National Library of Energy BETA

Sample records for aerosol project tcap

  1. ARM - Field Campaign - Two-Column Aerosol Project (TCAP)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govCampaignsTwo-Column Aerosol Project (TCAP) Campaign Links TCAP website Field Campaign Report ARM Data Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP): Field Evaluation of Real-time Cloud OD Sensor TWST 2013.04.15, Scott, AMF Two-Column Aerosol Project (TCAP): Winter Aerosol Effects on Cloud Formation 2013.02.04, Cziczo, AMF Two-Column Aerosol Project (TCAP): CU GMAX-DOAS Deployment 2012.07.15, Volkamer, AMF Two-Column Aerosol Project (TCAP): Aerosol Light Extinction

  2. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Aerodynamic

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Particle Sizer govCampaignsTwo-Column Aerosol Project (TCAP): Aerodynamic Particle Sizer ARM Data Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Two-Column Aerosol Project (TCAP): Aerodynamic Particle Sizer 2012.07.01 - 2013.02.28 Lead Scientist : Larry Berg For data sets, see below. Abstract A TSI model 3321 APS was deployed at the

  3. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Winter Aerosol

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Effects on Cloud Formation govCampaignsTwo-Column Aerosol Project (TCAP): Winter Aerosol Effects on Cloud Formation Campaign Links Field Campaign Report ARM Data Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Two-Column Aerosol Project (TCAP): Winter Aerosol Effects on Cloud Formation 2013.02.04 - 2013.02.28 Lead Scientist : Daniel

  4. Two-Column Aerosol Project (TCAP): Ground-Based Radiation and Aerosol

    Office of Scientific and Technical Information (OSTI)

    Validation Using the NOAA Mobile SURFRAD Station Field Campaign Report (Technical Report) | SciTech Connect Two-Column Aerosol Project (TCAP): Ground-Based Radiation and Aerosol Validation Using the NOAA Mobile SURFRAD Station Field Campaign Report Citation Details In-Document Search Title: Two-Column Aerosol Project (TCAP): Ground-Based Radiation and Aerosol Validation Using the NOAA Mobile SURFRAD Station Field Campaign Report The National Oceanic and Atmospheric Administration (NOAA) is

  5. The Two-Column Aerosol Project (TCAP) Science Plan (Program Document...

    Office of Scientific and Technical Information (OSTI)

    Program Document: The Two-Column Aerosol Project (TCAP) Science Plan Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  6. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Ground-Based

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radiation and Aerosol Validation Using the NOAA Mobile SURFRAD Station govCampaignsTwo-Column Aerosol Project (TCAP): Ground-Based Radiation and Aerosol Validation Using the NOAA Mobile SURFRAD Station Campaign Links Field Campaign Report ARM Data Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Two-Column Aerosol Project (TCAP):

  7. ARM - Two-Column Aerosol Project (TCAP)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility and the Mobile Aerosol Observing System on Cape...

  8. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Ground based AOD

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    measurements govCampaignsTwo-Column Aerosol Project (TCAP): Ground based AOD measurements ARM Data Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Two-Column Aerosol Project (TCAP): Ground based AOD measurements 2012.05.20 - 2012.07.30 Lead Scientist : Phil Russell For data sets, see below. Abstract To anchor aerosol optical depth (AOD)

  9. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Aerial Campaign

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govCampaignsTwo-Column Aerosol Project (TCAP): Aerial Campaign ARM Data Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Two-Column Aerosol Project (TCAP): Aerial Campaign 2012.07.07 - 2013.02.28 Lead Scientist : Larry Berg For data sets, see below. Abstract This campaign is designed to provide a detailed set of observations with which to 1)

  10. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Airborne HSRL and

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    RSP Measurements govCampaignsTwo-Column Aerosol Project (TCAP): Airborne HSRL and RSP Measurements ARM Data Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Two-Column Aerosol Project (TCAP): Airborne HSRL and RSP Measurements 2012.07.01 - 2012.07.31 Lead Scientist : Chris Hostetler For data sets, see below. Abstract The deployment of the

  11. Two-Column Aerosol Project (TCAP) Field Campaign Report (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Two-Column Aerosol Project (TCAP) Field Campaign Report Citation Details In-Document Search Title: Two-Column Aerosol Project (TCAP) Field Campaign Report This study included the deployment of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility's Mobile Facility (AMF), ARM Mobile Aerosol Observing System (MAOS) and the ARM Aerial Facility (AAF). The study was a collaborative effort involving scientists from DOE national

  12. Hyperspectral aerosol optical depths from TCAP flights (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Hyperspectral aerosol optical depths from TCAP flights Citation Details ... DOE Contract Number: DE-AC02-98CH10886 Resource Type: Journal Article Resource Relation: ...

  13. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  14. Two-Column Aerosol Project (TCAP): Ground-Based Radiation and...

    Office of Scientific and Technical Information (OSTI)

    ... Sponsoring Org: USDOE Office of Science (SC), Biological and Environmental Research (BER) ... Subject: 54 ENVIRONMENTAL SCIENCES aerosols, aerosol optical depth, direct aerosol ...

  15. The Two-Column Aerosol Project (TCAP) Science Plan (Program Document...

    Office of Scientific and Technical Information (OSTI)

    To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate ... of aerosol optical properties, particle composition and direct-beam irradiance. ...

  16. Correction to “Hyperspectral Aerosol Optical Depths from TCAP Flights”

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2014-02-16

    In the paper “Hyperspectral aerosol optical depths from TCAP flights” by Y. Shinozuka et al. (Journal of Geophysical Research: Atmospheres, 118, doi:10.1002/2013JD020596, 2013), Tables 1 and 2 were published with the column heads out of order. Tables 1 and 2 are published correctly here. The publisher regrets the error.

  17. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    SciTech Connect

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; Tomlinson, Jason; Fast, Jerome

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by a suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.

  18. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    DOE PAGES [OSTI]

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; et al

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by amore » suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.« less

  19. Airborne aerosol in situ measurements during TCAP: A closure...

    Office of Scientific and Technical Information (OSTI)

    of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. ... particles, and thus obtaining improved ambient size spectra derived from Optical ...

  20. Microsoft PowerPoint - Berkowitz_etal_AGU2011_poster_TCAP_ver3.1.pptx

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Climatology of aerosol optical properties near the New England coast: preparation for the Two Column Aerosol Program (TCAP) field campaign Carl Berkowitz, Duli Chand*, Larry Berg, Evgueni Kassianov, Elaine Chapman Poster# A53A-0290 3. Results 1. Introduction and Motivation A key objective of the U.S. Department of Energy's 2012-2013 Two Column Aerosol Project (TCAP) is to provide observations with , , y g, g , p Pacific Northwest National Laboratory, Richland, WA 99352 4. Science Summary *

  1. The Two-Column Aerosol Project Definitions TCAP Educational

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    About ARM: The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a U.S. Department of Energy scientific user facility for the study of global climate change. ...

  2. Two-Column Aerosol Project (TCAP) Field Campaign Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    effort involving scientists from DOE national laboratories, NOAA, NASA, and universities. ... Aeronautics and Space Administration (NASA), Washington D.C. (United States) Country ...

  3. Two-Column Aerosol Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Column Aerosol Project Tiny particles in the sky known as "aerosols" come in many forms-dust, soot, and sea salt, for example. Depending on the type of aerosol, it can either ...

  4. Aerosols and Clouds: In Cahoots to Change Climate

    ScienceCinema

    Berg, Larry

    2014-06-02

    Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

  5. Aerosols and Clouds: In Cahoots to Change Climate

    SciTech Connect

    Berg, Larry

    2014-03-29

    Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

  6. DOE/SC-ARM-11-017 The Two-Column Aerosol Project (TCAP) Science...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Cede, A, J Herman, A Richter, N Krotkov, and J Burrows. 2006. " Measurements of nitrogen dioxide total column amounts using a Brewer double spectrophotometer in direct Sun mode." ...

  7. Two-Column Aerosol Project (TCAP): Ground-Based Radiation and...

    Office of Scientific and Technical Information (OSTI)

    ... Background The National Oceanic and Atmospheric Administration (NOAA) is preparing for ... Service has funded the Global Monitoring Division at the Earth System Research ...

  8. Two-Column Aerosol Project: Aerosol Light Extinction Measurements Field

    Office of Scientific and Technical Information (OSTI)

    Campaign Report (Technical Report) | SciTech Connect Technical Report: Two-Column Aerosol Project: Aerosol Light Extinction Measurements Field Campaign Report Citation Details In-Document Search Title: Two-Column Aerosol Project: Aerosol Light Extinction Measurements Field Campaign Report We deployed Aerodyne Research Inc.'s first Cavity Attenuated Phase Shift extinction (CAPS PMex) monitor (built by Aerodyne) that measures light extinction by using a visible-light-emitting diode (LED) as a

  9. Microsoft PowerPoint - SRNL-STI-2013-00230 Rev1_Advances in TCAP...

    Office of Environmental Management (EM)

    Isotope Separation Process 2 Hydrogen Isotope Separation Timeline Discovery of ... Micro-TCAP (batch) for LLE 2013 Mini-TCAP for Shine Medical Technologies 2014 CTC-TCAP ...

  10. Understanding the Effect of Aerosol Properties on Cloud Droplet...

    Office of Scientific and Technical Information (OSTI)

    5-055 ENERGY Science Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report D Cziczo May 2016 ARM CLIMATE RESEARCH FACILITY ...

  11. Understanding the Effect of Aerosol Properties on Cloud Droplet Formation

    Office of Scientific and Technical Information (OSTI)

    during TCAP Field Campaign Report (Technical Report) | SciTech Connect Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report Citation Details In-Document Search Title: Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report The formation of clouds is an essential element in understanding the Earth's radiative budget. Liquid water clouds form when the relative humidity exceeds saturation

  12. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    SciTech Connect

    Clark, E.A.

    1992-11-21

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (ABL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns.

  13. Materials performance in prototype Thermal Cycling Absorption Process (TCAP) columns

    SciTech Connect

    Clark, E.A.

    1992-11-21

    Two prototype Thermal Cycling Absorption Process (TCAP) columns have been metallurgically examined after retirement, to determine the causes of failure and to evaluate the performance of the column container materials in this application. Leaking of the fluid heating and cooling subsystems caused retirement of both TCAP columns, not leaking of the main hydrogen-containing column. The aluminum block design TCAP column (AHL block TCAP) used in the Advanced Hydride Laboratory, Building 773-A, failed in one nitrogen inlet tube that was crimped during fabrication, which lead to fatigue crack growth in the tube and subsequent leaking of nitrogen from this tube. The Third Generation stainless steel design TCAP column (Third generation TCAP), operated in 773-A room C-061, failed in a braze joint between the freon heating and cooling tubes (made of copper) and the main stainless steel column. In both cases, stresses from thermal cycling and local constraint likely caused the nucleation and growth of fatigue cracks. No materials compatibility problems between palladium coated kieselguhr (the material contained in the TCAP column) and either aluminum or stainless steel column materials were observed. The aluminum-stainless steel transition junction appeared to be unaffected by service in the AHL block TCAP. Also, no evidence of cracking was observed in the AHL block TCAP in a location expected to experience the highest thermal shock fatigue in this design. It is important to limit thermal stresses caused by constraint in hydride systems designed to work by temperature variation, such as hydride storage beds and TCAP columns.

  14. Tracking Elevated Pollution Layers with a Newly Developed Hyperspectral Sun/Sky Spectrometer (4STAR): Results from the TCAP 2012 and 2013 Campaigns

    SciTech Connect

    Segal Rozenhaimer, Michal; Russell, P. B.; Schmid, Beat; Redemann, Jens; Livingston, J. M.; Flynn, Connor J.; Johnson, Roy R.; Dunagan, Stephen; Shinozuka, Yohei; Herman, J. R.; Cede, A.; Abuhassan, N.; Comstock, Jennifer M.; Hubbe, John M.; Zelenyuk, Alla; Wilson, Jacqueline M.

    2014-03-16

    Total columnar amounts of water vapor, nitrogen dioxide (NO2) and ozone (O3) are derived from a newly developed, hyperspectral airborne sun-sky spectrometer (4STAR) for the first time during the two intensive phases of the Two Column Aerosol Project (TCAP) in summer 2012 and winter 2013 aboard the DOE G-1 aircraft. We compare results with coincident measurements. We find 0.045 g/cm2 (4.2%) negative bias and 0.28 g/cm2 (26.3%) root-mean-square (RMS) difference in water vapor layer comparison with in-situ hygrometer, and an overall RMS difference of 1.28 g/m3 (38%) water vapor amount in profile by profile comparisons, with differences distributed evenly around zero in most cases. The RMS differences for O3 values average to 3%, with a 1% negative bias for 4STAR compared with the spaceborne Ozone Measuring Instrument (OMI) along the aircraft flight-track for 14 flights during both TCAP phases. Ground-based comparisons with the Pandora spectrometer system at the Goddard Space Flight Center (GSFC), Greenbelt, Maryland showed excellent agreement between the instruments for both O3 and NO2, further emphasizing 4STAR’s new capabilities. During the summer phase, we have succeeded in identifying variations in elevated pollution layers corresponding to urban pollution outflow and transported biomass burning. This was done using clustering analysis of the retrieved products (e.g. Ångstrom exponent, NO2 and columnar water vapor), and was confirmed by aerosol type identification by HSRL2 aboard the NASA B-200 aircraft. These newly demonstrated 4STAR capabilities are expected to be instrumental in improving our understanding of atmospheric composition variability and aerosol-trace-gas interactions; they open new horizons and opportunities in airborne sunphotometry.

  15. Collaborative research. Study of aerosol sources and processing at the GVAX Pantnagar Supersite

    SciTech Connect

    Worsnop, Doug; Volkamer, Rainer

    2012-08-13

    The Two Column Aerosol Project (TCAP) investigated uncertainties in the aerosol direct effect in the northern hemisphere mid-latitudes. The University of Colorado 2D-MAX-DOAS and LED-CE-DOAS instruments were collocated with DOE’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) during the TCAP-1 campaign at Cape Cod, MA (1 July to 13 August 2012). We have performed atmospheric radiation closure studies to evaluate the use of a novel parameter, i.e., the Raman Scattering Probability (RSP). We have performed first measurements of RSP almucantar scans, and measure RSP in spectra of scattered solar photons at 350nm and 430nm. Radiative Transfer Modelling of RSP demonstrate that the RSP measurement is maximally sensitive to infer even extremely low aerosol optical depth (AOD < 0.01) reliably by DOAS at low solar relative azimuth angles. We further assess the role of elevated aerosol layers on near surface observations of oxygen collision complexes, O 2-O2. Elevated aerosol layers modify the near surface absorption of O2-O2 and RSP. The combination of RSP and O2-O2 holds largely unexplored potential to better constrain elevated aerosol layers and measure column aerosol optical properties such as aerosol effective radius, extinction, aerosol phase functions and refractive indices. The TCAP deployment also provides a time series of reactive trace gas vertical profiles, i.e., nitrogen dioxide (NO2) and glyoxal (C2H2O2), which are measured simultaneously with the aerosol optical properties by DOAS. NO2 is an important precursor for ozone (O3) that modifies oxidative capacity. Glyoxal modifies oxidative capacity and is a source for brown carbon by forming secondary organic aerosol (SOA) via multiphase reactions in aerosol and cloud water. We have performed field measurements of these gases

  16. ARM - Campaign Instrument - mfrsr

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Two-Column Aerosol Project (TCAP): Ground-Based Radiation and Aerosol Validation Using the NOAA Mobile SURFRAD Station Download Data Cape Cod, MA, USA; Mobile Facility (TCAP), ...

  17. ARM - Campaign Instrument - 4star-air

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Campaigns Two-Column Aerosol Project (TCAP): Aerial Campaign Download Data Cape Cod, MA, USA; Mobile Facility (TCAP), 2012.07.07 - 2013.02.28 Two-Column Aerosol Project (TCAP): ...

  18. ARM - Campaign Instrument - pils

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Two-Column Aerosol Project (TCAP) Download Data Cape Cod, MA, USA; Mobile Facility (TCAP), 2012.07.01 - 2013.06.30 Two-Column Aerosol Project (TCAP): Aerial Campaign Download ...

  19. ARM - Campaign Instrument - tracegas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Two-Column Aerosol Project (TCAP) Download Data Cape Cod, MA, USA; Mobile Facility (TCAP), 2012.07.01 - 2013.06.30 Two-Column Aerosol Project (TCAP): Aerial Campaign Download ...

  20. ARM - Campaign Instrument - partimg

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Two-Column Aerosol Project (TCAP): Aerial Campaign Download Data Cape Cod, MA, USA; Mobile Facility (TCAP), 2012.07.07 - 2013.02.28 Two-Column Aerosol Project (TCAP): Aerial ...

  1. ARM - Campaign Instrument - psap

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Two-Column Aerosol Project (TCAP) Download Data Cape Cod, MA, USA; Mobile Facility (TCAP), 2012.07.01 - 2013.06.30 Two-Column Aerosol Project (TCAP): Aerial Campaign Download ...

  2. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  3. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE PAGES [OSTI]

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; Hengartner, Nicholas; Higdon, Dave; Lesins, Glen; Dubey, Manvendra K.

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  4. Airborne aerosol in situ measurements during TCAP: A closure...

    Office of Scientific and Technical Information (OSTI)

    James 3 ; Chand, Duli 1 ; Flynn, Connor 1 ; Ovchinnikov, Mikhail 1 ; Schmid, Beat 1 ; Shilling, John 1 ; Tomlinson, Jason 1 ; Fast, Jerome 1 + Show Author ...

  5. NEST-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS

    SciTech Connect

    Heung, L; Henry Sessions, H; Anita Poore, A; William Jacobs, W; Christopher Williams, C

    2007-08-07

    A thermal cycling absorption process (TCAP) for hydrogen isotope separation has been in operation at Savannah River Site since 1994. The process uses a hot/cold nitrogen system to cycle the temperature of the separation column. The hot/cold nitrogen system requires the use of large compressors, heat exchanges, valves and piping that is bulky and maintenance intensive. A new compact thermal cycling (CTC) design has recently been developed. This new design uses liquid nitrogen tubes and electric heaters to heat and cool the column directly so that the bulky hot/cold nitrogen system can be eliminated. This CTC design is simple and is easy to implement, and will be the next generation TCAP system at SRS. A twelve-meter column has been fabricated and installed in the laboratory to demonstrate its performance. The design of the system and its test results to date is discussed.

  6. TCAP HYDROGEN ISOTOPE SEPARATION USING PALLADIUM AND INVERSE COLUMNS

    SciTech Connect

    Heung, L.; Sessions, H.; Xiao, S.

    2010-08-31

    The Thermal Cycling Absorption Process (TCAP) was further studied with a new configuration. Previous configuration used a palladium packed column and a plug flow reverser (PFR). This new configuration uses an inverse column to replace the PFR. The goal was to further improve performance. Both configurations were experimentally tested. The results showed that the new configuration increased the throughput by a factor of more than 2.

  7. Final Project Report - ARM CLASIC CIRPAS Twin Otter Aerosol

    SciTech Connect

    John A. Ogren

    2010-04-05

    The NOAA/ESRL/GMD aerosol group made three types of contributions related to airborne measurements of aerosol light scattering and absorption for the Cloud and Land Surface Interaction Campaign (CLASIC) in June 2007 on the Twin Otter research airplane operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). GMD scientists served as the instrument mentor for the integrating nephelometer and particle soot absorption photometer (PSAP) on the Twin Otter during CLASIC, and were responsible for (1) instrument checks/comparisons; (2) instrument trouble shooting/repair; and (3) data quality control (QC) and submittal to the archive.

  8. ARM - Campaign Instrument - aeth

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Two-Column Aerosol Project (TCAP) Download Data Cape Cod, MA, USA; Mobile Facility (TCAP), 2012.07.01 - 2013.06.30 Primary Measurements Taken The following measurements are ...

  9. ARM - Campaign Instrument - aosmet

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Two-Column Aerosol Project (TCAP) Download Data Cape Cod, MA, USA; Mobile Facility (TCAP), 2012.07.01 - 2013.06.30 Primary Measurements Taken The following measurements are ...

  10. ARM - Campaign Instrument - cvi-air

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    - 2008.04.30 Two-Column Aerosol Project (TCAP): Aerial Campaign Download Data Cape Cod, MA, USA; Mobile Facility (TCAP), 2012.07.07 - 2013.02.28 Primary Measurements Taken ...

  11. ARM - Campaign Instrument - rad-air

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Two-Column Aerosol Project (TCAP): Aerial Campaign Download Data Cape Cod, MA, USA; Mobile Facility (TCAP), 2012.07.07 - 2013.02.28 Primary Measurements Taken The following ...

  12. ARM - Campaign Instrument - cas

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Two-Column Aerosol Project (TCAP): Aerial Campaign Download Data Cape Cod, MA, USA; Mobile Facility (TCAP), 2012.07.07 - 2013.02.28 Primary Measurements Taken The following ...

  13. DEMONSTRATION OF THE NEXT-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS

    SciTech Connect

    Heung, L; Henry Sessions, H; Steve Xiao, S; Heather Mentzer, H

    2009-01-09

    The first generation of TCAP hydrogen isotope separation process has been in service for tritium separation at the Savannah River Site since 1994. To prepare for replacement, a next-generation TCAP process has been developed. This new process simplifies the column design and reduces the equipment requirements of the thermal cycling system. An experimental twelve-meter column was fabricated and installed in the laboratory to demonstrate its performance. This new design and its initial test results were presented at the 8th International Conference on Tritium Science and Technology and published in the proceedings. We have since completed the startup and demonstration the separation of protium and deuterium in the experimental unit. The unit has been operated for more than 200 cycles. A feed of 25% deuterium in protium was separated into two streams each better than 99.7% purity.

  14. ARM - Campaign Instrument - wcm

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Instrument Categories Airborne Observations, Cloud Properties Campaigns Two-Column Aerosol Project (TCAP): Aerial Campaign Download Data Cape Cod, MA, USA; Mobile Facility ...

  15. Atmospheric Radiation Measurement (ARM) Data from Point Reyes, California for the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) Project

    DOE Data Explorer

    Point Reyes National Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The ARM Program collaborated with the U.S. Office of Naval Research and DOE's Aerosol Science Program in the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) project. Their objectives were to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated with patches of drizzle. Between March and September 2005, the AMF and at least two research aircraft were used to collect data.

  16. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    SciTech Connect

    None, None

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition

  17. TCAP Summary

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    WR DGGLWLRQDO LQIRUPDWLRQ 7KLV ZHEVLWH LV XSGDWHG DV PRUH LQIRUPDWLRQ EHFRPHV DYDLODEOH HUH DUH VRPH H DPSOHV RI WKH W SHV RI LQIRUPDWLRQ RX FDQ IQG WKHUH * Experiment Planning...

  18. Project Overview: Cumulus Humilis Aerosol Processing Study (CHAPS): Proposed Summer 2007 ASP Field Campaign

    SciTech Connect

    Berkowitz, Carl M.; Berg, Larry K.; Ogren, J. A.; Hostetler, Chris A.; Ferrare, Richard

    2006-05-18

    This white paper presents the scientific motivation and preliminary logistical plans for a proposed ASP field campaign to be carried out in the summer of 2007. The primary objective of this campaign is to use the DOE Gulfstream-1 aircraft to make measurements characterizing the chemical, physical and optical properties of aerosols below, within and above large fields of fair weather cumulus and to use the NASA Langley Research Centers High Spectral Resolution Lidar (HSRL) to make independent measurements of aerosol backscatter and extinction profiles in the vicinity of these fields. Separate from the science questions to be addressed by these observations will be information to add in the development of a parameterized cumulus scheme capable of including multiple cloud fields within a regional or global scale model. We will also be able to compare and contrast the cloud and aerosol properties within and outside the Oklahoma City plume to study aerosol processes within individual clouds. Preliminary discussions with the Cloud and Land Surface Interaction Campaign (CLASIC) science team have identified overlap between the science questions posed for the CLASIC Intensive Operation Period (IOP) and the proposed ASP campaign, suggesting collaboration would benefit both teams.

  19. Evaluation of a photoelectric aerosol sensor for real-time PAH monitoring. Project report

    SciTech Connect

    Ramamurthi, M.; Chuang, J.C.

    1997-04-01

    In this study, the performance of a Gossen, GmbH Model PAS 1000i Photoelectric Aerosol Sensors (PAS) was evaluated for monitoring the levels of polycyclic aromatic hydrocarbons (PAH) on airborne find particles. The response of the PAS to PAH vapors and to airborne particles of various sizes were determined. Estimated levels of PAH provided by the PAS were compared to the concentrations of PAH sampled and measured traditionally.

  20. Microsoft PowerPoint - SRNL-STI-2013-00230 Rev1_Advances in TCAP.ppt

    Office of Environmental Management (EM)

    Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) X. Steve Xiao Contributions: L.K. Heung, H.T. Sessions, S. Redd H 2 D 2 T 2 H 2 , D 2 , T 2 Hydrogen Isotope Separation Process H 2 D 2 T 2 H 2 D 2 T 2 H 2 D 2 T 2 H 2 , D 2 , T 2 Hydrogen Isotope Separation Process Hydrogen Isotope Separation Process 2 Hydrogen Isotope Separation Timeline Discovery of deuterium 1931 Discovery of tritium 1934 Isotope separation in SRS -Thermal diffusion 1957-1986 -Fractional absorption

  1. ARM - 2016 AMS Ninth Symposium on Aerosol-Cloud-Climate Interactions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Abstracts Ninth Symposium on Aerosol-Cloud-Climate Interactions Abstracts Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes118 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 7 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 CARES 1 Data Quality Office 2 ENA 2 GOAMAZON 7 HI-SCALE 5 LASIC 3 MAGIC 15 MC3E 17 PECAN 3 SGP 8 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social

  2. The Indirect and Semi-Direct Aerosol Campaign

    SciTech Connect

    Ghan, Steve

    2014-03-24

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  3. The Indirect and Semi-Direct Aerosol Campaign

    ScienceCinema

    Ghan, Steve

    2014-06-12

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  4. Model representations of aerosol layers transported from North America over

    Office of Scientific and Technical Information (OSTI)

    the Atlantic Ocean during the Two-Column Aerosol Project (Journal Article) | DOE PAGES Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project This content will become publicly available on August 22, 2017 Title: Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project The ability of the Weather Research and Forecasting model with chemistry

  5. eDPS Aerosol Collection

    SciTech Connect

    Venzie, J.

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  6. ARM - Measurement - Aerosol composition

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Measurement : Aerosol composition aerosol particulate matter chemical composition, including mineral dust, sea salt, haze, smoke, etc. Categories Aerosols Instruments The above ...

  7. ARM - TCAP Field Campaign

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Value-Added Products PI Data Products Field Campaign Data Related Data Data Plots Data Policy Data Documentation Data Gathering and Delivery Data Quality Data Tools Data Archive...

  8. Building America Webinar: Sealing of Home Enclosures with Aerosol...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    about a project that uses existing aerosol duct sealing technology to seal the entire building enclosure in order to achieve greater airtightness and energy and cost savings. ...

  9. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  10. ARM - Publications: Science Team Meeting Documents: The SGP Aerosol

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Best-Estimate Value-Added Procedure and Its Impact on the BBHRP Project The SGP Aerosol Best-Estimate Value-Added Procedure and Its Impact on the BBHRP Project Turner, David Pacific Northwest National Laboratory Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Mlawer, Eli Atmospheric & Environmental Research, Inc. The objective of the Aerosol Best-Estimate (ABE) Value-Added Procedure (VAP) is to provide estimates of aerosol

  11. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  12. Characterization of aerosols produced by surgical procedures

    SciTech Connect

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K.; Turner, R.S.

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  13. Particulate Matter Aerosols

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    particulate matter aerosols Particulate Matter Aerosols The study of atmospheric aerosols is important because of its adverse effects on health, air quality, visibility, cultural heritage, and Earth's radiation balance. Techniques that can help better characterize particulate matter are required to better understand the constituents, causes and sources of particulate matter (PM) aerosols. Carbon is one of the main constituents of atmospheric aerosols. Radiocarbon (14C) measurement performed on

  14. Electrically Driven Technologies for Radioactive Aerosol Abatement

    SciTech Connect

    David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

    2003-01-28

    The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

  15. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  16. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  17. Aerosol Properties Downwind of Biomass Burns Field Campaign Report (Program

    Office of Scientific and Technical Information (OSTI)

    Document) | SciTech Connect Aerosol Properties Downwind of Biomass Burns Field Campaign Report Citation Details In-Document Search Title: Aerosol Properties Downwind of Biomass Burns Field Campaign Report We determined the morphological, chemical, and thermal properties of aerosol particles generated by biomass burning during the Biomass Burning Observation Project (BBOP) campaign during the wildland fire season in the Pacific Northwest from July to mid-September, 2013, and in October, 2013

  18. Stratospheric aerosol geoengineering

    SciTech Connect

    Robock, Alan

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  19. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  20. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  1. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  2. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  3. Quantifying the Relationship between Organic Aerosol Composition and Hygroscopicity/CCN Activity

    SciTech Connect

    Ziemann, Paul J.; Kreidenweis, Sonia M.; Petters, Markus D.

    2013-06-30

    The overall objective for this project was to provide the data and underlying process level understanding necessary to facilitate the dynamic treatment of organic aerosol CCN activity in future climate models. The specific objectives were as follows: (1) employ novel approaches to link organic aerosol composition and CCN activity, (2) evaluate the effects of temperature and relative humidity on organic aerosol CCN activity, and (3) develop parameterizations to link organic aerosol composition and CCN activity.

  4. ARM - Measurement - Aerosol absorption

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    absorption ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol absorption The process in which radiation energy is retained by aerosols. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for

  5. ARM - Measurement - Aerosol concentration

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol concentration A measure of the amount of aerosol particles (e.g. number, mass, volume) per unit volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  6. ARM - Measurement - Aerosol extinction

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    extinction ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol extinction The removal of radiant energy from an incident beam by the process of aerosol absorption and/or scattering. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  7. ARM - Measurement - Aerosol image

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    image ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol image Images of aerosols from which one can derive characteristics such as size and shape. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  8. ARM - Measurement - Aerosol scattering

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    scattering ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol scattering The scattering of radiative energy by processes at the aerosol and molecular level. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  9. ARM - AOS Aerosol Properties Plots

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    XDC Data Viewers Aerosol Properties Plots SGP AMF NSA (BRW) AOS Aerosol Properties Plots ... are raw unedited data. Do not quote and cite. Aerosol Properties Plots SGP AMF NSA (BRW)

  10. The CU 2-D-MAX-DOAS instrument – Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties

    DOE PAGES [OSTI]

    Ortega, Ivan; Coburn, Sean; Berg, Larry K.; Lantz, Kathy; Michalsky, Joseph; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-08-23

    The multiannual global mean of aerosol optical depth at 550 nm (AOD550) over land is ∼ 0.19, and that over oceans is ∼ 0.13. About 45 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to simultaneously measure AOD and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity. We employ radiative transfer model simulations tomore » show that for solar azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is insensitive to the vertical distribution of aerosols and maximally sensitive to changes in AOD and g under near-molecular scattering conditions. The University of Colorado two-dimensional Multi-AXis Differential Optical Absorption Spectroscopy (CU 2-D-MAX-DOAS) instrument was deployed as part of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure direct sun spectra and RSP from scattered light spectra at solar relative azimuth angles (SRAAs) between 5 and 170°. During two case study days with (1) high aerosol load (17 July, 0.3  <  AOD430 < 0.6) and (2) near-molecular scattering conditions (22 July, AOD430 < 0.13) we compare RSP-based retrievals of AOD430 and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating Shadowband Radiometer (MFRSR), and an airborne High Spectral Resolution Lidar (HSRL-2). The average difference (relative to DOAS) for AOD430 is +0.012 ± 0.023 (CIMEL), −0.012 ± 0.024 (MFRSR), −0.011 ± 0.014 (HSRL-2), and +0.023 ± 0.013 (CIMELAOD − MFRSRAOD) and yields the following expressions for correlations between different instruments

  11. Two Hundred Fifty Years of Aerosols and Climate: The End of the Age of Aerosols

    SciTech Connect

    Smith, Steven J.; Bond, Tami C.

    2014-01-20

    Carbonaceous and sulfur aerosols have a substantial global and regional influence on climate in addition to their impact on health and ecosystems. The magnitude of this influence has changed substantially over the past and is expected to continue to change into the future. An integrated picture of the changing climatic influence of black carbon, organic carbon and sulfate over the period 1850 through 2100, focusing on uncertainty, is presented using updated historical inventories and a coordinated set of emission projections. While aerosols have had a substantial impact on climate over the past century, by the end of the 21st century aerosols will likely be only a minor contributor to radiative forcing due to increases in greenhouse gas forcing and a global decrease in pollutant emissions. This outcome is even more certain under a successful implementation of a policy to limit greenhouse gas emissions as low-carbon energy technologies that do not emit appreciable aerosol or SO2 are deployed.

  12. Study of in-duct spray drying using condensation aerosol

    SciTech Connect

    Chen, W.J.R.; Chang, S.M.; Adikesavalu, R. )

    1992-06-01

    Sulfur removal efficiency of in-duct spray drying is limited by sorbent content and surface properties of the sorbent-water aerosol. It was the purpose of this study to improve the sulfur removal efficiency for in-duct spray drying by injecting condensation aerosol instead of conventional dispersion aerosol. The program was composed of three phases. In Phase I, a novel pulsed fluid bed feeder was developed and was used to feed hydrated lime for subsequent experiments. A small condensation aerosol generator was then built, which produces a lime-water condensation aerosol by condensing steam on lime particles. The results show that novel lime-water aerosols less than 10 microns were generated. The central task in Phase II was to simulate experimentally in-duct spray drying using condensation aerosols and compare the results with those using dispersion aerosols reported in the literature. A small entrained-flow reactor was constructed to simulate an in-duct spray dryer. The condensation aerosol was then introduced to the reactor at various approach to saturation temperature, calcium/sulfur stoichiometry and sulfur dioxide concentration for desulfurization study. The results show that we have improved the sulfur removal efficiency for in-duct spray drying to 90 percent or above. Thus we have met and exceeded the stated project goal of 70 percent sulfur removal. A comprehensive computer code was employed to calculate sulfur removal efficiency in Phase III.

  13. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  14. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  15. Final Report for the portion performed in the University of Illinois on the project entitled "Optimizing the Cloud-Aerosol-Radiation Ensemble Modeling System to Improve Future Climate Change Projections at Regional to Local Scales"

    SciTech Connect

    Liang, Xin-Zhong

    2011-01-31

    This is the final report for the closure of the research tasks on the project that have performed during the entire reporting period in the University of Illinois. It contains a summary of the achievements and details of key results as well as the future plan for this project to be continued in the University of Maryland.

  16. Projecting

    Energy Information Administration (EIA) (indexed site)

    Projecting the scale of the pipeline network for CO2-EOR and its implications for CCS infrastructure development Matthew Tanner Office of Petroleum, Gas, & Biofuels Analysis U.S. Energy Information Administration October 25, 2010 This paper is released to encourage discussion and critical comment. The analysis and conclusions ex- pressed here are those of the author and not necessarily those of the U.S. Energy Information Administration. Author: Matthew Tanner, matthew.tanner@eia.gov

  17. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  18. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  19. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  20. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  1. Aerosol Sealing in New Construction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Aerosol Sealing in New Construction Aerosol Sealing in New Construction Lead Performer: Center for Energy and Environment - Minneapolis, MN Partners: -- UC Davis Western Cooling Efficiency Center - Davis, CA -- Building Knowledge - Minneapolis, MN -- University of Minnesota Cold Climate Housing Program - Minneapolis, MN DOE Total Funding: $535,000 Cost Share: $134,000 Project Term: August 1, 2016 - July 31, 2019 Funding Opportunity: 2016 Building America Industry Partnerships for High

  2. Monodisperse aerosol generator

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  3. ARM - Field Campaign - In-situ Aerosol Profiles (Cessna Aerosol...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : In-situ Aerosol Profiles (Cessna Aerosol Flights) 2000.03.01 - 2007.10.31 Lead...

  4. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  5. ARM Aerosol Working Group Meeting

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to aerosol The Radiative Impact of Saharan Dust Over Niamey, Niger T. Ackerman, University ... Daily (24 Hr) Average March Dust Storm Long-term Aerosol SFC Radiative Forcing MFRSR v.s. ...

  6. ARM - Measurement - Aerosol effective radius

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    effective radius ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol effective radius Aerosol effective radius is the ratio of the third and second moments of the number size distribution of aerosol particles. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for

  7. Highly stable aerosol generator

    DOEpatents

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  8. Highly stable aerosol generator

    DOEpatents

    DeFord, Henry S.; Clark, Mark L.

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  9. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    SciTech Connect

    Paulson, S E

    2012-05-30

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  10. Advancing Models and Evaluation of Cumulus, Climate and Aerosol Interactions

    SciTech Connect

    Gettelman, Andrew

    2015-10-27

    This project was successfully able to meet its’ goals, but faced some serious challenges due to personnel issues. Nonetheless, it was largely successful. The Project Objectives were as follows: 1. Develop a unified representation of stratifom and cumulus cloud microphysics for NCAR/DOE global community models. 2. Examine the effects of aerosols on clouds and their impact on precipitation in stratiform and cumulus clouds. We will also explore the effects of clouds and precipitation on aerosols. 3. Test these new formulations using advanced evaluation techniques and observations and release

  11. The Vertical Distribution of Aerosols Over the Atmospheric Radiation Measurement Southern Great Plains Site Measured versus Modeled

    SciTech Connect

    Ferrare, R.; Turner, D.D.; Clayton, M.; Guibert, S.; Schulz, M.; Chin, M.

    2005-03-18

    Aerosol extinction profiles measured by the Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility Raman lidar are used to evaluate aerosol extinction profiles and aerosol optical thickness (AOT) simulated by aerosol models as part of the Aerosol module inter- Comparison in global models (AEROCOM) project. This project seeks to diagnose aerosol modules of global models and subsequently identify and eliminate weak components in aerosol modules used for global modeling; AEROCOM activities also include assembling data sets to be used in the evaluations. The AEROCOM average aerosol extinction profiles typically show good agreement with the Raman lidar profiles for altitudes above about 2 km; below 2 km the average model profiles are significantly (30-50%) lower than the Raman lidar profiles. The vertical variability in the average aerosol extinction profiles simulated by these models is less than the variability in the corresponding Raman lidar pro files. The measurements also show a much larger diurnal variability than the Interaction with Chemistry and Aerosols (INCA) model, particularly near the surface where there is a high correlation between aerosol extinction and relative humidity.

  12. Biomass Burning Observation Project Science Plan (Program Document...

    Office of Scientific and Technical Information (OSTI)

    Science Plan Citation Details In-Document Search Title: Biomass Burning Observation Project Science Plan Aerosols from biomass burning perturb Earth's climate through the direct ...

  13. On modification of global warming by sulfate aerosols

    SciTech Connect

    Mitchell, J.F.B.; Johns, T.C.

    1997-02-01

    There is increasing evidence that the response of climate to increasing greenhouse gases may be modified by accompanying increases in sulfate aerosols. In this study, the patterns of response in the surface climatology of a coupled ocean-atmosphere general circulation model forced by increases in carbon dioxide alone is compared with those obtained by increasing carbon dioxide and aerosol forcing. The simulations are run from early industrial times using the estimated historical forcing and continued to the end of the twenty-first century assuming a nonintervention emissions scenario for greenhouse gases and aerosols. The comparison is made for the period 2030-2050 when the aerosol forcing is a maximum. In winter, the cooling due to aerosols merely tends to reduce the response to carbon dioxide, whereas in summer, it weakens the monsoon circulations and reverses some of the changes in the hydrological cycle on increasing carbon dioxide. This response is in some respects similar to that found in simulations with changed orbital parameters, as between today and the middle Holocene. The hydrological response in the palaeosimulations is supported by palaeoclimatic reconstructions. The results of changes in aerosol concentrations of the magnetic projected in the scenarios would have a major effect on regional climate, especially over Europe and Southeast Asia. 74 refs., 12 figs., 6 tabs.

  14. Impact of aerosol size representation on modeling aerosolâ*...

    Office of Scientific and Technical Information (OSTI)

    ... Technol., 20, 1 -30, 1994. Jacobson, M. Z., Development and application of a new air pollution mod- eling system, II, Aerosol module structure and design, Atmos. Environ., 31, ...

  15. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  16. Ganges Valley Aerosol Experiment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ganges Valley Aerosol Experiment In northeastern India, the fertile land around the Ganges River supports several hundred million people. This river, the largest in India, is fed by monsoon rains and runoff from the nearby Himalayan Mountains. Through an intergovernmental agreement with India, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed its portable laboratory, the ARM Mobile Facility (AMF), to Nainital, India, in June 2011. During

  17. Building America Webinar: Sealing of Home Enclosures with Aerosol Particles

    Energy.gov [DOE]

    This webinar was presented by research team Building Industry Research Alliance (BIRA), and provided information about a project that uses existing aerosol duct sealing technology to seal the entire building enclosure in order to achieve greater airtightness and energy and cost savings.

  18. Laboratory Investigation of Organic Aerosol Formation from Aromatic Hydrocarbons

    DOE R&D Accomplishments

    Molina, Luisa T.; Molina, Mario J.; Zhang, Renyi

    2006-08-23

    Our work for this DOE funded project includes: (1) measurements of the kinetics and mechanism of the gas-phase oxidation reactions of the aromatic hydrocarbons initiated by OH; (2) measurements of aerosol formation from the aromatic hydrocarbons; and (3) theoretical studies to elucidate the OH-toluene reaction mechanism using quantum-chemical and rate theories.

  19. Cantera Aerosol Dynamics Simulator

    Energy Science and Technology Software Center

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmore » formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.« less

  20. ARM - Measurement - Aerosol optical depth

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical depth A measure of how much light aerosols prevent from passing through a column of atmosphere. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  1. ARM - Measurement - Aerosol optical properties

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    properties ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical properties The optical properties of aerosols, including asymmetry factor, phase-function, single-scattering albedo, refractive index, and backscatter fraction. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers

  2. ARM - Measurement - Aerosol particle size

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    particle size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size Linear size (e.g. radius or diameter) of an aerosol particle. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for

  3. Aerosol Oxidation Speeds Up in Smoggy Air

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Aerosol Oxidation Speeds Up in Smoggy Air Print Wednesday, 17 February 2016 11:37 Organic aerosols (nanometer-sized liquid or solid ...

  4. ARM - Field Campaign - Aerosol IOP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Analyzer Order Data Arnott Desert Research Institute - airborne photo-acoustic aerosol extinction Order Data Bucholtz Aircraft Solar and IR Radiometers Order Data Jonsson Passive ...

  5. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  6. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  7. Composition and Reactions of Atmospheric Aerosol Particles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion...

  8. Aerosol Oxidation Speeds Up in Smoggy Air

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Print Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and ...

  9. ARM - Campaign Instrument - aerosol-tower-eml

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    (AEROSOL-TOWER-EML) Instrument Categories Aerosols Campaigns Remote Cloud Sensing (RCS) Field Evaluation Download Data Southern Great Plains, 1994.04.01 - 1994.05.31...

  10. ARM - Field Campaign - MASRAD - Aerosol Optical Properties

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govCampaignsMASRAD - Aerosol Optical Properties Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus Radiation Aerosol and Drizzle...

  11. Uncertainties in global aerosol simulations: Assessment using...

    Office of Scientific and Technical Information (OSTI)

    Title: Uncertainties in global aerosol simulations: Assessment using three meteorological data sets Current global aerosol models use different physical and chemical schemes and 4 ...

  12. Impact of aerosol size representation on modeling aerosol-cloud interactions: AEROSOL SIZE REPRESENTATION

    DOE PAGES [OSTI]

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    We use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach. The modal approachmore » with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  13. “Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”

    SciTech Connect

    Ferrare, Richard; Turner, David

    2015-01-13

    Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.

  14. AERONET: The Aerosol Robotic Network

    DOE Data Explorer

    The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, mircrophysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution. AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  15. ARM - Campaign Instrument - drum-aerosol

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govInstrumentsdrum-aerosol Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Drum Aerosol Sampler (DRUM-AEROSOL) Instrument Categories Aerosols Campaigns Aerosol IOP [ Download Data ] Southern Great Plains, 2003.05.01 - 2003.05.31 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for the list of all available measurements, including

  16. Carbonaceous Aerosols and Radiative Effects Study

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Carbonaceous Aerosols and Radiative Effects Study Science Objective This field campaign is designed to increase scientific knowledge about the evolution of black carbon, primary organic aerosols (POA), and secondary organic aerosols (SOA) from both man-made and biogenic sources. Black carbon and primary organic aerosols are emitted directly into the atmosphere through diesel and gasoline vehicle exhaust, as well as during meat cooking and biomass burning; secondary organic aerosols are formed

  17. AERONET: The Aerosol Robotic Network

    DOE Data Explorer

    AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  18. Impact of aerosol size representation on modeling aerosol-cloud...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Impact of aerosol size representation on ... OSTI Identifier: 15003527 Report Number(s): PNWD-SA--5600 Journal ID: ISSN 0148-0227 ...

  19. A New Assessment of the Aerosol First Indirect Effect

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Assessment of the Aerosol First Indirect Effect Shao, Hongfei Florida State University Liu, Guosheng Florida State University Category: Aerosols The aerosol first indirect ...

  20. ARM: Aerosol Observing System (AOS): auxiliary data (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Aerosol Observing System (AOS): auxiliary data Title: ARM: Aerosol Observing System (AOS): auxiliary data Aerosol Observing System (AOS): auxiliary data Authors: Ogren, John ; ...

  1. Toward a Minimal Representation of Aerosols in Climate Models...

    Office of Scientific and Technical Information (OSTI)

    and external mixing between aerosol components, treating numerous complicated aerosol ... black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine ...

  2. Cloud/Aerosol Parameterizations: Application and Improvement of General Circulation Models

    SciTech Connect

    Penner, Joyce

    2012-06-30

    One of the biggest uncertainties associated with climate models and climate forcing is the treatment of aerosols and their effects on clouds. The effect of aerosols on clouds can be divided into two components: The first indirect effect is the forcing associated with increases in droplet concentrations; the second indirect effect is the forcing associated with changes in liquid water path, cloud morphology, and cloud lifetime. Both are highly uncertain. This project applied a cloud-resolving model to understand the response of clouds under a variety of conditions to changes in aerosols. These responses are categorized according to the large-scale meteorological conditions that lead to the response. Meteorological conditions were sampled from various fields, which, together with a global aerosol model determination of the change in aerosols from present day to pre-industrial conditions, was used to determine a first order estimate of the response of global cloud fields to changes in aerosols. The response of the clouds in the NCAR CAM3 GCM coupled to our global aerosol model were tested by examining whether the response is similar to that of the cloud resolving model and methods for improving the representation of clouds and cloud/aerosol interactions were examined.

  3. ARM - Measurement - Aerosol backscattered radiation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    backscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments.

  4. Method for producing monodisperse aerosols

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  5. CARES Helps Explain Secondary Organic Aerosols

    SciTech Connect

    Zaveri, Rahul

    2014-03-28

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  6. CARES Helps Explain Secondary Organic Aerosols

    ScienceCinema

    Zaveri, Rahul

    2014-06-02

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  7. ARM: Tandem Differential Mobility Analyzer Aerosol Particle Sizer...

    Office of Scientific and Technical Information (OSTI)

    Subject: 54 Environmental Sciences Aerosol concentration; Aerosol particle size distribution; Hygroscopic growth; Particle number concentration; Particle size distribution Dataset ...

  8. EMSP Final Report: Electrically Driven Technologies for Radioactive Aerosol Abatement

    SciTech Connect

    DePaoli, D.W.

    2003-01-22

    The purpose of this research project was to develop an improved understanding of how electrically driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume. There was anecdotal evidence in the literature that acoustic agglomeration and electrical coalescence could be used together to change the size distribution of aerosol particles in such a way as to promote easier filtration and less frequent maintenance of filtration systems. As such, those electrically driven technologies could potentially be used as remote technologies for improved treatment; however, existing theoretical models are not suitable for prediction and design. To investigate the physics of such systems, and also to prototype a system for such processes, a collaborative project was undertaken between Oak Ridge National Laboratory (ORNL) and the University of Texas at Austin (UT). ORNL was responsible for the larger-scale prototyping portion of the project, while UT was primarily responsible for the detailed physics in smaller scale unit reactors. It was found that both electrical coalescence and acoustic agglomeration do in fact increase the rate of aggregation of aerosols. Electrical coalescence requires significantly less input power than acoustic agglomeration, but it is much less effective in its ability to aggregate/coalesce aerosols. The larger-scale prototype showed qualitatively similar results as the unit reactor tests, but presented more difficulty in interpretation of the results because of the complex multi-physics coupling that necessarily occur in all larger

  9. FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations

    SciTech Connect

    Koch, D

    2011-03-20

    The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (1020 km) until 510 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).

  10. Study of in-duct spray drying using condensation aerosol. Final report, June 16, 1990--June 15, 1992

    SciTech Connect

    Chen, W.J.R.; Chang, S.M.; Adikesavalu, R.

    1992-06-01

    Sulfur removal efficiency of in-duct spray drying is limited by sorbent content and surface properties of the sorbent-water aerosol. It was the purpose of this study to improve the sulfur removal efficiency for in-duct spray drying by injecting condensation aerosol instead of conventional dispersion aerosol. The program was composed of three phases. In Phase I, a novel pulsed fluid bed feeder was developed and was used to feed hydrated lime for subsequent experiments. A small condensation aerosol generator was then built, which produces a lime-water condensation aerosol by condensing steam on lime particles. The results show that novel lime-water aerosols less than 10 microns were generated. The central task in Phase II was to simulate experimentally in-duct spray drying using condensation aerosols and compare the results with those using dispersion aerosols reported in the literature. A small entrained-flow reactor was constructed to simulate an in-duct spray dryer. The condensation aerosol was then introduced to the reactor at various approach to saturation temperature, calcium/sulfur stoichiometry and sulfur dioxide concentration for desulfurization study. The results show that we have improved the sulfur removal efficiency for in-duct spray drying to 90 percent or above. Thus we have met and exceeded the stated project goal of 70 percent sulfur removal. A comprehensive computer code was employed to calculate sulfur removal efficiency in Phase III.

  11. ARM - Evaluation Product - Aerosol Modeling Testbed

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The Aerosol Modeling Testbed (AMT) is a means of organizing a wide range of measurements into a single data set that modelers can use to evaluate the performance of aerosol, ...

  12. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  13. Development and testing of an aerosol-stratus cloud parameterization scheme for middle and high latitudes

    SciTech Connect

    Olsson, P.Q.; Meyers, M.P.; Kreidenweis, S.; Cotton, W.R.

    1996-04-01

    The aim of this new project is to develop an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary layer clouds. Our approach is to create, test, and implement a bulk-microphysics/aerosol model using data from Atmospheric Radiation Measurement (ARM) Cloud and Radiation Testbed (CART) sites and large-eddy simulation (LES) explicit bin-resolving aerosol/microphysics models. The primary objectives of this work are twofold. First, we need the prediction of number concentrations of activated aerosol which are transferred to the droplet spectrum, so that the aerosol population directly affects the cloud formation and microphysics. Second, we plan to couple the aerosol model to the gas and aqueous-chemistry module that will drive the aerosol formation and growth. We begin by exploring the feasibility of performing cloud-resolving simulations of Arctic stratus clouds over the North Slope CART site. These simulations using Colorado State University`s regional atmospheric modeling system (RAMS) will be useful in designing the structure of the cloud-resolving model and in interpreting data acquired at the North Slope site.

  14. ARM - PI Product - Direct Aerosol Forcing Uncertainty

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ProductsDirect Aerosol Forcing Uncertainty ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Direct Aerosol Forcing Uncertainty Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement

  15. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  16. ARM - Evaluation Product - Organic Aerosol Component VAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ProductsOrganic Aerosol Component VAP ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Organic Aerosol Component VAP Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10-90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA

  17. Aerosol Behavior Log-Normal Distribution Model.

    Energy Science and Technology Software Center

    2001-10-22

    HAARM3, an acronym for Heterogeneous Aerosol Agglomeration Revised Model 3, is the third program in the HAARM series developed to predict the time-dependent behavior of radioactive aerosols under postulated LMFBR accident conditions. HAARM3 was developed to include mechanisms of aerosol growth and removal which had not been accounted for in the earlier models. In addition, experimental measurements obtained on sodium oxide aerosols have been incorporated in the code. As in HAARM2, containment gas temperature, pressure,more » and temperature gradients normal to interior surfaces are permitted to vary with time. The effects of reduced density on sodium oxide agglomerate behavior and of nonspherical shape of particles on aerosol behavior mechanisms are taken into account, and aerosol agglomeration due to turbulent air motion is considered. Also included is a capability to calculate aerosol concentration attenuation factors and to restart problems requiring long computing times.« less

  18. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was

  19. Technology Solutions for New and Existing Homes Case Study: Field Trial of an Aerosol-Based Enclosure Sealing Technology

    Energy.gov [DOE]

    This project demonstrated a new method for sealing building envelope air leaks using an aerosol sealing process developed by the Western Cooling Efficiency Center at the University of California-Davis, which is part of the U.S. Department of Energy’s Building America research team Alliance for Residential Building Innovation. The process involves pressurizing a building while applying an aerosol sealant to the interior.

  20. Building America Case Study: Field Trial of an Aerosol-Based Enclosure Sealing Technology, Clovis, California (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Trial of an Aerosol-Based Enclosure Sealing Technology Clovis, California PROJECT INFORMATION Project Name: Field Trial of an Aerosol- Based Enclosure Sealing Technology Location: Clovis, CA Partners: De Young Properties deyoungproperties.com Building America Team: Alliance for Residential Building Innovation; Western Cooling Efficiency Center, University of California-Davis arbi.davisenergy.com wcec.ucdavis.edu Building Component: Building envelope Application: New, single-family Year Tested:

  1. Final Report, The Influence of Organic-Aerosol Emissions and Aging on Regional and Global Aerosol Size Distributions and the CCN Number Budget

    SciTech Connect

    Donahue, Neil M.

    2015-12-23

    We conducted laboratory experiments and analyzed data on aging of organic aerosol and analysis of field data on volatility and CCN activity. With supplemental ASR funding we participated in the FLAME-IV campaign in Missoula MT in the Fall of 2012, deploying a two-chamber photochemical aging system to enable experimental exploration of photochemical aging of biomass burning emissions. Results from that campaign will lead to numerous publications, including demonstration of photochemical production of Brown Carbon (BrC) from secondary organic aerosol associated with biomass burning emissions as well as extensive characterization of the effect of photochemical aging on the overall concentrations of biomass burning organic aerosol. Excluding publications arising from the FLAME-IV campaign, project research resulted in 8 papers: [11, 5, 3, 10, 12, 4, 8, 7], including on in Nature Geoscience addressing the role of organic compounds in nanoparticle growth [11

  2. ARM - Surface Aerosol Observing System

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    FacilitiesSurface Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs,

  3. ARM - Measurement - Aerosol particle size distribution

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    particle size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size distribution The number of aerosol particles present in any given volume of air within a specificied size range Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  4. Composition and Reactions of Atmospheric Aerosol Particles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    refine the computer models used to predict climate change. Tiny Specks with Large Effects Most people equate aerosols with hairspray and household cleaning products, but a...

  5. Composition and Reactions of Atmospheric Aerosol Particles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while...

  6. ARM: Ultrahigh Sensitivity Aerosol Spectrometer (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Ultrahigh Sensitivity Aerosol Spectrometer Authors: Cynthia Salwen ; Derek Hageman ; Bill Behrens ; Scott Smith ; Janek Uin ; Janek Uin ; Cynthia Salwen ; Annette Koontz ; Annette ...

  7. Potential Aerosol Indirect Effects on Atmospheric Circulation...

    Office of Scientific and Technical Information (OSTI)

    the complex processes involved are poorly understood and represented in climate models. Here we report that aerosol indirect effect on deep convective cloud systems can lead ...

  8. The LANL Cloud-Aerosol Model

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    that incorporates two unique aspects in its formulation. First, the model employs a nonlinear solver that requires cloud-aerosol parameterizations be smooth or contain reasonable...

  9. Aerosol indirect effects - general circulation model intercomparison...

    Office of Scientific and Technical Information (OSTI)

    We compute statistical relationships between aerosol optical depth (a) and various cloud ... Nevertheless, the strengths of the statistical relationships are good predictors for the ...

  10. Aerosol climate effects and air quality impacts from 1980 to 2030

    SciTech Connect

    Menon, Surabi; Menon, Surabi; Unger, Nadine; Koch, Dorothy; Francis, Jennifer; Garrett, Tim; Sednev, Igor; Shindell, Drew; Streets, David

    2007-11-26

    We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present-day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 Wm{sup -2} and the total aerosol forcing increases from -0.10 Wm{sup -2} to -0.94 Wm{sup -2} (AIE increases from -0.13 to -0.68 Wm{sup -2}) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 Wm{sup -2}), but the magnitude decreases (-0.3Wm{sup -2}) considerably for the future scenario. Over Asia, we evaluate the role of biofuel and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of two) in biofuel and transport-based emissions for 2030 A1B over Asia. Projected changes from present-day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present

  11. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles...

    Office of Scientific and Technical Information (OSTI)

    extinction profiles and aerosol optical thickness, from first Ferrare algorithm Citation Details In-Document Search Title: ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction ...

  12. Aerosol Retrievals from ARM SGP MFRSR Data (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Aerosol Retrievals from ARM SGP MFRSR Data Title: Aerosol Retrievals from ARM SGP MFRSR Data The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous ...

  13. ARM - Field Campaign - Carbonaceous Aerosol and Radiation Effects...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Photo-Acoustic Aerosol Light Absorption and Scattering Campaign Links ARM Data Discovery Browse Data Related Campaigns Carbonaceous Aerosol and Radiative Effects Study (CARES) ...

  14. ARM - Field Campaign - Aerosol and Cloud Experiments in the Eastern...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol,...

  15. Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final...

    Office of Scientific and Technical Information (OSTI)

    Title: Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign Summary Atmospheric aerosol particles impact human health in urban environments, while on regional and ...

  16. Science Plan Biogenic Aerosols - Effects on Clouds and Climate...

    Office of Scientific and Technical Information (OSTI)

    In spite of recent advances in the understanding of aerosol formation processes and the links between aerosol dynamics and biosphere-atmosphere-climate interactions, great ...

  17. Aerosol Properties Downwind of Biomass Burns Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    Science Aerosol Properties Downwind of Biomass Burns Field Campaign Report PR Buseck ... DOESC-ARM-15-076 Aerosol Properties Downwind of Biomass Burns Field Campaign Report PR ...

  18. Aerosol specification in single-column Community Atmosphere Model...

    Office of Scientific and Technical Information (OSTI)

    Aerosol specification in single-column Community Atmosphere Model version 5 Prev Next Title: Aerosol specification in single-column Community Atmosphere Model version 5 ...

  19. Cloud Condensation Nuclei Activity of Aerosols during GoAmazon...

    Office of Scientific and Technical Information (OSTI)

    microphysical properties of the aerosol." The Observations and Modeling of the Green Ocean Amazon (GoAmazon 201415) study seeks to understand how aerosol and cloud life cycles ...

  20. ARM: Aerosol Observing System (AOS): cloud condensation nuclei...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Aerosol Observing System (AOS): cloud condensation nuclei data Aerosol Observing System (AOS): cloud condensation nuclei data Authors: Scott Smith ; Cynthia Salwen ; ...

  1. Long-term measurements of submicrometer aerosol chemistry at...

    Office of Scientific and Technical Information (OSTI)

    Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) Title: Long-term measurements of ...

  2. ARM - Field Campaign - Measurement of Aerosols, Radiation and...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the Southern Ocean Clouds Radiation Transport Aerosol Transport Experimental Study (SOCRATES) has been proposed to improve our understanding of clouds, aerosols, air-sea...

  3. Organic and Elemental Carbon Aerosol Particulates at the Southern...

    Office of Scientific and Technical Information (OSTI)

    Elemental Carbon Aerosol Particulates at the Southern Great Plains Site Field Campaign Report Citation Details In-Document Search Title: Organic and Elemental Carbon Aerosol ...

  4. Natural Aerosols Explain Seasonal and Spatial Patterns of Southern...

    Office of Scientific and Technical Information (OSTI)

    Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean Cloud Albedo Citation Details In-Document Search Title: Natural Aerosols Explain Seasonal and Spatial ...

  5. Discrimination between thin cirrus and and tropospheric aerosol...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Discrimination between thin cirrus and and tropospheric aerosol using multiple measurements from Darwin ARCS Mitchell, Ross CSIRO Category: Aerosols Thin cirrus cloud occurs...

  6. ARM - 2013 AGU Presentations Featuring ARM Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... Zone Retrieved from Ship-Borne Hyperspectral Observations During MAGIC PJ McBride, ... 1:40 pm, M-South Poster A43D-0285. Hyperspectral Aerosol Optical Depths from TCAP ...

  7. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  8. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An Overview

    SciTech Connect

    Li, Zhanqing; Li, C.; Chen, H.; Tsay, S. C.; Holben, B. N.; Huang, J.; Li, B.; Maring, H.; Qian, Yun; Shi, Guangyu; Xia, X.; Yin, Y.; Zheng, Y.; Zhuang, G.

    2011-02-01

    As the most populated region of the world, Asia is a major source of aerosols with potential large impact over vast downstream areas. Papers published in this special section describe the variety of aerosols observed in China and their effects and interactions with the regional climate as part of the East Asian Study of Tropospheric Aerosols and Impact on Regional Climate (EAST-AIRC). The majority of the papers are based on analyses of observations made under three field projects, namely, the Atmospheric Radiation Measurements (ARM) Mobile Facility mission in China (AMF10 China), the East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE), and the Atmospheric Aerosols of China and their Climate Effects (AACCE). The former two are US-China collaborative projects and the latter is a part of the China’s National Basic Research program (or often referred to as “973 project”). Routine meteorological data of China are also employed in some studies. The wealth of general and specialized measurements lead to extensive and close-up investigations of the optical, physical and chemical properties of anthropogenic, natural, and mixed aerosols; their sources, formation and transport mechanisms; horizontal, vertical and temporal variations; direct and indirect effects and interactions with the East Asian monsoon system. Particular efforts are made to advance our understanding of the mixing and interaction between dust and anthropogenic pollutants during transport. Several modeling studies were carried out to simulate aerosol impact on radiation budget, temperature, precipitation, wind and atmospheric circulation, fog, etc. In addition, impacts of the Asian monsoon system on aerosol loading are also simulated.

  9. Small-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect

    Schonewill, Philip P.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, G. N.; Mahoney, Lenna A.; Tran, Diana N.; Burns, Carolyn A.; Kurath, Dean E.

    2013-08-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are largely absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale. The small-scale testing and resultant data are described in Mahoney et al. (2012b) and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the

  10. Large-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used

  11. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  12. Two-Column Aerosol Project Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    ... highlights the complicated flow structure and air mass history over eastern North America. ... and J Wilson. 2014. "Tracking elevated pollution layers with a newly developed ...

  13. Two-Column Aerosol Project Field Campaign Report

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... papers, interviews with the local National Public Radio station 4 , 1 https:www.nps.govresources2016.htm?idB57B49EB-155D-451F-67CF018A1E01E868. 2 http:...

  14. ARM - Field Campaign - 2006 MAX-Mex-Megacity Aerosol eXperiment...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    characterization of the aerosols, on aerosol transformations including aging of the black carbon during outflow from the region, and on the effects of the megacity aerosol plume on...

  15. Modeling LIDAR Detection of Biological Aerosols to Determine Optimum Implementation Strategy

    SciTech Connect

    Sheen, David M.; Aker, Pam M.

    2007-09-19

    This report summarizes work performed for a larger multi-laboratory project named the Background Interferent Measurement and Standards project. While originally tasked to develop algorithms to optimize biological warfare agent detection using UV fluorescence LIDAR, the current uncertainties in the reported fluorescence profiles and cross sections the development of any meaningful models. It was decided that a better approach would be to model the wavelength-dependent elastic backscattering from a number of ambient background aerosol types, and compare this with that generated from representative sporulated and vegetative bacterial systems. Calculations in this report show that a 266, 355, 532 and 1064 nm elastic backscatter LIDAR experiment will allow an operator to immediately recognize when sulfate, VOC-based or road dust (silicate) aerosols are approaching, independent of humidity changes. It will be more difficult to distinguish soot aerosols from biological aerosols, or vegetative bacteria from sporulated bacteria. In these latter cases, the elastic scattering data will most likely have to be combined with UV fluorescence data to enable a more robust categorization.

  16. ARM - Field Campaign - Aerosol Lidar Validation Experiment -...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The ACRF Raman Lidar started to operate at the SGP site in April 1997 as a turnkey, automated system for unattended, around-the-clock profiling of water vapor and aerosols with the ...

  17. ARM - Field Campaign - MASRAD: Marine Aerosol Properties

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govCampaignsMASRAD: Marine Aerosol Properties Campaign Links AMF Point Reyes Website Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  18. Long-Term Measurements of Submicrometer Aerosol

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    non-refractory submicron particulate matter (NR-PM1) including organic aerosol (OA), sulfate (SO 4 2- ), nitrate (NO 3 - ), ammonium (NH 4 + ), and chloride (Cl-). In this study,...

  19. Direct impact aerosol sampling by electrostatic precipitation

    DOEpatents

    Braden, Jason D.; Harter, Andrew G.; Stinson, Brad J.; Sullivan, Nicholas M.

    2016-02-02

    The present disclosure provides apparatuses for collecting aerosol samples by ionizing an air sample at different degrees. An air flow is generated through a cavity in which at least one corona wire is disposed and electrically charged to form a corona therearound. At least one grounded sample collection plate is provided downstream of the at least one corona wire so that aerosol ions generated within the corona are deposited on the at least one grounded sample collection plate. A plurality of aerosol samples ionized to different degrees can be generated. The at least one corona wire may be perpendicular to the direction of the flow, or may be parallel to the direction of the flow. The apparatus can include a serial connection of a plurality of stages such that each stage is capable of generating at least one aerosol sample, and the air flow passes through the plurality of stages serially.

  20. Aerosol remote sensing in polar regions

    SciTech Connect

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Mazzola, Mauro; Lanconelli, Christian; Vitale, Vito; Stebel, Kerstin; Aaltonen, Veijo; de Leeuw, Gerrit; Rodriguez, Edith; Herber, Andreas B.; Radionov, Vladimir F.; Zielinski, Tymon; Petelski, Tomasz; Sakerin, Sergey M.; Kabanov, Dmitry M.; Xue, Yong; Mei, Linlu; Istomina, Larysa; Wagener, Richard; McArthur, Bruce; Sobolewski, Piotr S.; Kivi, Rigel; Courcoux, Yann; Larouche, Pierre; Broccardo, Stephen; Piketh, Stuart J.

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness ?(?) at visible and near-infrared wavelengths, from which best-fit values of ngstrm's exponent ? were calculated. Analysing these data, the monthly mean values of ?(0.50 ?m) and ? and the relative frequency histograms of the daily mean values of both parameters were determined for winterspring and summerautumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of ? versus ?(0.50 ?m) showed: (i) a considerable increase in ?(0.50 ?m) for the Arctic aerosol from summer to winterspring, without marked changes in ?; and (ii) a marked increase in ?(0.50 ?m) passing from the Antarctic Plateau to coastal sites, whereas ? decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of ?(?) and ? at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-lesund. Satellite-based MODIS, MISR, and AATSR retrievals of ?(?) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles

  1. Study of Aerosol Indirect Effects in China

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Aerosol Indirect Effects in China In 2008, the U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM Mobile Facility (AMF) to conduct a comprehensive investigation of regional aerosol impacts in China as part of a joint program with the Institute of Atmospheric Physics, Chinese Academy of Sciences. The joint program is under the "Climate Sciences" agreement established in 1987 between the DOE and China Ministry of

  2. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, P.F.; Herceg, J.E.; Klocksieben, R.H.

    1984-04-11

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage t

  3. Analytical techniques for ambient sulfate aerosols

    SciTech Connect

    Johnson, S.A.; Graczyk, D.G.; Kumar, R.; Cunningham, P.T.

    1981-06-01

    Work done to further develop the infrared spectroscopic analytical method for the analysis of atmospheric aerosol particles, as well as some exploratory work on a new procedure for determining proton acidity in aerosol samples is described. Earlier work had led to the successful use of infrared (ir) spectrophotometry for the analysis of nitrate, ammonium, and neutral and acidic sulfates in aerosol samples collected by an impactor on a Mylar-film substrate. In this work, a filter-extraction method was developed to prepare filter-collected aerosol samples for ir analysis. A study was made comparing the ir analytical results on filter-collected samples with impactor-collected samples. Also, the infrared analytical technique was compared in field studies with light-scattering techniques for aerosol analysis. A highly sensitive instrument for aerosol analysis using attenuated total internal reflection (ATR) infrared spectroscopy was designed, built, and tested. This instrument provides a measurement sensitivity much greater (by a factor of 6 for SO/sub 4//sup 2 -/) than that obtainable using the KBr-pellet method. This instrument collect size- and time-resolved samples and is potentially capable of providing automated, near real-time aerosol analysis. Exploratory work on a novel approach to the determination of proton acidity in filter- or impactor-collected aerosol samples is also described. In this technique, the acidic sample is reacted with an access of a tagged, vapor-phase base. The unreacted base is flushed off and the amount of the tag retained by the sample is a direct measure of the proton acidity of the sample. The base was tagged with Ge, which can be conveniently determined by the x-ray fluorescence technique.

  4. Priorities for In-situ Aerosol Measurements

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Priorities for In-situ Aerosol Measurements Parameters * Aerosol light absorption coefficient - spectral, including UV, vis, and IR - as f(RH), and at ambient RH * Phase function - or relevant integral properties (how many?) * Ice nuclei * Scattering vs. RH, for RH>90% * CCN, as f(S, D p ) * Size distribution * Chemical composition - for determining climate forcing, vs. radiative effect Calibration * Number concentration * Size and shape * Light absorption reference method Characterization *

  5. Aerosol fabrication methods for monodisperse nanoparticles

    DOEpatents

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  6. Impact of aerosol size representation on modeling aerosol-cloud interactions

    DOE PAGES [OSTI]

    Zhang, Y.; Easter, R. C.; Ghan, S. J.; Abdul-Razzak, H.

    2002-11-07

    In this study, we use a 1-D version of a climate-aerosol-chemistry model with both modal and sectional aerosol size representations to evaluate the impact of aerosol size representation on modeling aerosol-cloud interactions in shallow stratiform clouds observed during the 2nd Aerosol Characterization Experiment. Both the modal (with prognostic aerosol number and mass or prognostic aerosol number, surface area and mass, referred to as the Modal-NM and Modal-NSM) and the sectional approaches (with 12 and 36 sections) predict total number and mass for interstitial and activated particles that are generally within several percent of references from a high resolution 108-section approach.more » The modal approach with prognostic aerosol mass but diagnostic number (referred to as the Modal-M) cannot accurately predict the total particle number and surface areas, with deviations from the references ranging from 7-161%. The particle size distributions are sensitive to size representations, with normalized absolute differences of up to 12% and 37% for the 36- and 12-section approaches, and 30%, 39%, and 179% for the Modal-NSM, Modal-NM, and Modal-M, respectively. For the Modal-NSM and Modal-NM, differences from the references are primarily due to the inherent assumptions and limitations of the modal approach. In particular, they cannot resolve the abrupt size transition between the interstitial and activated aerosol fractions. For the 12- and 36-section approaches, differences are largely due to limitations of the parameterized activation for non-log-normal size distributions, plus the coarse resolution for the 12-section case. Differences are larger both with higher aerosol (i.e., less complete activation) and higher SO2 concentrations (i.e., greater modification of the initial aerosol distribution).« less

  7. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    SciTech Connect

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  8. The First Aerosol Indirect Effect: Beyond Twomey

    SciTech Connect

    Liu, Y.; Dunn, M.; Daum, P.

    2008-03-10

    The traditional first aerosol indirect effect or the Twomey effect involves several fundamental assumptions. Some of the assumptions (e.g., constant liquid water content) are explicitly stated in studies of the Twomey effect whereas others are only implicitly embedded in the quantitative formulation. This work focuses on examining the implicit assumptions. In particular, we will show that anthropogenic pollution not only increases aerosol loading and droplet concentrations but also alters the relative dispersions of both the aerosol and subsequent droplet size distributions. The indirect effects resulting from the two altered relative dispersions (aerosol dispersion effect and droplet dispersion effect) are likely opposite in sign and proportional in magnitude to the conventional Twomey effect. This result suggests that the outstanding problems of the Twomey effect (i.e., large uncertainty and overestimation reported in literature) may lie with violation of the constant spectral shapes of aerosol and droplet size distributions implicitly assumed in evaluation of the Twomey effect, and therefore, further progress in understanding and quantification of the first aerosol indirect effect demands moving beyond the traditional paradigm originally conceived by Twomey.

  9. Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing

    SciTech Connect

    Thornton, Joel

    2015-01-26

    The research conducted on this project aimed to improve our understanding of secondary organic aerosol (SOA) formation in the atmosphere, and how the properties of the SOA impact climate through its size, phase state, and optical properties. The goal of this project was to demonstrate that the use of molecular composition information to mechanistically connect source apportionment and climate properties can improve the physical basis for simulation of SOA formation and properties in climate models. The research involved developing and improving methods to provide online measurements of the molecular composition of SOA under atmospherically relevant conditions and to apply this technology to controlled simulation chamber experiments and field measurements. The science we have completed with the methodology will impact the simulation of aerosol particles in climate models.

  10. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    SciTech Connect

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-15

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  11. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of

  12. About Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DOE Projects MicroBooNE Project Web Pages The Project Pages hold information and links for the collaboration and its Project Managers, and also hold links to project Director's and ...

  13. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  14. The AeroCom evaluation and intercomparison of organic aerosol...

    Office of Scientific and Technical Information (OSTI)

    Title: The AeroCom evaluation and intercomparison of organic aerosol in global models This paper evaluates the current status of global modeling of the organic aerosol (OA) in the ...

  15. Biogenic Aerosols„Effects on Clouds and Climate (BAECC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign Summary T Petj ... DOESC-ARM-15-051 Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign ...

  16. An AeroCom Initial Assessment - Optical Properties in Aerosol...

    Office of Scientific and Technical Information (OSTI)

    Since not only aot but also aab influence the aerosol impact on the radiative energy-balance, aerosol (direct) forcing uncertainty in modeling is larger than differences in aot ...

  17. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  18. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  19. Aerodyne Develops an Aircraft-Deployable Precision Aerosol Analyzer...

    Office of Science (SC)

    Aerosol Analyzer Small Business Innovation Research (SBIR) and Small Business ... Contact Information Small Business Innovation Research and Small Business Technology ...

  20. Pajarito Aerosol Couplings to Ecosystems (PACE) Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Pajarito Aerosol Couplings to Ecosystems (PACE) Field Campaign Report Citation Details In-Document Search Title: Pajarito Aerosol Couplings to Ecosystems (PACE) Field Campaign Report Laboratory (LANL) worked on the Pajarito Aerosol Couplings to Ecosystems (PACE) intensive operational period (IOP). PACE's primary goal was to demonstrate routine Mobile Aerosol Observing System (MAOS) field operations and improve instrumental and operational performance.

  1. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGES [OSTI]

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Menqistu; Brooks, Sarah D.; Cziczo, Dan; et al

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  2. Aerosol can puncture device test report

    SciTech Connect

    Leist, K.J.

    1994-10-01

    This test report documents the evaluation of an aerosol can puncture device to replace a system currently identified for use in the WRAP-1 facility. The new system is based upon a commercially available puncture device, as recommended by WHC Fire Protection. With modifications found necessary through the testing program, the Aerosol Can Puncture Device was found able to puncture and drain aerosol cans without incident. Modifications include the addition of a secondary collection bottle and the modification of the can puncture needle. In the course of testing, a variety of absorbents were tested to determine their performance in immobilizing drained fluids. The visibility of the puncture with Non-Destructive Examination techniques were also reviewed.

  3. Nuclear Emergency and the Atmospheric Dispersion of Nuclear Aerosols: Discussion of the Shared Nuclear Future - 13163

    SciTech Connect

    Rana, Mukhtar A.; Ali, Nawab; Akhter, Parveen; Khan, E.U.; Mathieson, John

    2013-07-01

    This paper has a twofold objective. One is to analyze the current status of high-level nuclear waste disposal along with presentation of practical perspectives about the environmental issues involved. Present disposal designs and concepts are analyzed on a scientific basis and modifications to existing designs are proposed from the perspective of environmental safety. Other is to understand the aerosol formation in the atmosphere for the case of the leakage from the nuclear waste containers or a nuclear accident. Radio-nuclides released from the waste will attach themselves to the existing aerosols in the atmosphere along with formation of new aerosols. Anticipating the nuclear accident when a variety of radioactive aerosols will form and exist in the atmosphere, as a simple example, measurement of naturally existing radioactive aerosols are made in the atmosphere of Islamabad and Murree. A comparison with similar measurements in 3 cities of France is provided. Measurement of radionuclides in the atmosphere, their attachment to aerosols and follow up transport mechanisms are key issues in the nuclear safety. It is studied here how {sup 7}Be concentration in the atmospheric air varies in the capital city of Islamabad and a Himalaya foothill city of Murree (Pakistan). Present results are compared with recent related published results to produce a {sup 7}Be concentration versus altitude plot up to an altitude of 4000 m (a.s.l.). Origin and variance of {sup 7}Be concentration at different altitudes is discussed in detail. The relevance of results presented here with the evaluation of implications of Chernobyl and Fukushima nuclear disasters has been discussed in a conclusive manner. It is the first international report of a joint collaboration/project. The project is being generalized to investigate and formulate a smooth waste storage and disposal policy. The project will address the fission and fusion waste reduction, its storage, its recycling, air, water and soil

  4. ARM - PI Product - Niamey Aerosol Optical Depths

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Aerosol Optical Depths ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Niamey Aerosol Optical Depths MFRSR irradiance data collected during the ACRF AMF deployment in Niamey, Niger have been used to derive AOD for five wavelength channels of the MFRSR. These data have been corrected to adjust for filter drift over the course of the campaign and contamination due to forward scattering as a result of

  5. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  6. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, Patrick F. (Downers Grove, IL); Herceg, Joseph E. (Naperville, IL); Klocksieben, Robert H. (Park Forest, IL)

    1986-01-01

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  7. Delivery of aerosolized drugs encapsulated in liposomes

    SciTech Connect

    Cheng, Yung-Sung; Lyons, C.R.; Schmid, M.H.

    1995-12-01

    Mycobacterium tuberculosis (Mtb) is an infectious disease that resides in the human lung. Due to the difficulty in completely killing off the disease in infected individuals, Mtb has developed drug-resistant forms and is on the rise in the human population. Therefore, ITRI and the University of New Mexico are collaborating to explore the treatment of Mtb by an aerosolized drug delivered directly to the lungs. In conclusion, it is feasible to obtain an appropriate size and concentration of the liposomes before and after aerosolization.

  8. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic

    SciTech Connect

    Mazzoleni, Claudio; Kumar, Sumit; Wright, Kendra; Kramer, Louisa; Mazzoleni, Lynn; Owen, Robert; Helmig, Detlev

    2014-12-09

    The scientific scope of the project was to exploit the unique location of the Pico Mountain Observatory (PMO) located in the summit caldera of the Pico Volcano in Pico Island in the Azores, for atmospheric studies. The observatory, located at 2225m a.s.l., typically samples free tropospheric aerosols laying above the marine low-level clouds and long-range transported from North America. The broad purpose of this research was to provide the scientific community with a better understanding of fundamental physical processes governing the effects of aerosols on radiative forcing and climate; with the ultimate goal of improving our abilities to understand past climate and to predict future changes through numerical models. The project was 'exploratory' in nature, with the plan to demonstrate the feasibility of deploying for the first time, an extensive aerosol research package at PMO. One of the primary activities was to test the deployment of these instruments at the site, to collect data during the 2012 summer season, and to further develop the infrastructure and the knowledge for performing novel research at PMO in follow-up longer-term aerosol-cloud studies. In the future, PMO could provide an elevated research outpost to support the renewed DOE effort in the Azores that was intensified in 2013 with the opening of the new sea-level ARM-DOE Eastern North Atlantic permanent facility at Graciosa Island. During the project period, extensive new data sets were collected for the planned 2012 season. Thanks to other synergistic activities and opportunities, data collection was then successfully extended to 2013 and 2014. Highlights of the scientific findings during this project include: a) biomass burning contribute significantly to the aerosol loading in the North Atlantic free troposphere; however, long-range transported black carbon concentrations decreased substantially in the last decade. b) Single black carbon particles – analyzed off-line at the electron

  9. Aerosol remote sensing in polar regions

    DOE PAGES [OSTI]

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Wehrli, Christoph; et al

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i)more » a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei

  10. Aerosol remote sensing in polar regions

    SciTech Connect

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Mazzola, Mauro; Lanconelli, Christian; Vitale, Vito; Stebel, Kerstin; Aaltonen, Veijo; de Leeuw, Gerrit; Rodriguez, Edith; Herber, Andreas B.; Radionov, Vladimir F.; Zielinski, Tymon; Petelski, Tomasz; Sakerin, Sergey M.; Kabanov, Dmitry M.; Xue, Yong; Mei, Linlu; Istomina, Larysa; Wagener, Richard; McArthur, Bruce; Sobolewski, Piotr S.; Kivi, Rigel; Courcoux, Yann; Larouche, Pierre; Broccardo, Stephen; Piketh, Stuart J.

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i) a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei

  11. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  12. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, Vincent J.; Johnson, Stanley A.

    1999-01-01

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  13. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    SciTech Connect

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Mengistu; Brooks, Sarah D.; Cziczo, Daniel J.; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor J.; Gultepe, Ismail; Hubbe, John M.; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. R.; Liu, Peter S.; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, A. M.; Moffet, Ryan C.; Morrison, H.; Ovchinnikov, Mikhail; Shupe, Matthew D.; Turner, David D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matthew; Glen, Andrew

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmospheric emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.

  14. Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton, Virginia D. D. Turner Pacific Northwest National Laboratory Richland, Washington M. Clayton Science Applications International Corporation National Aeronautics and Space Administration Langley Research Center Hampton, Virginia B. S. Schmid and J. Redemann BAER/NASA Ames Research Institute Moffett Field, California D.

  15. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    SciTech Connect

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-04-09

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  16. Development of Soft Ionization for Particulate Organic Detection with the Aerodyne Aerosol Mass Spectrometer

    SciTech Connect

    Trimborn, A; Williams, L R; Jayne, J T; Worsnop, D R

    2008-06-19

    During this DOE SBIR Phase II project, we have successfully developed several soft ionization techniques, i.e., ionization schemes which involve less fragmentation of the ions, for use with the Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS). Vacuum ultraviolet single photon ionization was demonstrated in the laboratory and deployed in field campaigns. Vacuum ultraviolet single photon ionization allows better identification of organic species in aerosol particles as shown in laboratory experiments on single component particles, and in field measurements on complex multi-component particles. Dissociative electron attachment with lower energy electrons (less than 30 eV) was demonstrated in the measurement of particulate organics in chamber experiments in Switzerland, and is now a routine approach with AMS systems configured for bipolar, negative ion detection. This technique is particularly powerful for detection of acidic and other highly oxygenated secondary organic aerosol (SOA) chemical functionality. Low energy electron ionization (10 to 12 eV) is also a softer ionization approach routinely available to AMS users. Finally, Lithium ion attachment has been shown to be sensitive to more alkyl-like chemical functionality in SOA. Results from Mexico City are particularly exciting in observing changes in SOA molecular composition under different photochemical/meteorological conditions. More recent results detecting biomass burns at the Montana fire lab have demonstrated quantitative and selective detection of levoglucosan. These soft ionization techniques provide the ToF-AMS with better capability for identifying organic species in ambient atmospheric aerosol particles. This, in turn, will allow more detailed study of the sources, transformations and fate of organic-containing aerosol.

  17. Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition

    SciTech Connect

    Unger, N.; Menon, S.; Shindell, D. T.; Koch, D. M.

    2009-02-02

    The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, aerosol-cloud interactions (ACI). The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI) to present day (PD) and future impacts from PD to 2050 (for the moderate IPCC A1B scenario) that embrace a wide spectrum of precursor emission changes and consequential ACI. The aerosol indirect effect (AIE) is estimated to be -2.0 Wm{sup -2} for PD-PI and -0.6 Wm{sup -2} for 2050-PD, at the high end of current estimates. Inclusion of ACI substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of ACI leads to 20% enhancements in in-cloud sulfate production and {approx}10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions ({approx}10-30%). Nitric acid wet deposition is dampened by 15-20% across the industrialized regions due to ACI allowing additional re-release of reactive nitrogen that contributes to 1-2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that ACI must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

  18. Generation and characterization of biological aerosols for laser measurements

    SciTech Connect

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  19. Radiological/biological/aerosol removal system

    DOEpatents

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  20. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  1. Determination of TCAP (Thermal Cycling Absorption Process) Raffinate Purity

    Office of Environmental Management (EM)

    Department of Energy Detection and Analysis of Threatsto the Energy Sector (DATES), March 2010 Detection and Analysis of Threatsto the Energy Sector (DATES), March 2010 A security monitoring capability featuring multiple detection algorithms and cross-domain event correlation for defense against cyber attacks on energy control systems. DATES is a detection and security information/event management (SIEM) solution enabling asset owners to protect their energy control systems at the network,

  2. Stackable differential mobility analyzer for aerosol measurement

    DOEpatents

    Cheng, Meng-Dawn; Chen, Da-Ren

    2007-05-08

    A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

  3. Aerosol Retrievals from ARM SGP MFRSR Data

    DOE Data Explorer

    Alexandrov, Mikhail

    2008-01-15

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.

  4. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    SciTech Connect

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Kravitz, Benjamin S.; Lamarque, J. F.; Pitari, G.; English, J. M.

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO₂) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO₂ yr⁻¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at aerosol-data-set\\">https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.

  5. Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters

    SciTech Connect

    Kravitz, Benjamin S.

    2013-02-12

    Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

  6. Evaluating aerosol indirect effect through marine stratocumulus clouds

    SciTech Connect

    Kogan, Z.N.; Kogan, Y.L.; Lilly, D.K.

    1996-04-01

    During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. and Penner et al. have demonstrated that tropospheric aerosols and particularly anthropogenic sulfate aerosols may significantly contribute to the radiative forcing exerting a cooling influence on climate (-1 to -2 W/m{sup 2}) which is comparable in magnitude to greenhouse forcing, but opposite in sign. Aerosol particles affect the earth`s radiative budget either directly by scattering and absorption of solar radiation by themselves or indirectly by altering the cloud radiative properties through changes in cloud microstructure. Marine stratocumulus cloud layers and their possible cooling influence on the atmosphere as a result of pollution are of special interest because of their high reflectivity, durability, and large global cover. We present an estimate of thet aerosol indirect effect, or, forcing due to anthropogenic sulfate aerosols.

  7. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  8. Indirect and Semi-Direct Aerosol Campaign

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Campaign (ISDAC) The Influence of Arctic Aerosol on Clouds PIs: Steve Ghan, Greg McFarquhar, Hans Verlinde ARM AVP: Beat Schmid, Greg McFarquhar, John Hubbe, Debbie Ronfeld In situ measurements: Sarah Brooks, Don Collins, Dan Cziczo, Manvendra Dubey, Greg Kok, Alexei Korolev, Alex Laskin, Paul Lawson, Peter Liu, Claudio Mazzoleni, Ann-Marie McDonald, Greg McFarquhar, Walter Strapp, Alla Zelenyuk Retrievals: Connor Flynn, Dan Lubin, Mengistu Wolde, David Mitchell, Matthew Shupe, David Turner

  9. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: Analysis of Results from the ARM Mobile Facility Deployment to the Azores (2009/2010)

    SciTech Connect

    Wood, Robert

    2013-05-31

    The project focuses upon dataset analysis and synthesis of datasets from the AMF deployment entitled “Clouds, Aerosols, and Precipitation in the Marine Boundary Layer (CAP‐MBL)” at Graciosa Island in the Azores. Wood is serving a PI for this AMF deployment.

  10. Aerosol deposition in bends with turbulent flow

    SciTech Connect

    McFarland, A.R.; Gong, H.; Wente, W.B.

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  11. ARM: Aerosol Observing System (AOS): auxiliary data (Dataset) | Data

    Office of Scientific and Technical Information (OSTI)

    Explorer Aerosol Observing System (AOS): auxiliary data Title: ARM: Aerosol Observing System (AOS): auxiliary data Aerosol Observing System (AOS): auxiliary data Authors: Ogren, John ; Jefferson, Anne ; Sheridan, Patrick Publication Date: 1990-01-01 OSTI Identifier: 1025148 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Dataset Data Type: Numeric Data Research Org: Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (US) Sponsoring Org:

  12. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    (Program Document) | SciTech Connect ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report Citation Details In-Document Search Title: ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report The U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility's ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding

  13. Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Aerosol Source on Ocean Photosynthesis Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of Aerosol Source on Ocean Photosynthesis figure 1 Figure 1. Dust storm blowing glacial dusts from the Copper River Basin of southeast Alaska into the North Pacific Ocean, which depends on this and other external iron sources to support its biological communities. (Image: NASA MODIS satellite image, Nov. 1, 2006. http://earthobservatory.nasa.gov/IOTD/view.php?id=7094) Iron is one of

  14. ARM - Publications: Science Team Meeting Documents: Impacts of aerosols and

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    clouds on forest-atmosphere carbon exchange Impacts of aerosols and clouds on forest-atmosphere carbon exchange Min, Qilong State University of New York at Albany The impact of aerosols and clouds on CO2 uptake and water use efficiency at Harvard Forest has been studied by using collocated turbulent flux and radiation measurements. From measurements of a multi-filter narrowband radiometer, optical properties of aerosols and clouds are retrieved and photosynthetically active radiation (PAR)

  15. Research Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LaboratoryNational Security Education Center Menu NSEC Educational Programs Los Alamos Dynamics Summer School Science of Signatures Advanced Studies Institute Judicial Science School SHM Data Sets and Software Research Projects Current Projects Past Projects Publications NSEC » Engineering Institute » Research Projects » Joint Los Alamos National Laboratory/UCSD research projects Past Research Projects Previous collaborations between Los Alamos National Laboratory and the University of

  16. Research Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Current Research Projects Joint Los Alamos National LaboratoryUCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San...

  17. Project Accounts

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Project Accounts Project Accounts A redirector page has been set up without anywhere to redirect to. Last edited: 2016-04-29 11:34:50

  18. Project Financing

    Office of Environmental Management (EM)

    evaluate a Federal Energy Efficiency Project across three broad risk categories: - Contract Risk - Project Risk - Participant Risk * Ultimately, pricing and terms are set by ...

  19. Project Gnome

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Project Gnome Double Beta Decay Dark Matter Biology Repository Science Renewable Energy The first underground physics experiment near Carlsbad was Project Gnome, December 10, 1961 ...

  20. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  1. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign...

    Office of Scientific and Technical Information (OSTI)

    2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. ...

  2. Pajarito Aerosol Couplings to Ecosystems (PACE) Field Campaign...

    Office of Scientific and Technical Information (OSTI)

    PACE's primary goal was to demonstrate routine Mobile Aerosol Observing System (MAOS) field operations and improve instrumental and operational performance. LANL operated the ...

  3. ARM - Field Campaign - 2004 NEAX (Northeast Aerosol Experiment...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Description Final Data Hubbe Passive Cavity Aerosol Spectrometer Probe Order Data Kleinman Gas Chromatography Mass Spectrometry Order Data Wang Differential Mobility Analyzer...

  4. About the Rhythms of Variability of the Submicron Aerosol Characterist...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of the distribution of the aerosol characteristics were considered. The periodograms (Fourier spectra of the discrete data set) were calculated for all data arrays using...

  5. Overview of the COPS Aerosol and Cloud Microphysics (ACM) Subgroup...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    COPS Aerosol and Cloud Microphysics (ACM) Subgroup Activities Dave Turner Space Science ... (ACM) - Chairs: Susanne Crewell, Dave Turner, Stephen Mobbs ACM Scientific Questions * ...

  6. Direct Aerosol Forcing: Calculation from Observables and Sensitivities...

    Office of Scientific and Technical Information (OSTI)

    ... Language: English Subject: 54 ENVIRONMENTAL SCIENCES; AEROSOLS; ... SOLAR RADIATION; MATHEMATICAL MODELS Word Cloud More Like This Full Text Journal Articles DOI: 10.1029...

  7. Preliminary Results of in-situ Measurements of Aerosol Optical...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of Aerosol Optical and Water Uptake Properties from the ARM Mobile Facility in Niger Jefferson, Anne NOAA CMDL Ogren, John NOAACMDL Category: Field Campaigns The second...

  8. Predicting Aerosol Direct Radiative Forcing over Mexico using...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Use Weather Research and Forecasting (WRF) model as the foundation of computational framework * Fully-coupled aerosol-radiation-cloud-chemistry interactions * Handles multiple ...

  9. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    relevant to DOE's goals in understanding the impact of clouds and aerosols on climate change. TWST contributes significantly to the body of data used for extracting cloud...

  10. ARM - Field Campaign - Cirrus Clouds and Aerosol Properties Campaign

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lead Scientist : Shadrian Strong For data sets, see below. Abstract Through the National Geospatial-Intelligence Agency Characterization of Cirrus and Aerosol Properties (CCAP) ...

  11. About Effective? Height of the Aerosol Atmosphere in Visible...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, and S. M. Sakerin Institute of Atmospheric Optics Tomsk, Russia Introduction Aerosol component of the atmosphere is one of the important...

  12. ARM - Field Campaign - Carbonaceous Aerosol and Radiation Effects...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    - Surface Meteorological Sounding Campaign Links ARM Data Discovery Browse Data Related Campaigns Carbonaceous Aerosol and Radiative Effects Study (CARES) 2010.06.02, Zaveri, AAF...

  13. Determination of vertical profiles of aerosol extinction, single...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    profiles of aerosol extinction, single scatter albedo and asymmetry parameter at Barrow. Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific...

  14. "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites" Citation Details In-Document Search Title: "Lidar Investigations ...

  15. Light Absorption of Primary Organic Aerosol Paper Named ACS Editors...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Absorption of Primary Organic Aerosol Paper Named ACS Editors' Choice For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights...

  16. Understanding the Effect of Aerosol Properties on Cloud Droplet...

    Office of Scientific and Technical Information (OSTI)

    Liquid water clouds form when the relative humidity exceeds saturation and condensedphase water nucleates on atmospheric particulate matter. The effect of aerosol properties such ...

  17. Science Overview Document Indirect and Semi-Direct Aerosol Campaign...

    Office of Scientific and Technical Information (OSTI)

    Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008 Citation Details In-Document Search Title: Science Overview Document Indirect and Semi-Direct ...

  18. BAECC Biogenic Aerosols - Effects on Clouds and Climate (Technical...

    Office of Scientific and Technical Information (OSTI)

    The main research goal was to understand the role of biogenic aerosols in cloud formation. ... Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES ...

  19. Study of Mechanisms of Aerosol Indirect Effects on Glaciated...

    Office of Scientific and Technical Information (OSTI)

    ... clouds, was seen to be of higher importance in regulating aerosol indirect effects ... DOE Contract Number: SC0007396 Resource Type: Technical Report Research Org: Leeds ...

  20. Cloud Condensation Nuclei Activity of Aerosols During GoAmazon...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... The contrasts between pristine air and the pollution plume provided excellent opportunities to look into how and to what extent different aerosol size and compositions impact the ...

  1. Parameterizing the Mixing State of Complex Submicron Aerosols...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    DA Knopf, MK Gilles, and RC Moffet. 2015. "Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization." Journal of Geophysical...

  2. ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of representative organic aerosols within the boundary layer. By combining a SMPS and a dual column CCN counter, the size-resolved CCN concentrations were measured. This allowed...

  3. ARM - Publications: Science Team Meeting Documents: A decade long aerosol

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and cloud statistics and aerosol indirect effect at the ARM SGP site A decade long aerosol and cloud statistics and aerosol indirect effect at the ARM SGP site Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany Harrison, Lee State University of New York Joseph, Everette Howard University Twelve-year data of MFRSR and MWR have been used to derive aerosol and cloud optical properties at the ARM SGP. Diurnal, monthly, seasonal and

  4. Final Report for Cloud-Aerosol Physics in Super-Parameterized Atmospheric Regional Climate Simulations (CAP-SPARCS)(DE-SC0002003) for 8/15/2009 through 8/14/2012

    SciTech Connect

    Russell, Lynn M; Somerville, Richard C.J.

    2012-11-05

    Improving the representation of local and non-local aerosol interactions in state-of-the-science regional climate models is a priority for the coming decade (Zhang, 2008). With this aim in mind, we have combined two new technologies that have a useful synergy: (1) an aerosol-enabled regional climate model (Advanced Weather Research and Forecasting Model with Chemistry WRF-Chem), whose primary weakness is a lack of high quality boundary conditions and (2) an aerosol-enabled multiscale modeling framework (PNNL Multiscale Aerosol Climate Model (MACM)), which is global but captures aerosol-convection-cloud feedbacks, and thus an ideal source of boundary conditions. Combining these two approaches has resulted in an aerosol-enabled modeling framework that not only resolves high resolution details in a particular region, but crucially does so within a global context that is similarly faithful to multi-scale aerosol-climate interactions. We have applied and improved the representation of aerosol interactions by evaluating model performance over multiple domains, with (1) an extensive evaluation of mid-continent precipitation representation by multiscale modeling, (2) two focused comparisons to transport of aerosol plumes to the eastern United States for comparison with observations made as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), with the first being idealized and the second being linked to an extensive wildfire plume, and (3) the extension of these ideas to the development of a new approach to evaluating aerosol indirect effects with limited-duration model runs by nudging to observations. This research supported the work of one postdoc (Zhan Zhao) for two years and contributed to the training and research of two graduate students. Four peer-reviewed publications have resulted from this work, and ground work for a follow-on project was completed.

  5. Ldrd-2015-00076 -- Validation Study Of The SRNL Vacuum Aerosol Contaminant Extractor

    SciTech Connect

    Siegfried, M.

    2015-10-14

    SRNL recently developed a prototype device for the IAEA to prepare particulate samples collected on swipes for laboratory analysis. The Vacuum Aerosol Contaminant Extractor (VacACE) utilizes electrostatic precipitation in lieu of the impaction or ultrasonic solvent extraction methods presently employed by the IAEA to place particles of interest on carbon planchets for investigation. The project was funded by the Intentional Safeguards Projects Office (ISPO) with scope for device design and fabrication, but no scope for validation or testing. Without documented validation of the tool, sample processing and subsequent analysis fidelity cannot be assured. The goal of this project was to determine collection efficacy in a rigorous fashion, demonstrate proof of concept with standardized particulates, and produce a validated VacACE sampling protocol.

  6. Laboratory Investigation of Contact Freezing and the Aerosol to Ice Crystal Transformation Process

    SciTech Connect

    Shaw, Raymond A.

    2014-10-28

    This project has been focused on the following objectives: 1. Investigations of the physical processes governing immersion versus contact nucleation, specifically surface-induced crystallization; 2. Development of a quadrupole particle trap with full thermodynamic control over the temperature range 0 to –40 °C and precisely controlled water vapor saturation ratios for continuous, single-particle measurement of the aerosol to ice crystal transformation process for realistic ice nuclei; 3. Understanding the role of ice nucleation in determining the microphysical properties of mixed-phase clouds, within a framework that allows bridging between laboratory and field measurements.

  7. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    DOE PAGES [OSTI]

    Xu, L.; Williams, L. R.; Young, D. E.; Allan, J. D.; Coe, H.; Massoli, P.; Fortner, E.; Chhabra, P.; Herndon, S.; Brooks, W. A.; et al

    2015-08-28

    The composition of PM1 (particulate matter with diameter less than 1 ?m) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two High-Resolution Time-of-Flight Aerosol Mass Spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the sources of OA are distinctly different. The concentration ofmoresolid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC, measured by a soot-particle aerosol mass spectrometer) only accounts for less

  8. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer SGP ripbe1mcfarlane Title: Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties.

  9. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer ripbe370mcfarlane Title: Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties.

  10. Waste-to-Energy Technologies and Project Development

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Waste-to-Energy Technologies and Project Development DOE-DOD WTE Workshop Jerry Davis July 13, 2011 Gasification Technology Overview Technology Profile for Gasification WTE applications Driving Factors for WTE Project Development Considerations Overview National Renewable Energy Laboratory Innovation for Our Energy Future Thermal Biochemical Combustion Gasification Pyrolysis Heat Fuel Gases (producer gas) (CO + H 2 +CH 4 ) Char, gases, aerosols (syn gas) Pretreatment Fermentation

  11. Project Controls

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    1997-03-28

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  12. Project Information

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Project Information Slider award map The REE Program funds projects focused on developing economically feasible and environmentally benign technologies for recovering REEs from coal and/or coal by-products. Project Information The listed projects represent the current REE program portfolio. Agreement Number Project Title Performer Name FWP-RIC REE FY2016-2020 Rare Earth Elements (REE) from Coal and Coal By-Products National Energy Technology Laboratory FE0027167 High Yield and Economical

  13. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE PAGES [OSTI]

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; Vitalis, Elizabeth A.; Thomas, Cynthia B.; Jones, A. Daniel; Day, James A.; Tur-Rojas, Vincent R.; Jorgensen, Trond; Herchert, Edwin; et al

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  14. A general circulation model (GCM) parameterization of Pinatubo aerosols

    SciTech Connect

    Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I.

    1996-04-01

    The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.

  15. Method of dispersing particulate aerosol tracer

    DOEpatents

    O'Holleran, Thomas P.

    1988-01-01

    A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

  16. Chemical distribution in high-solids paint overspray aerosols

    SciTech Connect

    D'Arcy, J.B.; Chan, T.L. )

    1990-03-01

    The chemical composition of high-solids basecoat paint overspray aerosols was determined as a function of particle size. Detailed information on the chemical composition of the overspray aerosols is important in health hazard evaluation since the composition and distribution within the airborne particles may differ significantly from the bulk paint material. This study was conducted in a typical down-draft paint booth equipped with air-atomized spray painting equipment. A fixed paint target was used to simulate typical overspray generation conditions and the aerosols were collected isokinetically with a seven-stage cascade impactor for size-fractionated analysis. The overspray aerosol from six paints consisted of organic paint binders with varying amounts of inorganic species as pigments or luster enhancers. These overspray aerosols had mass median aerodynamic diameters (MMAD) ranging from 2.9 to 9.7 microns. The size-fractionated paint samples collected on the impaction stages were analyzed by energy dispersive X-ray spectrometry on a scanning electron microscope (SEM-EDXRS) to identify the metallic elements. Atomic absorption spectrometry was used to determine the mass distribution of aluminum and iron as indicators of nonuniform distribution. Three of the aerosols containing aluminum were found to have bimodal distributions with most aluminum distributions having cumulative MMADs larger than the total aerosol. Iron in the aerosols was bimodal for three of the paints with all samples having an overall iron MMAD less than or equal to the overspray aerosol MMAD. Analysis using ultraviolet spectrometry revealed that the organic compounds present in the size-fractionated particulate samples consisted of a single, polydispersed mode with an MMAD similar to that of the total overspray aerosol.

  17. Asthmatic responses to airborne acid aerosols

    SciTech Connect

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. )

    1991-06-01

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

  18. Line Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grand Coulee Transmission Line Replacement Project Hooper Springs McNary-John Day Montana-to-Washington Transmission System Upgrade Project - M2W Olympia-Grand Coulee No. 1...

  19. Final Report for “Simulating the Arctic Winter Longwave Indirect Effects. A New Parameterization for Frost Flower Aerosol Salt Emissions” (DESC0006679) for 9/15/2011 through 9/14/2015

    SciTech Connect

    Russell, Lynn M.; Somerville, Richard C.J.; Burrows, Susannah; Rasch, Phil

    2015-12-12

    Description of the Project: This project has improved the aerosol formulation in a global climate model by using innovative new field and laboratory observations to develop and implement a novel wind-driven sea ice aerosol flux parameterization. This work fills a critical gap in the understanding of clouds, aerosol, and radiation in polar regions by addressing one of the largest missing particle sources in aerosol-climate modeling. Recent measurements of Arctic organic and inorganic aerosol indicate that the largest source of natural aerosol during the Arctic winter is emitted from crystal structures, known as frost flowers, formed on a newly frozen sea ice surface [Shaw et al., 2010]. We have implemented the new parameterization in an updated climate model making it the first capable of investigating how polar natural aerosol-cloud indirect effects relate to this important and previously unrecognized sea ice source. The parameterization is constrained by Arctic ARM in situ cloud and radiation data. The modified climate model has been used to quantify the potential pan-Arctic radiative forcing and aerosol indirect effects due to this missing source. This research supported the work of one postdoc (Li Xu) for two years and contributed to the training and research of an undergraduate student. This research allowed us to establish a collaboration between SIO and PNNL in order to contribute the frost flower parameterization to the new ACME model. One peer-reviewed publications has already resulted from this work, and a manuscript for a second publication has been completed. Additional publications from the PNNL collaboration are expected to follow.

  20. Regional Climate Effects of Aerosols Over China: Modeling and Observation

    SciTech Connect

    Qian, Yun; Leung, Lai R.; Ghan, Steven J.; Giorgi, Filippo

    2003-09-01

    We present regional simulations of aerosol properties, direct radiative forcing and aerosol climatic effects over China, and compare the simulations with observed aerosol characteristics and climatic data over the region. The climate simulations are performed with a regional climate model, which is shown to capture the spatial distribution and seasonal pattern of temperature and precipitation. Aerosol concentrations are obtained from a global tracer-transport model and are provided to the regional model for the calculation of radiative forcing. Different aerosols are included: sulfate, organic carbon, black carbon, mineral dust, and sea salt and MSA particles. Generally, the aerosol optical depth is well simulated in both magnitude and spatial distribution. The direct radiative forcing of the aerosol is in the range of –1 to –14 W m-2 in autumn and summer and -1 to –9 W m-2 in spring and winter, with substantial spatial variability at the regional scale. A strong maximum in aerosol optical depth and negative radiative forcing is found over the Sichuan Basin. The negative radiative forcing of aerosol induces a surface cooling in the range of –0.6 to –1.2oC in autumn and winter, –0.3 to –0.6oC in spring and 0.0 to –0.9oC in summer throughout East China. The aerosol-induced cooling is mainly due to a decrease in day-time maximum temperature. The cooling is maximum and is statistically significant over the Sichuan Basin. The effect of aerosol on precipitation is not evident in our simulations. The temporal and spatial patterns of the temperature trends observed in the second half of the twentieth century, including different trends for daily maximum and minimum temperature, are at least qualitatively consistent with the simulated aerosol-induced cooling over the Sichuan Basin and East China. This result supports the hypothesis that the observed temperature trends during the latter decades of the twentieth century, especially the cooling trends over the

  1. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    DOE PAGES [OSTI]

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Kravitz, Benjamin S.; Lamarque, J. F.; Pitari, G.; English, J. M.

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO₂) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annualmore » tropical emission of 8 Tg SO₂ yr⁻¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.« less

  2. Project Benefits

    Energy.gov [DOE]

    Benefits of the Guidelines for Home Energy Professionals project including reducing energy upgrade costs for consumers, employers, and program administrators.

  3. Hydropower Projects

    Energy.gov [DOE]

    This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

  4. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  5. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer

    Newsom, Rob; Goldsmith, John

    1998-03-01

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  6. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  7. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer

    Sivaraman, Chitra; Flynn, Connor

    2004-10-01

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  8. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer

    Chitra Sivaraman; Connor Flynn

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  9. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  10. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer

    Sivaraman, Chitra; Flynn, Connor

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  11. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  12. Implementing marine organic aerosols into the GEOS-Chem model

    DOE PAGES [OSTI]

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2014-09-09

    Marine organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in goodmore » agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  13. Implementing marine organic aerosols into the GEOS-Chem model

    DOE PAGES [OSTI]

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2015-03-17

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Modelmore » predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  14. Fire aerosol experiment and comparisons with computer code predictions

    SciTech Connect

    Gregory, W.S.; Nichols, B.D.; White, B.W.; Smith, P.R.; Leslie, I.H.; Corkran, J.R.

    1988-01-01

    Los Alamos National Laboratory, in cooperation with New Mexico State University, has carried on a series of tests to provide experimental data on fire-generated aerosol transport. These data will be used to verify the aerosol transport capabilities of the FIRAC computer code. FIRAC was developed by Los Alamos for the US Nuclear Regulatory Commission. It is intended to be used by safety analysts to evaluate the effects of hypothetical fires on nuclear plants. One of the most significant aspects of this analysis deals with smoke and radioactive material movement throughout the plant. The tests have been carried out using an industrial furnace that can generate gas temperatures to 300/degree/C. To date, we have used quartz aerosol with a median diameter of about 10 ..mu..m as the fire aerosol simulant. We also plan to use fire-generated aerosols of polystyrene and polymethyl methacrylate (PMMA). The test variables include two nominal gas flow rates (150 and 300 ft/sup 3//min) and three nominal gas temperatures (ambient, 150/degree/C, and 300/degree/C). The test results are presented in the form of plots of aerosol deposition vs length of duct. In addition, the mass of aerosol caught in a high-efficiency particulate air (HEPA) filter during the tests is reported. The tests are simulated with the FIRAC code, and the results are compared with the experimental data. 3 refs., 10 figs., 1 tab.

  15. GCM parameterization of radiative forcing by Pinatubo aerosols

    SciTech Connect

    Lacis, A.A.; Mishchenko, M.I.

    1996-12-31

    This paper addresses the question of whether the general circulation model (GCM) parameterization of volcanic aerosol forcing can be adequately described in terms of just two physical aerosol parameters: (1) the aerosol column optical thickness and (2) the effective radius of the aerosol size distribution. Data recorded from the eruption of Mt. Pinatubo in the Philippines in June 1991 was analyzed to attempt to answer this question. The spatial distribution of the particle size showed considerable variability and was found to increase steadily following the eruption. The time evolution of the Pinatubo aerosol particle size distribution as derived from satellite data differed significantly, particularly in the early phases of the eruption, from that assumed in the initial GCM simulation of the Pinatubo eruption. A bimodal distribution was used to examine the possibility that the actual size distribution of the volcanic aerosol was multimodal. However, results suggested that in most cases the aerosol size distribution was essentially monomodal in nature. Results from the radiative model used in the calculations are also presented. 11 refs., 6 figs.

  16. A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols

    SciTech Connect

    Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Perraud, Veronique; Bruns, Emily; Alexander, M. L.; Zelenyuk, Alla; Dabdub, Donald; Finlayson-Pitts, Barbara J.

    2010-05-01

    For studying the formation and photochemical/thermal reactions of aerosols relevant to the troposphere, a unique, high-volume, slow-flow, stainless steel aerosol flow system equipped with 5 UV lamps has been constructed and characterized experimentally. The total flow system length 6 is 8.5 m and includes a 1.2 m section used for mixing, a 6.1 m reaction section and a 1.2 m 7 transition cone at the end. The 45.7 cm diameter results in a smaller surface to volume ratio than is found in many other flow systems and thus reduces the potential contribution from wall reactions. The latter are also reduced by frequent cleaning of the flow tube walls which is made feasible by the ease of disassembly. The flow tube is equipped with ultraviolet lamps for photolysis. This flow system allows continuous sampling under stable conditions, thus increasing the amount of sample available for analysis and permitting a wide variety of analytical techniques to be applied simultaneously. The residence time is of the order of an hour, and sampling ports located along the length of the flow tube allow for time-resolved measurements of aerosol and gas-phase products. The system was characterized using both an inert gas (CO2) and particles (atomized NaNO3). Instruments interfaced directly to this flow system include a NOx analyzer, an ozone analyzer, relative humidity and temperature probes, a scanning mobility particle sizer spectrometer, an aerodynamic particle sizer spectrometer, a gas chromatograph-mass spectrometer, an integrating nephelometer, and a Fourier transform infrared spectrophotometer equipped with a long path (64 m) cell. Particles collected with impactors and filters at the various sampling ports can be analyzed subsequently by a variety of techniques. Formation of secondary organic aerosol from α-pinene reactions (NOx photooxidation and ozonolysis) are used to demonstrate the capabilities of this new system.

  17. Method of Producing Ultra-heavy Homogeneous Aerosol of Sub-micron Particles

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ernest J. Valeo and Nathaniel J. Fisch | Princeton Plasma Physics Lab Method of Producing Ultra-heavy Homogeneous Aerosol of Sub-micron Particles Ernest J. Valeo and Nathaniel J. Fisch This invention forms a heavy homogeneous aerosol by agitating sub-micron particles throughacoustic forces and then releasing the aerosol into a low-pressure reservoir. Through this method, the aerosol particulates comprise the dominant mass of the aerosol to produce plasma of the requisite homogeneity,

  18. Apparatus and method for the characterization of respirable aerosols

    DOEpatents

    Clark, Douglas K.; Hodges, Bradley W.; Bush, Jesse D.; Mishima, Jofu

    2016-05-31

    An apparatus for the characterization of respirable aerosols, including: a burn chamber configured to selectively contain a sample that is selectively heated to generate an aerosol; a heating assembly disposed within the burn chamber adjacent to the sample; and a sampling segment coupled to the burn chamber and configured to collect the aerosol such that it may be analyzed. The apparatus also includes an optional sight window disposed in a wall of the burn chamber such that the sample may be viewed during heating. Optionally, the sample includes one of a Lanthanide, an Actinide, and a Transition metal.

  19. Microsoft Word - Aerosol Working Group_Norfolk 2008.doc

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ARM Aerosol Working Group, Agenda, Monday, March 10, 2008 15:00 0:13 Flynn 4STAR - a next-generation spectrometer for sky-scanning solar tracking radiometry 15:13 0:13 Yu FastTRAC 15:26 0:13 Obland Initial Airborne High Spectral Resolution Lidar (HSRL) Results from the Cumulus Humilis Aerosol Processing Study (CHAPS) and Cloud and Land Surface Interaction Campaign (CLASIC) 15:39 0:13 Kim Efficacy of Aerosol - Cloud Interactions Under Varying Meteorological Conditions: Southern Great Plains Vs.

  20. ARM - Field Campaign - Pajarito Aerosol Coupling to Ecosystems PACE

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govCampaignsPajarito Aerosol Coupling to Ecosystems PACE Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Pajarito Aerosol Coupling to Ecosystems PACE 2011.12.16 - 2012.04.29 Lead Scientist : Manvendra Dubey For data sets, see below. Abstract The primary goal of the Pajarito Aerosol Couplings to Ecosystems (PACE) IOP is to demonstrate routine MAOS field operations and

  1. ARM - Field Campaign - Shortwave Radiation and Aerosol Intensive

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Observation Periods govCampaignsShortwave Radiation and Aerosol Intensive Observation Periods ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Shortwave Radiation and Aerosol Intensive Observation Periods 1998.08.03 - 1998.08.28 Lead Scientist : Warren Wiscombe For data sets, see below. Summary Wednesday, August 5, 1998: IOP Opening Activities: The IOP updates for the Shortwave/Aerosol/BDRF will be

  2. Aerosol mass spectrometry systems and methods

    DOEpatents

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  3. Project Tour

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Project Tour Project Tour See NMSSUP from the ground NMSSUP Phase II Construction Project Tour Transportation Transportation to the tour will be provided from Hilton Santa Fe Buffalo Thunder to Los Alamos National Laboratory, Technical Area 55. After the tour, transportation will be provided back to Hilton Santa Fe Buffalo Thunder. What to wear Wear comfortable pants and leather shoes (flat, comfortable, closed-toe; no tennis shoes or high heels). Schedule There will be a one-hour, no-host lunch

  4. PROJECT INFORMATION

    Office of Scientific and Technical Information (OSTI)

    PROJECT INFORMATION DOE award number: DE EE0000621 Name of recipient: San Francisco Public Utilities Commission Project title: San Francisco Biofuel Program Name of project: Brown Grease to Biodiesel Demonstration Director/principal investigator: Domenec Jolis Consortium/teaming members: Environmental Protection Agency (EPA) California Energy Commission (CEC) URS Corporation EXECUTIVE SUMMARY Municipal wastewater treatment facilities have typically been limited to the role of accepting

  5. Method for HEPA filter leak scanning with differentiating aerosol detector

    SciTech Connect

    Kovach, B.J.; Banks, E.M.; Wikoff, W.O.

    1997-08-01

    While scanning HEPA filters for leaks with {open_quotes}Off the Shelf{close_quote} aerosol detection equipment, the operator`s scanning speed is limited by the time constant and threshold sensitivity of the detector. This is based on detection of the aerosol density, where the maximum signal is achieved when the scanning probe resides over the pinhole longer than several detector time-constants. Since the differential value of the changing signal can be determined by observing only the first small fraction of the rising signal, using a differentiating amplifier will speed up the locating process. The other advantage of differentiation is that slow signal drift or zero offset will not interfere with the process of locating the leak, since they are not detected. A scanning hand-probe attachable to any NUCON{reg_sign} Aerosol Detector displaying the combination of both aerosol density and differentiated signal was designed. 3 refs., 1 fig.

  6. Detection and Retrieval of Mineral Dust Aerosol Using AERI during...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Detection and Retrieval of Mineral Dust Aerosol Using AERI during the UAE2 Field Campaign: ... A method for detecting and retrieving airborne mineral dust using the surface-based ...

  7. Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report

    SciTech Connect

    Kotamarthi, VR

    2013-12-01

    In general, the Indian Summer Monsoon (ISM) as well as the and the tropical monsoon climate is influenced by a wide range of factors. Under various climate change scenarios, temperatures over land and into the mid troposphere are expected to increase, intensifying the summer pressure gradient differential between land and ocean and thus strengthening the ISM. However, increasing aerosol concentration, air pollution, and deforestation result in changes to surface albedo and insolation, potentially leading to low monsoon rainfall. Clear evidence points to increasing aerosol concentrations over the Indian subcontinent with time, and several hypotheses regarding the effect on monsoons have been offered. The Ganges Valley Aerosol Experiment (GVAX) field study aimed to provide critical data to address these hypotheses and contribute to developing better parameterizations for tropical clouds, convection, and aerosol-cloud interactions. The primary science questions for the mission were as follows:

  8. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems...

    Office of Scientific and Technical Information (OSTI)

    (HI-SCALE) Science Plan Citation Details In-Document Search Title: Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan Cumulus convection ...

  9. Development of Aerosol Models for Radiative Flux Calculations...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... the Texas and Louisiana urban and industrial areas (T1 and T2 in Figure 1b) have the highest aerosol loading (Figure 3) and K + fraction (a marker for biomass burning) but can ...

  10. Aerosol Radiative Forcing Under Cloudless Conditions.in Winter...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    RAS. ARF in the shortwave range is determined by the difference between the net fluxes of the solar radiation, calculated with and without the aerosol component of the atmosphere. ...

  11. Aerosol Radiative Forcing During Spring-Summer 2002 from Measurements...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ARF in the shortwave range is determined by the difference between the net fluxes of the solar radiation, calculated with and without the aerosol component of the atmosphere. The ...

  12. Pressure-flow reducer for aerosol focusing devices

    DOEpatents

    Gard, Eric; Riot, Vincent; Coffee, Keith; Woods, Bruce; Tobias, Herbert; Birch, Jim; Weisgraber, Todd

    2008-04-22

    A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

  13. Aerosol Radiative Effects in the Tropical Western Pacific

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    2001) found that during August to October 1997, such aerosols had a large impact on the surface radiative energy budget ... U.S. Department of Energy (DOE), Office of Science, Office ...

  14. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX) 2015.01.14 - 2015.02.12 Lead...

  15. ARM - Field Campaign - MArine Stratus Radiation Aerosol and Drizzle...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP Campaign Links Science Plan AMF Point Reyes Website AMF Point Reyes Data Plots ARM Data Discovery Browse Data...

  16. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerial Observations 2015.01.14...

  17. ARM - Field Campaign - 2007 Cumulus Humilis Aerosol Process Study...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2007 Cumulus Humilis Aerosol Process Study (CHAPS) 2007.06.04 - 2007.06.25 Lead...

  18. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Climate Campaign Links BAECC Website ARM Data Discovery Browse Data Related Campaigns Biogenic Aerosols - Effects on Clouds and Climate: Cloud OD Sensor TWST 2014.06.15, Scott, AMF...

  19. Aerosol Optical Depth Value-Added Product Report

    SciTech Connect

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  20. ARM - Carbonaceous Aerosols and Radiative Effects Study (CARES...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News & Press Backgrounder (PDF, 1.45MB) G-1 Aircraft Fact Sheet (PDF, 1.3MB) Contacts Rahul Zaveri, Lead Scientist Carbonaceous Aerosols and Radiative Effects Study (CARES)...

  1. Aerosol Radiative Forcing Under Cloudless Conditions.in Winter...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ARF in the shortwave range is determined by the difference between the net fluxes of the solar radiation, calculated with and without the aerosol component of the atmosphere. The...

  2. Field Trial of an Aerosol-Based Enclosure Sealing Technology

    SciTech Connect

    Harrington, Curtis; Springer, David

    2015-09-01

    This report presents the results from several demonstrations of a new method for sealing building envelope air leaks using an aerosol sealing process developed by the Western Cooling Efficiency Center at UC Davis. The process involves pressurizing a building while applying an aerosol sealant to the interior. As air escapes through leaks in the building envelope, the aerosol particles are transported to the leaks where they collect and form a seal that blocks the leak. Standard blower door technology is used to facilitate the building pressurization, which allows the installer to track the sealing progress during the installation and automatically verify the final building tightness. Each aerosol envelope sealing installation was performed after drywall was installed and taped, and the process did not appear to interrupt the construction schedule or interfere with other trades working in the homes. The labor needed to physically seal bulk air leaks in typical construction will not be replaced by this technology.

  3. Research Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    structure whose behavior is fundamentally nonlinear. Thus, the students assigned to this project will develop control techniques that will allow an electrodynamic shake table to...

  4. Custom Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Management Small Industrial Lighting Compressed Air ESUE Motors Federal Agriculture Custom Projects No two industrial customers are alike; each has its own unique...

  5. project management

    National Nuclear Security Administration (NNSA)

    %2A en Project Management and Systems Support http:nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  6. project management

    National Nuclear Security Administration (NNSA)

    3%2A en Project Management and Systems Support http:www.nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  7. Project Complete

    Energy.gov [DOE]

    DOE has published its Record of Decision announcing and explaining DOE’s chosen project alternative and describing any commitments for mitigating potential environmental impacts. The NEPA process...

  8. Research Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San ...

  9. Project Construction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

  10. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGES [OSTI]

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer theory was

  11. ARM - Field Campaign - Holistic Interactions of Shallow Clouds, Aerosols,

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Land-Ecosystems (HI-SCALE); National Geospatial-Intelligence Agency Calibration Target Placements ; National Geospatial-Intelligence Agency Calibration Target Placements ARM Data Discovery Browse Data Related Campaigns Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) 2016.04.24, Fast, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Holistic Interactions of Shallow Clouds, Aerosols, and

  12. ARM AOS Processing Status and Aerosol Intensive Properties VAP

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    AOS Processing Status and Aerosol Intensive Properties VAP A. S. Koontz and C. J. Flynn Pacific Northwest National Laboratory Richland, Washington J. A. Ogren, E. Andrews, and P. J. Sheridan National Oceanic and Atmospheric Administration Boulder, Colorado Abstract The Atmospheric Radiation Measurement (ARM) Aerosol Observing System (AOS) has been operating at the Southern Great Plains (SGP) Central Facility since 1996. In response to the cross-cutting broad- band heating rate profile value

  13. Organic Aerosol Component (OACOMP) Value-Added Product Report

    SciTech Connect

    Fast, J; Zhang, Q; Tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.

  14. Surface based remote sensing of aerosol-cloud interactions

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Surface based remote sensing of aerosol-cloud interactions Feingold, Graham NOAA/Environmental Technology Laboratory Frisch, Shelby NOAA/Environmental Technology Laboratory Min, Qilong State University of New York at Albany Category: Cloud Properties We will present an analysis of the effect of aerosol on clouds at the Southern Great Plains ARM site. New methods for retrieving cloud droplet effective radius with radar (MMCR), multifilter rotating shadowband radiometer (MFRSR), and microwave

  15. Atmospheric Science Program Cumulus Humilis Aerosol Processing Study (CHAPS)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Program Cumulus Humilis Aerosol Processing Study (CHAPS) General Description 'Cumulus humilis' is the scientific term used to describe the small fair weather clouds that dot the summer skies over Oklahoma. During the month of June, scientists sponsored by the U.S. Department of Energy's Atmospheric Science Program will use aircraft and ground based instruments to obtain information about the physical and chemical properties of these clouds and the small airborne particles - called aerosols -

  16. Hair spray, aerosol deodorants & kitchen refrigerators part of Rowland's

    Office of Scientific and Technical Information (OSTI)

    1995 Nobel Prize in chemistry | OSTI, US Dept of Energy Office of Scientific and Technical Information Hair spray, aerosol deodorants & kitchen refrigerators part of Rowland's 1995 Nobel Prize in chemistry Back to the OSTI News Listing for 2012 F. Sherwood Rowland earned a share in the 1995 Nobel Prize in chemistry for his work leading to the discovery that a chemical used in aerosols was slowly destroying Earth's ozone layer. Get resources with additional information and enjoy the

  17. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems

    Office of Scientific and Technical Information (OSTI)

    (HI-SCALE) Science Plan (Program Document) | SciTech Connect Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan Citation Details In-Document Search Title: Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the Southern Great Plains and over many regions of the world, particularly during the

  18. Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical Depth

    Office of Scientific and Technical Information (OSTI)

    (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report (Technical Report) | SciTech Connect Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical Depth (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report Citation Details In-Document Search Title: Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical Depth (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report This report describes

  19. Biogenic Aerosols-Effects on Clouds and Climate: Snowfall Experiment

    Office of Scientific and Technical Information (OSTI)

    Field Campaign Report (Program Document) | SciTech Connect Biogenic Aerosols-Effects on Clouds and Climate: Snowfall Experiment Field Campaign Report Citation Details In-Document Search Title: Biogenic Aerosols-Effects on Clouds and Climate: Snowfall Experiment Field Campaign Report The snowfall measurement campaign took place during deployment of the U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility second ARM Mobile Facility (AMF2) in

  20. Organic and Elemental Carbon Aerosol Particulates at the Southern Great

    Office of Scientific and Technical Information (OSTI)

    Plains Site Field Campaign Report (Program Document) | SciTech Connect Program Document: Organic and Elemental Carbon Aerosol Particulates at the Southern Great Plains Site Field Campaign Report Citation Details In-Document Search Title: Organic and Elemental Carbon Aerosol Particulates at the Southern Great Plains Site Field Campaign Report The purpose of this study was to measure the organic carbon (OC) and elemental carbon (EC) fractions of PM2.5 particulate matter at the U.S. Department

  1. ARM - Publications: Science Team Meeting Documents: Aerosol Research at the

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Arctic Facility for Atmospheric Remote Sensing (AFARS): In Search of Indirect Cloud Effects Aerosol Research at the Arctic Facility for Atmospheric Remote Sensing (AFARS): In Search of Indirect Cloud Effects Sassen, Kenneth University of Alaska Fairbanks Tiruchirapalli, Ramaswamy Atmospheric Science Group, University of Alaska Fairbanks Daneva, Diana University of Alaska, Fairbanks Khovorostyanov, Vitaly Moscow Aerological Observatory At high latitudes, local sources of aerosols are

  2. Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006

    SciTech Connect

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; VanReken, T.; Fischer, M.; Matias, E.; Moya, M.; Farmer, D.; Cohen, R.C.

    2008-12-05

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM{sub 2.5} is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1 {micro}m diameter, semi-volatile partitioning requires 30-60 min to equilibrate; longer time is typically required during the night and early morning hours. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as 'equivalent sodium' (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  3. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of α-Pinene

    SciTech Connect

    Song, Chen; Zaveri, Rahul A.; Alexander, M. Lizabeth; Thornton, Joel A.; Madronich, Sasha; Ortega, John V.; Zelenyuk, Alla; Yu, Xiao-Ying; Laskin, Alexander; Maughan, A. D.

    2007-10-16

    Semi-empirical secondary organic aerosol (SOA) models typically assume a well-mixed organic aerosol phase even in the presence of hydrophobic primary organic aerosols (POA). This assumption significantly enhances the modeled SOA yields as additional organic mass is made available to absorb greater amounts of oxidized secondary organic gases than otherwise. We investigate the applicability of this critical assumption by measuring SOA yields from ozonolysis of α-pinene (a major biogenic SOA precursor) in a smog chamber in the absence and in the presence of dioctyl phthalate (DOP) and lubricating oil seed aerosol. These particles serve as surrogates for urban hydrophobic POA. The results show that these POA did not enhance the SOA yields. If these results are found to apply to other biogenic SOA precursors, then the semi-empirical models used in many global models would predict significantly less biogenic SOA mass and display reduced sensitivity to anthropogenic POA emissions than previously thought.

  4. Ganges Valley Aerosol Experiment: Science and Operations Plan

    SciTech Connect

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile

  5. Awarded projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    projects Awarded projects 2016 Allocation Awards This page lists the allocation awards for NERSC for the 2016 allocation year (Jan 12, 2016 through Jan 09, 2017). Read More » Previous Year Awards Last edited: 2016-04-29 11:35:1

  6. Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

    SciTech Connect

    Matsui, H.; Koike, Makoto; Kondo, Yutaka; Fast, Jerome D.; Takigawa, M.

    2014-09-30

    Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we developed an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 m to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particles with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module was implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials was about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement was estimated to be 10 20% over northern East Asia and 20 35% over southern East Asia. A clear north-south contrast was also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increased CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increased CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also showed that the impact of each process on each optical and radiative parameter depended strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA processes

  7. New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects

    DOE PAGES [OSTI]

    Chen, Jingyi; Liu, Yangang; Zhang, Minghua; Peng, Yiran

    2016-02-28

    In this study, aerosol indirect effects suffer from large uncertainty in climate models and among observations. This study focuses on two plausible factors: regime dependence of aerosol-cloud interactions and the effect of cloud droplet spectral shape. We show, using a new parcel model, that combined consideration of droplet number concentration (Nc) and relative dispersion (ε, ratio of standard deviation to mean radius of the cloud droplet size distribution) better characterizes the regime dependence of aerosol-cloud interactions than considering Nc alone. Given updraft velocity (w), ε increases with increasing aerosol number concentration (Na) in the aerosol-limited regime, peaks in the transitionalmore » regime, and decreases with further increasing Na in the updraft-limited regime. This new finding further reconciles contrasting observations in literature and reinforces the compensating role of dispersion effect. The nonmonotonic behavior of ε further quantifies the relationship between the transitional Na and w that separates the aerosol- and updraft-limited regimes.« less

  8. Aerosol specification in single-column CAM5

    DOE PAGES [OSTI]

    Lebassi-Habtezion, B.; Caldwell, P.

    2014-11-17

    The ability to run a global climate model in single-column mode is very useful for testing model improvements because single-column models (SCMs) are inexpensive to run and easy to interpret. A major breakthrough in Version 5 of the Community Atmosphere Model (CAM5) is the inclusion of prognostic aerosol. Unfortunately, this improvement was not coordinated with the SCM version of CAM5 and as a result CAM5-SCM initializes aerosols to zero. In this study we explore the impact of running CAM5-SCM with aerosol initialized to zero (hereafter named Default) and test three potential fixes. The first fix is to use CAM5's prescribedmore » aerosol capability, which specifies aerosols at monthly climatological values. The second method is to prescribe aerosols at observed values. The third approach is to fix droplet and ice crystal numbers at prescribed values. We test our fixes in four different cloud regimes to ensure representativeness: subtropical drizzling stratocumulus (based on the DYCOMS RF02 case study), mixed-phase Arctic stratocumulus (using the MPACE-B case study), tropical shallow convection (using the RICO case study), and summertime mid-latitude continental convection (using the ARM95 case study). Stratiform cloud cases (DYCOMS RF02 and MPACE-B) were found to have a strong dependence on aerosol concentration, while convective cases (RICO and ARM95) were relatively insensitive to aerosol specification. This is perhaps expected because convective schemes in CAM5 do not currently use aerosol information. Adequate liquid water content in the MPACE-B case was only maintained when ice crystal number concentration was specified because the Meyers et al. (1992) deposition/condensation ice nucleation scheme used by CAM5 greatly overpredicts ice nucleation rates, causing clouds to rapidly glaciate. Surprisingly, predicted droplet concentrations for the ARM95 region in both SCM and global runs were around 25 cm−3, which is much lower than observed. This finding

  9. Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.

    SciTech Connect

    Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T. (Argonne National Laboratory, USA); Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2006-10-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence

  10. Distinct effects of anthropogenic aerosols on the East Asian summer monsoon between multi-decadal strong and weak monsoon stages: Effects of aerosols on EASM

    DOE PAGES [OSTI]

    Xie, Xiaoning; Wang, Hongli; Liu, Xiaodong; Li, Jiandong; Wang, Zhaosheng; Liu, Yangang

    2016-06-18

    Industrial emissions of anthropogenic aerosols over East Asia have greatly increased in recent decades, and so the interactions between atmospheric aerosols and the East Asian summer monsoon (EASM) have attracted enormous attention. In order to further understand the aerosol-EASM interaction, we investigate the impacts of anthropogenic aerosols on the EASM during the multidecadal strong (1950–1977) and weak (1978–2000) EASM stages using the Community Atmospheric Model 5.1. Numerical experiments are conducted for the whole period, including the two different EASM stages, with present day (PD, year 2000) and preindustrial (PI, year 1850) aerosol emissions, as well as the observed time-varying aerosolmore » emissions. A comparison of the results from PD and PI shows that, with the increase in anthropogenic aerosols, the large-scale EASM intensity is weakened to a greater degree (-9.8%) during the weak EASM stage compared with the strong EASM stage (-4.4%). The increased anthropogenic aerosols also result in a significant reduction in precipitation over North China during the weak EASM stage, as opposed to a statistically insignificant change during the strong EASM stage. Because of greater aerosol loading and the larger sensitivity of the climate system during weak EASM stages, the aerosol effects are more significant during these EASM stages. Moreover, these results suggest that anthropogenic aerosols from the same aerosol emissions have distinct effects on the EASM and the associated precipitation between the multidecadal weak and strong EASM stages.« less

  11. Project 1027697

    Office of Scientific and Technical Information (OSTI)

    William Apel and Frank Roberto at) the Biotechnology Department at the INEEL. Each part of this project is funded under a different contract with the Science Division of the US ...

  12. RENOTER Project

    Energy.gov [DOE]

    Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE materials, as well as efficient material integration and production process.

  13. EGS Projects

    Energy.gov [DOE]

    EGS projects span research, development, and demonstration. Unlike traditional hydrothermal systems, EGS capture heat from areas that traditional geothermal energy cannot—where fluid and/or...

  14. Methods and Tools to allow molecular flow simulations to be coupled to higher level continuum descriptions of flows in porous/fractured media and aerosol/dust dynamics

    SciTech Connect

    Loyalka, Sudarshan

    2015-04-09

    The purpose of this project was to develop methods and tools that will aid in safety evaluation of nuclear fuels and licensing of nuclear reactors relating to accidents.The objectives were to develop more detailed and faster computations of fission product transport and aerosol evolution as they generally relate to nuclear fuel and/or nuclear reactor accidents. The two tasks in the project related to molecular transport in nuclear fuel and aerosol transport in reactor vessel and containment. For both the tasks, explorations of coupling of Direct Simulation Monte Carlo with Navier-Stokes solvers or the Sectional method were not successful. However, Mesh free methods for the Direct Simulation Monte Carlo method were successfully explored.These explorations permit applications to porous and fractured media, and arbitrary geometries.The computations were carried out in Mathematica and are fully parallelized. The project has resulted in new computational tools (algorithms and programs) that will improve the fidelity of computations to actual physics, chemistry and transport of fission products in the nuclear fuel and aerosol in reactor primary and secondary containments.

  15. Research Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Projects » Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email UCSD Faculty and Graduate

  16. Research Projects

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Projects Joint Los Alamos National Laboratory/UCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email "Since 2003, LANL has funded numerous collaborative

  17. Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods

    SciTech Connect

    Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

    2011-06-03

    Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and

  18. BAECC Biogenic Aerosols - Effects on Clouds and Climate

    SciTech Connect

    Petäjä, Tuukka; Moisseev, Dmitri; Sinclair, Victoria; O'Connor, Ewan J.; Manninen, Antti J.; Levula, Janne; Väänänen, Riikka; Heikkinen, Liine; Äijälä, Mikko; Aalto, Juho; Bäck, Jaana

    2015-11-01

    “Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, featured the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program’s 2nd Mobile Facility (AMF2) in Hyytiälä, Finland. It operated for an 8-month intensive measurement campaign from February to September 2014. The main research goal was to understand the role of biogenic aerosols in cloud formation. One of the reasons to perform BAECC study in Hyytiälä was the fact that it hosts SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), which is one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. The BAECC enables combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations and allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. With the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations of AMF2 and SMEAR-II provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes. The BAECC dataset will initiate new opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures.

  19. CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-07-12

    The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

  20. Aerosol Optical Depth Value-Added Product for the SAS-He Instrument...

    Office of Scientific and Technical Information (OSTI)

    Aerosol Optical Depth Value-Added Product for the SAS-He Instrument Citation Details In-Document Search Title: Aerosol Optical Depth Value-Added Product for the SAS-He Instrument ...

  1. Long-term impacts of aerosols on the vertical development of...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Long-term impacts of aerosols on the vertical development of clouds and precipitation Citation Details In-Document Search Title: Long-term impacts of aerosols on ...

  2. One ARM, Two Columns and a Whole Lot of Aerosols | Department...

    Office of Environmental Management (EM)

    Aerosols are tiny particles in the air, such as dust, soot and sea salt. Scientists are ... and tiny particles in the air, such as dust, soot and sea salt -- referred to as aerosols. ...

  3. ARM - Field Campaign - Aerosol Life Cycle: UV-APS and Nano-SMPS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    govCampaignsAerosol Life Cycle: UV-APS and Nano-SMPS ARM Data Discovery Browse Data ... Send Campaign : Aerosol Life Cycle: UV-APS and Nano-SMPS 2011.06.10 - 2011.06.25 Lead ...

  4. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook (Technical...

    Office of Scientific and Technical Information (OSTI)

    Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook Citation Details In-Document Search Title: Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook The Greenhouse Gas ...

  5. DOE Project Scorecards

    Energy.gov [DOE]

    DOE Project Scorecards DOE project scorecards summarize capital asset project performance compared to the current approved baseline. 

  6. DOE Project Scorecards

    Energy.gov [DOE]

    DOE Project Scorecards DOEproject scorecards summarize capital asset project performance compared to the current approved baseline.

  7. The dependence of cloud particle size and precipitation probability on non-aerosol-loading related variables

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Explaining and reducing the uncertainties in the first aerosol i Explaining and reducing the uncertainties in the first aerosol indirect effect ndirect effect Hongfei Shao and Guosheng Liu Meteorology Department, Florida State University INTRODUCTION INTRODUCTION Anthropogenic aerosols enhance cloud reflectance of solar radiation by increasing the cloud droplet number concentrations. This so-called first Aerosol Indirect Effect (AIE) has a potentially large cooling tendency on our planet.

  8. Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods

    Energy.gov [DOE]

    Advanced aerosol analysis methods were used to examine particulates from single cylinder test engines running on gasoline and ethanol blends.

  9. Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15

    Office of Scientific and Technical Information (OSTI)

    Field Campaign Report (Technical Report) | SciTech Connect Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report Citation Details In-Document Search Title: Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report Aerosol indirect effects, which represent the impact of aerosols on climate through influencing the properties of clouds, remain one of the main uncertainties in climate predictions (Stocker et al. 2013).

  10. Experience with Aerosol Generation During Rotary Mode Core Sampling in the Hanford Single Shell Waste Tanks

    SciTech Connect

    SCHOFIELD, J.S.

    2000-01-24

    This document provides data on aerosol concentrations in tank head spaces, total mass of aerosols in the tank head space and mass of aerosols sent to the exhauster during Rotary Mode Core Sampling from November 1994 through June 1999. A decontamination factor for the RMCS exhauster filter housing is calculated based on operation data.

  11. Sources and composition of submicron organic mass in marine aerosol particles: Marine Aerosol Organic Mass Composition

    DOE PAGES [OSTI]

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-26

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 6512% hydroxyl, 219% alkane, 66% amine, and 78% carboxylic acid functional groups. Contributions from photochemicalmorereactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak

  12. Climate Impacts of Atmospheric Sulfate and Black Carbon Aerosols

    SciTech Connect

    Qian, Yun; Song, Qingyuan; Menon, Surabi; Yu, Shaocai; Liu, Shaw C.; Shi, Guangyu; Leung, Lai R.; Luo, Yunfeng

    2008-09-19

    Although the global average surface temperature has increased by about 0.6°C during the last century (IPCC, 2001), some regions such as East Asia, Eastern North America, and Western Europe have cooled rather than warmed during the past decades (Jones, 1988; Qian and Giorgi, 2000). Coherent changes at the regional scale may reflect responses to different climate forcings that need to be understood in order to predict the future net climate response at the global and regional scales under different emission scenarios. Atmospheric aerosols play an important role in global climate change (IPCC 2001). They perturb the earth’s radiative budget directly by scattering and absorbing solar and long wave radiation, and indirectly by changing cloud reflectivity, lifetime, and precipitation efficiency via their role as cloud condensation nuclei. Because aerosols have much shorter lifetime (days to weeks) compared to most greenhouse gases, they tend to concentrate near their emission sources and distribute very unevenly both in time and space. This non-uniform distribution of aerosols, in conjunction with the greenhouse effect, may lead to differential net heating in some areas and net cooling in others (Penner et al. 1994). Sulfate aerosols come mainly from the oxidation of sulfur dioxide (SO2) emitted from fossil fuel burning. Black carbon aerosols are directly emitted during incomplete combustion of biomass, coal, and diesel derived sources. Due to the different optical properties, sulfate and black carbon affect climate in different ways. Because of the massive emissions of sulfur and black carbon that accompany the rapid economic expansions in East Asia, understanding the effects of aerosols on climate is particularly important scientifically and politically in order to develop adaptation and mitigation strategies.

  13. Distinguishing Aerosol Impacts on Climate Over the Past Century

    SciTech Connect

    Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

    2008-08-22

    Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

  14. Quantifying the Uncertainties of Aerosol Indirect Effects and Impacts on Decadal-Scale Climate Variability in NCAR CAM5 and CESM1

    SciTech Connect

    Park, Sungsu

    2014-12-12

    The main goal of this project is to systematically quantify the major uncertainties of aerosol indirect effects due to the treatment of moist turbulent processes that drive aerosol activation, cloud macrophysics and microphysics in response to anthropogenic aerosol perturbations using the CAM5/CESM1. To achieve this goal, the P.I. hired a postdoctoral research scientist (Dr. Anna Fitch) who started her work from the Nov.1st.2012. In order to achieve the project goal, the first task that the Postdoc. and the P.I. did was to quantify the role of subgrid vertical velocity variance on the activation and nucleation of cloud liquid droplets and ice crystals and its impact on the aerosol indirect effect in CAM5. First, we analyzed various LES cases (from dry stable to cloud-topped PBL) to check whether this isotropic turbulence assumption used in CAM5 is really valid. It turned out that this isotropic turbulence assumption is not universally valid. Consequently, from the analysis of LES, we derived an empirical formulation relaxing the isotropic turbulence assumption used for the CAM5 aerosol activation and ice nucleation, and implemented the empirical formulation into CAM5/CESM1, and tested in the single-column and global simulation modes, and examined how it changed aerosol indirect effects in the CAM5/CESM1. These results were reported in the poster section in the 18th Annual CESM workshop held in Breckenridge, CO during Jun.17-20.2013. While we derived an empirical formulation from the analysis of couple of LES from the first task, the general applicability of that empirical formulation was questionable, because it was obtained from the limited number of LES simulations. The second task we did was to derive a more fundamental analytical formulation relating vertical velocity variance to TKE using other information starting from basic physical principles. This was a somewhat challenging subject, but if this could be done in a successful way, it could be directly

  15. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer SGP 1bbhrpripbe1mcfarlane Title: Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud

  16. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer 1bbhrpripbe1mcfarlane Title: Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud

  17. Cloudnet Project

    SciTech Connect

    Hogan, Robin

    2008-01-15

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  18. Cloudnet Project

    DOE Data Explorer

    Hogan, Robin

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  19. ARM - Field Campaign - Holistic Interactions of Shallow Clouds, Aerosols,

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Land-Ecosystems (HI-SCALE): Nano-Particle Number Concentrations Nano-Particle Number Concentrations Related Campaigns Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) 2016.04.24, Fast, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE): Nano-Particle Number Concentrations 2016.08.28 - 2016.09.26 Lead Scientist :

  20. ARM - Field Campaign - Holistic Interactions of Shallow Clouds, Aerosols,

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Land-Ecosystems (HI-SCALE): Nanoparticle Composition and Precursors Nanoparticle Composition and Precursors Related Campaigns Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) 2016.04.24, Fast, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE): Nanoparticle Composition and Precursors 2016.08.21 - 2016.09.27 Lead

  1. ARM - PI Product - Aerosol Retrievals from ARM SGP MFRSR Data

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ProductsAerosol Retrievals from ARM SGP MFRSR Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Aerosol Retrievals from ARM SGP MFRSR Data The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM

  2. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Snowfall Experiment Snowfall Experiment ARM Data Discovery Browse Data Related Campaigns Biogenic Aerosols - Effects on Clouds and Climate 2014.02.01, Petäjä, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biogenic Aerosols - Effects on Clouds and Climate: Snowfall Experiment 2014.02.01 - 2014.04.30 Lead Scientist : Dmitri Moisseev For data sets, see below. Abstract The snowfall measurement campaign, took place during AMF2

  3. ARM - Field Campaign - Measurement of Aerosols, Radiation and Clouds over

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    the Southern Ocean (MARCUS: Ice Nucleating Particle Measurements) Ocean (MARCUS: Ice Nucleating Particle Measurements) Related Campaigns Measurement of Aerosols, Radiation and Clouds over the Southern Oceans (MARCUS) 2017.09.01, McFarquhar, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Measurement of Aerosols, Radiation and Clouds over the Southern Ocean (MARCUS: Ice Nucleating Particle Measurements) 2017.09.01 - 2018.04.30

  4. Mercury capture by aerosol transformation in combustion environments. Appendix 5

    SciTech Connect

    1997-02-01

    Aerosol transformation of elemental mercury by oxidizing mercury in the air is investigated in this study by varying temperature and residence time. The experimental results show that mercury oxidation is not important at the temperature range and time scale studied. The rate of mercury oxidation is too slow that the capture of mercury vapor by transforming it into mercury oxide in aerosol phase is not practical in real systems. Studies are needed for alternative approaches to capture mercury vapor such as the use of sorbent materials.

  5. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, A.K.

    1984-09-07

    This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

  6. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, Arlin K.

    1986-01-01

    A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

  7. The Atmosphere as a Laboratory: Aerosols, Air Quality, and Climate |

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Princeton Plasma Physics Lab 25, 2014, 9:30am to 11:00am Science On Saturday MBG Auditorium The Atmosphere as a Laboratory: Aerosols, Air Quality, and Climate Peter DeCarlo, Assistant Professor of Environmental Engineering and Chemistry Drexel University Abstract: PDF icon PeterDeCarlo.pdf Can't make it to the lab? Watch it LIVE here! The Atmosphere as a Laboratory: Aerosols, Air Quality and Climate Contact Information Coordinator(s): Deedee Ortiz dortiz@pppl.gov Host(s): Ronald Hatcher

  8. ARM - Publications: Science Team Meeting Documents: Effects of Aerosol Size

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Distribution and Vertical Profile on the Polarization in the Oxygen A-Band Effects of Aerosol Size Distribution and Vertical Profile on the Polarization in the Oxygen A-Band Duan, Minzheng State University of New York at Albany Min, Qilong State University of New York at Albany A vector radiative transfer code with successive order of scattering method was used to simulate the high-resolution polarization spectra in the oxygen A-band. The effects of aerosol size distribution and vertical

  9. Evaluation of Black Carbon Estimations in Global Aerosol Models

    SciTech Connect

    Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

    2009-11-27

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the

  10. Spent Nuclear Fuel project, project management plan

    SciTech Connect

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  11. Project Narrative

    SciTech Connect

    Driscoll, Mary C.

    2012-07-12

    The Project Narrative describes how the funds from the DOE grant were used to purchase equipment for the biology, chemistry, physics and mathematics departments. The Narrative also describes how the equipment is being used. There is also a list of the positive outcomes as a result of having the equipment that was purchased with the DOE grant.

  12. Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data

    SciTech Connect

    Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

    2012-03-28

    In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)'s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9° by 2.5° with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate configuration of

  13. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  14. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  15. MHK Projects/Manchac Point Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  16. MHK Projects/Claiborne Island Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  17. MHK Projects/Point Pleasant Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  18. MHK Projects/College Point Project | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    bel":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St James, LA Project StateProvince Louisiana Project Country United States Project Resource...

  19. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  20. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE PAGES [OSTI]

    Meskhidze, Nicholas; Nenes, Athanasios

    2010-01-01

    Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less

  1. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

    2012-03-16

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  2. Laboratory Testing of Aerosol for Enclosure Air Sealing

    SciTech Connect

    Harrington, Curtis; Modera, Mark

    2012-05-01

    This report presents a process for improving the air tightness of a building envelope by sealing shell leaks with an aerosol sealing technology. Both retrofit and new construction applications are possible through applying this process either in attics and crawlspaces or during rough-in stage.

  3. Black carbon aerosols and the third polar ice cap

    SciTech Connect

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  4. LESSONS LEARNED IN AEROSOL MONITORING WITH THE RASA

    SciTech Connect

    Forrester, Joel B.; Bowyer, Ted W.; Carty, Fitz; Comes, Laura; Eslinger, Paul W.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Kirkham, Randy R.; Lepel, Elwood A.; Litke, Kevin E.; Miley, Harry S.; Morris, Scott J.; Schrom, Brian T.; Van Davelaar, Peter; Woods, Vincent T.

    2011-09-14

    The Radionuclide Aerosol Sampler/Analyzer (RASA) is an automated aerosol collection and analysis system designed by Pacific Northwest National Laboratory (PNNL) in the 1990's and is deployed in several locations around the world as part of the International Monitoring System (IMS) required under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The RASA operates unattended, save for regularly scheduled maintenance, iterating samples through a three-step process on a 24-hour interval. In its 15-year history, much has been learned from the operation and maintenance of the RASA that can benefit engineering updates or future aerosol systems. On 11 March 2011, a 9.0 magnitude earthquake and tsunami rocked the eastern coast of Japan, resulting in power loss and cooling failures at the Daiichi nuclear power plants in Fukushima Prefecture. Aerosol collections were conducted with the RASA in Richland, WA. We present a summary of the lessons learned over the history of the RASA, including lessons taken from the Fukushima incident, regarding the RASA IMS stations operated by the United States.

  5. Field Trial of an Aerosol-Based Enclosure Sealing Technology

    SciTech Connect

    Harrington, Curtis; Springer, David

    2015-09-01

    This report presents the results from several demonstrations of a new method for sealing building envelope air leaks using an aerosol sealing process developed by the Western Cooling Efficiency Center at UC Davis. The process involves pressurizing a building while applying an aerosol sealant to the interior. As air escapes through leaks in the building envelope, the aerosol particles are transported to the leaks where they collect and form a seal that blocks the leak. Standard blower door technology is used to facilitate the building pressurization, which allows the installer to track the sealing progress during the installation and automatically verify the final building tightness. Each aerosol envelope sealing installation was performed after drywall was installed and taped, and the process did not appear to interrupt the construction schedule or interfere with other trades working in the homes. The labor needed to physically seal bulk air leaks in typical construction will not be replaced by this technology. However, this technology is capable of bringing the air leakage of a building that was built with standard construction techniques and HERS-verified sealing down to levels that would meet DOE Zero Energy Ready Homes program requirements. When a developer is striving to meet a tighter envelope leakage specification, this technology could greatly reduce the cost to achieve that goal by providing a simple and relatively low cost method for reducing the air leakage of a building envelope with little to no change in their common building practices.

  6. Hydropower Projects

    SciTech Connect

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  7. PROJECT SUMMARY

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    PROJECT SUMMARY 1 TITLE Advancing Synchrophasor Applications and Training through Academic-Industry Collaborations 2 PRINCIPLE INVESTIGATORS University of Wyoming: Dongliang Duan (PI), John Pierre, Suresh Muknahallipatna (co-PIs) Colorado State University: Liuqing Yang, Louis L. Scharf (co-PIs) Montana Tech of the University of Montana: Daniel Trudnowski, Matthew Donnelly (co-PIs) 3 CONTACT INFORMATION Dongliang Duan Dept. 3295, 1000 E. University Ave. Laramie, WY 82070 Tel: (307)766-6541; Fax:

  8. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    FFA Quarterly Report: April 1-June 30, 2009 July 2009 Doc. No. S05572 Page 1 Monticello National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: April 1-June 30, 2009 This report summarizes project status and activities implemented April through June 2009, and provides a schedule of near-term activities for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) sites. This report also includes disposal cell and Pond 4 leachate collection

  9. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    09 January 2010 Doc. No. S06172 Page 1 1.3 Peripheral Properties (Private and City-Owned) * No land use or supplemental standards compliance issues were observed or reported by LTSM on-site staff. Monticello National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: October 1-December 31, 2009 This report summarizes project status and activities implemented October through December 2009, and provides a schedule of near-term activities for the Monticello Mill Tailings

  10. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    1 July 2011 Doc. No. S07978 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: April 1-June 30, 2011 This report summarizes project status and activities implemented April through June 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental Protection Agency

  11. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    31, 2011 April 2011 Doc. No. S07666 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: January 1-March 31, 2011 This report summarizes project status and activities implemented January through March 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental

  12. Hallmark Project

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hallmark Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message

  13. COLLABORATIVE RESEARCH: Study of Aerosol Sources and Processing at the GVAX Pantnagar Supersite

    SciTech Connect

    Worsnop, Douglas R.

    2014-07-28

    This project funded the participation of scientists from seven research groups, running more than thirty instruments, in the Winter Intensive Operating Period (January-February 2012) of the Clean Air for London (ClearfLo) campaign at a rural site in Detling, UK, 45 km southeast of central London. The primary science questions for the ClearfLo Winter IOP were, 1) what is the urban increment of particulate matter (PM) and other pollutants in the greater London area, and, 2) what is the contribution of solid fuel use for home heating to wintertime PM? An additional motivation for the Detling measurements was the question of whether coatings on black carbon particles enhance absorption. The following four key accomplishments have been identified so far: 1) Chemical, physical and optical characterization of PM from local and regional sources (Figures 2, 4, 5 and 6). 2) Measurement of urban increment in particulate matter and gases in London (Figure 3). 3) Measurement of optical properties and chemical composition of coatings on black carbon containing particles indicates absorption enhancement. 4) First deployment of chemical ionization instrument (MOVI-CI-TOFMS) to measure both particle-phase and gas-phase organic acids. (See final report from Joel Thornton, University of Washington, for details.) Analysis of the large dataset acquired in Detling is ongoing and will yield further key accomplishments. These measurements of urban and rural aerosol properties will contribute to improved modeling of regional aerosol emissions, and of atmospheric aging and removal. The measurement of absorption enhancement by coatings on black carbon will contribute to improved modeling of the direct radiative properties of PM.

  14. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-04-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of September 2003 through February 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include chemical fractionation of the organic fraction to quantify the ratio of organic mass to organic carbon (OM/OC). The average OM/OC ratio for the 31 samples analyzed so far is 1.89, ranging between 1.62 and 2.53, which is consistent with expectations for an atmospherically processed regional aerosol. Analysis of the single particle data reveals that a on a particles in Pittsburgh consist of complex mixture of primary and secondary components. Approximately 79% of all particles measured with the instrument containing some form of carbon, with Carbonaceous Ammonium Nitrate (54.43%) being the dominant particle class. PMCAMx predictions were compared with data from more than 50 sites of the STN network located throughout the Eastern United States for the July 2001 period. OC and sulfate concentrations predicted by PMCAMx are within {+-}30% of the observed concentration at most of these sites. Spherical Aluminum Silicate particle concentrations (SAS) were used to estimate the contribution of primary coal emissions to fine particle levels at the central monitoring site. Primary emissions from coal combustion contribute on average 0.44 {+-} 0.3 {micro}g/m{sup 3} to PM{sub 2.5} at the site or 1.4 {+-} 1.3% of the total PM{sub 2.5} mass. Chemical mass balance analysis was performed to apportion the primary organic aerosol. About 70% of the primary OC emissions are from vehicular sources, with the gasoline contribution being on average three times greater than the diesel emissions in the summer.

  15. PROJECT MANGEMENT PLAN EXAMPLES

    Office of Environmental Management (EM)

    Current Baseline (FY99 MYWP) Revised Project Baseline Project Scope: Maintain Safe and ... Material Transition PFP Project Scope: Same as Current Baseline, Except ...

  16. Capital Project Prioritization

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Capital-Project-Prioritization Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  17. Contract/Project Management

    Energy.gov [DOE] (indexed site)

    Action Plan (CAP) Performance Metrics 1 ContractProject Management Performance Metric FY ... TPC is Total Project Cost. ContractProject Management Performance Metrics FY 2013 Target ...

  18. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Action Plan (CAP) Performance Metrics 1 ContractProject Management Performance Metric FY ... to FY13). TPC is Total Project Cost. ContractProject Management Performance Metrics ...

  19. PORTNUS Project

    SciTech Connect

    Loyal, Rebecca E.

    2015-07-14

    The objective of the Portunus Project is to create large, automated offshore ports that will the pace and scale of international trade. Additionally, these ports would increase the number of U.S. domestic trade vessels needed, as the imported goods would need to be transported from these offshore platforms to land-based ports such as Boston, Los Angeles, and Newark. Currently, domestic trade in the United States can only be conducted by vessels that abide by the Merchant Marine Act of 1920 – also referred to as the Jones Act. The Jones Act stipulates that vessels involved in domestic trade must be U.S. owned, U.S. built, and manned by a crew made up of U.S. citizens. The Portunus Project would increase the number of Jones Act vessels needed, which raises an interesting economic concern. Are Jones Act ships more expensive to operate than foreign vessels? Would it be more economically efficient to modify the Jones Act and allow vessels manned by foreign crews to engage in U.S. domestic trade? While opposition to altering the Jones Act is strong, it is important to consider the possibility that ship-owners who employ foreign crews will lobby for the chance to enter a growing domestic trade market. Their success would mean potential job loss for thousands of Americans currently employed in maritime trade.

  20. PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples

    Office of Environmental Management (EM)

    ... are as follows: Develop an integrated plan to accomplish the project objectives in a ... The 324327 Projects manager has the overall responsibility to establish, plan, and ...

  1. PROJECT MANAGEMENT PLANS Project Management Plans

    Office of Environmental Management (EM)

    MANAGEMENT PLANS Project Management Plans Overview Project Management Plan Suggested Outline Subjects Crosswalk between the Suggested PMP Outline Subjects and a Listing ...

  2. The Two-Column Aerosol Project: Phase I - Overview and Impact...

    Office of Scientific and Technical Information (OSTI)

    km, within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundred kilometers from the coast. ...

  3. Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008

    SciTech Connect

    SJ Ghan; B Schmid; JM Hubbe; CJ Flynn; A Laskin; AA Zelenyuk; DJ Czizco; CN Long; G McFarquhar; J Verlinde; J Harrington; JW Strapp; P Liu; A Korolev; A McDonald; M Wolde; A Fridlind; T Garrett; G Mace; G Kok; S Brooks; D Collins; D Lubin; P Lawson; M Dubey; C Mazzoleni; M Shupe; S Xie; DD Turner; Q Min; EJ Mlawer; D Mitchell

    2007-11-01

    The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and ice nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M-PACE boundary

  4. Code System to Calculate Particle Penetration Through Aerosol Transport Lines.

    Energy Science and Technology Software Center

    1999-07-14

    Version 00 Distribution is restricted to US Government Agencies and Their Contractors Only. DEPOSITION1.03 is an interactive software program which was developed for the design and analysis of aerosol transport lines. Models are presented for calculating aerosol particle penetration through straight tubes of arbitrary orientation, inlets, and elbows. An expression to calculate effective depositional velocities of particles on tube walls is derived. The concept of maximum penetration is introduced, which is the maximum possible penetrationmore » through a sampling line connecting any two points in a three-dimensional space. A procedure to predict optimum tube diameter for an existing transport line is developed. Note that there is a discrepancy in this package which includes the DEPOSITION 1.03 executable and the DEPOSITION 2.0 report. RSICC was unable to obtain other executables or reports.« less

  5. Cirrus and aerosol lidar profilometer - analysis and results

    SciTech Connect

    Spinhirne, J.D.; Scott, V.S.; Reagan, J.A.; Galbraith, A.

    1996-04-01

    A cloud and aerosol lidar set from over a year of near continuous operation of a micro pulse lidar (MPL) instrument at the Cloud and Radiation Testbed (CART) site has been established. MPL instruments are to be included in the Ames Research Center (ARC) instrument compliments for the SW Pacific and Arctic ARM sites. Operational processing algorithms are in development for the data sets. The derived products are to be cloud presence and classification, base height, cirrus thickness, cirrus optical thickness, cirrus extinction profile, aerosol optical thickness and profile, and planetary boundary layer (PBL) height. A cloud presence and base height algorithm is in use, and a data set from the CART site is available. The scientific basis for the algorithm development of the higher level data products and plans for implementation are discussed.

  6. Observations of the first aerosol indirect effect in shallow cumuli

    SciTech Connect

    Berg, Larry K.; Berkowitz, Carl M.; Barnard, James C.; Senum, Gunar; Springston, Stephen R.

    2011-02-08

    Data from the Cumulus Humilis Aerosol Processing Study (CHAPS) are used to estimate the impact of both aerosol indirect effects and cloud dynamics on the microphysical and optical properties of shallow cumuli observed in the vicinity of Oklahoma City, Oklahoma. Not surprisingly, we find that the amount of light scattered by the clouds is dominated by their liquid water content (LWC), which in turn is driven by cloud dynamics. However, removing the effect of cloud dynamics by examining the scattering normalized by LWC shows a strong sensitivity of scattering to pollutant loading. These results suggest that even moderately sized cities, like Oklahoma City, can have a measureable impact on the optical properties of shallow cumuli.

  7. Project Grandmaster

    SciTech Connect

    2013-09-16

    The purpose of the Project Grandmaster Application is to allow individuals to opt-in and give the application access to data sources about their activities on social media sites. The application will cross-reference these data sources to build up a picture of each individual activities they discuss, either at present or in the past, and place this picture in reference to groups of all participants. The goal is to allow an individual to place themselves in the collective and to understand how their behavior patterns fit with the group and potentially find changes to make, such as activities they weren?t already aware of or different groups of interest they might want to follow.

  8. Project Grandmaster

    Energy Science and Technology Software Center

    2013-09-16

    The purpose of the Project Grandmaster Application is to allow individuals to opt-in and give the application access to data sources about their activities on social media sites. The application will cross-reference these data sources to build up a picture of each individual activities they discuss, either at present or in the past, and place this picture in reference to groups of all participants. The goal is to allow an individual to place themselves inmore » the collective and to understand how their behavior patterns fit with the group and potentially find changes to make, such as activities they weren’t already aware of or different groups of interest they might want to follow.« less

  9. Research Project Description

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Research Project Description No job description found Current

  10. Project Management Lessons Learned

    Directives, Delegations, and Other Requirements [Office of Management (MA)]

    2008-08-05

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

  11. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect

    Tao, Wei-Kuo

    2014-05-19

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd

  12. The role of aerosols in cloud drop parameterizations and its applications in global climate models

    SciTech Connect

    Chuang, C.C.; Penner, J.E.

    1996-04-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by aerosols that serve as cloud condensation nuclei and the updraft velocity. We have developed parameterizations relating cloud drop number concentration to aerosol number and sulfate mass concentrations and used them in a coupled global aerosol/general circulation model (GCM) to estimate the indirect aerosol forcing. The global aerosol model made use of our detailed emissions inventories for the amount of particulate matter from biomass burning sources and from fossil fuel sources as well as emissions inventories of the gas-phase anthropogenic SO{sub 2}. This work is aimed at validating the coupled model with the Atmospheric Radiation Measurement (ARM) Program measurements and assessing the possible magnitude of the aerosol-induced cloud effects on climate.

  13. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater 3. Lead

    SciTech Connect

    Maring, H.B.; Duce, R.A. )

    1990-04-15

    Atmospheric aerosols collected at Enewetak Atoll in the tropical North Pacific were exposed to seawater in laboratory experiments to assess the impact of atmospheric aerosols on lead chemistry in surface seawater. The net atmospheric flux of soluble lead to the ocean is between 16 and 32 pmol cm{sup {minus}2}/yr at Enewetak. The stable lead isotopic composition of soluble aerosol lead indicates that it is of anthropogenic origin. Anthropogenic aerosol lead from Central and North America appears to be less soluble and/or to dissolve less rapidly than that from Asia. Dissolved organic matter and possibly lower pH appear to increase the nonaluminosilicate aerosol lead solubility and/or dissolution rate. The isotopic composition of lead in air, seawater and dry deposition suggests that after deposition in the ocean, nonaluminosilicate particulate lead can be reinjected into the atmosphere during sea salt aerosol production.

  14. A Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing in Mixed-Phase Stratiform Clouds Gijs de Boer, Tempei Hashino, Edwin W. Eloranta and Gregory J. Tripoli The University of Wisconsin - Madison (1) Introduction (1) Introduction Mixed-phase stratiform clouds are commonly observed at high latitudes (Shupe et al., 2006; de Boer et al., 2009a). These clouds significaly impact the atmospheric radiative budget, with reductions in wintertime radiative surface cooling estimated at

  15. Laboratory Testing of Aerosol for Enclosure Air Sealing

    SciTech Connect

    Harrington, C.; Modera, M.

    2012-05-01

    Space conditioning energy use can be significantly reduced by addressing uncontrolled infiltration and exfiltration through the envelope of a building. A process for improving the air tightness of a building envelope by sealing shell leaks with an aerosol sealing technology is presented. Both retrofit and new construction applications are possible through applying this process either in attics and crawlspaces or during rough-in stage.

  16. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    SciTech Connect

    Madronich, Sasha

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  17. Unintended consequences of atmospheric injection of sulphate aerosols.

    SciTech Connect

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the

  18. Caused? A Monsoon Example: India Ganges Valley Aerosol Experiment

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    issue: What is a Monsoon? How are Monsoons Caused? A Monsoon Example: India Ganges Valley Aerosol Experiment Definitions Activity About ARM: The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a U.S. Department of Energy scientific user facility for the study of global climate change. As part of its outreach program, ARM provides education resources for students, teachers, and communities. www.arm.gov EDUCATION NEWS Monsoons: Bring on the Rain Imagine weeks of hot, dry heat,

  19. Demonstration project Smart Charging (Smart Grid Project) | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  20. MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    eLabel":"","visitedicon":"" Project Profile Project Start Date 112006 Project City Port Townsend, WA Project StateProvince Washington Project Country United States...

  1. 2016 DOE Project Management Workshop - "Enhancing Project Management...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    6 DOE Project Management Workshop - "Enhancing Project Management" 2016 DOE Project Management Workshop - "Enhancing Project Management" 20160407-doe-project-management-workshop-AD...

  2. Western Interconnection Synchrophasor Project

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Demonstration Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Synchrophasor measurements are a...

  3. Final Report for Research Conducted at The Scripps Institution of Oceanography, University of California San Diego from 2/2002 to 8/2003 for ''Aerosol and Cloud-Field Radiative Effects in the Tropical Western Pacific: Analyses and General Circulation Model Parameterizations''

    SciTech Connect

    Vogelmann, A. M.

    2004-01-27

    OAK-B135 Final report from the University of California San Diego for an ongoing research project that was moved to Brookhaven National Laboratory where proposed work will be completed. The research uses measurements made by the Atmospheric Radiation Measurement (ARM) Program to quantify the effects of aerosols and clouds on the Earth's energy balance in the climatically important Tropical Western Pacific.

  4. Alveolar targeting of aerosol pentamidine. Toward a rational delivery system

    SciTech Connect

    Simonds, A.K.; Newman, S.P.; Johnson, M.A.; Talaee, N.; Lee, C.A.; Clarke, S.W. )

    1990-04-01

    Nebulizer systems that deposit a high proportion of aerosolized pentamidine on large airways are likely to be associated with marked adverse side effects, which may lead to premature cessation of treatment. We have measured alveolar deposition and large airway-related side effects (e.g., cough, breathlessness, and effect on pulmonary function) after aerosolization of 150 mg pentamidine isethionate labeled with {sup 99m}Tc-Sn-colloid. Nine patients with AIDS were studied using three nebulizer systems producing different droplet size profiles: the Acorn System 22, Respirgard II, and Respirgard II with the inspiratory baffle removed. Alveolar deposition was greatest and side effects least with the nebulizer producing the smallest droplet size profile (Respirgard II), whereas large airway-related side effects were prominent and alveolar deposition lowest with the nebulizer producing the largest droplet size (Acorn System 22). Values for alveolar deposition and adverse airway effects were intermediate using the Respirgard with inspiratory baffle removed, thus indicating the importance of the baffle valve in determining droplet size. Addition of a similar baffle valve to the Acorn System 22 produced a marked improvement in droplet size profile. Selection of a nebulizer that produces an optimal droplet size range offers the advantage of enhancing alveolar targeting of aerosolized pentamidine while reducing large airway-related side effects.

  5. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  6. Source terms for plutonium aerosolization from nuclear weapon accidents

    SciTech Connect

    Stephens, D.R.

    1995-07-01

    The source term literature was reviewed to estimate aerosolized and respirable release fractions for accidents involving plutonium in high-explosive (HE) detonation and in fuel fires. For HE detonation, all estimates are based on the total amount of Pu. For fuel fires, all estimates are based on the amount of Pu oxidized. I based my estimates for HE detonation primarily upon the results from the Roller Coaster experiment. For hydrocarbon fuel fire oxidation of plutonium, I based lower bound values on laboratory experiments which represent accident scenarios with very little turbulence and updraft of a fire. Expected values for aerosolization were obtained from the Vixen A field tests, which represent a realistic case for modest turbulence and updraft, and for respirable fractions from some laboratory experiments involving large samples of Pu. Upper bound estimates for credible accidents are based on experiments involving combustion of molten plutonium droplets. In May of 1991 the DOE Pilot Safety Study Program established a group of experts to estimate the fractions of plutonium which would be aerosolized and respirable for certain nuclear weapon accident scenarios.

  7. High air volume to low liquid volume aerosol collector

    DOEpatents

    Masquelier, Donald A.; Milanovich, Fred P.; Willeke, Klaus

    2003-01-01

    A high air volume to low liquid volume aerosol collector. A high volume flow of aerosol particles is drawn into an annular, centripetal slot in a collector which directs the aerosol flow into a small volume of liquid pool contained is a lower center section of the collector. The annular jet of air impinges into the liquid, imbedding initially airborne particles in the liquid. The liquid in the pool continuously circulates in the lower section of the collector by moving to the center line, then upwardly, and through assistance by a rotating deflector plate passes back into the liquid at the outer area adjacent the impinging air jet which passes upwardly through the liquid pool and through a hollow center of the collector, and is discharged via a side outlet opening. Any liquid droplets escaping with the effluent air are captured by a rotating mist eliminator and moved back toward the liquid pool. The collector includes a sensor assembly for determining, controlling, and maintaining the level of the liquid pool, and includes a lower centrally located valve assembly connected to a liquid reservoir and to an analyzer for analyzing the particles which are impinged into the liquid pool.

  8. Some Results of Joint Measurements of Aerosol Extinction of Solar Radiation on Horizontal and Slant Paths

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Results of Joint Measurements of Aerosol Extinction of Solar Radiation on Horizontal and Slant Paths S. M. Sakerin, D. M. Kabanov, Yu. A. Pkhalagov, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction It's a well-known fact that the contribution atmospheric aerosol makes in the total extinction of radiation in calculations and models of radiation must be considered; the quantitative measure of this contribution is the aerosol optical thickness of the atmosphere. The

  9. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    SciTech Connect

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B.

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  10. Some results of an experimental study of the atmospheric aerosol in Tomsk: A combined approach

    SciTech Connect

    Zuev, V.V.

    1996-04-01

    As widely accepted, aerosols strongly contribute to the formation of the earth`s radiation balance through the absorption and scattering of solar radiation. In addition, aerosols, being active condensation nuclei, also have a role in the cloud formation process. In this paper, results are presented of aerosol studies undertaken at the field measurement sites of the Institute of Atmospheric Optics in Tomsk and the Tomsk region.

  11. Posters Cloud Parameterizations in Global Climate Models: The Role of Aerosols

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Posters Cloud Parameterizations in Global Climate Models: The Role of Aerosols J. E. Penner and C. C. Chuang Lawrence Livermore National Laboratory Livermore, California Introduction Aerosols influence warm clouds in two ways. First, they determine initial drop size distributions, thereby influencing the albedo of clouds. Second, they determine the lifetime of clouds, thereby possibly changing global cloud cover statistics. At the present time, neither effect of aerosols on clouds is included

  12. Analysis of Langley optical depth data, with aerosol and gas retrievals,

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for the RSS 103 instrument in Barrow, Alaska Analysis of Langley optical depth data, with aerosol and gas retrievals, for the RSS 103 instrument in Barrow, Alaska Gianelli, Scott Columbia University - NASA/GISS Lacis, Andrew NASA/Goddard Institute for Space Studies Carlson, Barbara NASA/Goddard Institute for Space Studies Category: Aerosols Bimodal aerosol retrievals, and high-resolution retrevals of nitrogen dioxide, are performed on the Langley optical depth data from the RSS 103 device

  13. Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign

    Office of Scientific and Technical Information (OSTI)

    Summary (Technical Report) | SciTech Connect Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign Summary Citation Details In-Document Search Title: Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign Summary Atmospheric aerosol particles impact human health in urban environments, while on regional and global scales they can affect climate patterns, the hydrological cycle, and the intensity of radiation that reaches the Earth's surface. In spite of recent

  14. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    DOE PAGES [OSTI]

    Xu, L.; Williams, L. R.; Young, D. E.; Allan, J. D.; Coe, H.; Massoli, P.; Fortner, E.; Chhabra, P.; Herndon, S.; Brooks, W. A.; et al

    2016-02-02

    The composition of PM1 (particulate matter with diameter less than 1 µm) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling, Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites.more » The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer) only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS) at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have

  15. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    DOE PAGES [OSTI]

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    2015-07-10

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In-situ observations of snow cover fraction since the 1960s suggest that the snow pack in the region have retreated significantly, accompanied by a surface warming of 22.5 C observed over the peak altitudes (5000 m). Using a high-resolution oceanatmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover fraction to various anthropogenic factors. Atmorethe Tibetan Plateau altitudes, the increase of atmospheric CO2 concentration exerted a warming of 1.7 C, BC 1.3 C where as cooling aerosols cause about 0.7 C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO2 has contributed to the snow retreat trends. Especially, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow are coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. These findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.less

  16. ARM - Field Campaign - Aerosol Life Cycle: HR-ToF-AMS

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Cycle: HR-ToF-AMS ARM Data Discovery Browse Data Related Campaigns Aerosol Life Cycle IOP at BNL 2011.06.01, Sedlacek, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol Life Cycle: HR-ToF-AMS 2011.06.15 - 2011.08.15 Lead Scientist : Qi Zhang For data sets, see below. Abstract An Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed during the Aerosol Life Cycle - IOP campaign at BNL in

  17. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  18. The role of mineral aerosol as a reactive surface in the global...

    Office of Scientific and Technical Information (OSTI)

    Dust storms have become a distinct feature in many regions around the globe, including east Asia, west Africa, and South America. The mineral aerosols, uplifted in these storms, ...

  19. DOE/SC-ARM-14-011 Ganges Valley Aerosol Experiment (GVAX) Final...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... ISM. However, increasing aerosol concentration, air pollution, and deforestation result in changes to surface albedo and insolation, potentially leading to low monsoon rainfall. ...

  20. Research Highlight

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Good Is Not Enough: Improving Measurements of Atmospheric Particles Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, LK Berg, M Pekour, J Barnard, D Chand, C Flynn, M Ovchinnikov, A Sedlacek, B Schmid, J Shilling, J Tomlinson, and J Fast. 2015. "Airborne aerosol in situ measurements during TCAP: A closure study of total scattering."

  1. Analyzing signatures of aerosol-cloud interactions from satelliteretrievals and the GISS GCM to constrain the aerosol indirecteffect

    SciTech Connect

    Menon, S.; Del Genio, A.D.; Kaufman, Y.; Bennartz, R.; Koch, D.; Loeb, N.; Orlikowski, D.

    2007-10-01

    Evidence of aerosol-cloud interactions are evaluated using satellite data from MODIS, CERES, AMSR-E, reanalysis data from NCEP and data from the NASA Goddard Institute for Space Studies climate model. We evaluate a series of model simulations: (1) Exp N- aerosol direct radiative effects; (2) Exp C- Like Exp N but with aerosol effects on liquid-phase cumulus and stratus clouds; (3) Exp CN- Like Exp C but with model wind fields nudged to reanalysis data. Comparison between satellite-retrieved data and model simulations for June to August 2002, over the Atlantic Ocean indicate the following: a negative correlation between aerosol optical thickness (AOT) and cloud droplet effective radius (R{sub eff}) for all cases and satellite data, except for Exp N; a weak but negative correlation between liquid water path (LWP) and AOT for MODIS and CERES; and a robust increase in cloud cover with AOT for both MODIS and CERES. In all simulations, there is a positive correlation between AOT and both cloud cover and LWP (except in the case of LWP-AOT for Exp CN). The largest slopes are obtained for Exp N, implying that meteorological variability may be an important factor. The main fields associated with AOT variability in NCEP/MODIS data are warmer temperatures and increased subsidence for less clean cases, not well captured by the model. Simulated cloud fields compared with an enhanced data product from MODIS and AMSR-E indicate that model cloud thickness is over-predicted and cloud droplet number is within retrieval uncertainties. Since LWP fields are comparable this implies an under-prediction of R{sub eff} and thus an over-prediction of the indirect effect.

  2. Geothermal Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy ...

  3. Report for the NGFA-5 project.

    SciTech Connect

    Jaing, C; Jackson, P; Thissen, J; Wollard, J; Gardner, S; McLoughlin, K

    2011-11-15

    The objective of this project is to provide DHS a comprehensive evaluation of the current genomic technologies including genotyping, TaqMan PCR, multiple locus variable tandem repeat analysis (MLVA), microarray and high-throughput DNA sequencing in the analysis of biothreat agents from complex environmental samples. To effectively compare the sensitivity and specificity of the different genomic technologies, we used SNP TaqMan PCR, MLVA, microarray and high-throughput illumine and 454 sequencing to test various strains from B. anthracis, B. thuringiensis, BioWatch aerosol filter extracts or soil samples that were spiked with B. anthracis, and samples that were previously collected during DHS and EPA environmental release exercises that were known to contain B. thuringiensis spores. The results of all the samples against the various assays are discussed in this report.

  4. Biomass Burning Observation Project (BBOP) Final Campaign Report

    SciTech Connect

    Kleinman, LI; Sedlacek, A. J.

    2016-01-01

    The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning—enough to affect regional and global climate. Several biomass-burning studies have focused on tropical climates; however, few campaigns have been conducted within the United States, where millions of acres are burned each year, trending to higher values and greater climate impacts because of droughts in the West. Using the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the BBOP deployed the Gulfstream-1 (G-1) aircraft over smoke plumes from active wildfire and agricultural burns to help identify the impact of these events and how impacts evolve with time. BBOP was one of very few studies that targeted the near-field time evolution of aerosols and aimed to obtain a process-level understanding of the large changes that occur within a few hours of atmospheric processing.

  5. Wind Energy Projects | Department of Energy

    Energy.gov [DOE] (indexed site)

    Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy ...

  6. Projections of leaf area index in earth system models

    DOE PAGES [OSTI]

    Mahowald, Natalie; Lo, Fiona; Zheng, Yun; Harrison, Laura; Funk, Chris; Lombardozzi, Danica; Goodale, Christine

    2016-03-09

    The area of leaves in the plant canopy, measured as leaf area index (LAI), modulates key land–atmosphere interactions, including the exchange of energy, moisture, carbon dioxide (CO2), and other trace gases and aerosols, and is therefore an essential variable in predicting terrestrial carbon, water, and energy fluxes. Here our goal is to characterize the LAI projections from the latest generation of earth system models (ESMs) for the Representative Concentration Pathway (RCP) 8.5 and RCP4.5 scenarios. On average, the models project increases in LAI in both RCP8.5 and RCP4.5 over most of the globe, but also show decreases in some partsmore » of the tropics. Because of projected increases in variability, there are also more frequent periods of low LAI across broad regions of the tropics. Projections of LAI changes varied greatly among models: some models project very modest changes, while others project large changes, usually increases. Modeled LAI typically increases with modeled warming in the high latitudes, but often decreases with increasing local warming in the tropics. The models with the most skill in simulating current LAI in the tropics relative to satellite observations tend to project smaller increases in LAI in the tropics in the future compared to the average of all the models. Using LAI projections to identify regions that may be vulnerable to climate change presents a slightly different picture than using precipitation projections, suggesting LAI may be an additional useful tool for understanding climate change impacts. Going forward, users of LAI projections from the CMIP5 ESMs evaluated here should be aware that model outputs do not exhibit clear-cut relationships to vegetation carbon and precipitation. Lastly, our findings underscore the need for more attention to LAI projections, in terms of understanding the drivers of projected changes and improvements to model skill.« less

  7. Step 3: Project Refinement

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    3: Project Refinement 2 1 Potential 3 Refinement 4 Implementation 5 Operations & Maintenance 2 Options 3 Refinement 1/28/2016 2 3 FUNDING AND FINANCING OPTIONS Project Ownership Financing structure is highly dependent on size of the project and the capital available for a given project: * Tribe owns the project (cash purchase or debt) * Tribe hosts the project and buys the electricity (power purchase agreement) * Tribe partners with private sector and co-owns the project (uncertainties about

  8. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    SciTech Connect

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  9. Step 4: Project Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Process Step 4: Project Implementation Presentation Agenda * Step 4: Project Implementation - Pre-construction - Contract execution - Interconnection - Project construction - Commissioning * Project Example 2 1/28/2016 2 1 Potential 3 Refinement 5 Operations & Maintenance 2 Options 4 Implementation 4 Implementation 3 Potential Options Refinement Implementation Operations & Maintenance Step 4: Implementation 4 Purpose: Contract and begin physical construction of project Tasks: * Finalize

  10. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  11. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  12. Project Reports for Haida Corporation- 2010 Project

    Energy.gov [DOE]

    The Reynolds Creek Hydroelectric Project ("Reynolds Creek" or the "Project") is a 5 MW hydroelectric resource to be constructed on Prince of Wales Island, Alaska, approximately 10 miles east of Hydaburg.

  13. Project Reports for Chickasaw Nation- 2010 Project

    Energy.gov [DOE]

    Under this project, the Chickasaw Nation, Division of Commerce (CNDC) will upgrade old, inefficient lighting systems throughout CNDC to new, energy saving systems. Learn more about this project or...

  14. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2012-11-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  15. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2013-05-29

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and net generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of antifoam agents was assessed with most of the simulants. Orifices included round holes and

  16. Large-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  17. Quantification of black carbon mixing state from traffic: Implications for aerosol optical properties

    DOE PAGES [OSTI]

    Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; West, Matthew; Wang, Jon M.; Jeong, Cheol -Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.; Lee, Alex K. Y.

    2016-04-14

    The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) inmore » two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was  < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Lastly, significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.« less

  18. Simulation test of aerosol generation from vessels in the pre-treatment system of fuel reprocessing

    SciTech Connect

    Fujine, Sachio; Kitamura, Koichiro; Kihara, Takehiro

    1997-08-01

    Aerosol concentration and droplet size are measured in off-gas of vessel under various conditions by changing off-gas flow rate, stirring air flow rate, salts concentration and temperature of nitrate solution. Aerosols are also measured under evaporation and air-lift operation. 4 refs., 6 figs.

  19. Method and device for producing and delivering an aerosol for remote sealing and coating

    DOEpatents

    Modera, Mark P.; Carrie, Francois R.

    1996-01-01

    The invention is a method and device for sealing leaks remotely by means of injecting a previously prepared aerosol into the enclosure being sealed. Specifically the invention is a method and device for preparing, transporting, and depositing and solid phase aerosol to the interior surface of the enclosure.

  20. Method and device for producing and delivering an aerosol for remote sealing and coating

    DOEpatents

    Modera, M.P.; Carrie, F.R.

    1996-06-04

    The invention is a method and device for sealing leaks remotely by means of injecting a previously prepared aerosol into the enclosure being sealed. Specifically the invention is a method and device for preparing, transporting, and depositing and solid phase aerosol to the interior surface of the enclosure. 1 fig.