National Library of Energy BETA

Sample records for advanced battery consortium

  1. US Advanced Battery Consortium USABC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    US Advanced Battery Consortium USABC Jump to: navigation, search Name: US Advanced Battery Consortium (USABC) Place: Southfield, Michigan Zip: 48075 Sector: Vehicles Product:...

  2. Advanced Lead Acid Battery Consortium | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lead Acid Battery Consortium Jump to: navigation, search Name: Advanced Lead-Acid Battery Consortium Place: Durham, North Carolina Zip: 27713 Sector: Vehicles Product: The ALABC is...

  3. Consortium for Advanced Battery Simulation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Battery Simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ...

  4. US Advanced Battery Consortium Reissues Request for Proposal...

    Energy.gov [DOE] (indexed site)

    U.S. Advanced Battery Consortium (USABC), which partners with the Vehicle Technologies Office to support battery research and development projects, recently reissued a request for ...

  5. Overview and Progress of United States Advanced Battery Consortium...

    Energy.gov [DOE] (indexed site)

    es097snyder2011o.pdf (691.79 KB) More Documents & Publications Overview of Battery R&D Activities United States Advanced Battery Consortium Energy Storage R&D and ARRA

  6. US Advanced Battery Consortium Reissues Request for Proposal Information to Develop Improved Thermal Management Systems for Li-Ion Batteries for Vehicles

    Energy.gov [DOE]

    The U.S. Advanced Battery Consortium (USABC), which partners with the Vehicle Technologies Office to support battery research and development projects, recently reissued a request for proposal information (RFPI) for developing better thermal management systems for lithium-ion (Li-ion) batteries used in vehicles. Proposed thermal management system technologies should offer a significant improvement over current technologies while still meeting the USABC goals. USABC reopened the RFPI to prompt more submissions, especially from candidates new to USABC programs. The deadline for submission is October 7, 2016.

  7. Overview and Progress of United States Advanced Battery Research...

    Energy.gov [DOE] (indexed site)

    Vehicle Technologies Office Merit Review 2016: Overview and Progress of United States Advanced Battery Consortium (USABC) Activity United States Advanced Battery Consortium ...

  8. Advanced Separation Consortium

    SciTech Connect

    2006-01-01

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  9. National Advanced Biofuels Consortium Overview

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Biofuels Consortium Virent Board of Directors June 15, 2010 NABC: For Open ... Cellulosic Ethanol RD&D Advanced Biofuels R&D Technoeconomic Analysis Resource Analysis...

  10. New York Battery and Energy Storage Technology Consortium NY...

    OpenEI (Open Energy Information) [EERE & EIA]

    Battery and Energy Storage Technology Consortium NY BEST Jump to: navigation, search Name: New York Battery and Energy Storage Technology Consortium (NY-BEST) Place: Albany, New...

  11. National Alliance for Advanced Transportation Battery Cell Manufacture...

    OpenEI (Open Energy Information) [EERE & EIA]

    Manufacture Product: US-based consortium formed to research, develop, and mass produce lithium ion batteries. References: National Alliance for Advanced Transportation Battery Cell...

  12. Steven Winter Associates (Consortium for Advanced Residential...

    OpenEI (Open Energy Information) [EERE & EIA]

    Steven Winter Associates (Consortium for Advanced Residential Buildings) Jump to: navigation, search Name: Steven Winter Associates (Consortium for Advanced Residential Buildings)...

  13. Battery500 Consortium to Spark EV Innovations: Pacific Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery500 Consortium to Spark EV Innovations: Pacific Northwest National Laboratory-led, 5-year 50M effort seeks to almost triple energy stored in electric car batteries ...

  14. Vehicle Technologies Office Merit Review 2016: Overview and Progress of United States Advanced Battery Consortium (USABC) Activity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by USABC at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  15. DOE to Provide up to $14 Million to Develop Advanced Batteries...

    Energy Saver

    in funding for a 28 million cost-shared solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. ...

  16. Battery500 Consortium to Spark EV Innovations: Pacific Northwest National

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Laboratory-led, 5-year $50M effort seeks to almost triple energy stored in electric car batteries | Department of Energy Battery500 Consortium to Spark EV Innovations: Pacific Northwest National Laboratory-led, 5-year $50M effort seeks to almost triple energy stored in electric car batteries Battery500 Consortium to Spark EV Innovations: Pacific Northwest National Laboratory-led, 5-year $50M effort seeks to almost triple energy stored in electric car batteries July 28, 2016 - 10:08am Addthis

  17. SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced Manufacturing of Wind Turbine Blades SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced...

  18. United States Advanced Battery Consortium

    Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  19. Overview and Progress of United States Advanced Battery Research (USABC)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Activity | Department of Energy United States Advanced Battery Research (USABC) Activity Overview and Progress of United States Advanced Battery Research (USABC) Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es097_snyder_2012_o.pdf (722.2 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: Overview and Progress of United States Advanced Battery Consortium (USABC) Activity

  20. Hydrogen Materials Advanced Research Consortium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials Advanced Research Consortium Hydrogen Materials Advanced Research Consortium This presentation by Mark Allendorf of Sandia National Laboratories gives an overview of the organization and scientific activities of the Hydrogen Materials-Advanced Research Consortium (HyMARC). Hydrogen Materials Advanced Research Consortium (14.94 MB) More Documents & Publications Hydrogen Storage Lab PI Workshop: HyMARC and NREL-Led Characterization Effort Near-term Fuel Cell Applications in Japan

  1. HydroGEN Advanced Water Splitting Materials Consortium | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy HydroGEN Advanced Water Splitting Materials Consortium HydroGEN Advanced Water Splitting Materials Consortium Graphic shows icons for the three HydroGEN technologies: photoelectrochemical water splitting, solar thermochemical water splitting, and low- and high-temperature advanced electrolysis. The HydroGEN Advanced Water Splitting Materials consortium aims to accelerate the research, development, and deployment of advanced water splitting technologies for clean, sustainable hydrogen

  2. Indiana Advanced Electric Vehicle Training and Education Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    (I-AEVtec) | Department of Energy Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt032_ti_caruthers_2012_o.pdf (3.4 MB) More Documents & Publications Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) Indiana Advanced Electric

  3. National Advanced Biofuels Consortium Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Biofuels Consortium Overview National Advanced Biofuels Consortium Overview This PDF gives an overview of the National Advanced Biofuels Consortium (NABC). It shows the prior focus of NABC as well as the future focus, and it discusses objectives, funding, research, and the organizational structure of the NABC. nabc_overview_presentation.pdf (1.73 MB) More Documents & Publications NABC Webinar Thermochemical Conversion Proceeses to Aviation Fuels

  4. Ames Laboratory to lead new consortium to advance refrigeration...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Laboratory to lead new consortium to advance refrigeration technology Ames Laboratory will ... friendly and energy-efficient refrigeration technologies, sponsored by DOE's ...

  5. US-India Consortium for Development of Sustainable Advanced Lignocellu...

    Energy.gov [DOE] (indexed site)

    US-India Consortium for Development of Sustainable Advanced Lignocellulosic Biofuels ... for (pre-)commercial scale production of biofuels and chemicals to aid techno-economic ...

  6. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    J.C., CASL: Consortium for the Advanced Simulation of Light Water Reactors - A DOE Energy Innovation Hub, ANS MC2015 Joint Internation Conference on Mathematics and Computation...

  7. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Virtual Environment for Scientific Collaboration Posted: April 30, 2013 The Consortium for Advanced Simulation of Light Water Reactors, the Department of Energy's first...

  8. Advanced Battery Factory | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in 1958. References: Advanced Battery Factory1 This...

  9. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy Safety Technologies Facilities Battery Abuse Testing Laboratory Cylindrical Boiling ...

  10. Advanced Battery Manufacturing Facilities and Equipment Program...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale ...

  11. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    D.C. PDF icon esarravt002flicker2010p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  12. Advanced Lithium Ion Battery Technologies - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Find More Like This Return to Search Advanced Lithium Ion Battery Technologies Lawrence ... improved battery life when used in the fabrication of negative silicon electrodes. ...

  13. Advanced Battery Manufacturing Facilities and Equipment Program...

    Energy.gov [DOE] (indexed site)

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  14. Advanced Battery Manufacturing (VA)

    SciTech Connect

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATTs products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATTs work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  15. COLLOQUIUM: CASL: Consortium for Advanced Simulation of Light Water

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reactors, a DOE Energy Innovation Hub | Princeton Plasma Physics Lab May 29, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: CASL: Consortium for Advanced Simulation of Light Water Reactors, a DOE Energy Innovation Hub Dr. Douglas Kothe Oak Ridge National Laboratory The Consortium for Advanced Simulation of Light Water Reactors (CASL) is the first U.S. Department of Energy (DOE) Energy Innovation Hub, established in July 2010 for the modeling and simulation (M&S) of nuclear

  16. USABC Battery Separator Development | Department of Energy

    Energy.gov [DOE] (indexed site)

    USABC Battery Separator Development Overview and Progress of United States Advanced Battery Consortium (USABC) Activity Vehicle Technologies Office: 2010 Energy Storage R&D Annual ...

  17. ZAP Advanced Battery Technologies JV | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology....

  18. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Science and Technology Archive Energy Department Announces Five Year Renewal of Funding for First Energy Innovation Hub Consortium for Advanced Simulation of Light Water Reactors to Receive up to $121.5 Million Over Five Years. Posted: January 29, 2015 VERA-CS Coupled Multi-physics Capability demonstrated in a Full Core Simulation In December, CASL reported on the latest results from its Watts Bar reactor progression problem modeling. Posted: August 14, 2014 Westinghouse Completes its AP1000®

  19. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Video Gallery Management of Uncertainties in Predictive Science presented by Dr. Hany Abdel-Khalik and Dr. Ralph Smith, NCSU. Surrogate Models for Uncertainty Quantification presented by Dr. Ralph Smith, NCSU. Subchannel Methods for the Thermal-Hydraulic Analysis for Nuclear Power Systems presented by Dr. Michael Doster, NCSU. Finding the Cure for CRUD: Insights from CASL presented by Dr. Mike Short, MIT. Andrew Godfrey (ORNL) describes CASL -- the Consortium for Advanced Simulation of Light

  20. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect

    Not Available

    2010-06-01

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  1. Vehicle Technologies Office: Advanced Battery Development, System...

    Energy Saver

    The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, ... manuals, which are available from the USCAR Electrochemical Energy Storage Tech Team Website. ...

  2. HyMARC: Hydrogen Materials-Advanced Research Consortium | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy HyMARC: Hydrogen Materials-Advanced Research Consortium HyMARC: Hydrogen Materials-Advanced Research Consortium The Hydrogen Materials-Advanced Research Consortium (HyMARC), composed of Sandia National Laboratories, Lawrence Livermore National Laboratory, and Lawrence Berkeley National Laboratory, has been formed with the objective of addressing the scientific gaps blocking the advancement of solid-state storage materials. Illustration of the research consortia model showing a

  3. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Media Kit CASL Acknowledgement This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725. CASL Logo Files CASL Extended - CASL_word.jpg and CASL_word.png CASL without words - CASL.jpg and CASL.png CASL with words - CASL_word.jpg and CASL_word.png CASL Partners - partners.jpg

  4. US-ABC Collaborates to Lower Cost of Electric Drive Batteries

    Energy.gov [DOE]

    The U.S. Advanced Battery Consortium (US-ABC) is a group that funds electrochemical storage research and development.

  5. EERE Success Story—US-ABC Collaborates to Lower Cost of Electric Drive Batteries

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Advanced Battery Consortium (US-ABC) is a group that funds electrochemical storage research and development.

  6. Advanced Battery Materials Synthesis and Manufacturing R&D Program...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced Battery Materials Synthesis and Manufacturing R&D Program Argonne's Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials...

  7. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  8. USABC Development of Advanced High-Performance Batteries for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells ...

  9. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle ...

  10. Working on Advanced Battery Technologies With National Labs ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Working on Advanced Battery Technologies With National Labs Click to email this to a ... in new window) Working on Advanced Battery Technologies With National Labs Yan Gao ...

  11. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery ...

  12. Energy Storage - Summary of the FY 2005 Batteries for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review Energy Storage - Summary of the FY 2005 Batteries for Advanced ...

  13. Overview and Progress of the Batteries for Advanced Transportation...

    Energy.gov [DOE] (indexed site)

    Activity: Batteries for Advanced Transportation Technologies (BATT) Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Batteries for Advanced ...

  14. Overview of the Batteries for Advanced Transportation Technologies...

    Energy.gov [DOE] (indexed site)

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program BATT Program- Summary and Future Plans Overview and Progress of the Batteries for Advanced ...

  15. NREL to Lead New Consortium to Develop Advanced Water Splitting Materials

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for Hydrogen Production - News Releases | NREL to Lead New Consortium to Develop Advanced Water Splitting Materials for Hydrogen Production HydroGEN Consortium to accelerate R&D and deployment October 24, 2016 The Energy Department's National Renewable Energy Laboratory (NREL) has formed a new consortium with five other national labs intended to accelerate the development of commercially viable pathways for hydrogen production from renewable energy sources. The consortium, named HydroGEN

  16. Vehicle Technologies Office: Advanced Battery Development, System Analysis,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    and Testing | Department of Energy Battery Development, System Analysis, and Testing Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full battery systems. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and Testing activity

  17. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  18. How Advanced Batteries Are Energizing the Economy

    Energy.gov [DOE]

    Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This...

  19. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of technology. Management Performance reflects CASL's ability to meet its virtual one-roof plan (collocation), maintain consortium cohesion and chemistry, and deliver its...

  20. The Consortium for Advanced Simulation of Light Water Reactors

    SciTech Connect

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  1. Existing Homes Retrofit Case Study: Consortium for Advanced Residential Buildings (CARB), Washington, D.C.

    SciTech Connect

    2009-09-01

    This is a Building America fact sheet describing Consortium for Advanced Residential Buildiings (CARB) whole building retrofit process to renovate a 145-year-old home in Washington, D.C.

  2. Johnson Controls Inc. Domestic Advanced Battery Industry Creation Project |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Johnson Controls Inc. Domestic Advanced Battery Industry Creation Project Johnson Controls Inc. Domestic Advanced Battery Industry Creation Project 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt019_es_ellerman_2012_p.pdf (1.19 MB) More Documents & Publications Johnson Controls Inc. Domestic Advanced Battery Industry Creation Project Johnson Controls Inc. Domestic Advanced Battery

  3. Manufacture of Advanced Battery Metal Containers & Components | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Manufacture of Advanced Battery Metal Containers & Components Manufacture of Advanced Battery Metal Containers & Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt013_es_lauinger_2012_p.pdf (2.6 MB) More Documents & Publications Manufacture of Advanced Battery Metal Containers & Components Manufacture of Advanced Battery Metal Containers & Components FY 2011 Annual Progress

  4. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes Electrolytes - ...

  5. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  6. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, Brian A.; Taylor, A. Michael

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  7. Axeon Power Limited formerly Advanced Batteries Ltd ABL | Open...

    OpenEI (Open Energy Information) [EERE & EIA]

    Advanced Batteries Ltd (ABL)) Place: Dundee, United Kingdom Zip: DD2 4UH Product: Lithium ion battery pack developer. Coordinates: 45.27939, -123.009669 Show Map Loading...

  8. Manufacturing of Protected Lithium Electrodes for Advanced Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy of Protected Lithium Electrodes for Advanced Batteries Manufacturing of Protected Lithium Electrodes for Advanced Batteries PolyPlus Battery Company - Berkeley, CA A protected lithium electrode, solid electrolyte, and scaled-up manufacturing process will be developed for high-energy-density lithium batteries. This project will scale up production from a batch mode to a high-volume process. Commercial introduction of this manufacturing process could extend the driving

  9. Advanced Battery Manufacturing Making Strides in Oregon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program What are the key facts? Through the Recovery Act, the Department has

  10. Energy Storage - Summary of the FY 2005 Batteries for Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Transportation Technologies (BATT) Research Program Annual Review | Department of Energy Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review Energy Storage - Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced

  11. WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Manufacturing Facility Groundbreaking in Smyrna, TN | Department of Energy Deputy Secretary Poneman to Speak at Nissan Advanced Battery Manufacturing Facility Groundbreaking in Smyrna, TN WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery Manufacturing Facility Groundbreaking in Smyrna, TN May 25, 2010 - 12:00am Addthis May 25, 2010 WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery Manufacturing Facility Groundbreaking in Smyrna, TN Smyrna, TN - On

  12. Overview of the Batteries for Advanced Transportation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    es00bduong2010o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of...

  13. Overview and Progress of the Batteries for Advanced Transportation...

    Energy.gov [DOE] (indexed site)

    duong2013o.pdf More Documents & Publications Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the...

  14. Overview and Progress of the Advanced Battery Materials Research...

    Energy.gov [DOE] (indexed site)

    Overview and Progress of the Advanced Battery Materials Research (BMR) Program Tien Q. Duong BMR Program Manager Energy Storage R&D Hybrid and Electric Systems Subprogram ...

  15. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress...

  16. Overview of the DOE Advanced Battery R&D Program

    Energy Saver

    Overview of the DOE Advanced Battery R&D Program David Howell, Program Manager Hybrid Electric Systems Vehicle Technologies Office June 16, 2014 VEHICLE TECHNOLOGIES OFFICE 2 2013 ...

  17. An Update on Advanced Battery Manufacturing | Department of Energy

    Energy Saver

    ... From Columbus, Georgia to Batesville, Arkansas to Brownstown, Michigan, our investments in manufacturing advanced batteries and other electric vehicle components are putting ...

  18. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate materials & ...

  19. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Energy.gov [DOE] (indexed site)

    Electrolytes - Interfacial and Bulk Properties and Stability Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of ...

  20. ORNL). Consortium for Advanced Simulation of Light Water Reactors

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Simulation of Light Water Reactors (CASL) was established by the US Department of Energy in 2010 to advance modeling and simulation capabilities for nuclear reactors. CASL's...

  1. Overview and Progress of the Batteries for Advanced Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technologies (BATT) Activity | Department of Energy Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es108_duong_2012_o.pdf (994.39 KB) More Documents & Publications Overview and Progress of the Exploratory Technology Research Activity: Batteries for

  2. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Office of Nuclear Energy (NE) for their advancement of nuclear power; U.S. Nuclear Regulatory Commission (NRC) for safety reviews and licensing; R&D community for identification,...

  3. Validation and Uncertainty Quantification in the Consortium for Advanced Simulation of Light Water Reactors

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Uncertainty Quantification in CASL Michael Pernice Center for Advanced Modeling and Simulation Idaho National Laboratory SAMSI Uncertainty Quantification Transition Workshop May 21-23 2012 CASL-U-2012-0108-000 What Is CASL? * Consortium for Advanced Simulation of LWRs - An Energy Innovation Hub * Objective: predictive simulation of light water reactors - Reduce capital and operating costs * Power uprates * Lifetime extension - Reduce nuclear waste * Higher fuel burnup - Enhance operational

  4. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Back Industry Council Chairperson: Scott Thomas, Duke Energy Executive Director: Erik Mader, EPRI Mission and Objectives The mission of the Industry Council (IC) is to ensure that CASL solutions are "used and useful", and that CASL provides effective leadership advancing the Modeling and Simulation state-of-the art in the nuclear industry. Specific objectives of the Industry Council are: Early, continuous, and frequent interface and engagement of end-users and technology providers

  5. Saft America Advanced Batteries Plant Celebrates Grand Opening in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Jacksonville | Department of Energy Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 - 12:30pm Addthis Department of Energy Investment Helps Support Job Creation, U.S. Economic Competitiveness and Advanced Vehicle Industry WASHINGTON, D.C. - Today, Secretary Steven Chu joined with Saft America to announce the grand opening of the company's Jacksonville, Florida,

  6. High performance anode for advanced Li batteries

    SciTech Connect

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  7. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL) Meeting Notes … September 9, 2010

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Meetings January 11, 2011 - Oak Ridge, TN February 8, 2011 - Charlotte, NC Minutes The second meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held in two parts on January 11, 2011 at Oak Ridge National Laboratories (ORNL), Oak Ridge, TN; and on February 8, 2011, at the facilities of the Electric Power Research Institute (EPRI) in Charlotte, NC. Both meetings were chaired by John Gaertner of EPRI. Two meetings were necessary

  8. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL) Meeting Notes … September 9, 2010

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    1 CASL Industry Council Meeting March 7 - 8, 2012 - Raleigh, NC Minutes The fourth meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on March 7 until noon March 8, 2012, at the CASL Facility of North Carolina State University, Raleigh, NC. The meeting was chaired by John Gaertner of EPRI. Attendance was by invitation only. Fifteen representatives from 14 of the 19 member organizations attended. One guest from Nuclear Energy

  9. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL) Meeting Notes … September 9, 2010

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    August 23 - 24, 2011 - Oak Ridge, TN Minutes The third meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on August 23 until noon on August 24, 2011, at Oak Ridge National Laboratories (ORNL), Oak Ridge, Tennessee. The meeting was chaired by John Gaertner of EPRI. The agenda, meeting attendees, and IC member organizations are included in Attachment 1 to these minutes. Attendance was by invitation only. Fifteen representatives

  10. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL) Meeting Notes … September 9, 2010

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Meeting September 9, 2010 Minutes The first meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on September 9, 2010, at the facilities of the Electric Power Research Institute (EPRI) in Charlotte, NC. The meeting was chaired by John Gaertner of EPRI. The meeting attendees and their affiliations are listed on Attachment 1 to these minutes. Attendance was by invitation only. Representatives from 16 organizations were invited. All

  11. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    SciTech Connect

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  12. Vehicle Technologies Office Merit Review 2014: Advanced Battery Recycling

    Energy.gov [DOE]

    Presentation given by OnTo Technology LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced battery recycling.

  13. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  14. CONSORTIUM FOR ADVANCED SIMULATION OF LIGHT WATER REACTORS (CASL) Meeting Notes … September 9, 2010

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    September 11 - 12, 2012 - Oak Ridge, TN Minutes The fifth meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on September 11 and 12, 2012; at Oak Ridge National Laboratory in Oak Ridge, TN. The first day was a joint meeting of the CASL Science Council and the Industry Council and was co-facilitated by Paul Turinsky of NCSU and John Gaertner of EPRI. The Industry Council met separately on the second day which was chaired by John

  15. AVTA: Battery Testing- Electric Drive and Advanced Battery and Components Testbed

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The AVTA runs the Electric Drive and Advanced Battery and Components Testbed to capture batteries’ real-world performance. The Testbed simulates battery charging as well as on-road driving. Researchers run the Testbed on a daily basis on cycles that represent typical driving and charging patterns. This research was conducted by Idaho National Laboratory.

  16. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Energy.gov [DOE] (indexed site)

    MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  17. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...

    Energy.gov [DOE] (indexed site)

    More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced ...

  18. Advancement Of Tritium Powered Betavoltaic Battery Systems

    SciTech Connect

    Staack, G.; Gaillard, J.; Hitchcock, D.; Peters, B.; Colon-Mercado, H.; Teprovich, J.; Coughlin, J.; Neikirk, K.; Fisher, C.

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  19. Advanced Hybrid Batteries with a Magnesium Metal Anode and Spinel

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LiMn₂O₄ Cathode - Joint Center for Energy Storage Research 1, 2016, Research Highlights Advanced Hybrid Batteries with a Magnesium Metal Anode and Spinel LiMn₂O₄ Cathode Two Mg-Li dual salt hybrid electrolytes were successfully developed and can enable rechargeable Mg-LiMn2O4 batteries Scientific Achievement Two Mg-Li dual salt hybrid electrolytes were developed with excellent oxidative stability up to around 3.8 V (vs Mg/Mg2+) on a aluminum current collector, enabling the successful

  20. Development and Testing of an UltraBattery-Equipped Honda Civic

    SciTech Connect

    Donald Karner

    2012-04-01

    The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

  1. Advanced analytical electron microscopy for alkali-ion batteries

    DOE PAGES [OSTI]

    Qian, Danna; Ma, Cheng; Meng, Ying Shirley; More, Karren; Chi, Miaofang

    2015-01-01

    Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed reviewmore » of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.« less

  2. Advanced analytical electron microscopy for alkali-ion batteries

    SciTech Connect

    Qian, Danna; Ma, Cheng; Meng, Ying Shirley; More, Karren; Chi, Miaofang

    2015-01-01

    Lithium-ion batteries are a leading candidate for electric vehicle and smart grid applications. However, further optimizations of the energy/power density, coulombic efficiency and cycle life are still needed, and this requires a thorough understanding of the dynamic evolution of each component and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM) is an ideal technique for this task. The present review paper focuses on recent contributions of this important technique to the fundamental understanding of the electrochemical processes of battery materials. A detailed review of both static (ex situ) and real-time (in situ) studies will be given, and issues that still need to be addressed will be discussed.

  3. Battery Calendar Life Estimator Manual Modeling and Simulation

    SciTech Connect

    Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

    2012-10-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  4. Battery Life Estimator Manual Linear Modeling and Simulation

    SciTech Connect

    Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

    2009-08-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  5. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper

  6. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  7. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Electrolyte Additives for PHEV/EV Lithium-ion Battery Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es025_zhang_2012_o.pdf (1.97 MB) More Documents & Publications Electrolytes - Advanced Electrolyte and Electrolyte Additives Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte

  8. Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec)

    SciTech Connect

    Caruthers, James; Dietz, J.; Pelter, Libby; Chen, Jie; Roberson, Glen; McGinn, Paul; Kizhanipuram, Vinodegopal

    2013-01-31

    The Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) is an educational partnership between six universities and colleges in Indiana focused on developing the education materials needed to support electric vehicle technology. The I-AEVtec has developed and delivered a number of degree and certificate programs that address various aspects of electric vehicle technology, including over 30 new or significantly modified courses to support these programs. These courses were shared on the SmartEnergyHub. The I-AEVtec program also had a significant outreach to the community with particular focus on K12 students. Finally, the evGrandPrix was established which is a university/college student electric go-kart race, where the students get hands-on experience in designing, building and racing electric vehicles. The evGrandPrix now includes student teams from across the US as well as from Europe and it is currently being held on Opening Day weekend for the Indy500 at the Indianapolis Motor Speedway.

  9. Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Partnership | Department of Energy Advanced Battery Plant in Michigan, Announces New Army Partnership Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership July 18, 2011 - 1:09pm Addthis Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus,

  10. Advanced Power Batteries for Renewable Energy Applications 3.09

    SciTech Connect

    Shane, Rodney

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  11. Vehicle Technologies Office Research Partner Requests Proposals for Battery

    Energy Saver

    Cell Development | Department of Energy Research Partner Requests Proposals for Battery Cell Development Vehicle Technologies Office Research Partner Requests Proposals for Battery Cell Development February 24, 2015 - 1:44pm Addthis The U.S. Advanced Battery Consortium (USABC), which partners with the Vehicle Technologies Office to support battery research and development projects, recently issued a request for proposal information. The request is focusing on projects that would develop

  12. Vehicle Technologies Office Battery Research Partner Requests Proposals for

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Thermal Management Systems | Department of Energy Battery Research Partner Requests Proposals for Thermal Management Systems Vehicle Technologies Office Battery Research Partner Requests Proposals for Thermal Management Systems January 12, 2016 - 3:06pm Addthis The U.S. Advanced Battery Consortium (USABC), which partners with the Vehicle Technologies Office to support battery research and development projects, recently issued a request for proposal information. The request focuses on

  13. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt001_es_koo_2012_p.pdf (2.94 MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  14. SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced Manufacturing of Wind Turbine Blades

    Office of Energy Efficiency and Renewable Energy (EERE)

    Funded by the U.S. Department of Commerce, the SMART Wind Consortium is connecting collaborators to form consensus on near-term and mid-term plans needed to increase cost competitiveness of U.S....

  15. NREL Joins with A123Systems to Improve Advanced-Vehicle Batteries - News

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Releases | NREL NREL Joins with A123Systems to Improve Advanced-Vehicle Batteries Safe, powerful, and long-lasting batteries key to more fuel-efficient cars June 19, 2008 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and A123Systems have teamed up to support the battery-maker's effort to develop safe, less expensive, more powerful, and longer lasting batteries for hybrid-electric vehicles. The Laboratory and the battery-maker have signed a three-year,

  16. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  17. Overview and Progress of United States Advanced Battery Consortium (USABC) Activity

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. Vehicle Technologies Office Merit Review 2016: Consortium for Advanced Battery Simulation (CABS)

    Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  19. Limiting factors to advancing thermal-battery technology for naval applications

    SciTech Connect

    Davis, P.B.; Winchester, C.S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and Power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  20. Advanced Battery Technologies Inc ABAT | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Product: China-based developer, manufacturer and distributer of rechargeable polymer lithium-ion (PLI) batteries. Coordinates: 45.363708, 126.314621 Show Map Loading map......

  1. Saft America Advanced Batteries Plant Celebrates Grand Opening...

    Office of Environmental Management (EM)

    They will also be used to power military hybrid vehicles and for other industrial, agricultural, and military applications. Saft expects to produce 370 megawatt hours of battery ...

  2. Secretary Chu Visits Advanced Battery Plant in Michigan, Announces...

    Office of Environmental Management (EM)

    What are the key facts? Thirty new manufacturing plants across the country for electric vehicle batteries and components - including A123 in Michigan - were supported through the ...

  3. Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) research program annual review

    SciTech Connect

    None, None

    2005-08-01

    This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) program annual review.

  4. Overview and Progress of the Advanced Battery Materials Research (BMR) Program

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    VEHICLE TECHNOLOGIES OFFICE Overview and Progress of the Advanced Battery Materials Research (BMR) Program Tien Q. Duong BMR Program Manager Energy Storage R&D Hybrid and Electric Systems Subprogram Department of Energy This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: ES 108 June 9, 2016 2 Outline  Advanced Battery Materials Research (BMR) - Role - Program update  Current research emphasis - Lithium metal anode and solid

  5. Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review May 31-June 2, 2005 Berkeley, CA August 2005 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies August 8, 2005 Dear Colleague: This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) program annual review. The review was held at the

  6. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  7. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    SciTech Connect

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Viswanathan, Vilayanur V.; Meinhardt, Kerry D.; Engelhard, Mark H.; Sprenkle, Vincent L.

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can be assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.

  8. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  9. Nanotube Arrays for Advanced Lithium-ion Batteries - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    IT industries by 2020. The growing market segments are searching for battery technology that can increase the power and energy densities as well as provide a higher cycle count. ...

  10. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    July 25, 2013 Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack ...

  11. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    December 5th 2012 Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack ...

  12. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    June 24th 2012 Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack ...

  13. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    May 17, 2012 Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack ...

  14. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Description Specification Vehicle Configuration Series PHEV Traction Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack Manufacturer ...

  15. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    5.3L gasoline engine Battery Pack Manufacturer EnerDel Model Type I EV Pack (A306) Chemistry Li-ion Cathode Mixed Oxide (Modified NMC) Anode Amorphous Hard Carbon Configuration 4 ...

  16. Advanced High-Performance Batteries for Electric Vehicle (EV...

    Energy.gov [DOE] (indexed site)

    High-Performance Batteries for Electric Vehicle (EV) Applications Ionel C. Stefan, Principal Investigator Amprius, Inc. June 6-10, 2016 ES241 This presentation does not contain any ...

  17. Battery technology for electric and hybrid vehicles: Expert views about prospects for advancement

    SciTech Connect

    Baker, Erin D.; Chon, Haewon; Keisler, Jeffrey M.

    2010-09-01

    In this paper we present the results of an expert elicitation on the prospects for advances in battery technology for electric and hybrid vehicles. We find disagreement among the experts on a wide range of topics, including the need for government funding, the probability of getting batteries with Lithium Metal anodes to work, and the probability of building safe Lithium-ion batteries. Averaging across experts we find that U.S. government expenditures of $150 M/year lead to a 66% chance of achieving a battery that costs less than $200/kWh, and a 20% chance for a cost of $90/kWh or less. Reducing the cost of batteries from a baseline of $384 to $200 could lead to a savings in the cost of reducing greenhouse gases of about $100 billion in 2050.

  18. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur batteries

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Protected Lithium Electrodes for Advanced Batteries Manufacturing of Protected Lithium Electrodes for Advanced Lithium- Air, Lithium-Water, and Lithium-Sulfur Batteries Developing a Lower Cost and Higher Energy Density Alternative to Lithium- Ion Batteries Introduction As the world moves toward increased electric transportation and the use of renewable sources of energy for grid power, advanced electrochemical energy storage technologies will become more and more important. The introduction of

  19. NREL: Transportation Research - NREL Kicks Off Next Phase of Advanced

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Computer-Aided Battery Engineering NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering March 16, 2016 NREL researcher looks across table at meeting Ahmad Pesaran, Energy Storage Group Manager for NREL's Transportation and Hydrogen Systems Center, led the kickoff meeting for CAEBAT-3 On March 8, NREL hosted the first review meeting of the Advanced Computer-Aided Battery Engineering Consortium, initiating phase three of the collaborative Computer Aided Engineering for

  20. Electric Drive and Advanced Battery and Components Testbed (EDAB...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Motor UQM 145 kW single-speed gearbox APU UQM 145 kW 5.3L gasoline engine Battery Pack Manufacturer EnerDel Model Type I EV Pack (A306) Chemistry Li-ion Cathode Mixed ...

  1. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    SciTech Connect

    Lu, XC; Xia, GG; Lemmon, JP; Yang, ZG

    2010-05-01

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a beta ''-Al(2)O(3) solid electrolyte at elevated temperatures (typically 300-350 degrees C ). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement. (C) 2009 Published by Elsevier B.V.

  2. CNEEC - Batteries Tutorial by Prof. Cui

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Batteries

  3. National Renewable Energy Laboratory to Lead New Consortium to Develop

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Advanced Water Splitting Materials for Hydrogen Production: HydroGEN Consortium to accelerate R&D and deployment | Department of Energy National Renewable Energy Laboratory to Lead New Consortium to Develop Advanced Water Splitting Materials for Hydrogen Production: HydroGEN Consortium to accelerate R&D and deployment National Renewable Energy Laboratory to Lead New Consortium to Develop Advanced Water Splitting Materials for Hydrogen Production: HydroGEN Consortium to accelerate

  4. Consortium for Advanced Simulation ...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Departure from nucleate boiling (DNB) serves as a critical pa- rameter in nuclear power plant operational and safety analysis. It occurs when a fuel rod clad surface is overheated ...

  5. CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    AMA.NRC.P5.01 CASL NRC Commissioner Technical Seminar Jess Gehin Oak Ridge National Laboratory December 22, 2012 CASL-U-2014-0076-000-a CASL-U-2012-0076-000-a 1 CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors NRC Commissioner Technical Seminar November 30, 2012 Doug Kothe (ORNL) CASL Director Doug Burns (INL) CASL Deputy Director Paul Turinsky (NCSU) CASL Chief Scientist Jess Gehin (ORNL) CASL AMA FA

  6. An assessment of research and development leadership in advanced batteries for electric vehicles

    SciTech Connect

    Bruch, V.L.

    1994-02-01

    Due to the recently enacted California regulations requiring zero emission vehicles be sold in the market place by 1998, electric vehicle research and development (R&D) is accelerating. Much of the R&D work is focusing on the Achilles` heel of electric vehicles -- advanced batteries. This report provides an assessment of the R&D work currently underway in advanced batteries and electric vehicles in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. Although the US can be considered one of the leading countries in terms of advanced battery and electric vehicle R&D work, it lags other countries, particularly France, in producing and promoting electric vehicles. The US is focusing strictly on regulations to promote electric vehicle usage while other countries are using a wide variety of policy instruments (regulations, educational outreach programs, tax breaks and subsidies) to encourage the use of electric vehicles. The US should consider implementing additional policy instruments to ensure a domestic market exists for electric vehicles. The domestic is the largest and most important market for the US auto industry.

  7. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advancements in high capacity and high density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Key Result Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using ALD and MLD

  8. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    information about thin-film lithium batteries is available in full-text and on the Web. ... Additional Web Pages: Thin Films for Advanced Batteries Thin-Film Rechargeable Lithium, ...

  9. Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)

    SciTech Connect

    Pesaran, A.

    2007-12-01

    Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

  10. Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    FACT SHEET Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals: 1 Provide a Tax Credit for the Production of Advanced Technology Vehicles Current Law A tax credit is allowed for plug-in electric drive motor vehicles. A plug-in electric drive motor vehicle is a vehicle that has at

  11. Batteries: Overview of Battery Cathodes

    SciTech Connect

    Doeff, Marca M

    2010-07-12

    electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet

  12. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE PAGES [OSTI]

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; et al

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore » oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  13. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    SciTech Connect

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.

  14. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul chugh; James Hower

    2008-08-31

    This paper discusses the roles and responsibilities of each position within the Combustion Byproducts Recyclcing Consortium.

  15. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    SciTech Connect

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  16. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  17. Advanced Flow Battery Electrodes: Low-cost, High-Performance 50-Year Electrode

    SciTech Connect

    2010-09-01

    GRIDS Project: Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Power’s flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.

  18. NERSC Helps Develop Next-Gen Batteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December ...

  19. Energy Department Announces $4 Million for University Consortium...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    The consortium's research and development activities will be implemented in collaboration with the Energy Department on a year-to-year basis to advance America's water...

  20. Costs of lithium-ion batteries for vehicles

    SciTech Connect

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  1. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  2. USABC Development of 12 Volt Battery for Start-Stop Application: Preprint

    SciTech Connect

    Tataria, H.; Gross, O.; Bae, C.; Cunningham, B.; Barnes, J. A.; Deppe, J.; Neubauer, J.

    2015-02-01

    Global automakers are accelerating the development of fuel efficient vehicles, as a part of meeting regional regulatory CO2 emissions requirements. The micro hybrid vehicles with auto start-stop functionality are considered economical solutions for the stringent European regulations. Flooded lead acid batteries were initially considered the most economical solution for idle-stop systems. However, the dynamic charge acceptance (DCA) at lower state-of-charge (SOC) was limiting the life of the batteries. While improved lead-acid batteries with AGM and VRLA features have improved battery longevity, they do not last the life of the vehicle. The United States Advanced Battery Consortium (or USABC, a consortium of GM, Ford, and Chrysler) analyzed energy storage needs for a micro hybrid automobile with start-stop capability, and with a single power source. USABC has analyzed the start-stop behaviors of many drivers and has developed the requirements for the start-stop batteries (Table 3). The testing procedures to validate the performance and longevity were standardized and published. The guideline for the cost estimates calculations have also been provided, in order to determine the value of the newly developed modules. The analysis effort resulted in a set of requirements which will help the battery manufacturers to develop a module to meet the automotive Original Equipment Manufacturers (OEM) micro hybrid vehicle requirements. Battery developers were invited to submit development proposals and two proposals were selected for 50% cost share with USABC/DOE.

  3. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    SciTech Connect

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  4. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    SciTech Connect

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; Yang, Yongan

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.

  5. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

    DOE PAGES [OSTI]

    Li, Xuemin; Wolden, Colin A.; Ban, Chunmei; Yang, Yongan

    2015-12-03

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembledmore » into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.« less

  6. Calendar Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    SciTech Connect

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  7. Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    SciTech Connect

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  8. Battery Technology Life Verification Test Manual Revision 1

    SciTech Connect

    Jon P. Christophersen

    2012-12-01

    The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

  9. Hydrogen Materials Advanced Research Consortium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  10. Thermal Management of Batteries in Advanced Vehicles Using Phase-Change Materials (Presentation)

    SciTech Connect

    Kim, G.-H.; Gonder, J.; Lustbader, J.; Pesaran, A.

    2007-12-01

    This Powerpoint presentation examines battery thermal management using PCM and concludes excellent performance in limiting peak temperatures at short period extensive battery use; although, vehicle designers will need to weigh the potential increase in mass and cost associated with adding PCM against the anticipated benefits.

  11. Crash Models for Advanced Automotive Batteries: A Review of the Current State of the Art

    SciTech Connect

    Turner, John A.; Allu, Srikanth; Gorti, Sarma B.; Kalnaus, Sergiy; Kumar, Abhishek; Lebrun-Grandie, Damien T.; Pannala, Sreekanth; Simunovic, Srdjan; Slattery, Stuart R.; Wang, Hsin

    2015-02-01

    Safety is a critical aspect of lithium-ion (Li-ion) battery design. Impact/crash conditions can trigger a complex interplay of mechanical contact, heat generation and electrical discharge, which can result in adverse thermal events. The cause of these thermal events has been linked to internal contact between the opposite electrodes, i.e. internal short circuit. The severity of the outcome is influenced by the configuration of the internal short circuit and the battery state. Different loading conditions and battery states may lead to micro (soft) shorts where material burnout due to generated heat eliminates contact between the electrodes, or persistent (hard) shorts which can lead to more significant thermal events and potentially damage the entire battery system and beyond. Experimental characterization of individual battery components for the onset of internal shorts is limited, since it is impractical to canvas all possible variations in battery state of charge, operating conditions, and impact loading in a timely manner. This report provides a survey of modeling and simulation approaches and documents a project initiated and funded by DOT/NHTSA to improve modeling and simulation capabilities in order to design tests that provide leading indicators of failure in batteries. In this project, ORNL has demonstrated a computational infrastructure to conduct impact simulations of Li-ion batteries using models that resolve internal structures and electro-thermo-chemical and mechanical conditions. Initial comparisons to abuse experiments on cells and cell strings conducted at ORNL and Naval Surface Warfare Center (NSWC) at Carderock MD for parameter estimation and model validation have been performed. This research has provided insight into the mechanisms of deformation in batteries (both at cell and electrode level) and their relationship to the safety of batteries.

  12. Computational Pyrolysis Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... Consortium Approach (Task 3): Simulate Fast Pyrolysis and Interface to Upgrading * ORNL LeadNREL Partner * Construct baseline low-order integral models for fast pyrolysis reactors ...

  13. Consortium Participant List- Spreadsheet

    Energy.gov [DOE]

    Membership in the Consortium is open to municipalities, utilities, and energy efficiency organizations, with participation at various levels from other interested parties.

  14. Advanced battery technology for electric two-wheelers in the people's Republic of China.

    SciTech Connect

    Patil, P. G.; Energy Systems

    2009-07-22

    This report focuses on lithium-ion (Li-ion) battery technology applications for two- and possibly three-wheeled vehicles. The author of this report visited the People's Republic of China (PRC or China) to assess the status of Li-ion battery technology there and to analyze Chinese policies, regulations, and incentives for using this technology and for using two- and three-wheeled vehicles. Another objective was to determine if the Li-ion batteries produced in China were available for benchmarking in the United States. The United States continues to lead the world in Li-ion technology research and development (R&D). Its strong R&D program is funded by the U.S. Department of Energy and other federal agencies, such as the National Institute of Standards and Technology and the U.S. Department of Defense. In Asia, too, developed countries like China, Korea, and Japan are commercializing and producing this technology. In China, more than 120 companies are involved in producing Li-ion batteries. There are more than 139 manufacturers of electric bicycles (also referred to as E-bicycles, electric bikes or E-bikes, and electric two-wheelers or ETWs in this report) and several hundred suppliers. Most E-bikes use lead acid batteries, but there is a push toward using Li-ion battery technology for two- and three-wheeled applications. Highlights and conclusions from this visit are provided in this report and summarized.

  15. The Coal-Seq III Consortium. Advancing the Science of CO2 Sequestration in Coal Seam and Gas Shale Reservoirs

    SciTech Connect

    Koperna, George

    2014-03-14

    The Coal-Seq consortium is a government-industry collaborative that was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO2 sequestration in deep, unmineable coal seams. The consortium’s objective aimed to advancing industry’s understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. Research from this collaborative effort was utilized to produce modules to enhance reservoir simulation and modeling capabilities to assess the technical and economic potential for CO2 storage and enhanced coalbed methane recovery in coal basins. Coal-Seq Phase 3 expands upon the learnings garnered from Phase 1 & 2, which has led to further investigation into refined model development related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins the extension of the work to gas shale reservoirs, and continued global technology exchange. The first research objective assesses changes in coal and shale properties with exposure to CO2 under field replicated conditions. Results indicate that no significant weakening occurs when coal and shale were exposed to CO2, therefore, there was no need to account for mechanical weakening of coal due to the injection of CO2 for modeling. The second major research objective evaluates cleat, Cp, and matrix, Cm, swelling/shrinkage compressibility under field replicated conditions. The experimental studies found that both Cp and Cm vary due to changes in reservoir pressure during injection and depletion under field replicated conditions. Using laboratory data from this study, a compressibility model was developed to predict the pore-volume compressibility, Cp, and the matrix compressibility, Cm, of coal and shale, which was applied to

  16. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    DOE PAGES [OSTI]

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Meinhardt, Kerry D.; Chang, Hee -Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-11

    Here we demonstrate for the first time that planar Na-NiCl2 batteries can be operated at an intermediate temperature of 190°C with ultra-high energy density. A specific energy density of 350 Wh/kg, which is 3 times higher than that of conventional tubular Na-NiCl2 batteries operated at 280°C, was obtained for planar Na-NiCl2 batteries operated at 190°C over a long-term cell test (1000 cycles). The high energy density and superior cycle stability are attributed to the slower particle growth of the cathode materials (NaCl and Ni) at 190°C. The results reported in this work demonstrate that planar Na-NiCl2 batteries operated at anmore » intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.« less

  17. NRELs Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles With average U.S. gasoline prices hovering in the $3 to $4 per gallon range and higher fuel economy standards taking effect, drivers and automakers are thinking more about electric vehicles, hybrid electric vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries that can deliver the range, performance, reliability, price, and safety that drivers

  18. New Mexico Consortium (NMC) Office

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Signatures Applied Geophysical Experiences Materials Design Calendar NSEC New Mexico Consortium (NMC) Office New Mexico Consortium (NMC) Office Explore the multiple...

  19. Si composite electrode with Li metal doping for advanced lithium-ion battery

    SciTech Connect

    Liu, Gao; Xun, Shidi; Battaglia, Vincent

    2015-12-15

    A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.

  20. In-situ Spectroscopic and Structural Studies of Electrode Materials for Advanced Battery Applications

    SciTech Connect

    Daniel A Scherson

    2013-03-14

    Techniques have been developed and implemented to gain insight into fundamental factors that affect the performance of electrodes in Li and Li-ion batteries and other energy storage devices. These include experimental strategies for monitoring the Raman scattering spectra of single microparticles of carbon and transition metal oxides as a function of their state of charge. Measurements were performed in electrolytes of direct relevance to Li and Li-Ion batteries both in the static and dynamic modes. In addition, novel strategies were devised for performing conventional experiments in ultrahigh vacuum environments under conditions which eliminate effects associated with presence of impurities, using ultrapure electrolytes, both of the polymeric and ionic liquid type that display no measurable vapor pressure. Also examined was the reactivity of conventional non aqueous solvent toward ultrapure Li films as monitored in ultrahigh vacuum with external reflection Fourier transform infrared spectroscopy. Also pursued were efforts toward developing applying Raman-scattering for monitoring the flow of charge of a real Li ion battery. Such time-resolved, spatially-resolved measurements are key to validating the results of theoretical simulations involving real electrode structures.

  1. BioRenewable Deployment Consortium Symposium

    Energy.gov [DOE]

    The Fall 2015 Bioenergy Deployment Consortium Symposium will be held September 29–30, 2015 in Ottawa, Canada, and will discuss the deployment of advanced biofuels and biochemical technologies. Bioenergy Technologies Office Director Jonathan Male will be giving a keynote address at the symposium, and Technology Manager Elliott Levine will be in attendance.

  2. Standard Missile Block IV battery

    SciTech Connect

    Martin, J.

    1996-11-01

    During the 1980`s a trend in automatic primary battery technologies was the replacement of silver-zinc batteries by thermal battery designs. The Standard missile (SM 2) Block IV development is a noteworthy reversal of this trend. The SM2, Block IV battery was originally attempted as a thermal battery with multiple companies attempting to develop a thermal battery design. These attempts resulted in failure to obtain a production thermal battery. A decision to pursue a silver-zinc battery design resulted in the development of a battery to supply the SM 2, Block IV (thermal battery design goal) and also the projected power requirements of the evolving SM 2, Block IVA in a single silver-zinc battery design. Several advancements in silver-zinc battery technology were utilized in this design that improve the producibility and extend the boundaries of silver-zinc batteries.

  3. Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)

    SciTech Connect

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.

    2014-02-01

    Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.

  4. Vehicle Technologies Office Merit Review 2015: Advanced In-Situ Diagnostic Techniques for Battery Materials

    Energy.gov [DOE]

    Presentation given by Brookhaven National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced in...

  5. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    SciTech Connect

    Gallego, Nidia C; Contescu, Cristian I; Meyer III, Harry M; Howe, Jane Y; Meisner, Roberta Ann; Payzant, E Andrew; Lance, Michael J; Yoon, Steve; Denlinger, Matthew; Wood III, David L

    2014-01-01

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  6. Consortium Support (Fixed Support) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Support (Fixed Support) Consortium Support (Fixed Support) Consortium Fixed Support.doc (174 KB) More Documents & Publications Consortium Template (Expenditure-Based

  7. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    SciTech Connect

    Sally Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the

  8. CASL-8-2015-0137-000 Jess C. Gehin, PhD Director, Consortium...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Consortium for the Advanced Simulation of Light ... MC2015 - Joint International Conference on Mathematics and Computation ... 2014 Electric Power Research Institute, Inc. ...

  9. Advanced Lithium Battery Cathodes Using Dispersed Carbon Fibers as the Current Collector

    SciTech Connect

    Martha, Surendra K; Kiggans, Jim; Nanda, Jagjit; Dudney, Nancy J

    2011-01-01

    To fabricate LiFePO4 battery cathodes, highly conductive carbon fibers of 10-20 m in diameter have been used to replace a conventional aluminum (Al) foil current collector. This disperses the current collector throughout the cathode sheet and increases the contact area with the LiFePO4 (LFP) particles. In addition, the usual organic binder plus carbon-black can be replaced by a high temperature binder of <5 weight % carbonized petroleum pitch (P-pitch). Together these replacements increase the specific energy density and energy per unit area of the electrode. Details of the coating procedure, characterization and approach for maximizing the energy density are discussed. In a side-by-side comparison with conventional cathodes sheets of LFP on Al foil, the carbon fiber composite cathodes have a longer cycle life, higher thermal stability, and high capacity utilization with little sacrifice of the rate performance.

  10. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  11. New Mexico Consortium (NMC) Office

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NSEC New Mexico Consortium (NMC) Office New Mexico Consortium (NMC) Office Explore the multiple dimensions of a career at LANL: work with the best minds on the planet in an ...

  12. Washington: Battery Manufacturer Brings Material Production Home...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    can be used in ultracapacitors, lithium-ion batteries, and advanced lead acid batteries. ... EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo ...

  13. Biorenewable Deployment Consortium

    Energy.gov [DOE]

    The Biorenewable Deployment Consortium Spring Symposium will be held this year in downtown Charleston, South Carolina on March 30—31, 2016. Bioenergy Technologies Office Technology Manager Elliott Levine will be giving an update on the Office’s programs and recently announced solicitations and activities. The symposium will also include other federal agency updates and commercial progress panels, especially concerning sugar conversion processes.

  14. Sandia Energy - Grid Modernization Consortium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Grid Modernization Consortium Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Renewable Energy Integration Grid Modernization...

  15. Lab Subcontractor Consortium provides grants

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lab Subcontractor Consortium provides grants Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit Lab Subcontractor Consortium provides grants Eight Northern New Mexico non-profits to benefit February 1, 2014 Lab director meets with LANL Subcontrator Consortium Laboratory Director Charlie McMillan speaks to members of the LANL Major Subcontractors Consortium Jan. 7 at the J. Robert Oppenheimer

  16. Kansas Wind Energy Consortium

    SciTech Connect

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  17. Proceedings of the AD HOC Workshop on Ceramics for Li/FeS{sub 2} batteries

    SciTech Connect

    Not Available

    1993-12-31

    Representatives from industry, the U.S. Advanced Battery Consortium (USABC), DOE, national laboratories, and other govt agencies met to develop recommendations and actions for accelerating the development of ceramic components critical to the successful introduction of the Li/FeS{sub 2} bipolar battery for electric vehicles. Most of the workshop is devoted to electrode materials, bipolar designs, separators, and bipolar plates. The bulk of this document is viewographs and is divided into: ceramics, USABC overview, SAFT`s Li/FeS{sub 2} USABC program, bipolar Li/FeS{sub 2} component development, design requirements for bipolar plates, separator design requirements, compatibility of ceramic insulators with lithium, characterization of MgO for use in separators, resistivity measurements of separators, sintered AlN separators for LiMS batteries, etc.

  18. Vehicle Technologies Office Merit Review 2016: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Energy.gov [DOE]

    Presentation given by Maxwell at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  19. Vehicle Technologies Office Merit Review 2016: Advanced Polyolefin Separators for Li-Ion Batteries Used in Vehicle Applications

    Energy.gov [DOE]

    Presentation given by Entek at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  20. Enterprise Assessments Targeted Review, Management of the Safety-Related 480 Volt Diesel Bus Battery-Backed Power System of the Idaho National Laboratory Advanced Test Reactor –October 2015

    Energy.gov [DOE]

    Targeted Review of the Management of the Safety-Related 480 Volt Diesel Bus Battery-Backed Power System of the Idaho National Laboratory Advanced Test Reactor at the Idaho Site

  1. GAS STORAGE TECHNOLGOY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-23

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  2. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-17

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  3. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity

    Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that is examining new battery materials and addressing fundamental chemical and mechanical instability issues in batteries.

  4. Advancing Commercialization of Algal Biofuels through Increased...

    Energy.gov [DOE] (indexed site)

    Advancing Commercialization of Algal Biofuels through Increased Biomass Productivity ... including: NAABB, Cornell's Marine Algal Biofuels Consortium, ATP3. * Participation in ...

  5. Battery Test Manual For Electric Vehicles, Revision 3

    SciTech Connect

    Christophersen, Jon P.

    2015-06-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Electric Vehicles (EV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for EVs. However, it does share some methods described in the previously published battery test manual for plug-in hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Chul Bae of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  6. Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report

    SciTech Connect

    Jon P. Christophersen; Ira Bloom; Edward V. Thomas; Kevin L. Gering; Gary L. Henriksen; Vincent S. Battaglia; David Howell

    2006-07-01

    The Advanced Technology Development Program has completed performance testing of the second generation of lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells, with a baseline and variant chemistry, were distributed over a matrix consisting of three states-of-charge (SOCs) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar- and accelerated-life cells were clamped at an open-circuit voltage corresponding to the designated SOC and were subjected to a once-per-day pulse profile. The cycle-life cells were continuously pulsed using a profile that was centered around 60% SOC. Life testing was interrupted every four weeks for reference performance tests (RPTs), which were used to quantify changes in cell degradation as a function of aging. The RPTs generally consisted of C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy. The rate of cell degradation generally increased with increasing test temperature, and SOC. It was also usually slowest for the calendar-life cells and fastest for the accelerated-life cells. Detailed capacity-, power-, and impedance-based performance results are reported.

  7. Sustainable Algal Biofuels Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algal Biofuels Consortium Thursday May 21, 2013 9.5.1.5, 9.5.1.7, 9.5.1.8 Dr. Gary Dirks (SABC Principal Investigator) Dr. John McGowen (SABC Project Manager) Arizona State University Dr. Philip Pienkos (SABC Director) NREL Cultivating Energy Solutions The primary goals were to evaluate biochemical conversion as a potentially viable strategy for converting all the components of algal biomass into biofuels and evaluate the fit-for-use properties of those algal derived fuels and fuel

  8. Lithium Salts for Advanced Lithium Batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect

    Younesi, Reza; Veith, Gabriel M; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-01-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. This review explores the critical role Li-salts play in ensuring in these batteries viability.

  9. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.

  10. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    DOE PAGES [OSTI]

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions andmore » conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.« less

  11. Vehicle Technologies Office Merit Review 2016: Process Development and Scale-Up of Advanced Active Battery Materials

    Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  12. Vehicle Technologies Office Merit Review 2016: Overview of the DOE VTO Advanced Battery R&D Program

    Energy.gov [DOE]

    Presentation given by Department of Energy (DOE) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  13. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing

  14. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-07-15

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with

  15. ABB and Energy Utilities Form Consortium to Fund SCADA/EMS Cyber Security

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Assessment at National SCADA Test Bed | Department of Energy ABB and Energy Utilities Form Consortium to Fund SCADA/EMS Cyber Security Assessment at National SCADA Test Bed ABB and Energy Utilities Form Consortium to Fund SCADA/EMS Cyber Security Assessment at National SCADA Test Bed Twelve utilities have formed a consortium with ABB, a supervisory control and data acquisition (SCADA) system vendor, to privately fund advanced research and testing through the U.S. Department of Energy's (DOE)

  16. Battery Test Manual For 12 Volt Start/Stop Hybrid Electric Vehicles

    SciTech Connect

    Belt, Jeffrey R.

    2015-05-01

    This manual was prepared by and for the United Stated Advanced Battery Consortium (USABC) Electrochemical Energy Storage Team. It is based on the targets established for 12 Volt Start/Stop energy storage development and is similar (with some important changes) to an earlier manual for the former FreedomCAR program. The specific procedures were developed primarily to characterize the performance of energy storage devices relative to the USABC requirements. However, it is anticipated that these procedures will have some utility for characterizing 12 Volt Start/Stop hybrid energy storage device behavior in general.

  17. Approaches to Evaluating and Improving Lithium-Ion Battery Safety...

    Office of Scientific and Technical Information (OSTI)

    Conference: Approaches to Evaluating and Improving Lithium-Ion Battery Safety. Citation ... presentation at the Advanced Automotive Batteries Conference held February 4-8, 2013 in ...

  18. Longer Life Lithium Ion Batteries with Silicon Anodes - Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Longer Life Lithium Ion Batteries with Silicon Anodes Lawrence Berkeley National ... Researchers have developed a new technology to advance the life of lithium-ion batteries. ...

  19. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  20. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-05-10

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  1. Nuclear Fabrication Consortium

    SciTech Connect

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  2. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison

    2005-09-14

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  3. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  4. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-07-06

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer

  5. Florida Biomass Energy Consortium | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Consortium Jump to: navigation, search Name: Florida Biomass Energy Consortium Place: Florida Sector: Biomass Product: Association of biomass energy companies. References: Florida...

  6. The Solar Energy Consortium | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Consortium Jump to: navigation, search Name: The Solar Energy Consortium TSEC Address: 430 Old Neighborhood Road Place: Kingston, New York Zip: 12401 Region: Northeast - NY NJ CT...

  7. Consortium for Energy Efficiency | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Efficiency Jump to: navigation, search Logo: Consortium for Energy Efficiency Name: Consortium for Energy Efficiency Address: 98 North Washington St Place: Boston,...

  8. Consolidated Construction Consortium Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Consolidated Construction Consortium Ltd Jump to: navigation, search Name: Consolidated Construction Consortium Ltd Place: Chennai - 600 004., Tamil Nadu, India Zip: 600004 Sector:...

  9. Alice Solar City Consortium | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    search Name: Alice Solar City Consortium Place: Alice Springs, Northern Territory, Australia Zip: NT 0871 Sector: Solar Product: A consortium repsonsible for developing the...

  10. Midwest superconductivity consortium. 1993 Progress report

    SciTech Connect

    Not Available

    1994-01-01

    The Midwest Superconductivity Consortium, MISCON, in the fourth year of operations further strengthened its mission to advance the science and understanding of high T{sub c} superconductivity. The goals of the organization and the individual projects continue to reflect the current needs for new knowledge in the field and the unique capabilities of the institutions involved. Group efforts and cooperative laboratory interactions to achieve the greatest possible synergy under the Consortium continue to be emphasized. Industrial affiliations coupled with technology transfer initiatives were expanded. Activities of the participants during the past year achieved an interactive and high level of performance. The number of notable achievements in the field contributed by Consortium investigators increased. The programmatic research continues to focus upon key materials-related problems in two areas. The first area has a focus upon {open_quotes}Synthesis and Processing{close_quotes} while the second is centered around {open_quotes}Limiting Features in Transport Properties of High T{sub c} Materials{close_quotes}.

  11. Advanced Offshore Wind Energy - Atlantic Consortium

    SciTech Connect

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  12. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host

  13. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-09-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology

  14. Federal Laboratory Consortium National Meeting

    Energy.gov [DOE]

    Each year, the Federal Laboratory Consortium for Technology Transfer (FLC) holds a national meeting where technology transfer (T2) professionals can hear from some of the most forward-thinking...

  15. New Mexico Consortium (NMC) Office

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Mexico

    NSEC » New Mexico Consortium (NMC) Office New Mexico Consortium (NMC) Office Explore the multiple dimensions of a career at Los Alamos National Laboratory: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Us NSEC/NMC Executive Advisor Alan Hurd Email Professional Staff Assistant Melissa Martinez (505) 665-0391 Email Professional Staff Assistant Carolyn Bossert (505) 665 0826 Email The New

  16. NREL Battery Testing Capabilities Get a Boost - News Feature | NREL

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Battery Testing Capabilities Get a Boost February 5, 2010 Photo of a Test engineer standing next to a camera showing a thermal image of a battery being tested. Enlarge image Engineer Dirk Long uses thermal imaging equipment to capture a battery's infrared fingerprint to diagnose its behavior. NREL soon will be ramping up testing as the battery industry uses stimulus funding to enhance batteries used in advanced vehicles. Credit: Pat Corkery Batteries are the heart of today's advanced electric

  17. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  18. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, clean coal combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered allowable under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  19. Battery system

    DOEpatents

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  20. Advanced Materials Manufacturing (AMM) Session

    Energy.gov [DOE] (indexed site)

    ... Advanced Manufacturing Office (AMO) manufacturing.energy.gov 12 An AMM InstituteConsortium Approach Offers... ComputationalExperimentalBig Data Synergies: The AMM ...

  1. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information...

  2. Secretary of Energy's Statement on the NuStart Consortium's Site Selection

    Energy.gov [DOE]

    WASHINGTON, DC – Secretary of Energy Samuel Bodman released the following statement regarding today’s announcement by the NuStart Consortium on the selection of two sites for Advanced Nuclear Plant...

  3. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team

  4. WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    at Nissan Advanced Battery Manufacturing Facility Groundbreaking in Smyrna, TN WEDNESDAY: Deputy Secretary Poneman to Speak at Nissan Advanced Battery Manufacturing Facility ...

  5. Vehicle Technologies Office Merit Review 2015: Daikin Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Daikin Advanced Lithium Ion Battery Technology High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology High ...

  6. Vehicle Technologies Office Merit Review 2016: Advanced High...

    Office of Environmental Management (EM)

    Advanced High-Performance Batteries for Electric Vehicle (EV) Applications Vehicle Technologies Office Merit Review 2016: Advanced High-Performance Batteries for Electric Vehicle ...

  7. Tampa Bay Area Ethanol Consortium | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Bay Area Ethanol Consortium Jump to: navigation, search Name: Tampa Bay Area Ethanol Consortium Place: Tampa, Florida Sector: Biomass Product: Consortium researching ethanol from...

  8. Consortium Template (Expenditure-Based) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Template (Expenditure-Based) Consortium Template (Expenditure-Based) Consortium Exp-based template.doc (200.5 KB) More Documents & Publications Consortium Support (Fixed Support

  9. Brazil-US Lab Consortium Activities | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Lab Consortium Activities Jump to: navigation, search Logo: Brazil-US Lab Consortium Activities Name Brazil-US Lab Consortium Activities AgencyCompany Organization U.S....

  10. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  11. The Ocean Sampling Day Consortium

    SciTech Connect

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z.; Sonnenschein, Eva C.; Cariou, Thierry; O’Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R.; Kremp, Anke; DeLorenzo, Marie E.; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P.; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A.; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M.; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion M. F.; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C.; Kandil, Mahrous M.; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; ten Hoopen, Petra; Cochrane, Guy; L’Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M.; Martin, Patrick; Jensen, Rachelle M.; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A. Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J.; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N.; Gasol, Josep M.; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S.; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M.; Collins, R. Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J.; Amaral-Zettler, Linda A.; Gilbert, Jack A.; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  12. Vehicle Technologies Office Merit Review 2015: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Energy.gov [DOE]

    Presentation given by Maxwell at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  13. Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fact sheet describing President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals.

  14. Biorenewable Deployment Consortium Spring Symposium

    Energy.gov [DOE]

    The Biorenewable Deployment Consortium Spring Symposium will be held this year in downtown Charleston, South Carolina on March 30—31, 2016. Bioenergy Technologies Office Technology Manager Elliott Levine will be giving an update on the Office’s programs and recently announced solicitations and activities. The symposium will also include other federal agency updates and commercial progress panels, especially concerning sugar conversion processes.

  15. DuraMat Consortium- Frequently Asked Questions

    Energy.gov [DOE]

    The answers to these frequently asked questions will help applicants for the DuraMat Consortium call for proposals.

  16. Snake River Geothermal Consortium FORGE Logo | Department of Energy

    Energy.gov [DOE] (indexed site)

    Logo More Documents & Publications Snake River Geothermal Consortium FORGE Logo Snake River Geothermal Consortium FORGE Map Snake River Geothermal Consortium FORGE Logo Milford, Utah FORGE Logo Snake River Geothermal Consortium FORGE Logo West Flank FORGE Logo

  17. Federal Laboratory Consortium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Federal Laboratory Consortium Sandia wins tech transfer award from lab consortium EOD technician using XTK from within his response vehicle during a training exercise. NNSA's Sandia National Laboratories won the Federal Laboratory Consortium's (FLC) 2016 Award for Excellence in Technology Transfer for a decontamination product that neutralizes chemical and biological agents and

  18. DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles

    Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will provide up to $14 million in funding for a $28 million cost-shared solicitation by the United States Advanced...

  19. BETO Announces June Webinar: Algal Biofuels Consortium Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results BETO Announces June Webinar: Algal Biofuels Consortium Releases Groundbreaking Research Results ...

  20. Vehicle Technologies Office: Exploratory Battery Materials Research...

    Energy.gov [DOE] (indexed site)

    for future battery chemistries. They research a number of areas that contribute to this body of knowledge: Advanced cell chemistries that promise higher energy density than...

  1. Steps to Commercialization: Nickel Metal Hydride Batteries |...

    Office of Environmental Management (EM)

    Research. Starting in 1976, DOE-funded scientists formed a broad foundation for advances ... This research yielded valuable technologies, resulting in 222 patents for batteries, ...

  2. Steps to Commercialization: Nickel Metal Hydride Batteries |...

    Energy.gov [DOE] (indexed site)

    funds cutting-edge research on a broad range of topics ranging from advanced battery construction to the modeling of industrial processes and supercomputer simulation of...

  3. Advanced Combustion Systems

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Advanced Battery Manufacturing Making Strides in Oregon Advanced Battery Manufacturing Making Strides in Oregon February 16, 2012 - 12:09pm Addthis EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program EnerG2 Ribbon Cutting Ceremony for new battery materials plant in Albany, Oregon. Photo courtesy of the Vehicle Technologies Program What are the key facts? Through the Recovery Act, the Department has

  4. Review of storage battery system cost estimates

    SciTech Connect

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  5. The Ocean Sampling Day Consortium

    DOE PAGES [OSTI]

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; et al

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less

  6. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    SciTech Connect

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; Wang, Chong-Min; Zhang, Jiguang

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li0.2Ni0.2Mn0.6O2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processing history, cycling induced structural degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.

  7. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    DOE PAGES [OSTI]

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; Wang, Chong-Min; Zhang, Jiguang

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li0.2Ni0.2Mn0.6O2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processing history, cycling induced structuralmore » degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.« less

  8. Battery Charger Efficiency

    Energy Saver

    Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC Testing assumes all variables are known - battery chemistry, battery size. ...

  9. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect

    Not Available

    2008-08-01

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

  10. Vehicle Technologies Office Merit Review 2016: Co-Extrusion (CoEx) for Cost Reduction of Advanced High-Energy-and-Power Battery Electrode Manufacturing

    Energy.gov [DOE]

    Presentation given by PARC at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  11. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  12. Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act, OAS-RA-L-12-05

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Follow-up on the Department of Energy's Implementation of the Advanced Batteries and Hybrid Components Program Funded under the American Recovery and Reinvestment Act OAS-RA-L-12-05 July 2012 Department of Energy Washington, DC 20585 July 10, 2012 MEMORANDUM FOR THE DIRECTOR, NATIONAL ENERGY TECHNOLOGY LABORATORY FROM: Joanne Hill, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Follow-up on the Department of Energy's Implementation of the

  13. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery Charger Efficiency Issues with Marine and Recreational Vehicle Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC Testing assumes all variables are known - battery chemistry, battery size. This is not the case in Marine and RV applications. * The battery charger manufacturer has no influence on the selection of batteries. * The battery charger could be used to charge a single battery, single battery bank, multiple batteries or multiple

  14. Consortium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Baylor College of Medicine Biochemistry Department Cell & Molecular Biology Department Molecular Physiology & Biophysics Structural & Computational Biology & Molecular Biophysics ...

  15. Grid Modernization Lab Consortium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Lab Consortium Grid Modernization Lab Consortium PNNL researcher Jason Fuller described PNNL power grid research at the new Systems Engineering Building. Courtesy of Pacific Northwest National Laboratory. PNNL researcher Jason Fuller described PNNL power grid research at the new Systems Engineering Building. Courtesy of Pacific Northwest National Laboratory. The Grid Modernization Laboratory Consortium (GMLC) was established as a strategic partnership between DOE and the national laboratories to

  16. Advanced Materials Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy Safety Technologies Facilities Battery Abuse Testing Laboratory Cylindrical Boiling Facility ...

  17. Nuclear Arms Control R&D Consortium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Security Administration (NNSA). The consortium of 13 universities and 8 national laboratories is dedicated to the research and development (R&D) of nuclear arms ...

  18. National Alternative Fuels Training Consortium (NAFTC) Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Annual Merit Review and Peer Evaluation Meeting PDF icon ti017ebron2012o.pdf More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities ...

  19. National Alternative Fuels Training Consortium (NAFTC) Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Annual Merit Review and Peer Evaluation PDF icon ti017ebron2011p.pdf More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities ...

  20. ORISE: University Radioactive Ion Beam Consortium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    University Radioactive Ion Beam Consortium The University ... (ORISE) focused on cutting-edge nuclear physics research. ... different gamma-ray and electron detector systems and was ...

  1. Trainers’ Consortium: SWS/Certification Updates

    Energy.gov [DOE]

    This presentation contains recent updates on SWS maintenance and the Home Energy Professional Certifications, given via the Trainers' Consortium call on December 1, 2015.

  2. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.' -Edited excerpt from Medical Applications of Non-medical ...

  3. Nanostructured Anodes for Lithium-Ion Batteries - Energy Innovation...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced Materials Find More Like This Return to Search Nanostructured Anodes for Lithium-Ion Batteries New Anodes for Lithium-ion Batteries Increase Energy Density Four-Fold...

  4. Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report

    SciTech Connect

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

  5. Fact Sheet: Accelerating the Development and Deployment of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    including Battery Electric and Fuel Cell Electric Vehicles Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and ...

  6. NREL: Energy Storage - NREL Kicks Off Next Phase of Advanced...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    cycle of batteries while improving their performance, safety, lifespan, and cost. Advanced battery technologies are essential to boost electric drive vehicle performance and ...

  7. Snake River Geothermal Consortium FORGE Map | Department of Energy

    Energy.gov [DOE] (indexed site)

    Map More Documents & Publications Snake River Geothermal Consortium FORGE Map Snake River Geothermal Consortium FORGE Logo Idaho National Laboratory Phase 1 Report Snake River Geothermal Consortium FORGE Map Milford, Utah FORGE Map

  8. The Solar Energy Consortium TSEC | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Energy Consortium TSEC Jump to: navigation, search Name: The Solar Energy Consortium (TSEC) Place: Kingston, New York Zip: 12401 Product: New York-based, not-for-profit consortium...

  9. Nuclear Arms Control R&D Consortium includes Los Alamos

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Nuclear Arms Control R&D Consortium includes Los Alamos Nuclear Arms Control R&D Consortium includes Los Alamos A consortium led by the University of Michigan that includes LANL as ...

  10. India-US Lab Consortium Activities | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    US Lab Consortium Activities Jump to: navigation, search Logo: India-U.S. Lab Consortium Name India-U.S. Lab Consortium AgencyCompany Organization U.S. Department of Energy...

  11. KAir Battery

    Energy.gov [DOE]

    KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

  12. CASL-U-2015-0104-000 CASL: The Consortium for

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    4-000 CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub Doug Kothe Oak Ridge National Laboratory Paul Turinsky North Carolina State University July 8-10, 2013 CASL-U-2015-0104-000 1 CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub Doug Kothe and Paul Turinsky CASL-U-2015-0104-000 2 * A Different Approach - "Multi-disciplinary, highly collaborative teams ideally working under one roof to solve

  13. Kentucky Consortium for Carbon Storage | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Consortium for Carbon Storage Jump to: navigation, search Name: Kentucky Consortium for Carbon Storage Place: Lexington, Kentucky Zip: 40506-0107 Product: Kentucky based...

  14. Federal Technology Transfer and the Federal Laboratory Consortium...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Federal Technology Transfer and the Federal Laboratory Consortium: Federal Technology Transfer and the Federal Laboratory Consortium: Identifying and accessing U.S. federal lab ...

  15. Microsoft Word - Utilities Form Consortium to Fund SCADA Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ABB and Energy Utilities Form Consortium to Fund SCADAEMS Cyber Security Assessment at National SCADA Test Bed Twelve utilities have formed a consortium with ABB, a supervisory ...

  16. DOE Announces Webinars on Algal Biofuels Consortium Research...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Algal Biofuels Consortium Research Results, Solar Energy Maps, and More DOE Announces Webinars on Algal Biofuels Consortium Research Results, Solar Energy Maps, and More June 10, ...

  17. BSC: Building America, Building Science Consortium - 2015 Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    BSC: Building America, Building Science Consortium - 2015 Peer Review BSC: Building America, Building Science Consortium - 2015 Peer Review Presenter: Joe Lstiburek, Building ...

  18. SEEWEC Consortium lead partner Ghent University | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    SEEWEC Consortium lead partner Ghent University Jump to: navigation, search Name: SEEWEC Consortium lead partner Ghent University Address: Sint Pietersnieuwstraat 41 Place: Gent...

  19. Wallula Energy Resource Center Consortium | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    State based consortium that has formed to develop an IGCC power plant with associated CO2 storage. References: Wallula Energy Resource Center Consortium1 This article is a...

  20. New AMO Consortium Focuses on Energy Efficient and Environmentally...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AMO Consortium Focuses on Energy Efficient and Environmentally Friendly Materials for Cooling New AMO Consortium Focuses on Energy Efficient and Environmentally Friendly Materials ...

  1. Live webcast on groundbreaking results of Algal Biofuels Consortium...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Live webcast on Algal Biofuels Consortium Live webcast on groundbreaking results of Algal Biofuels Consortium, June 11 Jose A. Olivares will present an overview of the technologies ...

  2. Plug In Hybrid Development Consortium | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hybrid Development Consortium Sector: Vehicles Product: US-based consortium of automotive suppliers, manufacturers and other organizations working together to accelerate the...

  3. New Mexico Consortium works toward food and energy security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    New Mexico Consortium works toward food and energy security Community Connections: Your ... Latest Issue:July 2016 all issues All Issues submit New Mexico Consortium works toward ...

  4. EUHYFIS Hydrogen Filling Station Consortium | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    EUHYFIS Hydrogen Filling Station Consortium Jump to: navigation, search Name: EUHYFIS (Hydrogen Filling Station Consortium) Place: Oldenburg, Germany Zip: 26123 Sector: Hydro,...

  5. Lithium battery

    SciTech Connect

    Ikeda, H.; Nakaido, S.; Narukara, S.

    1983-08-16

    In a lithium battery having a negative electrode formed with lithium as active material and the positive electrode formed with manganese dioxide, carbon fluoride or the like as the active material, the discharge capacity of the negative electrode is made smaller than the discharge capacity of the positive electrode, whereby a drop in the battery voltage during the final discharge stage is steepened, and prevents a device using such a lithium battery as a power supply from operating in an unstable manner, thereby improving the reliability of such device.

  6. Batteries and Energy Storage | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles,

  7. NERSC Helps Develop Next-Gen Batteries

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December 18, 2012 Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 XBD201110-01310.jpg Kristin Persson To reduce the United States' reliance on foreign oil and lower consumer energy costs, the Department of Energy (DOE) is bringing together five national laboratories, five universities and four private firms to revolutionize

  8. Innovative lithium-titanium-oxide anodes improve battery safety and

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovative Software Tackles Nuclear Industry Challenges Innovative Software Tackles Nuclear Industry Challenges May 3, 2011 - 6:08pm Addthis Doug Kothe Director, Consortium for Advanced Simulation of Light Water Reactors Nearly a year ago, the Department of Energy selected a team lead by Oak Ridge National Laboratory to establish and operate the Consortium for Advanced Simulation of Light Water Reactors (CASL), an Energy Innovation Hub. Today, we mark an important milestone in that

  9. Flow battery

    DOEpatents

    Lipka, Stephen M.; Swartz, Christopher R.

    2016-02-23

    An electrolyte system for a flow battery has an anolyte including [Fe(CN).sub.6].sup.3- and [Fe(CN).sub.6].sup.4- and a catholyte including Fe.sup.2+ and Fe.sup.3+.

  10. Polymers For Advanced Lithium Batteries

    Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Polymers For Advanced Lithium Batteries

    Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  12. Bipolar battery

    DOEpatents

    Kaun, Thomas D.

    1992-01-01

    A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

  13. Major Subcontractors Consortium sharpens its focus

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Major Subcontractors Consortium sharpens its focus Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:November 2, 2016 all issues All Issues » submit Major Subcontractors Consortium sharpens its focus Area businesses gain more value in MSC collaboration with Lab in 2016. April 4, 2016 Picuris Pueblo among non-profits receving MSC grant Picuris Pueblo was among the non-profits that received an MSC grant in 2015. In the past 10 years, 42

  14. Predictive Models of Li-ion Battery Lifetime (Presentation) Smith...

    Office of Scientific and Technical Information (OSTI)

    Predictive Models of Li-ion Battery Lifetime (Presentation) Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A. 25 ENERGY STORAGE; 33 ADVANCED PROPULSION...

  15. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    This is illustrated no more clearly than in Michigan and North Carolina. Last week, Secretary Chu toured the A123 Systems advanced battery manufacturing facility in Romulus, ...

  16. New INL High Energy Battery Test Facility | Department of Energy

    Energy.gov [DOE] (indexed site)

    (486.55 KB) More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Advanced Li-Ion Polymer Battery Cell ...

  17. AVTA: Battery Testing - Best Practices for Responding to Emergency...

    Office of Environmental Management (EM)

    AVTA: Battery Testing - Best Practices for Responding to Emergency Incidents in Plug-in Electric Vehicles (EV) The Vehicle Technologies Office's Advanced Vehicle Testing Activity ...

  18. Advanced Electrolyte Research | Argonne National Laboratory

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Advanced Electrolyte Research Redox-active dialkoxybenzene derivatives have been synthesized and studied towards various battery related applications, including redox shuttle additives for overcharge protection of lithium-ion batteries and catholyte materials for non-aqueous organic redox flow batteries. Redox-active dialkoxybenzene derivatives have been synthesized and studied towards various battery related applications, including redox shuttle additives for overcharge protection of

  19. Organic Cathode Materials for Rechargeable Batteries

    SciTech Connect

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  20. Iron Edison Battery Company | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced Nickel-iron (Ni-Fe) battery technology. Vastly out-lasting the 7...

  1. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  2. Computational Astrophysics Consortium, University of Minnesota, Final Report

    SciTech Connect

    Heger, Alexander

    2015-03-26

    During its six year duration the Computational Astrophysics consortium helped to train the next generation of scientists in computational and nuclear astrophysics. A total of five graduate students were supported by the grant at UMN. The major advances at UMN were in the use, testing, and contribution to development of the CASTRO that efficiently scales on over 100,000 CPUs. At UMN it was used for modeling of thermonuclear supernovae (pair instability and supermassive stars) and core-collapse supernovae as well as the final phases of their progenitors, as well as for x-ray bursts from accreting neutron stars. Important secondary advances in the field of nuclear astrophysics included a better understanding of the evolution of massive stars and the origin of the elements. The research resulted in more than 50 publications.

  3. Transformative Battery Technology at the National Labs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

  4. SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es158_goodenough_2012_p.pdf (1.3 MB) More Documents & Publications Solid Electrolyte Batteries Vehicle Technologies Office Merit Review 2016: Overview and Progress of the Advanced Battery Materials Research (BMR) Program Vehicle Technologies Office Merit Review 2016:

  5. Germanium Oxide Nanoparticlesfor Superior Battery Electrodes - Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Germanium Oxide Nanoparticlesfor Superior Battery Electrodes Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary Compared to the graphite found in some batteries, similar elements such as tin, silicon, and germanium have much higher theoretical capacities for lithium ions, making them strong candidates for electrode materials. These new amorphous germanium

  6. RADIOACTIVE BATTERY

    DOEpatents

    Birden, J.H.; Jordan, K.C.

    1959-11-17

    A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

  7. Batteries for Large Scale Energy Storage

    SciTech Connect

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  8. AVTA: Battery Testing- DC Fast Charging's Effects on PEV Batteries

    Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes DC fast charging's effects on plug-in electric vehicle batteries. This research was conducted by Idaho National Laboratory.

  9. Thermal battery

    SciTech Connect

    Williams, M.T.; Winchester, C.S.; Jolson, J.D.

    1989-06-20

    A thermal battery is described comprising at least one electrochemical cell comprising an anode of alkali metal, alkaline earth metal or alloys thereof, a fusible salt electrolyte, a fluorocarbon polymer or fluorochlorocarbon polymer depolarizer, and means for heating the cell to melt the electrolyte.

  10. Roll-to-Roll Electrode Processing and Materials NDE for Advanced...

    Energy.gov [DOE] (indexed site)

    Lithium Secondary Batteries Vehicle Technologies Office Merit Review 2014: Roll-to-Roll Electrode Processing NDE for Advanced Lithium Secondary Batteries In-situ ...

  11. CUBICON Materials that Outperform Lithium-Ion Batteries - Energy Innovation

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Portal Advanced Materials Advanced Materials Find More Like This Return to Search CUBICON Materials that Outperform Lithium-Ion Batteries Brookhaven National Laboratory Contact BNL About This Technology Micrograph of CUBICON material. Micrograph of CUBICON material. Technology Marketing Summary The demand for batteries to meet high-power and high-energy system applications has resulted in substantial research and development activities. Lithium-ion batteries are a chief contender today, but

  12. Consortium on Digital Energy CoDE | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    on Digital Energy CoDE Jump to: navigation, search Name: Consortium on Digital Energy (CoDE) Place: London, England, United Kingdom Zip: EC2A 1QP Product: London-based consortium...

  13. Consortium wins major Brazilian gas contract

    SciTech Connect

    O`Driscoll

    1994-08-16

    An international consortium of BHP of Australia, Tenneco Gas of the U.S. and British Gas was selected Monday by Petroleo Braileiro SA (Petrobras) to Monday by Petroleo Brasileiro SA (Petrobras) to develop a $2 billion natural gas pipeline linking reserves in Bolivia with markets in southern and southeastern Brazil.

  14. Call for Proposals: DuraMat Consortium

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Call for Proposals is intended to establish a national laboratory-led Energy Materials Network (EMN) Consortium for durable module materials (DuraMat) aimed at dramatically accelerating the development of new module materials that enable significant reductions in the levelized cost of energy (LCOE) of photovoltaic (PV) systems.

  15. Penn State Consortium for Building Energy Innovation

    Energy.gov [DOE]

    The Penn State Consortium for Building Energy Innovation (formerly the Energy Efficient Buildings Hub) develops, demonstrates, and deploys energy-saving technologies that can achieve 50% energy reduction in small- and medium-sized buildings. Its headquarters serves as a test bed for real-world integration of technology and market solutions.

  16. Municipal Solid-State Street Lighting Consortium Kickoff Webcast |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy Webcasts » Municipal Solid-State Street Lighting Consortium Kickoff Webcast Municipal Solid-State Street Lighting Consortium Kickoff Webcast This May 6, 2010 webcast served as the first official meeting of the new DOE Municipal Solid-State Street Lighting Consortium. Ed Smalley of Seattle City Light and Bruce Kinzey of Pacific Northwest National Laboratory discussed the Consortium's mission and goals, and provided an overview of its first steps, and opportunities to

  17. ElectroCat: Electrocatalysis Consortium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ElectroCat: Electrocatalysis Consortium ElectroCat: Electrocatalysis Consortium Logo for the ElelctroCatalysis Consortium. The Electrocatalysis Consortium (ElectroCat) is an initiative to accelerate the development of catalysts made without platinum group metals (PGM-free) for use in automotive fuel cell applications. Current state-of-the-art fuel cell systems rely on platinum-based catalysts that make up nearly 50% of the total fuel cell cost. ElectroCat aims to bring together a network of

  18. CONSORTIUM GETS WISE ABOUT ENERGY UPGRADES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    CONSORTIUM GETS WISE ABOUT ENERGY UPGRADES CONSORTIUM GETS WISE ABOUT ENERGY UPGRADES CONSORTIUM GETS WISE ABOUT ENERGY UPGRADES In a region where energy efficiency is a relatively new concept, the Southeast Energy Efficiency Alliance (SEEA) joined with a consortium of 13 cities across eight states and one territory to build a framework for energy efficiency programs that could be replicated and implemented across the Southeast. Because each city took a unique approach to developing and

  19. Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and

    Office of Scientific and Technical Information (OSTI)

    Nucleosynthesis (Technical Report) | SciTech Connect Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis Citation Details In-Document Search Title: Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis Final project report for UCSC's participation in the Computational Astrophysics Consortium - Supernovae, Gamma-Ray Bursts and Nucleosynthesis. As an appendix, the report of the entire Consortium is also appended.

  20. Vehicle Technologies Office: Batteries | Department of Energy

    Energy Saver

    Plug-in Electric Vehicles & Batteries Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Vehicle Technologies Office: Batteries Improving the ...

  1. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    DOE PAGES [OSTI]

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize themore » particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.« less

  2. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    SciTech Connect

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.

  3. X-Ray Tools for Battery Development and Testing: Case Studies...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    X-Ray Tools for Battery Development and Testing: Case Studies Case studies of the use of X-ray techniques for battery development and testing at the Advanced Photon Source PDF icon...

  4. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    failure in a commercial power reactor, CASL Technical Report: ... and Simulation of the AP1000 PWR Cycle 1 Depletion, ... Framework for Design Optimization, Parameter ...

  5. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    It informs consequential nuclear power operational and ... Opportunities for reduced uncertainties in design and ... to address light water reactor (LWR) operational and ...

  6. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    in Drekar, CASL Technical Report: CASL-U-2012-0080-000, June 30, 2012. Bakosi, J., N. Barnett, M.A. Christon, M.M. Francois, R.B. Lowrie and R. Sankaran, Integration of Hydra-TH...

  7. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    codes (e.g,. a physics simulation) and iterative systems analysis methods such as optimization or uncertainty quantification. It includes algorithms for: optimization with...

  8. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    models are being developed based on higher fidelity CFD methods, and may also include adhesionstrength models16 for the crud's surface layer as well as other "release"...

  9. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    that have included management of CERCLA and RCRA remediation projects at the INL, Rocky Flats, and Mound laboratories, management of special nuclear materials at the INL, and...

  10. Hydrogen Materials Advanced Research Consortium (HyMARC)

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Hydrogen M aterials A dvanced Research C onsor6um Sponsor: D OE-EERE/Fuel C ell T echnologies O ffice Consor6um D irector: D r. M ark D . A llendorf Partner L aboratories: Sandia N a2onal L aboratories Mail S top 9 161, L ivermore, C A 9 4551---0969. P hone: ( 925) 2 94---2895. E mail:mdallen@sandia.gov Lawrence L ivermore N a2onal L aboratory POC: D r. B randon W ood P hone: ( 925) 4 22---8391. E mail: b randonwood@llnl.gov Lawrence B erkeley N a2onal L aboratory POC: D r. J eff U rban; p hone:

  11. Consortium for Advanced Simulation of Light-Water Reactors To...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... University of Michigan; and the Idaho, Los Alamos, and Sandia national laboratories. ...

  12. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The toolkit also provides run-time parallel domain decomposition with data-migration for both static and dynamic load-balancing. Linear algebra is handled through an...

  13. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Contact Us Address Oak Ridge National Laboratory PO Box 2008, MS6003 Oak Ridge, TN 37831-6003 Email Information Support ORNL Campus...

  14. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Site Map Home CASL Partners Research Science & Technology Archive Journal & Conference Papers Technical Reports Presentations VERA Software & Support VERA 3.3 VERA.edu How To...

  15. COLLOQUIUM: CASL: Consortium for Advanced Simulation of Light...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for Reactor Applications (VERA), incorporates science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and...

  16. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    modeling and simulation technology that is deployed and applied broadly throughout the nuclear energy industry to enhance safety, reliability, and economics. CASL will address,...

  17. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Read More Fuel pellets and the fuel rod cladding are affected at the microstructural level Under pressure, heat and radiation in the reactor environment, both the fuel pellets and ...

  18. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Engineering and Design, Volume Online, Issue CASL-U-2015-0301-000, August 28, 2015. Smith, T.M., M.A. Christon, E. Baglietto and H. Luo, "Assessment of Models for Near Wall...

  19. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Upcoming Training Events CASL Events Your browser does not appear to support JavaScript, but this page needs to use JavaScript to display correctly. You can visit the HTML-only...

  20. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    and Monte Carlo transport applications. Exnihilo is based on a package architecture model such that each package provides well-defined capabilities. Exnihilo currently...

  1. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    ... (IAEA) Meeting on Accident Tolerant Fuel (ATF) Concepts for LWRs, International Atomic ... Simulation of Light Water Reactors, Westinghouse Technology Users Group, August 28, ...

  2. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    plant power uprates, life extension, and higher burnup fuels Provide the primary bridge between the scientific and computational capabilities developed by CASL and external...

  3. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    model and numerical algorithm requirements of VERA. THM collaborates closely with Materials Performance and Optimization (MPO) for sub-grid material and chemistry models,...

  4. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    integration (VRI) for integration and development of VERA. Materials Performance and Optimization (MPO) - Develops improved materials performance models for fuels, cladding,...

  5. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    capabilities to meet future CASL needs. DTK has been given an open source BSD 3-clause license. The primary code development repository is publicly-hosted under the GitHub group...

  6. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    VERA VERA.edu Software availability U.S. Citizens and most LPRs as limited by U.S. export control regulations Students, Faculty MOC radiation transport included included Sn and SPn radiation transport included Not included Monte Carlo radiation transport included included Integrated cross-section library included Limited functionality Integrated depletion library included Limited functionality Subchannel thermal-hydraulics included included Fuel performance included included Coolant chemistry

  7. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CASL's Latest Research CIPS Simulation Capability Implemented in VERA Posted on October 28, 2015 Departure from Nucleate Boiling (DNB) Multi-Physics Approach & Applications using...

  8. Consortium for Advanced Simulation of Light Water Reactors

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    for TVA Watts Bar plant * First-of-a-kind three-dimensional (3D) assessment of fuel pellet-to- cladding interaction * VERA 1.0 established with infrastructure and basic industry...

  9. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    of plant operation and fuel rod design on the thermo-mechanical behavior, including Pellet-Cladding Interaction (PCI) failures in PWRs. The multi-physics, multi-dimensional...

  10. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to deliver materials insight in the areas of CRUD, Grid-to-Rod-Fretting (GTRF), pellet-cladding interaction (PCI), reactivity insertion accident (RIA) and loss of cooling...

  11. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Reliable predictions of grid to rod gap, turbulent flow excitation, and resulting rod vibration and wear at any location in core. PCI Pellet-Clad Interaction. Cladding...

  12. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Radiation Transport Methods (RTM) Delivers next-generation radiation transport tools to the virtual Reactor RTM Vision Statement Objectives and Strategies Next generation,...

  13. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    LWRs; Develop and effectively apply modern virtual reactor technology; Engage the nuclear energy community through modeling and simulation; and Deploy new partnership and...

  14. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    well-known thermal-hydraulic analysis codes that have found widespread use in the nuclear energy industry. This group of codes is related in that they were developed for modeling...

  15. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to develop the world's first nuclear fuel cycle and today is DOE's largest science and energy laboratory. ORNL has world-leading capabilities in computing and computational...

  16. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    plan to set up eight innovation hubs to solve the eight biggest energy problems in the world. CUNY Energy Institute The CUNY Energy Institute is proudly training the next...

  17. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    on issues related to management, performance, strategic direction, and institutional interfaces within CASL. The CASL Director reports to the BOD on all matters related to CASL...

  18. Indiana Advanced Electric Vehicle Training and Education Consortium...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt032ticaruthers2011p.pdf (1.5

  19. Indiana Advanced Electric Vehicle Training and Education Consortium...

    Energy.gov [DOE] (indexed site)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt032ticaruthers2012o.pdf (3.4

  20. Penn State Consortium: Advanced Critical AER Education, Training...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    ... funding sources and limited support of Benchmarking and Reporting training 4. Evaluate ... and BNY Melon Foundation (0.1M) Budget History FY 2012- FY2013 (past) FY2014 (current) ...

  1. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    reactor physical phenomena using coupled multiphysics models. VERA also includes the software development environment and computational infrastructure needed for these...

  2. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    to achieve challenge problem solutions A strong VERA infrastructure supporting software development, testing, and releases. Requirements Drivers Modeling of reactors...

  3. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Subchannel Methods for the Thermal-Hydraulic Analysis for Nuclear Power Systems presented by Dr. Michael Doster...

  4. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Thermal Hydraulics Methods (THM) Delivers next-generation thermal-hydraulic simulation tools to Virtual Environment for Reactor Applications (VERA) Thermal Hydraulics Methods...

  5. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    from CASL (Dr. Mike Short, MIT, October, 31, 2013) Subchannel Methods for the Thermal-Hydraulic Analysis for Nuclear Power Systems (Dr. Michael Doster, NCSU, May 28, 2013)...

  6. Consortium for Advanced Simulation of Light Water Reactors

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    An essential part of developing a closed form set of equations (closures) for prediction of two-phase flow with computational fluid dynamics (CFD) is understanding how the bubbles generat- ed by boiling interact. An accurate prediction of moderator and fuel performance once boiling has begun is needed to simulate CASL Challenge Problems related to boiling water reactors (BWRs), departure from nucleate boiling (DNB) behavior in pressurized water reactors (PWRs), loss of coolant accidents (LOCAs),

  7. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Back Board of Directors The CASL Board of Directors (BOD) serves as both an advisory and oversight body for the ORNL Laboratory Director and the CASL Senior Leadership Team (SLT) on issues related to management, performance, strategic direction, and institutional interfaces within CASL. The CASL Director reports to the BOD on all matters related to CASL strategic program plans and decisions. The BOD works to ensure the execution of CASL operational and R&D plans provide maximum benefit to

  8. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Organization The CASL organizational structure (see chart) has proven to accommodate necessary program priority changes and risk management actions during CASL's lifetime, yet possesses a primary structure that is stable and functional. Major features include: Central, integrated management working predominately from a single location at ORNL: Director with full line authority and accountability for all aspects of CASL; Deputy Direct to drive program planning, performance and assessment; Chief

  9. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    CASL Partners Electric Power Research Institute Idaho National Laboratory Los Alamos National Laboratory Massachusetts Institute of Technology North Carolina State University Oak Ridge National Laboratory Sandia National Laboratory Tennessee Valley Authority University of Michigan Westinghouse Electric Company

  10. Consortium for Advanced Simulation of Light Water Reactors (CASL)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Back Science Council The Science Council The Science Council provides independent assessment of whether the CASL scientific work planned and executed is of high quality and supports attaining the goals of CASL. In addition, the Science Council may be called upon to complete detailed assessments of specific CASL scientific issues. The Science Council advises the following CASL Focus Areas (FAs): Radiation Transport Methods (RTM), Thermal Hydraulics Methods (THM), Materials Performance and

  11. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Monte Carlo Code for Research and Development," ... Roughness Elements," International Journal of Heat and Fluid Flow, ... Conference on Mathematics and Computation (M&C), ...

  12. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Site Map Home About CASL Vision Mission Goals Strategy Integration Performance Metrics Partners Founding Partners Electric Power Research Institute Idaho National Laboratory Los...

  13. battery electrode percolating network

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    battery electrode percolating network - Sandia Energy Energy Search Icon Sandia Home ... Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ...

  14. Batteries Breakout Session

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Low voltage ( 1- cell ) Distributed battery that can go anywhere * Bi-polar cellspack configuration * Chemistries that do not need balancing Standard battery bay for drop in ...

  15. Battery cell feedthrough apparatus

    DOEpatents

    Kaun, Thomas D.

    1995-01-01

    A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

  16. Piezonuclear battery

    DOEpatents

    Bongianni, Wayne L.

    1992-01-01

    A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

  17. EERE Success Story-US-ABC Collaborates to Lower Cost of Electric...

    Energy Saver

    Addthis The U.S. Advanced Battery Consortium (US-ABC) is a group that funds electrochemical storage research and ... Project Overview Positive Impact Reducing battery vehicle ...

  18. Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Vehicle Battery Plant | Department of Energy Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant May 26, 2010 - 12:00am Addthis Smyrna, TN - Today, U.S. Deputy Secretary of Energy Daniel Poneman participated in the groundbreaking ceremony for Nissan North America's advanced battery manufacturing facility in Smyrna, Tennessee. This past January the Department closed a $1.4 billion loan

  19. Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Techniques for Battery Materials | Department of Energy Advanced in situ Diagnostic Techniques for Battery Materials Vehicle Technologies Office Merit Review 2014: Advanced in situ Diagnostic Techniques for Battery Materials Presentation given by Brookhaven National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced in situ diagnostic techniques for battery materials. es059_yang_2014_p.pdf

  20. Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery Technology - High Voltage Electrolyte | Department of Energy Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte Presentation given by Daikin America at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion battery technology - high

  1. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  2. LEESS Battery Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    LEESS Battery Development LEESS Battery Development 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es139_mcgrath_2012_p.pdf (1.22 MB) More Documents & Publications Development of Advanced Energy Storage Systems for High Power, Lower Energy … Energy Storage System (LEESS) for Power Assist Hybrid Electric Vehicle (PAHEV) Applications FY 2012 Annual Progress Report for Energy Storage R&D USABC LEESS and PHEV

  3. Ohio Advanced Energy Manufacturing Center

    SciTech Connect

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries

  4. A lithium oxygen secondary battery

    SciTech Connect

    Semkow, K.W.; Sammells, A.F.

    1987-08-01

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  5. Optima Batteries | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: www.optimabatteries.com References: Optima Batteries1 Information About...

  6. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  7. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  8. Minority Serving Institution Technical Consortium Model | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Minority Serving Institution Technical Consortium Model Minority Serving Institution Technical Consortium Model In October 2012, the National Nuclear Security Administration (NNSA) awarded $4 million in grants to 22 Historically Black Colleges and Universities (HBCUs) in key STEM areas. This funding launched NNSA's new Minority Serving Institution Partnership Program, a consortium program organized to build a sustainable STEM pipeline between six Energy Department plants and

  9. Municipal Consortium LED Street Lighting Workshop Presentations and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials-Boston, MA | Department of Energy Boston, MA Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Boston, MA This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Boston August 2-3, 2012. Workshop Agenda DOE Municipal Solid-State Street Lighting Consortium James Brodrick, U.S. Department of Energy Boston's LED Street Lighting Initiative Joanne Massaro, Glenn Cooper, Matthew Mayrl,

  10. National Alternative Fuels Training Consortium (NAFTC) Clean Cities

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Learning Program | Department of Energy National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ti017_ebron_2012_o.pdf (4.61 MB) More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities

  11. CNS represented at inaugural Energetics Consortium | Y-12 National Security

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Complex represented at ... CNS represented at inaugural Energetics Consortium Posted: February 16, 2016 - 6:53pm CNS was well represented at the first National Energetic Materials Consortium. About 70 university researchers and government and industry experts from across the country, including Consolidated Nuclear Security employees, joined forces at the first ever National Energetic Materials Consortium hosted by Texas Tech University. Pantex's Christopher Young said, "There are a

  12. Vehicle Technologies Office: Federal Laboratory Consortium Excellence in

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Technology Transfer Awards | Department of Energy Federal Laboratory Consortium Excellence in Technology Transfer Awards Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards 2011 Laser-Induced Fluorescence Fiber-Optic Measurement of Fuel in Oil (Oak Ridge National Laboratory). Oak Ridge National Laboratory's Laser-Induced Fluorescence Fiber-Optic Measurement of Fuel in Oil technology received the Federal Laboratory Consortium Award for

  13. BSC: Building America, Building Science Consortium - 2015 Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Department of Energy BSC: Building America, Building Science Consortium - 2015 Peer Review BSC: Building America, Building Science Consortium - 2015 Peer Review Presenter: Joe Lstiburek, Building Science Corp. View the Presentation BSC: Building America, Building Science Consortium - 2015 Peer Review (1.5 MB) More Documents & Publications Building America Technology Solutions for New and Existing Homes Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles Building

  14. Webcast: Municipal Solid-State Street Lighting Consortium Retrofit

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Financial Analysis Tool | Department of Energy Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool Webcast: Municipal Solid-State Street Lighting Consortium Retrofit Financial Analysis Tool This April 3, 2012 webcast presented information about the Retrofit Financial Analysis Tool developed by DOE"s Municipal Solid-State Street Lighting Consortium. Doug Elliott of Pacific Northwest National Laboratory provided a guided walk-through of what the tool can do

  15. University Research Consortium annual review meeting program

    SciTech Connect

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  16. Energy Department Launches $10 Million Effort to Develop Advanced Water

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Splitting Materials | Department of Energy Launches $10 Million Effort to Develop Advanced Water Splitting Materials Energy Department Launches $10 Million Effort to Develop Advanced Water Splitting Materials October 24, 2016 - 11:00am Addthis The Energy Department (DOE) recently announced $10 million, subject to appropriations, to support the launch of the HydroGEN Advanced Water Splitting Materials Consortium (HydroGEN). This consortium will utilize the expertise and capabilities of the

  17. NETL Researcher Honored with 2013 Federal Laboratory Consortium...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    King of the National Energy Technology Laboratory (NETL) has been awarded a Far West region Federal Laboratory Consortium (FLC) award for Outstanding Technology Development for his...

  18. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Environmental Management (EM)

    Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges It represents a unique public-private partnership of largely New York State ...

  19. Consortium of Chemical International Ltd CCIL | Open Energy Informatio...

    OpenEI (Open Energy Information) [EERE & EIA]

    of Chemical International Ltd CCIL Jump to: navigation, search Name: Consortium of Chemical International Ltd (CCIL) Place: New Delhi, Delhi (NCT), India Sector: Biomass Product:...

  20. Northern Westchester Energy Action Consortium (NY) | Open Energy...

    OpenEI (Open Energy Information) [EERE & EIA]

    the Consortium are regional solutions for: *Energy efficiency and conservation programs *Renewable energy use *Waste management including organic waste *Transportation efficiency...

  1. Ames Lab-based consortium to research improving refrigeration...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Ames Lab-based consortium to research improving refrigeration technology Ames Tribune ... alternative environmentally-friendly and energy- efficient technologies in refrigeration. ...

  2. A University Consortium on High Pressure, Lean Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    High Pressure, Lean Combustion for Efficient and Clean IC Engines (UM - lead, MIT, UCB) A University Consortium on High Pressure, Lean Combustion for Efficient and Clean IC Engines ...

  3. NNSA Hosts Cybersecurity Consortium Members Following White House...

    National Nuclear Security Administration (NNSA)

    DOENNSA's Cybersecurity Workforce Pipeline Consortium at a Norfolk State University ... Frank Klotz. "It will help ensure a sustainable pipeline of cybersecurity experts to ...

  4. New York State Smart Grid Consortium September 2010 1

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    New York State Smart Grid Consortium September 2010 1 November 1, 2010 Response of: New York State Smart Grid Consortium DOE SMART GRID RFI: ADDRESSING POLICY AND LOGISTICAL CHALLENGES I. INTRODUCTION The New York State Smart Grid Consortium ("Consortium") is a not-for-profit 501(c)6 organization formed in July 2009 to address many of the same issues being examined in this proceeding 1 . It represents a unique public-private partnership of largely New York State utilities, authorities,

  5. A University Consortium on Low Temperature Combustion (LTC) for...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    A University Consortium on Low Temperature Combustion (LTC) for High Efficiency, Ultra-Low Emission Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit ...

  6. Chemical Consortium Holdings Inc ChemCon | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Hydro, Hydrogen Product: Develops and operates projects in the bioethanol, biodiesel, methanol, hydrogen and liquid natural gas industries. References: Chemical Consortium Holdings...

  7. Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)

    SciTech Connect

    Pesaran, A.

    2007-02-13

    Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

  8. Modeling of Nonuniform Degradation in Large-Format Li-ion Batteries (Poster)

    SciTech Connect

    Smith, K.; Kim, G. H.; Pesaran, A.

    2009-06-01

    Shows results of an empirical model capturing effects of both storage and cycling and developed the lithium ion nickel cobalt aluminum advanced battery chemistry.

  9. Status of the DOE Battery and Electrochemical Technology Program V

    SciTech Connect

    Roberts, R.

    1985-06-01

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  10. Vehicle Technologies Office Merit Review 2014: Advanced in situ...

    Energy.gov [DOE] (indexed site)

    battery materials. es059yang2014p.pdf (5.88 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Advanced In-Situ Diagnostic Techniques for Battery ...

  11. How to Make a Battery in 7 Steps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Make a Battery in 7 Steps How to Make a Battery in 7 Steps May 24, 2016 - 11:30am Addthis See how batteries are assembled at PNNL's Advanced Battery Facility. | Video by PNNL. Franny White Pacific Northwest National Laboratory From smartphones to electric cars and even the Tesla Powerwall, rechargeable batteries power our modern lives. But have you ever stopped to wonder what's inside these devices that allow us to send emojis, drive around town and so much more? If so, check out the Advanced

  12. Battery cell feedthrough apparatus

    DOEpatents

    Kaun, T.D.

    1995-03-14

    A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

  13. Vehicle Technologies Office Merit Review 2016: Advanced High-Performance

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Batteries for Electric Vehicle (EV) Applications | Department of Energy Advanced High-Performance Batteries for Electric Vehicle (EV) Applications Vehicle Technologies Office Merit Review 2016: Advanced High-Performance Batteries for Electric Vehicle (EV) Applications Presentation given by Amprius at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries es241_stefan_2016_p_web.pdf (739.96 KB) More

  14. Anodes for Batteries

    SciTech Connect

    Windisch, Charles F.

    2003-01-01

    The purpose of this chapter is to discuss, "constructive corrosion" as it occurs in power generated devices, specifically batteries.

  15. Urban Consortium Energy Task Force - Year 21 Final Report

    SciTech Connect

    2003-04-01

    The Urban Consortium Energy Task Force (UCETF), comprised of representatives of large cities and counties in the United States, is a subgroup of the Urban Consortium, an organization of the nation's largest cities and counties joined together to identify, develop and deploy innovative approaches and technological solutions to pressing urban issues.

  16. Sodium sulfur battery seal

    DOEpatents

    Topouzian, Armenag

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  17. Surface-Modified Active Materials for Lithium Ion Battery Electrodes -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Surface-Modified Active Materials for Lithium Ion Battery Electrodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab researcher Gao Liu has developed a new fabrication technique for lithium ion battery electrodes that lowers binder cost without sacrificing performance and reliability. Description

  18. AVTA: Battery Testing - Best Practices for Responding to Emergency

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Incidents in Plug-in Electric Vehicles (EV) | Department of Energy AVTA: Battery Testing - Best Practices for Responding to Emergency Incidents in Plug-in Electric Vehicles (EV) AVTA: Battery Testing - Best Practices for Responding to Emergency Incidents in Plug-in Electric Vehicles (EV) The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These

  19. Toxicity of materials used in the manufacture of lithium batteries

    SciTech Connect

    Archuleta, M.M.

    1994-05-01

    The growing interest in battery systems has led to major advances in high-energy and/or high-power-density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in current lithium battery research and development is evaluated and described.

  20. Characterization of electrochemical systems and batteries: Materials and systems

    SciTech Connect

    McBreen, J.

    1992-12-01

    Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

  1. Characterization of electrochemical systems and batteries: Materials and systems

    SciTech Connect

    McBreen, J.

    1992-01-01

    Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

  2. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  3. Advanced Biofuels

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels, Biomass, Energy, ...

  4. U.S. DOE FreedomCAR and Vehicle Technologies Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Interim Report

    SciTech Connect

    Jon P. Christophersen; Chet Motloch; Ira D. Bloom; Vince Battaglia; Ganesan Nagasubramanian; Tien Q. Duong

    2003-02-01

    The Advanced Technology Development Program is currently evaluating the performance of the second generation of Lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells consist of a baseline chemistry and one variant chemistry. These cells were distributed over a matrix consisting of three states-of-charge (SOC) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar-life cells are clamped at an opencircuit voltage corresponding to 60% SOC and undergo a once-per-day pulse profile. The cycle-life cells are continuously pulsed using a profile that is centered around 60% SOC. The accelerated-life cells are following the calendar-life test procedures, but using the cycle-life pulse profile. Life testing is interrupted every four weeks for reference performance tests (RPTs), which are used to quantify changes in capacity, resistance, and power. The RPTs consist of a C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy at 60% SOC. Capacity-, power-, and electrochemical impedance spectroscopy-based performance results are reported.

  5. AGM Batteries Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    navigation, search Name: AGM Batteries Ltd Place: United Kingdom Product: Manufactures lithium-ion cells and batteries for AEA Battery Systems Ltd. References: AGM Batteries Ltd1...

  6. Vehicle Battery Basics | Department of Energy

    Office of Environmental Management (EM)

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric ...

  7. Batteries and energy systems

    SciTech Connect

    Mantell, C.L.

    1982-01-01

    A historical review of the galvanic concept and a brief description of the theory of operation of batteries are followed by chapters on specific types of batteries and energy systems. Chapters contain a section on basic theory, performance and applications. Secondary cells discussed are: SLI batteries, lead-acid storage batteries, lead secondary cells, alkaline secondary cells, nickel and silver-cadmium systems and solid electrolyte systems. Other chapters discuss battery charging, regenerative electrochemical systems, solar cells, fuel cells, electric vehicles and windmills. (KAW)

  8. Battery Jobs Coming to Michigan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Jobs Coming to Michigan Battery Jobs Coming to Michigan March 22, 2010 - 3:01pm Addthis Advanced batteries will enable electricity generated through renewable energy sources to be used in plug-in vehicles. | File photo Advanced batteries will enable electricity generated through renewable energy sources to be used in plug-in vehicles. | File photo Joshua DeLung A123 Systems, of Watertown, Mass., was awarded a $249 million Recovery Act grant from the U.S. Department of Energy in August that will

  9. Los Alamos boosts light-water reactor research with advanced...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Los Alamos boosts light-water reactor research Los Alamos boosts light-water reactor research with advanced modeling and simulation technology As part of the consortium CASL will ...

  10. Anti-Idling Battery for Truck Applications

    SciTech Connect

    Keith Kelly

    2011-09-30

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  11. Progress in Modeling and Simulation of Batteries

    SciTech Connect

    Turner, John A

    2016-01-01

    Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: * Thermal behavior and characteristics * Battery management system design and analysis * Moderately high-fidelity 3D capabilities * Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.

  12. Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries - Energy

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryLithium's high energy density makes it desirable for use in rechargeable batteries, but its tendency to form dendrites has limited its use to primary batteries. This limitation can be addressed by using

  13. Webinar: Algal Biofuels Consortium Releases Groundbreaking Research...

    Energy.gov [DOE] (indexed site)

    Jose Olivares of Los Alamos National Laboratory (LANL) presented the results of algal biofuels research conducted by the National Alliance for Advanced Biofuels and Bioproducts ...

  14. 2006 Toyota Highlander-6395 Hyrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A160006395). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  15. 2007 Nissan Altima-7982 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Grey; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Nissan Altima hybrid electric vehicle (Vin Number 1N4CL21E27C177982). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  16. 2006 Toyota Highlander-5681 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Highlander hybrid electric vehicle (Vin Number JTEDW21A860005681). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  17. 2007 Toyota Camry-7129 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect

    Tyler Gray; Chester Motloch; James Francfort

    2010-01-01

    The U.S. Department of Energy's Advanced Vehicle Testing Activity conducts several different types of tests on hybrid electric vehicles, including testing hybrid electric vehicles batteries when both the vehicles and batteries are new, and at the conclusion of 160,000 miles of accelerated testing. This report documents the battery testing performed and battery testing results for the 2007 Toyota Camry hybrid electric vehicle (Vin Number JTNBB46K773007129). Testing was performed by the Electric Transportation Engineering Corporation. The Advanced Vehicle Testing Activity is part of the U.S. Department of Energy's Vehicle Technologies Program. The Idaho National Laboratory and the Electric Transportation Engineering Corporation conduct Advanced Vehicle Testing Activity for the U.S. Department of Energy.

  18. SEEA SOUTHEAST CONSORTIUM FINAL TECHNICAL REPORT

    SciTech Connect

    Block, Timothy; Ball, Kia; Fournier, Ashley

    2014-01-21

    In 2010 the Southeast Energy Efficiency Alliance (SEEA) received a $20 million Energy Efficiency and Conservation Block Grant (EECBG) under the U.S. Department of Energy’s Better Building Neighborhood Program (BBNP). This grant, funded by the American Recovery and Reinvestment Act, also included sub-grantees in 13 communities across the Southeast, known as the Southeast Consortium. The objective of this project was to establish a framework for energy efficiency retrofit programs to create models for replication across the Southeast and beyond. To achieve this goal, SEEA and its project partners focused on establishing infrastructure to develop and sustain the energy efficiency market in specific localities across the southeast. Activities included implementing minimum training standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency through strategic marketing and outreach and addressing real or perceived financial barriers to investments in whole-home energy efficiency through a variety of financing mechanisms. The anticipated outcome of these activities would be best practice models for program design, marketing, financing, data collection and evaluation as well as increased market demand for energy efficiency retrofits and products. The Southeast Consortium’s programmatic impacts along with the impacts of the other BBNP grantees would further the progress towards the overall goal of energy efficiency market transformation. As the primary grantee SEEA served as the overall program administrator and provided common resources to the 13 Southeast Consortium sub-grantees including contracted services for contractor training, quality assurance testing, data collection, reporting and compliance. Sub-grantee programs were located in cities across eight states including Alabama, Florida, Georgia, Louisiana, North Carolina, South Carolina, Tennessee, Virginia and the U.S. Virgin Islands. Each sub

  19. Nuclear Arms Control R&D Consortium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Arms Control R&D Consortium includes Los Alamos April 7, 2014 Laboratory can help groom next generation of arms- control-technology experts LOS ALAMOS, N.M., April 7, 2014-A consortium led by the University of Michigan that includes Los Alamos National Laboratory as a partner has been awarded a $25 million grant by the National Nuclear Security Administration (NNSA). The consortium of 13 universities and 8 national laboratories is dedicated to the research and development (R&D) of

  20. US Department

    Office of Environmental Management (EM)

    ... FYs 2015 & 2016 Page 1 Overview This report presents the ... U.S. Advanced Battery Consortium Efforts on the Next-Generation Advanced Energy Storage Technologies for ...

  1. Statement by Energy Secretary Steven Chu on Groundbreaking of BASF Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Battery Materials Plant | Department of Energy of BASF Advanced Battery Materials Plant Statement by Energy Secretary Steven Chu on Groundbreaking of BASF Advanced Battery Materials Plant October 27, 2010 - 12:00am Addthis WASHINGTON, D.C. - U.S. Energy Secretary Steven Chu issued the following statement on today's groundbreaking of BASF's new production plant for advanced lithium-ion battery materials, funded in part through the Department of Energy's Vehicle Technologies Program.

  2. Consortium for Petroleum & Natural Gas Stripper Wells

    SciTech Connect

    Morrison, Joel

    2011-12-01

    The United States has more oil and gas wells than any other country. As of December 31, 2004, there were more than half a million producing oil wells in the United States. That is more than three times the combined total for the next three leaders: China, Canada, and Russia. The Stripper Well Consortium (SWC) is a partnership that includes domestic oil and gas producers, service and supply companies, trade associations, academia, the Department of Energy’s Strategic Center for Natural Gas and Oil (SCNGO) at the National Energy Technology Laboratory (NETL), and the New York State Energy Research and Development Authority (NYSERDA). The Consortium was established in 2000. This report serves as a final technical report for the SWC activities conducted over the May 1, 2004 to December 1, 2011 timeframe. During this timeframe, the SWC worked with 173 members in 29 states and three international countries, to focus on the development of new technologies to benefit the U.S. stripper well industry. SWC worked with NETL to develop a nationwide request-for-proposal (RFP) process to solicit proposals from the U.S. stripper well industry to develop and/or deploy new technologies that would assist small producers in improving the production performance of their stripper well operations. SWC conducted eight rounds of funding. A total of 132 proposals were received. The proposals were compiled and distributed to an industry-driven SWC executive council and program sponsors for review. Applicants were required to make a formal technical presentation to the SWC membership, executive council, and program sponsors. After reviewing the proposals and listening to the presentations, the executive council made their funding recommendations to program sponsors. A total of 64 projects were selected for funding, of which 59 were fully completed. Penn State then worked with grant awardees to issue a subcontract for their approved work. SWC organized and hosted a total of 14 meetings

  3. Multi-University Southeast INIE Consortium

    SciTech Connect

    Ayman Hawari; Nolan Hertel; Mohamed Al-Sheikhly; Laurence Miller; Abdel-Moeze Bayoumi; Ali Haghighat; Kenneth Lewis

    2010-12-29

    2 Project Summary: The Multi-University Southeast INIE Consortium (MUSIC) was established in response to the US Department of Energys (DOE) Innovations in Nuclear Infrastructure and Education (INIE) program. MUSIC was established as a consortium composed of academic members and national laboratory partners. The members of MUSIC are the nuclear engineering programs and research reactors of Georgia Institute of Technology (GIT), North Carolina State University (NCSU), University of Maryland (UMD), University of South Carolina (USC), and University of Tennessee (UTK). The University of Florida (UF), and South Carolina State University (SCSU) were added to the MUSIC membership in the second year. In addition, to ensure proper coordination between the academic community and the nations premier research and development centers in the fields of nuclear science and engineering, MUSIC created strategic partnerships with Oak Ridge National Laboratory (ORNL) including the Spallation Neutron Source (SNS) project and the Joint Institute for Neutron Scattering (JINS), and the National Institute of Standards and Technology (NIST). A partnership was also created with the Armed Forces Radiobiology Research Institute (AFRRI) with the aim of utilizing their reactor in research if funding becomes available. Consequently, there are three university research reactors (URRs) within MUSIC, which are located at NCSU (1-MW PULSTAR), UMD (0.25-MW TRIGA) and UF (0.10-MW Argonaut), and the AFRRI reactor (1-MW TRIGA MARK F). The overall objectives of MUSIC are: a) Demonstrate that University Research Reactors (URR) can be used as modern and innovative instruments of research in the basic and applied sciences, which include applications in fundamental physics, materials science and engineering, nondestructive examination, elemental analysis, and contributions to research in the health and medical sciences, b) Establish a strong technical collaboration between the nuclear engineering faculty

  4. Battery Anodes > Batteries & Fuel Cells > Research > The Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Lithium Anode The anode in the battery deserves an equal say in the overall performance of a battery. For an effective development of a high energy density battery, the use of high ...

  5. The Bholghati (howardite) consortium: An overview

    SciTech Connect

    Laul, J.C. )

    1990-08-01

    The Bholghati (howardite) has had a complex history. The consortium studies indicate that eucrite clasts show evidence of rapid crystallization followed by prolonged subsolidus annealing. Dark clasts are carbonaceous CM2 type. Bholghati bulk composition can be modeled by 55% eucritic, 45% diogenitic, and 3% dark clast components. The eucritic clasts show a LREE depleted pattern relative to HREEs, which is not typical of a normal eucrite. The LREE depletion requires two-stage melting from a chondritic source. The volatile/mobile trace element patterns in dark and eucritic clasts are highly variable, probably due to volatile redistribution. The eucritic clast shows excess fission Xe, which is attributed to in situ decay of Pu-244. The cosmic-ray exposure age is 10-17 Ma. The Rb-Sr, Sm-Nd, and K-Ar ages of Bholghati bulk and eucritic clasts indicate 4.53 Ga as crystallization age, 2-3 Ga as metamorphic event, and probably a minor thermal event < 1 Ga. The Bholghati evolution scenario is (1) early multiple magmatic events (4.53 Ga ago), producing eucrites and diogenites; (2) a metamorphic event (2-3 Ga ago) and prolonged subsolidus annealing; (3) Fragmentation and low-temperature mixing of eucrites and diogenites; (4) low-velocity impact (<1 Ga. ago) and admixing of carbonaceous material; (5) disruption of regolith and ejection of Bholghati 10-17 Ma ago; and (6) Bholghati fell on the Earth in 1905.

  6. Governor Cuomo, GE Announce Power Electronics Manufacturing Consortium

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Governor Andrew M. Cuomo today announced that the State will partner with over 100 private ... The New York Power Electronics Manufacturing Consortium (NY-PEMC) is a public-private ...

  7. Eliot Feibush leads new Princeton consortium to visualize Big...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Eliot Feibush leads new Princeton consortium to visualize Big Data By John Greenwald April 22, 2015 Tweet Widget Google Plus One Share on Facebook Eliot Feibush (Photo by Elle ...

  8. Consortium for Plant Biotechnology Research 2015 Annual Symposium

    Energy.gov [DOE]

    Bioenergy Technologies Office (BETO) Director Jonathan Male spoke on BETO’s role in the bioeconomy and crosscutting opportunities with plant biotechnology at the Consortium for Plant Biotechnology Research 2015 Annual Symposium.

  9. American Indian Higher Education Consortium (AIHEC) 2016 Student Conference

    Energy.gov [DOE]

    The American Indian Higher Education Consortium (AIHEC) is the collective spirit and unifying voice of our nation's 37 Tribal Colleges and Universities (TCUs)—a unique community of tribally and...

  10. Genome Structure Gallery from the Mycobacterium Tuberculosis Structual Genomics Consortium

    DOE Data Explorer

    The TB Structural Genomics Consortium works with the structures of proteins from M. tuberculosis, analyzing these structures in the context of functional information that currently exists and that the Consortium generates. The database of linked structural and functional information constructed from this project will form a lasting basis for understanding M. tuberculosis pathogenesis and for structure-based drug design. The Consortium's structural and functional information is publicly available. The Structures Gallery makes more than 650 total structures available by PDB identifier. Some of these are not consortium targets, but all are viewable in 3D color and can be manipulated in various ways by Jmol, an open-source Java viewer for chemical structures in 3D from http://www.jmol.org/

  11. National Consortium Supports Cities in Evaluating LED Streetlights

    SciTech Connect

    2013-09-30

    Fact sheet that introduces Municipal Solid-State Street Lighting Consortium, a group of municipalities, utilities, and energy efficiency organizations who are interested in making investments in LED street and area lighting.

  12. Municipal Consortium Releases Updated Model Specification for LED Roadway Luminaires

    Energy.gov [DOE]

    The U.S. Department of Energy's Municipal Solid-State Street Lighting Consortium (MSSLC) has released the first updated version of its Model Specification for LED Roadway Luminaires. A “living...

  13. SMART Wind Consortium Support Structures Subgroup Virtual Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Design November 18, 2015 2:30PM to 4:00PM EST Funded by the U.S. Department of Commerce, the SMART Wind Consortium is connecting collaborators to form consensus on near-term...

  14. NREL to Lead New Consortium to Improve Reliability and Performance...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    The goal of the DuraMat Consortium is to develop durable photovoltaic module materials to provide reliable, low-cost solar electricity September 15, 2016 The Energy Department's ...

  15. Consortium to design human trials of mosaic HIV vaccine

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Human trials of mosaic HIV vaccine Consortium to design human trials of mosaic HIV vaccine The vaccine represents a novel strategy for fighting the virus that causes AIDS by ...

  16. DOE Street Lighting Consortium Releases Results of Public Street...

    Energy Saver

    DOE's Municipal Solid-State Street Lighting Consortium (MSSLC) has released the results of a voluntary web-based inventory survey of public street and area lighting across the ...

  17. Recap: Advancing Scientific Innovation at the National Labs ...

    Energy Saver

    Research conducted at the user facilities advances many diverse scientific disciplines -- from plant biology to batteries. Fossil Leaves Preserve Living Chemistry: X-rays Reveal ...

  18. Helping Advance the Scientific Foundation that Enables Major...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management ... Lighting Science EFRCOverviewHelping Advance the ...

  19. Quantitative Electrochemical TEM to Study Alloying for Advanced...

    Office of Scientific and Technical Information (OSTI)

    Conference: Quantitative Electrochemical TEM to Study Alloying for Advanced Battery ... February 17-20, 2014 in San Diego, CA. Research Org: Sandia National Laboratories ...

  20. ATU Advanced Technology Upgrading Ltd | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    Upgrading) Ltd Place: Israel Product: Focused on development of rechargeable magnesium battery. References: ATU (Advanced Technology Upgrading) Ltd1 This article is a stub. You...

  1. Electric Vehicle Battery Performance

    Energy Science and Technology Software Center

    1992-02-20

    DIANE is used to analyze battery performance in electric vehicle (EV) applications. The principal objective of DIANE is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile. Two releases are included with the package. Diane21 has a graphics capability; DIANENP has no graphics capability.

  2. Polyoxometalate flow battery

    DOEpatents

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  3. Battery utilizing ceramic membranes

    DOEpatents

    Yahnke, Mark S.; Shlomo, Golan; Anderson, Marc A.

    1994-01-01

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  4. Lithium battery management system

    DOEpatents

    Dougherty, Thomas J.

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  5. Battery Cathodes > Batteries & Fuel Cells > Research > The Energy...

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    is pursuing an alternate approach to battery cathodes based on the reaction of lithium ... As a result, organic materials have promise for high-rate battery applications. Achieving ...

  6. Frequently Asked Questions About the Municipal Solid-State Street Lighting Consortium

    Energy.gov [DOE]

    This page addresses many of the questions about the Municipal Solid-State Street Lighting Consortium.

  7. Rechargeable Heat Battery's Secret Revealed

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture ... Contact: John Hules, JAHules@lbl.gov, +1 510 486 6008 2011-01-11-Heat-Battery.jpg A ...

  8. GBP Battery | Open Energy Information

    OpenEI (Open Energy Information) [EERE & EIA]

    GBP Battery Jump to: navigation, search Name: GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications....

  9. Federal Laboratory Consortium Highlights Three NREL Research Projects -

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    News Releases | NREL Federal Laboratory Consortium Highlights Three NREL Research Projects McDonough Lauded as Outstanding Laboratory Representative September 16, 2011 The Federal Laboratory Consortium for Technology Transfer's (FLC) Mid-Continent Region recently recognized the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and its partners with three awards for excellence in technology transfer. It also named NREL Commercialization and Technology Transfer

  10. Federal Laboratory Consortium for Technology Transfer Awards (FLC)

    U.S. Department of Energy (DOE) - all webpages (Extended Search)

    Federal Laboratory Consortium for Technology Transfer Awards (FLC) Federal Laboratory Consortium (FLC) Awards This nationwide network of federal laboratories provides the forum to develop strategies and opportunities for linking the the federal laboratories' mission technologies and expertise with the marketplace, bringing laboratories together with potential users of government-developed technologies. Contact Jenna L. Montoya 505-665-4230 Email "It is really compelling to come to work

  11. Sandia wins tech transfer award from lab consortium | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Sandia wins tech transfer award from lab consortium Wednesday, February 17, 2016 - 12:00am NNSA Blog EOD technician using XTK from within his response vehicle during a training exercise. NNSA's Sandia National Laboratories won the Federal Laboratory Consortium's (FLC) 2016 Award for Excellence in Technology Transfer for a decontamination product that neutralizes chemical and biological agents and for software that helps emergency responders disable improvised

  12. 2011 Municipal Consortium Northeast Region Workshop Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Northeast Region Workshop Materials 2011 Municipal Consortium Northeast Region Workshop Materials This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Northeast Region Workshop, held in Philadelphia, May 19-20, 2011. Presentations Calculating Light Loss Factors for LED Street Lighting Systems Rick Kauffman, Kauffman Consulting LLC LM-79, LM-80, and Other Challenges of the "Revolution" Eric Haugaard, BetaLED by

  13. 2011 Municipal Consortium Northwest Region Workshop Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Northwest Region Workshop Materials 2011 Municipal Consortium Northwest Region Workshop Materials This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Northwest Region Workshop, held in Seattle July 15, 2011. Presentations and Materials Workshop Agenda Seattle City Light: LED Streetlight Program Case Study Edward Smalley, Seattle City Light; Lok Chan, DKS Associates SSL Not As Simple As It Seems: Things to Know and Things

  14. 2011 Municipal Consortium Southwest Region Workshop Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Southwest Region Workshop Materials 2011 Municipal Consortium Southwest Region Workshop Materials This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southwest Region Workshop, held in San Jose, California, August 25--26, 2011. Presentations and Materials Workshop Agenda San Jose's "Smart" LED Streetlight Program Laura Stuchinsky, City of San Jose Department of Transportation San Jose Story Nancy Clanton, Clanton

  15. Alaska Native Tribal Health Consortium - 2011 Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Energy Alaska Native Tribal Health Consortium - 2011 Project Alaska Native Tribal Health Consortium - 2011 Project Summary The main objective of the proposed project is to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit. One purpose for the proposed improvements is to enable the community to realize significant savings associated

  16. Municipal Consortium Annual Meeting Presentations and Materials-Phoenix,

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    AZ | Department of Energy Annual Meeting Presentations and Materials-Phoenix, AZ Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ This page provides links to presentations and materials from the DOE Municipal Solid-State Street Lighting Consortium Annual Meeting held in Phoenix on September 11, 2013. Workshop Agenda Transportation Challenges and Opportunities for Large Cities Wylie Bearup, City of Phoenix HPS to LED Conversion - A City of Phoenix Experience Shane

  17. Municipal Consortium LED Street Lighting Workshop Presentations and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials-Dallas, TX | Department of Energy Dallas, TX Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Dallas, TX This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Dallas March 15-16, 2012. Presentations and Materials Workshop Agenda ONCOR LED Streetlight Pilot & Technical Evaluation Update Michael Navarro, ONCOR Reading, Understanding, and Applying the LM-80 Standard Chad

  18. Municipal Consortium LED Street Lighting Workshop Presentations and

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    Materials-Los Angeles, CA | Department of Energy Los Angeles, CA Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Los Angeles, CA This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Los Angeles April 19-20, 2012. Presentations and Materials Workshop Agenda City of Los Angeles: Changing Our Glow for Efficiency Ed Ebrahimian, City of Los Angeles Bureau of Street Lighting L.M. Seventynine:

  19. DOE Grid Modernization Laboratory Consortium (GMLC) - Awards | Department

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    of Energy Modernization Laboratory Consortium (GMLC) - Awards DOE Grid Modernization Laboratory Consortium (GMLC) - Awards A modern electricity grid is vital to the Nation's security, economy and modern way of life, providing the foundation for essential services that Americans rely on every day. The Nation's power grid, however, is aging and faces a future for which it was not designed. The Energy Department's Grid Modernization Initiative (GMI) represents a comprehensive effort to help

  20. Consortium for Energy Efficiency (CEE) Notes_ Clothes Dryer Test Procedure

    Office of Energy Efficiency and Renewable Energy (EERE) (indexed site)

    | Department of Energy Consortium for Energy Efficiency (CEE) Notes_ Clothes Dryer Test Procedure Consortium for Energy Efficiency (CEE) Notes_ Clothes Dryer Test Procedure CEE and DOE staff discussed the importance of relying on the DOE test method as the sole metric for efficiency and energy use reporting. CEE_Notes_ClothesDryerTestProcedure_25Apr2016 (352.34 KB) More Documents & Publications 2015-03-23 Issuance: Energy Conservation Standards for Residential Clothes Dryers; Request for