National Library of Energy BETA

Sample records for air conditioning hvac

  1. ZERH Webinar: Lazy Air Conditioning - HVAC & Humidity Control | Department

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Energy ZERH Webinar: Lazy Air Conditioning - HVAC & Humidity Control ZERH Webinar: Lazy Air Conditioning - HVAC & Humidity Control November 30, 2016 11:30AM to 12:30PM CST DOE Zero Energy Ready Homes are not only very efficient, but are also designed and built for optimal comfort, indoor air quality, and durability. As homes are built to more rigorous efficiency measures, a proper HVAC system design becomes even more critical in these high-performance homes. In this webinar, Ken

  2. HVAC Cabinet Air Leakage Test Method - Building America Top Innovation...

    Energy Saver

    HVAC Cabinet Air Leakage Test Method - Building America Top Innovation HVAC Cabinet Air Leakage Test Method - Building America Top Innovation While HVAC installers have improved ...

  3. HVAC Cabinet Air Leakage Test Method - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Cabinet Air Leakage Test Method - Building America Top Innovation HVAC Cabinet Air Leakage Test Method - Building America Top Innovation While HVAC installers have improved their air sealing practices to reduce the amount of air leaking at ducts and duct boots, testing showed that distribution systems still leaked at air handlers and furnace HVAC Air Leakage Fig 1 Air handler furnace cabinet with pressure taps.jpg cabinets. This has hampered the ability of HVAC

  4. Heating Ventilation and Air Conditioning Efficiency

    Energy.gov [DOE]

    This presentation covers common pitfalls that lead to wasted energy in industrial heating ventilation and air conditioning (HVAC) systems.

  5. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    SciTech Connect

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R.

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

  6. Designing Forced-Air HVAC Systems

    SciTech Connect

    2010-08-31

    This guide explains proper calculation of heating and cooling design loads for homes.used to calculated for the home using the protocols set forth in the latest edition of the Air Conditioning Contractors of America’s (ACCA) Manual J (currently the 8th edition), ASHRAE 2009 Handbook of Fundamentals, or an equivalent computation procedure.

  7. Heating, Ventilation and Air Conditioning Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE <walterjohnston@Bellsouth.net 2 Functions of HVAC Systems The purpose of a Heating, Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount

  8. Strategy Guideline: HVAC Equipment Sizing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... conditioning (HVAC) system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of a house. ...

  9. Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method

    SciTech Connect

    none,

    2014-11-01

    This 2014 Top Innovation profile describes Building America-funded research by teams and national laboratories that resulted in the development of an ASHRAE standard and a standardized testing method for testing the air leakage of HVAC air handlers and furnace cabinets and has spurred equipment manufacturers to tighten the cabinets they use for residential HVAC systems.

  10. CBERD: Advanced HVAC Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced HVAC Systems CBERD: Advanced HVAC Systems Left: Environmental chamber to evaluate the performance of air-conditioning systems. Right: Compressor Calorimeter at ORNL. Source: ORNL. Left: Environmental chamber to evaluate the performance of air-conditioning systems. Right: Compressor Calorimeter at ORNL. Source: ORNL. Left: Microchannel heat exchanger co-developed with industry partner Delphi. Right: Large-scale air-to-air exchanger for heat and humidity removal, integrated into a wall

  11. Comparison of heating and cooling energy consumption by HVAC system with mixing and displacement air distribution for a restaurant dining area in different climates

    SciTech Connect

    Zhivov, A.M.; Rymkevich, A.A.

    1998-12-31

    Different ventilation strategies to improve indoor air quality and to reduce HVAC system operating costs in a restaurant with nonsmoking and smoking areas and a bar are discussed in this paper. A generic sitting-type restaurant is used for the analysis. Prototype designs for the restaurant chain with more than 200 restaurants in different US climates were analyzed to collect the information on building envelope, dining area size, heat and contaminant sources and loads, occupancy rates, and current design practices. Four constant air volume HVAC systems wit h a constant and variable (demand-based) outdoor airflow rate, with a mixing and displacement air distribution, were compared in five representative US climates: cold (Minneapolis, MN); Maritime (Seattle, WA); moderate (Albuquerque, NM); hot-dry (Phoenix, AZ); and hot-humid (Miami, FL). For all four compared cases and climatic conditions, heating and cooling consumption by the HVAC system throughout the year-round operation was calculated and operation costs were compared. The analysis shows: Displacement air distribution allows for better indoor air quality in the breathing zone at the same outdoor air supply airflow rate due to contaminant stratification along the room height. The increase in outdoor air supply during the peak hours in Miami and Albuquerque results in an increase of both heating and cooling energy consumption. In other climates, the increase in outdoor air supply results in reduced cooling energy consumption. For the Phoenix, Minneapolis, and Seattle locations, the HVAC system operation with a variable outdoor air supply allows for a decrease in cooling consumption up to 50% and, in some cases, eliminates the use of refrigeration machines. The effect of temperature stratification on HVAC system parameters is the same for all locations; displacement ventilation systems result in decreased cooling energy consumption but increased heating consumption.

  12. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  13. Non-Vapor Compression HVAC Technologies Report

    Energy.gov [DOE]

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. The Building Technologies Office is evaluating low-global warming potential (GWP) alternatives to vapor-compression technologies.

  14. Strategy Guideline: Transitioning HVAC Companies to Whole House Performance Contractors

    SciTech Connect

    Burdick, A.

    2012-05-01

    This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

  15. Strategy Guideline. Transitioning HVAC Companies to Whole House Performance Contractors

    SciTech Connect

    Burdick, Arlan

    2012-05-01

    This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

  16. History of Air Conditioning

    Energy.gov [DOE]

    We take it for granted but what would life be like without the air conditioner? Once considered a luxury, this invention is now an essential, allowing us to cool everything from homes, businesses, businesses, data centers, laboratories and other buildings vital to our daily lives. Explore this timeline to learn some of the key dates in the history of air conditioning.

  17. NETL Sorbents Licensed to Help Lower Power Draw of HVAC

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Sorbents Licensed To Help Lower Power Draw of HVAC Success Story NETL has licensed one of its patented CO 2 - removal sorbents to Boston-based technology company enVerid Systems. enVerid has adopted the sorbent for use in their proprietary Heat Load Reduction (HLR) module, a retrofit air-recirculation system it designed to increase the energy efficiency of commercial HVAC (heating, ventilation, and air conditioning) systems. HVAC is one of the largest draws of electric power in the United

  18. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  19. Energy Department Invests Nearly $8 Million to Develop Next-Generation HVAC

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems for Buildings | Department of Energy Nearly $8 Million to Develop Next-Generation HVAC Systems for Buildings Energy Department Invests Nearly $8 Million to Develop Next-Generation HVAC Systems for Buildings April 21, 2015 - 3:30pm Addthis The Energy Department today announced nearly $8 million to advance research and development of next-generation heating, ventilating, and air conditioning (HVAC) technologies, supporting the Administration's goal of saving money by saving energy, and

  20. 2014-04-28 Issuance: Certification of Commercial HVAC, Water Heating, and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Refrigeration Equipment; Final Rule | Department of Energy 28 Issuance: Certification of Commercial HVAC, Water Heating, and Refrigeration Equipment; Final Rule 2014-04-28 Issuance: Certification of Commercial HVAC, Water Heating, and Refrigeration Equipment; Final Rule This document is a pre-publication Federal Register final rule regarding the certification of commercial heating, ventilation, and air-conditioning (HVAC), water heating (WH), and refrigeration (CRE) equipment, as issued by

  1. Research & Development Opportunities for Joining Technologies in HVAC&R |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Opportunities for Joining Technologies in HVAC&R Research & Development Opportunities for Joining Technologies in HVAC&R Improving joining technologies for heating, ventilation, air conditioning, and refrigeration (HVAC&R) equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydrofluorocarbon (HFC) refrigerant leakage to support HFC phasedown and greenhouse gas

  2. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  3. Research & Development Roadmap: Emerging HVAC Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Research and Development (R&D) Roadmap for Emerging Heating, Ventilation, and Air-Conditioning (HVAC) Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTO’s energy savings goals.

  4. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  5. HVAC R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    R&D HVAC R&D Lead Performer: Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN FY16 DOE Funding: $2,688,000 Project Term: Ongoing Funding Type: Direct Lab Funding PROJECT OBJECTIVE Heating, ventilation, and air conditioning (HVAC) is the largest energy end use in both residential and commercial buildings, at 38% and 31% respectively. ORNL's research and development efforts aim to create next-generation, cost-effective, energy-efficient technologies that will enable energy savings

  6. Air conditioning apparatus

    SciTech Connect

    Ouchi, Y.; Otoshi, Sh.

    1985-04-09

    The air conditioning apparatus according to the invention comprises an absorption type heat pump comprising a system including an absorber, a regenerator, a condenser and an evaporator. A mixture of lithium bromide and zinc chloride is used as an absorbent which is dissolved to form an absorbent solution into a mixed solvent having a ratio by weight of methanol to water, the ratio falling in a range between 0.1 and 0.3. Said solution is circulated through the system.

  7. Membrane Based Air Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Membrane Based Air Conditioning 2016 Building Technologies Office Peer Review Brian Johnson, brian.johnson@daisanalytic.com Dais Analytic Corporation INSERT PROJECT SPECIFIC PHOTO (replacing this shape) 2 Project Summary Timeline: Start date: October 1, 2015 NEW PROJECT Planned end date: September 30, 2017 Key Milestones 1. System Design Review; March 2016 2. Compressor testing review; September 2016 3. Go/No-Go based on bench testing; September 2016 4. Experimental evaluation of V1 prototype;

  8. HVAC Program

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Heating Ventilation and Air Conditioning Energy efficient Heating Ventilation and...

  9. Energy Savings Potential and RD&D Opportunities for Residential Building HVAC Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report assesses 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development.

  10. Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Building Technologies Office report assesses heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development.

  11. Chapter 19: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol

    SciTech Connect

    Romberger, J.

    2014-11-01

    The HVAC Controls Evaluation Protocol is designed to address evaluation issues for direct digital controls/energy management systems/building automation systems (DDC/EMS/BAS) that are installed to control heating, ventilation, and air-conditioning (HVAC) equipment in commercial and institutional buildings. (This chapter refers to the DDC/EMS/BAS measure as HVAC controls.) This protocol may also be applicable to industrial facilities such as clean rooms and labs, which have either significant HVAC equipment or spaces requiring special environmental conditions. This protocol addresses only HVAC-related equipment and the energy savings estimation methods associated with installing such control systems as an energy efficiency measure. The affected equipment includes: Air-side equipment (air handlers, direct expansion systems, furnaces, other heating- and cooling-related devices, terminal air distribution equipment, and fans); Central plant equipment (chillers, cooling towers, boilers, and pumps). These controls may also operate or affect other end uses, such as lighting, domestic hot water, irrigation systems, and life safety systems such as fire alarms and other security systems. Considerable nonenergy benefits, such as maintenance scheduling, system component troubleshooting, equipment failure alarms, and increased equipment lifetime, may also be associated with these systems. When connected to building utility meters, these systems can also be valuable demand-limiting control tools. However, this protocol does not evaluate any of these additional capabilities and benefits.

  12. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $29 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $29 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Three-quarters of all homes in

  13. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  14. Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis

    SciTech Connect

    Camejo, P.J.

    1989-12-01

    Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.

  15. Control strategy optimization of HVAC plants

    SciTech Connect

    Facci, Andrea Luigi; Zanfardino, Antonella; Martini, Fabrizio; Pirozzi, Salvatore; Ubertini, Stefano

    2015-03-10

    In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting.

  16. Seeking Information on Advanced HVAC&R Technologies

    Energy.gov [DOE]

    The Building Technologies Office (BTO) released a request for information to seek feedback from the public on the technical metrics and goals, and organizational structure for a proposed advanced heating, ventilation, air conditioning, and refrigeration (HVAC&R) research and development (R&D) effort.

  17. Evaluating Membrane Processes for Air Conditioning, Highlights in Research and Development (Fact Sheet), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NREL compiles state-of-the-art review on membrane processes for air conditioning to identify future research opportunities. Researchers are pursuing alternatives to conventional heating, ventilating, and air-conditioning (HVAC) practices, especially cool- ing and dehumidification, because of high energy use, environmentally harmful refrigerants, and a need for better humidity control. Advancements in membrane technology enable new possibilities in this area. Membranes are traditionally used for

  18. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  19. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  20. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  1. Central Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Central Air Conditioning Central Air Conditioning Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. Supply ducts and registers (i.e., openings in the walls, floors, or ceilings covered by

  2. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  3. ETs HVAC, WH and Appliance R&D

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4 The Building Technologies Office (BTO) uses an Integrated Approach to Deliver ... ORNL - 13 EER Window Air Conditioner HVAC SNL - Heat Exchanger Research Crosscutting: ...

  4. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    SciTech Connect

    Rahimpour, Alireza; Qi, Hairong; Fugate, David L; Kuruganti, Teja

    2015-01-01

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumption of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.

  5. HVAC Packages for SMSCB

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Distinctive Characteristics: * Leveraging existing data and DOE resources to characterize SMSCB * Realistic and regionally specific retrofit cost estimation. * Retrofit HVAC ...

  6. Air-Conditioning Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior space

  7. Integrated high efficiency blower apparatus for HVAC systems

    DOEpatents

    Liu, Xiaoyue; Weigman, Herman; Wang, Shixiao

    2007-07-24

    An integrated centrifugal blower wheel for a heating, ventilation and air conditioning (HVAC) blower unit includes a first blade support, a second blade support, and a plurality of S-shaped blades disposed between the first and second blade supports, wherein each of the S-shaped blades has a trailing edge bent in a forward direction with respect to a defined direction of rotation of the wheel.

  8. Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues

    SciTech Connect

    Wang, Liping; Hong, Tianzhen

    2013-01-01

    Almost half of the total energy used in the U.S. buildings is consumed by heating, ventilation and air conditionings (HVAC) according to EIA statistics. Among various driving factors to energy performance of building, operations and maintenance play a significant role. Many researches have been done to look at design efficiencies and operational controls for improving energy performance of buildings, but very few study the impacts of HVAC systems maintenance. Different practices of HVAC system maintenance can result in substantial differences in building energy use. If a piece of HVAC equipment is not well maintained, its performance will degrade. If sensors used for control purpose are not calibrated, not only building energy usage could be dramatically increased, but also mechanical systems may not be able to satisfy indoor thermal comfort. Properly maintained HVAC systems can operate efficiently, improve occupant comfort, and prolong equipment service life. In the paper, maintenance practices for HVAC systems are presented based on literature reviews and discussions with HVAC engineers, building operators, facility managers, and commissioning agents. We categorize the maintenance practices into three levels depending on the maintenance effort and coverage: 1) proactive, performance-monitored maintenance; 2) preventive, scheduled maintenance; and 3) reactive, unplanned or no maintenance. A sampled list of maintenance issues, including cooling tower fouling, boiler/chiller fouling, refrigerant over or under charge, temperature sensor offset, outdoor air damper leakage, outdoor air screen blockage, outdoor air damper stuck at fully open position, and dirty filters are investigated in this study using field survey data and detailed simulation models. The energy impacts of both individual maintenance issue and combined scenarios for an office building with central VAV systems and central plant were evaluated by EnergyPlus simulations using three approaches: 1) direct

  9. History of Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    History of Air Conditioning History of Air Conditioning July 20, 2015 - 3:15pm Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs MORE ON AIR CONDITIONING Check out our Energy Saver 101 infographic to learn how air conditioners work. Go to Energy Saver for more tips and advice on home cooling. Stay up-to-date on how the Energy Department is working to improve air conditioning technology. We take the air conditioner for granted, but imagine what life would be

  10. An Evaluation of the HVAC Load Potential for Providing Load Balancing Service

    SciTech Connect

    Lu, Ning

    2012-09-30

    This paper investigates the potential of providing aggregated intra-hour load balancing services using heating, ventilating, and air-conditioning (HVAC) systems. A direct-load control algorithm is presented. A temperature-priority-list method is used to dispatch the HVAC loads optimally to maintain consumer-desired indoor temperatures and load diversity. Realistic intra-hour load balancing signals were used to evaluate the operational characteristics of the HVAC load under different outdoor temperature profiles and different indoor temperature settings. The number of HVAC units needed is also investigated. Modeling results suggest that the number of HVACs needed to provide a {+-}1-MW load balancing service 24 hours a day varies significantly with baseline settings, high and low temperature settings, and the outdoor temperatures. The results demonstrate that the intra-hour load balancing service provided by HVAC loads meet the performance requirements and can become a major source of revenue for load-serving entities where the smart grid infrastructure enables direct load control over the HAVC loads.

  11. Advanced Strategy Guideline: Air Distribution Basics and Duct...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... air-conditioning (HVAC) system is the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. ...

  12. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    SciTech Connect

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  13. Pre-Commercial Demonstration of Cost-Effective Advanced HVAC Controls- 2014 BTO Peer Review

    Energy.gov [DOE]

    Presenter: Hayden Reeve, United Technologies Research Center Optimal control coordination of heating, ventilation, and air conditioning (HVAC) equipment can reduce energy by more than 20% over current building automation systems (BASs) but is not widely deployed due to challenges with complexity, scalability, and deployment.

  14. Building America Best Practices Series Volume 14 - HVAC. A Guide for Contractors to Share with Homeowners

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Hand, James R.; Love, Pat M.

    2011-08-01

    This guide, which is part of a series of Best Practices guides produced by DOE’s Building America program, describes ways homeowners can reduce their energy costs and improve the comfort, health, and safety of their homes by upgrading their heating, ventilation, and air conditioning (HVAC) equipment.

  15. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    An air conditioner cools your home with a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and ...

  16. History of Air Conditioning | Department of Energy

    Energy Saver

    Efficiency Standards Drive Improvements As air conditioning use soared in the 1970s, the energy crisis hit. In response, lawmakers passed laws to reduce energy consumption across...

  17. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    SciTech Connect

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  18. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  19. SURFACE INDUSTRIAL HVAC SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    M.M. Ansari

    2005-04-05

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the surface industrial heating, ventilation, and air-conditioning (HVAC) system and its bases to allow the design effort to proceed to license application. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. The SDD follows the design with regard to the description of the system. The description that provided in this SDD reflects the current results of the design process.

  20. Air Conditioning Heating and Refrigeration Institute Comment

    Energy.gov [DOE]

    These comments are submitted by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) in response to the U.S. Department of Energy’s (DOE) notice in the July 3, 2014 Federal Register...

  1. Residential Forced Air System Cabinet Leakage and Blower Performance

    SciTech Connect

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  2. Membrane Based Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Membrane Based Air Conditioning Membrane Based Air Conditioning Image courtesy of Dais Analytic Corporation and BTO Peer Review. Image courtesy of Dais Analytic Corporation and BTO Peer Review. Lead Performer: Dais Analytic Corporation - Odessa, FL Partners: -- Oak Ridge National Laboratory - Oak Ridge, TN -- Xergy Inc. - Seaford, DE DOE Total Funding: $1,500,000 Cost Share: $300,000 Project Term: October 1, 2015 - September 30, 2016 Funding Opportunity: Building Energy Efficiency Frontiers and

  3. HVAC Equipment Rebate Program

    Energy.gov [DOE]

    NOTE: As of January 1, 2016, rebates for unitary air conditioning and split systems and integrated dual enthalpy economizer controls are no longer available.

  4. EECBG Success Story: HVAC Upgrade Saving Money, Protecting History

    Energy.gov [DOE]

    With financial support from a $250,000 PA Conservation Works! grant – funded through the federal Energy Efficiency and Conservation Block Grant program and the Recovery Act – CCHS purchased a new Desert-Aire HVAC system. Learn more.

  5. NREL Delivers In-Home HVAC Efficiency Testing Solutions (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Delivers In-Home HVAC Efficiency Testing Solutions Researchers at the National Renewable Energy Laboratory (NREL) have recently developed two simple in-home efficiency test methods that can be used by technicians, researchers, or interested homeowners to verify the correct opera- tion and energy efficiency of a home's air conditioning and heating equipment. An efficiency validation method for mini-split heat pumps (MSHPs)-highly efficient refrigerant-based air conditioning and heating systems

  6. Thermal model of solar absorption HVAC systems

    SciTech Connect

    Bergquam, J.B.; Brezner, J.M.

    1995-11-01

    This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

  7. Higher Efficiency HVAC Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Higher Efficiency HVAC Motors Higher Efficiency HVAC Motors Advanced permanent magnet motor technology will drive HVAC energy savings. Advanced permanent magnet motor technology will drive HVAC energy savings. Advanced permanent magnet motor technology will drive HVAC energy savings. Advanced permanent magnet motor technology will drive HVAC energy savings. Advanced permanent magnet motor technology will drive HVAC energy savings. Advanced permanent magnet motor technology will drive HVAC energy

  8. Advanced HVAC Development and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of advanced HVAC systems? - "Retrofit-ready" ... - Dehumidification - Water Heating - Ventilation 5 ... Spreadsheet loads and Domestic Hot Water Event Generator. ...

  9. 2016 American Society of Heating, Refrigerating, and Air-Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    2016 American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Winter Conference 2016 American Society of Heating, Refrigerating, and Air-Conditioning...

  10. American Society of Heating, Refrigeration, and Air Condition...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) 2016 Annual Conference American Society of Heating, Refrigeration, and Air Condition Engineers ...

  11. HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) OE Framework Document ...

  12. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  13. Enforcement Policy Statement: Commercial HVAC Equipment Issued January 30, 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Commercial HVAC Equipment (January 30, 2015) 1 Enforcement Policy Statement: Commercial HVAC Equipment Issued January 30, 2015 The U.S. Department of Energy (DOE), Office of General Counsel, Office of the Assistant General Counsel for Enforcement (Office of Enforcement) issues the following policy statements regarding Departmental testing of commercial air conditioners and heat pumps subject to test procedures and energy conservation standards found at 10 C.F.R. Part 431, Subpart F. Nothing in

  14. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  15. NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)

    SciTech Connect

    Not Available

    2005-09-01

    This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

  16. Alternate HVAC systems and exceptions for QA-Credentialed HVAC Contractor |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Alternate HVAC systems and exceptions for QA-Credentialed HVAC Contractor Alternate HVAC systems and exceptions for QA-Credentialed HVAC Contractor The document outlines alternate HVAC systems and exceptions for QA-Credentialed HVAC Contractor. HVAC Credentialing Alternate HVAC Systems Bulletin 07012015.pdf (409.41 KB) More Documents & Publications ENERGY STAR Certified Homes, Version 3 (Rev. 07) Inspection Checklists for National Program Requirements DOE Zero Energy

  17. Aggregated Modeling and Control of Air Conditioning Loads for...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Aggregated Modeling and Control of Air Conditioning Loads for Demand Response Citation Details In-Document Search Title: Aggregated Modeling and Control of Air...

  18. HVAC design considerations for cold climates

    SciTech Connect

    Armstrong, R.S. )

    1993-09-01

    The design of heating, ventilating and air-conditioning (HVAC) systems in cold climate areas requires modifications to the standard designs used in more temperate climates. While most of the US experiences freezing temperatures at least once during the winter months, certain areas experience several months of extended cold. No single location in the US experiences these extended cold conditions more than Alaska. While most areas in the continental US will not require modifications to standard design guidelines, many design modifications commonly used in the Arctic regions of Alaska and Canada can also be applied to any cold climate area in the continental US. The geographic area of Alaska is about one-third the size of the continental US. Climatic extremes range from Ketchikan with 6.697 heating degree days (at 55[degree]21 minutes N latitude) to Barrow with 20,341 heating degree days (at 71[degree]18 minutes N latitude), according to the Arctic Environmental Information and Data Center. The suggestions in this article are a compilation of general approaches the authors used to address the challenge of cold climate design. Of course, each detail design must be adapted to the specific climate and application at hand.

  19. Classroom HVAC: Improving ventilation and saving energy -- field study plan

    SciTech Connect

    Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

    2004-10-14

    The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

  20. Alternative non-CFC mobile air conditioning

    SciTech Connect

    Mei, V.C.; Chen, F.C.; Kyle, D.M.

    1992-09-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in the search for alternative, non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential, which could result in their eventual phaseout. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This report, therefore, is aimed mainly at the study of alternative automotive cooling methodologies, although it briefly discusses the current status of alternative refrigerants. The alternative MACs can be divided into work-actuated and heat-actuated systems. Work-actuated systems include conventional MAC, reversed Brayton air cycle, rotary vane compressor air cycle, Stirling cycle, thermoelectric (TE) cooling, etc. Heat-actuated MACs include metal hydride cooling, adsorption cooling, ejector cooling, absorption cycle, etc. While we are better experienced with some work-actuated cycle systems, heat-actuated cycle systems have a high potential for energy savings with possible waste heat applications. In this study, each altemative cooling method is discussed for its advantages and its limits.

  1. Central Air Conditioning | Department of Energy

    Office of Environmental Management (EM)

    Air supply and return ducts come from indoors through the home's exterior wall or roof to connect with the packaged air conditioner, which is usually located outdoors....

  2. Packaged HVAC Unit Diagnostician version 1.0

    Energy Science and Technology Software Center

    2007-01-09

    The PHD automatically detects and diagnoses faults with respect to four major aspects of packaged heating, ventilating, and air conditioning (HVAC) unit operation: 1) air handling in which return-air and outdoor-air are mixed, then conditioned to appropriate temperature and humidity conditions, 2) vapor-compression refrigerant loop operation, 3) overall unit efficiency and its potential degradation over time, and 4) operation scheduling. When faults are detected, the software provides alarm codes corresponding to the detected problem(s). Thesemore » alarms map into explanations of the faults, possible causes for them, and suggested actions to remedy the faults. For air handling, the software also estimates energy and cost impacts of faults. The software is intended for implementation on a hardware systems that includes sensors, sensor signal processing, micro-processor unit for running this software, and communication to a web server. Results are made available to users via the world wide web using a computer with Web browser and Internet connection for access. The graphical web-based interface must be provided by an application service provider (not part of this software).« less

  3. Packaged HVAC Unit Diagnostician version 1.0

    SciTech Connect

    2007-01-09

    The PHD automatically detects and diagnoses faults with respect to four major aspects of packaged heating, ventilating, and air conditioning (HVAC) unit operation: 1) air handling in which return-air and outdoor-air are mixed, then conditioned to appropriate temperature and humidity conditions, 2) vapor-compression refrigerant loop operation, 3) overall unit efficiency and its potential degradation over time, and 4) operation scheduling. When faults are detected, the software provides alarm codes corresponding to the detected problem(s). These alarms map into explanations of the faults, possible causes for them, and suggested actions to remedy the faults. For air handling, the software also estimates energy and cost impacts of faults. The software is intended for implementation on a hardware systems that includes sensors, sensor signal processing, micro-processor unit for running this software, and communication to a web server. Results are made available to users via the world wide web using a computer with Web browser and Internet connection for access. The graphical web-based interface must be provided by an application service provider (not part of this software).

  4. Automotive Thermoelectric Generators and HVAC | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermoelectric Generators and HVAC Automotive Thermoelectric Generators and HVAC Provides overview of DOE-supported projects in automotive thermoelectric generators and heatersair ...

  5. HVAC, Water Heating, and Appliance Publications | Department...

    Energy Saver

    HVAC, Water Heating, and Appliance Publications HVAC, Water Heating, and Appliance Publications September 19, 2016 Alternative Refrigerant Evaluation for High-Ambient-Temperature ...

  6. HVAC Equipment Design Options for Near-Zero-Energy Homes (NZEH) -A Stage 2 Scoping Assessment

    SciTech Connect

    Baxter, Van D

    2005-11-01

    Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Conventional unitary equipment and system designs have matured to a point where cost-effective, dramatic efficiency improvements that meet near-zero-energy housing (NZEH) goals require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. This report describes results of a scoping assessment of HVAC system options for NZEH homes. ORNL has completed a preliminary adaptation, for consideration by The U.S. Department of Energy, Energy Efficiency and Renewable Energy Office, Building Technologies (BT) Program, of Cooper's (2001) stage and gate planning process to the HVAC and Water Heating element of BT's multi-year plan, as illustrated in Figure 1. In order to adapt to R&D the Cooper process, which is focused on product development, and to keep the technology development process consistent with an appropriate role for the federal government, the number and content of the stages and gates needed to be modified. The potential federal role in technology development involves 6 stages and 7 gates, but depending on the nature and status of the concept, some or all of the responsibilities can flow to the private sector for product development beginning as early as Gate 3. In the proposed new technology development stage and gate sequence, the Stage 2 'Scoping Assessment

  7. HVAC design for jails

    SciTech Connect

    Gill, K.E. )

    1994-07-01

    The purpose of this article is to provide an overview of the mechanical, life safety, and IAQ issues in current jail HVAC design. The term jail, as used in this article, is more correctly adult local detention facility, as defined by the American Correctional Association (ACA). It will be used to describe those facilities that (1) are operated at the city and county level by local jurisdictions, not state or federal agencies, and (2) are secure for the detention of both pretrial detainees and sentenced inmates serving terms of less than one year or awaiting assignment to state or federal facilities (prisons).

  8. Higher Efficiency HVAC Motors

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Higher Efficiency HVAC Motors 2016 Building Technologies Office Peer Review PJ Piper, pjpiper@qmpower.com CEO, QM Power, Inc. 2 Project Summary Timeline: Start date: 10/1/14 Planned end date: 9/30/16 Key Milestones 1. Target Application and Machine Specs; 2/13/15 2. Motor Design; 9/30/15 3. Build prototype; 3/31/16 4. Performance validation; 8/1/16 Budget: Total Project $ to Date: * DOE: $239,947 * Cost Share: $189,801 Total Project $: * DOE: $750,000 * Cost Share: $635,756 Key Partners: Project

  9. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    SciTech Connect

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated

  10. Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing

    SciTech Connect

    2015-03-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. In this project, IBACOS studied when HVAC equipment is downsized and ducts are unaltered to determine conditions that could cause a supply air delivery problem and to evaluate the feasibility of modifying the duct systems using minimally invasive strategies to improve air distribution.

  11. CVEN 6960 master's project, investigation of a cooling coil in high humidity conditions. Master's thesis

    SciTech Connect

    Sloop, R.E.

    1993-12-10

    The primary purpose of this project is to validate the HVAC*2 Toolkit calculations for a cooling coil in high humidity conditions. A total of 19 experimental runs at different entering air temperature and humidity conditions were performed at the Joint Center for Energy Management HVAC Laboratory that exposed a cooling coil to temperature and humidity conditions that are typically found in the southern United States. The inlet conditions and manufacturer's coil rating data was used as input to the HVAC*2 Toolkit simple cooling coil subroutine (CCSIM). The predicted results from the toolkit were then compared to the experimental results.

  12. Saving Money During the Air Conditioning Season | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Money During the Air Conditioning Season Saving Money During the Air Conditioning Season June 4, 2014 - 4:00pm Addthis Keeping your air conditioner maintained can help save you money this summer. | Photo courtesy of ©iStockphoto/firemanYU Keeping your air conditioner maintained can help save you money this summer. | Photo courtesy of ©iStockphoto/firemanYU Elizabeth Spencer Communicator, National Renewable Energy Laboratory What does this mean for me? Keeping your air conditioner well

  13. Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems—An overview: Part I: Hard control

    SciTech Connect

    D. Subbaram Naidu; Craig G. Rieger

    2011-02-01

    A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology “hard” and “soft” computing/control has nothing to do with the “hardware” and “software” that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

  14. Central Air Conditioning | Department of Energy

    Energy Saver

    that the newly installed air conditioner has the exact refrigerant charge and airflow rate specified by the manufacturer Locates the thermostat away from heat sources, such as...

  15. HVAC Installed Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Installed Performance HVAC Installed Performance This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question HVAC proper installation energy savings: over-promising or under-delivering?" issue3_hvac_installed.pdf (89.79 KB) More Documents & Publications Issue #3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering? A PDI for your HVAC System Guidelines on Airflow and Refrigerant Charge Verification

  16. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; ,

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  17. ORNL: HVAC Lab Research - 2015 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ORNL: HVAC Lab Research - 2015 Peer Review ORNL: HVAC Lab Research - 2015 Peer Review Presenter: Jeffrey Munk, ORNL View the Presentation PDF icon ORNL: HVAC Lab Research - 2015 ...

  18. Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings

    SciTech Connect

    Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

    2002-06-01

    It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document performance

  19. Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Burden RFI | Department of Energy Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI These comments are submitted by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) in response to the U.S. Department of Energy's (DOE) notice in the August 8, 2012 Federal Register requesting information to assist DOE in reviewing existing regulations and in making its

  20. Building America Whole-House Solutions for New Homes: HVAC Design Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    for a Hot-Humid Production Builder | Department of Energy HVAC Design Strategy for a Hot-Humid Production Builder Building America Whole-House Solutions for New Homes: HVAC Design Strategy for a Hot-Humid Production Builder In this project, BSC worked with the builder to develop a cost-effective design for moving the HVAC system into conditioned space and increase the energy performance of future production houses in anticipation of 2015 IECC codes. HVAC Design Strategy for a Hot-Humid

  1. Air-Conditioning, Heating, and Refrigeration Institute (AHRI...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI ... PDF icon DOE Com Reg Burden RFI 9-7-12.pdf More Documents & Publications Regulatory Burden ...

  2. Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?

    SciTech Connect

    Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

    2008-10-01

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

  3. Floor-supply displacement air-conditioning: Laboratory experiments

    SciTech Connect

    Akimoto, Takashi; Nobe, Tatsuo; Tanabe, Shinichi; Kimura, Kenichi

    1999-07-01

    The results of laboratory measurements on the performance of a floor-supply displacement air-conditioning system in comparison to a displacement ventilation system with a side-wall-mounted diffuser and a ceiling-based distribution system are described. Thermal stratification was observed, as there were greater vertical air temperature differences in both of the displacement systems than in the ceiling-based system. The floor-supply displacement air-conditioning system produced a uniformly low air velocity at each measurement height, while a rather high air velocity near the floor was observed for the displacement ventilation system with a sidewall-mounted diffuser. Local mean age of air of the floor-supply displacement air-conditioning system was lower than that of the other systems, especially in the lower part of the room. According to the simulation results, the floor-supply displacement air-conditioning system with outdoor air cooling requires 34% less energy than the conventional air-conditioning system with outdoor air cooling.

  4. Heating, Ventilation, and Air Conditioning Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Heating, Ventilation, and Air Conditioning Projects Heating, Ventilation, and Air Conditioning Projects AS-IHP System Concept Sketch. Image credit: Oak Ridge National Laboratory Air-Source Integrated Heat Pump Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partner: Lennox Building-Integrated Heat & Moisture Exchange (SBIR Phase 2B) Lead Performer: Architectural Applications - Portland, Oregon Partner: Oregon State University - Corvallis, Oregon Left: Environmental chamber to

  5. Advanced Strategy Guideline. Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, Arlan

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings.

  6. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-E’s BEETIT Project, short for “Building Energy Efficiency Through Innovative Thermodevices,” are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  7. Building America Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania (Fact Sheet)

    SciTech Connect

    Not Available

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  8. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  9. Advanced Development and Market Penetration of Desiccant-Based Air-Conditioning Systems

    SciTech Connect

    Vineyard, E A; Sand, J R; Linkous, R L; Baskin, E; Mason, D

    1998-01-01

    Desiccant Air Conditioning Systems can be used as alternatives for conventional air conditioning equipment in any commercial or residential building.

  10. Pedernales Electric Cooperative- HVAC Rebate Program

    Energy.gov [DOE]

    Pedernales Electric Cooperative offers equipment rebates to its members who install energy efficient HVAC equipment. Eligible equipment includes:

  11. HVAC Technician III | Princeton Plasma Physics Lab

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    HVAC Technician III Department: Facilities Supervisor(s): Tom Ward Staff: TSS 4 Requisition Number: 1600764 Under the supervision of the General Lead Technician and Lead HVAC Technician, the incumbent will be responsible for the installation, preventative maintenance, troubleshooting and repair of various HVAC and refrigeration equipment; local HVAC control systems and ancillary support equipment; and will work with other groups within the Division and throughout the Laboratory to ensure

  12. Air-conditioning, Heating, and Refrigeration Institute Comments |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy conditioning, Heating, and Refrigeration Institute Comments Air-conditioning, Heating, and Refrigeration Institute Comments These comments are submitted by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) in response to the U.S. Department of Energy's (DOE) notice in the May 10, 2016 Federal Register requesting information to assist DOE in reviewing existing regulations pursuant to Executive Order 13563 "Improving Regulation and Regulatory

  13. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  14. New Whole-House Solutions Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania

    SciTech Connect

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania, to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. The team evaluated a market-available through-wall air transfer fan system that provides air to the bedrooms.The relative ability of this system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability.

  15. Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study

    SciTech Connect

    Apte, Michael G.; Delp, Woody W.; Diamond, Richard C.; Hodgson, Alfred T.; Kumar, Satish; Rainer, Leo I.; Shendell, Derek G.; Sullivan, Doug P.; Fisk, William J.

    2001-10-11

    It is commonly assumed that efforts to simultaneously develop energy efficient building technologies and to improve indoor environmental quality (IEQ) are unfeasible. The primary reason for this is that IEQ improvements often require additional ventilation that is costly from an energy standpoint. It is currently thought that health and productivity in work and learning environments requires adequate, if not superior, IEQ. Despite common assumptions, opportunities do exist to design building systems that provide improvements in both energy efficiency and IEQ. This report outlines the selection of a heating, ventilation, and air conditioning (HVAC) system to be used in demonstrating such an opportunity in a field study using relocatable school classrooms. Standard classrooms use a common wall mounted heat pump HVAC system. After reviewing alternative systems, a wall-mounting indirect/direct evaporative cooling system with an integral hydronic gas heating is selected. The anticipated advantages of this system include continuous ventilation of 100 percent outside air at or above minimum standards, projected cooling energy reductions of about 70 percent, inexpensive gas heating, improved airborne particle filtration, and reduced peak load electricity use. Potential disadvantages include restricted climate regions and possible increases in indoor relative humidity levels under some conditions.

  16. Air Conditioning That's Out of This World | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Air Conditioning That's Out of This World Air Conditioning That's Out of This World September 26, 2016 - 12:49pm Addthis New materials enhance the cooling effects from outer space to reduce energy use in small- to medium-sized buildings September 2016 bto_news1_092616.png This graph shows simulation data revealing the difference in radiator temperature and ambient outdoor air temperature over a two-day period in April in Las Vegas. The data reveals that the radiator surface consistently stays

  17. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    SciTech Connect

    Baxter, Van D

    2006-11-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development

  18. Better Buildings Neighborhood Program Business Models Guide: HVAC

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Contractor Business Model | Department of Energy Business Models Guide: HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model. HVAC Contractor Business Model (2.28 MB) More Documents & Publications Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Conclusion Better Buildings Neighborhood

  19. HVAC Performance Maps

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Creating generalized and product-specific model inputs 3. Identifying product improvement ... delivered capacity in a whole-building context, across varying climates and conditions. ...

  20. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  1. Non-CFC air conditioning for transit buses

    SciTech Connect

    Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

    1992-11-01

    In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths`s ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

  2. Non-CFC air conditioning for transit buses

    SciTech Connect

    Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

    1992-11-01

    In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths's ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

  3. High Performance HVAC Systems, Part II: Low-Load HVAC Systems for Single

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Multifamily Applications | Department of Energy High Performance HVAC Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications High Performance HVAC Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications The Building America Program hosted this no-cost webinar that will discuss the current research on comfort in residential buildings. Results will be presented from 37 new homes that were monitored in the Southeast United States. The

  4. Keeping Cool Without Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Keeping Cool Without Air Conditioning Keeping Cool Without Air Conditioning August 2, 2013 - 9:50am Addthis Trees can save you energy by blocking sunlight in the summer and letting it through in the winter. | Photo courtesy of ©iStockphoto/blackie Trees can save you energy by blocking sunlight in the summer and letting it through in the winter. | Photo courtesy of ©iStockphoto/blackie Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Check out these

  5. 1999 Commercial Buildings Characteristics--HVAC Conservation...

    Energy Information Administration (EIA) (indexed site)

    Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Those commercial buildings that used HVAC conservation features...

  6. Columbia Water & Light- Residential HVAC Rebates

    Energy.gov [DOE]

    Columbia Water & Light (CWL) provides residential customers with rebates on energy efficient HVAC equipment. Customers should submit the mechanical permit from a Protective Inspection, a copy...

  7. Emerging Technologies: HVAC, WH and Appliance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies: HVAC, WH and Appliance BTO Peer Review 2016 Antonio M Bouza ... Using Novel Rotating Heat Exchanger * SNL - RVCC Technology: A Pathway to ...

  8. Building America Expert Meeting: Transitioning Traditional HVAC...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Building America Best Practices Series Volume 16: 40% Whole-House Energy Savings in ...

  9. Building America Expert Meeting: Transitioning Traditional HVAC...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the ...

  10. Integration of HVAC System Design with Simplified Duct Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation Integration of HVAC System Design with Simplified Duct Distribution - Building ...

  11. Building America Webinar: HVAC Right-Sizing Part 1-Calculating...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the key criteria required to create accurate heating and cooling load calculations. ... HVAC Right-Sizing Part 1: Calculating Loads ZERH Webinar: Low Load HVAC in Zero Energy ...

  12. Building America Envelope and Advanced HVAC Research | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    under the Moisture Risk Management research area of the Building America roadmap. ... - 2015 BTO Peer Review HVAC R&D Research & Development Roadmap: Emerging HVAC Technologies

  13. Improving efficiency of a vehicle HVAC system with comfort modeling...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty ...

  14. Development of a High-Efficiency Zonal Thermoelectric HVAC System...

    Energy.gov [DOE] (indexed site)

    Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for ... of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices

  15. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty...

    Energy.gov [DOE] (indexed site)

    & Publications Thermoelectric HVAC for Light-Duty Vehicle Applications Improving efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric ...

  16. Thermoelectric HVAC for Light-Duty Vehicle Applications | Department...

    Energy.gov [DOE] (indexed site)

    (1.08 MB) More Documents & Publications Thermoelectric HVAC for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty ...

  17. HVAC, Water Heating, and Appliance Overview - 2016 BTO Peer Review...

    Energy Saver

    HVAC, Water Heating, and Appliance Overview - 2016 BTO Peer Review HVAC, Water Heating, and Appliance Overview - 2016 BTO Peer Review Presenter: Antonio M. Bouza, U.S. Department ...

  18. 2014-04-28 Issuance: Certification of Commercial HVAC, Water...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    28 Issuance: Certification of Commercial HVAC, Water Heating, and Refrigeration Equipment; Final Rule 2014-04-28 Issuance: Certification of Commercial HVAC, Water Heating, and ...

  19. HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer...

    Energy Saver

    HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer Review Presenter: Tony Bouza, U.S. Department of Energy View the Presentation HVAC, Water Heating, and Appliances ...

  20. HVAC, Water Heating, and Appliance Subprogram Overview - 2016...

    Energy Saver

    HVAC, Water Heating, and Appliance Subprogram Overview - 2016 BTO Peer Review HVAC, Water Heating, and Appliance Subprogram Overview - 2016 BTO Peer Review Presenter: Antonio M. ...

  1. High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

    SciTech Connect

    Andrew Lowenstein

    2005-12-19

    Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create

  2. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect

    Kerrigan, P.

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  3. COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS

    SciTech Connect

    Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

    2004-10-31

    Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

  4. Case study field evaluation of a systems approach to retrofitting a residential HVAC system

    SciTech Connect

    Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

    2003-09-01

    This case study focusing on a residence in northern California was undertaken as a demonstration of the potential of a systems approach to HVAC retrofits. The systems approach means that other retrofits that can affect the HVAC system are also considered. For example, added building envelope insulation reduces building loads so that smaller capacity HVAC system can be used. Secondly, we wanted to examine the practical issues and interactions with contractors and code officials required to accomplish the systems approach because it represents a departure from current practice. We identified problems in the processes of communication and installation of the retrofit that led to compromises in the final energy efficiency of the HVAC system. These issues must be overcome in order for HVAC retrofits to deliver the increased performance that they promise. The experience gained in this case study was used to optimize best practices guidelines for contractors (Walker 2003) that include building diagnostics and checklists as tools to assist in ensuring the energy efficiency of ''house as a system'' HVAC retrofits. The best practices guidelines proved to be an excellent tool for evaluating the eight existing homes in this study, and we received positive feedback from many potential users who reviewed and used them. In addition, we were able to substantially improve the energy efficiency of the retrofitted case study house by adding envelope insulation, a more efficient furnace and air conditioner, an economizer and by reducing duct leakage.

  5. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  6. Do residential air-conditioning rebates miss the mark?

    SciTech Connect

    Stickney, B.; Shepard, M.

    1994-12-31

    The rebates utilities provide for residential central air conditioners and heat pumps to encourage improved cooling efficiency may inadvertently reward higher peak demand in many cases. This problem could be avoided by using both efficiency and peak performance to determine eligibility for rebates. Such changes to incentive formulas would better align the utilities` DSM programs with the dual goals of improved efficiency and peak demand reduction. Improved peak performance would be especially advantageous for sunbelt utilities whose residential cooling load is highly coincident with the summer peak. Air conditioning has been called the utilities` ``load from hell,`` because it is intermittent, unpredictable, and is the largest contributor to summer peak demand, requiring massive investments in power generation and delivery capacity. It is no wonder then that more DSM programs are targeted at space cooling than at any other end use. Ironically, however, all of the residential rebate programs the authors examined for central air conditioners and heat pumps are based on the seasonal energy efficiency ratio (SEER), which provides a valuable measure of seasonal energy efficiency but is not a good indicator of peak demand. Residential central air conditioning incentive programs for eight major utilities are based exclusively on SEER and most ratchet up the incentive levels with increasing SEER. None include the measure for peak demand for residential cooling equipment, which is the so-called energy efficiency ratio, or EER.

  7. Laboratory Evaluation of Air Flow Measurement Methods for Residential...

    Office of Scientific and Technical Information (OSTI)

    Returns Citation Details In-Document Search Title: Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns This project improved the accuracy of air flow...

  8. Fouling of HVAC fin and tube heat exchangers

    SciTech Connect

    Siegel, Jeffrey; Carey, Van P.

    2001-07-01

    Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1--8.6 {micro}m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1 {micro}m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air.

  9. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    SciTech Connect

    Baxter, Van D

    2007-05-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development

  10. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  11. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  12. In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop

    SciTech Connect

    Lee, Doh-Won; Zietsman, Josias; Farzaneh, Mohamadreza; Li, Wen-Whai; Olvera, Hector; Storey, John Morse; Kranendonk, Laura

    2009-01-01

    At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

  13. Low-Load Space Conditioning Needs Assessment

    SciTech Connect

    Puttagunta, Srikanth

    2015-05-19

    Heating, ventilating, and air-conditioning (HVAC) equipment must be right-sized to ensure energy performance and comfort. With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment that creates system efficiency, comfort, and cost penalties. To bridge the gap between currently available HVAC equipment that is oversized or inefficient and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family (duplex and townhouse) home market. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed these data to outline the characteristics of low-load dwellings such as the heating and cooling design loads.

  14. Advanced Strategy Guideline: Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, A.

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings. Principles discussed that will maximize occupant comfort include delivery of the proper amount of conditioned air for appropriate temperature mixing and uniformity without drafts, minimization of system noise, the impacts of pressure loss, efficient return air duct design, and supply air outlet placement, as well as duct layout, materials, and sizing.

  15. VARIABLE SPEED INTEGRATED INTELLIGENT HVAC BLOWER

    SciTech Connect

    Shixiao Wang; Herman Wiegman; Wilson Wu; John Down; Luana Iorio; Asha Devarajan; Jing Wang; Ralph Carl; Charlie Stephens; Jeannine Jones; Paul Szczesny

    2001-11-14

    This comprehensive topical report discusses the key findings in the development of a intelligent integrated blower for HVAC applications. The benefits of rearward inclined blades over that of traditional forward inclined blades is well documented and a prototype blower design is presented. A comparison of the proposed blower to that of three typical units from the industry is presented. The design of the blower housing is also addressed and the impact of size limitations on static efficiency is discussed. Issues of air flow controllability in the rearward inclined blower is addressed and a solution to this problem is proposed. Several motor design options are discussed including inside-out radial flux designs and novel axial flux designs, all are focused on the various blower needs. The control of the motor-blower and airflow through the use of a high density inverter stage and modern digital signal processor is presented. The key technical challenges of the approach are discussed. The use of the motor as a sensor in the larger heating/ventilating system is also discussed. Diagnostic results for both the motor itself and the blower system are presented.

  16. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  17. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, Viung C.; Chen, Fang C.

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  18. BTO Workshop on Advanced HVAC Research Effort

    Energy.gov [DOE]

    The Building Technologies Office (BTO) is exploring the launch of a major HVAC research effort in the area of low global warming potential and non-vapor compression technologies. To support this...

  19. HVAC Efficiency Controls Could Mean Significant Savings

    Energy.gov [DOE]

    According to a new report from Pacific Northwest National Lab, commercial building owners could save an average 38 percent on their heating and cooling bills just by installing a few new controls onto their HVAC systems.

  20. A PDI for your HVAC System

    Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "HVAC proper installation energy savings: over-promising or under-deliverying?"

  1. Chapter 5: Lighting, HVAC, and Plumbing

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5: Lighting, HVAC, and Plumbing High-Performance Engineering Design Lighting System Design Mechanical System Design Central Plant Systems Plumbing and Water Use Building Control Systems Electrical Power Systems Metering LANL | Chapter 5 High-Performance Engineering Design Lighting, HVAC, and Plumbing By now, the building envelope serves multiple roles. It protects the occupants from changing weather condi- tions and it plays a key part in meeting the occupants' comfort needs. The heating,

  2. Physical Sciences Facility Air Emission Control Equivalency Evaluation

    SciTech Connect

    Brown, David M.; Belew, Shan T.

    2008-10-17

    This document presents the adequacy evaluation for the application of technology standards during design, fabrication, installation and testing of radioactive air exhaust systems at the Physical Sciences Facility (PSF), located on the Horn Rapids Triangle north of the Pacific Northwest National Laboratory (PNNL) complex. The analysis specifically covers the exhaust portion of the heating, ventilation and air conditioning (HVAC) systems associated with emission units EP-3410-01-S, EP-3420-01-S and EP 3430-01-S.

  3. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect

    Kerrigan, P.

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  4. Simplified air change effectiveness modeling

    SciTech Connect

    Rock, B.A.; Anderson, R.; Brandemuehl, M.J.

    1992-06-01

    This paper describes recent progress in developing practical air change effectiveness modeling techniques for the design and analysis of air diffusion in occupied rooms. The ultimate goal of this continuing work is to develop a simple and reliable method for determining heating, ventilating, and air-conditioning (HVAC) system compliance with ventilation standards. In the current work, simplified two-region models of rooms are used with six occupancy patterns to find the air change effectiveness. A new measure, the apparent ACH effectiveness, yields the relative ventilation performance of an air diffusion system. This measure can be used for the prediction or evaluation of outside air delivery to the occupants. The required outside air can be greater or less than that specified by ventilation standards such as ASHRAE Standard 62-89.

  5. Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Ally, Moonis Raza; Rice, C Keith

    2009-02-01

    This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

  6. Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Conclusion

    Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Conclusion, Summary of HVAC Contractor Insights.

  7. Indirect Benefits (Increased Roof Life and HVAC Savings) from...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV System at the San Jos Convention Center Indirect Benefits (Increased Roof Life and HVAC Savings) from a ...

  8. EECBG Success Story: HVAC Upgrade Saving Money, Protecting History...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HVAC Upgrade Saving Money, Protecting History EECBG Success Story: HVAC Upgrade Saving Money, Protecting History November 2, 2010 - 5:37pm Addthis A new heating and cooling system...

  9. Pre-Commercial Demonstration of Cost-Effective Advanced HVAC...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Pre-Commercial Demonstration of Cost-Effective Advanced HVAC Controls - 2014 BTO Peer Review Pre-Commercial Demonstration of Cost-Effective Advanced HVAC Controls - 2014 BTO Peer ...

  10. Issue #3: HVAC Proper Installation Energy Savings: Over-Promising...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering? Issue 3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering? What energy ...

  11. HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Appliances Overview - 2015 BTO Peer Review HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer Review Presenter: Tony Bouza, U.S. Department of Energy View the Presentation HVAC, Water Heating, and Appliances Overview - 2015 BTO Peer Review (801.59 KB) More Documents & Publications HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review HVAC, Water Heating, and Appliance Subprogram Overview - 2016 BTO Peer Review

  12. Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201)

    Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Home Upgrades: Leveraging HVAC Upgrades for Greater Impact (201), November 18, 2015.

  13. HVAC, Water Heating, and Appliances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Emerging Technologies » HVAC, Water Heating, and Appliances HVAC, Water Heating, and Appliances About the Portfolio The HVAC/Water Heating/Appliance subprogram develops cost effective, energy efficient technologies with national labs and industry partners. Technical analysis has shown that heat pumps have the technical potential to save up to 50% of the energy used by conventional HVAC technologies in residential buildings. Our focus is on the introduction of new heat pumping technologies, heat

  14. Modeling and Control of Aggregated Air Conditioning Loads Under Realistic Conditions

    SciTech Connect

    Chang, Chin-Yao; Zhang, Wei; Lian, Jianming; Kalsi, Karanjit

    2013-02-24

    Demand-side control is playing an increasingly important role in smart grid control strategies. Modeling the dynamical behavior of a large population of appliances is especially important to evaluate the effectiveness of various load control strategies. In this paper, a high accuracy aggregated model is first developed for a population of HVAC units. The model efficiently includes statistical information of the population, systematically deals with heterogeneity, and accounts for a second-order effect necessary to accurately capture the transient dynamics in the collective response. Furthermore, the model takes into account the lockout effect of the compressor in order to represent the dynamics of the system under control more accurately. Then, a novel closed loop load control strategy is designed to track a desired demand curve and to ensure a stable and smooth response.

  15. HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI)

    Energy.gov [DOE]

    OE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps.

  16. Indoor air quality & airborne disease control in healthcare facilities...

    Office of Scientific and Technical Information (OSTI)

    Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; MEDICAL ESTABLISHMENTS; INDOOR AIR POLLUTION; CONTROL SYSTEMS; DISEASES; THERMAL COMFORT; SPACE HVAC SYSTEMS Word ...

  17. Text-Alternative Version of Building America Webinar: High Performance HVAC

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications | Department of Energy HVAC Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications Text-Alternative Version of Building America Webinar: High Performance HVAC Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications High Performance HVAC Systems, Part II: Low-Load HVAC Systems for Single and Multifamily Applications November 16, 2015 Speakers Andrew Poerschke,

  18. The Future of Air Conditioning for Buildings Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The Future of Air Conditioning for Buildings Report The Future of Air Conditioning for Buildings Report This report characterizes the current landscape and trends in the global air conditioning (A/C) market, including discussion of both direct and indirect climate impacts, and potential global warming impacts from growing global A/C usage. The report also documents solutions that can help achieve international goals for energy efficiency and greenhouse gas (GHG) emissions reductions. The

  19. Air-Conditioning, Heating, and Refrigeration Institute Ex Parte Memo

    Energy.gov [DOE]

    On Friday, February 13, 2015, AHRI staff met telephonically with the Department of Energy to discuss issues pertaining to the ongoing efficiency standards rulemaking for single package vertical air...

  20. ISSUANCE 2015-12-11: Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment

    Energy.gov [DOE]

    Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment

  1. Strategy Guideline. HVAC Equipment Sizing

    SciTech Connect

    Burdick, Arlan

    2012-02-01

    This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, FL. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  2. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the

  3. Comparisons of HVAC Simulations between EnergyPlus and DOE-2.2 for Data Centers

    SciTech Connect

    Hong, Tianzhen; Sartor, Dale; Mathew, Paul; Yazdanian, Mehry

    2008-08-13

    This paper compares HVAC simulations between EnergyPlus and DOE-2.2 for data centers. The HVAC systems studied in the paper are packaged direct expansion air-cooled single zone systems with and without air economizer. Four climate zones are chosen for the study - San Francisco, Miami, Chicago, and Phoenix. EnergyPlus version 2.1 and DOE-2.2 version 45 are used in the annual energy simulations. The annual cooling electric consumption calculated by EnergyPlus and DOE-2.2 are reasonablely matched within a range of -0.4percent to 8.6percent. The paper also discusses sources of differences beween EnergyPlus and DOE-2.2 runs including cooling coil algorithm, performance curves, and important energy model inputs.

  4. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect

    Shapiro, C.; Aldrich, R.; Arena, L.

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  5. The state of HVAC in Mexico

    SciTech Connect

    Roberts, M.M.

    1997-07-01

    With the chartering of the Manual de Anda ASHRAE Chapter in Mexico City, the first chapter in Latin America, and with increasing cross-border trade and investment as a result of NAFTA, it`s important for US and Canadian engineers to understand the state of HVAC technology in Mexico. The goal of this article is to introduce the reader to some industry leaders in Mexico and to show their creative design and installation expertise by reviewing some recent projects.

  6. HVAC Fault Detection and Diagnosis Toolkit

    Energy Science and Technology Software Center

    2004-12-31

    This toolkit supports component-level model-based fault detection methods in commercial building HVAC systems. The toolbox consists of five basic modules: a parameter estimator for model calibration, a preprocessor, an AHU model simulator, a steady-state detector, and a comparator. Each of these modules and the fuzzy logic rules for fault diagnosis are described in detail. The toolbox is written in C++ and also invokes the SPARK simulation program.

  7. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    SciTech Connect

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-07-12

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

  8. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Tyler, Texas PROJECT INFORMATION Project Name: Ventilation Effectiveness Location: Tyler, TX Partners: University of Texas, TxAIRE, uttyler.edu/txaire/houses/ Building Science Corporation, buildingscience.com Building Component: Heating, ventilating, and air conditioning (HVAC), whole-building dilution ventilation Application: New and retrofit; single-family and multifamily Year Tested: 2012 Climate Zones: All PERFORMANCE

  9. Home Improvement Catalyst-Maximizing HVAC Performance Through Contractor

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Partnerships (201) | Department of Energy Improvement Catalyst-Maximizing HVAC Performance Through Contractor Partnerships (201) Home Improvement Catalyst-Maximizing HVAC Performance Through Contractor Partnerships (201) Better Buildings Residential Network Peer Exchange Call Series: Home Improvement Catalyst-Maximizing HVAC Performance Through Contractor Partnerships (201), call slides and discussion summary. Call Slides and Discussion Summary (2.83 MB) More Documents & Publications

  10. Building America Expert Meeting: Transitioning Traditional HVAC Contractors

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    to Whole House Performance Contractors | Department of Energy Transitioning Traditional HVAC Contractors to Whole House Performance Contractors Building America Expert Meeting: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the

  11. Columbia Water & Light- HVAC and Lighting Efficiency Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Columbia Water & Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

  12. Unified HVAC and Refrigeration Control Systems for Small Footprint...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Unified HVAC and Refrigeration Control Systems for Small Footprint Supermarkets Teja ... Approach Approach: Develop control techniques for reducing peak demand and ...

  13. Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California...

    Energy Saver

    Inverted Attic Bulkhead for HVAC Ductwork Roseville, California PROJECT INFORMATION ... bathrooms constructed in Roseville, California, for one year as an occupied test home. ...

  14. CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Russell Taylor, United Technologies Research Center View the Presentation CBEI: ...

  15. Fabrication of A Quantum Well Based System for Truck HVAC

    Energy.gov [DOE]

    Discusses performance differences between conventional modules and quantum well modules and details a conventional HZ-14 device, using bulk bismuth-telluride advantageous for truck HVAC applications.

  16. HVAC, Water Heating and Appliances Sub-Program Logic Model

    Energy Saver

    & water heating technologies Researchers equipped with validated solutions to develop or improve components & optimize tech. systems at reduced cost High-efficiency HVAC, water ...

  17. Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect

    Not Available

    2010-06-01

    Fact sheet describes NREL's work on a desiccant enhanced evaporative air conditioner (DEVap) that uses 90% less electricity than traditional air conditioning units.

  18. IFC HVAC interface to EnergyPlus - A case of expanded interoperability for energy simulation

    SciTech Connect

    Bazjanac, Vladimir; Maile, Tobias

    2004-03-29

    Tedious manual input of data that define a building, its systems and its expected pattern of use and operating schedules for building energy performance simulation has in the past diverted time and resources from productive simulation runs. In addition to its previously released IFCtoIDF utility that semiautomates the import of building geometry, the new IFC HVAC interface to EnergyPlus (released at the end of 2003) makes it possible to import and export most of the data that define HVAC equipment and systems in a building directly from and to other IFC compatible software tools. This reduces the manual input of other data needed for successful simulation with EnergyPlus to a minimum. The main purpose of this new interface is to enable import of HVAC equipment and systems definitions, generated by other IFC compatible software tools (such as HVAC systems design tools) and data bases, into EnergyPlus, and to write such definitions contained in EnergyPlus input files to the original IFC files from which building geometry was extracted for the particular EnergyPlus input. In addition, this interface sets an example for developers of other software tools how to import and/or export data other than building geometry from and/or into EnergyPlus. This paper describes the necessary simplifications and shortcuts incorporated in this interface, its operating environment, interface architecture, and the basic conditions and methodology for its use with EnergyPlus.

  19. Deposition of biological aerosols on HVAC heat exchangers

    SciTech Connect

    Siegel, Jeffrey; Walker, Ian

    2001-09-01

    Many biologically active materials are transported as bioaerosols 1-10 {micro}m in diameter. These particles can deposit on cooling and heating coils and lead to serious indoor air quality problems. This paper investigates several of the mechanisms that lead to aerosol deposition on fin and tube heat exchangers. A model has been developed that incorporates the effects of several deposition mechanisms, including impaction, Brownian and turbulent diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The model is applied to a typical range of air velocities that are found in commercial and residential HVAC systems 1 - 6 m/s (200 - 1200 ft/min), particle diameters from 1 - 8 {micro}m, and fin spacings from 3.2 - 7.9 fins/cm (8 - 16 fins/inch or FPI). The results from the model are compared to results from an experimental apparatus that directly measures deposition on a 4.7 fins/cm (12 FPI) coil. The model agrees reasonably well with this measured data and suggests that cooling coils are an important sink for biological aerosols and consequently a potential source of indoor air quality problems.

  20. Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation

    SciTech Connect

    Irminger, Philip; Rizy, D Tom; Li, Huijuan; Smith, Travis; Rice, C Keith; Li, Fangxing; Adhikari, Sarina

    2012-01-01

    Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

  1. An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings

    SciTech Connect

    Trcka, Marija; Wetter, Michael; Hensen, Jan L.M.

    2010-07-01

    Integrated performance simulation of buildings and heating, ventilation and air-conditioning (HVAC) systems can help reducing energy consumption and increasing level of occupant comfort. However, no singe building performance simulation (BPS) tool offers sufficient capabilities and flexibilities to accommodate the ever-increasing complexity and rapid innovations in building and system technologies. One way to alleviate this problem is to use co-simulation. The co-simulation approach represents a particular case of simulation scenario where at least two simulators solve coupled differential-algebraic systems of equations and exchange data that couples these equations during the time integration. This paper elaborates on issues important for co-simulation realization and discusses multiple possibilities to justify the particular approach implemented in a co-simulation prototype. The prototype is verified and validated against the results obtained from the traditional simulation approach. It is further used in a case study for the proof-of-concept, to demonstrate the applicability of the method and to highlight its benefits. Stability and accuracy of different coupling strategies are analyzed to give a guideline for the required coupling frequency. The paper concludes by defining requirements and recommendations for generic cosimulation implementations.

  2. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric ...

  3. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  4. System and method for conditioning intake air to an internal combustion engine

    SciTech Connect

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  5. HVAC & Building Management Control System Energy Efficiency Replacements

    SciTech Connect

    Hernandez, Adriana

    2012-09-21

    The project objective was the replacement of an aging, un-repairable HVAC system which has grown inefficient and a huge energy consumer with low energy and efficient HVAC units, and installation of energy efficient building control technologies at City's YMCA Community Center.

  6. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  7. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use: Preprint

    SciTech Connect

    Rugh, J.

    2010-02-01

    A procedure is described to measure approximate real-world air conditioning fuel use and assess the impact of thermal load reduction strategies in plug-in hybrid electric vehicles.

  8. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  9. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

  10. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  11. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  12. Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Location at NAS Oceana. by these changes, including bachelor housing, hangers, the galley, offce buildings, the chapel, and maintenance facilities. This ESPC also included installing ground source heat pumps in three buildings, adding digital control systems to increase heating, ventilation and air conditioning (HVAC) effciency, effcient lighting retrofts, and other water conservation measures. These other water conservation measures include over 5,000 water effcient domestic fxtures, includ-

  13. NREL Provides Guidance to Improve Air Mixing and Thermal Comfort...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems will be downsized, and the air flow ...

  14. Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Introduction

    Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Introduction.

  15. The Impact of Uncertain Physical Parameters on HVAC Demand Response

    SciTech Connect

    Sun, Yannan; Elizondo, Marcelo A.; Lu, Shuai; Fuller, Jason C.

    2014-03-01

    HVAC units are currently one of the major resources providing demand response (DR) in residential buildings. Models of HVAC with DR function can improve understanding of its impact on power system operations and facilitate the deployment of DR technologies. This paper investigates the importance of various physical parameters and their distributions to the HVAC response to DR signals, which is a key step to the construction of HVAC models for a population of units with insufficient data. These parameters include the size of floors, insulation efficiency, the amount of solid mass in the house, and efficiency of the HVAC units. These parameters are usually assumed to follow Gaussian or Uniform distributions. We study the effect of uncertainty in the chosen parameter distributions on the aggregate HVAC response to DR signals, during transient phase and in steady state. We use a quasi-Monte Carlo sampling method with linear regression and Prony analysis to evaluate sensitivity of DR output to the uncertainty in the distribution parameters. The significance ranking on the uncertainty sources is given for future guidance in the modeling of HVAC demand response.

  16. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  17. Heat recovery and the economizer for HVAC systems

    SciTech Connect

    Anantapantula, V.S. . Alco Controls Div.); Sauer, H.J. Jr. )

    1994-11-01

    This articles examines why a combined heat reclaim/economizer system with priority to heat reclaim operation is most likely to result in the least annual total HVAC energy. PC-based, hour-by-hour simulation programs evaluate annual HVAC energy requirements when using combined operation of heat reclaim and economizer cycle, while giving priority to operation of either one. These simulation programs also enable the design engineer to select the most viable heat reclaim and/or economizer system for any given type of HVAC system serving the building internal load level, building geographical location and other building/system variables.

  18. Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy HVAC Right-Sizing Part 1-Calculating Loads Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads During this webinar, Building America Research Team IBACOS highlighted the key criteria required to create accurate heating and cooling load calculations. Current industry rules of thumb, perceptions and barriers to right-sizing HVAC were also discussed. webinar_hvac_calculatingloads_20110428.wmv (15.62 MB) More Documents & Publications HVAC Right-Sizing

  19. Carbon Dioxide and Ionic Liquid Refrigerants: Compact, Efficient Air Conditioning with Ionic Liquid-Based Refrigerants

    SciTech Connect

    2010-10-01

    BEETIT Project: Notre Dame is developing an air-conditioning system with a new ionic liquid and CO2 as the working fluid. Synthetic refrigerants used in air conditioning and refrigeration systems are potent GHGs and can trap 1,000 times more heat in the atmosphere than CO2 alone—making CO2 an attractive alternative for synthetic refrigerants in cooling systems. However, operating cooling systems with pure CO2 requires prohibitively high pressures and expensive hardware. Notre Dame is creating a new fluid made of CO2 and ionic liquid that enables the use of CO2 at low pressures and requires minimal changes to existing hardware and production lines. This new fluid also produces no harmful emissions and can improve the efficiency of air conditioning systems— enabling new use of CO2 as a refrigerant in cooling systems.

  20. Screening analysis for EPACT-covered commercial HVAC and water-heating equipment

    SciTech Connect

    S Somasundaram; PR Armstrong; DB Belzer; SC Gaines; DL Hadley; S Katipumula; DL Smith; DW Winiarski

    2000-05-25

    EPCA requirements state that if the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) amends efficiency levels prescribed in Standard 90.1-1989, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in amended Standard 90.1. However, DOE can establish higher efficiency levels if it can show through clear and convincing evidence that a higher efficiency level, that is technologically feasible and economically justified, would produce significant additional energy savings. On October 29, 1999, ASHRAE approved the amended Standard 90.1, which increases the minimum efficiency levels for some of the commercial heating, cooling, and water-heating equipment covered by EPCA 92. DOE asked Pacific Northwest National Laboratory (PNNL) to conduct a screening analysis to determine the energy-savings potential of the efficiency levels listed in Standard 90.1-1999. The analysis estimates the annual national energy consumption and the potential for energy savings that would result if the EPACT-covered products were required to meet these efficiency levels. The analysis also estimates additional energy-savings potential for the EPACT-covered products if they were to exceed the efficiency levels prescribed in Standard 90-1-1999. In addition, a simple life-cycle cost (LCC) analysis was performed for some alternative efficiency levels. This paper will describe the methodology, data assumptions, and results of the analysis. The magnitude of HVAC and SWH loads imposed on equipment depends on the building's physical and operational characteristics and prevailing climatic conditions. To address this variation in energy use, coil loads for 7 representative building types at 11 climate locations were estimated based on a whole-building simulation.

  1. "Table HC11.6 Air Conditioning Characteristics by Northeast Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Air Conditioning Characteristics",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Do Not Have Cooling Equipment",17.8,4,2.4,1.7 "Have Coolling

  2. "Table HC12.6 Air Conditioning Characteristics by Midwest Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Air Conditioning Characteristics",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Do Not Have Cooling Equipment",17.8,2.1,1.8,0.3 "Have Cooling

  3. "Table HC13.6 Air Conditioning Characteristics by South Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Air Conditioning Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Do Not Have Cooling Equipment",17.8,1.4,0.8,0.2,0.3 "Have

  4. "Table HC14.6 Air Conditioning Characteristics by West Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Air Conditioning Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Do Not Have Cooling Equipment",17.8,10.3,3.1,7.3 "Have Cooling Equipment",93.3,13.9,4.5,9.4 "Use Cooling

  5. New Easy-to-Install Air Conditioning Unit Frees Up Window Space in a Snap |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Easy-to-Install Air Conditioning Unit Frees Up Window Space in a Snap New Easy-to-Install Air Conditioning Unit Frees Up Window Space in a Snap September 26, 2016 - 10:09am Addthis NREL engineers Chuck Booten and Jon Winkler installing the components of the EcoSnap-AC. Photo by Dennis Schroeder NREL engineers Chuck Booten and Jon Winkler installing the components of the EcoSnap-AC. Photo by Dennis Schroeder EcoSnap-AC is a simple snap-together system—with indoor and

  6. Review of Residential Low-Load HVAC Systems

    SciTech Connect

    Brown, Scott A.; Thornton, Brian; Widder, Sarah H.

    2013-09-01

    In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVAC technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.

  7. Workshop 2: Advanced HVAC&R Research Effort

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building Technologies Office (BTO) is exploring the launch of a major HVAC&R research effort in the area of low global warming potential and non-vapor compression technologies.

  8. Workshop 1: Advanced HVAC&R Research Effort

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building Technologies Office (BTO) is exploring the launch of a major HVAC&R research effort in the area of low global warming potential and non-vapor compression technologies. To support...

  9. ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes

    Energy.gov [DOE]

    Building low-load homes creates a new set of challenges for HVAC designers and installers. Right-sizing equipment, managing ventilation, and controlling interior moisture levels are critical if you...

  10. Two Alabama Elementary Schools Get Cool with New HVAC Units

    Energy.gov [DOE]

    Addison Elementary School and Double Springs Elementary School in northwestern Alabama were warm. Some classrooms just didn’t cool fast enough. The buildings, which were built almost 20 years ago, were in need of new HVAC units.

  11. BTO Workshop on Advanced HVAC Research Effort | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Office (BTO) is exploring the launch of a major HVAC research effort in the area of low global warming potential and non-vapor compression technologies. To support this endeavor,...

  12. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes -- Update to Include Analyses of an Economizer Option and Alternative Winter Water Heating Control Option

    SciTech Connect

    Baxter, Van D

    2006-12-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development

  13. Workshop 2: Advanced HVAC&R Research Effort

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ASHRAE Headquarters, Atlanta, GA 10:00AM - 3:00PM December 8, 2015 DOE Building Technologies Office: Advanced HVAC&R Research Effort Workshop on Technical Focus and Structure 1 ©2015 Navigant Consulting, Inc. Confidential and proprietary. Do not distribute or copy. Welcome » Introductions and Logistics Navigant, on behalf of the United States Department of Energy, welcomes you to this workshop on an Advanced HVAC&R Research Effort Introductions and Logistics * Timing * Restrooms *

  14. Nationwide Limited Public Interest Waiver for LED and HVAC Units |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Limited Public Interest Waiver for LED and HVAC Units Nationwide Limited Public Interest Waiver for LED and HVAC Units eere_nationwide_public_interest_waiver (55.98 KB) More Documents & Publications Nationwide Nonavailability Waiver: February 11, 2010 (Please note, the waiver for LED traffic signals has been withdrawn effective December 1, 2010) Nationwide Nonavailability Waiver: November 5, 2010 Amended Nationwide Nonavailability Waiver: November 5

  15. Building America Best Practices Series Vol. 14: Energy Renovations - HVAC:

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A Guide for Contractors to Share with Homeowners | Department of Energy Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners This guide, which is part of a series of Best Practices guides produced by DOE's Building America program, describes ways homeowners can reduce their energy costs and improve the comfort, health, and safety of their

  16. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  17. Design of a test facility for gas-fired desiccant-based air conditioning systems

    SciTech Connect

    Jalalzadeh-Azar, A.A.; Steele, W.G.; Hodge, B.K.

    1996-12-31

    The design of a facility for testing desiccant-based air conditioning systems is presented. The determination of the performance parameters of desiccant systems is discussed including moisture removal capacity, latent and total cooling capacities, and efficiency indexes. The appropriate procedures and key measurements for determining these parameters are identified using uncertainty analysis.

  18. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  19. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  20. Technology Solutions Case Study: Low-Load Space-Conditioning Needs Assessment

    SciTech Connect

    2015-07-01

    Low-load options in the heating, ventilating, and air-conditioning (HVAC) market are limited, so many new-construction housing units are being fitted with oversized equipment that results in penalties in system efficiency, comfort, and cost. To bridge the gap between currently available HVAC equipment and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family home markets. Over the past decade, Steven Winter Associates, Inc. has provided certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. In this project, the research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed the data from 941 low-load buildings in the Northeast and Mid-Atlantic regions to outline the heating and cooling design load characteristics of low-load dwellings. Within this data set, CARB found that only 1% of the dwellings had right-sized (within 25% of design load) heating equipment and 6% had right-sized cooling equipment.

  1. Modeling particle deposition on HVAC heat exchangers

    SciTech Connect

    Siegel, J.A.; Nazaroff, W.W.

    2002-01-01

    Fouling of fin-and-tube heat exchangers by particle deposition leads to diminished effectiveness in supplying ventilation and air conditioning. This paper explores mechanisms that cause particle deposition on heat exchanger surfaces. We present a model that accounts for impaction, diffusion, gravitational settling, and turbulence. Simulation results suggest that some submicron particles deposit in the heat exchanger core, but do not cause significant performance impacts. Particles between 1 and 10 {micro}m deposit with probabilities ranging from 1-20% with fin edge impaction representing the dominant mechanism. Particles larger than 10 {micro}m deposit by impaction on refrigerant tubes, gravitational settling on fin corrugations, and mechanisms associated with turbulent airflow. The model results agree reasonably well with experimental data, but the deposition of larger particles at high velocities is underpredicted. Geometric factors, such as discontinuities in the fins, are hypothesized to be responsible for the discrepancy.

  2. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  3. R&D Opportunity Assessment: Joining Technologies in HVAC&R - Workshop on

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Joining Technologies in HVAC&R | Department of Energy R&D Opportunity Assessment: Joining Technologies in HVAC&R - Workshop on Joining Technologies in HVAC&R R&D Opportunity Assessment: Joining Technologies in HVAC&R - Workshop on Joining Technologies in HVAC&R Presenter: William Goetzler, Navigant Consulting On June 14, 2015, the U.S. Department of Energy organized a workshop "Joining Technologies in HVAC&R." The purpose of the meeting was for the

  4. Comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

    Energy.gov [DOE]

    This document is a comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

  5. Combined solar and internal load effects on selection of heat reclaim-economizer HVAC systems

    SciTech Connect

    Sauer, H.J. Jr.; Howell, R.H.; Wang, Z. . Dept. of Mechanical Engineering)

    1990-05-01

    The concern for energy conservation has led to the development and use of heat recovery systems which reclaim the building internal heat before it is discarded in the exhaust air. On the other hand, economizer cycles have been widely used for many years in a variety of types of HVAC systems. Economizer cycles are widely accepted as a means to reduce operating time for chilling equipment when cool outside air is available. It has been suggested that heat reclaim systems should not be used in conjunction with an HVAC system which incorporates an economizer cycle because the economizer operation would result in heat being exhausted which might have been recovered. Others suggest that the economizer cycle can be used economically in a heat recovery system if properly controlled to maintain an overall building heat balance. This study looks at potential energy savings of such combined systems with particular emphasis on the effects of the solar load (amount of glass) and the internal load level (lights, people, appliances, etc.). For systems without thermal storage, annual energy savings of up to 60 percent are predicted with the use of heat reclaim systems in conjunction with economizers when the heat reclaim has priority. These results demonstrate the necessity of complete engineering evaluations if proper selection and operation of combined heat recovery and economizer cycles are to be obtained. This paper includes the basic methodology for making such evaluations.

  6. Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    Field testing was performed in a retrofit unoccupied test house in Fresno, California. Three air-based heating, ventilation, and air conditioning (HVAC) distribution systems - a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms - were evaluated during heating, cooling, and midseason conditions. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics (CFD) modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

  7. FFTF primary heat transport system heating, ventilating and air conditioning system experience

    SciTech Connect

    Umek, A.M.; Hicks, D.F.; Schweiger, D.L.

    1981-01-01

    FFTF cools its primary/in-containment sodium equipment cells by means of a forced nitrogen cooling system which exchanges heat with a water-glycol system. The nitrogen cooling system is also used to maintain an inert gas atmosphere in the cells containing sodium equipment. Sodium Piping and Components have installed electrical resistance heaters to maintain a minimum sodium temperature and stainless steel jacketed mineral insulation to reduce heat loss. Design features and test results of a comprehensive redesign of the HVAC and insulation system required to support long-term nuclear operations are discussed.

  8. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Test and Evaluation and CoolCalc HVAC Tool Development CoolCab Test and Evaluation and CoolCalc HVAC Tool Development 2013 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  9. Building America Whole-House Solutions for New Homes: HVAC Design...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HVAC Design Strategy for a Hot-Humid Production Builder Building America Whole-House Solutions for New Homes: HVAC Design Strategy for a Hot-Humid Production Builder In this ...

  10. CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development 2010 DOE Vehicle Technologies and Hydrogen...

  11. Critical Question #4: What are the Best Off-the-Shelf HVAC Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HVAC Solutions for Low-Load, High-Performance Homes and Apartments? Critical Question 4: What are the Best Off-the-Shelf HVAC Solutions for Low-Load, High-Performance Homes ...

  12. DOE and Stakeholders Ponder Best Approach to Major HVAC&R Research...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Stakeholders Ponder Best Approach to Major HVAC&R Research Effort DOE and Stakeholders Ponder Best Approach to Major HVAC&R Research Effort January 15, 2016 - 11:27am Addthis...

  13. HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review ...

    Energy Saver

    HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review Presenter: Tony Bouza, U.S. Department of Energy This ...

  14. HVAC, Water Heater and Appliance R&D - 2014 BTO Peer Review ...

    Energy Saver

    Heater and Appliance R&D - 2014 BTO Peer Review HVAC, Water Heater and Appliance R&D - ... of the Building Technologies Office's HVAC, Water Heater and Appliance R&D activities. ...

  15. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  16. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications Eric Kozubal, Lesley Herrmann, and Michael Deru National Renewable Energy Laboratory Jordan Clark University of Texas, Austin Andy Lowenstein AIL Research Technical Report NREL/TP-5500-60695 September 2014 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory

  17. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE PAGES [OSTI]

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian; Radermacher, Reinhard

    2016-08-24

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  18. Technology Solutions Case Study: Sealed Air-Return Plenum Retrofit

    SciTech Connect

    none,

    2012-08-01

    In this project, Pacific Northwest National Laboratory researchers greatly improved indoor air quality and HVAC performance by replacing an old, leaky air handler with a new air handler with an air-sealed return plenum with filter; they also sealed the ducts, and added a fresh air intake.

  19. DOE Convening Report on Certification of Commercial HVAC and CRE Products |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Convening Report on Certification of Commercial HVAC and CRE Products DOE Convening Report on Certification of Commercial HVAC and CRE Products This document is the convening report on the feasibility of a negotiated rulemaking to revise the certification program for commercial HVAC and CRE products published on October 2, 2012. convening_report_hvac_cre_1.pdf (1.01 MB) More Documents & Publications Lochinvar Preliminary Plan Comments Comment On:

  20. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    SciTech Connect

    Chen, W.W.; Gregonis, R.A.

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  1. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    SciTech Connect

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  2. HVAC Design Strategy for a Hot-Humid Production Builder, Houston, Texas (Fact Sheet)

    SciTech Connect

    Not Available

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  3. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

  4. Florida Public Utilities- Residential HVAC Rebate Program

    Energy.gov [DOE]

    Florida Public Utilities offers rebates to electric residential customers who improve the efficiency of homes. Central air conditioners and heat pumps which meet program requirements are eligible...

  5. Performance of R-410A Alternative Refrigerants in a Reciprocating Compressor Designed for Air Conditioning Applications

    SciTech Connect

    Shrestha, Som S; Vineyard, Edward Allan; Mumpower, Kevin

    2016-01-01

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase, and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.

  6. HVAC Right-Sizing Part 1: Calculating Loads

    Energy.gov [DOE]

    This webinar, presented by IBACOS (a Building America Research Team) will highlight the key criteria required to create accurate heating and cooling load calculations, following the guidelines of the Air Conditioning Contractors of America (ACCA) Manual J version 8

  7. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    SciTech Connect

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  8. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOEpatents

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  9. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  10. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  11. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  12. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Update to Include Evaluation of Impact of Including a Humidifier Option

    SciTech Connect

    Baxter, Van D

    2007-02-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes

  13. Application of real time transient temperature (RT{sup 3}) program on nuclear power plant HVAC analysis

    SciTech Connect

    Cai, Y.; Tomlins, V.A.; Haskell, N.L.; Giffels, F.W.

    1996-08-01

    A database oriented technical analysis program (RT) utilizing a lumped parameter model combined with a finite difference method was developed to concurrently simulate transient temperatures in single or multiple room(s)/area(s). Analyses can be seen for postulated design basis events, such as, 10CFR50 Appendix-R, Loss of Coolant Accident concurrent with Loss of Offsite Power (LOCA/LOOP), Station BlackOut (SBO), and normal station operating conditions. The rate of change of the air temperatures is calculated by explicitly solving a series of energy balance equations with heat sources and sinks that have been described. For building elements with heat absorbing capacity, an explicit Forward Time Central Space (FTCS) model of one dimensional transient heat conduction in a plane element is used to describe the element temperature profile. Heat migration among the rooms/areas is considered not only by means of conduction but also by means of natural convection induced by temperature differences through openings between rooms/areas. The program also provides a means to evaluate existing plant HVAC system performance. The performance and temperature control of local coolers/heaters can be also simulated. The program was used to calculate transient temperature profiles for several buildings and rooms housing safety-related electrical components in PWR and BWR nuclear power plants. Results for a turbine building and reactor building in a BWR nuclear power plant are provided here. Specific calculational areas were defined on the basis of elevation, physical barriers and components/systems. Transient temperature profiles were then determined for the bounding design basis events with winter and summer outdoor air temperatures.

  14. Aggregated Modeling and Control of Air Conditioning Loads for Demand Response

    SciTech Connect

    Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit

    2013-06-21

    Demand response is playing an increasingly important role in the efficient and reliable operation of the electric grid. Modeling the dynamic behavior of a large population of responsive loads is especially important to evaluate the effectiveness of various demand response strategies. In this paper, a highly-accurate aggregated model is developed for a population of air conditioning loads. The model effectively includes statistical information of the population, systematically deals with load heterogeneity, and accounts for second-order dynamics necessary to accurately capture the transient dynamics in the collective response. Based on the model, a novel aggregated control strategy is designed for the load population under realistic conditions. The proposed controller is fully responsive and achieves the control objective without sacrificing end-use performance. The proposed aggregated modeling and control strategies are validated through realistic simulations using GridLAB-D. Extensive simulation results indicate that the proposed approach can effectively manage a large number of air conditioning systems to provide various demand response services, such as frequency regulation and peak load reduction.

  15. HVAC component data modeling using industry foundation classes

    SciTech Connect

    Bazjanac, Vladimir; Forester, James; Haves, Philip; Sucic, Darko; Xu, Peng

    2002-07-01

    The Industry Foundation Classes (IFC) object data model of buildings is being developed by the International Alliance for Interoperability (IAI). The aim is to support data sharing and exchange in the building and construction industry across the life-cycle of a building. This paper describes a number of aspects of a major extension of the HVAC part of the IFC data model. First is the introduction of a more generic approach for handling HVAC components. This includes type information, which corresponds to catalog data, occurrence information, which defines item-specific attributes such as location and connectivity, and performance history information, which documents the actual performance of the component instance over time. Other IFC model enhancements include an extension of the connectivity model used to specify how components forming a system can be traversed and the introduction of time-based data streams. This paper includes examples of models of particular types of HVAC components, such as boilers and actuators, with all attributes included in the definitions. The paper concludes by describing the on-going process of model testing, implementation and integration into the complete IFC model and how the model can be used by software developers to support interoperability between HVAC-oriented design and analysis tools.

  16. Solutions for Summer Electric Power Shortages: Demand Response andits Applications in Air Conditioning and Refrigerating Systems

    SciTech Connect

    Han, Junqiao; Piette, Mary Ann

    2007-11-30

    Demand response (DR) is an effective tool which resolves inconsistencies between electric power supply and demand. It further provides a reliable and credible resource that ensures stable and economical operation of the power grid. This paper introduces systematic definitions for DR and demand side management, along with operational differences between these two methods. A classification is provided for DR programs, and various DR strategies are provided for application in air conditioning and refrigerating systems. The reliability of DR is demonstrated through discussion of successful overseas examples. Finally, suggestions as to the implementation of demand response in China are provided.

  17. Table HC6.7 Air-Conditioning Usage Indicators by Number of Household Members, 2005

    Energy Information Administration (EIA) (indexed site)

    7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total........................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Cooling Equipment.......................... 17.8 5.4 5.3 2.7 2.5 2.0 Have Cooling Equipment...................................... 93.3 24.6 29.6 15.7 13.4 10.0 Use Cooling Equipment....................................... 91.4 24.0 29.1 15.5 13.2 9.7 Have Equipment But Do Not Use it......................

  18. Table HC9.6 Air Conditioning Characteristics by Climate Zone, 2005

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by Climate Zone, 2005 Million U.S. Housing Units Total......................................................................... 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Cooling Equipment........................... 17.8 3.2 4.7 3.6 5.5 0.9 Have Cooling Equipment........................................ 93.3 7.7 21.4 23.7 18.5 21.9 Use Cooling Equipment......................................... 91.4 7.6 21.0 23.4 17.9 21.7 Have Equipment But Do Not Use

  19. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  20. Simplified Space Conditioning in Low-Load Homes: Results from the Fresno, California, Retrofit Unoccupied Test House

    SciTech Connect

    Stecher, Dave; Poerschke, Andrew

    2014-02-01

    In this study, the Building America team, IBACOS, sought to determine cost-effective, energy-efficient solutions for heating and cooling houses. To this end, the team performed field testing in a retrofit unoccupied test house in Fresno, California, to evaluate three air-based heating, ventilation, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. These included a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

  1. Simplified Space Conditioning in Low-Load Homes: Results from the Fresno, California, Retrofit Unoccupied Test House

    SciTech Connect

    Stecher, D.; Poerschke, A.

    2014-02-01

    Field testing was performed in a retrofit unoccupied test house in Fresno, California. Three air-based heating, ventilation, and air conditioning (HVAC) distribution systems -- a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms -- were evaluated during heating, cooling, and midseason conditions. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics (CFD) modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

  2. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  3. Radiant heating and cooling, displacement ventilation with heat recovery and storm water cooling: An environmentally responsible HVAC system

    SciTech Connect

    Carpenter, S.C.; Kokko, J.P.

    1998-12-31

    This paper describes the design, operation, and performance of an HVAC system installed as part of a project to demonstrate energy efficiency and environmental responsibility in commercial buildings. The systems installed in the 2180 m{sup 2} office building provide superior air quality and thermal comfort while requiring only half the electrical energy of conventional systems primarily because of the hydronic heating and cooling system. Gas use for the building is higher than expected because of longer operating hours and poor performance of the boiler/absorption chiller.

  4. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    SciTech Connect

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  5. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    SciTech Connect

    Kiss, T.; Chaney, L.; Meyer, J.

    2013-07-01

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.

  6. Advantages of air conditioning and supercharging an LM6000 gas turbine inlet

    SciTech Connect

    Kolp, D.A.; Flye, W.M.; Guidotti, H.A.

    1995-07-01

    Of all the external factors affecting a gas turbine, inlet pressure and temperature have the greatest impact on performance. The effect of inlet temperature variations is especially pronounced in the new generation of high-efficiency gas turbines typified by the 40 MW GE LM6000. A reduction of 50 F (28 C) in inlet temperature can result in a 30 percent increase in power and a 4.5 percent improvement in heat rate. An elevation increase to 5,000 ft (1,524 m) above sea level decreases turbine output 17 percent; conversely supercharging can increase output more than 20 percent. This paper addresses various means of heating, cooling and supercharging LM6000 inlet air. An economic model is developed and sample cases are cited to illustrate the optimization of gas turbine inlet systems, taking into account site conditions, incremental equipment cost and subsequent performance enhancement.

  7. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  8. An evaluation of three commercially available technologies forreal-time measurement of rates of outdoor airflow into HVAC systems

    SciTech Connect

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2004-10-28

    During the last few years, new technologies have been introduced for real-time continuous measurement of the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurements technologies has not previously been published. This document describes a test system and protocols developed for a controlled evaluation of these measurement technologies. The results of tests of three commercially available measurement technologies are also summarized. The test system and protocol were judged practical and very useful. The three commercially available measurement technologies should provide reasonably, e.g., 20%, accurate measurements of OA flow rates as long as air velocities are maintained high enough to produce accurately measurable pressure signals. In HVAC systems with economizer controls, to maintain the required air velocities the OA intake will need to be divided into two sections in parallel, each with a separate OA damper. All of the measurement devices had pressure drops that are likely to be judged acceptable. The influence of wind on the accuracy of these measurement technologies still needs to be evaluated.

  9. An evaluation of technologies for real-time measurement of rates of outdoor airflow into HVAC systems

    SciTech Connect

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2004-09-01

    During the last few years, new technologies have been introduced for real-time continuous measurement of the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurement technologies has not previously been published. This document describes a test system and protocols developed for a controlled evaluation of these measurement technologies. The results of tests of four commercially available measurement technologies and one prototype based on a new design are also summarized. The test system and protocol were judged practical and very useful. The series of tests identified three commercially available measurement technologies that should provide reasonably accurate measurements of OA flow rates as long as air velocities are maintained high enough to produce accurately measurable pressure signals. In HVAC systems with economizer controls, to maintain the required air velocities the OA intake will need to be divided into two sections in parallel, each with a separate OA damper. The errors in OA flow rates measured with the fourth commercially available measurement technology were 20% to 30% with horizontal probes but much larger with vertical probes. The new prototype measurement technology was the only one that appears suitable for measuring OA flow rates over their full range from 20% OA to 100% OA without using two separate OA dampers. All of the measurement devices had pressure drops that are likely to be judged acceptable. The influence of wind on the accuracy of these measurement technologies still needs to be evaluated.

  10. Low-Load HVAC Systems for Single and Multifamily Applications

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Load HVAC Systems for Single and Multifamily Applications Anthony Grisolia Managing Director Innovation Programs Andrew Poerschke Specialist Innovation Programs CONFIDENTIAL Agenda Basis for Thermal Comfort Comparative Modeling Newtown Townhouse Case Study Plug and Play System Future Work How IBACOS Thinks About Comfort Risks Home 24 Home 25 Home 26 Same Plan Same Street Same Orientation Different Occupants 0.5 CLO 1.0 MET ASHRAE 55 Comfort Aggregate of 36 Homes 0.5 CLO 1.0 MET 47% of data

  11. Research and Development Roadmap for Emerging HVAC Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Research & Development Roadmap for Emerging HVAC Technologies W. Goetzler, M. Guernsey, and J. Young October 2014 Prepared by Navigant Consulting, Inc. (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied,

  12. HVAC Performance Maps - 2014 BTO Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Performance Maps - 2014 BTO Peer Review HVAC Performance Maps - 2014 BTO Peer Review Presenter: Dane Christensen, National Renewable Energy Laboratory Through laboratory evaluation, this project will develop detailed data sets, termed "performance maps," of certain types of heat pumps. In fiscal year 2014, the National Renewable Energy Laboratory (NREL) will develop performance maps of residential variable speed heat pumps. The U.S. Department of Energy's Building America program and

  13. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative

  14. Measuring Advances in HVAC Distribution System Design

    SciTech Connect

    Franconi, E.

    1998-05-01

    Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

  15. CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Peer Review | Department of Energy HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Russell Taylor, United Technologies Research Center View the Presentation CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review (996.29 KB) More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review CBEI: Lessons Learned from

  16. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    SciTech Connect

    Wetter, Michael

    2009-06-17

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  17. Memorandum To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) Date: 1/12/2012 Subject: EX PARTE COMMUNICATION MEMO DOE ATTENDEES: Ashley Armstrong, John Cymbalsky, David Case, Laura Barhydt HARDI ATTENDEES: Talbot Gee, Jonathan Melchi AREAS OF DISCUSSION: DOE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat

  18. ZERH Webinar: Low Load HVAC and Zero Energy Ready Homes | Department...

    Office of Environmental Management (EM)

    long-term structure durability. In this webinar you will learn key HVAC design techniques and critical pitfalls to avoid when building highly energy efficient homes....

  19. R&D Opportunity Assessment: Joining Technologies in HVAC&R

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Stakeholder Discussion Forum R&D Opportunity Assessment: Joining Technologies in HVAC&R June 4, 2015 1 2015 Navigant Consulting, Inc. Project Summary and Introductions ...

  20. Issue #3: HVAC Proper Installation Energy Savings: Over-Promising or

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Under-Delivering? | Department of Energy 3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering? Issue #3: HVAC Proper Installation Energy Savings: Over-Promising or Under-Delivering? What energy savings are realistically achievable by following quality installation standards for installation, operation, and maintenance of residential HVAC? issue3_airflow_charge.pdf (804.56 KB) issue3_hvac_installed.pdf (89.79 KB) issue3_pdi_hvacsys.pdf (325.73 KB) More Documents

  1. R&D Opportunity Assessment: Joining Technologies in HVAC&R -...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    HVAC&R More Documents & Publications Research & Development Roadmap: Next-Generation Low Global Warming Potential Refrigerants Advanced Rotating Heat Exchangers Working Fluids Low...

  2. Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Identify a technical and business approach to accelerate the deployment of light-duty automotive TE HVAC technology, maintain occupant comfort, and improve energy efficiency.

  3. Fight Fall Allergies and Save Energy by Checking Your HVAC System

    Energy.gov [DOE]

    Fall is a great time to do regular maintenance on your HVAC systems to ensure they're running efficiently -- and it may help your allergies as well!

  4. DOE Zero Energy Ready Home Low Load High Efficiency HVAC Webinar (Text Version)

    Energy.gov [DOE]

    Below is the text version of the DOE Zero Energy Ready Home webinar, Low Load High Efficiency HVAC, presented in May 2014.

  5. Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies

    SciTech Connect

    Fischer, S.; Sand, J.; Baxter, V.

    1997-12-01

    International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

  6. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

    2007-01-01

    Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

  7. D0 Collision Hall Outdoor Fresh Air Makeup

    SciTech Connect

    Markley, D.; /Fermilab

    1992-03-27

    This note will briefly describe the collision hall ventilation system and how D0 will monitor outside air makeup and what actions occur in the event of system failures. The Dzero collision hall has two different fresh air makeup conditions it must meet. They are: (1) Tunnel Barriers removed-Fresh air makeup = 4500 CFM; and (2) Tunnel Barriers in place-Fresh air makeup = 2800 CFM. This note demonstrates how the fresh air minimums are met and guaranteed. The air flow paths and ducts at D0 for both AHU1 and EF-7 are fixed. The blower throughputs are not variable. The software stops on AHU1's dampers will be set for a minimum of 2800 cfm or 4500 cfm of outdoor air continuously added to the HVAC flow stream depending on the tunnel barrier state. AHU1 and EF-7 both have monitoring that can determine reliably as to whether the respective blower is on or off. Since the outside air makeup is fixed as long as the blowers are running, and the software AHU1 damper limits are set, we can rely on the blower status indicators to determine as to whether the collision hall is receiving the proper amount of outside makeup air.

  8. Audit Report: IG-0817 | Department of Energy

    Office of Environmental Management (EM)

    costs, up to 40 percent, were expended for heating, ventilation and air conditioning (HVAC). Because of its size and scope, operating the Department's existing HVAC systems as...

  9. Building America Best Practices Series Vol. 14: Energy Renovations...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    health, and safety of their homes by upgrading their heating, ventilation, and air conditioning (HVAC) equipment. Energy Renovations: HVAC More Documents & Publications Energy...

  10. "Table HC10.6 Air Conditioning Characteristics by U.S. Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Air Conditioning Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Do Not Have Cooling Equipment",17.8,4,2.1,1.4,10.3 "Have Cooling Equipment",93.3,16.5,23.5,39.3,13.9 "Use Cooling

  11. "Table HC10.7 Air-Conditioning Usage Indicators by U.S. Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    7 Air-Conditioning Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Air Conditioning Usage Indicators",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Do Not Have Cooling Equipment",17.8,4,2.1,1.4,10.3 "Have Cooling Equipment",93.3,16.5,23.5,39.3,13.9 "Use Cooling

  12. "Table HC11.7 Air-Conditioning Usage Indicators by Northeast Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    7 Air-Conditioning Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Air Conditioning Usage Indicators",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Do Not Have Cooling Equipment",17.8,4,2.4,1.7 "Have Cooling

  13. "Table HC12.7 Air-Conditioning Usage Indicators by Midwest Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    7 Air-Conditioning Usage Indicators by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Air Conditioning Usage Indicators",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Do Not Have Cooling Equipment",17.8,2.1,1.8,0.3 "Have Cooling

  14. "Table HC13.7 Air-Conditioning Usage Indicators by South Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    7 Air-Conditioning Usage Indicators by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Air Conditioning Usage Indicators",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Do Not Have Cooling Equipment",17.8,1.4,0.8,0.2,0.3 "Have

  15. "Table HC15.6 Air Conditioning Characteristics by Four Most Populated States, 2005"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"U.S. Housing Units (millions)","Four Most Populated States" "Air Conditioning Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Do Not Have Cooling Equipment",17.8,1.8,"Q","Q",4.9 "Have Cooling Equipment",93.3,5.3,7,7.8,7.2

  16. "Table HC15.7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005"

    Energy Information Administration (EIA) (indexed site)

    7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Air Conditioning Usage Indicators",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Do Not Have Cooling Equipment",17.8,1.8,"Q","Q",4.9 "Have Cooling Equipment",93.3,5.3,7,7.8,7.2

  17. "Table HC3.6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  18. "Table HC4.6 Air Conditioning Characteristics by Renter-Occupied Housing Units, 2005"

    Energy Information Administration (EIA) (indexed site)

    6 Air Conditioning Characteristics by Renter-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  19. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  20. Wireless Demand Response Controls for HVAC Systems

    SciTech Connect

    Federspiel, Clifford

    2009-06-30

    The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

  1. Investigation of techniques to improve continuous air monitors under conditions of high dust loading in environmental setting

    SciTech Connect

    Huang, Suilou; Schery, Stephen D.; Rodgers, John

    2000-06-01

    Improvement in understanding the deposition of ambient dust particles on environmental continuous air monitor (ECAM) filters, reduction of the alpha-particle interference of radon progeny and other radioactive aerosols in different particle size ranges on filters, and development of ECAMs with increased sensitivity under dusty outdoor conditions.

  2. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 1: Transmittal documents; Executive summary; Project summary

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described.

  3. Joint HVAC transmission EMF environmental study

    SciTech Connect

    Stormshak, F.; Thompson, J. )

    1992-05-01

    This document describes the rationale, procedures, and results of a carefully controlled study conducted to establish whether chronic exposure of female (ewe) Suffolk lambs to the environment of a 500-kV 60-Hz transmission line would affect various characteristics of growth, endocrine function, and reproductive development. This experiment used identical housing and management schemes for control and line-exposed ewes, thus minimizing these factors as contributors to between-group experimental error. Further, throughout the 10-month duration of this study, changes in electric and magnetic fields, audible noise, and weather conditions were monitored continuously by a computerized system. Such measurements provided the opportunity to identify any relationship between environmental factors and biological responses. Because of reports in the literature that electric and magnetic fields alter concentrations of melatonin in laboratory animals, the primary objective of this study was to ascertain whether a similar effect occurs in lambs exposed to a 500-kV a-c line in a natural setting. In addition, onset of puberty, changes in body weight, wool growth, and behavior were monitored. To determine whether the environment of a 500-kV line caused stress in the study animals, serum levels of cortisol were measured. The study was conducted at Bonneville Power Administration's Ostrander Substation near Estacada, Oregon.

  4. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    SciTech Connect

    1997-08-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs.

  5. Study of Air Ingress Across the Duct During the Accident Conditions

    SciTech Connect

    Hassan, Yassin

    2013-05-06

    The goal of this project is to study the fundamental physical phenomena associated with air ingress in very high temperature reactors (VHTRs). Air ingress may occur due to a rupture of primary piping and a subsequent breach in the primary pressure boundary in helium-cooled and graphite-moderated VHTRs. Significant air ingress is a concern because it introduces potential to expose the fuel, graphite support rods, and core to a risk of severe graphite oxidation. Two of the most probable air ingress scenarios involve rupture of a control rod or fuel access standpipe, and rupture in the main coolant pipe on the lower part of the reactor pressure vessel. Therefore, establishing a fundamental understanding of air ingress phenomena is critical in order to rationally evaluate safety of existing VHTRs and develop new designs that minimize these risks. But despite this importance, progress toward development these predictive capabilities has been slowed by the complex nature of the underlying phenomena. The combination of inter-diffusion among multiple species, molecular diffusion, natural convection, and complex geometries, as well as the multiple chemical reactions involved, impose significant roadblocks to both modeling and experiment design. The project team will employ a coordinated experimental and computational effort that will help gain a deeper understanding of multiphased air ingress phenomena. This project will enhance advanced modeling and simulation methods, enabling calculation of nuclear power plant transients and accident scenarios with a high degree of confidence. The following are the project tasks: Perform particle image velocimetry measurement of multiphase air ingresses; and, Perform computational fluid dynamics analysis of air ingress phenomena.

  6. 2014-06-23 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration

    Energy.gov [DOE]

    This document is the agency response to the Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration.

  7. Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems

    SciTech Connect

    Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

    2006-04-01

    In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

  8. "Table HC14.7 Air-Conditioning Usage Indicators by West Census Region, 2005"

    Energy Information Administration (EIA) (indexed site)

    7 Air-Conditioning Usage Indicators by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Air Conditioning Usage Indicators",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Do Not Have Cooling Equipment",17.8,10.3,3.1,7.3 "Have Cooling Equipment",93.3,13.9,4.5,9.4 "Use Cooling

  9. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    SciTech Connect

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  10. Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    SciTech Connect

    Burdick, A.

    2011-10-01

    This report outlines findings resulting from a U.S. Department of Energy Building America expert meeting to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting. IBACOS has embarked upon a research effort under the Building America Program to understand business impacts and change management strategies for HVAC companies. HVAC companies can implement these strategies in order to quickly transition from a 'traditional' heating and cooling contractor to a service provider for whole house energy upgrade contracting. Due to HVAC service contracts, which allow repeat interaction with homeowners, HVAC companies are ideally positioned in the marketplace to resolve homeowner comfort issues through whole house energy upgrades. There are essentially two primary ways to define the routes of transition for an HVAC contractor taking on whole house performance contracting: (1) Sub-contracting out the shell repair/upgrade work; and (2) Integrating the shell repair/upgrade work into their existing business. IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the structure of traditional HVAC Companies and whole house energy upgrade companies Seek industry input on how to structure information so it is relevant and useful for traditional HVAC contractors who are transitioning to becoming whole house energy upgrade contractors Seven industry experts identified by IBACOS participated in the session along with one representative from the National Renewable Energy Laboratory (NREL). The objective of the meeting was to validate the general operational profile of an

  11. DOE ZERH Webinar: Low Load High Efficiency HVAC (Text Version) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Low Load High Efficiency HVAC (Text Version) DOE ZERH Webinar: Low Load High Efficiency HVAC (Text Version) Below is the text version of the DOE Zero Energy Ready Home webinar, Low Load High Efficiency HVAC, presented in May 2014. Watch the presentation. GoToWebinar voice: The broadcast is now starting. All attendees are in listen-only mode. Lindsay Parker: Hi, everyone. Welcome to the Department of Energy Zero Energy Ready Home Technical Training Webinar Series. We're really

  12. NRELs Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DEVAP Slashes Peak Power Loads Desiccant-enhanced evaporative (DEVAP) air-condi- tioning will provide superior comfort for commercial buildings in any climate at a small fraction of the elec- tricity costs of conventional air-conditioning equip- ment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on

  13. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  14. Energy Savings From System Efficiency Improvements in Iowa's HVAC SAVE Program

    SciTech Connect

    Yee, S.; Baker, J.; Brand, L.; Wells, J.

    2013-08-01

    The objective of this project is to explore the energy savings potential of maximizing furnace and distribution system performance by adjusting operating, installation, and distribution conditions. The goal of the Iowa HVAC System Adjusted and Verified Efficiency (SAVE) program is to train contractors to measure installed system efficiency as a diagnostic tool to ensure that the homeowner achieves the energy reduction target for the home rather than simply performing a tune-up on the furnace or having a replacement furnace added to a leaky system. The PARR research team first examined baseline energy usage from a sample of 48 existing homes, before any repairs or adjustments were made, to calculate an average energy savings potential and to determine which system deficiencies were prevalent. The results of the baseline study of these homes found that, on average, about 10% of the space heating energy available from the furnace was not reaching the conditioned space. In the second part of the project, the team examined a sample of 10 homes that had completed the initial evaluation for more in-depth study. For these homes, the diagnostic data shows that it is possible to deliver up to 23% more energy from the furnace to the conditioned space by doing system tune ups with or without upgrading the furnace. Replacing the furnace provides additional energy reduction. The results support the author's belief that residential heating and cooling equipment should be tested and improved as a system rather than a collection of individual components.

  15. ZERH Webinar: Low Load HVAC in Zero Energy Ready Homes (Text...

    Energy Saver

    ... And NEST is a good example. Great product, very smart on helping homeowners manage the costs, if they have an older, inefficient house with an oversized HVAC system, because it ...

  16. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...

    Energy.gov [DOE] (indexed site)

    ...s075lustbader2012o.pdf (3.14 MB) More Documents & Publications CoolCab Test and Evaluation CoolCab Test and Evaluation and CoolCalc HVAC Tool Development Vehicle Technologies ...

  17. CoolCab Test and Evaluation and CoolCalc HVAC Tool Development

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CoolCab Test and Evaluation & CoolCalc HVAC Tool Development Presenter and P.I.: Jason A. ... idling * Develop analytical models and test methods to reduce uncertainties and ...

  18. R&D Opportunity Assessment: Joining Technologies in HVAC&R -...

    Energy.gov [DOE] (indexed site)

    potential R&D opportunities in the area of joining technologies as those ... R&D Opportunity Assessment: Joining Technologies in HVAC&R (1.51 MB) More Documents & ...

  19. HVAC, Water Heating, and Appliance Overview — 2016 BTO Peer Review

    Energy.gov [DOE]

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office’s Emerging Technologies: HVAC, Water Heating, and Appliance Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  20. HVAC, Water Heating, and Appliance Subprogram Overview — 2016 BTO Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office’s Emerging Technologies: HVAC, Water Heating, and Appliance subprogram. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  1. Building America Expert Meeting Report. Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    SciTech Connect

    Burdick, Arlan

    2011-10-01

    This expert meeting was hosted by the IBACOS Building America research team to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting.

  2. Variable-Speed, Low-Cost Motor for Residential HVAC Systems ...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Variable-Speed, Low-Cost Motor for Residential HVAC Systems Lower-Cost, Variable-Speed ... DynaMotors Inc., with the aid of a grant from DOE's Inventions and Innovation Program, ...

  3. Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope and IAQ (301)

    Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Opportunities for Building America Research to Address Energy Upgrade Technical Challenges: HVAC, Envelope and IAQ (301), call slides and discussion summary.

  4. What are the Best HVAC Solutions for Low-Load, High Performance Homes?"

    Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 26, 2012, and addressed the question What are the best HVAC solutions for low-load, high performance homes?"

  5. DOE and Stakeholders Consider Best Approach to Major HVAC&R Research...

    Energy.gov [DOE] (indexed site)

    and Air-Conditioning Engineers (ASHRAE) in Atlanta, Georgia, on December 8, ... Dr. Xudong Wang, director of research at ASHRAE. As the next step toward launching the ...

  6. Energy Department Announces Funding to Develop Improved Next Generation HVAC Systems

    Energy.gov [DOE]

    The Energy Department today announced nearly $8 million to support research and development of the next generation of heating, ventilating, and air conditioning technologies.

  7. Model validations for low-global warming potential refrigerants in mini-split air-conditioning units

    DOE PAGES [OSTI]

    Shen, Bo; Shrestha, Som; Abdelaziz, Omar

    2016-09-02

    To identify low GWP (global warming potential) refrigerants to replace R-22 and R-410A, extensive experimental evaluations were conducted for multiple candidates of refrigerant at the standard test conditions and at high-ambient conditions with outdoor temperature varying from 27.8 C to 55.0 C.. In the study, R-22 was compared to propane (R-290), DR-3, ARM-20B, N-20B and R-444B in a mini-split air conditioning unit originally designed for R-22; R-410A was compared to R-32, DR-55, ARM-71A, L41-2 (R-447A) in a mini-split unit designed for R-410A. To reveal physics behind the measured performance results, thermodynamic properties of the alternative refrigerants were analysed. In addition,more » the experimental data was used to calibrate a physics-based equipment model, i.e. ORNL Heat Pump Design Model (HPDM). The calibrated model translated the experimental results to key calculated parameters, i.e. compressor efficiencies, refrigerant side two-phase heat transfer coefficients, corresponding to each refrigerant. As a result, these calculated values provide scientific insights on the performance of the alternative refrigerants and are useful for other applications beyond mini-split air conditioning units.« less

  8. Ameren Illinois (Electric) - Custom, HVAC and Motor Business...

    Energy.gov [DOE] (indexed site)

    Water Heaters Chillers Heat Pumps Air conditioners Heat recovery Compressed air Motor VFDs Agricultural Equipment CustomOthers pending approval Other EE Tankless Water...

  9. Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Compression | Department of Energy Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Mechanical Solutions, Inc.'s ultra-small centrifugal compressor concept will facilitate low-GWP refrigerant adoption.<br />Photo Credit: Mechanical Solutions, Inc. Mechanical Solutions, Inc.'s ultra-small centrifugal compressor concept will facilitate low-GWP refrigerant adoption. Photo Credit:

  10. CBEI: Pre-commercial demonstration of cost-effective advanced HVAC controls

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and diagnostics for medium-sized buildings - 2015 Peer Review | Department of Energy Pre-commercial demonstration of cost-effective advanced HVAC controls and diagnostics for medium-sized buildings - 2015 Peer Review CBEI: Pre-commercial demonstration of cost-effective advanced HVAC controls and diagnostics for medium-sized buildings - 2015 Peer Review Presenter: Draguna Vrabie, United Technologies Research Center View the Presentation CBEI: Pre-commercial demonstration of cost-effective

  11. DOE ZERH Webinar: Low Load High Efficiency HVAC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low Load High Efficiency HVAC DOE ZERH Webinar: Low Load High Efficiency HVAC Watch the video or view the presentation slides below Zero Energy Ready Homes have advanced insulation and draft sealing that reduce energy consumption and enable the design and installation of an engineered comfort system that is significantly smaller than those installed in houses just 10 years ago. This webinar will discuss key issues associated with designing these systems, including the appropriate load

  12. Investigation of Techniques to Improve Continuous Air Monitors Under Conditions of High Dust Loading in Environmental Settings

    SciTech Connect

    Suilou Huang; Stephen D. Schery; John C. Rodgers

    2002-07-23

    A number of DOE facilities, such as the Los Alamos National Laboratory (LANL) and the Waste Isolation Pilot Plant (WIPP), use alpha-particle environmental continuous air monitors (ECAMs) to monitor air for unwanted releases of radioactive aerosols containing such materials as plutonium and uranium. High sensitivity, ease of operation, and lack of false alarms are all important for ECAMs. The object of the project was to conduct investigations to improve operation of ECAMs, particularly under conditions where a lot of nonradioactive dust may be deposited on the filters (conditions of high dust loading). The presence of such dust may increase the frequency with which filters must be changed and can lead to an increased incidence of false alarms due to deteriorated energy resolution and response specificity to the radionuclides of interest. A major finding of the investigation, not previously documented, was that under many conditions thick layers of underlying nonradioactive dust do not decrease energy resolution and specificity for target radionuclides if the radioactive aerosol arrives as a sudden thin burst deposit, as commonly occurs in the early-warning alarm mode. As a result, operators of ECAMs may not need to change filters as often as previously thought and have data upon which to base more reliable operating procedures.

  13. Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort

    SciTech Connect

    Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

    2014-07-21

    Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes’ space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

  14. Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Summarizes results from a study to identify and demonstrate technical and commercial approaches necessary to accelerate the deployment of zonal TE HVAC systems in light-duty vehicles

  15. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and

  16. On eddy accumulation with limited conditional sampling to measure air-surface exchange

    SciTech Connect

    Wesely, M.L.; Hart, R.L.

    1994-01-01

    An analysis of turbulence data collected at a height of 12.3 m above grasslands was carried out to illustrate some of the limitations and possible improvements in methods to compute vertical fluxes of trace substances by the eddy accumulation technique with conditional sampling. The empirical coefficient used in the technique has a slight dependence on atmospheric stability, which can be minimized by using a threshold vertical velocity equal to approximately 0.75{sigma}{sub w}, below which chemical sampling is suspended. This protocol results in a smaller chemical sample but increases the differences in concentrations by approximately 70%. For effective conditional sampling when mass is being accumulated in a trap or reservoir, the time of sampling during updrafts versus downdrafts should be measured and used to adjust estimates of the mean concentrations.

  17. Air-conditioning electricity savings and demand reductions from exterior masonry wall insulation applied to Arizona residences

    SciTech Connect

    Ternes, M.P.; Wilkes, K.E.

    1993-06-01

    A field test involving eight single-family houses was performed during the summer of 1991 in Scottsdale, Arizona to evaluate the potential of reducing air-conditioning electricity consumption and demand by insulating their exterior masonry walls. Total per house costs to perform the installations ranged from $3610 to $4550. The average annual savings was estimated to be 491 kWh, or 9% of pre-retrofit consumption. Peak demands without and with insulation on the hottest day of an average weather year for Phoenix were estimated to be 4.26 and 3.61 kill, for a demand reduction of 0.65 kill (15%). We conclude that exterior masonry wall insulation reduces air-conditioning electricity consumption and peak demand in hot, dry climates similar to that of Phoenix. Peak demand reductions are a primary benefit, making the retrofit worthy of consideration in electric utility conservation programs. Economics can be attractive from a consumer viewpoint if considered within a renovation or home improvement program.

  18. Air-conditioning electricity savings and demand reductions from exterior masonry wall insulation applied to Arizona residences

    SciTech Connect

    Ternes, M.P.; Wilkes, K.E.

    1993-01-01

    A field test involving eight single-family houses was performed during the summer of 1991 in Scottsdale, Arizona to evaluate the potential of reducing air-conditioning electricity consumption and demand by insulating their exterior masonry walls. Total per house costs to perform the installations ranged from $3610 to $4550. The average annual savings was estimated to be 491 kWh, or 9% of pre-retrofit consumption. Peak demands without and with insulation on the hottest day of an average weather year for Phoenix were estimated to be 4.26 and 3.61 kill, for a demand reduction of 0.65 kill (15%). We conclude that exterior masonry wall insulation reduces air-conditioning electricity consumption and peak demand in hot, dry climates similar to that of Phoenix. Peak demand reductions are a primary benefit, making the retrofit worthy of consideration in electric utility conservation programs. Economics can be attractive from a consumer viewpoint if considered within a renovation or home improvement program.

  19. Japanese and American competition in the development of scroll compressors and its impact on the American air conditioning industry

    SciTech Connect

    Ushimaru, Kenji )

    1990-02-01

    This report examines the technological development of scroll compressors and its impact on the air conditioning equipment industry. Scroll compressors, although considered to be the compressors of the future for energy-efficient residential heat pumps and possibly for many other applications, are difficult to manufacture on a volume-production base. The manufacturing process requires computer-aided, numerically controlled tools for high-precision fabrication of major parts. Japan implemented a global strategy for dominating the technological world market in the 1970s, and scroll compressor technology benefited from the advent of new-generation machine tools. As a result, if American manufacturers of scroll compressors purchase or are essentially forced to purchase numerically controlled tools from Japan in the future, they will then become dependent on their own competitors because the same Japanese conglomerates that make numerically controlled tools also make scroll compressors. This study illustrates the importance of the basic machine tool industry to the health of the US economy. Without a strong machine tool industry, it is difficult for American manufacturers to put innovations, whether patented or not, into production. As we experience transformation in the air conditioning and refrigeration market, it will be critical to establish a consistent national policy to provide healthy competition among producers, to promote innovation within the industry, to enhance assimilation of new technology, and to eliminate practices that are incompatible with these goals. 72 refs., 8 figs., 1 tab.

  20. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet), NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market- ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology- retrofitting rooftop air- conditioning units with an advanced rooftop control system-was identified as a

  1. Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions

    SciTech Connect

    Huang, J.; Bushe, W.K.

    2006-01-01

    The ignition delay of homogeneous methane/air mixtures enriched with small fractions of ethane/propane was measured using the reflected-shock technique at temperatures from 900 to 1400 K and pressures from 16 to 40 bar. The results show complex effects of ethane/propane on the ignition of methane, but a common trend observed with both hydrocarbons is an increased promotion effect for temperatures below 1100 K. A detailed kinetic mechanism was used to investigate the interaction between ethane/propane and the ignition chemistry of methane under the above conditions. It was found that at relatively low temperatures, the reactions between ethane/propane and methylperoxy (CH{sub 3}O{sub 2}) lead to an enhanced rate of formation of OH radicals in the initiation phase of the ignition. By systematically applying the quasi-steady-state assumptions to the intermediate species involved in the main reaction path identified, we have achieved an analytical description of the ignition process in the transitional temperature regime. The analytical solutions agree reasonably well with the detailed kinetic model and the experimental results for both ignition delay and concentrations of major intermediate species.

  2. Buildings Energy Data Book: 7.4 Efficiency Standards for Commercial HVAC

    Buildings Energy Data Book

    3 Efficiency Standards for Commercial Air Conditioners and Heat Pumps (1) Type Cooling Capacity (Btu/hr) Category (2) Efficiency Level Small commercial package air conditioning <65,000 AC SEER = 13.0 and heating equipment (air-cooled, HP SEER = 13.0 three-phase) Single package vertical air conditioners and <65,000 AC EER = 9.0 single package vertical heat pumps, HP EER = 9.0, COP = 3.0 single-phase and three phase Single package vertical air conditioners and ≥65,000 and <135,000 AC

  3. Tips: Air Conditioners

    Energy.gov [DOE]

    How to operate your air conditioner efficiently, or consider alternatives to air conditioning that can cool effectively in many climates.

  4. Copper contamination effects on hydrogen-air combustion under SCRAMJET (supersonic combustion ramjet) testing conditions

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Berry, G.F.

    1990-01-01

    Two forms of copper catalytic reactions (homogeneous and heterogeneous) in hydrogen flames were found in a literature survey. Hydrogen atoms in flames recombine into hydrogen molecules through catalytic reactions, and these reactions which affect the timing of the combustion process. Simulations of hydrogen flames with copper contamination were conducted by using a modified general chemical kinetics program (GCKP). Results show that reaction times of hydrogen flames are shortened by copper catalytic reactions, but ignition times are relatively insensitive to the reactions. The reduction of reaction time depends on the copper concentration, copper phase, particle size (if copper is in the condensed phase), and initial temperature and pressure. The higher the copper concentration of the smaller the particle, the larger the reduction in reaction time. For a supersonic hydrogen flame (Mach number = 4.4) contaminated with 200 ppm of gaseous copper species, the calculated reaction times are reduced by about 9%. Similar reductions in reaction time are also computed for heterogeneous copper contamination. Under scramjet testing conditions, the change of combustion timing appears to be tolerable (less than 5%) if the Mach number is lower than 3 or the copper contamination is less than 100 ppm. The higher rate the Mach number, the longer the reaction time and the larger the copper catalytic effects. 7 tabs., 8 figs., 34 refs.

  5. Integrated gas-fired space-heating/water-heating system with electric air conditioning. Annual report, January 1984-December 1984

    SciTech Connect

    Celorier, G.M.; Demetri, E.P.; Gerstmann, J.

    1985-01-01

    The performance of the engineering model of a gas-fired space- and water-heating system with electric air-conditioning has been improved. Modifications to the Phase I engineering model yielded a measured space-heating stack efficiency of over 90% and water-heating recovery efficiency of 85% with standby losses of 1.1% per hour. A Phase II prototype TIA has been designed that incorporates the modifications and improvements made on the Phase I engineering model. Forty-eight Phase II prototypes will be built and field tested. The redesigned package has been reduced to 66 inches, and component placement has been revised to improve accessibility and serviceability. A field-test method has been devised, and work has started on the selection of test sites for the field test.

  6. Energy Renovations: Volume 14: HVAC - A Guide for Contractors to Share with Homeowners

    SciTech Connect

    Gilbride, Theresa L.; Baechler, Michael C.; Hefty, Marye G.; Hand, James R.; Love, Pat M.

    2011-08-29

    This report was prepared by PNNL for DOE's Building America program and is intended as a guide that energy performance contractors can share with homeowners to describe various energy-efficient options for heating, cooling, and ventilating existing homes. The report provides descriptions of many common and not-so-common HVAC systems, including their advantages and disadvantages, efficiency ranges and characteristics of high-performance models, typical costs, and climate considerations. The report also provides decision trees and tables of useful information for homeowners who are making decisions about adding, replacing, or upgrading existing HVAC equipment in their homes. Information regarding home energy performance assessments (audits) and combustion safety issues when replacing HVAC equipment are also provided.

  7. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis

  8. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  9. Better Buildings Neighborhood Program Business Models Guide: Contractor/Retailer Business Models

    Energy.gov [DOE]

    Business models information focused on remodelers, HVAC (heating, ventilation, and air conditioning) contractors, home performance contractors, or retailers.

  10. Adhesive Bonding of Aluminum and Copper in HVAC&R Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Adhesive Bonding of Aluminum and Copper in HVAC&R Applications Adhesive Bonding of Aluminum and Copper in HVAC&R Applications Lead Performer: Oak Ridge National Laboratory-Oak Ridge, TN Partner: 3M-Maplewood, MN DOE Total Funding: $1,500,000 Cost Share: $167,000 Project Term: 2016-2019 Funding Type: Building Energy Efficiency Frontiers and Innovations Technologies (BENEFIT) - 2016 (DE-FOA-0001383) PROJECT OBJECTIVE Oak Ridge National Lab (ORNL), with its partner 3M, is

  11. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    DOEpatents

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  12. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  13. Building America Whole-House Solutions for New Homes: Evluating Through-Wall Air Transfer Fans, Pittburgh, Pennsylvania

    Energy.gov [DOE]

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate HVAC distribution systems during heating, cooling, and midseason conditions.

  14. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  15. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    SciTech Connect

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model

  16. Evaluation of the response of tritium-in-air instrumentation to HT in dry and humid conditions and to HTO vapor

    SciTech Connect

    Phillips, H.; Dean, J.; Privas, E.

    2015-03-15

    Nuclear plant operators (power generation, decommissioning and reprocessing operations) are required to monitor releases of tritium species for regulatory compliance and radiation protection purposes. Tritium monitoring is performed using tritium-in-air gas monitoring instrumentation based either on flow-through ion chambers or proportional counting systems. Tritium-in-air monitors are typically calibrated in dry conditions but in service may operate at elevated levels of relative humidity. The NPL (National Physical Laboratory) radioactive gas-in-air calibration system has been used to study the effect of humidity on the response to tritium of two tritium-in-air ion chamber based monitors and one proportional counting system which uses a P10/air gas mixture. The response of these instruments to HTO vapour has also been evaluated. In each case, instrument responses were obtained for HT in dry conditions (relative humidity (RH) about 2%), HT in 45% RH, and finally HTO at 45% RH. Instrumentation response to HT in humid conditions has been found to slightly exceed that in dry conditions. (authors)

  17. Computational Assessment of the GT-MHR Graphite Core Support Structural Integrity in Air-Ingress Accident Condition

    SciTech Connect

    Jong B. Lim; Eung S. Kim; Chang H. Oh; Richard R. Schultz; David A. Petti

    2008-10-01

    The objective of this project was to perform stress analysis for graphite support structures of the General Atomics’ 600 MWth GT-MHR prismatic core design using ABAQUS ® (ver. 6.75) to assess their structural integrity in air-ingress accident conditions where the structure weakens over time due to oxidation damages. The graphite support structures of prismatic type GT-MHR was analyzed based on the change of temperature, burn-off and corrosion depth during the accident period predicted by GAMMA, a multi-dimensional gas multi-component mixture analysis code developed in the Republic of Korea (ROK)/United States (US) International –Nuclear Engineering Research Initiative (I-NERI) project. Both the loading and thermal stresses were analyzed, but the thermal stress was not significant, leaving the loading stress to be the major factor. The mechanical strengths are exceeded between 11 to 11.5 days after loss-of-coolant-accident (LOCA), corresponding to 5.5 to 6 days after the start of natural convection.

  18. Speciation and Fate of Trace Metals in Estuarine Sediments Under Reduced and Oxidized Conditions, Seaplane Lagoon, Alameda Naval Air Station

    SciTech Connect

    Carroll, S A; Day, P A; Esser, B; Randall, S

    2002-10-18

    We have identified important chemical reactions that control the fate of metal-contaminated estuarine sediments if they are left undisturbed (in situ) or if they are dredged. We combined information on the molecular bonding of metals in solids from X-ray absorption spectroscopy (XAS) with thermodynamic and kinetic driving forces obtained from dissolved metal concentrations to deduce the dominant reactions under reduced and oxidized conditions. We evaluated the in situ geochemistry of metals (cadmium, chromium, iron, lead, manganese and zinc) as a function of sediment depth (to 100 cm) from a 60-year record of contamination at the Alameda Naval Air Station, California. Results from XAS and thermodynamic modeling of porewaters show that cadmium and most of the zinc form stable sulfide phases, and that lead and chromium are associated with stable carbonate, phosphate, phyllosilicate, or oxide minerals. Therefore, there is minimal risk associated with the release of these trace metals from the deeper sediments contaminated prior to the Clean Water Act (1975) as long as reducing conditions are maintained. Increased concentrations of dissolved metals with depth were indicative of the formation of metal HS- complexes. The sediments also contain zinc, chromium, and manganese associated with detrital iron-rich phyllosilicates and/or oxides. These phases are recalcitrant at near-neutral pH and do not undergo reductive dissolution within the 60-year depositional history of sediments at this site. The fate of these metals during dredging was evaluated by comparing in situ geochemistry with that of sediments oxidized by seawater in laboratory experiments. Cadmium and zinc pose the greatest hazard from dredging because their sulfides were highly reactive in seawater. However, their dissolved concentrations under oxic conditions were limited eventually by sorption to or co-precipitation with an iron (oxy)hydroxide. About 50% of the reacted CdS and 80% of the reacted ZnS were

  19. Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method

    Energy Saver

    TOP INNOVATIONS BUILDING AMERICA Recognizing Top Innovations in Building Science - The U.S. Department of Energy's Building America program was started in 1995 to provide research and development to the residential new construction and remodeling industry. As a national center for world-class research, Building America funds integrated research in market- ready technology solutions through collaborative partnerships between building and remodeling industry leaders, nationally recognized building

  20. Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System

    SciTech Connect

    Burdick, A.

    2013-10-01

    This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade (SOG) home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

  1. Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System

    SciTech Connect

    Burdick, A.

    2013-10-01

    This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

  2. New Whole-House Solutions Case Study: HVAC Design Strategy for a Hot-Humid Production Builder, Houston, Texas

    SciTech Connect

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  3. 2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking

    Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  4. Cromer Cycle Air Conditioner

    Energy.gov [DOE]

    New Air Conditioning System Uses Desiccant to Transfer Moisture and Increase Efficiency and Capacity

  5. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  6. ORNL: HVAC Lab Research - 2015 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Buildings Integration Program Overview - 2015 BTO Peer Review Space Conditioning Standing Technical Committee Strategic Plan Building America Expert Meeting: Recommended...

  7. Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling[Thermoelectric (TE) HVAC

    Energy.gov [DOE]

    Discusses results from TE HVAC project to add detail to a human thermal comfort model and further allow load reduction in the climate control energy through a distributed TE network

  8. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect

    Burdick, A.

    2014-12-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  9. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect

    Burdick, A.

    2014-12-01

    ​Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  10. ISSUANCE 2014-12-23: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Notice of Proposed Rulemaking

  11. ISSUANCE 2015-06-30: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

  12. Development of Refrigerant Change Indicator and Dirty Air Filter Sensor

    SciTech Connect

    Mei, V.

    2003-06-24

    The most common problems affecting residential and light commercial heating, ventilation, and air-conditioning (HVAC) systems are slow refrigerant leaks and dirty air filters. Equipment users are usually not aware of a problem until most of the refrigerant has escaped or the air filter is clogged with dirt. While a dirty air filter can be detected with a technology based on the air pressure differential across the filter, such as a ''whistling'' indicator, it is not easy to incorporate this technology into existing HVAC diagnostic equipment. Oak Ridge National Laboratory is developing a low-cost, nonintrusive refrigerant charge indicator and dirty air filter detection sensor. The sensors, based on temperature measurements, will be inexpensive and easy to incorporate into existing heat pumps and air conditioners. The refrigerant charge indicator is based on the fact that when refrigerant starts to leak, the evaporator coil temperature starts to drop and the level of liquid subcooling drops. When the coil temperature or liquid subcooling drops below a preset reading, a signal, such as a yellow warning light, can be activated to warn the equipment user that the system is undercharged. A further drop of coil temperature or liquid subcooling below another preset reading would trigger a second warning signal, such as a red warning light, to warn the equipment user that the unit now detects a leak and immediate action should be taken. The warning light cannot be turned off until it is re-set by a refrigeration repairman. To detect clogged air filters, two additional temperature sensors can be applied, one each across the evaporator. When the air filter is accumulating buildup, the temperature differential across the evaporator will increase because of the reduced airflow. When the temperature differential reaches a pre-set reading, a signal will be sent to the equipment user that the air filter needs to be changed. A traditional refrigerant charge indicator requires

  13. Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transitioning Traditional HVAC Contractors to Whole House Performance Contractors Arlan Burdick IBACOS, Inc. October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  14. DOE and Stakeholders Consider Best Approach to Major HVAC&R Research Effort

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building Technologies Office (BTO) recently convened two workshops to discuss the potential launch of a major research effort for advanced HVAC&R technologies. DOE’s goal is to develop next-generation heating and cooling technologies that leapfrog the existing vapor compression solutions and result in dramatically improved efficiency while utilizing near-zero global warming potential (GWP) refrigerants or non-vapor compression approaches.

  15. DOE and Stakeholders Ponder Best Approach to Major HVAC&R Research Effort

    Energy.gov [DOE]

    The Building Technologies Office (BTO) recently convened two workshops to discuss the potential launch of a major research effort for advanced HVAC&R technologies. DOEs goal is to develop next-generation heating and cooling technologies that leapfrog the existing vapor compression solutions and result in dramatically improved efficiency while utilizing near-zero global warming potential (GWP) refrigerants or non-vapor compression approaches.

  16. Comparative guide to emerging diagnostic tools for large commercial HVAC systems

    SciTech Connect

    Friedman, Hannah; Piette, Mary Ann

    2001-05-01

    This guide compares emerging diagnostic software tools that aid detection and diagnosis of operational problems for large HVAC systems. We have evaluated six tools for use with energy management control system (EMCS) or other monitoring data. The diagnostic tools summarize relevant performance metrics, display plots for manual analysis, and perform automated diagnostic procedures. Our comparative analysis presents nine summary tables with supporting explanatory text and includes sample diagnostic screens for each tool.

  17. Research & Development Opportunities for Joining Technologies in HVAC&R

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Opportunities for Joining Technologies in HVAC&R W. Goetzler, M. Guernsey, J. Young October 2015 (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the

  18. Integrated gas-fired space heating/water heating system with electric air conditioning. Annual report on phase 1, Jan-Dec 83

    SciTech Connect

    Vasilakis, A.D.; Celorier, G.M.; Gerstmann, J.

    1984-01-01

    The marketability of a gas space and water heating system combined with an electric air-conditioning system has been examined. This has included a cost effectiveness evaluation when compared to competing systems. The concept appears feasible using a three-year payback criteria. An engineering prototype was constructed which demonstrated space heating efficiencies in the high eighties and water heating recovery efficiencies in the low to mid eighties.

  19. Building America Whole-House Solutions for Existing Homes: Inverted Attic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Bulkhead for HVAC Ductwork | Department of Energy Inverted Attic Bulkhead for HVAC Ductwork Building America Whole-House Solutions for Existing Homes: Inverted Attic Bulkhead for HVAC Ductwork This occupied test home received a modified truss system to accommodate ductwork within an inverted insulated bulkhead along the attic floor, which saves energy by placing heating, ventilating, and air-conditioning (HVAC) ductwork within the home's thermal boundary. Inverted Attic Bulkhead for HVAC

  20. Ozone Removal by Filters Containing Activated Carbon: A Pilot...

    Office of Scientific and Technical Information (OSTI)

    in a commercial building heating, ventilating, and air conditioning (HVAC) system. ... measurements of ozone concentrations in the air upstream and downstream of the filters. ...

  1. Improving the efficiency of residential air-distribution systems in California, Phase 1

    SciTech Connect

    Modera, M.; Dickerhoff, D.; Jansky, R.; Smith, B.

    1992-06-01

    This report describes the results of the first phase of a multiyear research project. The project`s goal is to investigate ways to improve the efficiency of air-distribution systems in detached, single-family residences in California. First-year efforts included: A survey of heating, ventilating, and air conditioning (HVAC) contractors in California. A 31-house field study of distribution-system performance based on diagnostic measurements. Development of an integrated air-flow and thermal-simulation tool for investigating residential air-distribution system performance. Highlights of the field results include the following: Building envelopes for houses built after 1979 appear to be approximately 30% tighter. Duct-system tightness showed no apparent improvement in post-1979 houses. Distribution-fan operation added an average of 0.45 air changes per hour (ACH) to the average measured rate of 0.24 ACH. The simulation tool developed is based on DOE-2 for the thermal simulations and on MOVECOMP, an air-flow network simulation model, for the duct/house leakage and flow interactions. The first complete set of simulations performed (for a ranch house in Sacramento) indicated that the overall heating-season efficiency of the duct systems was approximately 65% to 70% and that the overall cooling-season efficiency was between 60% and 75%. The wide range in cooling-season efficiency reflects the difference between systems with attic return ducts and those with crawl-space return ducts, the former being less efficient. The simulations also indicated that the building envelope`s UA-value, a measurement of thermoconductivity, did not have a significant impact on the overall efficiency of the air-distribution system.

  2. Low-GWP HVAC System with Ultra-Small Centrifugal Compression

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LOW-GWP HVAC SYSTEM WITH ULTRA-SMALL CENTRIFUGAL COMPRESSION 2016 Building Technologies Office Peer Review Dr. Edward Bennett e-mail: emb@mechsol.com Vice President of Fluids Engineering Mechanical Solutions, Inc. 2 Project Summary Timeline: Start date: 10/2015 Planned end date: 6/2017 Key Milestones 1. Milestone 3.3.1; 1/29/16 2. Milestone 2.1.1 ~40% complete; 1/29/16 Budget: Total Project $ to Date: * DOE: $134,406 + $56,776 (fy: 2016) * Cost Share: $52,867 Total Project $: * DOE: $999,921

  3. Aging assessment of essential HVAC chillers used in nuclear power plants. Phase 1, Volume 1

    SciTech Connect

    Blahnik, D.E.; Klein, R.F.

    1993-09-01

    The Pacific Northwest Laboratory conducted a Phase I aging assessment of chillers used in the essential safety air-conditioning systems of nuclear power plants. Centrifugal chillers in the 75- to 750-ton refrigeration capacity range are the predominant type used. The chillers used, and air-conditioning systems served, vary in design from plant-to-plant. It is crucial to keep chiller internals very clean and to prevent the leakage of water, air, and other contaminants into the refrigerant containment system. Periodic operation on a weekly or monthly basis is necessary to remove moisture and noncondensable gases that gradually build up inside the chiller. This is especially desirable if a chiller is required to operate only as an emergency standby unit. The primary stressors and aging mechanisms that affect chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor quality cooling water. Aging is accelerated by moisture, non-condensable gases (e.g., air), dirt, and other contamination within the refrigerant containment system, excessive start/stop cycling, and operating below the rated capacity. Aging is also accelerated by corrosion and fouling of the condenser and evaporator tubes. The principal cause of chiller failures is lack of adequate monitoring. Lack of performing scheduled maintenance and human errors also contribute to failures.

  4. 2014-09-23 Issuance: Energy Conservation Standard for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration Notice of Public Meeting

    Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for walk-in coolers and freezers; Air-Conditioning, Heating, & Refrigeration Institute petition for reconsideration, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 23, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  5. CX-004817: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Replace Air Handling Unit Heating, Ventilation, and Air Conditioning (HVAC)-AHU-20984 (HVAC-FAN-E21) with HVAC-AHU-E-1, Building 773-A, Section E Southeast RoofCX(s) Applied: B1.3Date: 12/07/2010Location(s): Aiken, South CarolinaOffice(s): Savannah River Operations Office

  6. Integrated gas-fired space-heating/water-heating system with electric air conditioning. Final report. January 1983-December 1987

    SciTech Connect

    Demetri, E.P.; Gerstmann, J.

    1988-01-01

    A Triple-Integrated-Appliance (TIA) for space conditioning and water heating was successfully developed for the multifamily housing market as an economical gas alternative to all-electric systems. The gas-fired portion of the system provides high-efficiency condensing operation in both the space-heating and water-heating modes. The TIA was evaluated in a comprehensive field-test program conducted nationwide at sites representative of multifamily applications. The field-test results demonstrated that the performance goals were achieved under actual usage conditions. The final pre-production prototype configuration provides the design and performance characteristics necessary to compete in the multifamily market.

  7. Results of a forty-home indoor-air-pollutant monitoring study

    SciTech Connect

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.; Womack, D.R.; Morris, S.A.; Westley, R.R.; White, D.A.; Gupta, K.C.

    1983-01-01

    A study was conducted in 40 homes in the areas of Oak Ridge and west Knoxville, Tennessee. Concentrations of CO/sub x/, NO/sub x/, particulates, formaldehyde, and radon, as well as selected volatile organic compounds, were quantified. In addition, information was collected on air exchange rates, meteorological conditions, and structural and consumer products. This paper summarizes some of the results and provides specific examples of increased indoor concentrations of pollutants due to the operation of a kerosene space heater, a gas range, and a wood/coal stove. Results showed formaldehyde levels frequently exceeded 0.1 ppM; were highest in newer homes; and fluctuate diurnally and seasonally. Radon levels frequently exceeded 3 pCi/L and correlated strongly with house location. Organic pollutant levels were at least an order of magnitude higher indoors than outdoors. Combustion sources (especially unvented) significantly increased levels of CO/sub x/, NO/sub x/, and particulates. Air exchange rates were increased nearly two-fold by operation of the HVAC central air circulation fan.

  8. 2013 R&D 100 Award: DNATrax could revolutionize air quality detection and tracking

    ScienceCinema

    Farquar, George

    2014-07-22

    A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilation and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.

  9. 2013 R&D 100 Award: DNATrax could revolutionize air quality detection and tracking

    SciTech Connect

    Farquar, George

    2014-04-03

    A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilation and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.

  10. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    SciTech Connect

    Jiang Zhu; Yong X. Tao

    2011-11-01

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  11. Comfort and HVAC Performance for a New Construction Occupied Test House in Roseville, California

    SciTech Connect

    Burdick, A.

    2013-10-01

    K. Hovnanian® Homes constructed a 2,253-ft2 single-story slab-on-grade ranch house for an occupied test house (new construction) in Roseville, California. One year of monitoring and analysis focused on the effectiveness of the space conditioning system at maintaining acceptable temperature and relative humidity levels in several rooms of the home, as well as room-to-room differences and the actual measured energy consumption by the space conditioning system. In this home, the air handler unit (AHU) and ducts were relocated to inside the thermal boundary. The AHU was relocated from the attic to a mechanical closet, and the ductwork was located inside an insulated and air-sealed bulkhead in the attic. To describe the performance and comfort in the home, the research team selected representative design days and extreme days from the annual data for analysis. To ensure that temperature differences were within reasonable occupant expectations, the team followed Air Conditioning Contractors of America guidance. At the end of the monitoring period, the occupant of the home had no comfort complaints in the home. Any variance between the modeled heating and cooling energy and the actual amounts used can be attributed to the variance in temperatures at the thermostat versus the modeled inputs.

  12. Comfort and HVAC Performance for a New Construction Occupied Test House in Roseville, California

    SciTech Connect

    Burdick, A.

    2013-10-01

    K. Hovnanian(R) Homes(R) constructed a 2,253-ft2 single-story slab-on-grade ranch house for an occupied test house (new construction) in Roseville, California. One year of monitoring and analysis focused on the effectiveness of the space conditioning system at maintaining acceptable temperature and relative humidity levels in several rooms of the home, as well as room-to-room differences and the actual measured energy consumption by the space conditioning system. In this home, the air handler unit (AHU) and ducts were relocated to inside the thermal boundary. The AHU was relocated from the attic to a mechanical closet, and the ductwork was located inside an insulated and air-sealed bulkhead in the attic. To describe the performance and comfort in the home, the research team selected representative design days and extreme days from the annual data for analysis. To ensure that temperature differences were within reasonable occupant expectations, the team followed Air Conditioning Contractors of America guidance. At the end of the monitoring period, the occupant of the home had no comfort complaints in the home. Any variance between the modeled heating and cooling energy and the actual amounts used can be attributed to the variance in temperatures at the thermostat versus the modeled inputs.

  13. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    SciTech Connect

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  14. Learning Based Bidding Strategy for HVAC Systems in Double Auction Retail Energy Markets

    SciTech Connect

    Sun, Yannan; Somani, Abhishek; Carroll, Thomas E.

    2015-07-01

    In this paper, a bidding strategy is proposed using reinforcement learning for HVAC systems in a double auction market. The bidding strategy does not require a specific model-based representation of behavior, i.e., a functional form to translate indoor house temperatures into bid prices. The results from reinforcement learning based approach are compared with the HVAC bidding approach used in the AEP gridSMART® smart grid demonstration project and it is shown that the model-free (learning based) approach tracks well the results from the model-based behavior. Successful use of model-free approaches to represent device-level economic behavior may help develop similar approaches to represent behavior of more complex devices or groups of diverse devices, such as in a building. Distributed control requires an understanding of decision making processes of intelligent agents so that appropriate mechanisms may be developed to control and coordinate their responses, and model-free approaches to represent behavior will be extremely useful in that quest.

  15. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    SciTech Connect

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-27

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  16. Aging assessment of essential HVAC chillers used in nuclear power plants

    SciTech Connect

    Blahnik, D.E.; Camp, T.W.

    1996-09-01

    The Pacific Northwest Laboratory conducted a comprehensive aging assessment of chillers used in the essential safety air-conditioning systems in nuclear power plants (NPPs). The chillers used, and air-conditioning systems served, vary in design from plant to plant. The review of operating experience indicated that chillers experience aging degradation and failures. The primary aging factors of concern for chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor quality cooling water. The evaluation of Licensee Event Reports (LERs) indicated that about 38% of the failures were primarily related to aging, 55% were partially aging related, and 7% of the failures were unassignable. About 25% of the failures were primarily caused by human, design, procedure, and other errors. The large number of errors is probably directly related to the complexity of chillers and their interfacing systems. Nearly all of the LERs were the result of entering plant Technical Specification Limiting Condition for Operation (LCO) that initiated remedial actions like plant shutdown procedures. The trend for chiller-related LERs has stabilized at about 0.13 LERs per plant year since 1988. Carefully following the vendor procedures and monitoring the equipment can help to minimize and/or eliminate most of the premature failures. Recording equipment performance can be useful for trending analysis. Periodic operation for a few hours on a weekly or monthly basis is useful to remove moisture and non-condensable gases that gradually build up inside the chiller. Chiller pressurization kits are available that will help minimize the amount of moisture and air ingress to low-pressure chillers during standby periods. The assessment of service life condition monitoring of chillers indicated there are many simple to sophisticated methods available that can help in chiller surveillance and monitoring.

  17. Model test on underground coal gasification (UCG) with low-pressure fire seepage push-through. Part I: Test conditions and air fire seepage

    SciTech Connect

    Yang, L.H.

    2008-07-01

    The technology of a pushing-through gallery with oxygen-enriched fire-seepage combustion was studied during shaft-free UCG in this article, and the main experiment parameters were probed. The test results were analyzed in depth. The patterns of variation and development were pointed out for the fire source moving speed, temperature field, leakage rate, the expanding diameter for the gasification gallery, and blasting pressure. Test results showed that, with the increase in the wind-blasting volume, the moving velocity for the fire source speeded up, and the average temperature for the gallery continuously rose. Under the condition of oxygen-enriched air blasting, when O{sub 2} contents stood at 90%, the moving speed for the fire source was 4-5 times that of air blasting. In the push-through process, the average leakage rate for the blasting was 82.23%, with the average discharge volume of 3.43 m{sup 3}/h and average gallery diameter of 7.87 cm. With the proceeding of firepower seepage, the extent of dropping for the leakage rate increased rapidly, and the drop rate for the blasting pressure gradually heightened.

  18. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    I | Department of Energy I Building America Webinar: High Performance Space Conditioning Systems, Part I The webinar on Oct. 23, 2014, focused on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific topics for this webinar will be: * Andrew Poerschke, IBACOS, presenting Simplified Space Conditioning in Low-load Homes. The presentation will focus on what is "simple" when it comes to space conditioning?

  19. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research

    SciTech Connect

    Bayer, C.W.

    2001-02-22

    In the modern urban setting, most individuals spend about 80% of their time indoors and are therefore exposed to the indoor environment to a much greater extent than to the outdoors (Lebowitz 1992). Concomitant with this increased habitation in urban buildings, there have been numerous reports of adverse health effects related to indoor air quality (IAQ) (sick buildings). Most of these buildings were built in the last two decades and were constructed to be energy-efficient. The quality of air in the indoor environment can be altered by a number of factors: release of volatile compounds from furnishings, floor and wall coverings, and other finishing materials or machinery; inadequate ventilation; poor temperature and humidity control; re-entrainment of outdoor volatile organic compounds (VOCs); and the contamination of the indoor environment by microbes (particularly fungi). Armstrong Laboratory (1992) found that the three most frequent causes of IAQ are (1) inadequate design and/or maintenance of the heating, ventilation, and air-conditioning (HVAC) system, (2) a shortage of fresh air, and (3) lack of humidity control. A similar study by the National Institute for Occupational Safety and Health (NIOSH 1989) recognized inadequate ventilation as the most frequent source of IAQ problems in the work environment (52% of the time). Poor IAQ due to microbial contamination can be the result of the complex interactions of physical, chemical, and biological factors. Harmful fungal populations, once established in the HVAC system or occupied space of a modern building, may episodically produce or intensify what is known as sick building syndrome (SBS) (Cummings and Withers 1998). Indeed, SBS caused by fungi may be more enduring and recalcitrant to treatment than SBS from multiple chemical exposures (Andrae 1988). An understanding of the microbial ecology of the indoor environment is crucial to ultimately resolving many IAQ problems. The incidence of SBS related to multiple

  20. General collaboration offer of Johnson Controls regarding the performance of air conditioning automatic control systems and other buildings` automatic control systems

    SciTech Connect

    Gniazdowski, J.

    1995-12-31

    JOHNSON CONTROLS manufactures measuring and control equipment (800 types) and is as well a {open_quotes}turn-key{close_quotes} supplier of complete automatic controls systems for heating, air conditioning, ventilation and refrigerating engineering branches. The Company also supplies Buildings` Computer-Based Supervision and Monitoring Systems that may be applied in both small and large structures. Since 1990 the company has been performing full-range trade and contracting activities on the Polish market. We have our own well-trained technical staff and we collaborate with a series of designing and contracting enterprises that enable us to have our projects carried out all over Poland. The prices of our supplies and services correspond with the level of the Polish market.

  1. DOE Zero Energy Ready Home Low Load High Efficiency HVAC Webinar...

    Energy.gov [DOE] (indexed site)

    lower air flows and less air flow, the temperature rise at the longest outlet for short cycle may not get the air temperature that you want delivered to that room and may drive...

  2. Market assessment for active solar heating and cooling products. Category B: a survey of decision-makers in the HVAC marketplace. Final report

    SciTech Connect

    1980-09-01

    A comprehensive evaluation of the market for solar heating and cooling products for new and retrofit markets is reported. The emphasis is on the analysis of solar knowledge among HVAC decision makers and a comprehensive evaluation of their solar attitudes and behavior. The data from each of the following sectors are described and analyzed: residential consumers, organizational and manufacturing buildings, HVAC engineers and architects, builders/developers, and commercial/institutional segments. (MHR)

  3. Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Inverted Attic Bulkhead for HVAC Ductwork Roseville, California PROJECT INFORMATION Project Name: Long-Term Monitoring of Occupied Test House Location: Roseville, CA Partners: K. Hovnanian® Homes®, www.khov.com IBACOS www.ibacos.com Building Component: Envelope, structural, HVAC ducts Construction: New Application: New; single and/or multifamily Year Tested: 2012 Applicable Climate Zone(s): Hot-dry climate PERFORMANCE DATA HERS Index: 52 Projected Energy Savings: 11 million Btu/year heating

  4. Building America Webinar: High Performance Space Conditioning Systems, Part

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    II | Department of Energy II Building America Webinar: High Performance Space Conditioning Systems, Part II The webinar on Nov. 18, 2014, continued the series on strategies to improve the performance of HVAC systems for low load homes and home performance retrofits. Presenters and specific topics for this webinar included: William Zoeller, Consortium for Advanced Residential Retrofit (CARB), presented Design Options for Locating Ducts within Conditioned Space. The presentation provided an

  5. Unvented, Conditioned Attics - Building America Top Innovation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Attics - Building America Top Innovation Unvented, Conditioned Attics - Building America Top Innovation This photo shows an attic that is conditioned (insulated) and showing ductwork. The preference for a large segment of the U.S. housing industry has been to locate HVAC systems in unconditioned attics, but this is highly inefficient. The additional heat loss and gain of ducts in unconditioned, vented attics increases energy use for heating and cooling by 10%. Additionally, duct

  6. Better Buildings Residential Network Peer Exchange Call Series: Home Improvement Catalyst„Maximizing HVAC Performanc Through Contractor Partnerships (201)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Home Improvement Catalyst-Maximizing HVAC Performance Through Contractor Partnerships (201) September 22, 2016 Call Slides and Discussion Summary Agenda  Agenda Review and Ground Rules  Opening Polls  Brief Residential Network Overview  Featured Speakers  Steve Dunn, U.S. DOE: Update on Home Improvement Catalyst Initiative  Tom Koby, Emerson ClimateTechnologies  Will Baker, Midwest Energy Efficiency Alliance (MEEA)  Discussion  What are effective strategies to ensure

  7. Investigation of techniques to improve continuous air monitors under conditions of high dust loading in environmental setting. 1998 annual progress report

    SciTech Connect

    Schery, S.D.; Wasiolek, P.T. [New Mexico Inst. of Mining and Technology, Socorro, NM (US); Rodgers, J. [Los Alamos National Lab., NM (US)

    1998-06-01

    'Improvement in understanding of the deposition of ambient dust particles on ECAM (Environmental Continuous Air Monitor) filters, reduction of the alpha-particle interference of radon progeny and other radioactive aerosols in different particle size ranges on filters, and development of ECAM''s with increased sensitivity under dusty outdoor conditions. As of May 1, 1998 (1/2 year into the project) the research-prototype 30-cm pulsed ionization chamber (PIC) is assembled and operational with an alpha particle energy resolution of better than 45 keV for 5-MeV alpha particles. Measurements of spectral resolution for alpha particles from radon decay products have been made as a function of filter type and dust loading conditions. So far, a study of ten filter types has found that the best combination of resolution and throughput is obtained with 3.0 \\265m Millipore fluoropore and 1.0 \\265m Corning FNMB filters. Experiments with gypsum and Portland cement dust in the size range 1 to 20 \\265m indicate significant degradation in alpha particle resolution for dust loading above about 0.5 mg cm{sup -2}. Study of metalized films for possible use as a PIC window indicate a minimum broadening of 5-MeV alpha particle peaks from 43 (no film) to 301 keV (with film) for AVR film type B8 (0.20 mg cm{sup -2} polycarbonate). A modified ECAM sampling head, equipped with an optical microscopy system feeding data to a high resolution video data capture and logging instrument, was constructed. This system will enable time-lapse study of dust build-up on ECAM filters and formation of dendrite structures that can reduce alpha-particle resolution.'

  8. Partner with DOE and Emerging Technologies

    Energy.gov [DOE]

    The U.S. Department of Energy (DOE) seeks partnerships to research and develop energy efficient building technologies, including advanced lighting, heating, ventilating and air conditioning (HVAC),...

  9. Electric Power Monthly ? March 2010 Data issue

    Gasoline and Diesel Fuel Update

    Examples include high-efficiency appliances, efficient lighting programs, high-efficiency heating, ventilating and air conditioning (HVAC) systems or control...

  10. Unemployed Engineer Finds New Career in Weatherization | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Addthis Kevin Craft Bob Kos worked as a mechanical engineer for 20 years. But a slow ... replacing inefficient heating, ventilation and air conditioning (HVAC) units and furnaces. ...

  11. CX-001919: Categorical Exclusion Determination | Department of...

    Energy Saver

    retrofits that are limited to: installation of insulation; installation of efficient lighting; heating, venting, and air conditioning (HVAC) and associated controls and...

  12. Trane Inc | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    New Jersey Zip: 8855 Product: New Jersey-based supplier and installer of heating, ventilation and air conditioning (HVAC) systems, also involved in the installation of...

  13. Hanford Blog Archive - Hanford Site

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    completed the design for the High-Level Waste (HLW) Vitrification Facility's heating, ventilation and air-conditioning (HVAC) system. August 18, 2010 Waste Treatment Plant...

  14. NREL: Research Facilities - Laboratories and Facilities by Technology

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    researching a multitude of building technologies, including heating, ventilation, and air-conditioning (HVAC) systems; desiccant cooling and dehumidification systems; active solar...

  15. 2013 Federal Energy and Water Management Award Winner 4th Civil...

    Energy Saver

    e ciency was gained through the installation's first variable refrigerant flow heating, ventilation, and air conditioning (HVAC) system, which provides highly e cient heat and...

  16. 2013 Federal Energy and Water Management Award Winner 4th Civil...

    Energy Saver

    efficiency was gained through the installation's first variable refrigerant flow heating, ventilation, and air conditioning (HVAC) system, which provides highly efficient heat and...

  17. Categorical Exclusion Determinations: B1.4 | Department of Energy

    Energy.gov [DOE] (indexed site)

    February 25, 2015 CX-013414: Categorical Exclusion Determination Heyburn Substation Heating, Ventilation and Air Conditioning (HVAC) Replacement CX(s) Applied: B1.4 Date: 0225...

  18. Promoting high efficiency residential HVAC equipment: Lessons learned from leading utility programs

    SciTech Connect

    Neme, C.; Peters, J.; Rouleau, D.

    1998-07-01

    The Consortium for Energy Efficiency recently sponsored a study of leading electric utility efforts to promote high efficiency residential HVAC equipment. Given growing concerns from some utilities about the level of expenditures associated with rebate programs, special emphasis was placed on assessing the success of financing and other non-rebate options for promoting efficiency. Emphasis was also placed on review of efforts--rebate or otherwise--to push the market to very high levels of efficiency (i.e., SEER 13). This paper presents the results of the study. It includes discussion of key lessons from the utility programs analyzed. It also examines program participation rates and other potential indicators of market impacts. One notable conclusion is that several utility programs have pushed market shares for SEER 12 equipment to about 50% (the national average is less than 20%). At least one utility program has achieved a 50% market share for SEER 13 equipment (the national average is less than 3%). In general, financing does not appear to have as broad an appeal as consumer rebates. However, one unique utility program which combines the other of customer financing with modest incentives to contractors--in the form of frequent seller points that can be redeemed for advertising, technician training, travel and other merchandise--offers some promise that high participation rates can be achieved without customer rebates.

  19. Common Air Conditioner Problems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of

  20. Compressed Air

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lighting Compressed Air ESUE Motors Federal Agriculture Compressed Air Compressed Air Roadmap The Bonneville Power Administration created the roadmap to help utilities find energy...

  1. Buildings Energy Data Book: 7.3 Efficiency Standards for Residential HVAC

    Buildings Energy Data Book

    1 Efficiency Standards for Residential Central Air Conditioners and Heat Pumps (1) Type SEER (3) HSPF (4) Split System Air Conditioners 13.0 -- Split System Heat Pumps 13.0 7.7 Single Package Air Conditioners 13.0 -- Single Package Heat Pumps 13.0 7.7 Through-the-Wall Air Conditioners and Heat Pumps: -Split System (2) 10.9 7.1 -Single Package (2) 10.6 7.0 Small Duct, High Velocity Systems 13.0 7.7 Space Constrained Products -Air Conditioners 12.0 -- -Heat Pumps 12.0 7.4 Note(s): Source(s): 1)

  2. Air Quality

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. March 17, 2015 Real-time data monitoring ...

  3. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  4. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    SciTech Connect

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin; Natesan, Ken

    2015-09-01

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal, 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.

  5. Ductless Mini-Split Air Conditioners

    Energy.gov [DOE]

    Ductless mini-split air conditioners are a good choice if you want a zoned air conditioning system but have no ducts in your house.

  6. Cost-Effective Integration of Efficient Low-Lift Baseload Cooling Equipment: FY08 Final Report

    SciTech Connect

    Katipamula, Srinivas; Armstrong, P. R.; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-01-31

    Documentation of a study to investigate one heating, ventilation and air conditioning (HVAC) system option, low-lift cooling, which offers potentially exemplary HVAC energy performance relative to American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004.

  7. Air Quality

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  8. Air Quality

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  9. Air Quality

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public. Open full...

  10. Air Sealing

    SciTech Connect

    2000-02-01

    This fact sheet describes ventilation and the importance of sealing air leaks and providing controlled ventilation.

  11. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    SciTech Connect

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    2014-07-01

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

  12. Development of a Thermoelectric Device for an Automotive Zonal HVAC System

    Energy.gov [DOE]

    Presents development of a thermoelectric device using liquid working fluid on the wasteŽ side and air as working fluid on the mainŽ side to enable zonal or distributed heating/cooling systems within a vehicle

  13. U.S. Environmental Protection Agency Clean Air Act notice of construction for spent nuclear fuel project - hot conditioning system annex, project W-484

    SciTech Connect

    Baker, S.K., Westinghouse Hanford

    1996-12-10

    This notice of construction (NOC) provides information regarding the source and the estimated quantity of potential airborne radionuclide emissions resulting from the operation of the Hot Conditioning System (HCS) Annex. The construction of the HCS Annex is scheduled to conunence on or about December 1996, and will be completed when the process equipment begins operations. This document serves as a NOC pursuant to the requirements of 40 Code of Federal Regulations (CFR) 61 for the HCS Annex. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is contained in open canisters, which allows release of corrosion products to the K East Basin water. Storage of the current inventory in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PUREX Plant left approximately 2, 1 00 MT (2,300 tons) of uranium, as part of 1133 N Reactor SNF in the K Basins with no means for near-term removal and processing. The HCS Annex will be constructed as an annex to the Canister Storage Building (CSB) and will contain the hot conditioning equipment. The hot conditioning system (HCS) will release chemically-bound water and will condition (process of using a controlled amount of oxygen to destroy uranium hydride) the exposed uranium surfaces associated with the SNF through oxidation. The HCS Annex will house seven hot conditioning process stations, six operational and one auxiliary, which could be used as a welding area for final closure of the vessel containing the SNF. The auxiliary pit is being evaluated at this time for its usefulness to support other operations that may be needed to ensure proper conditioning of the SNF

  14. DOE Requires Air-Con International to Cease Sales of Inefficient Air Conditioners and Proposes Penalties

    Energy.gov [DOE]

    The Department has issued a Notice of Noncompliance Determination and Proposed Civil Penalty to Air-Con, International, requiring Air-Con to cease the sale of certain air-conditioning systems in...

  15. Activation of Air and Utilities in the National Ignition Facility

    SciTech Connect

    Khater, H; Pohl, B; Brererton, S

    2010-04-08

    Detailed 3-D modeling of the NIF facility is developed to accurately simulate the radiation environment within the NIF. Neutrons streaming outside the NIF Target Chamber will activate the air present inside the Target Bay and the Ar gas inside the laser tubes. Smaller levels of activity are also generated in the Switchyard air and in the Ar portion of the SY laser beam path. The impact of neutron activation of utilities located inside the Target Bay is analyzed for variety of shot types. The impact of activating TB utilities on dose received by maintenance personnel post-shot is analyzed. The current NIF facility model includes all important features of the Target Chamber, shielding system, and building configuration. Flow of activated air from the Target Bay is controlled by the HVAC system. The amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. Activation of Switchyard air is negligible. Activation of Target Bay utilities result in a manageable dose rate environment post high yield (20 MJ) shots. The levels of activation generated in air and utilities during D-D and THD shots are small and do not impact work planning post shots.

  16. Chapter 19: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: September 2011 … December 2014

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    9: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Jeff Romberger SBW Consulting, Inc. Bellevue, Washington NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-63167 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable

  17. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  18. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  19. Air filter

    SciTech Connect

    Jackson, R.E.; Sparks, J.E.

    1981-03-03

    An air filter is described that has a counter rotating drum, i.e., the rotation of the drum is opposite the tangential intake of air. The intake air has about 1 lb of rock wool fibers per 107 cu. ft. of air sometimes at about 100% relative humidity. The fibers are doffed from the drum by suction nozzle which are adjacent to the drum at the bottom of the filter housing. The drum screen is cleaned by periodically jetting hot dry air at 120 psig through the screen into the suction nozzles.

  20. Issue #7: What are the Best HVAC Solutions for Low-Load, High Performance Homes?

    Office of Energy Efficiency and Renewable Energy (EERE)

    What components and controls are required to implement the "perfect," cost-effective, production-level low-load space conditioning systems for all major U.S. climate regions?

  1. Issue #7: What are the Best HVAC Solutions for Low-Load, High...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    What components and controls are required to implement the "perfect," cost-effective, production-level low-load space conditioning systems for all major U.S. climate regions? ...

  2. The Use of Positive Matrix Factorization with Conditional Probability Functions in Air Quality Studies: An Application to Hydrocarbon Emissions in Houston, Texas

    SciTech Connect

    Xie, YuLong; Berkowitz, Carl M.

    2006-06-01

    As part of a study to identify groups of compounds (source categories) associated with different processing facilities, a multivariate receptor model called Positive Matrix Factorization (PMF) was applied to hourly average concentrations of volatile organic compounds (VOCs) measured at five Photochemical Assessment Monitoring Stations (PAMS) located near the Ship Channel in Houston, Texas. The observations were made between June and October, 2003, and limited to nighttime measurements (21:00 pm 6:00 am) in order to remove the complexity of photochemical processing and associated changes in the concentrations of primary and secondary VOCs. Six to eight volatile organic compounds source categories were identified for the five Ship Channel sites. The dominant source categories were found to be those associated with petrochemical, chemical industries and fuel evaporation. In contrast, source categories associated with on-road vehicles were found to be relatively insignificant. Although evidence of biogenic emissions was found at almost all the sites, this broad category was significant only at the Wallisville site, which was also the site furthest away from the Ship Channels area and closest to the northeast forest of Texas. Natural gas, accumulation and fuel evaporation sources were found to contribute most to the ambient VOCs, followed by the petrochemical emission of highly reactive ethene and propylene. Solvent / paint industry and fuel evaporation and emission from refineries were next in importance while the on-road vehicle exhaust generally contributed less than 10% of the total ambient VOCs. Specific geographic areas associated with each source category were identified through the use of a Conditional Probability Function (CPF) analysis that related elevated concentrations of key VOCs in each category to a network of grids superimposed on the source inventories of the VOCs.

  3. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  4. DATE

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    6 SECTION A. Project Title: TRA-653 HVAC Modifications SECTION B. Project Description: The proposed project plans to replace the existing blowers, swamp coolers and electric heaters in the Idaho National Laboratory (INL) Test Reactor Area-653 (TRA-653) office area with three roof mounted heating, ventilating and air conditioning (HVAC) units; and install six roof mounted HVAC units at the TRA-653 machine shop area. These modifications are needed to enhance workplace habitability, maintain a more

  5. air force

    National Nuclear Security Administration (NNSA)

    en NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range http:nnsa.energy.govmediaroompressreleases...

  6. A Pilot Study of the Effectiveness of Indoor Plants for Removal of Volatile Organic Compounds in Indoor Air in a Seven-Story Office Building

    SciTech Connect

    Apte, Michael G.; Apte, Joshua S.

    2010-04-27

    The Paharpur Business Centre and Software Technology Incubator Park (PBC) is a 7 story, 50,400 ft{sup 2} office building located near Nehru Place in New Delhi India. The occupancy of the building at full normal operations is about 500 people. The building management philosophy embodies innovation in energy efficiency while providing full service and a comfortable, safe, healthy environment to the occupants. Provision of excellent Indoor Air Quality (IAQ) is an expressed goal of the facility, and the management has gone to great lengths to achieve it. This is particularly challenging in New Delhi, where ambient urban pollution levels rank among the worst on the planet. The approach to provide good IAQ in the building includes a range of technical elements: air washing and filtration of ventilation intake air from rooftop air handler, the use of an enclosed rooftop greenhouse with a high density of potted plants as a bio-filtration system, dedicated secondary HVAC/air handling units on each floor with re-circulating high efficiency filtration and UVC treatment of the heat exchanger coils, additional potted plants for bio-filtration on each floor, and a final exhaust via the restrooms located at each floor. The conditioned building exhaust air is passed through an energy recovery wheel and chemisorbent cartridge, transferring some heat to the incoming air to increase the HVAC energy efficiency. The management uses 'green' cleaning products exclusively in the building. Flooring is a combination of stone, tile and 'zero VOC' carpeting. Wood trim and finish appears to be primarily of solid sawn materials, with very little evidence of composite wood products. Furniture is likewise in large proportion constructed from solid wood materials. The overall impression is that of a very clean and well-kept facility. Surfaces are polished to a high sheen, probably with wax products. There was an odor of urinal cake in the restrooms. Smoking is not allowed in the building. The

  7. Heating, Ventilation, and Air Conditioning Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    MI -- Optimized Thermal Systems - College Park, MD Purdue prototype system Residential Cold Climate Heat Pump with Variable-Speed Technology Lead Performer: Unico Systems - St....

  8. Heating, Ventilation and Air Conditioning Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    out at night * SA temperature reset with respect to zone needing most heatcooling * Time ... AT 4.4% THE POTENTIAL SAVINGS IS 69.50YEAR MANUFACTURERS PREDICT 2-6 TIMES LIFE DO NOT ...

  9. Quantum Well Thermoelectric Truck Air Conditioning

    Energy.gov [DOE]

    Discusses advantages of quantum-well TE cooler, including no moving parts, no gases, performance on par with conventional, and easy switching to heat pump mode

  10. Weatherking Heating & Air conditioning | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    wholesale;Engineeringarchitecturaldesign;Installation;Investmentfinances;Maintenance and repair; Retail product sales and distribution Phone Number: 330-908-0281...

  11. The Future of Air Conditioning for Buildings

    Energy Saver

    ... state-of-the-art. * Solid-State (thermoelectric, magnetocaloric) * Electro-mechanical ... of solid-state materials (e.g., thermoelectric). * Electro-mechanical NVC ...

  12. The Future of Air Conditioning for Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    July 2016 W. Goetzler, M. Guernsey, J. Young, J. Fuhrman Navigant Consulting, Inc. O. Abdelaziz, PhD Oak Ridge National Laboratory (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal

  13. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning...

    Energy Saver

    ... Q: For a young student, engineer or researcher looking to make their own breakthroughs, do you have any words of wisdom? EK: All new inventions today require innovative thought ...

  14. SolarAire LLC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    LLC Place: Folsom, California Sector: Solar Product: Developing a solar thermal air conditioning unit. References: SolarAire LLC1 This article is a stub. You can help OpenEI by...

  15. Greenbelt Homes Pilot Program. Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    SciTech Connect

    Wiehagen, J.; Del Bianco, M.; Mallay, D.

    2015-05-22

    The U.S. Department of Energy Building America team Partnership for Home Innovation wrote a report on Phase 1 of the project that summarized a condition assessment of the homes and evaluated retrofit options within the constraints of the cooperative provided by GHI. Phase 2 was completed following monitoring in the 2013–2014 winter season; the results are summarized in this report. Phase 3 upgrades of heating equipment will be implemented in time for the 2014–2015 heating season and are not part of this report.

  16. Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Flow Room Air Mixing | Department of Energy Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the heating, ventilating, and air-conditioning (HVAC) system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the

  17. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    SciTech Connect

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.; Ally, Moonis Raza; Shen, Bo

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  18. Systems and methods for controlling energy use during a demand limiting period

    DOEpatents

    Wenzel, Michael J.; Drees, Kirk H.

    2016-04-26

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

  19. Systems and methods for controlling energy use in a building management system using energy budgets

    DOEpatents

    Wenzel, Michael J; Drees, Kirk H

    2014-09-23

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

  20. 2014-12-22 Issuance: Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Final Rule

    Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule regarding alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, refrigeration, and water heating equipment , as issued by the Deputy Assistant Secretary for Energy Efficiency on December 22, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  1. Air-Con International: Order (2010-SE-0301)

    Energy.gov [DOE]

    DOE ordered Air-Con International, Inc. to pay a $10,000 civil penalty after finding Air-Con had imported and distributed in commerce in the U.S. various models of air-conditioning units.

  2. Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity

    SciTech Connect

    Abdelaziz, Omar; West, David L; Mallow, Anne M

    2012-01-01

    Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems. Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).

  3. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    SciTech Connect

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  4. Joint HVAC Transmission EMF Environmental Study : Final Report on Experiment 1.

    SciTech Connect

    United States. Bonneville Power Administration; Oregon Regional Primate Research Center

    1992-05-01

    This document describes the rationale, procedures, and results of a carefully controlled study conducted to establish whether chronic exposure of female (ewe) Suffolk lambs to the environment of a 500-kV 60-Hz transmission line would affect various characteristics of growth, endocrine function, and reproductive development. This experiment used identical housing and management schemes for control and line-exposed ewes, thus minimizing these factors as contributors to between-group experimental error. Further, throughout the 10-month duration of this study, changes in electric and magnetic fields, audible noise, and weather conditions were monitored continuously by a computerized system. Such measurements provided the opportunity to identify any relationship between environmental factors and biological responses. Because of reports in the literature that electric and magnetic fields alter concentrations of melatonin in laboratory animals, the primary objective of this study was to ascertain whether a similar effect occurs in lambs exposed to a 500-kV a-c line in a natural setting. In addition, onset of puberty, changes in body weight, wool growth, and behavior were monitored. To determine whether the environment of a 500-kV line caused stress in the study animals, serum levels of cortisol were measured. The study was conducted at Bonneville Power Administration`s Ostrander Substation near Estacada, Oregon.

  5. High-Efficiency Window Air Conditioners - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air conditioning unit in place in a window frame. Window air conditioners are inexpensive, portable, and can be installed by home occupants, making them a good solution for spot cooling and for installing air conditioning into homes that lack ductwork. However, window air conditioners have low minimum efficiency

  6. July 16, 2015

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Bonneville Power Administration is proud to announce the creation of Air Northwest, an HVAC trade ally network. Air Northwest will provide commercial HVAC contractors and...

  7. b11.xls

    Gasoline and Diesel Fuel Update

    ... HVAC Conservation Features (more than one may apply) Variable Air-Volume System ... HVAC Conservation Features (more than one may apply) Variable Air-Volume System ...

  8. b6.xls

    Gasoline and Diesel Fuel Update

    ... HVAC Conservation Features (more than one may apply) Variable Air-Volume System ... HVAC Conservation Features (more than one may apply) Variable Air-Volume System ...

  9. Spatial and temporal variations in indoor environmental conditions...

    Office of Scientific and Technical Information (OSTI)

    beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals...

  10. Improvement in understanding the deposition of ambient dust particles on ECAM (environmental continuous air monitor) filters, reduction of the alpha-particle interference of radon progeny and other radioactive aerosols in different particle size ranges on filters, and development of ECAMs with increased sensitivity under dusty outdoor conditions.

    SciTech Connect

    Schery, Stephen D., Wasiolek, Piotr; Rodgers, John

    1999-06-01

    Improvement in understanding the deposition of ambient dust particles on ECAM (environmental continuous air monitor) filters, reduction of the alpha-particle interference of radon progeny and other radioactive aerosols in different particle size ranges on filters, and development of ECAMs with increased sensitivity under dusty outdoor conditions.

  11. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    SciTech Connect

    Patrick O'Neill

    2009-06-30

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests

  12. Control room envelope unfiltered air inleakage test protocols

    SciTech Connect

    Lagus, P.L.; Grot, R.A.

    1997-08-01

    In 1983, the Advisory Committee on Reactor Safeguards (ACRS) recommended that the US NRC develop a control room HVAC performance testing protocol. To date no such protocol has been forthcoming. Beginning in mid-1994, an effort was funded by NRC under a Small Business Innovation Research (SBIR) grant to develop several simplified test protocols based on the principles of tracer gas testing in order to measure the total unfiltered inleakage entering a CRE during emergency mode operation of the control room ventilation system. These would allow accurate assessment of unfiltered air inleakage as required in SRP 6.4. The continuing lack of a standard protocol is unfortunate since one of the significant parameters required to calculate operator dose is the amount of unfiltered air inleakage into the control room. Often it is assumed that, if the Control Room Envelope (CRE) is maintained at +1/8 in. w.g. differential pressure relative to the surroundings, no significant unfiltered inleakage can occur it is further assumed that inleakage due to door openings is the only source of unfiltered air. 23 refs., 13 figs., 2 tabs.

  13. Chapter 4, Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    4: Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol David Jacobson, Jacobson Energy Research Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 4 - 1 Chapter 4 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application

  14. DOE Zero Energy Ready Home Case Study 2013: Ferguson Design and...

    Energy Saver

    ... Sealing: 1.2 ACH 50 * Ventilation: HRV with MERV 16 filter * HVAC: 91% efficient boiler for hydro air system, SEER 16 AC. Total duct leakage of 4 cfm100 ft 2 of conditioned space. ...

  15. CX-001891: Categorical Exclusion Determination

    Energy.gov [DOE]

    Rooftop Heating, Ventilating, and Air Conditioning (HVAC) Hollister Community CenterCX(s) Applied: B5.1Date: 03/01/2010Location(s): Hollister, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  16. CX-013779: Categorical Exclusion Determination

    Energy.gov [DOE]

    Heating, Ventilation and Air Conditioning (HVAC) Upgrades at Multiple Substations and Radio Facilities CX(s) Applied: B4.6Date: 07/15/2015 Location(s): Multiple LocationsOffices(s): Bonneville Power Administration

  17. New Whole-House Solutions Case Study: Pulte Homes, Las Vegas, Nevada

    SciTech Connect

    none,

    2013-09-01

    The builder teamed with Building Science Corporation to design HERS-54 homes with high-efficiency HVAC with ducts in conditioned space, jump ducts, and a fresh air intake; advanced framed walls; low-e windows; and PV roof tiles.

  18. CX-013414: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Heyburn Substation Heating, Ventilation and Air Conditioning (HVAC) Replacement CX(s) Applied: B1.4Date: 02/25/2015 Location(s): IdahoOffices(s): Bonneville Power Administration

  19. CX-008732: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Idaho National Laboratory (INL) Administration Building (IAB) Communication Room Heating, Ventilation, and Air Conditioning (HVAC) Upgrade CX(s) Applied: B1.31 Date: 05/21/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  20. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.