE

  13. EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California

    Energy.gov [DOE]

    DOE is preparing this EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California.

  14. EA-1751: Smart Grid, New York State Gas & Electric, Compressed Air Energy Storage Demonstration Plant, Near Watkins Glen, Schuyler County, New York

    Energy.gov [DOE]

    DOE will prepare an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of a compressed air energy storage demonstration plant in Schuyler County, New York.

  15. HEATS: Thermal Energy Storage

    SciTech Connect

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  16. Thermal Energy Storage

    SciTech Connect

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  17. Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can

  18. Energy Storage Systems

    SciTech Connect

    Conover, David R.

    2013-12-01

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  19. Hydrogen Energy Storage: Grid and Transportation Services

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Structure / 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources

  20. Compressed Air Storage Strategies; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9 * August 2004 Industrial Technologies Program Suggested Actions * Review the plant's compressed air demand patterns to determine whether storage would be benefcial. * Examine the ...

  1. Pumped-Storage Hydropower Shows Promise for Boosting Energy Storage...

    Energy Saver

    Pumped-Storage Hydropower Shows Promise for Boosting Energy Storage Pumped-Storage Hydropower Shows Promise for Boosting Energy Storage August 23, 2016 - 10:45am Addthis ...

  2. NREL: Energy Storage - Energy Storage Safety

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Safety To guarantee electric-drive vehicle (EDV) safety on par with that of conventional petroleum-fueled vehicles, the automotive industry has turned to NREL to develop new materials, designs, control strategies, and testing protocols to safeguard drivers and passengers-while optimizing battery performance and cost. Although all car batteries are required to pass a wide variety of safety tests and certifications, and more than 99% of the lithium-ion (Li-ion) devices used for EDV energy storage

  3. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Office of Environmental Management (EM)

    Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the ...

  4. Thermochemical Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermochemical Energy Storage Overview on German, and European R&D Programs and the work carried out at the German Aerospace Center DLR Dr. Christian Sattler christian.sattler@dlr....

  5. Sandia Energy Energy Storage Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    feed 0 Bay-Area National Labs Team to Tackle Long-Standing Automotive Hydrogen-Storage Challenge http:energy.sandia.govbay-area-national-labs-team-to-tackle-long-stan...

  6. Most Viewed Documents - Energy Storage, Conversion, and Utilization...

    Office of Scientific and Technical Information (OSTI)

    Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final ... with IPST, now at Cargill. Inc) (2008) Energy Saving Potentials and Air Quality ...

  7. Most Viewed Documents - Energy Storage, Conversion, and Utilization...

    Office of Scientific and Technical Information (OSTI)

    - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final ... with IPST, now at Cargill. Inc) (2008) Energy Saving Potentials and Air Quality ...

  8. Solar Thermochemical Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solar Thermochemical Energy Storage Solar Thermochemical Energy Storage This PowerPoint slide deck accompanied a presentation by Dr. Keith Lovegrove of the IT Power Group at the ...

  9. Energy Storage Computational Tool | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Storage Computational Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Storage Computational Tool AgencyCompany Organization: Navigant Consulting...

  10. Energy storage connection system

    DOEpatents

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  11. Impacts of contaminant storage on indoor air quality: Model developmen...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Impacts of contaminant storage on indoor air quality: Model development Citation Details In-Document Search Title: Impacts of contaminant storage on indoor air...

  12. Energy Storage Components and Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  13. Underground-Energy-Storage Program, 1982 annual report

    SciTech Connect

    Kannberg, L.D.

    1983-06-01

    Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

  14. Inertial energy storage device

    DOEpatents

    Knight, Jr., Charles E.; Kelly, James J.; Pollard, Roy E.

    1978-01-01

    The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

  15. NREL: Energy Storage - Awards

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Awards R&D 100 2016 - 54 Years of Invention NREL's energy storage innovation has been recognized with numerous awards. R&D 100 Awards R&D 100 Awards are known in the research and development community as "the Oscars of Innovation." The work of NREL's energy storage team has been recognized with three of these top honors. Battery Internal Short-Circuit Device (2016) NREL Team: Matthew Keyser, Eric Darcy (NASA), Ahmad Pesaran, and Dirk Long Industry Partner: NASA NREL's

  16. Energy Storage Systems 2007 Peer Review - International Energy...

    Office of Environmental Management (EM)

    International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems ...

  17. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 9. Design approaches: CAES, Appendix C. Major mechanical equipment. Final report

    SciTech Connect

    Not Available

    1981-04-01

    This appendix documents the development of the design approach for the major mechanical equipment making up the Compressed Air Energy Storage (CAES) plant surface facilities. The major mechanical equipment includes the turbine-motor/generator, compressor train, intercooler/aftercooler system, and exhaust gas recuperator. The design criteria for each of these components is interrelated with, and dependent upon, each of the other components within the major mechanical equipment group. Careful consideration of this dependency has resulted in an overall design approach which satisfies the requirements of the CAES operational cycle while providing for a conservative component design.

  18. Energy Storage | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Storage Safety Strategic Plan Now Available Energy Storage Safety Strategic Plan Now Available December 23, 2014 - 10:25am Addthis The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan, which is now available for downloading,

  19. Superconducting magnetic energy storage

    SciTech Connect

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  20. NREL: Energy Storage - Publications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Publications Explore NREL's most recent and popular publications. A complete collection of NREL's transportation and energy storage publications can be found in the NREL Publications Database. Papers, Presentations, and Posters Fact sheets Papers, Presentations, and Posters 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994 2016 NREL Multiphysics Modeling Tools and ISC Device for Designing

  1. NREL: Energy Storage - Webmaster

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Energy Storage Home Thermal Management Computer-Aided Battery Engineering Safety Lifespan Systems Evaluation Materials Synthesis Publications News Awards Facilities Working with Us Did

  2. Maui energy storage study.

    SciTech Connect

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  3. Sandia Energy - New Mexico Renewable Energy Storage Task Force

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Renewable Energy Storage Task Force Home Infrastructure Security Renewable Energy Energy Partnership News News & Events Energy Storage Systems Energy Storage New Mexico Renewable...

  4. Energy Storage Technologies - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Marketing Summaries (137) ...

  5. Energy Storage & Power Electronics 2008 Peer Review- Energy Storage Systems (ESS) Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Storage Systems (ESS) Presentations from the 2008 Energy Storage and Power Electronics peer review.

  6. Energy Storage Systems 2007 Peer Review- International Energy Storage Program Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    International energy storage program presentations from the 2007 Energy Storage Systems (ESS) peer review.

  7. Energy storage for hybrid remote power systems

    SciTech Connect

    Isherwood, W., LLNL

    1998-03-01

    Energy storage can be a cost-effective component of hybrid remote power systems. Storage serves the special role of taking advantage of intermittent renewable power sources. Traditionally this role has been played by lead-acid batteries, which have high life-cycle costs and pose special disposal problems. Hydrogen or zinc-air storage technologies can reduce life-cycle costs and environmental impacts. Using projected data for advanced energy storage technologies, LLNL ran an optimization for a hypothetical Arctic community with a reasonable wind resource (average wind speed 8 m/s). These simulations showed the life-cycle annualized cost of the total energy system (electric plus space heating) might be reduced by nearly 40% simply by adding wind power to the diesel system. An additional 20 to 40% of the wind-diesel cost might be saved by adding hydrogen storage or zinc-air fuel cells to the system. Hydrogen produced by electrolysis of water using intermittent, renewable power provides inexpensive long-term energy storage. Conversion back to electricity with fuel cells can be accomplished with available technology. The advantages of a hydrogen electrolysis/fuel cell system include low life-cycle costs for long term storage, no emissions of concern, quiet operation, high reliability with low maintenance, and flexibility to use hydrogen as a direct fuel (heating, transportation). Disadvantages include high capital costs, relatively low electrical turn-around efficiency, and lack of operating experience in utility settings. Zinc-air fuel cells can lower capital and life-cycle costs compared to hydrogen, with most of the same advantages. Like hydrogen systems, zinc-air technology promises a closed system for long-term storage of energy from intermittent sources. The turn around efficiency is expected to exceed 60%, while use of waste heat can potentially increase overall energy efficiency to over 80%.

  8. Grid Applications for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity

  9. Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  10. Flywheel energy storage workshop

    SciTech Connect

    O`Kain, D.; Carmack, J.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  11. EnStorage Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    to: navigation, search Name: EnStorage Inc Place: Israel Zip: 30900 Product: Israel-based energy storage technology developer, developing a regenerative fuel cell energy storage...

  12. Ultrafine Hydrogen Storage Powders - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Ultrafine Hydrogen Storage Powders Ames Laboratory Contact AMES ...

  13. Hydrogen Energy Storage for Grid and Transportation Services Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and Industry Canada held a Hydrogen Energy Storage for Grid and Transportation Services Workshop on May 14-15, 2014, in Sacramento, California. The workshop was hosted by the National Renewable Energy Laboratory (NREL) and the California Air Resources Board (CARB) to identify challenges, benefits, and

  14. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  15. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Energy.gov [DOE] (indexed site)

    needed. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report (154.63 KB) More Documents & Publications Value of a Smart Grid System TEC Working Group Topic Groups ...

  16. Thermochemical Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermochemical Energy Storage Thermochemical Energy Storage This presentation summarizes the introduction given by Christian Sattler during the Thermochemical Energy Storage Workshop on January 8, 2013. tces_workshop_2013_sattler.pdf (2.76 MB) More Documents & Publications Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications Reducing c-Si Module Operating Temperature via PV Packaging Components Baseload CSP Generation Integrated with Sulfur-Based

  17. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    SciTech Connect

    Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

    2009-11-01

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

  18. Article for thermal energy storage

    DOEpatents

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  19. EPRI Energy Storage Talking Points

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    generation such as renewables, and reducing the strain on conventional generators. * Energy storage may provide fast ... providing temporary local sources of electricity, augmenting ...

  20. NREL: Transportation Research - Energy Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power electronics controller, and heat ...

  1. Automotive Energy Storage Systems 2015

    Energy.gov [DOE]

    Automotive Energy Storage Systems 2015, the ITB Group’s 16th annual technical conference, was held from March 4–5, 2015, in Novi, Michigan.

  2. Aquifer thermal energy storage. International symposium: Proceedings

    SciTech Connect

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  3. Superconducting energy storage

    SciTech Connect

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  4. Energy Storage & Power Electronics 2008 Peer Review - Energy...

    Energy Saver

    Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE ...

  5. Air Liquide Hydrogen Energy | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydrogen Energy Jump to: navigation, search Logo: Air Liquide Hydrogen Energy Name: Air Liquide Hydrogen Energy Address: 6, Rue Cognacq-Jay Place: Paris, France Zip: 75321 Sector:...

  6. NV Energy Electricity Storage Valuation

    SciTech Connect

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  7. Hydrogen Energy Storage: Grid and Transportation Services Workshop Proceedings

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Structure / 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources

  8. Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 2: Volume 2 of 3. Characterize and explore potential sites and prepare research and development plan

    SciTech Connect

    1980-12-01

    The characteristics of sites in Indiana and Illinois which are being investigated as potential sites for compressed air energy storage power plants are documented. These characteristics include geological considerations, economic factors, and environmental considerations. Extensive data are presented for 14 specific sites and a relative rating on the desirability of each site is derived. (LCL)

  9. Panel 3, Electrolysis for Grid Energy Storage

    Energy.gov [DOE] (indexed site)

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM ...

  10. Storage Water Heaters | Department of Energy

    Energy Saver

    Storage Water Heaters Storage Water Heaters Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy ...

  11. Energy Storage Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency ...

  12. Energy Storage Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  13. Energy Storage Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  14. Energy Storage Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  15. Energy Storage Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  16. Solar Thermochemical Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermochemical Energy Storage Solar Thermochemical Energy Storage This PowerPoint slide deck accompanied a presentation by Dr. Keith Lovegrove of the IT Power Group at the 2013 SunShot TCES Workshop. It is focused on solar thermochemical energy storage and presents lessons learned from 40 years of investigation in Australia. tces_workshop_2013_lovegrove.pdf (5.3 MB) More Documents & Publications 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power 2014 SunShot Initiative Peer

  17. Thermal energy storage apparatus

    SciTech Connect

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  18. Metal-Air Battery - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Metal-Air Battery Battelle Memorial Institute Contact BMI About This Technology Technology Marketing SummaryThis technology features cathodes for use in open electrochemical cells and devices comprising the cathodes and open electrochemical cells.DescriptionThe open electrochemical cells generally comprise a cathode, an electrolyte, and an anode. One example cathode comprises a catalyst, an electronic conductor and a hydrophobic

  19. Energy Storage: George Crabtree - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    October 18, 2016, Videos Energy Storage: George Crabtree George Crabtree, JCESR Director, discusses the importance of developing the next generation of batteries and how that could help transform transportation and the electricity grid.

  20. November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager...

  1. Lower-Energy Energy Storage System (LEESS) Component Evaluation...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Lower-Energy Energy Storage System (LEESS) Component Evaluation Citation Details In-Document Search Title: Lower-Energy Energy Storage System (LEESS) Component ...

  2. Energy Storage Program Planning Document (2011) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PDF icon Energy Storage Program Planning Document (2011) More Documents & Publications Progress in Grid Scale Flow Batteries Energy Storage Systems 2014 Peer Review Presentations - ...

  3. Analytic Challenges to Valuing Energy Storage

    SciTech Connect

    Ma, Ookie; O'Malley, Mark; Cheung, Kerry; Larochelle, Philippe; Scheer, Rich

    2011-10-25

    Electric grid energy storage value. System-level asset focus for mechanical and electrochemical energy storage. Analysis questions for power system planning, operations, and customer-side solutions.

  4. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy Saver

    : Poster Session Energy Storage Systems 2010 Update Conference Presentations - Day 3: Poster Session The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking ...

  5. Southern company energy storage study :

    SciTech Connect

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  6. NREL: Transportation Research - Energy Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power electronics controller, and heat exchangers. Blowout shows the image of an individual battery pack. NREL research is pointing the way toward affordable, high-performing, long-lasting batteries for the next generation of electric-drive vehicles. Researcher holding cables and standing in front of an open equipment chamber.

  7. Lih thermal energy storage device

    DOEpatents

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  8. Videos - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    April 22, 2015, Videos Beyond the Light Switch On this edition of Beyond the Light Switch, aired on PBS in April 2015, the program focuses on the electrification of the American economy - in transportation, shipping, airlines, even in the U.S. military and its importance to our national security. Scientific American's David Biello came to Argonne (34 min. into program) to discuss the research required to meet the nation's energy storage goals. Read More April 6, 2015, Videos Next Generation

  9. Grid Storage and the Energy Frontier Research Centers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  10. Electrochemical Energy Storage Research | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electrochemical Energy Storage Research Fact sheet describing Argonne's advanced battery research. PDF icon 561

  11. Sandia Energy Carbon Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Expansion of DOE-DOT Tight Oil Research Work http:energy.sandia.govexpansion-of-doe-dot-tight-oil-research-work http:energy.sandia.govexpansion-of-doe-dot-tight-oil-research...

  12. Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Clean Energy States Alliance Batteries, flywheels, above-ground compressed air, micro pumped hydro, and other forms of energy storage may be able to provide significant support to the integration of renewable energy in the United States. Public funding and support are critical to accelerate progress, achieve cost reductions, and encourage widespread deployment of these technologies. Overview The Energy Storage Technology Advancement Partnership (ESTAP) is a new, cooperative funding and

  13. NM Renewable Energy Storage Task Force

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  14. Electrochemical Energy Storage | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Electrochemical Energy Storage Electrochemical Energy Storage Efforts Electrochemical Energy Storage Efforts Electrochemical Energy Storage research and development programs span the battery technology field from basic materials research and diagnostics to prototyping and post-test analyses. Our multidisciplinary team of world-renowned researchers are working to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S.

  15. The Solar Storage Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Company Place: Palo Alto, California Zip: 1704 Product: US-based start-up developing energy production and storage systems. References: The Solar Storage Company1 This...

  16. National Hydrogen Storage Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    National Hydrogen Storage Project National Hydrogen Storage Project In July 2003, the Department of Energy (DOE) issued a "Grand Challenge" to the global scientific community for...

  17. NV energy electricity storage valuation :

    SciTech Connect

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader; Jin, Chunlian

    2013-06-01

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority ("BA") as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 ("Pay-for-performance"). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  18. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    DOEpatents

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  19. Electric utility applications of hydrogen energy storage systems

    SciTech Connect

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  20. Post regulation circuit with energy storage

    DOEpatents

    Ball, Don G.; Birx, Daniel L.; Cook, Edward G.

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply and provides energy storage. The charge regulation circuit according to the present invention provides energy storage without unnecessary dissipation of energy through a resistor as in prior art approaches.

  1. Matt Rogers on AES Energy Storage

    Energy.gov [DOE]

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide...

  2. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over...

  3. Energy Storage Success Stories - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Success Stories Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Marketing Summaries (137) Success Stories (3) Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Graphic of a full-grown

  4. Energy Conversion and Storage Program

    SciTech Connect

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  5. Batteries and Energy Storage Technology BEST | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Batteries and Energy Storage Technology BEST Jump to: navigation, search Name: Batteries and Energy Storage Technology (BEST) Place: United Kingdom Product: International quarterly...

  6. Ridge Energy Storage and Grid Services LP | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Storage and Grid Services LP Jump to: navigation, search Name: Ridge Energy Storage and Grid Services LP Place: Houston, Texas Zip: 77027 Product: Developer of compressed...

  7. Hydrogen Energy Storage for Grid and Transportation Services Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Workshop Convened by the U.S. Department of Energy and Industry Canada Hosted by the National Renewable Energy Laboratory and the California Air Resources Board Sheraton Grand Hotel, Sacramento, California, May 14-15, 2014 Workshop Goal: Identify challenges, benefits and opportunities for commercial hydrogen energy storage applications to support grid services, variable electricity generation, and hydrogen vehicles. Workshop Scope: A broad range of services from hydrogen storage systems in the

  8. Energy Department Releases Strategic Plan for Energy Storage Safety |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Strategic Plan for Energy Storage Safety Energy Department Releases Strategic Plan for Energy Storage Safety December 23, 2014 - 10:16am Addthis Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy Reliability I am pleased to announce that we have just released the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that addresses the range of grid-scale, utility, community, and residential

  9. Hydrogen Storage Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage (955.88 KB) More Documents & Publications US DRIVE Hydrogen Storage Technical Team Roadmap Hydrogen & Our Energy Future

  10. energy storage | OpenEI Community

    OpenEI (Open Energy Information) [EERE & EIA]

    and Energy Efficiency. Links: Big Clean Data group on linkedin Big Data Concentrated Solar Power DataAnalysis energy efficiency energy storage expert systems machine learning...

  11. Advanced research in solar-energy storage

    SciTech Connect

    Luft, W.

    1983-01-01

    The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  12. Prestressed elastomer for energy storage

    DOEpatents

    Hoppie, Lyle O.; Speranza, Donald

    1982-01-01

    Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

  13. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM POWER INC. ENERGY STORAGE | CLEAN FUEL Positioned well...... Energy Storage: * Pioneers of HES / P2G initiative in CA * Board member of CHBC - Title sponsor at Spring summit, 5 th May in Long beach * Committee member CHBC HES * Member of FCHEA, CHFCA, OFCC, Clean Fuel: * Founder member of H 2 USA and H 2 FIRST *

  14. November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 3 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 1, 2013 - 5:00pm Addthis On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. The webinar will discuss Duke

  15. Membranes for Reverse-Organic Air Separations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Membranes for Reverse-Organic Air Separations Membranes for Reverse-Organic Air Separations New Membranes Use Reverse Separation to Reduce Pollutant Emissions Many industrial applications need a process to separate pollutants known as volatile organic compounds (VOCs) from air in order to protect the environment and save energy. One such application is the venting of vapor from underground storage tanks (UST) used in gasoline storage and dispensing. These vapors, which can build up and create

  16. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy Saver

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  17. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  18. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  19. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Environmental Management (EM)

    1 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  20. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  1. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Environmental Management (EM)

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  2. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  3. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Environmental Management (EM)

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  4. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Environmental Management (EM)

    4 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  5. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  6. Electrochemical Energy Storage Technical Team Roadmap

    SciTech Connect

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  7. Microwavable thermal energy storage material

    DOEpatents

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  8. Microwavable thermal energy storage material

    DOEpatents

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  9. Microsoft Word - OE_Energy_Storage_Program_Plan_Feburary_2011v3...

    Energy.gov [DOE] (indexed site)

    Back cover: 8MW SCE A123 Lithium-ion storage at Tehachapi wind farm; 25MW Primus Power flow battery at Modesto, California; 110MW compressed air energy storage in McIntosh, ...

  10. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  11. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  12. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  13. Flywheel Energy Storage Device for Hybrid and Electric Vehicles...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Flywheel Energy Storage Device for Hybrid and Electric Vehicles Oak Ridge National Laboratory Contact ORNL About ...

  14. US DRIVE Electrochemical Energy Storage Technical Team Roadmap...

    Office of Environmental Management (EM)

    Electrochemical Energy Storage Technical Team Roadmap US DRIVE Electrochemical Energy Storage Technical Team Roadmap This U.S. DRIVE electrochemical energy storage roadmap ...

  15. Demand Response and Energy Storage Integration Study | Department...

    Office of Environmental Management (EM)

    and Energy Storage Integration Study Demand Response and Energy Storage Integration Study Demand response and energy storage resources present potentially important sources of bulk ...

  16. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Environmental Management (EM)

    Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is ...

  17. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Office of Environmental Management (EM)

    Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies ...

  18. Smart Grid Regional and Energy Storage Demonstration Projects...

    Office of Environmental Management (EM)

    Regional and Energy Storage Demonstration Projects: Awards Smart Grid Regional and Energy Storage Demonstration Projects: Awards List of Smart Grid Regional and Energy Storage ...

  19. Energy storage device with large charge separation

    DOEpatents

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  20. Flywheel Energy Storage technology workshop

    SciTech Connect

    O`Kain, D.; Howell, D.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  1. Thermal energy storage program description

    SciTech Connect

    Reimers, E.

    1989-03-01

    The U.S. Department of Energy (DOE) has sponsored applied research, development, and demonstration of technologies aimed at reducing energy consumption and encouraging replacement of premium fuels (notably oil) with renewable or abundant indigenous fuels. One of the technologies identified as being able to contribute to these goals is thermal energy storage (TES). Based on the potential for TES to contribute to the historic mission of the DOE and to address emerging energy issues related to the environment, a program to develop specific TES technologies for diurnal, industrial, and seasonal applications is underway. Currently, the program is directed toward three major application targets: (1) TES development for efficient off-peak building heating and cooling, (2) development of advanced TES building materials, and (3) TES development to reduce industrial energy consumption.

  2. Air Force Renewable Energy Programs

    Energy.gov [DOE]

    Presentation covers Air Force Renewable Energy Programs and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  3. Energy Storage Systems 2007 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 Peer Review Energy Storage Systems 2007 Peer Review The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. The agenda and ESS program overview presentation are below. Presentation categories Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer

  4. Carbon Capture and Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and technology. Fossil Energy Research Benefits - Carbon Capture and Storage (723.49 KB) More Documents & Publications Microsoft Word - PSRP Updates 6-25-10_v2 Fossil Energy FY 2013 Budget-in-Brief A Legacy of Benefit

  5. Charging Graphene for Energy Storage

    SciTech Connect

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  6. QER - Comment of Energy Storage Association | Department of Energy

    Energy Saver

    Storage Association QER - Comment of Energy Storage Association From: Katherine Hamilton katherine@38northsolutions.com on behalf of Katherine Hamilton k.hamilton@energystorage....

  7. Applications of cogeneration with thermal energy storage technologies

    SciTech Connect

    Somasundaram, S.; Katipamula, S.; Williams, H.R.

    1995-03-01

    The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.

  8. Pumped Storage Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pumped Storage Hydropower Pumped Storage Hydropower In addition to traditional hydropower, pumped-storage hydropower (PSH)-A type of hydropower that works like a battery, pumping water from a lower reservoir to an upper reservoir for storage and later generation-is an important piece of DOE's renewable energy portfolio because it acts as a utility-scale grid storage technology. DOE's Water Power Program plays a supportive role in demonstrating the benefits of PSH and its role in our nation's

  9. Hydrogen for Energy Storage Analysis Overview (Presentation)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  10. Charting the Future of Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the Future of Energy Storage Charting the Future of Energy Storage August 7, 2013 - 2:53pm Addthis Watch the video above to learn how Urban Electric Power is creating a market for energy storage technology. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs What are the key facts? As we continue to incorporate more renewable energy into the grid, energy storage technologies will be key to providing a

  11. Project Profile: CSP Energy Storage Solutions - Multiple Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Concentrating Solar Power Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared Project Profile: CSP Energy Storage Solutions - Multiple Technologies ...

  12. Energy Department Releases Grid Energy Storage Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Grid Energy Storage Report Energy Department Releases Grid Energy Storage Report December 12, 2013 - 9:48am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to a cleaner, more secure energy future, Energy Secretary Ernest Moniz today released the Energy Department's Grid Energy Storage report to the members of the Senate Energy and Natural Resources Committee. The report was commissioned at the request of Senator Ron Wyden,

  13. Panel 4, Hydrogen Energy Storage Policy Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage fields are the largest energy storage resource in the region Goleta Playa Del Rey Honor Rancho Aliso Canyon 2 And There's a Fully Built Delivery System N S E W LINE 235 LINE 335 LEGEND NOT TO SCALE RECIPROCATING COMPRESSOR STATION CENTRIFUGAL COMPRESSOR STATION PRESSURE LIMITING STATION STORAGE FIELD 4/00 P AC IF IC GA S

  14. FY06 DOE Energy Storage Program PEER Review

    Energy.gov [DOE] (indexed site)

    7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John D. Boyes Sandia National Laboratories Mission Mission Develop advanced electricity storage ...

  15. Test report : Milspray Scorpion energy storage device.

    SciTech Connect

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

  16. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the

  17. Battery storage for supplementing renewable energy systems

    SciTech Connect

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  18. Microsoft Word - Grid Energy Storage December 2013

    Energy.gov [DOE] (indexed site)

    Energy Storage U.S. Department of Energy December 2013 Acknowledgements We would like to acknowledge the members of the core team dedicated to developing this report on grid energy ...

  19. Aire Valley Environmental | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Aire Valley Environmental Jump to: navigation, search Name: Aire Valley Environmental Place: United Kingdom Product: Leeds-based waste-to-energy project developer. References: Aire...

  20. Energy Storage for the Power Grid

    SciTech Connect

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  1. Matt Rogers on AES Energy Storage

    ScienceCinema

    Rogers, Matt

    2016-07-12

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

  2. Energy Storage R&D and ARRA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Storage R&D and ARRA Energy Storage R&D and ARRA 2010 DOE Vehicle ... More Documents & Publications Hybrid Electric Systems Overview of Battery R&D Activities Overview of ...

  3. Battery energy storage market feasibility study

    SciTech Connect

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  4. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  5. Renewable Energy Interconnection and Storage - Technical Aspects...

    OpenEI (Open Energy Information) [EERE & EIA]

    Interconnection and Storage - Technical Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy...

  6. About - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The mission of JCESR, DOE's Batteries and Energy Storage Hub, is to overcome critical scientific and technical barriers and create transformative battery technology for ...

  7. Emerging Technologies: Energy Storage for PV Power

    SciTech Connect

    Ponoum, Ratcharit; Rutberg, Michael; Bouza, Antonio

    2013-11-30

    The article discusses available technologies for energy storage for photovoltaic power systems, and also addresses the efficiency levels and market potential of these strategies.

  8. Energy Storage for the Power Grid

    ScienceCinema

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2016-07-12

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  9. Hydrogen for Energy Storage Analysis Overview (Presentation)

    SciTech Connect

    Steward, D. M.; Ramsden, T.; Harrison, K.

    2010-06-01

    Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

  10. Panel 4, Hydrogen Energy Storage Policy Considerations

    Energy.gov [DOE] (indexed site)

    COASTAL SYSTEM (120 MMCFD) VALLEY SYSTEM (150 MMCFD) RNG Pipeline and Storage Pathways WWTP Biogas Collection Organic Matter Landfill Biogas Collection Gasification 22% Energy Loss ...

  11. Analytic Challenges to Valuing Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    analytical task. Market Conditions - Markets are continually evolving, and the long-term value of energy storage is difficult to capture. Niche markets have emerged, but...

  12. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Energy.gov [DOE] (indexed site)

    The Energy Storage Technology Advancement Partnership (ESTAP) is a cooperative funding and information-sharing partnership between DOE and interested states that aims to accelerate ...

  13. Sorbent Storage Materials | Department of Energy

    Office of Environmental Management (EM)

    ... Dalton Transactions, 2008; pp. 5113-5131. Chahine, R.; Bose, T.K. "Characterization and Optimization of Adsorbents for Hydrogen Storage." Hydrogen Energy Progress XI: Proceedings ...

  14. Energy Storage - Advanced Technology Development Merit Review...

    Energy Saver

    Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development Merit Review This document is a summary of the evaluation and comments provided by the ...

  15. Affiliates - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The program includes nearly one-hundred stakeholder organizations involved in electrical energy storage, ranging from chemical and material manufacturers to battery system ...

  16. Energy Storage for the Power Grid

    SciTech Connect

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  17. Flywheel energy storage system focus of display

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Flywheel Energy Storage System Focus of Display Demonstration to feature advanced, solar-powered replacement for batteries For more information contact: e:mail: Public Affairs ...

  18. Energy Storage Demonstration Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects created with funding from the Smart Grid Demonstration Project, funded through the American Recovery and Reinvestment Act. Energy Storage Demonstration Project Locations (86.17 KB) More Documents & Publications Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Smart Grid Demonstration Project

  19. Energy Storage Safety Strategic Plan Now Available | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage Safety Strategic Plan Now Available Energy Storage Safety Strategic Plan Now Available December 23, 2014 - 10:25am Addthis The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan, which is now available for downloading,

  20. 2014 Energy Storage Peer Review - Preliminary Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Storage Peer Review - Preliminary Agenda 2014 Energy Storage Peer Review - Preliminary Agenda The 2014 Energy Storage Peer Review will be held September 19-19, 2014, in Washington, DC. The event is free but registration is required by Friday, September 5, 2014. This year's review will include the latest innovations across all spectrums of energy storage, spanning materials research all the way to the safe deployment of systems. OE's Dr. Imre Gyuk will be an opening speaker, providing the

  1. Policy Questions on Energy Storage Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Policy Questions on Energy Storage Technologies Policy Questions on Energy Storage Technologies Memorandum from the Electricity Advisory Committee to Secretary Chu and Assistant Secretary Patricia Hoffman on policy questions on energy storage technologies Policy Questions on Energy Storage Technologies (100.03 KB) More Documents & Publications Electricity Advisory Committee Meeting, October 29, 2010: Minutes Electricity Advisory Committee Meeting, May 20, 2008: Minutes Final Agenda, March 17

  2. Grid Applications for Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Applications for Energy Storage Grid Applications for Energy Storage Presentation by Joe Eto, Lawrence Berkeley National Laboratory, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012_eto.pdf (3.49 MB) More Documents & Publications DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Day 1 Presentations SunShot Vision Study:

  3. Fact Sheet: Energy Storage Database (October 2012) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Database (October 2012) Fact Sheet: Energy Storage Database (October 2012) DOE and Sandia National Laboratories are developing a database of energy storage projects and policies that will present current information about energy storage projects worldwide and U.S. energy storage policy in an easy-to-use and intuitive format. Users will be able to search by region, technology, service territory, benefit stream, and other project or policy statistics. For more information about how OE performs

  4. Battery and Thermal Energy Storage | Energy Systems Integration | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Battery and Thermal Energy Storage Not long ago, the mantra among electric utilities was that "you can't store electricity"-instantaneous power production had to nearly equal demand. But NREL research is changing this belief, demonstrating the high performance of grid-integrated battery and thermal energy storage technologies. Photo of a battery energy storage system NREL examines how best to integrate these energy storage technologies into the electrical grid and potentially into

  5. June 2014 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information June 2014 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 337 Seventh Edition Fuel Cell Handbook NETL (2004) 118 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 76 Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

  6. March 2014 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information March 2014 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 291 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 85 Seventh Edition Fuel Cell Handbook NETL (2004) 68 Separation of heavy metals: Removal from industrial wastewaters and

  7. March 2015 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information March 2015 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 1019 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L. (1993) 229 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005)

  8. Most Viewed Documents for Energy Storage, Conversion, and Utilization:

    Office of Scientific and Technical Information (OSTI)

    December 2014 | OSTI, US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Energy Storage, Conversion, and Utilization: December 2014 Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 322 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 107 Separation of heavy metals: Removal from industrial wastewaters and contaminated soil Peters, R.W.; Shem, L.

  9. Flow Cells for Energy Storage Workshop Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Overview Flow Cells for Energy Storage Workshop Overview Overview presentation by Adam Weber, Lawrence Berkeley National Laboratory, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012_overview.pdf (236.9 KB) More Documents & Publications Meeting Agenda Flow Cells for Energy Storage Workshop Summary Report Flow Batteries: A Historical Perspective

  10. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    DOEpatents

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  11. Hybrid Radical Energy Storage Device - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Hybrid Radical Energy Storage Device National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary In order to provide a cost effective, environmentally benign and efficient means for storing electric energy from renewable sources, breakthroughs are needed in rechargeable battery technology that will substantially increase energy and power densities.

  12. Lithium Air Electrodes - Energy Innovation Portal

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lithium Air Electrodes Pacific Northwest National Laboratory Contact PNNL About This Technology A comparison chart illustrates that Li-Air electrodes offer the highest energy density, second to gasoline. A comparison chart illustrates that Li-Air electrodes offer the highest energy density, second to gasoline. Comparing metal air batteries, Li-air delivers the highest specific energy. Comparing metal air batteries, Li-air delivers the highest specific energy. Technology Marketing Summary With

  13. Microsoft Word - OE_Energy_Storage_Program_Plan_Feburary_2011v3[2].docx

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Images-Front cover: 20MW Beacon Power flywheel storage facility; Ameren's 440MW pumped-hydro storage at Taum Sauk, Missouri. Back cover: 8MW SCE / A123 Lithium-ion storage at Tehachapi wind farm; 25MW Primus Power flow battery at Modesto, California; 110MW compressed air energy storage in McIntosh, Alabama. TABLE OF CONTENTS Executive Summary............................................................................................................. 1 1.0 Introduction to the OE Storage Program

  14. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    SciTech Connect

    Huff, Georgianne; Tong, Nellie; Fioravanti, Richard; Gordon, Paul; Markel, Larry; Agrawal, Poonum; Nourai, Ali

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  15. Design and installation manual for thermal energy storage

    SciTech Connect

    Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

    1980-01-01

    The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

  16. Presentations - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Presentations To view notes or play video, please download. JCESR Presentations at the 228th Electrochemical Society Meeting, Phoenix, AZ (10-11-15) The Joint Center for Energy Storage Research (JCESR): A New Paradigm for Energy Storage Research George Crabtree, JCESR Director Overcoming Key Challenges for a Viable Lithium-Sulfur Transportation Battery Kevin Zavadil, JCESR Thrust PI, Chemical Transformation Pathways to Non-aqueous Redox Flow (NRF) Batteries for Grid Storage Fikile Brushett,

  17. New York's Energy Storage System Gets Recharged | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    York's Energy Storage System Gets Recharged New York's Energy Storage System Gets Recharged August 2, 2010 - 1:18pm Addthis Matt Rogers, Senior Advisor to Secretary Chu, explain why grid frequency regulation matters Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this mean for me? AES Storage in New York got a $17.1M conditional loan guarantee to provide a more stable transmission grid. When thinking of clean technologies, energy storage might not be the

  18. Joint Center for Energy Storage Research

    SciTech Connect

    Eric Isaacs

    2012-11-30

    The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

  19. ENERGY STAR Webinar: Energy Savings Plus Health: Indoor Air Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Savings Plus Health: Indoor Air Quality Guidelines for School Building Upgrades ENERGY STAR Webinar: Energy Savings Plus Health: Indoor Air Quality Guidelines for School...

  20. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Energy.gov [DOE] (indexed site)

    On November 7, 2012, Clean Energy States Aliance (CESA) hosted a webinar with Connecticut DEEP in conjuction with Sandia National Lab and DOE on State and Federal Energy Storage ...

  1. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and...

  2. General Purpose Energy Storage (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    General Purpose Energy Storage Citation Details In-Document Search Title: General Purpose Energy Storage You are accessing a document from the Department of Energy's (DOE) ...

  3. Purchasing Energy-Efficient Residential Electric Storage Water...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy-Efficient Residential Electric Storage Water Heaters Purchasing Energy-Efficient Residential Electric Storage Water Heaters The Federal Energy Management Program (FEMP) ...

  4. Hydrogen Energy Storage for Grid and Transportation Services...

    Energy Saver

    Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and Industry ...

  5. Panel 4, CPUCs Energy Storage Mandate

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ix CPUC's Energy Storage Mandate: Hydrogen Energy Storage Workshop May 15, 2014 Melicia Charles California Public Utilities Commission ix Overview of CPUC Energy Oversight * The ...

  6. Underground Energy Storage Program: 1981 annual report. Volume I. Progress summary

    SciTech Connect

    Kannberg, L.D.

    1982-06-01

    This is the 1981 annual report for the Underground Energy Storage Program administered by the Pacific Northwest Laboratory for the US Department of Energy. The two-volume document describes all of the major research funded under this program during the period March 1981 to March 1982. Volume I summarizes the activities and notable progress toward program objectives in both Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). Major changes in program emphasis and structure are also documented.

  7. Lower-Energy Energy Storage System (LEESS) Component Evaluation (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Lower-Energy Energy Storage System (LEESS) Component Evaluation Citation Details In-Document Search Title: Lower-Energy Energy Storage System (LEESS) Component Evaluation Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs) and electrochemical double-layer capacitor (EDLC) modules have the potential for improved life, superior cold temperature performance, and lower long-term cost projections relative to

  8. Tips: Air Ducts | Department of Energy

    Energy Saver

    Tips: Air Ducts Tips: Air Ducts Air ducts: out of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy ...

  9. Tips: Air Ducts | Department of Energy

    Energy Saver

    Air Ducts Tips: Air Ducts Air ducts: out of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and ...

  10. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO₂ nanowires, which are a promising replacement for RuO₂, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm⁻¹, a maximum energy density of approximately 15 Jcm⁻³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m⁻¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  11. Sandia Energy - Carbon Capture & Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Carbon Capture & Storage Home Carbon Capture High-Pressure and High-Temperature Neutron Reflectometry Cell for Solid-Fluid Interface Studies Atomic layer deposition (ALD) research...

  12. Videos - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    December 3, 2012, Videos Press Conference on the Batteries and Energy Storage Hub Announcement: November 30, 2012 UChicago President Robert Zimmer was joined by U.S. Secretary of Energy Steven Chu on November 30, 2012, to announce that a multi-partner team led by Argonne National Laboratory was selected for an award of up to $120 million over five years to establish a new Batteries and Energy Storage Hub, the Joint Center for Energy Storage (JCESR). Read More November 30, 2012, Videos Joint

  13. Underground Energy Storage Program. 1984 annual summary

    SciTech Connect

    Kannberg, L.D.

    1985-06-01

    Underground Energy Storage (UES) Program activities during the period from April 1984 through March 1985 are briefly described. Primary activities in seasonal thermal energy storage (STES) involved field testing of high-temperature (>100/sup 0/C (212/sup 0/F)) aquifer thermal energy storage (ATES) at St. Paul, laboratory studies of geochemical issues associated with high-temperatures ATES, monitoring of chill ATES facilities in Tuscaloosa, and STES linked with solar energy collection. The scope of international activities in STES is briefly discussed.

  14. Most Viewed Documents - Energy Storage, Conversion, and Utilization | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. () Review of air flow measurement techniques McWilliams, Jennifer (2002) Building a secondary containment system Broder, M.F. (1994) Cost benefit analysis of the night-time ventilative cooling in

  15. May 20 ESTAP Webinar: Commissioning Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ESTAP Webinar: Commissioning Energy Storage May 20 ESTAP Webinar: Commissioning Energy Storage May 14, 2014 - 1:31pm Addthis On Tuesday, May 20 from 1 - 2 p.m. ET, Clean Energy State Alliance will host a webinar on the process of commissioning an energy storage system. Speakers include Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability, as well as Dan Borneo from Sandia, Matt Galland from Sunpower, and Laurie B. Florence from UL. The

  16. Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  17. Fact Sheet: Advanced Implementation of Energy Storage Technologies -

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Community Energy Storage for Grid Support (August 2013) | Department of Energy Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies - Community Energy Storage for Grid Support (August 2013) Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory. The CES is designed to improve electricity service to

  18. Energy Storage Safety Strategic Plan - December 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Safety Strategic Plan - December 2014 Energy Storage Safety Strategic Plan - December 2014 Energy storage is emerging as an integral component to a resilient and efficient grid through a diverse array of potential application. The evolution of the grid that is currently underway will result in a greater need for services best provided by energy storage, including energy management, backup power, load leveling, frequency regulation, voltage support, and grid stabilization. The increase in demand

  19. Power-to-Gas for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power-to-Gas for Energy Storage Rob Harvey Director, Energy Storage DOE Electrolytic Hydrogen Production Workshop National Renewable Energy Laboratory, Golden, CO - Feb 28, 2014 1 Integrate Renewables Renewable Gas Options 2 Power-to-Gas converts clean generation when it is not needed into renewable fuel, power or heat where and when it is needed Power-to-Gas Solution Surplus Power Industrial H2 Natural Gas Grid Clean Fuel Dispatchable Power Low Carbon Heating Electrolyzer Solar Power Wind Power

  20. Storage Gas Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas Water Heaters Storage Gas Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Water Heaters, Storage Gas -- v2.0 (106.02 KB) More Documents &

  1. Hydrogen Storage Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Related Links Hydrogen Storage Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links. DOE-Funded Hydrogen Storage Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and presentations from the latest

  2. Vehicle Technologies Office: 2013 Energy Storage R&D Progress...

    Office of Environmental Management (EM)

    Energy Storage R&D Progress Report, Sections 1-3 Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 1-3 The FY 2013 Progress Report for Energy Storage ...

  3. Flow Cells for Energy Storage Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Flow Cells for Energy Storage Workshop Flow Cells for Energy Storage Workshop The U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory (LBNL) held a Flow Cells for Energy Storage Workshop on March 7-8, 2012, at the Renaissance Hotel in Washington, D.C. Flow cells combine the unique advantages of batteries and fuel cells and can offer benefits for multiple energy storage applications. The purpose of the workshop was to understand the applied research and development (R&D)

  4. Energy Department Releases Grid Energy Storage Report | Department...

    Energy.gov [DOE] (indexed site)

    The Energy Department on December 12 released its Grid Energy Storage report to the members of the U.S. Senate Energy and Natural Resources Committee. The report identifies the ...

  5. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    SciTech Connect

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  6. Energy Storage Systems 2010 Update Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    0 Update Conference Energy Storage Systems 2010 Update Conference The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations are available through the individual session links. The agenda and list of

  7. MIMES: Multimodal Imaging of Materials for Energy Storage | Argonne...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    MIMES: Multimodal Imaging of Materials for Energy Storage MIMES: Multimodal Imaging of Materials for Energy Storage Project goals Li-ion batteries (LIB) have had a remarkable...

  8. Record-Setting Microscopy Illuminates Energy Storage Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Record-Setting Microscopy Illuminates Energy Storage Materials Print Thursday, 22 January 2015 12:10 X-ray microscopy...

  9. Webinar Presentation - Energy Storage in State RPS - Dec. 19...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presentation - Energy Storage in State RPS - Dec. 19, 2011 Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 Dr. Imre Gyuk of the Office of Electricity Delivery...

  10. New York Battery and Energy Storage Technology Consortium NY...

    OpenEI (Open Energy Information) [EERE & EIA]

    Battery and Energy Storage Technology Consortium NY BEST Jump to: navigation, search Name: New York Battery and Energy Storage Technology Consortium (NY-BEST) Place: Albany, New...

  11. Category:Smart Grid Projects - Energy Storage Demonstrations...

    OpenEI (Open Energy Information) [EERE & EIA]

    Smart Grid Projects - Energy Storage Demonstrations Jump to: navigation, search Smart Grid Energy Storage Demonstration Projects category. Pages in category "Smart Grid Projects -...

  12. Lignin Based Carbon Materials for Energy Storage Applications...

    Office of Scientific and Technical Information (OSTI)

    Book: Lignin Based Carbon Materials for Energy Storage Applications Citation Details In-Document Search Title: Lignin Based Carbon Materials for Energy Storage Applications The ...

  13. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials In-situ ...

  14. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials Vehicle ...

  15. Energy storage devices having anodes containing Mg and electrolytes...

    Office of Scientific and Technical Information (OSTI)

    Energy storage devices having anodes containing Mg and electrolytes utilized therein Title: Energy storage devices having anodes containing Mg and electrolytes utilized therein For ...

  16. Novel Molten Salts Thermal Energy Storage for Concentrating Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation This presentation ...

  17. Advanced Glass Materials for Thermal Energy Storage | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Glass Materials for Thermal Energy Storage Advanced Glass Materials for Thermal Energy Storage This presentation was delivered at the SunShot Concentrating Solar Power (CSP) ...

  18. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

  19. 2012 Annual Merit Review Results Report - Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2amr02.pdf (10.14 MB) More Documents & Publications 2011 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage ...

  20. 2014 Annual Merit Review Results Report - Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Storage Technologies 2014 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2014amr02.pdf ...

  1. 2011 Annual Merit Review Results Report - Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Storage Technologies 2011 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2011amr02.pdf ...

  2. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  3. Methods and energy storage devices utilizing electrolytes having...

    Office of Scientific and Technical Information (OSTI)

    Methods and energy storage devices utilizing electrolytes having surface-smoothing additives Title: Methods and energy storage devices utilizing electrolytes having ...

  4. U.S. CHP Installations Incorporating Thermal Energy Storage ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CHP Installations Incorporating Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC), September 2003 U.S. CHP Installations Incorporating Thermal Energy Storage (TES) ...

  5. SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR...

    Energy.gov [DOE] (indexed site)

    The Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) program develops and demonstrates integrated photovoltaic (PV) and energy storage solutions that ...

  6. Purchasing Energy-Efficient Residential Gas Storage Water Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Gas Storage Water Heaters Purchasing Energy-Efficient Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for ...

  7. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation ...

  8. A National Grid Energy Storage Strategy - Electricity Advisory...

    Energy Saver

    A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 The ...

  9. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Energy Saver

    7 Energy Storage Systems 2014 Peer Review Presentations - Session 7 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. ...

  10. 9-26 QER Report: Energy Transmission, Storage, and Distribution...

    Energy Saver

    -26 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 QER Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 ...

  11. Webinar Presentation - Energy Storage in State RPS - Dec. 19...

    Energy Saver

    Presentation - Energy Storage in State RPS - Dec. 19, 2011 Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 Dr. Imre Gyuk of the Office of Electricity Delivery ...

  12. EAC Recommendations on National Distributed Energy Storage in...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    EAC Recommendations on National Distributed Energy Storage in the Electric Grid Now Available EAC Recommendations on National Distributed Energy Storage in the Electric Grid Now ...

  13. Energy Department Awards $7 Million to Advance Hydrogen Storage...

    Office of Environmental Management (EM)

    Million to Advance Hydrogen Storage Systems Energy Department Awards 7 Million to Advance Hydrogen Storage Systems May 19, 2014 - 1:43pm Addthis The Energy Department today ...

  14. Energy Storage Systems 2006 Peer Review - Day 1 afternoon presentation...

    Energy Saver

    afternoon presentations Energy Storage Systems 2006 Peer Review - Day 1 afternoon presentations The 2006 Peer Review Meeting for the DOE Energy Storage Systems (ESS) Program was ...

  15. Energy Storage System Guide for Compliance with Safety Codes...

    Office of Environmental Management (EM)

    Guide for Compliance with Safety Codes and Standards 2016 Energy Storage System Guide for Compliance with Safety Codes and Standards 2016 Under the Energy Storage Safety Strategic ...

  16. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Energy Saver

    2 Energy Storage Systems 2014 Peer Review Presentations - Session 2 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. ...

  17. Energy Storage Systems 2006 Peer Review - Day 2 morning presentations...

    Office of Environmental Management (EM)

    morning presentations Energy Storage Systems 2006 Peer Review - Day 2 morning presentations The 2006 Peer Review Meeting for the DOE Energy Storage Systems (ESS) Program was held ...

  18. June 30 Webinar: Measuring Energy Storage System Performance...

    Energy Saver

    30 Webinar: Measuring Energy Storage System Performance: A GovernmentIndustry-Developed Protocol June 30 Webinar: Measuring Energy Storage System Performance: A Government...

  19. Energy Storage Systems 2006 Peer Review - Day 1 morning presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    morning presentations Energy Storage Systems 2006 Peer Review - Day 1 morning presentations The 2006 Peer Review Meeting for the DOE Energy Storage Systems (ESS) Program was held ...

  20. Extreme Temperature Energy Storage and Generation, for Cost and...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration Extreme Temperature Energy Storage and Generation, for Cost and Risk ...

  1. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3 Energy Storage Systems 2014 Peer Review Presentations - Session 3 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. ...

  2. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Office of Environmental Management (EM)

    National Lab Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): National Lab Projects The U.S. DOE Energy Storage Systems Program (ESS) ...

  3. Energy Storage Systems 2007 Peer Review - Economics Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Economics Presentations Energy Storage Systems 2007 Peer Review - Economics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September ...

  4. Energy Storage Systems 2014 Peer Review Presentations - Poster...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    8 Energy Storage Systems 2014 Peer Review Presentations - Poster Session 8 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on ...

  5. Project Profile: Novel Thermal Energy Storage Systems for Concentratin...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Storage Systems for Concentrating Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The ...

  6. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Energy Saver

    University Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 (Day 2): University Projects The U.S. DOE Energy Storage Systems Program (ESS) ...

  7. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Energy Saver

    1 Energy Storage Systems 2014 Peer Review Presentations - Session 11 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. ...

  8. The value of energy storage in decarbonizing the electricity...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The value of energy storage in decarbonizing the electricity sector Title The value of energy storage in decarbonizing the electricity sector Publication Type Journal Article Year ...

  9. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Energy.gov [DOE] (indexed site)

    (1.95 MB) NitrogenOxygen Battery, A Transformational Architecture for Large Scale Energy Storage - Frank Delnick, Sandia (828.82 KB) Magnetic Composites for Energy Storage ...

  10. Energy Storage Systems 2014 Peer Review Presentations - Poster...

    Office of Environmental Management (EM)

    4 Energy Storage Systems 2014 Peer Review Presentations - Poster Session 4 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on ...

  11. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Office of Environmental Management (EM)

    9 Energy Storage Systems 2014 Peer Review Presentations - Session 9 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. ...

  12. Project Profile: Thermochemical Energy Storage for Stirling CSP...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Storage for Stirling CSP Systems Project Profile: Thermochemical Energy Storage for Stirling CSP Systems Pacific Northwest National Laboratory logo Pacific Northwest ...

  13. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Energy Saver

    6 Energy Storage Systems 2014 Peer Review Presentations - Session 6 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. ...

  14. Energy Storage Systems 2007 Peer Review - Utility & Commercial...

    Energy Saver

    Utility & Commercial Applications Presentations Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications Presentations The U.S. DOE Energy Storage Systems ...

  15. Energy Storage Systems 2007 Peer Review - Innovations in ESS...

    Energy Saver

    Innovations in ESS Presentations Energy Storage Systems 2007 Peer Review - Innovations in ESS Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer ...

  16. Energy Storage Systems 2007 Peer Review - Power Electronics Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Power Electronics Presentations Energy Storage Systems 2007 Peer Review - Power Electronics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer ...

  17. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Storage Systems 2014 Peer Review Presentations - Session 1 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. ...

  18. Project Profile: Innovative Thermal Energy Storage for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo ...

  19. Fact Sheet: Codes and Standards for Energy Storage System Performance...

    Energy Saver

    Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet: Codes and Standards for Energy Storage System Performance and Safety (June 2014) The ...

  20. Fact Sheet Available: Codes and Standards for Energy Storage...

    Energy Saver

    Fact Sheet Available: Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet Available: Codes and Standards for Energy Storage System ...

  1. Project Profile: High-Efficiency Thermal Energy Storage System...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High-Efficiency Thermal Energy Storage System for CSP Project Profile: High-Efficiency Thermal Energy Storage System for CSP -- This project is inactive -- ANL logo Argonne ...

  2. Project Profile: Low-Cost Metal Hydride Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Metal Hydride Thermal Energy Storage System Project Profile: Low-Cost Metal Hydride Thermal Energy Storage System Savannah River National Laboratory logo -- This project is ...

  3. ARPA-E Announces $43 Million for Transformational Energy Storage...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    43 Million for Transformational Energy Storage Projects to Advance Electric Vehicle and Grid Technologies ARPA-E Announces 43 Million for Transformational Energy Storage Projects ...

  4. Cost analysis of energy storage systems for electric utility...

    Office of Scientific and Technical Information (OSTI)

    Cost analysis of energy storage systems for electric utility applications Citation Details In-Document Search Title: Cost analysis of energy storage systems for electric utility ...

  5. Value of Energy Storage for Grid Applications (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Value of Energy Storage for Grid Applications Citation Details In-Document Search Title: Value of Energy Storage for Grid Applications This analysis evaluates several operational ...

  6. Reversible Metal Hydride Thermal Energy Storage for High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation Systems Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation ...

  7. Large Scale Computing and Storage Requirements for High Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Large Scale Computing and Storage Requirements for High Energy Physics HEPFrontcover.png Large Scale Computing and Storage Requirements for High Energy Physics An HEP ASCR ...

  8. Press Conference on the Batteries and Energy Storage Hub Announcement...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    December 3, 2012, Videos Press Conference on the Batteries and Energy Storage Hub ... over five years to establish a new Batteries and Energy Storage Hub, the Joint Center ...

  9. Energy Storage Activities in the United States Electricity Grid...

    Energy.gov [DOE] (indexed site)

    Energy Storage Activities in the United States Electricity Grid Electricity Advisory Committee Energy Storage Technologies Subcommittee Members Ralph Masiello, Subcommittee Chair ...

  10. Value of Energy Storage for Grid Applications

    SciTech Connect

    Denholm, P.; Jorgenson, J.; Hummon, M.; Jenkin, T.; Palchak, D.; Kirby, B.; Ma, O.; O'Malley, M.

    2013-05-01

    This analysis evaluates several operational benefits of electricity storage, including load-leveling, spinning contingency reserves, and regulation reserves. Storage devices were simulated in a utility system in the western United States, and the operational costs of generation was compared to the same system without the added storage. This operational value of storage was estimated for devices of various sizes, providing different services, and with several sensitivities to fuel price and other factors. Overall, the results followed previous analyses that demonstrate relatively low value for load-leveling but greater value for provision of reserve services. The value was estimated by taking the difference in operational costs between cases with and without energy storage and represents the operational cost savings from deploying storage by a traditional vertically integrated utility. The analysis also estimated the potential revenues derived from a merchant storage plant in a restructured market, based on marginal system prices. Due to suppression of on-/off-peak price differentials and incomplete capture of system benefits (such as the cost of power plant starts), the revenue obtained by storage in a market setting appears to be substantially less than the net benefit provided to the system. This demonstrates some of the additional challenges for storage deployed in restructured energy markets.

  11. Demand Response and Energy Storage Integration Study

    Energy.gov [DOE]

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  12. Energy Storage Systems 2010 Update Conference Presentations ...

    Energy.gov [DOE] (indexed site)

    - Steve Willard, PNM.pdf (335.05 KB) ESS 2010 Update Conference - Tehachapi Wind Energy Storage - Loic Gaillac, SCE.pdf (349.98 KB) ESS 2010 Update Conference - Flow Battery ...

  13. Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    George Crabtree and JCESR scientists discuss how a better grid would confuse the ghost of Thomas Edison. View More The Next Energy Storage Revolution JCESR Director Crabtree on how ...

  14. Energy Storage Systems 2005 Peer Review

    Energy.gov [DOE]

    The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on October 20, 2005 in San Francisco, CA. The agenda and ESS program overview presentation are below.

  15. Lower-Energy Energy Storage System (LEESS) Component Evaluation...

    Office of Scientific and Technical Information (OSTI)

    LEESS; COMPONENT EVALUATION; LITHIUM ION; CAPACITORS; Transportation Alternate hybrid electric vehicle (HEV) energy storage systems (ESS) such as lithium-ion capacitors (LICs)...

  16. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  17. NREL: Energy Storage - Working with Us

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Working with Us Partnering with industry, government, and universities is key to developing affordable energy storage technology and moving it into the marketplace and the U.S. economy. In collaboration with our diverse partners, NREL uses thermal management and modeling and analysis from a vehicle systems perspective to improve energy storage devices. NREL's Partnering Agreements Work collaboratively with NREL through a variety of Technology Partnership Agreements. We can help you select the

  18. Batteries and Energy Storage | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles,

  19. Regenerative Fuel Cells for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 1 Regenerative Fuel Cells for Energy Storage April 2011 Corky Mittelsteadt April 2011 2 Outline 1. Regenerative Fuel Cells at Giner 2. Regenerative Systems for Energy Storage 1. Economics 2. Electrolyzer Optimization 3. Fuel Cell Optimization 4. What to do with O 2 ? 5. High Pressure Electrolysis vs. External Pumping 3. The Three Questions April 2011 3 RFC System Challenges Existing state of the art regenerative fuel cell systems require two separate stacks and significant auxiliary support

  20. Solar energy thermalization and storage device

    DOEpatents

    McClelland, John F.

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  1. Solar energy thermalization and storage device

    DOEpatents

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  2. Energy storage options for space power

    SciTech Connect

    Hoffman, H.W.; Martin, J.F.; Olszewski, M.

    1985-01-01

    Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Review of storage options (superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels) suggests that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 to 2000 kJ/kg at temperatures to 1675/sup 0/K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (approx. 550 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.

  3. Batteries for Large Scale Energy Storage

    SciTech Connect

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  4. Underground Thermal Energy Storage (UTES) Via Borehole and Aquifer Thermal Energy Storage (BTES/ATES) Systems

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Underground Thermal Energy Storage (UTES) Via Borehole and Aquifer Thermal Energy Storage (BTES/ATES) Systems Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 3-4, 2015 Houston, TX Presented By: Chuck Hammock, PE, CGD, LEED AP BD+C, Andrews, Hammock & Powell, Inc. Consulting Engineers Macon, GA www.ahpengr.com * "Direct-Use" (American) Geothermal Heat Pump (GHP) architecture vs. Geothermal designed for true Thermal Energy Storage (mostly European applications)

  5. Sandian Spoke at the New York Energy Storage Expo

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Spoke at the New York Energy Storage Expo - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  6. DunoAir | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    DunoAir Jump to: navigation, search Name: DunoAir Place: Hessen, Germany Zip: 6865 VX Sector: Wind energy Product: Doorwerth-based wind project developer. References: DunoAir1...

  7. Energy Department Announces $18 Million to Develop Solar Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solutions, Boost Grid Resiliency | Department of Energy Million to Develop Solar Energy Storage Solutions, Boost Grid Resiliency Energy Department Announces $18 Million to Develop Solar Energy Storage Solutions, Boost Grid Resiliency January 19, 2016 - 11:33am Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov WASHINGTON, D.C. - As part of the Energy Department's Grid Modernization Initiative announced by Secretary Ernest Moniz last week to improve the resiliency, reliability and

  8. Energy Storage Technologies Available for Licensing - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal Storage Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Marketing Summaries (137) Success Stories (3) Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse Energy

  9. Solar-assisted heat pump systems and energy storage

    SciTech Connect

    Kaygusuz, K.; Comakli, Oe.; Ahyan, T. )

    1991-01-01

    An experimental solar-assisted heat pump system with solar energy storage in encapsulated phase change material (PCM) packings at the Karadeniz Technical University in Trabzon, Turkey is described. It includes 30 m{sup 2} solar collectors, a latent-heat thermal energy storage tank filled with PCM, a heat exchanger, a heat pump with double evaporators and condenser, and a conventional air conditioning channel. The authors have analyzed the system's behavior from July to August, 1990. The data processed has shown that each of the systems has apparently performed adequately. Collector efficiency is 0.80, heat pump coefficient of performance range is around 7, and the storage efficiency reaches 0.60. When the investigations are accomplished, they will publish the experimental results in detail.

  10. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Schoenung, Susan M.

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  11. Hydrogen-based electrochemical energy storage

    SciTech Connect

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  12. Kauai Island Utility Cooperative energy storage study.

    SciTech Connect

    Akhil, Abbas Ali; Yamane, Mike; Murray, Aaron T.

    2009-06-01

    Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce into

  13. Project Profile: CSP Energy Storage Solutions — Multiple Technologies Compared

    Energy.gov [DOE]

    US Solar Holdings, under the Thermal Storage FOA, is aiming to demonstrate commercial, utility-scale thermal energy storage technologies and provide a path to cost-effective energy storage for CSP plants >50 MW.

  14. Could Solar Energy Storage be Key for Residential Solar? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Could Solar Energy Storage be Key for Residential Solar? Could Solar Energy Storage be Key for Residential Solar? October 26, 2010 - 4:52pm Addthis This is the silent power storage ...

  15. April 2013 Most Viewed Documents for Energy Storage, Conversion, And

    Office of Scientific and Technical Information (OSTI)

    Utilization | OSTI, US Dept of Energy Office of Scientific and Technical Information April 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Seventh Edition Fuel Cell Handbook NETL (2004) 628 Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. (null) 205 A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design Stevens, J.W.; Corey, G.P. (1996) 173 Energy Saving Potentials and Air Quality Benefits

  16. Grid Energy Storage - December 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Energy Storage - December 2013 Grid Energy Storage - December 2013 Modernizing the electric grid will help the nation meet the challenge of handling projected energy needs-including addressing climate change by relying on more energy from renewable sources-in the coming decades, while maintaining a robust and resilient electricity delivery system. By some estimates, the United States will need somewhere between 4 and 5 tera kilowatt-hours of electricity annually by 2050. Those planning and

  17. Energy Storage Systems 2007 Peer Review- Utility & Commercial Applications Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Utility and commercial application project presentations from the 2007 Energy Storage Systems (ESS) peer review.

  18. Sandia Energy Carbon Capture & Storage

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Expansion of DOE-DOT Tight Oil Research Work http:energy.sandia.govexpansion-of-doe-dot-tight-oil-research-work http:energy.sandia.govexpansion-of-doe-dot-tight-oil-research...

  19. Appendix A: Energy storage technologies

    SciTech Connect

    None, None

    2009-01-18

    The project financial evaluation section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  20. Flywheel energy storage advances using HTS bearings.

    SciTech Connect

    Mulcahy, T. M.

    1998-09-11

    High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

  1. Compressed Air Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technical Assistance » Compressed Air Systems Compressed Air Systems Applying best energy management practices and purchasing energy-efficient equipment can lead to significant savings in compressed air systems. Use the software tools, training, and publications listed below to improve performance and save energy. Compressed Air Tools Tools to Assess Your Energy System AIRMaster+ Tool AIRMaster+ LogTool Qualified Specialists Qualified Specialists have passed a rigorous competency examination on

  2. Videos - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    September 8, 2014, Videos The Battery Storage Hub is Making the Battery of the Future Deputy Director Jeff Chamberlain (JCESR) details how JCESR research is aimed at developing batteries that will make electric vehicles cost competitive with the internal combustion engine. Read More July 17, 2014, Videos A Look Inside SLAC's Battery Lab Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory. Read More

  3. PNNL Solving the Energy Storage Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Solving the Energy Storage Challenge PNNL Solving the Energy Storage Challenge January 14, 2011 - 12:41pm Addthis PNNL teamed up with Northwest Public Television to produce a video on their effort on energy storage, "Saving the Sun for a Rainy Day." Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? In order to maintain reliability from renewables, energy must be stored for when power cannot be generated -- a challenge that PNNL is

  4. 2016 New Mexico Regional Energy Storage and Grid Integration...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Mexico Regional Energy Storage and Grid Integration Workshop - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & ...

  5. DOE OE Energy Storage Safety Strategic Plan Webinar Wednesday...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    OE Energy Storage Safety Strategic Plan Webinar Wednesday, Jan. 14 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & ...

  6. 2016 NM Regional Energy Storage & Grid Integration Workshop

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NM Regional Energy Storage & Grid Integration Workshop - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ...

  7. History of Air Conditioning | Department of Energy

    Energy Saver

    Efficiency Standards Drive Improvements As air conditioning use soared in the 1970s, the energy crisis hit. In response, lawmakers passed laws to reduce energy consumption across...

  8. Fact Sheet: Energy Storage Testing and Validation (October 2012) |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Testing and Validation (October 2012) Fact Sheet: Energy Storage Testing and Validation (October 2012) At Sandia National Laboratories, the Energy Storage Analysis Laboratory, in conjunction with the Energy Storage Test Pad, provides independent testing and validation of electrical energy storage systems at the individual cell level up to megawatt-scale systems. For more information about how OE performs research and development on a wide variety of storage technologies,

  9. Air-Conditioning Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior space

  10. Radiation augmentation energy storage system

    SciTech Connect

    Christe, K.O.

    1990-02-27

    This patent describes a method of converting radiation energy into chemical energy to produce a high-performance propellant. It comprises: photolytically converting oxygen to ozone; storing and stabilizing the ozone in liquid oxygen to form an ozone/liquid oxygen solution; and combusting the ozone/liquid oxygen solution with hydrogen.

  11. Clean Air Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Services » Environment » Environmental Policy and Assistance » Clean Air Act Clean Air Act The primary law governing the Department of Energy (DOE) air pollution control activities is the Clean Air Act (CAA). This law defines the role of the U.S. Environmental Protection Agency (EPA) and state, local and tribal air programs in protecting and improving the nation's air quality and stratospheric ozone layer by regulating emissions from mobile and stationary sources. The CAA contains titles

  12. Energy Storage - Advanced Technology Development Merit Review |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development Merit Review This document is a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Advanced Technology Development (ATD) program annual review. The review was held at the Argonne National Laboratory on August 9-10, 2005. A panel of knowledgeable, independent reviewers assessed the accomplishments of the ATD program and

  13. Regenerative Fuel Cells for Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Regenerative Fuel Cells for Energy Storage Regenerative Fuel Cells for Energy Storage Presentation by Corky Mittelsteadt, Giner Electrochemical Systems, at the NREL Reversible Fuel Cells Workshop, April 19, 2011 rev_fc_wkshp_mittelsteadt.pdf (723.94 KB) More Documents & Publications Reversible Fuel Cells Workshop Summary Report Development of Reversible Fuel Cell Systems at Proton Energy Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton

  14. Chongqing Wanli Storage Battery Co | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Storage Battery Co. Place: Chongqing Municipality, China Sector: Solar, Vehicles, Wind energy Product: The scope of Wanli's power storage business includes batteries made for...

  15. Energy Department Announces New Investment in Nuclear Fuel Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202)...

  16. FY06 DOE Energy Storage Program PEER Review

    Energy.gov [DOE] (indexed site)

    DOE Energy Storage PEER Review John D. Boyes Sandia National Laboratories Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for ...

  17. LiH thermal energy storage device

    DOEpatents

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  18. Videos - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Videos October 27, 2016, Videos Energy Storage Has the Potential to Change the Way We Live This CNBC Special Report discusses how the striking and swift evolution of cell phones from cumbersome bricks to sleek, powerful devices was possible because of the lithium-ion batteries used to charge them up. Next-gen batteries could bring the kind of change we've seen in telephones to electric vehicles and the grid. Read More October 18, 2016, Videos Energy Storage: George Crabtree George Crabtree,

  19. Aquifer thermal energy (heat and chill) storage

    SciTech Connect

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  20. History of Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    History of Air Conditioning History of Air Conditioning July 20, 2015 - 3:15pm Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs MORE ON AIR CONDITIONING Check out our Energy Saver 101 infographic to learn how air conditioners work. Go to Energy Saver for more tips and advice on home cooling. Stay up-to-date on how the Energy Department is working to improve air conditioning technology. We take the air conditioner for granted, but imagine what life would be

  1. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface (891.2 KB) More Documents & ...

  2. FY06 DOE Energy Storage Program PEER Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John D. Boyes Sandia National Laboratories Mission Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for modernizing and expanding the electric supply. This will improve the quality, reliability, flexibility and cost effectiveness of the existing system. Help create an energy storage industry Make energy storage ubiquitous ESS Program Makeup ESS Program Makeup ESS

  3. "Solar Fuels and Energy Storage: The Unmet Needs" conference...

    Office of Science (SC)

    "Solar Fuels and Energy Storage: The Unmet Needs" conference sponsored by UNC: EFRC Energy ... Publications History Contact BES Home 04.09.10 "Solar Fuels and Energy Storage: The Unmet ...

  4. September 2013 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    Inc) (2008) 76 Seventh Edition Fuel Cell Handbook NETL (2004) 65 Building a secondary ... HEAT STORAGE FOR CONCENTRATED SOLAR POWER PROJECT STAFF (2011) 29 AIR ...

  5. Air Products Hydrogen Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Air Products Hydrogen Energy Systems Air Products Hydrogen Energy Systems Hydrogen Infrastructure Air Products Hydrogen Energy Systems (423.04 KB) More Documents & Publications QTR Ex Parte Communications H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results - Interim Report Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

  6. Energy Proportionality for Disk Storage Using Replication

    SciTech Connect

    Kim, Jinoh; Rotem, Doron

    2010-09-09

    Energy saving has become a crucial concern in datacenters as several reports predict that the anticipated energy costs over a three year period will exceed hardware acquisition. In particular, saving energy for storage is of major importance as storage devices (and cooling them off) may contribute over 25 percent of the total energy consumed in a datacenter. Recent work introduced the concept of energy proportionality and argued that it is a more relevant metric than just energy saving as it takes into account the tradeoff between energy consumption and performance. In this paper, we present a novel approach, called FREP (Fractional Replication for Energy Proportionality), for energy management in large datacenters. FREP includes areplication strategy and basic functions to enable flexible energy management. Specifically, our method provides performance guarantees by adaptively controlling the power states of a group of disks based on observed and predicted workloads. Our experiments, using a set of real and synthetic traces, show that FREP dramatically reduces energy requirements with a minimal response time penalty.

  7. Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids

    SciTech Connect

    2011-02-01

    Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The teams design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

  8. Partnerships - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Partnerships JCESR brings together high-powered scientists and engineers from ten universities, five national laboratories, and five industrial firms, and provides them with the tools and institutional backing needed to discover new materials, understand their basic science, accelerate technology development, and commercialize revolutionary energy storage technologies. The team's combined expertise spans the full innovation ecosystem - mission-driven basic research, innovative engineering,

  9. Storage & Transmission Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects STORAGE &amp; TRANSMISSION 2 PROJECTS in 2 LOCATIONS 600 MW TRANSMISSION CAPACITY 235 MILES TRANSMISSION LENGTH 20 MW STORAGE / DISCHARGE CAPACITY ALL FIGURES AS OF MARCH 2015 STORAGE &amp; TRANSMISSION

  10. Energy Storage R&D Overview | Department of Energy

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Battery R&D Program Overview of Battery R&D Activities Energy Storage R&D ...

  11. Air Quality | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Air Quality Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAirQuality&oldid612070" Feedback Contact needs updating Image needs updating...

  12. Flow Cells for Energy Storage Workshop Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    & Energy Reliability Organized by: Energy Efficiency & Renewable Energy W i t h h e l p b y : Agenda Day/Time Speaker Subject Wednesday, March 07, 2012 8:45-9:00 Adam Weber, LBNL Welcome and workshop overview 9:00-9:30 Various, EERE, OFCT Background, approach, and reversible fuel cells 9:30-9:55 Michael Perry, UTRC Renaissance in flow cells: opportunities 9:55-10:20 Joe Eto, LBNL Energy storage requirements for the smart grid 10:20-10:35 AM Break 10:35-11:00 Robert Savinell, CWRU

  13. Tips: Air Ducts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Air ducts: out of sight, out of mind. ...

  14. Energy Storage Program Planning Document (2011) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Program Planning Document (2011) Energy Storage Program Planning Document (2011) Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind

  15. Energy Storage Systems 2006 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 Peer Review Energy Storage Systems 2006 Peer Review The 2006 Peer Review Meeting for the DOE Energy Storage Systems (ESS) Program was held in Washington DC on November 2-3, 2006. Current and completed program projects were presented and reviewed by a group of industry professionals. The agenda and ESS program overview are available below. Day 1 morning session presentations Day 1 afternoon session presentations Day 2 morning session presentations Day 2 afternoon session presentations ESS 2006

  16. Energy Storage Systems 2009 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9 Peer Review Energy Storage Systems 2009 Peer Review The DOE Energy Storage Systems Program (ESS) conducted an annual peer review in Seattle, WA on October 8, 2009. The 1-day conference included welcoming remarks from OE's Imre Gyuk as well as a program overview from John Boyes of Sandia National Laboratories and 11 presentations on individual projects. The agenda, program overview, and project presentations are available below. ESS 2009 Peer Review - Agenda.pdf (93.86 KB) ESS 2009 Peer Review

  17. Statement of Dr. Imre Gyuk, Program Manager for Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Dr. Imre Gyuk, Program Manager for Energy Storage Research Office of Electricity Delivery and Energy Reliability U.S. Department of Energy Before the Committee on Science, Space ...

  18. SOLID PARTICLE THERMAL ENERGY STORAGE DESIGN FOR A FLUIDIZED...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and ...

  19. Energy Storage Requirements for Achieving 50% Solar Photovoltaic...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California Paul Denholm and Robert Margolis National Renewable Energy Laboratory Technical ...

  20. January 2013 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    January 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Energy Technology Perspectives 2012: Executive Summary Portuguese version NONE Energy ...

  1. Improving Air Quality with Solar Energy

    DOE R&D Accomplishments

    2008-04-01

    This fact sheet series highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics. This one focus on solar energy technologies.

  2. Detecting Air Leaks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Weatherize » Air Sealing » Detecting Air Leaks Detecting Air Leaks For a thorough and accurate measurement of air leakage in your home, hire a qualified technician to conduct an energy assessment, particularly a blower door test. For a thorough and accurate measurement of air leakage in your home, hire a qualified technician to conduct an energy assessment, particularly a blower door test. You may already know where some air leakage occurs in your home, such as an under-the-door draft, but

  3. Energy Savings with Acceptable Indoor Air Quality Through Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Savings with Acceptable Indoor Air Quality Through Improved Air Flow Control in Residential Retrofit Energy Savings with Acceptable Indoor Air Quality Through Improved Air Flow ...

  4. 10 Questions with Energy Storage Expert Imre Gyuk | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Storage Expert Imre Gyuk 10 Questions with Energy Storage Expert Imre Gyuk March 17, 2016 - 9:30am Addthis Dr. Imre Gyuk -- pictured speaking at a Green Mountain Power energy storage event -- was recently recognized for his game-changing work in energy storage. | Photo courtesy of the Clean Energy States Alliance. Dr. Imre Gyuk -- pictured speaking at a Green Mountain Power energy storage event -- was recently recognized for his game-changing work in energy storage. | Photo courtesy of

  5. POWERING NEW MARKETS: ENERGY STORAGE POISED FOR GROWTH | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy POWERING NEW MARKETS: ENERGY STORAGE POISED FOR GROWTH POWERING NEW MARKETS: ENERGY STORAGE POISED FOR GROWTH "Powering New Markets: Energy Storage Poised For Growth" report (3.02 MB) More Documents & Publications Financing Innovation to Address Global Climate Change LPO_BROCHURE_CSP POWERING NEW MARKETS: ENERGY STORAGE POISED FOR GROWTH Powering New Markets: Utility-scale Photovoltaic Solar

  6. Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Tehachapi Wind Energy Storage Project (May 2014) Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8 MW-4 hour (32 MWh) lithium-ion battery and a smart inverter system that is cutting-edge in scale and application. Southern California Edison (SCE) will test the BESS for 24 months to determine its capability and effectiveness to support 13 operational users. For more

  7. Advanced Materials and Devices for Stationary Electrical Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Applications | Department of Energy Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to cost-effective electricity is the backbone of the U.S. economy, and electrical energy storage is an integral element in this system. Without significant investments in stationary electrical energy storage, the current electric grid infrastructure will increasingly struggle to

  8. Solar Energy Grid Integration Systems -- Energy Storage (SEGIS-ES).

    SciTech Connect

    Hanley, Charles J.; Ton, Dan T.; Boyes, John D.; Peek, Georgianne Huff

    2008-07-01

    This paper describes the concept for augmenting the SEGIS Program (an industry-led effort to greatly enhance the utility of distributed PV systems) with energy storage in residential and small commercial applications (SEGIS-ES). The goal of SEGIS-ES is to develop electrical energy storage components and systems specifically designed and optimized for grid-tied PV applications. This report describes the scope of the proposed SEGIS-ES Program and why it will be necessary to integrate energy storage with PV systems as PV-generated energy becomes more prevalent on the nation's utility grid. It also discusses the applications for which energy storage is most suited and for which it will provide the greatest economic and operational benefits to customers and utilities. Included is a detailed summary of the various storage technologies available, comparisons of their relative costs and development status, and a summary of key R&D needs for PV-storage systems. The report concludes with highlights of areas where further PV-specific R&D is needed and offers recommendations about how to proceed with their development.

  9. Technology Base Research Project for electrochemical energy storage

    SciTech Connect

    Kinoshita, Kim

    1991-06-01

    The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

  10. Boosting CSP Production with Thermal Energy Storage

    SciTech Connect

    Denholm, P.; Mehos, M.

    2012-06-01

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high

  11. Hydrogen Energy Storage (HES) Activities at NREL; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Eichman, J.

    2015-04-21

    This presentation provides an overview of hydrogen and energy storage, including hydrogen storage pathways and international power-to-gas activities, and summarizes the National Renewable Energy Laboratory's hydrogen energy storage activities and results.

  12. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Room Air Conditioners Room Air Conditioners The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. Room Air Conditioners -- v1.6 (147.68 KB) More Documents & Publications

  13. Energy conversion & storage program. 1994 annual report

    SciTech Connect

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  14. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  15. Energy Storage Systems Are Coming: Are You Ready

    SciTech Connect

    Conover, David R.

    2015-12-05

    Energy storage systems (batteries) are not a new concept, but the technology being developed and introduced today with an increasing emphasis on energy storage, is new. The increased focus on energy, environmental and economic issues in the built environment is spurring increased application of renewables as well as reduction in peak energy use - both of which create a need for energy storage. This article provides an overview of current and anticipated energy storage technology, focusing on ensuring the safe application and use of energy storage on both the grid and customer side of the utility meter.

  16. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $29 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $29 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Three-quarters of all homes in

  17. The Northeastern Center for Chemical Energy Storage (NECCES)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The NorthEast Center for Chemical Energy Storage (NECCES) has been moved to Binghamton ... The Northeastern Center for Chemical Energy Storage (NECCES) is an effort being led by ...

  18. National Distributed Energy Storage in the Electric Grid

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High ES U.S. energy storage deployment projections show exponential growth, so penetrations could be high. Behind-the-Meter energy storage projected to gain in market share. ...

  19. Two New Energy Storage Safety Reports Now Available | Department...

    Office of Environmental Management (EM)

    Two New Energy Storage Safety Reports Now Available Two New Energy Storage Safety Reports Now Available October 14, 2014 - 5:33pm Addthis The Office of Electricity Delivery and ...

  20. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Energy Saver

    ARRA Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 (Day 2): ARRA Projects The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer ...

  1. Energy Storage Systems 2012 Peer Review Presentations - Day 3...

    Office of Environmental Management (EM)

    2 Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in ...

  2. Energy Department Awards $7 Million to Advance Hydrogen Storage...

    Office of Environmental Management (EM)

    7 Million to Advance Hydrogen Storage Systems Energy Department Awards 7 Million to Advance Hydrogen Storage Systems May 19, 2014 - 12:30pm Addthis The Energy Department today ...

  3. Energy Storage Systems 2012 Peer Review Presentations - Day 2...

    Energy Saver

    3 Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in ...

  4. Energy Storage Systems 2012 Peer Review Presentations - Day 3...

    Energy Saver

    1 Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in ...

  5. Vehicle Technologies Office: 2013 Energy Storage R&D Progress...

    Energy Saver

    4-6 Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6 The FY 2013 Progress Report for Energy Storage R&D focuses on advancing the development of ...

  6. Energy Storage Systems 2012 Peer Review Presentations - Day 1...

    Energy Saver

    1 Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in ...

  7. Energy Storage Systems 2012 Peer Review Presentations - Day 2...

    Office of Environmental Management (EM)

    1 Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in ...

  8. Energy Storage Systems 2012 Peer Review Presentations - Day 2...

    Energy Saver

    2 Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in ...

  9. September 10th Webinar for the Energy Storage Safety Working...

    Office of Environmental Management (EM)

    0th Webinar for the Energy Storage Safety Working Group on Safety Validation and Risk Assessment R&D September 10th Webinar for the Energy Storage Safety Working Group on Safety ...

  10. Energy Storage Systems 2012 Peer Review Presentations - Day 1...

    Office of Environmental Management (EM)

    3 Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in ...

  11. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Office of Environmental Management (EM)

    SBIR Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 (Day 2): SBIR Projects The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer ...

  12. Energy Storage Systems 2012 Peer Review Presentations - Day 1...

    Energy Saver

    2 Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in ...

  13. East Penn Manufacturing Co Grid-Scale Energy Storage Demonstration...

    Energy.gov [DOE] (indexed site)

    East Penn Manufacturing Co Grid-Scale Energy Storage Demonstration Using UltraBattery(tm) ... UltraBattery(tm) modules integrated in a turnkey Battery Energy Storage System (BESS). ...

  14. Hydrogen Energy Storage: Grid and Transportation Services (Technical Report)

    SciTech Connect

    Not Available

    2015-02-01

    Proceedings of an expert workshop convened by the U.S. Department of Energy and Industry Canada, and hosted by the National Renewable Energy Laboratory and the California Air Resources Board, May 14-15, 2014, in Sacramento, California, to address the topic of hydrogen energy storage (HES). HES systems provide multiple opportunities to increase the resilience and improve the economics of energy sup supply systems underlying the electric grid, gas pipeline systems, and transportation fuels. This is especially the case when considering particular social goals and market drivers, such as reducing carbon emissions, increasing reliability of supply, and reducing consumption of conventional petroleum fuels. This report compiles feedback collected during the workshop, which focused on policy and regulatory issues related to HES systems. Report sections include an introduction to HES pathways, market demand, and the "smart gas" concept; an overview of the workshop structure; and summary results from panel presentations and breakout groups.

  15. Smart Storage Pty Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Storage Pty Ltd Jump to: navigation, search Name: Smart Storage Pty Ltd Place: Australia Product: Australia-based developer of hybrid battery storage solutions. References: Smart...

  16. US DRIVE Electrochemical Energy Storage Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE)

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  17. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    challenges, benefits and opportunities for commercial hydrogen energy storage applications to support grid services, variable electricity generation, and hydrogen vehicles. ...

  18. International Carbon Storage Body Praises Department of Energy Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Carbon Storage Body Praises Department of Energy Projects International Carbon Storage Body Praises Department of Energy Projects November 8, 2012 - 12:00pm Addthis Washington, DC - Three U.S. Department of Energy (DOE) projects have been identified by an international carbon storage organization as an important advancement toward commercialization and large-scale deployment of carbon capture, utilization, and storage (CCUS) technologies. The projects were officially

  19. Energy Storage: The Key to a Reliable, Clean Electricity Supply |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program

  20. NREL: Energy Storage - Facilities and Equipment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Facilities and Equipment Arial photo of several buildings. NREL's ESIF is the first U.S. facility with capabilities to conduct megawatt-scale R&D examining integration of power grids, buildings, vehicles, charging systems, and energy storage systems. Photo of scientific equipment in a laboratory setting. Differential scanning calorimeter. Photo of a row of ten tall rectangular panels (battery cyclers). Battery cyclers. Photo of scientific equipment and computer monitors in a laboratory

  1. Leadership - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Leadership George Crabtree George Crabtree, an Argonne National Laboratory Distinguished Fellow, is the Director of the Joint Center for Energy Storage Research. As JCESR Director, Crabtree directs the overall strategy and goals of the research program and operational plan, acts as liaison to executives of JCESR partner organizations, and represents JCESR with external constituencies and advisory committees. View Bio Venkat Srinivasan Venkat Srinivasan, JCESR Deputy Director, Research and

  2. Fact Sheet: Energy Storage Database (October 2012)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Sandia National Laboratories List of projects, including technology details and status Interactive map of search result project locations Multiple sort options (e.g., state, type, size) to ease navigation Energy storage projects and policies across the United States are rapidly evolving and expanding. A publicly accessible central archive is increasingly essential to document these developments; to facilitate future projects; and to ease cross-sector, national, and international coordination.

  3. Collaborators - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Collaborators In addition to its 15 partner organizations, the JCESR team includes five funded collaborators that contribute to the research in countless ways. These leaders in energy storage R&D provide world-renowned researchers and state-of-the-art facilities to move JCESR goals forward. Harvard University Established in 1636, Harvard University is the oldest institution of higher education in the United States. Harvard is devoted to excellence in teaching, learning, and research and to

  4. Reluctance apparatus for flywheel energy storage

    DOEpatents

    Hull, John R.

    2000-01-01

    A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.

  5. Compressed Air System Control Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    System Control Strategies Compressed Air System Control Strategies This tip sheet briefly discusses compressed air system control strategies as a means to improving and maintaining system performance. COMPRESSED AIR TIP SHEET #7 Compressed Air System Control Strategies (August 2004) (242.65 KB) More Documents & Publications Compressed Air Storage Strategies Analyzing Your Compressed Air System Stabilizing System Pressure

  6. Argonne Collaborative Center for Energy Storage Science | Argonne National

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratory Collaborative Center for Energy Storage Science ACCESS: Bridging the gap between industry and Argonne energy storage expertise The Argonne Collaborative Center for Energy Storage Science (ACCESS) is a powerful collaborative of scientists and engineers from across Argonne that helps public and private-sector customers turn science into solutions. PDF icon Argonne_ACCESS

  7. Optimal capacity of the battery energy storage system in a power system

    SciTech Connect

    Tsungying Lee; Nanming Chen

    1993-12-01

    Due to the cyclical human life, utility loads appear to be cyclical too. During daytime when most factories are in operation, the electricity demand is very high. On the contrary, when most people are sleeping from midnight to daybreak, the electric load is very low, usually only half of the peak load amount. To meet this large gap between peak load and light load, utilities must idle many generation plants during light load period while operating all generation plants during peak load period no matter how expensive they are. This low utilization factor of generation plants and uneconomical operation have sparked utilities to invest in energy storage devices such as pumped storage plants, compressed air energy storage plants, battery energy storage systems (BES) and superconducting magnetic energy storage systems (SMES) etc. Among these, pumped storage is already commercialized and is the most widely used device. However, it suffers the limit of available sites and will be saturated in the future. Other energy storage devices are still under research to reduce the cost. This paper investigates the optimal capacity of the battery energy storage system in a power system. Taiwan Power Company System is used as the example system to test this algorithm. Results show that the maximum economic benefit of the battery energy storage in a power system can be achieved by this algorithm.

  8. June 30 Webinar: Measuring Energy Storage System Performance: A

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Government/Industry-Developed Protocol | Department of Energy 30 Webinar: Measuring Energy Storage System Performance: A Government/Industry-Developed Protocol June 30 Webinar: Measuring Energy Storage System Performance: A Government/Industry-Developed Protocol June 20, 2016 - 5:52pm Addthis The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability, Energy Storage Systems Program, through the support of Pacific Northwest National Laboratory (PNNL) and Sandia

  9. Fact Sheet Available: Codes and Standards for Energy Storage System

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance and Safety (June 2014) | Department of Energy Fact Sheet Available: Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet Available: Codes and Standards for Energy Storage System Performance and Safety (June 2014) June 25, 2014 - 12:10pm Addthis The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability Energy Storage Systems Program, with the support of Pacific Northwest National Laboratory (PNNL) and Sandia

  10. Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage

    SciTech Connect

    2011-12-01

    HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

  11. NREL Energy Storage Projects: FY2014 Annual Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL Energy Storage Projects: FY2014 Annual Report Ahmad Pesaran, Chunmei Ban, Evan ... Yang, and Chao Zhang National Renewable Energy Laboratory Taeyoung Han General Motors ...

  12. Engineering Nanocrystals for Energy Conversion and Storage, and...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Engineering Nanocrystals for Energy Conversion and Storage, and Sensors Citation Details In-Document Search Title: Engineering Nanocrystals for Energy Conversion and ...

  13. June 2016 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    Mark (2009) 113 Seventh Edition Fuel Cell Handbook NETL (2004) 110 Energy use and ... Thermal Energy Storage for Concentrating Solar Power Generation Reddy, Ramana G. The ...

  14. General Purpose Energy Storage (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: LDRD Country of Publication: United States Language: English Subject: Energy Storage(25) Energy Sciences Word Cloud More Like This Full Text File size NAView Full ...

  15. Comments by the Energy Storage Association to the Department...

    Energy.gov [DOE] (indexed site)

    Public comments by the Energy Storage Association to the Department of Energy Electricity Advisory Council presented at the March 13, 2014 meeting of the EAC. Comments by the ...

  16. Energy Storage Monitoring System and In-Situ Impedance Measurement...

    Energy.gov [DOE] (indexed site)

    Path Dependence Vehicle Technologies Office Merit Review 2015: INL Electrochemical Performance Testing Energy Storage Testing and Analysis High Power and High Energy Development

  17. Director's Message - Joint Center for Energy Storage Research

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    October 1, 2015, News Articles Director's Message George Crabtree The Joint Center for Energy Storage Research (JCESR), a Department of Energy Innovation Hub led by Argonne ...

  18. Leading experts to speak at battery & energy storage technology...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Leading experts to speak at battery & energy storage technology conference Speakers from US Department of Energy, academia and industry to meet November 5th in Buffalo, NY News ...

  19. Innovative Phase hange Thermal Energy Storage Solution for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Phase hange Thermal Energy Storage Solution for Baseload Power Innovative Phase hange Thermal Energy ... for Dish Engine Solar Power Generation Dish Stirling High Performance ...

  20. QER Report: Energy Transmission, Storage, and Distribution Infrastruct...

    Energy.gov [DOE] (indexed site)

    Report: Energy Transmission, Storage, and Distribution Infrastructure | April 2015 Appendix A: LIQUID FUELS Introduction The existing liquid fuel component of the energy ...

  1. QER Report: Energy Transmission, Storage, and Distribution Infrastruct...

    Energy.gov [DOE] (indexed site)

    Chapter VII Appendix C ELECTRICITY EL-2 QER Report: Energy Transmission, Storage, and ... policy objectives, such as greenhouse gas reduction and state renewable energy goals. ...

  2. QER Report: Energy Transmission, Storage, and Distribution Infrastruct...

    Energy.gov [DOE] (indexed site)

    Chapter VII Appendix B NATURAL GAS NG-2 QER Report: Energy Transmission, Storage, and ... time horizon under consideration for the Quadrennial Energy Review). Increasing Demand. ...

  3. The Role of Energy Storage with Renewable Electricity Generation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Role of Energy Storage with Renewable Electricity Generation Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan National Renewable Energy Laboratory 1617 Cole ...

  4. Simulation of an underground solar energy storage for a dwelling

    SciTech Connect

    Bourret, B.; Javelas, R. )

    1991-01-01

    The system under study consists of an underground insulated storage beneath a slab floor of an individual dwelling. The storage is charged by solar collectors via two arrays of air ducts buried horizontally in the soil at two depths: 2 m (summer working) and 0.4 m (winter working). Energy transfer from the storage to the house is made by conduction in the soil toward the slab. This system is described by a simulation model bidimensional by slices, the approach is bidimensional in the perpendicular plane to the ducts, and the authors take several slices in the direction of the ducts. The yearly storage efficiency varies from 0.53-0.83 when the thermal insulation resistance varies from 0-5 m{sup 2} kW{sup {minus}1}. The influences of soil thermal characteristic and airflow rates are also analyzed. This system presents good performances that can be compared with those of the best active solar device for private homes in a temperature climate: direct solar heating floors.

  5. Energy Department Awards $7 Million to Advance Hydrogen Storage Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy 7 Million to Advance Hydrogen Storage Systems Energy Department Awards $7 Million to Advance Hydrogen Storage Systems May 19, 2014 - 12:30pm Addthis The Energy Department today announced $7 million for six projects to develop lightweight, compact, and inexpensive advanced hydrogen storage systems that will enable longer driving ranges and help make fuel cell systems competitive for different platforms and sizes of vehicles. These advances in hydrogen storage will be

  6. Redox Active Colloids as Discrete Energy Storage Carriers - Joint Center

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for Energy Storage Research September 15, 2016, Research Highlights Redox Active Colloids as Discrete Energy Storage Carriers Scientific Achievement Redox active colloids (RACs) were introduced as a promising class of energy storage materials. These were synthesized and electrochemically studied for their charge transfer properties as well as charge storage capabilities. Significance and Impact A modular synthetic approach can now be used to synthesize "zero-crossover" materials

  7. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  8. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    An air conditioner cools your home with a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and ...

  9. Air Cooling | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Air cooling is limited on ambient temperatures and typically require a larger footprint than Water Cooling, but when water restrictions are great enough to prevent the...

  10. Dyess Air Force Base Water Conservation and Green Energy | Department...

    Energy Saver

    Dyess Air Force Base Water Conservation and Green Energy Dyess Air Force Base Water Conservation and Green Energy Fact sheet describes the Federal Energy Management Program (FEMP) ...

  11. Chemical Hydrogen Storage Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage » Materials-Based Storage » Chemical Hydrogen Storage Materials Chemical Hydrogen Storage Materials The Fuel Cell Technologies Office's (FCTO's) chemical hydrogen storage materials research focuses on improving the volumetric and gravimetric capacity, transient performance, and efficient, cost-effective regeneration of the spent storage material. Technical Overview The category of chemical hydrogen storage materials generally refers to covalently bound hydrogen in either solid or

  12. Purchasing Energy-Efficient Residential Gas Storage Water Heaters |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Gas Storage Water Heaters Purchasing Energy-Efficient Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for residential gas storage water heaters, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition

  13. Energy storage systems program report for FY1996

    SciTech Connect

    Butler, P.C.

    1997-05-01

    Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

  14. EAC Recommendations on National Distributed Energy Storage in the Electric

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Grid Now Available | Department of Energy EAC Recommendations on National Distributed Energy Storage in the Electric Grid Now Available EAC Recommendations on National Distributed Energy Storage in the Electric Grid Now Available August 9, 2016 - 11:12am Addthis The Electricity Advisory Committee (EAC) has made recommendations on tangible ways in which the Energy Department can support distributed energy storage (DES) market deployment through technology developments and technical analyses.

  15. Microsoft Word - Energy Storage 092209 BAR.docx

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ENERGY STORAGE-A KEY ENABLER OF THE SMART GRID Developed for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability by the National Energy Technology ...

  16. Energy storage benefits and market analysis handbook : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Eyer, James M.; Corey, Garth P.; Iannucci, Joseph J., Jr.

    2004-12-01

    This Guide describes a high level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric utility-related applications. In the United States use of electricity storage to support and optimize transmission and distribution (T&D) services has been limited due to high storage system cost and by limited experience with storage system design and operation. Recent improvement of energy storage and power electronics technologies, coupled with changes in the electricity marketplace, indicate an era of expanding opportunity for electricity storage as a cost-effective electric resource. Some recent developments (in no particular order) that drive the opportunity include: (1) states adoption of the renewables portfolio standard (RPS), which may increased use of renewable generation with intermittent output, (2) financial risk leading to limited investment in new transmission capacity, coupled with increasing congestion on some transmission lines, (3) regional peaking generation capacity constraints, and (4) increasing emphasis on locational marginal pricing (LMP).

  17. Energy conversion & storage program. 1995 annual report

    SciTech Connect

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  18. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen Energy Storage: Experimental analysis and modeling Monterey Gardiner U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Energy Storage: Experimental analysis and modeling FCTO Webinar Josh Eichman, PhD

  19. US DRIVE Hydrogen Storage Technical Team Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Storage Technical Team Roadmap US DRIVE Hydrogen Storage Technical Team Roadmap The scope of the Hydrogen Storage Tech Team is to review and evaluate the potential, and limitations, of novel approaches, materials, and systems for hydrogen storage onboard light-duty fuel cell vehicles and provide feedback to the U.S. Department of Energy (DOE) and Partnership stakeholders. Generate system goals and performance targets, and establish test methods for hydrogen storage systems onboard vehicles.

  20. Development of Molecular Electrocatalysts for Energy Storage

    SciTech Connect

    DuBois, Daniel L.

    2014-02-20

    Molecular electrocatalysts can play an important role in energy storage and utilization reactions needed for intermittent renewable energy sources. This manuscript describes three general themes that our laboratories have found useful in the development of molecular electrocatalysts for reduction of CO2 to CO and for H2 oxidation and production. The first theme involves a conceptual partitioning of catalysts into first, second, and outer coordination spheres. This is illustrated with the design of electrocatalysts for CO2 reduction to CO using first and second coordination spheres and for H2 production catalysts using all three coordination spheres. The second theme focuses on the development of thermodynamic models that can be used to design catalysts to avoid high energy and low energy intermediates. In this research, new approaches to the measurement of thermodynamic hydride donor and acceptor abilities of transition metal complexes were developed. Combining this information with other thermodynamic information such as pKa values and redox potentials led to more complete thermodynamic descriptions of transition metal hydride, dihydride, and related species. Relationships extracted from this information were then used to develop models that are powerful tools for predicting and understanding the relative free energies of intermediates in catalytic reactions. The third theme is the control of proton movement during electrochemical fuel generation and utilization reactions. This research involves the incorporation of pendant amines in the second coordination sphere that can facilitate H-H bond heterolysis and heteroformation, intramolecular and intermolecular proton transfer steps, and the coupling of proton and electron transfer steps. Studies also indicate an important role for outer coordination sphere in the delivery of protons to the second coordination sphere. Understanding these proton transfer reactions and their